WO2015005341A1 - 光学活性フルオロ乳酸誘導体の製造方法 - Google Patents

光学活性フルオロ乳酸誘導体の製造方法 Download PDF

Info

Publication number
WO2015005341A1
WO2015005341A1 PCT/JP2014/068187 JP2014068187W WO2015005341A1 WO 2015005341 A1 WO2015005341 A1 WO 2015005341A1 JP 2014068187 W JP2014068187 W JP 2014068187W WO 2015005341 A1 WO2015005341 A1 WO 2015005341A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid derivative
formula
reaction
acid
optically active
Prior art date
Application number
PCT/JP2014/068187
Other languages
English (en)
French (fr)
Inventor
直己 澤井
祥子 石井
哲郎 西井
石井 章央
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP14823741.5A priority Critical patent/EP3020818A4/en
Priority to US14/903,130 priority patent/US20160138059A1/en
Priority to CN201480039390.1A priority patent/CN105378094A/zh
Priority to JP2015526349A priority patent/JPWO2015005341A1/ja
Publication of WO2015005341A1 publication Critical patent/WO2015005341A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions

Definitions

  • the present invention relates to a method for producing an optically active fluorolactic acid derivative.
  • Optically active fluorolactic acid derivatives are important as various pharmaceutical and agrochemical intermediates. So far, a method of optical resolution by selective hydrolysis of one of the optical isomers of fluorolactic acid derivative ester using a microorganism, a method of asymmetric reduction using a catalyst, or an optical method of a racemic fluorolactic acid derivative. A method of optical resolution using a resolving agent has been studied.
  • esters of 3,3,3-trifluorolactic acid derivatives using enzymes originating from microorganisms such as Arthrobacter, Aspergillus, Bacillus, and Candida are used.
  • An optically active 3,3,3-trifluorolactic acid derivative is obtained by asymmetric hydrolysis of the compounds.
  • yeast is allowed to act on ethyl 3,3,3-trifluoropyruvate to obtain ethyl 3,3,3-trifluoroethyl lactate with a yield of 63% and an optical purity of 5% ee. Yes.
  • Non-Patent Document 1 using yeast also has an optical purity as low as 5% ee.
  • the optical purity of the obtained 3,3,3-trifluorolactic acid was as low as 75% ee.
  • recrystallization is known as a method for increasing the optical purity of a fluorolactic acid derivative, but there is a problem that the recovery rate decreases when recrystallization is repeated.
  • Patent Document 3 is a preferable method for obtaining an optical isomer with high resolution efficiency, but has a problem in productivity because the recovery rate of the product from the raw material is 50% at the maximum.
  • An object of the present invention is to provide a method for producing an optically active fluorolactic acid derivative at a low cost and in a high yield and high optical purity without burdening the environment.
  • an optically active fluorolactic acid derivative represented by the formula [2] can be obtained by the action of ⁇ -keto acid dehydrogenase or ⁇ -keto acid reductase.
  • n is an integer of 1 to 3.
  • R represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • n and R are the same as those in the formula [1].
  • the inventors have found that by adding an organic solvent such as alcohols into the reaction system, the yield is greatly improved and the optical system can be manufactured with high optical purity, and the present invention has been completed.
  • an optically active fluorolactic acid derivative can be produced in high yield and high optical purity by asymmetric reduction of a fluoropyruvic acid derivative with a specific enzyme. This means that a recrystallization operation for the purpose of increasing the optical purity is unnecessary, and not only the manufacturing process can be simplified, but also the amount of waste can be suppressed. Since the reaction can be purified by a general method of organic chemistry such as extraction with an organic solvent and crystallization for isolation, the present invention is a highly advantageous method.
  • the present invention provides the inventions described in [Invention 1]-[Invention 9] below.
  • invention 4 The amount of ⁇ -keto acid dehydrogenase or ⁇ -keto acid reductase is 0.02% by mass to 20% by mass with respect to the amount of the reaction solution, according to any one of inventions 1 to 3. Production method.
  • invention 5 The production method according to any one of inventions 1 to 4, wherein the asymmetric reduction reaction is performed in the presence of a phosphate buffer, and the concentration of the buffer is 0.01 to 3 mol / l.
  • invention 6 6. The production method according to any one of inventions 1 to 5, wherein the reaction is carried out in the presence of an alcohol.
  • invention 8 The production method according to any one of inventions 1 to 7, wherein the temperature of the asymmetric reduction reaction is 5 to 60 ° C.
  • invention 9 9. The production method according to any one of inventions 1 to 8, wherein the asymmetric reduction reaction is carried out under conditions where the pH is 3.0 to 10.0.
  • an optically active fluorolactic acid derivative can be obtained with high optical purity under mild conditions by performing asymmetric reduction with an enzyme.
  • n is an integer of 1 to 3
  • R represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 1-methylpropyl group, and a 2-methyl group.
  • the compound in which n is 2 or 3 and R is a hydrogen atom is a reaction in the asymmetric reduction reaction of the present invention. Is particularly preferable since the property and the stereoselectivity are also improved.
  • the fluoropyruvic acid derivative represented by the formula [1] may be appropriately prepared by a person skilled in the art based on the prior art, or a commercially available one may be used.
  • the fluoropyruvic acid derivative represented by the formula [1] as a raw material when the fluoropyruvic acid derivative represented by the formula [1] as a raw material is brought into contact with water, the carbonyl group of the derivative undergoes a nucleophilic reaction, and the fluoropyruvine represented by the formula [5] It becomes a hydrate of an acid derivative.
  • the ratio of the hydrate in the raw material varies depending on the amount of water in the reaction system, but the present invention is sufficient for the asymmetric reduction reaction even if the fluoropyruvic acid derivative as the raw material contains the hydrate. Proceed to.
  • the fluoropyruvic acid derivative is affected by water in the reaction system, and the reaction actually proceeds in the form of a hydrated fluoropyruvic acid derivative.
  • the raw material of the present invention may be a fluoropyruvic acid derivative alone, a mixture of a fluoropyruvic acid derivative and the hydrate, or a fluoropyruvic acid derivative hydrate alone.
  • the hydrate may be prepared in advance before adding the fluoropyruvic acid derivative to the reaction system.
  • the asymmetric reduction reaction in the present invention includes a step of producing a corresponding optically active fluorolactic acid derivative by causing an enzyme to act on the fluoropyruvic acid derivative represented by the formula [1] to reduce the ketone moiety. . Specifically, after adding a fluoropyruvic acid derivative, which is a starting material, to a buffer solution, various enzymes are added and reacted while stirring with a magnetic stirrer or the like.
  • the enzyme used in the asymmetric reduction reaction of the present invention is ⁇ -keto acid dehydrogenase or ⁇ -keto acid reductase.
  • the carbonyl group at the ⁇ -position (referring to the carbon moiety next to the carboxyl group) of the “ ⁇ -keto acid derivative” such as “pyruvate derivative” which is the raw material of the present invention is used as an electron acceptor, This refers to those having the ability to convert NADH (nicotinamide adenine dinucleotide reduced form) or NADPH (nicotinamide adenine dinucleotide phosphate reduced form) into a hydroxyl group as an electron donor (this is also referred to as “reduction”).
  • glucose, formic acid or a metal salt of formic acid is added to the reaction system without adding (or in large quantities) reduced NADH or NADPH to the reaction system.
  • reduced NADH and NADPH can be regenerated in the reaction system using a coenzyme dehydrogenase (glucose dehydrogenase, formate dehydrogenase, etc.).
  • enzyme used in the asymmetric reduction reaction of the present invention include, for example, Chiralscreen OH TM (hereinafter abbreviated) E038, E070, E071, E088, E089, E090, E093, E126, E152, etc. of Daicel Corporation. Can be mentioned. These enzymes are generally commercially available and can be easily obtained by those skilled in the art. In addition, these enzymes can be used by themselves or a processed product of the enzyme.
  • Enzyme-treated product means, for example, a crude extract, freeze-dried microorganism, acetone-dried microorganism, or crushed material. Furthermore, what immobilized the enzyme itself by well-known methods, such as a crosslinking method and a physical adsorption method, is meant.
  • whole cells of microorganisms that possess an enzyme that asymmetrically reduces a fluoropyruvic acid derivative, genetically modified organisms, or processed products thereof can be used in the same manner.
  • the “gene recombinant” in the present invention refers to all recombinant microorganisms into which a gene encoding the enzyme used in the present invention has been introduced and expressed.
  • the amount of the enzyme used may be an amount that does not cause a delay in reaction time or a decrease in selectivity, and is usually 0.01% by mass to 100% by mass, preferably 0.02% by mass with respect to the amount of the reaction solution. % To 20% by mass.
  • the amount of the substrate used may be an amount that allows the enzyme reaction to proceed smoothly, and is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 10% by mass.
  • an aqueous medium such as ion-exchanged water or a buffer solution can be usually used.
  • the enzyme reaction proceeds smoothly, preferably pH 3 to pH 10, more preferably pH 5 to pH 8.
  • the pH may change as the reaction proceeds, it is desirable to adjust to an optimum pH by adding an appropriate neutralizing agent.
  • the buffer used in the reaction is not particularly defined as long as it is optimal for the above pH range.
  • sodium cacodylate-hydrochloric acid buffer sodium maleate-sodium hydroxide buffer, phosphate buffer, imidazole -Hydrochloric acid buffer, 2,4,6-trimethylpyridine-hydrochloric acid buffer, triethanolamine / hydrochloric acid-sodium hydroxide buffer, veronal-hydrochloric acid buffer, N-ethylmorpholine-hydrochloric acid buffer, tris buffer
  • Particularly preferred is a phosphate buffer.
  • the concentration of the buffer can be used in the range of 0.01 to 3 mol / l, but is preferably 0.2 to 2 mol / l.
  • concentration here refers to the concentration of phosphate radicals (the concentration of chemical species shown below).
  • organic solvents can cause enzyme inactivation, but methanol, ethanol, 1-propanol, 2-propanol, butanol, diethanol are used for the purpose of increasing the solubility of the substrate in the reaction system and for the purpose of smoothly promoting the enzyme reaction.
  • -I-Propyl ether, tetrahydrofuran, acetone, N, N-dimethylformamide, dimethyl sulfoxide and the like can be added to the extent that they do not inhibit the enzyme reaction.
  • methanol, ethanol or 2-propanol is preferable.
  • the amount added is usually 1 to 20% by mass, preferably 3 to 7% by mass, based on the amount of the reaction solution.
  • NAD + reducing ability metabolic system
  • glucose or ethanol it was found that ethanol can be used to improve the conversion rate of an enzyme reaction even in the case of an enzyme reaction without using a microorganism.
  • the amount added is not particularly limited, but specifically, it is 1 to 20% by mass, preferably 3 to 7% by mass, based on the amount of the reaction solution.
  • it is preferable to carry out stirring a reaction liquid, and a magnetic stirrer, a motor drive stirring blade, a shaker etc. can be used.
  • the reaction temperature varies depending on the enzyme used, but is usually 5 to 60 ° C, preferably 10 to 40 ° C. If the temperature is too high, the enzyme is deactivated, so the temperature should be adjusted appropriately.
  • the reaction time is 1 hour to 168 hours, preferably 1 to 72 hours, and it is preferable to select reaction conditions for completing the reaction in such time.
  • reaction conditions such as the substrate concentration, enzyme concentration, pH, temperature, added solvent, reaction time, etc. described above are the conditions under which the target fluorolactic acid derivative can be collected most in consideration of the reaction yield, optical purity, etc. select.
  • a general isolation method in organic synthesis can be employed. After completion of the reaction, usual post-treatment operations such as extraction with an organic solvent may be performed. In order to recover the product from the reaction solution, an extraction operation and a crystallization operation are performed.
  • any solvent can be used as long as it can be easily separated from the aqueous layer and the target product can be easily extracted.
  • Aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane, n-heptane, benzene, toluene, ethylbenzene
  • Aromatic hydrocarbons such as xylene and mesitylene, halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, diethyl ether, tetrahydrofuran, t-butyl methyl ether, di-i-propyl ether, 1, Ethers such as 4-dioxane, ketones such as acetone, methyl ethyl ketone and methyl-i-butyl ketone, esters such as ethyl acetate and n-butyl acetate, nitriles such as aceton
  • Extraction efficiency is improved by performing the reaction solution used for extraction under an acidic condition using an inorganic acid.
  • the pH at the time of extraction may be pH 3 or less, preferably pH 2 or less.
  • Hydrochloric acid, sulfuric acid, and phosphoric acid can be used as the inorganic acid used for adjusting the pH of the reaction solution. What is necessary is just to adjust the addition amount of an inorganic acid suitably according to pH of a reaction liquid.
  • Crystallization solvents in the crystallization operation include aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane and n-heptane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene and mesitylene, and methylene chloride.
  • Halogenated hydrocarbons such as chloroform and 1,2-dichloroethane
  • ethers such as diethyl ether, tetrahydrofuran, t-butyl methyl ether, di-i-propyl ether and 1,4-dioxane
  • acetone methyl ethyl ketone, methyl i -Ketones such as butyl ketone
  • esters such as ethyl acetate and n-butyl acetate
  • nitriles such as acetonitrile and propionitrile
  • alcohols such as methanol, ethanol, n-propanol, i-propanol and n-butanol
  • toluene, di-i-propyl ether, and ethyl acetate are preferable, and a mixed solvent of toluene and di-i-propyl ether is particularly preferable.
  • a crude product can be obtained. If necessary, the crude product may be subjected to purification operations such as centrifugation, dehydration, activated carbon, distillation, recrystallization, column chromatography, etc. to increase the chemical purity.
  • purification operations such as centrifugation, dehydration, activated carbon, distillation, recrystallization, column chromatography, etc. to increase the chemical purity.
  • R in the fluoropyruvic acid derivative represented by the formula [1] is “R is a linear or branched alkyl group having 1 to 10 carbon atoms”, R does not participate in the reaction in the present invention.
  • the obtained optically active fluorolactic acid derivative is the same as that immediately before the reaction, but the corresponding optically active fluorolactic acid can also be produced by performing a hydrolysis reaction as necessary.
  • optically active fluorolactic acid derivative when R in the fluoropyruvic acid derivative represented by the formula [1] is “R is a hydrogen atom”, the obtained optically active fluorolactic acid derivative is “optically active fluorolactic acid” and / or “optically active”. It may be obtained as a metal salt of fluorolactic acid.
  • Metal salt of optically active fluorolactic acid for example, sodium salt
  • TMS represents a trimethylsilyl group.
  • the optical purity was measured by the following analysis method.
  • [Optical purity analysis conditions] [3,3,3-trifluorolactic acid] The reaction solution of 3,3,3-trifluorolactic acid was adjusted to pH 2 or lower by adding hydrochloric acid, and then extracted with ethyl acetate. After adding an equal amount of methanol to the extract, the carboxyl group of 3,3,3-trifluorolactic acid was methyl esterified with TMS-diazomethane. The obtained methyl 3,3,3-trifluorolactic acid was analyzed by gas chromatography using a chiral column (BGB-174, ANALYTIK, 30 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m).
  • Carrier gas is nitrogen, flow rate is 1 ml / min, inlet temperature is 200 ° C., column temperature is 55 ° C. (5 min) ⁇ 150 ° C. (5 ° C./min) ⁇ 150° C. (2 min), vaporization chamber / detector (FID) temperature Calculated the optical purity from the area of the peak obtained under the analysis condition of 230 ° C. Retention times of the respective enantiomers of methyl 3,3,3-trifluorolactic acid were 17.76 min for the S isomer and 17.92 min for the R isomer.
  • Example 1 [Screening of enzymes suitable for asymmetric reduction of 3,3,3-trifluoropyruvic acid]
  • the 3,3,3-trifluoropyruvic acid that is the substrate for the enzyme reaction is 1.2 equivalents per 17 g of ethyl 3,3,3-trifluoropyruvate and 1 mol of ethyl 3,3,3-trifluoropyruvate.
  • Of sodium hydroxide was reacted for one day to obtain 3,3,3-trifluoropyruvic acid at a conversion rate of 100%.
  • Example 2 [Asymmetric reduction of 3,3,3-trifluoropyruvic acid with ChiralscreenOH TM E070 and improvement of conversion rate by addition of ethanol] Numbers 1 and 3 in Table 2 are 4% by mass and 6.4% by mass in 5 ml of potassium phosphate buffer (pH 6.0, 600 mmol / l sodium formate, 2 mmol / l NAD + ) prepared to 500 mmol / l. 3,3,3-trifluoropyruvic acid obtained in Example 1 was added to the enzyme, and the enzyme ChiralscreenOH TM E070 was added to 5 mg / ml, and the mixture was reacted at 25 ° C. with stirring using a magnetic stirrer. Nos.
  • Example 3 [20 ml reaction of asymmetric reduction of 3,3,3-trifluoropyruvic acid] 8% by mass of 3,3,3-trifluoropyruvic acid obtained in Example 1 in 20 ml of potassium phosphate buffer (pH 6.0, 600 mmol / l sodium formate, 2 mmol / l NAD + ) prepared to 500 mmol / l
  • 100 mg of ChiralscreenOH TM E070 was added from the enzymes shown in Table 1.
  • ethanol was added in an equimolar ratio with the substrate, and the mixture was reacted at 25 ° C. for 2 days while stirring with a magnetic stirrer.
  • Example 4 [Purification of optically active 3,3,3-trifluorolactic acid] Hydrochloric acid was added to the reaction solution obtained in Example 3 until the pH was 2 or lower. Then, ethyl acetate was added to 1/2 of the reaction liquid volume, and acetone was added in an amount equal to ethyl acetate, followed by liquid separation / extraction. The extract was filtered through celite, concentrated under reduced pressure, and optically active 3,3,3-trifluorolactic acid was purified by crystallization in a toluene / di-i-propyl ether system. The obtained 3,3,3-trifluorolactic acid had an optical purity of 99% or more and a product purity of 94.8%.
  • Example 5 [Screening of enzymes suitable for asymmetric reduction of difluoropyruvic acid] 1% by mass to 1% difluoropyruvic acid in 1 ml of potassium phosphate buffer (pH 6.5, 206 mmol / l sodium formate, 222 mmol / l glucose, 5 mmol / l NAD + , 5 mmol / l NADP + ) prepared to 200 mmol / l Then, 5 mg each of ⁇ -keto acid dehydrogenase or ⁇ -keto acid reductase shown in Table 3 was added, and the mixture was reacted at 25 ° C. for 2 days while stirring with a magnetic stirrer. The optical purity of the reaction solution after the reaction was measured under the above analysis conditions. The results are shown in Table 3 together with the conversion rate to 3,3-difluorolactic acid.
  • optically active fluorolactic acid derivative targeted in the present invention can be used as an intermediate for medical and agricultural chemicals, functional organic compounds such as liquid crystals and surfactants, and raw materials for functional films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明の光学活性フルオロ乳酸誘導体の製造方法は、フルオロピルビン酸誘導体(またはフルオロピルビン酸誘導体の水和体)に、α―ケト酸脱水素酵素またはα―ケト酸還元酵素を用いて不斉還元することを特徴とする。フルオロピルビン酸誘導体に対し、特定の酵素によって不斉還元反応を行い、穏和な条件の反応で、光学活性フルオロ乳酸誘導体を高い光学純度でもって得ることができる。

Description

光学活性フルオロ乳酸誘導体の製造方法
 本発明は、光学活性フルオロ乳酸誘導体の製造方法に関する。
 光学活性フルオロ乳酸誘導体は種々の医農薬中間体として重要である。これまでに微生物を用いてフルオロ乳酸誘導体エステルの光学異性体の片方を選択的に加水分解することで光学分割する方法や触媒を用いて不斉還元する方法、またはラセミ体のフルオロ乳酸誘導体を光学分割剤によって光学分割する方法が検討されてきた。
 微生物を用いる方法については、例えば、特許文献1ではアルスロバクター属、アスペルギルス属、バチルス属、キャンディダ属等の微生物を起源とする酵素を用いて3,3,3-トリフルオロ乳酸誘導体のエステル類を不斉加水分解することで光学活性3,3,3-トリフルオロ乳酸誘導体を得ている。また、非特許文献1では3,3,3-トリフルオロピルビン酸エチルに対して酵母を作用させて収率63%、光学純度5%eeで3,3,3-トリフルオロ乳酸エチルを得ている。
 また、触媒を用いた化学的な方法では、例えば、特許文献2ではカルボニルのα位にパーフルオロアルキル基を持つ2-ケトパーフルオロアルカンアミドもしくはそのカルボニル水和物を原料とし、ロジウム錯体からなる遷移金属触媒を用いて不斉水素化反応を行い、その後に加水分解することで光学純度75%eeの3,3,3-トリフルオロ乳酸を得ている。
 一方、ラセミ体の3,3,3-トリフルオロ乳酸を光学分割することで光学活性体を製造する方法も古くから検討されており、例えば特許文献3において、ラセミ体の3,3,3-トリフルオロ乳酸に、光学分割剤である光学活性フェネチルアミン塩を作用させて再結晶させることで光学活性体を得ている。
特開2000-14397号公報 特開2011-42661号公報 特開2006-232726号公報
Tetrahedoron Asymmetry, 21, p.1211-1215(2010)
 特許文献1で開示している微生物を用いた反応では、目的物である光学活性3,3,3-トリフルオロ乳酸誘導体の光学純度が最高で36.8%eeであり、その変換率も64.9%と、変換率、光学純度ともに不十分である。また、酵母を用いている非特許文献1も光学純度が5%eeと低い。
 特許文献2で開示している触媒を用いた反応に関しても、得られた3,3,3-トリフルオロ乳酸の光学純度が75%eeと低いものであった。
 一般的にフルオロ乳酸誘導体の光学純度を高める方法として再結晶が知られているが、再結晶を繰り返すと回収率が低下する問題がある。
 一方、特許文献3の方法は、高い分割効率で光学異性体を得る好ましい方法であるが、原料からの生成物の回収率は最大50%であることから生産性に問題があった。
 このように、光学活性フルオロ乳酸誘導体を製造するにあたり、反応~生成物の回収までに多くの工程を必要とした。また、触媒を用いた化学的な方法を採用した場合も、高価な試薬の大量使用などの理由から工業的スケールでの製造において採用し難いという問題があった。
 本発明の課題は、光学活性フルオロ乳酸誘導体を、環境負荷をかけずに低コストで高収率、かつ高い光学純度で製造する方法を提供することにある。
 本発明者らは上記の課題を解決すべく誠意検討した結果、式[1]で表されるフルオロピルビン酸誘導体、または式[5]で表されるフルオロピルビン酸誘導体の水和体に特定のα―ケト酸脱水素酵素またはα―ケト酸還元酵素を作用させることで、式[2]で表される光学活性フルオロ乳酸誘導体が得られることを見出した。
Figure JPOXMLDOC01-appb-C000006
[式中、nは1~3の整数を採る。Rは水素原子または炭素数1~10の直鎖もしくは分岐鎖のアルキル基を表す。]
Figure JPOXMLDOC01-appb-C000007
[式中、nおよびRは式[1]に同じ。]
Figure JPOXMLDOC01-appb-C000008
[式中、nおよびRは式[1]に同じ。*は不斉炭素を表す。]
 また、反応系内に、アルコール類などの有機溶剤を添加することにより、収率が大幅に向上し、かつ高い光学純度で製造できる知見を見出し、本発明を完成した。
 本発明においては、フルオロピルビン酸類誘導体を特定の酵素で不斉還元することで、光学活性フルオロ乳酸誘導体を高収率で、かつ高い光学純度で製造することができる。このことは光学純度を高めることを目的とした再結晶操作が不要であることを意味し、製造工程を簡略化できるだけでなく、廃棄物の量も抑えることができる。反応後は有機溶媒による抽出と単離のための結晶化といった、有機化学の一般的な手法によって精製できることからも、本発明は、非常に優位性の高い方法である。
 すなわち、本発明では以下の[発明1]-[発明9]に記載する発明を提供する。
 [発明1]
 式[1]で表されるフルオロピルビン酸誘導体、または式[5]で表されるフルオロピルビン酸誘導体の水和体に、α―ケト酸脱水素酵素またはα―ケト酸還元酵素を用いて不斉還元することを特徴とする、式[2]で表される光学活性フルオロ乳酸誘導体の製造方法。
 [発明2]
 式[2]で表される光学活性フルオロ乳酸誘導体が、式[3]または式[4]で表される構造である、発明1に記載の製造方法。
Figure JPOXMLDOC01-appb-C000009
[式中、nおよびRは式[1]に同じ。]
Figure JPOXMLDOC01-appb-C000010
[式中、nおよびRは式[1]に同じ。]
 [発明3]
 式[1]で表されるフルオロピルビン酸誘導体におけるnが2または3であり、かつ、Rが水素原子であることを特徴とする、発明1または2に記載の製造方法。
 [発明4]
 α―ケト酸脱水素酵素またはα―ケト酸還元酵素の量が、反応液量に対し0.02質量%~20質量%であることを特徴とする、発明1乃至3の何れかに記載の製造方法。
 [発明5]
 不斉還元反応をリン酸緩衝液の存在下で行い、該緩衝液の濃度が0.01~3mol/lであることを特徴とする、発明1乃至4の何れかに記載の製造方法。
 [発明6]
 アルコールの存在下で反応を行うことを特徴とする、発明1乃至5の何れかに記載の製造方法。
 [発明7]
 アルコールがメタノール、エタノールまたは2-プロパノールであることを特徴とする、発明6に記載の製造方法。
 [発明8]
 不斉還元反応の温度が5℃~60℃であることを特徴とする、発明1乃至7の何れかに記載の製造方法。
 [発明9]
 不斉還元反応を、pHが3.0~10.0の条件下で行うことを特徴とする、発明1乃至8の何れかに記載の製造方法。
 本発明は酵素による不斉還元を行うことで、穏和な条件で光学活性フルオロ乳酸誘導体を高い光学純度で得ることができる。
 以下に、本発明を詳細に説明する。
 本発明の基質である式[1]で表されるフルオロピルビン酸誘導体におけるnは1~3の整数であり、Rは水素原子または炭素数1~10の直鎖もしくは分岐鎖のアルキル基を表す。
 ここで炭素数1~10の直鎖もしくは分岐鎖のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、t-ブチル基、n-ペンチル基、i-ペンチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基、n-ヘキシル基、n-ヘプチル基、i-ヘキシル基、n-オクチル基、i-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等が挙げられる。
 この中でも、nが2または3であり、かつRが水素原子である化合物、すなわち3,3,3-トリフルオロピルビン酸もしくは2,2-ジフルオロピルビン酸は、本発明の不斉還元反応における反応性、立体選択性も良好となることから、特に好ましい。尚、式[1]で表されるフルオロピルビン酸誘導体は、従来技術を基に当業者が適宜調製しても良いし、市販されているものを用いても良い。
 本発明において、原料である式[1]で表されるフルオロピルビン酸誘導体は、水と接触させると該誘導体のカルボニル基が求核的な反応を受け、式[5]で表されるフルオロピルビン酸誘導体の水和物となる。原料中の該水和物の比率は反応系中の水の量によって変化するが、本発明は原料である当該フルオロピルビン酸誘導体に該水和物が含まれていても不斉還元反応は十分に進行する。例えば、後述の実施例によれば、フルオロピルビン酸誘導体は、反応系内の水の影響を受け、実際にはフルオロピルビン酸誘導体の水和体の形でもって反応が進行している。したがって、本発明の原料はフルオロピルビン酸誘導体単独、フルオロピルビン酸誘導体と該水和物との混合、またはフルオロピルビン酸誘導体の水和物単独のものであっても良い。当然、フルオロピルビン酸誘導体を反応系内に加える前に、予め該水和体に調製して用いてもよい。
 本発明における不斉還元反応については、式[1]で表されるフルオロピルビン酸誘導体に対し、酵素を作用させ、ケトン部位を還元することで対応する光学活性フルオロ乳酸誘導体を製造する工程を含む。具体的には、緩衝溶液中に出発原料であるフルオロピルビン酸誘導体を加えた後、各種酵素を加えてマグネチックスターラー等で攪拌しながら反応させる。
 本発明の不斉還元反応に用いる酵素は、α-ケト酸脱水素酵素、またはα-ケト酸還元酵素である。これらの酵素は、本発明の原料である「ピルビン酸誘導体」等の「α-ケト酸誘導体」のα位(カルボキシル基の一つ隣の炭素部位を言う)のカルボニル基を電子受容体とし、NADH(ニコチンアミドアデニンジヌクレオチド還元型)やNADPH(ニコチンアミドアデニンジヌクレオチドリン酸還元型)を電子供与体としてヒドロキシル基に変換(このことを「還元」とも言う)する能力を持つものを言う。
 尚、本発明のように、反応系に還元型のNADHやNADPHを追加で(もしくは大量に)加えなくても、系内にグルコース、ギ酸もしくはギ酸の金属塩(ナトリウム塩など)などを添加することにより、補酵素脱水素酵素(グルコース脱水素酵素、ギ酸脱水素酵素など)を用いて反応系内で還元型のNADHやNADPHを再生することも可能である。
 本発明の不斉還元反応に用いる酵素の具体的な例としては、例えば、株式会社ダイセルのChiralscreen OHTM(以下略す)E038、E070、E071、E088、E089、E090、E093、E126、E152等が挙げられる。これらの酵素については、一般に市販されているものであり、当業者が容易に入手できる。また、これらの酵素はそれ自身、または該酵素の処理物も利用できる。
 「酵素の処理物」とは、例えば、粗抽出液、凍結乾燥微生物体、アセトン乾燥微生物体、または破砕物等を意味する。さらに、酵素自体を架橋法、物理的吸着法等の公知の方法で固定化したものも意味する。
 また、フルオロピルビン酸誘導体を不斉還元する酵素を保有する微生物全菌体、遺伝子組換え体、またはそれらの処理物も同様に利用できる。また、本発明における「遺伝子組換え体」とは、本発明で用いる酵素をコードする遺伝子が導入され、当該遺伝子が発現した組換え微生物の全てを言う。
 使用する酵素の量は、反応時間の遅延や選択性の低下が起こらないような量であれば良く、通常は反応液量に対し0.01質量%~100質量%、好ましくは0.02質量%~20質量%である。使用する基質の量は、酵素反応が円滑に進む量であれば良く、好ましくは0.1質量%~50質量%、より好ましくは1質量%~10質量%である。反応溶媒は、通常イオン交換水、緩衝液等の水性媒体を使用することができる。
 pHに関しては、酵素反応が円滑に進むpHならば良く、好ましくはpH3~pH10、より好ましくはpH5~pH8である。反応が進行するに従いpHが変化してくる場合があるが、適当な中和剤を添加して最適pHに調整することが望ましい。
 反応に用いる緩衝液に関しては上記のpHの範囲に最適なものであれば特に定めないが、例えば、カコジル酸ナトリウム-塩酸緩衝液、マレイン酸ナトリウム-水酸化ナトリウム緩衝液、リン酸緩衝液、イミダゾール-塩酸緩衝液、2、4、6-トリメチルピリジン-塩酸緩衝液、トリエタノールアミン・塩酸-水酸化ナトリウム緩衝液、ベロナール-塩酸緩衝液、N-エチルモルフォリン-塩酸緩衝液、トリス緩衝液、グリシルグリシン-水酸化ナトリウム緩衝液などpH5~9で緩衝作用を有する緩衝液が挙げられる。特にリン酸緩衝液は好ましいものの1つである。
 緩衝液の濃度は、0.01~3mol/lの範囲で使用できるが、好ましくは0.2~2mol/lである。尚、ここでいう「濃度」とは、リン酸根の濃度(以下に示す化学種の濃度)を指す。
Figure JPOXMLDOC01-appb-C000011
 一般的に有機溶媒は酵素失活の要因となりうるが、反応系中に基質の溶解性を上げる目的や酵素反応を円滑に進める目的でメタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ジ-i-プロピルエーテル、テトラヒドロフラン、アセトン、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどを、酵素反応を阻害しない程度添加することができる。これらの中でも、メタノール、エタノールまたは2-プロパノールが好ましい。添加量は、反応液量に対して通常1~20質量%、好ましくは3~7質量%である。
 また、還元反応に微生物を用いる場合、反応に付随してNADHから生成するNAD+のNADHへの補酵素再生は、微生物が持つNAD+還元能(代謝系)を用いて行なうことができる場合があり、このようなNAD+還元能は反応系にグルコースやエタノールを添加することで増強することが一般的に知られている。本発明のように、微生物を用いない酵素反応の場合でもエタノールを酵素反応の変換率向上のために用いることができる知見を得た。エタノールを反応系中に添加する場合、添加量に特に制限はないが、具体的には反応液量に対して1~20質量%であり、好ましくは3~7質量%である。さらに、反応を効率的に進めるには、反応液を攪拌しながら行うことが好ましく、マグネチックスターラー、モーター駆動攪拌翼、振盪機などが使用できる。
 反応温度は使用する酵素により至適温度が異なるが、通常5~60℃、好ましくは10~40℃で行う。温度が高すぎる場合は、酵素が失活するので適宜、温度を加減すると良い。
 反応時間は1時間~168時間、好ましくは1~72時間であり、そのような時間で反応が終了する反応条件を選択することが好ましい。
 以上のような基質濃度、酵素濃度、pH、温度、添加溶媒、反応時間等、各反応条件は反応収率、光学純度等を考慮して目的物であるフルオロ乳酸誘導体が最も多く採取できる条件を選択する。
 生成した光学活性フルオロ乳酸誘導体を反応終了液から回収するには、有機合成における一般的な単離方法が採用できる。反応終了後、有機溶媒による抽出等の通常の後処理操作を行えばよい。反応液からの生成物の回収には抽出操作並びに結晶化操作を行う。
 抽出操作に関しては水層と分離しやすく、かつ目的物が抽出し易い溶媒であれば良く、n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、t-ブチルメチルエーテル、ジ-i-プロピルエーテル、1,4-ジオキサン等のエーテル系、アセトン、メチルエチルケトン、メチル-i-ブチルケトン等のケトン系、酢酸エチル、酢酸n-ブチル等のエステル系、アセトニトリル、プロピオニトリル等のニトリル系、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール等のアルコール系等が挙げられる。このうち、フルオロ乳酸誘導体の溶解性を考慮しジ-i-プロピルエーテル、酢酸エチル、メチル-i-ブチルケトン、またはt-ブチルメチルエーテルが好ましい。抽出に用いる反応液は無機酸を用いてpHを酸性条件にして行なうことで抽出効率が向上する。抽出の際のpHはpH3以下とすれば良く、好ましくはpH2以下である。反応液のpH調整に用いる無機酸には塩酸、硫酸、リン酸を用いることができる。無機酸の添加量は反応液のpHに応じて適宜調整すればよい。
 結晶化操作における結晶化溶媒としては、n-ペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、t-ブチルメチルエーテル、ジ-i-プロピルエーテル、1,4-ジオキサン等のエーテル系、アセトン、メチルエチルケトン、メチルi-ブチルケトン等のケトン系、酢酸エチル、酢酸n-ブチル等のエステル系、アセトニトリル、プロピオニトリル等のニトリル系、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール等のアルコール系等が挙げられる。その中でも、トルエン、ジ-i-プロピルエーテル、酢酸エチルが好ましく、特にトルエン、ジ-i-プロピルエーテルの混合溶媒が好ましい。
 このように、抽出操作並びに結晶化操作を行った後、粗生成物を得ることができる。該粗生成物は、必要に応じて遠心分離、脱水、活性炭、蒸留、再結晶、カラムクロマトグラフィー等の精製操作を行って化学純度を高めることも可能である。
 式[1]で表されるフルオロピルビン酸誘導体におけるRが「Rは炭素数1~10の直鎖もしくは分岐鎖のアルキル基」のものを用いた場合、本発明においてRは反応に関与せず、得られる光学活性フルオロ乳酸誘導体については、反応直前と変わりはないが、必要に応じて加水分解反応を行うことにより、対応する光学活性フルオロ乳酸を製造することもできる。
 一方、式[1]で表されるフルオロピルビン酸誘導体におけるRが「Rが水素原子」のものを用いた場合、得られる光学活性フルオロ乳酸誘導体は「光学活性フルオロ乳酸」および/または「光学活性フルオロ乳酸の金属塩」として得られることがある。「光学活性フルオロ乳酸の金属塩(例えばナトリウム塩)」は、不斉還元反応に関連してNADHから発生するNAD+のNADHへの再生に用いる際のギ酸ナトリウム由来のものであり、該金属塩の生成は反応系内のpHの値に依存するが、前述したように通常の後処理操作を行うことにより、容易に対応する光学活性フルオロ乳酸に誘導できる。
 次に実施例を示すが、本発明は以下の実施例によって限定されるものではない。尚、TMSはトリメチルシリル基を表す。
 光学純度は以下の分析方法で実施した。
 [光学純度分析条件]
 [3,3,3-トリフルオロ乳酸]
 3,3,3-トリフルオロ乳酸の反応液に塩酸を加えてpH2以下に調整した後、酢酸エチルにより抽出した。抽出液に対し等量のメタノールを加えてからTMS-ジアゾメタンにより3,3,3-トリフルオロ乳酸のカルボキシル基をメチルエステル化した。得られた3,3,3-トリフルオロ乳酸メチルをキラルカラム(BGB-174、ANALYTIK社製、30m×0.25mm×0.25μm)を用いたガスクロマトグラフィー法により分析した。キャリアガスは窒素、流量は1ml/min、注入口温度200℃、カラム温度は55℃(5min)→150℃(5℃/min)→150℃(2min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。3,3,3-トリフルオロ乳酸メチルのそれぞれのエナンチオマーの保持時間は、S体が17.76min、R体が17.92minであった。
 [3,3-ジフルオロ乳酸]
 3,3―ジフルオロ乳酸に関しても3,3,3-トリフルオロ乳酸の場合と同様の方法でメチルエステル化後、キラルカラム(BGB-174、ANALYTIK社製、30m×0.25mm×0.25μm)を用いたガスクロマトグラフィー法により分析した。キャリアガスは窒素、圧力163KPa、注入口温度230℃、カラム温度は50℃(5min)→150℃(5℃/min)→150℃(5min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。3,3-ジフルオロ乳酸の各エナンチオマーの保持時間は、S体が21.23min、R体が20.24minであった。
 [実施例1]
 [3,3,3-トリフルオロピルビン酸の不斉還元に最適な酵素のスクリーニング]
 酵素反応の基質である3,3,3-トリフルオロピルビン酸は3,3,3-トリフルオロピルビン酸エチル17gと3,3,3-トリフルオロピルビン酸エチル1モルに対して1.2当量の水酸化ナトリウムを一日反応させ変換率100%で3,3,3-トリフルオロピルビン酸を得た。
 200mmol/lに調製したリン酸カリウム緩衝液(pH6.5、206mmol/l ギ酸ナトリウム、222mmol/l グルコース、5mmol/l NAD+(NAD+:ニコチンアミドアデニンジヌクレオチド酸化型、以下同じ)、5mmol/l NADP+(NADP+:ニコチンアミドアデニンジヌクレオチドリン酸酸化型、以下同じ))1mlに上記の方法で得た3,3,3-トリフルオロピルビン酸を1質量%~1.5質量%になるよう添加し、表1に示すα-ケト酸脱水素酵素またはα-ケト酸還元酵素をそれぞれ5mg加えてマグネチックスターラーで攪拌しながら25℃で2日間反応させた。
 反応後の反応液を前述の分析条件により光学純度を測定した。その結果を3,3,3-トリフルオロ乳酸への変換率と共に表1に示した。
Figure JPOXMLDOC01-appb-T000012
 [実施例2]
 [ChiralscreenOHTM E070による3,3,3-トリフルオロピルビン酸の不斉還元、エタノール添加による変換率の向上]
 表2の番号1、3は500mmol/lに調製したリン酸カリウム緩衝液(pH6.0、600mmol/l ギ酸ナトリウム、2mmol/l NAD+)5mlに4質量%と6.4質量%となるように実施例1で得た3,3,3-トリフルオロピルビン酸を添加し、酵素ChiralscreenOHTM E070を5mg/mlになるように加えマグネチックスターラーを用いて攪拌しながら25℃で反応させた。表2の番号2、4は番号1、3の基質のモル量と同モル量のエタノールを添加し、番号1、3と同条件で2日間反応させた。
 反応後の結果を表2に示す。エタノールを添加することによって光学純度を維持したまま変換率が向上した。基質濃度4%の場合、70.2%から94.9%に、基質濃度が6.4%の場合は35.7%から99.3%に向上した。
Figure JPOXMLDOC01-appb-T000013
 [実施例3]
 [3,3,3-トリフルオロピルビン酸の不斉還元20ml反応]
 500mmol/lに調製したリン酸カリウム緩衝液(pH6.0、600mmol/l ギ酸ナトリウム、2mmol/l NAD+)20mlに実施例1で得た3,3,3-トリフルオロピルビン酸を8質量%加え、表1に示した酵素の中からChiralscreenOHTM E070を100mg添加した。更にエタノールを基質とモル比で等量になるように加え、マグネチックスターラーで攪拌しながら25℃で2日間反応させた。反応液を前述の方法で分析した結果、変換率97.2%、光学純度>99%eeであった。その後、反応液を精製し、3,3,3-トリフルオロ乳酸のS体を1.55g得た。
 [実施例4]
 [光学活性3,3,3-トリフルオロ乳酸の精製]
 実施例3で得られた反応液に対してpH2以下になるまで塩酸を添加した。その後、酢酸エチルを反応液量の1/2、アセトンを酢酸エチルと等量添加し、分液・抽出した。抽出液をセライト濾過後、減圧濃縮し、トルエン/ジ-i-プロピルエーテル系での結晶化によって光学活性3,3,3-トリフルオロ乳酸を精製した。得られた3,3,3-トリフルオロ乳酸の光学純度は99%以上、生成物の純度は94.8%であった。
 [実施例5]
 [ジフルオロピルビン酸の不斉還元に最適な酵素のスクリーニング]
 200mmol/lに調製したリン酸カリウム緩衝液(pH6.5、206mmol/l ギ酸ナトリウム、222mmol/l グルコース、5mmol/l NAD+、5mmol/l NADP+)1mlにジフルオロピルビン酸を1質量%~1.5質量%になるよう添加し、表3に示すα-ケト酸脱水素酵素またはα-ケト酸還元酵素をそれぞれ5mg加えてマグネチックスターラーで攪拌しながら25℃で2日間反応させた。反応後の反応液を前述の分析条件により光学純度を測定した。その結果を3,3-ジフルオロ乳酸への変換率と共に表3に示した。
Figure JPOXMLDOC01-appb-T000014
 [比較例1]
 [3,3,3-トリフルオロピルビン酸エチルのアルコール脱水素酵素またはカルボニル還元酵素による不斉還元]
 200mmol/lに調製したリン酸カリウム緩衝液(pH6.5、206mmol/l ギ酸ナトリウム、222mmol/l グルコース、5mmol/l NAD+、5mmol/l NADP+)1mlに3,3,3-トリフルオロピルビン酸エチルを1質量%~1.5質量%になるように添加し、表4に示すアルコール脱水素酵素またはカルボニル還元酵素をそれぞれ5mg加えてマグネチックスターラーで攪拌しながら25℃で2日間反応させた。反応後の反応液を前述の分析条件により光学純度を測定した。その結果を3,3,3-トリフルオロ乳酸エチルへの変換率と共に表4に示した。
Figure JPOXMLDOC01-appb-T000015
 [比較例2]
 比較例1と同様の反応条件で、3,3,3-トリフルオロピルビン酸エチルを基質に表5に示すアルコール脱水素酵素またはカルボニル還元酵素を用いて反応させた。結果を表5に表す。
Figure JPOXMLDOC01-appb-T000016
 本発明で対象とする光学活性フルオロ乳酸誘導体は、医農薬中間体、液晶や界面活性剤等の機能性有機化合物、機能性膜等の原料などに利用できる。

Claims (9)

  1. 式[1]で表されるフルオロピルビン酸誘導体、または式[5]で表されるフルオロピルビン酸誘導体の水和体に、α―ケト酸脱水素酵素またはα―ケト酸還元酵素を用いて不斉還元することを特徴とする、式[2]で表される光学活性フルオロ乳酸誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、nは1~3の整数を採る。Rは水素原子または炭素数1~10の直鎖もしくは分岐鎖のアルキル基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、nおよびRは式[1]に同じ。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、nおよびRは式[1]に同じ。*は不斉炭素を表す。]
  2. 式[2]で表される光学活性フルオロ乳酸誘導体が、式[3]または式[4]で表される構造である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、nおよびRは式[1]に同じ。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、nおよびRは式[1]に同じ。]
  3. 式[1]で表されるフルオロピルビン酸誘導体におけるnが2または3であり、かつ、Rが水素原子であることを特徴とする、請求項1または2に記載の製造方法。
  4. α―ケト酸脱水素酵素またはα―ケト酸還元酵素の量が、反応液量に対し0.02質量%~20質量%であることを特徴とする、請求項1乃至3の何れかに記載の製造方法。
  5. 不斉還元反応をリン酸緩衝液の存在下で行い、該緩衝液の濃度が0.01~3mol/lであることを特徴とする、請求項1乃至4の何れかに記載の製造方法。
  6. アルコールの存在下で反応を行うことを特徴とする、請求項1乃至5の何れかに記載の製造方法。
  7. アルコールがメタノール、エタノールまたは2-プロパノールであることを特徴とする、請求項6に記載の製造方法。
  8. 不斉還元反応の温度が5℃~60℃であることを特徴とする、請求項1乃至7の何れかに記載の製造方法。
  9. 不斉還元反応を、pHが3.0~10.0の条件下で行うことを特徴とする、請求項1乃至8の何れかに記載の製造方法。
PCT/JP2014/068187 2013-07-10 2014-07-08 光学活性フルオロ乳酸誘導体の製造方法 WO2015005341A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14823741.5A EP3020818A4 (en) 2013-07-10 2014-07-08 Method for manufacturing optically active fluorolactic acid derivative
US14/903,130 US20160138059A1 (en) 2013-07-10 2014-07-08 Method for Manufacturing Optically Active Fluorolactic Acid Derivative
CN201480039390.1A CN105378094A (zh) 2013-07-10 2014-07-08 光学活性氟代乳酸衍生物的制造方法
JP2015526349A JPWO2015005341A1 (ja) 2013-07-10 2014-07-08 光学活性フルオロ乳酸誘導体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144762 2013-07-10
JP2013-144762 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005341A1 true WO2015005341A1 (ja) 2015-01-15

Family

ID=52280021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068187 WO2015005341A1 (ja) 2013-07-10 2014-07-08 光学活性フルオロ乳酸誘導体の製造方法

Country Status (5)

Country Link
US (1) US20160138059A1 (ja)
EP (1) EP3020818A4 (ja)
JP (1) JPWO2015005341A1 (ja)
CN (1) CN105378094A (ja)
WO (1) WO2015005341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208699A1 (ja) * 2015-06-25 2016-12-29 セントラル硝子株式会社 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191603B (zh) * 2018-01-09 2020-09-25 山西医科大学第一医院 一种3-18f-氟代乳酸类似物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014397A (ja) 1998-07-01 2000-01-18 Sumitomo Chem Co Ltd 光学活性2−ヒドロキシ−2−トリフルオロメチル酢酸類の製造方法
JP2006232726A (ja) 2005-02-24 2006-09-07 Central Glass Co Ltd トリフルオロ乳酸の効率的な光学分割
JP2011042661A (ja) 2000-06-21 2011-03-03 Daikin Industries Ltd 光学活性な含フッ素アルコール類の製造方法及び光学活性な含フッ素2−ヒドロキシアルカンアミド又は/及び光学活性な含フッ素アルコールの製造方法、並びに光学活性な含フッ素乳酸又はその誘導体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014397A (ja) 1998-07-01 2000-01-18 Sumitomo Chem Co Ltd 光学活性2−ヒドロキシ−2−トリフルオロメチル酢酸類の製造方法
JP2011042661A (ja) 2000-06-21 2011-03-03 Daikin Industries Ltd 光学活性な含フッ素アルコール類の製造方法及び光学活性な含フッ素2−ヒドロキシアルカンアミド又は/及び光学活性な含フッ素アルコールの製造方法、並びに光学活性な含フッ素乳酸又はその誘導体の製造方法
JP2006232726A (ja) 2005-02-24 2006-09-07 Central Glass Co Ltd トリフルオロ乳酸の効率的な光学分割

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. NAKAMURA ET AL.: "Stereochemical Control in Microbial Reduction. XXI. Effect of Organic Solvents on Reduction of alpha-Keto Esters Mediated by Bakers' Yeast", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 66, no. 9, 1993, pages 2738 - 2743, XP008182064 *
L. P. B. GONCALVES ET AL.: "Kinetic aspects of the enantiospecific reduction of sodium 3-fluoropyruvate catalyzed by rabbit muscle L-lactate dehydrogenase: Production of homochiral (R)-3-fluorolactic acid methyl ester", JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC, vol. 4, no. 1-2, 1998, pages 67 - 76, XP055312452 *
L. P. B. GONCALVES: "Enzymatic Laboratory Scale Production of Homochiral (R)-3-Fluorolactic Acid Methyl Ester via Enantiospecific Reduction of Sodium Fluoropyruvate Catalyzed by Rabbit Muscle L-Lactate Dehydrogenase(L-LDH", TETRAHEDRON : ASYMMETRY, vol. 7, no. 5, 1996, pages 1237 - 1240, XP004047674 *
MOTOKO HAYASHI: "Biocatalyst for Asymmetric Synthesis-Chiralscreen", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, vol. 69, no. 5, 2011, pages 517 - 525, XP008182066 *
See also references of EP3020818A4
TETRAHEDRON ASYMMETRY, vol. 21, 2010, pages 1211 - 1215

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208699A1 (ja) * 2015-06-25 2016-12-29 セントラル硝子株式会社 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法
CN107709566A (zh) * 2015-06-25 2018-02-16 中央硝子株式会社 光学活性含氟烷基环氧乙烷的工业制造方法
US10336718B2 (en) 2015-06-25 2019-07-02 Central Glass Company, Limited Method for industrial production of optically active fluoroalkyl ethylene oxide
CN107709566B (zh) * 2015-06-25 2021-06-08 中央硝子株式会社 光学活性含氟烷基环氧乙烷的工业制造方法

Also Published As

Publication number Publication date
EP3020818A1 (en) 2016-05-18
EP3020818A4 (en) 2017-03-22
JPWO2015005341A1 (ja) 2017-03-02
CN105378094A (zh) 2016-03-02
US20160138059A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
TW200936764A (en) Processes for preparing an intermediate of sitagliptin via enzymatic reduction
WO2005073388A1 (ja) 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法
WO2015005341A1 (ja) 光学活性フルオロ乳酸誘導体の製造方法
US6271008B1 (en) Yeast-based process for production of l-pac
US9394235B2 (en) Optical resolution methods for bicyclic compounds using enzymes
US7790436B2 (en) Method for production of (1S)-3-chloro-1-(2-thienyl)-propan-1-ol using alcohol dehydrogenase from thermoanaerobacter
JP5598330B2 (ja) 光学活性有機カルボン酸の製造方法
EP1240347A1 (en) Yeast-based process for production of l-pac
JP4012299B2 (ja) ハロゲン置換を含む光学活性アルコールの製造方法
WO2008038810A1 (en) Process for the preparation of 2-hydr0xy-4- (alkylthio or arylthio) butanoic acid by microbial conversion of 2-0x0-4- (alkylthio or arylthio) 1-butanol employing bacteria of the genus pseud0m0nas, rh0d0c0ccus, or bacillus
EP2069516B1 (en) Specific hydrolysis of the n-unprotected (r) -ester of (3 ) -amin0-3-arylpr0pi0nic acid esters
WO2005108592A1 (ja) 光学活性プロパルギルアルコールの製造方法
WO2016140233A1 (ja) キラル-1,1-ジフルオロ-2-プロパノールの工業的な製造方法
JP4572572B2 (ja) 光学活性カルボン酸の製造方法
CN115997026A (zh) 通过拜尔-维利格单加氧酶将法呢基丙酮转化成乙酸高法呢基酯
JP2005318859A (ja) 新規な光学活性4−ハロ酪酸誘導体の製造方法
Pollard et al. Synthesis of Chiral sec-Alcohols by Ketone Reduction
JP2003125795A (ja) 光学活性2−アシルチオ−3−フェニルプロピオン酸類又は光学活性2−メルカプト−3−フェニルプロピオン酸類の製造法
JP2001335553A (ja) (r)−4−シアノ−3−ヒドロキシ酪酸低級アルキルエステルの製造方法
JP2004201576A (ja) 光学活性1、3−アルキルジオール−1−ベンジルエーテル誘導体の製造方法
JP2008295302A (ja) 光学活性エステル誘導体および/または光学活性カルボン酸の製造方法
WO2001057229A1 (fr) Procede de production d'esters optiquement actifs de l'acide 4-benzyloxy-3-hydroxybutirique
JP2008523808A (ja) (s)−1−(3,5−ビス(トリフルオロメチル)−フェニル)エタン−1−オールの合成方法
JP2006246772A (ja) 光学活性ビニルアルコール類の製造方法
WO2004007741A1 (ja) 光学活性β−アミノニトリル化合物及びその対掌体アミド化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823741

Country of ref document: EP