WO2015001861A1 - バッテリの充放電制御装置およびバッテリの充放電制御方法 - Google Patents

バッテリの充放電制御装置およびバッテリの充放電制御方法 Download PDF

Info

Publication number
WO2015001861A1
WO2015001861A1 PCT/JP2014/063473 JP2014063473W WO2015001861A1 WO 2015001861 A1 WO2015001861 A1 WO 2015001861A1 JP 2014063473 W JP2014063473 W JP 2014063473W WO 2015001861 A1 WO2015001861 A1 WO 2015001861A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
output
charge
equal
discharge
Prior art date
Application number
PCT/JP2014/063473
Other languages
English (en)
French (fr)
Inventor
勇悟 茂木
剛史 渡邊
麻巳 穂積
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015001861A1 publication Critical patent/WO2015001861A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a battery charge / discharge control device and a battery charge / discharge control method.
  • a control method described in JP2010-209733A is known as a method for controlling charge / discharge of a battery according to the state of the battery. In the control method of JP2010-209733A, battery discharge is prohibited when the output of the battery is low.
  • the present invention aims to provide a technique for reducing the frequency of using a battery in a low output area.
  • the output of the battery when the output of the battery is equal to or lower than the first predetermined output, the output of the battery is equal to or higher than the second predetermined output which is higher than the first predetermined output.
  • the battery is charged and the operation of the battery charge / discharge control device is stopped in the middle of charging, the battery is charged so that the output of the battery becomes equal to or higher than the second predetermined output even after the start of the next operation. .
  • FIG. 1 is a system configuration diagram of a vehicle to which a battery charge / discharge control device according to an embodiment is applied.
  • FIG. 2 is a diagram summarizing the control by the battery charge / discharge control device according to the present embodiment.
  • FIG. 3 is a flowchart illustrating a flow of control performed by the battery charge / discharge control device according to the embodiment.
  • FIG. 1 is a system configuration diagram of a vehicle to which a battery charge / discharge control device according to an embodiment is applied.
  • the alternator 2 generates power using the power of the engine 1.
  • the regulator 3 controls the power generation voltage of the alternator 2 based on the power generation command signal from the USM 5.
  • the electric power generated by the alternator 2 is supplied to the battery 4 and electrical components (not shown) (headlight, air-conditioning blower fan, etc.).
  • the battery 4 is a lead acid battery, for example, and can supply electric power to the electrical components.
  • the USM 5 transmits a power generation command signal to the regulator 3 based on the power generation command from the ECM 6.
  • the ECM 6 controls the entire vehicle system including the control of the engine 1 based on signals input from various controllers and sensors. In particular, the ECM 6 performs charge / discharge control of the battery 4 by a method described later.
  • Signals input to the ECM 6 include the voltage, current and temperature of the battery 4 detected by the battery sensor 7, the temperature of the engine coolant detected by the water temperature sensor 8, and the intake of the engine 1 detected by the intake air temperature sensor 9.
  • the vehicle speed signal is input from ABS ECU 14 to METER ECU 13.
  • FIG. 2 is a diagram summarizing the control performed by the battery charge / discharge control apparatus according to the present embodiment.
  • the output of the battery 4 is a physical value that depends on the state of charge (SOC) of the battery 4 and the degree of deterioration. The higher the SOC and the lower the degree of deterioration, the higher the battery output. In the example shown in FIG. 2, the battery output is divided into three regions of “high”, “medium”, and “low”.
  • control is performed so as not to lower the SOC of the battery 4. That is, the battery 4 is charged by regenerative power generation of the alternator 2 while the vehicle is decelerating and the fuel supply is stopped, and when the deceleration fuel is not being cut, the deceleration fuel is being cut.
  • the discharge of the amount obtained by subtracting the discharged amount out of the amount of charge by regenerative power generation of the alternator 2 is permitted.
  • the alternator 2 is generated by the amount of electricity required by the electrical components, and the SOC of the battery 4 is maintained.
  • the battery 4 is charged until the battery 4 is fully charged. This process is continuously performed when the vehicle is started next time after the vehicle is stopped (the engine 1 is stopped). That is, the battery output is low when the vehicle is started this time, and the battery 4 is charged. Even if the battery is not fully charged and the vehicle is stopped, The battery 4 is charged until the battery 4 is fully charged. Since the SOC is low in the region where the battery output is low and the deterioration of the battery 4 is likely to be accelerated, the battery output may be raised to a high region by charging until the battery is fully charged even after the next vehicle startup. This can reduce the frequency of using the battery 4 in the low output region.
  • FIG. 3 is a flowchart showing a flow of control performed by the battery charge / discharge control device according to the embodiment. The process starting from step S1 is performed by the ECM 6 after the vehicle is started.
  • step S1 it is determined whether or not a starter motor (not shown) has been started in order to start the engine 1. If it is determined that the starter motor has been started, the process proceeds to step S2.
  • step S2 the output voltage VBmin of the battery 4 at the start of the starter motor is obtained.
  • the output voltage VBmin of the battery 4 is detected by the battery sensor 7.
  • step S3 it is determined whether or not the full charge execution flag Fchg is zero.
  • the full charge execution flag Fchg is a flag for determining whether or not the battery 4 is to be fully charged. If Fchg is 1, it means that the battery 4 is fully charged. If it is determined that the full charge execution flag Fchg is 1, the process proceeds to step S6 to charge the battery 4, and if it is determined that the full charge execution flag Fchg is 0, the process proceeds to step S4.
  • step S4 it is determined whether or not the output voltage VBmin of the battery 4 obtained in step S2 is equal to or lower than the first output voltage threshold value VBlow.
  • the output area of the battery 4 is determined based on the output voltage VBmin of the battery 4. That is, it is equivalent to determining whether or not the output of the battery 4 is equal to or lower than the first predetermined output (battery output is low).
  • the first output voltage threshold value VBlow is a threshold value for distinguishing between a low battery output region and a medium region shown in FIG. 2, and the output voltage VBmin of the battery 4 is equal to or lower than the first output voltage threshold value VBlow. If there is, it is determined that the battery output belongs to a low region. If it is determined that the output voltage VBmin of the battery 4 is equal to or lower than the first output voltage threshold VBlow, the process proceeds to step S5.
  • Steps S5 to S9 are performed when the battery output is low.
  • the full charge execution flag Fchg is set to 1 in order to charge the battery 4 until the battery is fully charged.
  • step S6 the battery 4 is charged with the power generated by the alternator 2. More specifically, the ECM 6 issues a power generation command to the USM 5. The USM 5 transmits a power generation command signal to the regulator 3 based on the power generation command from the ECM 6, and the regulator 3 controls the power generation voltage of the alternator 2.
  • step S7 it is determined whether or not the ignition switch 15 operated for the driver to issue a vehicle start command and a start / stop command (including an engine stop command) is on. If it is determined that the ignition switch 15 is off, the process of the flowchart is exited. If it is determined that the ignition switch 15 is on, the process proceeds to step S8.
  • step S8 it is determined whether or not the charging current I of the battery 4 detected by the battery sensor 7 is equal to or less than the full charge determination current threshold Ifull.
  • the charging current I of the battery 4 becomes equal to or less than the full charge determination current threshold Ifull, it is determined that the battery 4 has been fully charged. If it is determined that the charging current I of the battery 4 is greater than the full charge determination current threshold Ifull, the process returns to step S6 in order to continue charging the battery 4, and the charging current I of the battery 4 is less than or equal to the full charge determination current threshold Ifull. If it is determined that there is, the process proceeds to step S9.
  • step S9 since the battery 4 is fully charged, the full charge execution flag Fchg is set to 0, and the process of the flowchart is exited.
  • step S4 If it is determined in step S4 that the output voltage VBmin of the battery 4 is greater than the first output voltage threshold VBlow, the process proceeds to step S10.
  • step S10 it is determined whether or not the output voltage VBmin of the battery 4 obtained in step S2 is greater than or equal to the second output voltage threshold VBhigh (VBhigh> VBlow). This determination is equivalent to determining whether or not the output of the battery 4 is greater than or equal to the second predetermined output (region where the battery output is high).
  • the second output voltage threshold value VBhigh is a threshold value for distinguishing between a region where the battery output is medium and a region where the battery output is high, as shown in FIG.
  • step S11 the output voltage VBmin of the battery 4 is equal to or higher than the second output voltage threshold value VBhigh. If there is, it is determined that the battery output belongs to a high region. If it is determined that the output voltage VBmin of the battery 4 is greater than or equal to the second output voltage threshold VBhigh, the process proceeds to step S11.
  • steps S11 to S17 are performed when the battery output is high.
  • the battery 4 is charged by the amount of discharged electricity Cbt during the previous vehicle start-up (during vehicle travel). Again, the battery 4 is charged using the power generated by the alternator 2.
  • the amount of electric discharge Cbt during the previous vehicle start-up (during vehicle travel) is obtained in step S18, which will be described later, in the process of the flowchart performed during the previous vehicle start-up.
  • step S12 it is determined whether or not the vehicle is decelerating fuel cut. If it is determined that the vehicle is decelerating fuel cut, the process proceeds to step S13. In step S ⁇ b> 13, the battery 4 is charged with the regenerative power generated by the alternator 2.
  • step S14 it is determined whether or not the integrated value of the charging / discharging current I of the battery 4 after starting the vehicle is equal to or greater than minus Ch ( ⁇ Ch) when the discharge allowable electric quantity is Ch.
  • the charging / discharging current I of the battery 4 is a current value detected by the battery sensor 7, and the current at the time of charging is detected as positive and the current at the time of discharging is detected as negative.
  • the balance between the amount of charge of the battery 4 due to the regenerative power generation of the alternator 2 at the time of deceleration fuel cut and the discharge amount of the battery 4 is obtained, and the discharge amount of the battery 4 after the balance calculation is calculated. It is determined whether or not the discharge allowable electric quantity Ch is equal to or larger. If it is determined that the integrated value of the charge / discharge current I of the battery 4 is equal to or greater than minus Ch, the discharge amount of the battery 4 is equal to or less than the discharge allowable electricity amount Ch, and the process proceeds to step S15.
  • step S15 the discharge from the battery 4 to the electrical component is permitted until the discharge amount of the battery 4 after the balance calculation reaches the discharge allowable electricity amount Ch.
  • step S14 if it is determined in step S14 that the integrated value of the charge / discharge current I of the battery 4 after the vehicle is started is less than minus Ch, the process proceeds to step S16.
  • step S16 the alternator 2 generates power at a predetermined voltage (for example, 13V) to supply power to the electrical components. Thereby, the SOC of the battery 4 is maintained without increasing or decreasing.
  • step S17 it is determined whether or not the ignition switch 15 is off. If it is determined that the ignition switch 15 is not off, the process returns to step S12. If it is determined that the ignition switch 15 is off, the process proceeds to step S18.
  • step S18 the amount of electric discharge Cbt from the current vehicle start to the vehicle start / stop is calculated. This is a value obtained by subtracting the amount of charged electricity from the amount of discharged electricity from the time when the vehicle is started to the time when the vehicle is started and stopped, and can be obtained by integrating the charge / discharge current I of the battery 4. This amount of discharged electricity Cbt is used in the control performed after the next vehicle activation (step S11).
  • step S10 If it is determined in step S10 that the output voltage VBmin of the battery 4 is less than the second output voltage threshold VBhigh, the process proceeds to step S19.
  • the processes in steps S19 to S24 are performed when the battery output is in an intermediate region.
  • step S19 it is determined whether or not the vehicle is decelerating fuel cut. If it is determined that the vehicle is decelerating fuel cut, the process proceeds to step S20. In step S ⁇ b> 20, the battery 4 is charged with the regenerative power generated by the alternator 2.
  • step S21 it is determined whether or not the integrated value of the charge / discharge current I of the battery 4 is 0 or more. That is, the balance between the amount that the battery 4 is charged by the regenerative power generation of the alternator 2 at the time of deceleration fuel cut and the amount that the battery 4 is discharged is obtained, and the charge / discharge amount of the battery 4 after the balance calculation is positive (the charge side is It is determined whether it is positive. If it determines with the integrated value of the charging / discharging electric current I of the battery 4 being 0 or more, it will progress to step S22.
  • step S22 discharging from the battery 4 to the electrical component is permitted by the positive charge electricity amount after the balance calculation. This eliminates the need for power generation of the alternator 2, thereby reducing the engine fuel used for driving the alternator 2 and improving the fuel efficiency.
  • step S21 If it determines with the integrated value of the charging / discharging current I of the battery 4 being less than 0 by step S21, it will progress to step S23.
  • the alternator 2 In step S23, the alternator 2 generates power at a predetermined voltage (for example, 13V) to supply power to the electrical components. Thereby, the SOC of the battery 4 is maintained without increasing or decreasing.
  • step S24 it is determined whether or not the ignition switch 15 is off. If it is determined that the ignition switch 15 is not off, the process returns to step S19. If it is determined that the ignition switch 15 is off, the process of the flowchart is exited.
  • the battery 4 in the region where the battery output is low, the battery 4 is charged until the battery 4 is fully charged.
  • the battery output may be performed until the battery output is at least high. Also in this case, the frequency of using the battery 4 in a region where the output is low can be reduced.
  • the output of the battery 4 when the output of the battery 4 is equal to or lower than the first predetermined output, the output of the battery 4 is set to be equal to or higher than the second predetermined output.
  • the battery 4 When charging is performed and the operation of the battery charge / discharge control device is stopped in the middle of charging, the battery 4 is charged so that the output of the battery 4 is equal to or higher than the second predetermined output even after the start of the next operation. . Accordingly, when it is determined that the output of the battery 4 is a low region that is equal to or lower than the first predetermined output, the battery 4 is charged until the output of the battery 4 becomes equal to or higher than the second predetermined output. it can.
  • the battery 4 when the output of the battery is equal to or lower than the first predetermined output, the battery 4 is charged until the charging current of the battery 4 becomes equal to or lower than the predetermined current Ifull, When the operation of the charging / discharging control device for the battery 4 is stopped during the charging, the battery 4 is charged until the charging current of the battery becomes equal to or lower than a predetermined current Ifull even after the next operation starts. Since the predetermined current Ifull corresponds to the charging current when the battery 4 is fully charged, when the output of the battery is equal to or lower than the first predetermined output, the battery 4 is fully charged until the influence of deterioration is small. Charging can be performed, and the frequency with which the battery 4 is used in a region where the output is low can be further reduced.
  • the battery 4 When the output of the battery 4 is equal to or higher than the second predetermined output, if the balance of charge / discharge at the previous operation of the battery charge / discharge control device is discharge, the battery 4 is charged to charge the amount of discharge. . As a result, the amount of discharge during the previous operation can be supplemented by charging during the current operation, so that the battery output can be maintained in a high region, and the frequency with which the battery 4 is used in a region where the output is low is reduced. Can do.
  • the present invention is not limited to the above-described embodiment.
  • the battery charge / discharge control device is applied to a vehicle has been described.
  • the battery 4 is divided into three areas: a high output area, an intermediate area, and a low output area, but the number of output areas is not limited to three.
  • a method for determining whether or not the battery 4 is fully charged is as follows. It is not limited to this method.
  • charging of the battery 4 is performed by power generation of the alternator 4, a generator other than the alternator 4 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 バッテリの出力が第1の所定出力以下である場合に、バッテリの出力が、第1の所定出力より高い値である第2の所定出力以上となるようにバッテリの充電を行い、充電の途中でバッテリの充放電動作を停止した場合には、次回の動作開始後もバッテリの出力が第2の所定出力以上となるようにバッテリの充電を行う。

Description

バッテリの充放電制御装置およびバッテリの充放電制御方法
 本発明は、バッテリの充放電制御装置およびバッテリの充放電制御方法に関する。
 バッテリの状態に応じて、バッテリの充放電を制御する方法として、JP2010-209733Aに記載の制御方法が知られている。JP2010-209733Aの制御方法では、バッテリの出力が低い場合に、バッテリの放電を禁止している。
 しかしながら、JP2010-209733Aに記載の制御方法では、バッテリの出力が低い場合に、バッテリの放電を禁止するだけなので、充放電状況によっては、出力が低い領域でバッテリを使う頻度が高くなってしまう。
 本発明は、出力が低い領域でバッテリを使う頻度を低減する技術を提供することを目的とする。
 本発明によるバッテリの充放電制御装置は、バッテリの出力が第1の所定出力以下である場合、バッテリの出力が、第1の所定出力より高い値である第2の所定出力以上となるようにバッテリの充電を行い、充電の途中でバッテリの充放電制御装置の動作を停止した場合には、次回の動作開始後もバッテリの出力が第2の所定出力以上となるようにバッテリの充電を行う。
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。
図1は、一実施の形態におけるバッテリの充放電制御装置が適用される車両のシステム構成図である。 図2は、本実施の形態におけるバッテリの充放電制御装置による制御の概要をまとめた図である。 図3は、一実施の形態におけるバッテリの充放電制御装置によって行われる制御の流れを示すフローチャートである。
 図1は、一実施の形態におけるバッテリの充放電制御装置が適用される車両のシステム構成図である。オルタネータ2は、エンジン1の動力により発電を行う。レギュレータ3は、USM5からの発電指令信号に基づいて、オルタネータ2の発電電圧を制御する。オルタネータ2によって発電された電力は、バッテリ4や図示しない電装部品(ヘッドライトや空調用ブロアファン等)に供給される。バッテリ4は、例えば鉛酸バッテリであり、電装部品に電力を供給可能である。
 USM5は、ECM6からの発電指令に基づいて、発電指令信号をレギュレータ3に送信する。
 ECM6は、様々なコントローラやセンサから入力される信号に基づいて、エンジン1の制御を含む車両システム全体の制御を行う。特に、ECM6は、後述する方法により、バッテリ4の充放電制御を行う。
 ECM6に入力される信号としては、バッテリセンサ7によって検出されるバッテリ4の電圧、電流および温度、水温センサ8によって検出されるエンジン冷却水の温度、吸気温センサ9によって検出されるエンジン1の吸入空気の温度、ブレーキスイッチ10から入力されるブレーキスイッチ信号、CVTCU11から入力されるロックアップ信号、BCM12から入力されるブロアファン作動信号、METERECU13から入力される車速信号、イグニッションスイッチ15のオン/オフ信号などがある。車速信号は、ABSECU14からMETERECU13に入力される。
 図2は、本実施の形態におけるバッテリの充放電制御装置による制御の概要をまとめた図である。バッテリ4の出力は、バッテリ4の充電状態(SOC:State of charge)と劣化度合いに依存する物理値であり、SOCが高いほど、また劣化度が小さいほど、バッテリ出力は高くなる。図2に示す例では、バッテリ出力を「高」、「中」、「低」の3つの領域に分けている。
 バッテリ出力が高い領域では、バッテリ4のSOCが高く、かつ劣化度が小さいため、バッテリ4から電装部品への一定量の放電を許可する。バッテリ4から電装部品への放電を許可することによって、オルタネータ2の発電を停止させることができるので、オルタネータ2の駆動のために使用されるエンジン燃料を削減することができ、燃費を向上することができる。また、バッテリ出力が高い領域では、車両起動後に、前回の車両走行時に放電した量を充電する。
 バッテリ出力が中程度の領域では、バッテリ4のSOCを低下させないようにする制御を行う。すなわち、車両が減速状態で、かつ燃料供給を停止している減速燃料カット中には、オルタネータ2の回生発電によってバッテリ4の充電を行い、減速燃料カット中ではない場合には、減速燃料カット中のオルタネータ2の回生発電による充電量のうち、放電した量を差し引いた量の放電を許可する。また、それ以外の場合には、電装部品が必要な電気量だけオルタネータ2を発電させて、バッテリ4のSOCを維持する。
 バッテリ出力が低い領域では、バッテリ4が満充電になるまで、バッテリ4の充電を行う。この処理は、車両が停止(エンジン1が停止)した後の次回の車両起動時にも継続して行う。すなわち、今回の車両起動時にバッテリ出力が低い領域であって、バッテリ4の充電を行ったが、バッテリ4が満充電状態とならずに車両を停止した場合であっても、次回の車両起動後には、バッテリ4が満充電になるまで、バッテリ4の充電を行う。バッテリ出力が低い領域では、SOCが低く、バッテリ4の劣化が促進されやすいため、次回の車両起動後にも継続して満充電となるまで充電を行うことにより、バッテリ出力を高い領域まで持ち上げることができ、出力が低い領域でバッテリ4を使う頻度を低減することができる。
 図3は、一実施の形態におけるバッテリの充放電制御装置によって行われる制御の流れを示すフローチャートである。ステップS1から始まる処理は、車両起動後に、ECM6によって行われる。
 ステップS1では、エンジン1を始動するために、図示しないスタータモータの始動が行われたか否かを判定する。スタータモータの始動が行われたと判定するとステップS2に進む。
 ステップS2では、スタータモータの始動時におけるバッテリ4の出力電圧VBminを求める。バッテリ4の出力電圧VBminは、バッテリセンサ7によって検出される。
 ステップS3では、満充電実行フラグFchgが0であるか否かを判定する。満充電実行フラグFchgは、バッテリ4を満充電状態まで充電するか否かを判定するためのフラグであり、Fchgが1であれば、満充電状態まで充電することを意味する。満充電実行フラグFchgが1であると判定すると、バッテリ4の充電を行うためにステップS6に進み、満充電実行フラグFchgが0であると判定すると、ステップS4に進む。
 ステップS4では、ステップS2で求めたバッテリ4の出力電圧VBminが第1の出力電圧閾値VBlow以下であるか否かを判定する。ここでは、バッテリ4の出力電圧VBminに基づいて、バッテリ4の出力領域を判定する。すなわち、バッテリ4の出力が第1の所定出力以下(バッテリ出力が低い領域)であるか否かを判定しているのに等しい。第1の出力電圧閾値VBlowは、図2に示す、バッテリ出力が低い領域と中程度の領域とを区分けするための閾値であり、バッテリ4の出力電圧VBminが第1の出力電圧閾値VBlow以下であれば、バッテリ出力が低い領域に属していると判断する。バッテリ4の出力電圧VBminが第1の出力電圧閾値VBlow以下であると判定すると、ステップS5に進む。
 ステップS5~ステップS9の処理は、バッテリ出力が低い領域の時に行われる処理である。ステップS5では、バッテリ出力が低い領域に属しているため、満充電になるまでバッテリ4の充電を行うために、満充電実行フラグFchgを1とする。
 ステップS6では、オルタネータ2の発電電力によってバッテリ4の充電を行う。より具体的には、ECM6はUSM5に発電指令を出す。USM5は、ECM6からの発電指令に基づいて、発電指令信号をレギュレータ3に送信し、レギュレータ3はオルタネータ2の発電電圧を制御する。
 ステップS7では、運転者が車両の起動指令および起動停止指令(エンジン停止指令を含む)を発するために操作するイグニッションスイッチ15がオンであるか否かを判定する。イグニッションスイッチ15がオフであると判定するとフローチャートの処理を抜け、オンであると判定すると、ステップS8に進む。
 ステップS8では、バッテリセンサ7によって検出されるバッテリ4の充電電流Iが満充電判定電流閾値Ifull以下であるか否かを判定する。ここでは、バッテリ4の充電電流Iが満充電判定電流閾値Ifull以下になると、バッテリ4が満充電まで充電されたと判定する。バッテリ4の充電電流Iが満充電判定電流閾値Ifullより大きいと判定すると、バッテリ4の充電を継続して行うためにステップS6に戻り、バッテリ4の充電電流Iが満充電判定電流閾値Ifull以下であると判定すると、ステップS9に進む。
 ステップS9では、バッテリ4が満充電まで充電されたため、満充電実行フラグFchgを0とし、フローチャートの処理を抜ける。
 ステップS4で、バッテリ4の出力電圧VBminが第1の出力電圧閾値VBlowより大きいと判定すると、ステップS10に進む。ステップS10では、ステップS2で求めたバッテリ4の出力電圧VBminが第2の出力電圧閾値VBhigh(VBhigh>VBlow)以上であるか否かを判定する。この判定は、バッテリ4の出力が第2の所定出力以上(バッテリ出力が高い領域)であるか否かを判定しているのに等しい。第2の出力電圧閾値VBhighは、図2に示す、バッテリ出力が中程度の領域と高い領域とを区分けするための閾値であり、バッテリ4の出力電圧VBminが第2の出力電圧閾値VBhigh以上であれば、バッテリ出力が高い領域に属していると判断する。バッテリ4の出力電圧VBminが第2の出力電圧閾値VBhigh以上であると判定すると、ステップS11に進む。
 ステップS11~ステップS17の処理は、バッテリ出力が高い領域の時に行われる処理である。ステップS11では、前回の車両起動中(車両走行中)の放電電気量Cbtだけ、バッテリ4の充電を行う。ここでも、オルタネータ2の発電電力を用いてバッテリ4の充電を行う。前回の車両起動中(車両走行中)の放電電気量Cbtは、前回の車両起動中に行われるフローチャートの処理において、後述するステップS18で求められるものである。
 ステップS12では、車両が減速燃料カット中であるか否かを判定する。車両が減速燃料カット中であると判定すると、ステップS13に進む。ステップS13では、オルタネータ2の回生発電電力によってバッテリ4の充電を行う。
 一方、ステップS12において、車両が減速燃料カット中ではないと判定すると、ステップS14に進む。ステップS14では、車両起動後のバッテリ4の充放電電流Iの積算値が放電許容電気量をChとした場合のマイナスCh(-Ch)以上であるか否かを判定する。バッテリ4の充放電電流Iはバッテリセンサ7によって検出される電流値であり、充電時の電流がプラスとして、放電時の電流がマイナスとして検出される。簡単に説明すると、ここでは、減速燃料カット時におけるオルタネータ2の回生発電によってバッテリ4が充電された量と、バッテリ4の放電量との収支を求めて、収支演算後のバッテリ4の放電量が放電許容電気量Ch以上であるか否かを判定している。バッテリ4の充放電電流Iの積算値がマイナスCh以上であると判定すると、バッテリ4の放電量が放電許容電気量Ch以下であるので、ステップS15に進む。
 ステップS15では、収支演算後のバッテリ4の放電量が放電許容電気量Chとなるまでの範囲で、バッテリ4から電装部品への放電を許可する。バッテリ4から電装部品への放電を許可することによって、オルタネータ2の発電を行う必要がなくなるので、オルタネータ2の駆動のために使用されるエンジン燃料を削減することができ、燃費を向上することができる。
 一方、ステップS14において、車両起動後のバッテリ4の充放電電流Iの積算値がマイナスCh未満であると判定すると、ステップS16に進む。ステップS16では、所定電圧(例えば、13V)でオルタネータ2の発電を行って、電装部品に電力を供給する。これにより、バッテリ4のSOCは増減せずに維持される。
 ステップS17では、イグニッションスイッチ15がオフであるか否かを判定する。イグニッションスイッチ15がオフではないと判定すると、ステップS12に戻り、オフであると判定すると、ステップS18に進む。
 ステップS18では、今回の車両起動時から車両起動停止までの間における放電電気量Cbtを計算する。これは、今回の車両起動時から車両起動停止までの間における放電電気量から、充電電気量を差し引いた値であって、バッテリ4の充放電電流Iを積算することによって求めることができる。この放電電気量Cbtは、次回の車両起動後に行われる制御で用いられる(ステップS11)。
 ステップS10でバッテリ4の出力電圧VBminが第2の出力電圧閾値VBhigh未満であると判定すると、ステップS19に進む。ステップS19~ステップS24の処理は、バッテリ出力が中程度の領域の時に行われる処理である。
 ステップS19では、車両が減速燃料カット中であるか否かを判定する。車両が減速燃料カット中であると判定すると、ステップS20に進む。ステップS20では、オルタネータ2の回生発電電力によってバッテリ4の充電を行う。
 ステップS19で車両が減速燃料カット中ではないと判定すると、ステップS21に進む。ステップS21では、バッテリ4の充放電電流Iの積算値が0以上であるか否かを判定する。すなわち、減速燃料カット時におけるオルタネータ2の回生発電によってバッテリ4が充電された量と、バッテリ4が放電した量との収支を求めて、収支演算後のバッテリ4の充放電量がプラス(充電側がプラス)であるか否かを判定する。バッテリ4の充放電電流Iの積算値が0以上であると判定すると、ステップS22に進む。
 ステップS22では、収支演算後のプラスの充電電気量だけ、バッテリ4から電装部品への放電を許可する。これにより、オルタネータ2の発電を行う必要がなくなるので、オルタネータ2の駆動のために使用されるエンジン燃料を削減することができ、燃費を向上することができる。
 ステップS21でバッテリ4の充放電電流Iの積算値が0未満であると判定すると、ステップS23に進む。ステップS23では、所定電圧(例えば、13V)でオルタネータ2の発電を行って、電装部品に電力を供給する。これにより、バッテリ4のSOCは増減せずに維持される。
 ステップS24では、イグニッションスイッチ15がオフであるか否かを判定する。イグニッションスイッチ15がオフではないと判定すると、ステップS19に戻り、オフであると判定すると、フローチャートの処理を抜ける。
 上述した説明では、バッテリ出力が低い領域では、バッテリ4が満充電になるまで、バッテリ4の充電を行うものとしたが、バッテリ出力が少なくとも高い領域まで充電を行うようにしてもよい。この場合も、出力が低い領域でバッテリ4を使う頻度を低減することができる。
 以上、一実施の形態におけるバッテリの充放電制御装置によれば、バッテリ4の出力が第1の所定出力以下である場合、バッテリ4の出力が第2の所定出力以上となるようにバッテリ4の充電を行い、充電の途中でバッテリの充放電制御装置の動作を停止した場合には、次回の動作開始後もバッテリ4の出力が第2の所定出力以上となるようにバッテリ4の充電を行う。これにより、バッテリ4の出力が第1の所定出力以下である低い領域であると判定された場合には、バッテリ4の出力が第2の所定出力以上となるまでバッテリ4の充電を行うことができる。また、充電の途中でバッテリの充放電制御装置の動作を停止した場合であって、次回の動作開始後にバッテリ4の出力が第1の所定出力より高く、かつ、第2の所定出力未満である場合でも、バッテリ4の出力が第2の所定出力以上となるまでバッテリ4の充電を行うので、出力が低い領域でバッテリ4が使われる頻度を低減することができる。これにより、バッテリ4の劣化促進を抑制して、バッテリ4の寿命を延ばすことができる。
 特に、一実施の形態におけるバッテリの充放電制御装置では、バッテリの出力が第1の所定出力以下である場合、バッテリ4の充電電流が所定の電流Ifull以下となるまでバッテリ4の充電を行い、充電の途中でバッテリ4の充放電制御装置の動作を停止した場合には、次回の動作開始後もバッテリの充電電流が所定の電流Ifull以下となるまでバッテリ4の充電を行う。所定の電流Ifullは、バッテリ4の満充電時の充電電流に対応するため、バッテリの出力が第1の所定出力以下である場合には、劣化の影響が小さい満充電状態となるまでバッテリ4の充電を行うことができ、出力が低い領域でバッテリ4が使われる頻度をより低減することができる。
 バッテリ4の出力が第2の所定出力以上である場合、バッテリの充放電制御装置の前回動作時の充放電の収支が放電であれば、その放電量を充電するためにバッテリ4の充電を行う。これにより、前回動作時の放電量を今回の動作時の充電によって補うことができるので、バッテリ出力を高い領域で維持することができ、出力が低い領域でバッテリ4が使われる頻度を低減することができる。
 本発明は、上述した一実施の形態に限定されることはない。例えば、上述した説明では、バッテリの充放電制御装置を車両に適用した例について説明したが、車両以外のものにも適用することができる。
 上述した説明では、バッテリ4の出力が高い領域、中程度の領域、低い領域の3つの領域に分けたが、出力領域の数が3に限定されることはない。
 バッテリ4の充電電流Iが満充電判定電流閾値Ifull以下になると、バッテリ4が満充電まで充電されたと判定するものとして説明したが、バッテリ4が満充電状態となったか否かの判定方法は、この方法に限定されることはない。
 バッテリ4の充電は、オルタネータ4の発電により行うものとしたが、オルタネータ4以外の発電機を用いることもできる。
 本願は、2013年7月3日に日本国特許庁に出願された特願2013-139916に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  バッテリの充放電を制御するバッテリの充放電制御装置であって、
     前記バッテリの出力が第1の所定出力以下であるか否かを判定するバッテリ出力領域判定手段と、
     前記バッテリの出力が前記第1の所定出力以下である場合、前記バッテリの出力が、前記第1の所定出力より高い値である第2の所定出力以上となるように前記バッテリの充電を行い、充電の途中で前記バッテリの充放電制御装置の動作を停止した場合には、次回の動作開始後も前記バッテリの出力が前記第2の所定出力以上となるように前記バッテリの充電を行う充電制御手段と、
    を備えるバッテリの充放電制御装置。
  2.  請求項1に記載のバッテリの充放電制御装置において、
     前記バッテリの充電電流を検出する充電電流検出手段をさらに備え、
     前記充電制御手段は、前記バッテリの出力が前記第1の所定出力以下である場合、前記バッテリの充電電流が所定の電流以下となるまで前記バッテリの充電を行い、充電の途中で前記バッテリの充放電制御装置の動作を停止した場合には、次回の動作開始後も前記バッテリの充電電流が前記所定の電流以下となるまで前記バッテリの充電を行うバッテリの充放電制御装置。
  3.  請求項2に記載のバッテリの充放電制御装置において、
     前記所定の電流は、前記バッテリの満充電時の充電電流に対応するバッテリの充放電制御装置。
  4.  請求項1から請求項3のいずれか一項に記載のバッテリの充放電制御装置において、
     前記バッテリ出力領域判定手段は、前記バッテリの出力が前記第2の所定出力以上であるか否かを判定し、
     前記充電制御手段は、前記バッテリの出力が前記第2の所定出力以上である場合、前記バッテリの充放電制御装置の前回動作時の充放電の収支が放電であれば、その放電量を充電するために前記バッテリの充電を行うバッテリの充放電制御装置。
  5.  バッテリの充放電を制御するバッテリの充放電制御方法であって、
     前記バッテリの出力が第1の所定出力以下であるか否かを判定し、
     前記バッテリの出力が前記第1の所定出力以下である場合、前記バッテリの出力が、前記第1の所定出力より高い値である第2の所定出力以上となるように前記バッテリの充電を行い、充電の途中で前記バッテリの充放電制御装置の動作を停止した場合には、次回の動作開始後も前記バッテリの出力が前記第2の所定出力以上となるように前記バッテリの充電を行う、
    バッテリの充放電制御方法。
PCT/JP2014/063473 2013-07-03 2014-05-21 バッテリの充放電制御装置およびバッテリの充放電制御方法 WO2015001861A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013139916 2013-07-03
JP2013-139916 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001861A1 true WO2015001861A1 (ja) 2015-01-08

Family

ID=52143454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063473 WO2015001861A1 (ja) 2013-07-03 2014-05-21 バッテリの充放電制御装置およびバッテリの充放電制御方法

Country Status (1)

Country Link
WO (1) WO2015001861A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120857A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 電源装置
JP2007082379A (ja) * 2005-09-16 2007-03-29 Hitachi Koki Co Ltd 充電装置
JP2008259290A (ja) * 2007-04-04 2008-10-23 Seiko Epson Corp 充電装置、充電制御方法および制御プログラム
JP2009165274A (ja) * 2008-01-07 2009-07-23 New-Era Co Ltd 充電装置
US20090295331A1 (en) * 2008-05-27 2009-12-03 Princeton Technology Corporation Charging device
JP2012222931A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 車両の制御装置および車両
JP2012249455A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 車両の電気システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120857A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 電源装置
JP2007082379A (ja) * 2005-09-16 2007-03-29 Hitachi Koki Co Ltd 充電装置
JP2008259290A (ja) * 2007-04-04 2008-10-23 Seiko Epson Corp 充電装置、充電制御方法および制御プログラム
JP2009165274A (ja) * 2008-01-07 2009-07-23 New-Era Co Ltd 充電装置
US20090295331A1 (en) * 2008-05-27 2009-12-03 Princeton Technology Corporation Charging device
JP2012222931A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 車両の制御装置および車両
JP2012249455A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 車両の電気システム

Similar Documents

Publication Publication Date Title
US20180233943A1 (en) Power supply system for vehicle
CN110535218B (zh) 电池放电控制装置
JP6376069B2 (ja) 車両の電源装置
JP5836860B2 (ja) 発電制御装置
JP6548699B2 (ja) 電源システム
JP2010093969A (ja) バッテリの昇温制御装置
KR101926896B1 (ko) 저전압 배터리 충전 제어방법 및 장치
US10498154B2 (en) Electric power system
JP6277859B2 (ja) 電源制御装置
JP5780906B2 (ja) 車両用発電制御装置
JP2015220952A (ja) 充電装置
JP4064398B2 (ja) 電動機用バッテリの充放電制御装置
JP2014011826A (ja) 車両のバッテリ充電状態制御装置
JP3826295B2 (ja) 車両用電源制御装置
JP2007318913A (ja) バッテリの充電状態制御装置
JP4635961B2 (ja) バッテリの充電状態制御装置
WO2015001861A1 (ja) バッテリの充放電制御装置およびバッテリの充放電制御方法
JP2016131478A (ja) 電源装置
JP5277976B2 (ja) 車両の発電制御装置
JP5953857B2 (ja) 車両用制御装置、及び発電制御方法
JP2005348526A (ja) 車両用発電機の電圧制御装置
KR101600711B1 (ko) 주행거리확장 전기자동차의 발전기 작동시점 결정장치 및 그 방법
JP6172321B2 (ja) 車両用制御装置、及び発電制御方法
JP2015004356A (ja) 車両用電源装置
JP5541189B2 (ja) 電流センサ異常判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP