WO2014208747A1 - 溶接構造部材及び溶接方法 - Google Patents

溶接構造部材及び溶接方法 Download PDF

Info

Publication number
WO2014208747A1
WO2014208747A1 PCT/JP2014/067243 JP2014067243W WO2014208747A1 WO 2014208747 A1 WO2014208747 A1 WO 2014208747A1 JP 2014067243 W JP2014067243 W JP 2014067243W WO 2014208747 A1 WO2014208747 A1 WO 2014208747A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded
comparative example
frequency
welding
cross
Prior art date
Application number
PCT/JP2014/067243
Other languages
English (en)
French (fr)
Inventor
宗久 八田
隆彦 金井
和富 岡
伊藤 篤史
文昭 生田
川嵜 一博
Original Assignee
高周波熱錬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高周波熱錬株式会社 filed Critical 高周波熱錬株式会社
Priority to CN201480036480.5A priority Critical patent/CN105339123B/zh
Priority to EP14818601.8A priority patent/EP3015215B1/en
Priority to JP2015524141A priority patent/JP6438880B2/ja
Priority to US14/901,592 priority patent/US20160368080A1/en
Publication of WO2014208747A1 publication Critical patent/WO2014208747A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • B23K11/314Spot welding guns, e.g. mounted on robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a welded structural member and a welding method. More specifically, the present invention relates to a welded structural member having a high-toughness spot weld and a method for welding the structural member.
  • FIG. 36 is a cross-sectional view schematically showing spot welding of steel plates 50 that is generally performed.
  • the spot welding of the steel plates 50 is performed by sandwiching the overlapping portion of the steel plates 50 with a pair of electrodes 52 and applying a predetermined force to the electrodes 52 in the direction of the arrows to press the steel plates 50 together.
  • a large current of kA order is applied to the electrode 52 while maintaining the pressurized state, and the crimped portion between the steel plates 50 is instantaneously melted by Joule heat generation, so-called resistance heating, and a predetermined diameter called a nugget 54 is melted.
  • Spot welding is performed by forming the lump (for example, refer nonpatent literature 1).
  • the nugget 54 is also called a melt-solidified part.
  • FIG. 37 is a detailed view of a cross section of a welded portion by conventional spot welding.
  • the spot welded portion 53 includes a melt-solidified portion 54, a heat-affected portion 55 surrounding the melt-solidified portion 54, and a corona formed at the boundary between the steel plates 50, 50 in the heat-affected portion 55.
  • Bond sites 57 and voids 58 that can be formed at the boundaries between the heat affected zone 55 and the steel plates 50 and 50 are formed.
  • the heat affected zone 55 is also called HAZ.
  • the corona bond part 57 and the gap 58 are called a pressure contact part and a sheet separation tip, respectively.
  • scattering 56 may occur in the gap 58.
  • the splatter 56 is generated in the gap 58 in the overlapping portion with the steel plates 50, 50 when the steel melted during spot welding jumps out of the region of the melt-solidified portion 54 through the heat-welding affected portion 55 to the outside. It is a part of the unit 54.
  • the scattering 56 is also called a middle scattering. Due to the occurrence of the scatter 56, a spherical hollow blow hole is generated inside the welded portion 53, or the scattered scatter 56 adheres to a steel plate portion other than the spot welded portion 53. Generation
  • production of the scattering 56 is unpreferable since it may lead to the defect in the painting process performed after spot welding. However, at present, the scattering 56 is inevitably generated.
  • FIG. 38 is a plan view of a sample used in a tensile test for investigating the spot weld strength of a high-tensile steel plate, where (A) shows a sample of the overlap joint and (B) shows a sample of the cross joint. .
  • A shows a sample of the overlap joint
  • B shows a sample of the cross joint.
  • two rectangular steel plates 50 are overlapped at the ends in the longitudinal direction and spot welded at the ends.
  • the cross joint sample shown in FIG. 38 (B) two rectangular steel plates 50 are crossed into a cross shape, and the crossing spot is spot-welded.
  • a substantially oval portion surrounded by a dotted line is a nugget 54 formed by welding.
  • the force 56 applied in the cross tension test is indicated by an arrow.
  • FIG. 39 is a diagram schematically showing a fracture mode of a cross tensile test of a spot welded portion.
  • the breaking modes are (a) nugget internal fracture, (b) nugget plug-shaped fracture, (c) heat-affected zone plug-shaped fracture, (d) base material fracture, ( e) It is classified as a composite type fracture (not shown).
  • the composite fracture is a fracture caused by a combination of the above-described fracture modes (b) to (d).
  • the breaking position moves from (b) to (d) of the above breaking mode, the cross breaking strength tends to increase.
  • the vehicle body when a high-strength steel plate is used, the vehicle body can be efficiently reduced in weight, but a high-strength steel plate that further improves both strength and ductility is desired. Further weight reduction can be expected by further improving the strength of the steel plate for vehicle bodies.
  • By improving the ductility of the steel plate for vehicle body it is possible to ensure press formability and sufficient deformability at the time of collision in the product state.
  • a steel plate for a vehicle body tends to decrease in ductility when the strength is increased.
  • it is effective to increase the carbon content of the material.
  • the spot welding region is hard and brittle in proportion to the carbon content, and thus it is difficult to obtain a stable and sufficient strength.
  • the strength recovery of the welded portion was intended to recover the toughness of the melt-solidified portion.
  • a weakly bonded region called corona bond exists in the heat-affected zone around the nugget, but this bonded state is said to not contribute to the joint strength at the spot weld location because the corona bond is fragile. It was. That is, the hardness of this region is determined by the material composition of the steel sheet, and neither improvement in strength and toughness nor improvement in the strength of the bonded state in this region has been performed.
  • Patent Document 1 discloses spot welding including a spot welder having a pair of electrodes and high-frequency induction heating means having a heating coil disposed around one of the pair of electrodes.
  • An apparatus is disclosed.
  • the high-frequency induction heating means includes a heating coil that induction-heats a welded portion of a workpiece and a high-frequency power source that supplies high-frequency power to the heating coil.
  • the spot welded region formed by energizing the electrodes is cooled rapidly, so the metal structure of the melt-solidified zone and the heat-affected zone is examined until it becomes a martensite microstructure by this cooling.
  • no further studies have been made.
  • Patent Document 3 discloses a welding method in which high frequency energization is performed after low frequency energization in spot welding of stacked steel plates.
  • FIG. 40 is a diagram showing a heating state of the steel sheet in Patent Document 3.
  • FIG. 40A is a plan view showing a heating region of the steel plate 50 only by a low frequency current, and a circular interior 52A obtained by projecting the axial cross section of the electrode 52 onto the steel plate 50 is a main heating region.
  • FIG. 40B shows the temperature distribution in the XX direction of FIG. 40A.
  • the circular interior 52A obtained by projecting the axial cross section of the electrode 52 onto the steel plate 50 is intensively heated.
  • the high-frequency current concentrates on the surface and the outer peripheral region of the electrode 52.
  • the difference between the distribution of the low frequency current and the high frequency current is related to the so-called skin thickness.
  • FIG. 40 (C) is a plan view showing a heating region of the steel plate 50 by only a high-frequency current.
  • the outer peripheral circle obtained by projecting the axial cross section of the electrode 52 (see FIG. 36) onto the steel plate 50 and the vicinity of the outer peripheral circle, that is, the ring-shaped adjacent region 52B which is a circular outside is the main heating region.
  • FIG. 40D shows the temperature distribution in the XX direction of FIG.
  • the outer peripheral circle obtained by projecting the axial cross section of the electrode 52 onto the steel plate 50 and the substantially ring-shaped adjacent region 52B in the vicinity of the outer peripheral circle are resistance-heated.
  • the heating region of the steel plate 50 becomes a low frequency current passing region as shown in FIG.
  • the circular interior 52A and the ring-shaped vicinity region 52B that becomes a high-frequency current passing region are superimposed.
  • the temperature distribution of the steel plate 50 generated by these currents is as shown in FIG. 40 (F), the temperature distribution due to the low frequency current (see FIG. 40 (B)) and the temperature distribution due to the high frequency current (see FIG. 40 (D)). ) Is superimposed.
  • Patent Document 3 In the conventional spot welding, an attempt to recover the strength of the welded portion is started by Patent Document 3, but further improvement of the strength of the melt-solidified portion is required.
  • a first object of the present invention is to provide a welded structural member in which a spot welded portion has strength and toughness and has a high breaking strength obtained by a breaking test such as a cross tensile test.
  • the second object of the present invention is to provide a method for welding such a structural member.
  • a welded structure member of the present invention is a welded structure member made of a steel plate in which the surfaces of steel plates are overlapped to form a welded portion by spot welding, and the welded portion is A melt-solidified portion and a heat-affected zone surrounding the melt-solidified portion, and the hardness at the weld surface is harder than the base metal hardness of the steel plate as it goes from the outer region of the heat-affected zone to the heat-affected zone. It is characterized by that.
  • the metal structure of the heat-affected zone and the melt-solidified zone is preferably composed of a tempered martensite structure.
  • the steel plates in the heat affected zone are preferably solid-phase bonded.
  • the fracture path in the cross tensile test of the welded portion is preferably a fracture path in which a crack propagates along a region other than the melt-solidified portion.
  • the fracture path of the cross-tension test of the welded portion preferably has a joining strength such that it becomes a fracture path in which the crack propagation direction changes inside the heat-affected zone.
  • a welded structure member having a high strength and toughness at the spot welded portion and a high breaking strength obtained by a breaking test such as a cross tensile test can be obtained.
  • the welded portion is preferably cooled to a temperature lower than the temperature at which the martensitic transformation end point of the steel sheet is cut during the cooling period.
  • the spot welding method of the present invention is a method of sandwiching steel plates with surfaces overlapped by a pair of electrodes, applying a direct current or first frequency power between the pair of electrodes, A method of spot welding steel plates with a formed weld, wherein a cooling period is provided after applying DC or first frequency power between a pair of electrodes, and then the electrodes are higher than the first frequency
  • the second frequency power is applied, and the second frequency power heats the vicinity of the outer peripheral portion of the region where the steel plate and the pair of electrodes are in contact with each other, and also heats the overlapping joining end region of the steel plates in the welded portion. It is characterized by that.
  • pressurization to the electrode may be stopped after a predetermined time has elapsed after the power of the second frequency is applied.
  • the overlapped steel plates are sandwiched between a pair of electrodes, a melt-solidified portion is formed by resistance heating, and the peripheral region of the melt-solidified portion is heated with direct current or high frequency power having a frequency higher than low frequency power.
  • a welded structure member having high strength and toughness can be manufactured.
  • a spot welded portion has high strength and toughness and high breaking strength in a cross tensile test.
  • FIG. 1 It is a figure which shows typically an example of a structure of the welding apparatus which spot-welds the welding structural member which concerns on embodiment of this invention. It is an electric circuit diagram of the welding apparatus shown in FIG. It is a figure which shows an example of the heating waveform in this invention. It is sectional drawing which shows typically the electric current distribution which arises in a steel plate when electric power is simultaneously applied to two laminated steel plates from a low frequency power supply and a high frequency power supply. It is sectional drawing which shows the heating state by the high frequency current at the time of laminating
  • FIG. It is a figure which illustrates typically the electric power application by a low frequency power supply in the comparative example 1.
  • FIG. It is a figure which shows the electricity supply pattern of the comparative example 2.
  • FIG. It is a figure which illustrates typically the electric power application by the low frequency power supply of the comparative example 3, and the heat processing by an electric furnace.
  • FIG. It is a figure which shows an example of the hardness distribution in the substantially center cross section of the spot welding part of the spot welding member produced in the comparative example 2.
  • FIG. 1 It is sectional drawing which shows the area
  • (A) to (d) are optical images showing the structures of the nugget end cross sections of Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively.
  • 6 is a graph showing a relationship between tension, that is, a stroke and a load F in the cross tension test of Example 1, Comparative Example 1 and Comparative Example 3.
  • 6 is a graph showing a relationship between a stroke and a load F in a cross tension test of Comparative Example 2.
  • FIG. 3 is a cross-sectional view showing a region where a structure of a welded portion of a steel plate was observed, and (a) to (c) are optical images showing structures of cross-sections of nugget ends in Example 2, Comparative Example 4 and Comparative 5, respectively. is there. 4 is a graph showing a relationship between a stroke and a load F in a cross tension test of Example 2.
  • FIG. 6 It is an optical image which shows the nugget cross section of the welding part fractured
  • FIG. It is sectional drawing which shows typically the spot welding of the steel plates generally performed. It is detail drawing of the welding part cross section by the conventional spot welding.
  • FIG. 1 It is a top view of the sample used for the tension test for investigating the spot weld strength of a high-tensile steel plate, (A) shows the sample of a superposition joint, and (B) shows the sample of a cross joint. It is a figure which shows typically the fracture
  • FIG. 1 shows the top view of the sample used for the tension test for investigating the spot weld strength of a high-tensile steel plate
  • (A) shows the sample of a superposition joint
  • welded structural member 2 steel plates 2B, 2C: ring-shaped region 3: spot welded portion 4: melt-solidified portion 5: heat affected zone 10: welding device 10A: welding circuit portion 10B: welded portion 12: gun arm 12A: gun arm Upper part 12B: Upper part of gun arm 13: Electrode support part 14: Electrode 15: Floating inductance 16: Low frequency power supply 17: Capacitor 18: High frequency power supply 20: Current supply control part 21: Bypass capacitor 22: Commercial power supply 23: For high frequency current blocking Inductance 24: Low frequency power supply control unit 26: Welding transformer 28: Oscillator 30: Matching transformer 32: High frequency current 34: Low frequency current
  • FIG. 1 is a diagram schematically showing an example of a configuration of a welding apparatus 10 for spot welding a welded structural member 1 according to an embodiment of the present invention.
  • the welding apparatus 10 includes an electrode arm 12, an electrode support portion 13 having one end connected to the upper portion 12 ⁇ / b> A and the lower portion 12 ⁇ / b> B of the electrode arm 12, and the other end of each electrode support portion 13.
  • the metal welding apparatus 10 further includes a fixed base that supports the electrode arm 12, a drive mechanism that drives the electrode arm 12, a pressing mechanism that pushes one electrode 14 out of the electrode support portion 13, and the like. I have.
  • the pressing mechanism is used to press the steel plates 2 and 2 to be the welded structural member 1 described later with the electrodes 14 and 14.
  • the electrode arm 12 includes an upper arm 12A and a lower arm 12B, and is connected to the electrodes 14 and 14 via the electrode support portions 13, respectively.
  • the electrode arm 12 is also called a gun arm. Since the illustrated gun arm 12 has a so-called C-shape, it is called a C-type gun arm.
  • an X type gun or the like can be used in addition to the C type gun arm 12. Any shape of the electrode arm 12 can be applied, but in the following description, the case of welding using the C-type gun arm 12 will be described.
  • the pair of electrodes 14 and 14 are opposed to each other with a gap, and two steel plates 2 and 2 are inserted into the gap.
  • the electrode 14 is made of, for example, a copper material and has a circular or elliptical shape or a rod shape.
  • FIG. 2 is an electric circuit diagram of the welding apparatus 10 shown in FIG.
  • the electric circuit of the welding apparatus 10 includes a welding circuit portion 10A and a welding portion 10B surrounded by a dotted line.
  • the welding circuit unit 10 ⁇ / b> A includes a welding power source 16, a high-frequency power source 18, an inductance 15, a capacitor 17, and an electric circuit such as an energization control unit 20 that controls each output of the welding power source 16 and the high-frequency power source 18.
  • the welding portion 10B constitutes a circuit that is electrically connected to the welding circuit portion 10A.
  • the gun arm 12 and the pair of electrodes 14 and 14 that are electrically connected to the gun arm 12 and the pair of electrodes 14 and 14 are connected. It is comprised from the steel plates 2 and 2 pinched
  • the welding power source 16 is a low-frequency power source.
  • the commercial power source 22 having an output frequency of 50 Hz or 60 Hz
  • the low-frequency power source control unit 24 connected to one end of the commercial power source 22, and the other end of the commercial power source 22 are low.
  • a welding transformer 26 connected to the output end of the frequency power supply control unit 24. Both ends of the secondary winding of the welding transformer 26 are connected to the left end of the upper arm 12A and the left end of the lower arm 12B of the C-type gun arm 12, respectively.
  • the low frequency power supply control unit 24 includes a power control semiconductor element such as a thyristor, a gate drive circuit, and the like, and performs energization control from the commercial power supply 22 to the electrode 14.
  • the bypass capacitor 21 is connected in parallel with the C-type gun arm 12 side of the welding transformer 26, that is, the secondary winding 26A.
  • the bypass capacitor 21 has a low capacitive impedance with respect to the frequency of the high frequency power supply 18. For this reason, the voltage in which the high frequency voltage from the high frequency power supply 18 is applied to the secondary winding 26A can be minimized, and the high frequency induced voltage to the primary side of the welding transformer 26 can be lowered.
  • a high-frequency current blocking inductance 23 is connected in series to the secondary winding 26A of the welding transformer 26. The high-frequency current blocking inductance 23 has little effect on the low-frequency current, but has an effect of preventing the current from the high-frequency power supply 18 from flowing into the low-frequency power supply 16 side.
  • the high-frequency power source 18 includes an oscillator 28 and a matching transformer 30 connected to the output terminal of the oscillator 28.
  • One end of the matching transformer 30 is connected to the upper arm 12 ⁇ / b> A of the C-type gun arm 12.
  • the other end of the matching transformer 30 is connected to the lower arm 12 ⁇ / b> B of the C-type gun arm 12 via the capacitor 17.
  • the capacitor 17 can also serve as a matching capacitor for a series resonance circuit described later.
  • the capacitance value of the capacitor 17 depends on the oscillation frequency of the oscillator 28 and the floating inductance 15 of the C-type gun arm 12.
  • the oscillator 28 includes an inverter using various transistors, and controls the energization power of the high-frequency power source 18 to the electrode 14.
  • the path from the C-type gun arm 12 to the electrodes 14 and 14 connected to the secondary winding of the welding transformer 26 has an inductance 15.
  • the inductance 15 a stray inductance formed by the C-type gun arm 12 can be used.
  • the capacitor 17 also serves as a matching capacitor, a series resonant circuit may be configured by the matching capacitor 17 and the inductance 15.
  • FIG. 3 is a diagram showing an example of a heating waveform.
  • the first energization is performed from the low frequency power supply 16 (“low frequency first” in the figure), the first energization is then terminated, and after a predetermined time has elapsed, the low frequency power supply 16
  • the second energization is performed from “(low frequency second” in the figure). After the second energization, it is a cooling period. After a predetermined cooling period, the third energization from the high frequency power source 18 shown in FIG. 1 is performed. After the end of the third energization, the steel plate 2 is cooled.
  • FIG. 4 is a cross-sectional view schematically showing a current distribution generated in the steel plate 2 when power is simultaneously applied from the low-frequency power source 16 and the high-frequency power source 18 to the two stacked steel plates 2.
  • the solid line indicates the high-frequency current 32 generated by the high-frequency power supply 18, and the dotted line indicates the low-frequency current 34 generated by the low-frequency power supply 16.
  • the electrode 14 is made of copper, the diameter of the tip of the tip of the electrode 14 is 6 mm, and the frequency of the low frequency power supply 16 is 50 Hz.
  • the thickness of one steel plate 2 is, for example, 1.2 mm, and the frequency of the high-frequency power source 18 is, for example, 25 kHz. As shown in FIG.
  • the steel plate 2 is energized with a cross-sectional area width of approximately the nugget diameter.
  • the name demonstrated in FIG. 40 is used for the name of the heating area
  • FIG. 5 is a cross-sectional view showing a heating state by the high-frequency current 32 when two steel plates 2 are overlapped.
  • the steel plate 2 is heated by the high-frequency current 32 in the ring-shaped vicinity region 2 ⁇ / b> B and the end portion 2 ⁇ / b> C of the joining surface of the steel plate 2.
  • This end portion 2C is also ring-shaped in the same manner as the ring-shaped vicinity region 2B formed on the surface side of the steel plate 2.
  • the two neighboring regions 2B and the end 2C of the joining surface of the steel plate 2 are portions where the high-frequency current 32 flows in a concentrated manner.
  • the three locations of the two neighboring regions 2 ⁇ / b> B and the end portion 2 ⁇ / b> C of the joining surface of the steel plates 2 are the portions where the temperature is most increased by the high-frequency current 32.
  • the corona bond portion (refer to the portion denoted by reference numeral 57 in FIG. 37) that has been conventionally formed at the boundary of the steel plate 2 in the heat affected zone 5 is referred to. ), But a solid phase bond is formed.
  • the skin thickness of the steel plate 2 is an approximate depth at which current permeates when low frequency or high frequency power is applied to the steel plate 2.
  • the skin thickness of the steel plate 2 changes with the frequency of the power of ⁇ 1 ⁇ 2. For this reason, if the skin thickness of the steel plate 2 is the same material, it will become thicker, so that it becomes low frequency, and will become thin if it becomes high frequency. Since the power source for spot welding is generally 50 Hz or 60 Hz, if the diameter of the tip end of the electrode 14 is about 6 mm, the current flows through the entire electrode 14.
  • the frequency of the high-frequency power source 18 may be set in order to select the heating width of the ring-shaped vicinity region of the outer peripheral region heated by the high-frequency power source 18. That is, by changing the frequency of the high-frequency current 32, the heating width of the outer peripheral region is changed, and the ring-like neighboring region 2B and the end portion 2C are subjected to heat treatment such as tempering, so that the ring-like neighboring region 2B and the end portion are heated. 2C can be softened.
  • FIG. 6 is a diagram schematically illustrating cooling of the steel plate 2 during the cooling period.
  • the cooling of the steel plate 2 proceeds by heat removal cooling to the electrode 14 and heat transfer cooling in the circumferential direction in which the electrode 14 is in contact with the steel plate 2.
  • the electrode 14 since the electrode 14 is cooled with water, the amount of heat removed by the heat removal cooling to the electrode 14 is large, and the progress of cooling proceeds from the nugget center to the end. The longer the cool period, the wider the cooling zone.
  • the nugget portion is quenched and changes from an austenite structure to a hard and brittle martensite structure.
  • FIG. 7 is a diagram schematically illustrating heating of the steel plate 2 during the period of the third energization with high frequency.
  • a wide range of heat storage rings can be formed on the outer periphery of the nugget by high-frequency energization. Although quenching by cooling the nugget portion continues during the period of the third energization by high frequency, the degree of progress of cooling outward is significantly attenuated by the heat of the heat storage ring.
  • FIG. 8 is a diagram schematically illustrating tempering after high-frequency energization.
  • the electrode 14 is raised after the end of the third energization with high frequency to release the pressure applied to the steel plate 2.
  • the nugget portion is tempered by the inflowed heat, and changes to a tempered martensite structure having a high toughness value. That is, in the nugget part, the welded part in the quenched state is tempered by the heat flowing in from the heat storage ring.
  • the high frequency current path creates a current path mainly on the surface layer of the steel plate 2 on the outer periphery of the weld due to the skin effect that is a high frequency characteristic, and the magnetic flux density of the high frequency current 32 increases.
  • a ring-shaped heat storage region (referred to as a heat storage ring) is generated at the site.
  • the temperature at which the spot welded part 3 cuts the Mf (end of martensitic transformation) point during the cooling period (referred to as Mf temperature). Need to be cooled to a lower temperature.
  • the temperature at which the Mf point is cut varies depending on the composition of the steel plate 2. For example, the Mf temperature of the steel plate 2 containing 0.26% carbon (C) is about 300 ° C.
  • the feature of the present invention is that a hardness distribution having no corners can be obtained.
  • the hardness distribution in the welded section is M-shaped, and remains in a region where the hardness generated in the base material of the steel plate 2 and the end of the heat affected zone 5 is high, that is, in the form of corners, This is not preferable because the fracture mode is poor and the fracture strength is insufficient.
  • the hardness distribution is substantially constant and the base material of the steel plate 2 is as shown in Example 1 of FIG.
  • the occurrence of corners at the end of the heat-affected zone 5 is eliminated, and the melt-solidified zone 5 from the heat-affected zone 5 becomes a tempered martensite structure with high toughness.
  • the tensile strength at break in the cross tensile test generally doubles. For example, when the tensile breaking strength in welding at a low frequency is 3.5 kN to 4 kN, the tensile breaking strength by welding according to the present invention is 7 kN to 8 kN or more.
  • the basic shape of the hardness distribution is made by cooling time (cooling), and the increase and decrease in hardness inside the weld can be adjusted by high frequency input power (heat).
  • the structure at the site where the Mf point (300 ° C.) is cut by cooling changes from tempered martensite to tempered martensite by tempering.
  • the structure of the spot welded part 3 after spot welding is a bowl-shaped structure with a contour as shown in FIG. As the high frequency power increases, the bowl-shaped tempered structure becomes rough. The shading and roughness change depending on the heating time and the size of the output. Tempering after cooling for a long time can produce a fine structure with outlines, but spot welding has a time-constrained structure, resulting in a cage-like structure.
  • the relationship between the tissue cooling time and the high frequency power is as follows.
  • A The structure becomes rough when high output is applied.
  • B The structure becomes rough with high output and long time application, and carbides precipitate and become thick.
  • C Carbide precipitates and becomes thick in a long time.
  • a conventional structure with only low-frequency energization welding does not have a clear outline, and shows a saddle-like or scale-like structure depending on conditions only in shading. Incomplete tempering does not give a clear outline, presents a spongy structure resembling a mozuku, and its shape and density are disturbed.
  • the part where the Mf point is not cut remains as a transition part from austenite in an angular shape in the hardness distribution.
  • the tissue can be hard.
  • the cooling time, the magnitude of the high frequency power, and the application time of the high frequency power can be determined by comparing the tensile breaking strength, the breaking mode, and the structure.
  • the objects to be spot welded are the steel plates 2 and 2
  • the shape is not limited to a plate, and any shape may be used.
  • the steel plate 2 showed the example which carries out the spot welding of 2 sheets, the welding of the several board of 3 or more sheets may be sufficient.
  • FIG. 9 is a cross-sectional view showing a heating state by the high-frequency current 32 when three steel plates are overlapped. As shown in FIG. 9, when three steel plates 2 are overlapped, two ring-shaped neighboring regions 2 ⁇ / b> B and end portions 2 ⁇ / b> C of the joining surfaces of the two steel plates 2 are caused by the high-frequency current 32. The four ring-shaped regions 2B and 2C are heated.
  • FIG. 10 shows the JIS classification of the fracture mode when the spot welded portion 3 of the welded structural member 1 is subjected to a cross tensile test.
  • A is an interface fracture
  • (b) is a partial plug fracture
  • (c) and ( d) shows plug rupture.
  • the partial plug rupture in FIG. 10B is a rupture mode in which the crack propagation direction changes inside the nugget, and the rupture strength is low.
  • the plug rupture in FIG. 10C is a rupture mode in which the crack propagation direction changes inside the heat-affected zone 5, and the rupture strength is increased.
  • 10D is a so-called base material rupture in which the crack propagation direction starts from the outside of the heat-affected zone 5, and the rupture strength increases.
  • the fracture mode of the cross tension test is represented by the JIS classification of FIG. 10, and it is determined that spot welding has been performed when spot welding is a plug fracture.
  • the name demonstrated in FIG. 39 is used for the name of each part of the spot welding part 3 unless there is particular notice.
  • the composition (mass%) of the steel plate 2 contains, for example, 0.26% of C (carbon) as a component other than iron.
  • the power application from the low frequency power supply 16 and the high frequency power supply 18 of Example 1 is demonstrated.
  • welding was performed by applying power from the low-frequency power source 16.
  • the low-frequency power source 16 was turned on in two stages of first and second energization.
  • the rise of the first current due to the first energization was defined as one cycle (0.02 seconds), and then the first energization for maintaining the maximum value of the first current was defined as a cycle (0.02 seconds).
  • the maximum value of the first current is about 9 kA.
  • the second energization was performed after cooling for one cycle (0.02 seconds).
  • the maximum value of the second current value due to the second energization was set to 7.2 kA and energized for 14 cycles.
  • the two-stage energization by the low-frequency power source 16 is 17 cycles including cooling. Since one cycle is 0.02 seconds, the welding time was 0.34 seconds. After the end of the second energization from the low frequency power supply 16, the cool time was set to 1 second. Next, electric power from the high frequency power source 18 was applied at 29 kW for 0.7 seconds. After application of power from the high-frequency power source 18, pressurization by the electrode 14 was stopped 0.02 seconds later.
  • FIG. 11 is an example of a waveform obtained by measuring the power application from the low frequency power supply 16 and the high frequency power supply 18 with an oscilloscope.
  • Example 1 the third energization with high frequency power of 25 kHz was performed for 0.7 seconds at 29 kW for the cool period of FIG. 3 for 1 second.
  • Comparative Example 1 As Comparative Example 1 with respect to Example 1, spot welding of two steel plates 2 was performed by energizing only the low frequency power supply 16. That is, normal spot welding was performed.
  • the steel plate 2 and the electrode 14 used are the same as those in Example 1.
  • FIG. 12 is a diagram schematically illustrating power application by the low frequency power supply 16 in the first comparative example.
  • the energization pattern is shown below.
  • Rise of the first current by the first energization 1 cycle (0.02 seconds)
  • First energization (indicated as “low frequency first” in the figure): 9 kA, 1 cycle (0.02 seconds)
  • Second energization (denoted as “low frequency second” in the figure): 5.5 kA, 6 kA, 7.2 kA, 14 cycles (0.28 seconds)
  • Third energization (denoted as “low frequency third” in the figure): 3.6 kA, 5 cycles (0.1 seconds)
  • the nugget diameter is determined by the current value at the time of the second energization.
  • the nugget diameter was measured by observing the cross section of the welded part after performing normal spot welding.
  • the nugget portions when the current during the second energization was 5.5 kA, 6 kA, 6.5 kA, and 7.2 KA were about 4.4 mm, about 4.9 mm, about 5.4 mm, and about 6 mm, respectively.
  • Comparative Example 2 is spot welding in which a cool period is inserted for 1 second between the second energization and the third energization of Comparative Example 1.
  • the heating conditions such as the first to third energizations of low frequency other than the insertion of the cool period are the same as those in Comparative Example 1.
  • FIG. 13 is a diagram illustrating an energization pattern of Comparative Example 2. The energization pattern is shown below.
  • FIG. 14 is a diagram schematically illustrating power application by the low-frequency power source 16 and heat treatment by an electric furnace according to the third comparative example. The energization pattern is shown below.
  • Comparative Example 3 Rise of the first current by the first energization: 1 cycle (0.02 seconds) First energization: 9 kA, 1 cycle (0.02 seconds) Cooling: 1 cycle (0.02 seconds) Second energization: 7.2 kA, 14 cycles (0.28 seconds) 3rd energization: 5 cycles (0.1 sec) at 3.6 kA
  • FIG. 15 is a diagram showing an example of a hardness distribution in a substantially central cross section of the spot welded portion 3 of the spot welded member 1 produced in Example 1, Comparative Example 1 and Comparative Example 3.
  • the horizontal axis in FIG. 15 indicates the position of the spot welded portion 3 in the direction along the overlapping portion of the steel plates 2 and 2, and is shown in comparison with the cross section of the spot welded portion 3.
  • the vertical axis in FIG. 15 represents Vickers hardness (HV).
  • the Vickers hardness (HV) of the steel plate (base material) 2 before spot welding is about 465 HV.
  • the low-frequency second energization current is 7.2 kA, 14 cycles, and the nugget diameter is 6 mm.
  • Example 1 the hardness on the left side of the measurement position, that is, the left outer side of the heat affected zone 5 is 455 to 470 HV, the hardness on the left side of the heat affected zone 5 is 460 to 550 HV, It was found that the hardness of the melted and solidified portion 4 was 530 to 550 HV, the hardness on the right side of the heat affected zone 5 was 530 to 410 HV, and the hardness on the right outer side of the heat affected zone 5 was 455 to 460 HV.
  • the hardness distribution of Example 1 is substantially flat between 530 and 550 HV, whereas the hardness of the heat-affected zone 5 and the melt-solidified zone 4 is 465 HV, which is the hardness of the base material. .
  • the hardness distribution on the left side of the measurement position that is, the left outer side and the right outer side of the heat affected zone 5 has an angular shape with a peak of about 610 HV.
  • the heat-affected zone 5 and the melt-solidified zone 4 have a flat hardness distribution of 580 to 620 HV.
  • Example 1 The hardness distribution of the spot welded part 3 of Example 1 and Comparative Example 1 is compared. In Example 1, it can be seen that there is no corner generated on the outermost side of the heat-affected zone 5 of Comparative Example 1, and the hardness is low as a whole.
  • the hardness of the central portion of the melt-solidified portion 4 is about 530 to 550 HV, which is about 85 HV higher than the base material hardness of 465 HV.
  • the hardness distribution of the spot welded part 3 of Example 1 is slightly lower than that of Comparative Example 3 in which the heat treatment of tempering was performed by an electric furnace after applying low-frequency power. However, almost similar hardness distribution was obtained.
  • FIG. 16 is a diagram showing an example of the hardness distribution in the substantially central section of the spot welded portion 3 of the spot welded member 1 produced in Comparative Example 2.
  • shaft of FIG. 16 is Vickers hardness (HV).
  • the Vickers hardness (HV) of the steel plate (base material) 2 before spot welding is about 465 HV.
  • HV Vickers hardness
  • FIG. 17 is a cross-sectional view showing a region where the structure of the welded portion of the steel plate 2 was observed.
  • FIGS. 18 (a) to 18 (d) show Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively. It is an optical image which shows the structure
  • the metallographic structure of the surface of the welded portion of the steel plate 2 is flattened by the electrolytic polishing method disclosed in Patent Literature 4 and Non-Patent Literature 2.
  • the structure of the nugget edge part cross section of Example 1 is a tempered martensite structure.
  • FIG. 18 (a) the structure of the nugget edge part cross section of Example 1 is a tempered martensite structure. As shown in FIG.
  • the structure of the nugget end cross section of Comparative Example 1 is a quenched martensite structure.
  • the structure of the nugget end cross section of Comparative Example 2 is similar to the tempered martensite structure of Example 1.
  • the structure of the nugget end cross section of Comparative Example 3 is a tempered martensite structure.
  • FIG. 19 is a graph showing the tension in the cross tension test of Example 1, Comparative Example 1 and Comparative Example 3, that is, the relationship between the stroke and the load F
  • FIG. 20 is the stroke and load in the cross tension test of Comparative Example 2. It is a graph which shows the relationship of F.
  • FIG. 21 is an optical image showing a nugget cross section of a weld fractured in a cross tension test.
  • (A) is Example 1
  • (b) is Comparative Example 1
  • (c) is Comparative Example 2
  • (d) is This is Comparative Example 3.
  • FIG. 19 it can be seen that the tension in the cross tension test, that is, the stroke increases in the order of Comparative Example 1, Comparative Example 3, and Example 1.
  • FIG. 20 shows similar characteristics to Comparative Example 3. From the results of the cross tension test, it can be seen that the strength of the welded sample of Example 1 is high.
  • the number of samples of the welded structure member 1 of Example 1 is five.
  • the breaking loads of the welded structural members 1 are 8.39 kN, 8.02 kN, 7.90 kN, 7.26 kN, and 8.64 kN, respectively, and the average value F AV of the breaking loads is 8.04 kN
  • the range R which is the difference between the maximum value and the minimum value of the breaking load is 1.38 kN
  • the standard deviation ( ⁇ ) is 0.47 kN
  • the ratio between the average value F AV of the breaking load and the nugget diameter (F AV / ND ) Was 1.34 kN / mm.
  • Table 1 summarizes the measured values obtained in the cross tension test.
  • a cross tensile test was performed on the welded sample of Comparative Example 1 to determine the breaking load F (kN).
  • the number of samples of the welded structure member of Comparative Example 1 is 5.
  • the fracture load of each welded structural member is 4.6 kN, 4.20 kN, 4.50 kN, 4.59 kN, and 4.36 kN, respectively, and the average value F AV of the fracture load is 4 .45 kN
  • the range R which is the difference between the maximum value and the minimum value of the breaking load is 0.40 kN
  • the standard deviation ( ⁇ ) is 0.15 kN
  • the ratio of the average value F AV of the breaking load to the nugget diameter (F AV / ND) was 0.74 kN / mm.
  • the fracture of each welded structure member of Comparative Example 1 was an interface fracture or a partial plug fracture, as shown in FIG.
  • a cross tension test was performed on the welded sample of Comparative Example 2 to determine the breaking load F (kN).
  • the number of samples of the welded structure member of Comparative Example 2 is 5.
  • the breaking loads of the welded structural members are 7.00 kN, 6.79 kN, 7.46 kN, 6.96 kN, and 7.59 kN, respectively, and the average value F AV of the breaking loads is 7 .16 kN, the range R which is the difference between the maximum value and the minimum value of the breaking load is 0.80 kN, the standard deviation ( ⁇ ) is 0.31 kN, the ratio between the average value F AV of the breaking load and the nugget diameter (F AV / ND) was 1.21 kN / mm.
  • the fracture of each welded structure member of Comparative Example 2 was a partial plug fracture as shown in FIG.
  • Comparative Example 2 is a welding sample in which a cool period is provided between the second energization and the third energization of the low frequency power of Comparative Example 1. From the above results, in Comparative Example 2, the rupture load F of the cross tension test was improved compared to Comparative Example 1, and the partial plug rupture was obtained without causing the interface rupture of Comparative Example 1 in the rupture mode. The complete plug breakage of Example 1 and Comparative Example 3 described later was not obtained.
  • a cross tensile test was performed on the welded sample of Comparative Example 3 to determine the breaking load F (kN).
  • the number of samples of the welded structure member of Comparative Example 3 is 5.
  • the breaking loads of the respective welded structural members are 7.75 kN, 7.60 kN, 7.95 kN, 8.15 kN, and 8.11 kN, respectively, and the average value F AV of the breaking loads is 7 .91 kN
  • the range R which is the difference between the maximum value and the minimum value of the breaking load is 0.55 kN
  • the standard deviation ( ⁇ ) is 0.21 kN
  • the ratio of the average value F AV of the breaking load to the nugget diameter (F AV / ND) was 1.32 kN / mm.
  • the fracture of each welded structure member of Comparative Example 3 was a plug fracture as shown in FIG.
  • FIG. 22 is a diagram showing the breaking load of the spot welded member 1 produced in Example 1, Comparative Example 1 and Comparative Example 3.
  • the vertical axis in FIG. 22 represents the breaking load (kN).
  • the average breaking loads of Example 1, Comparative Example 1, and Comparative Example 3 were 8.04 kN, 4.45 kN, and 7.91 kN, respectively.
  • the breaking load of the welded material of Example 1 is about twice that of Comparative Example 1, and that the same strength as the breaking load of Comparative Example 3 can be obtained.
  • plug rupture see FIGS. 10C and 10D
  • FIGS. 10C and 10D was realized as in the rupture mode of Comparative Example 3. That is, it can be seen that the break mode was improved in Example 1 as compared with the break mode in Comparative Example 1 and Comparative Example 2 being the interface break or partial plug break.
  • the AV was 6.88 kN, the range R was 0.95 kN, the standard deviation ( ⁇ ) was 0.34 kN, and F AV / ND was 1.27 kN / mm.
  • the breaking load of each welded structure member 1 is 5.70 kN, 5.84 kN, 5.87 kN, 5.60 kN, 5.68 kN, and the average value F of the breaking load is F.
  • the AV was 5.74 kN, the range R was 0.27 kN, the standard deviation ( ⁇ ) was 0.10 kN, and F AV / ND was 1.17 kN / mm.
  • the fracture loads of the welded structural members 1 are 5.99 kN, 6.28 kN, 5.99 kN, 5.59 kN, 5.55 kN, respectively, and the average value F of the fracture loads is F.
  • the AV was 5.88 kN
  • the range R was 0.73 kN
  • the standard deviation ( ⁇ ) was 0.27 kN
  • F AV / ND was 1.34 kN / mm.
  • Table 2 The measured values obtained in these cross tensile tests are summarized in Table 2 including the case where the nugget diameter is 6 mm.
  • the fracture load of each welded structural member is 2.90 kN, 3.36 kN, 3.44 kN, 3.12 kN, and 3.02 kN, respectively, and the average value of the fracture loads F AV was 3.17 kN, range R was 0.54 kN, standard deviation ( ⁇ ) was 0.20 kN, and F AV / ND was 0.65 kN / mm.
  • the fracture loads of the welded structural members are 2.61 kN, 2.50 kN, 2.23 kN, 2.16 kN, and 2.80 kN, respectively, and the average value of the fracture loads F AV was 2.46 kN, range R was 0.64 kN, standard deviation ( ⁇ ) was 0.24 kN, and F AV / ND was 0.56 kN / mm.
  • the measured values obtained in these cross tensile tests are summarized in Table 3 including the case where the nugget diameter is 6 mm.
  • the nugget diameter is 4.9 mm, it is 6.03 kN, 6.62 kN, 6.64 kN, 5.66 kN, 5.60 kN, the average value F AV of the breaking load is 6.11 kN, and the range R is 1 0.04 kN, standard deviation ( ⁇ ) was 0.45 kN, and F AV / ND was 1.25 kN / mm.
  • FIG. 23 is a diagram showing the relationship between the breaking load and the nugget diameter of the spot welded member 1 produced in Example 1, Comparative Example 1 and Comparative Example 3.
  • the vertical axis in FIG. 23 is the breaking load (kN), and the horizontal axis is the nugget diameter (mm).
  • the breaking load of the welded structure member 1 of Example 1 during the cross tension test was easily obtained at about 6 to 8 kN or more. These values are approximately twice or more of 2-4 kN or more, which is the breaking load in the case of Comparative Example 1, and the same breaking load as in Comparative Example 3 in which heat treatment was performed in an electric furnace after energization at a low frequency. is there.
  • the breaking load during the cross tension test of the welded structure member 1 of the present invention can be 8 kN or more when the nugget diameter is 6 mm.
  • This breaking load is twice or more the strength of the conventional welding structure member, that is, the breaking load of Comparative Example 1. Therefore, the breaking load obtained with the welded structural member 1 of Example 1 was able to be significantly increased as compared with Comparative Example 1 in the case of spot welding with only the low-frequency power source 16.
  • FIG. 24 is an external optical image after the tensile test of the spot welded member 1 produced in Example 1, Comparative Example 1 and Comparative Example 3, where (a) shows Example 1 and (b) shows Comparative Example 1. , (C) shows Comparative Example 3.
  • Example 1 and Comparative Example 3 plug fracture was obtained even when the nugget diameter was changed. However, in Comparative Example 1, even when the nugget diameter was changed, the interface fracture or partial plug fracture occurred, and the plug fracture of Example 1 and Comparative Example 2 was not obtained.
  • Cooling of the welded part depends largely on heat removal from the water-cooled electrode 14, and the progress of cooling proceeds from the center of the welded part toward the outer periphery. It has been found that the cooling time of 0.7 seconds or more is necessary for the electrode 14 having a diameter of 6 mm used so that the entire welded portion reaches a temperature of about 300 ° C. below the Mf point.
  • Example 1 (Spot welding of 3 steel plates) Next, three steel plates 2 used in Example 1 were overlapped to perform spot welding. Spot welding of the three steel plates 2 was performed in the same manner as in Example 1.
  • the energization pattern is shown below. Rise of first current due to low-frequency first energization: 1 cycle (0.02 seconds) Low-frequency first energization: 9.0 kA, 1 cycle (0.02 seconds) Low frequency cooling: 1 cycle (0.02 seconds) Low-frequency second energization: 6.5 kA, 14 cycles (0.28 seconds) Cool period: 60 cycles (1.2 seconds) High-frequency energization: 29 kW, 0.6 seconds Hold time: 1 cycle (0.02 seconds)
  • Comparative Example 4 As Comparative Example 4 with respect to Example 2, spot welding of three steel plates 2 was performed in the same manner as Comparative Example 1.
  • the energization pattern is shown below. Rise of the first current by the first energization: 1 cycle (0.02 seconds) First energization: 9 kA, 1 cycle (0.02 seconds) Cooling: 1 cycle (0.02 seconds) Second energization: 6.5 kA, 14 cycles (0.28 seconds) Third energization: 3.3 kA, 5 cycles (0.1 seconds) Hold time: 1 cycle (0.02 seconds)
  • Comparative Example 5 As Comparative Example 5 with respect to Example 2, spot welding of three steel plates 2 was performed in the same manner as Comparative Example 2. Welding was performed by energizing only the low frequency power source 16 with the energization pattern of Comparative Example 2, and the welded steel sheet was heat-treated in an electric furnace. The heat treatment was performed at 300 ° C. for 30 minutes.
  • FIG. 25 is a diagram showing an example of a hardness distribution in a substantially central cross section of the spot welded part 3 of the spot welded member 1 produced in Example 2, Comparative Example 4 and Comparative Example 5.
  • the horizontal axis in FIG. 25 indicates the position in the direction along the overlapping portion of the three steel plates 2 of the spot welded portion 3 and is shown in comparison with the cross section of the spot welded portion 3.
  • shaft of FIG. 25 is Vickers hardness (HV).
  • the Vickers hardness (HV) of the steel plate (base material) 2 before spot welding is about 465 HV.
  • the low-frequency second energization current is 6.5 kA
  • the estimated nugget diameter is about 6 mm.
  • Example 2 the hardness on the left side of the measurement position, that is, the left outer side of the heat affected zone 5 is 470 HV, and the hardness on the left side of the heat affected zone 5 is 530 to 550 HV. It was found that the hardness of the portion 4 was 520 HV, the hardness on the right side of the heat affected zone 5 was 550 HV, and the hardness on the right outer side of the heat affected zone 5 was 470 HV.
  • the hardness distribution of Example 2 has an overall hardness lower than that of the normal welding of Comparative Example 4, and an arcuate hardness distribution in which the hardness of the shoulder is lower than that of Comparative Example 4. It became.
  • Comparative Example 5 has the same hardness distribution shape as Comparative Example 4, but it is understood that the hardness is about 20 to 30 HV as a whole. .
  • Example 2 The hardness distribution of the spot welded part 3 of Example 2 and Comparative Example 4 is compared.
  • Example 2 it can be seen that although there are corners generated on the outermost side of the heat-affected zone of Comparative Example 4, the hardness is low as a whole.
  • the hardness of the central portion of the melt-solidified portion 4 is about 520 to 530 HV, which is about 55 to 65 HV higher than the hardness of the base material 465 HV.
  • Example 2 The hardness distribution of the spot welded part 3 of Example 2 and Comparative Example 5 is compared.
  • Example 2 it can be seen that although there is a corner formed on the outermost side of the heat-affected zone of Comparative Example 5, the hardness is low as a whole. It can be seen that the hardness at the central portion of the melt-solidified portion 4 of Example 2 is reduced by about 10 to 20 HV as compared with Comparative Example 5.
  • FIG. 27 is a cross-sectional view showing a region where the structure of the welded portion of the steel plate 2 is observed.
  • c) are optical images showing the structures of the nugget end cross sections of Example 2, Comparative Example 4 and Comparative Example 5, respectively. The magnification is 1000 times.
  • the structure of the nugget edge part cross section of Example 2 is a structure
  • FIG. 27B the structure of the cross-section of the nugget end portion of Comparative Example 4 is a quenched martensite structure.
  • FIG.27 (c) the structure of the nugget edge part cross section of the comparative example 5 is a structure of a tempered martensite.
  • a cross tensile test was performed on the weld samples of Example 2 and Comparative Examples 4 and 5, and the breaking load F (kN) was obtained.
  • the number of samples of the welded structure member 1 of Example 2 is 5.
  • the breaking loads of the welded structural members 1 of Example 2 are 8.07 kN, 8.54 kN, 8.75 kN, 8.86 kN, and 9.09 kN, respectively, and the average value F of the breaking loads is F AV is 8.66 kN
  • the range R which is the difference between the maximum value and the minimum value of the breaking load is 1.02 kN
  • the standard deviation ( ⁇ ) is 0.35 kN
  • the ratio between the average value F AV of the breaking load and the nugget diameter (F AV / ND) was 1.42 kN / mm.
  • Table 5 The measured values obtained in these cross tensile tests are summarized in Table 5.
  • FIG. 28 is a graph showing the relationship between the stroke and the load F in the cross tension test of Example 2
  • FIG. 29 is an optical image showing the nugget of the weld fractured in the cross tension test
  • FIG. Appearance, (b) shows a cross section.
  • the cross tension test is a case where the nugget diameter is 6 mm and the breaking load is 9.09 kN.
  • any welded structural member 1 was broken by a plug.
  • the welded structural member of Comparative Example 4 is produced by ordinary low frequency welding, and the number of samples is five.
  • the fracture loads of the respective welded structural members are 4.53 kN, 5.27 kN, 5.36 kN, 4.9 kN, and 4.99 kN, respectively, and the average value F AV of the fracture loads is
  • the range R was 0.83 kN
  • the standard deviation ( ⁇ ) was 0.29 kN
  • F AV / ND was 0.82 kN / mm.
  • Table 6 The measured values obtained in these cross tension tests are summarized in Table 6.
  • FIG. 30 is a graph showing the relationship between the stroke and the load F in the cross tension test of Comparative Example 4, and FIG. 31 is an optical image showing the nugget cross section of the weld fractured in the cross tension test of Comparative Example 4. a) shows the appearance, and (b) shows the cross section.
  • the cross tension test is performed when the nugget diameter is 6 mm and the breaking load is about 5 kN.
  • the nugget and the heat-affected zone were burned, resulting in a hard and brittle structure.
  • the breaking load is about 1 ⁇ 2 that of Example 2.
  • the fracture of the welded structure member of Comparative Example 4 was estimated to be a fracture at the melt-solidified portion, and the plug fracture as in Example 2 was not obtained.
  • the welded structural member of Comparative Example 5 was prepared by performing heat treatment at 300 ° C. for 30 minutes using an electric furnace after performing the normal low frequency welding of Comparative Example 4.
  • the number of samples is 5.
  • the fracture loads of the respective welded structural members are 8.99 kN, 8.50 kN, 8.58 kN, 9.53 kN, and 8.67 kN, respectively, and the average value F AV of the fracture loads is 8.85 kN
  • range R was 1.03 kN
  • standard deviation ( ⁇ ) was 0.38 kN
  • F AV / ND was 1.45 kN / mm.
  • Comparative Example 5 all the welded structural members were plug-ruptured as in Example 2.
  • the measured values obtained in these cross tension tests are summarized in Table 7.
  • FIG. 32 is a graph showing the relationship between the stroke and the load F in the cross tension test of Comparative Example 5, and FIG. 33 is an optical image showing a nugget cross section of the weld fractured in the cross tension test of Comparative Example 5. a) shows the appearance, and (b) shows the cross section.
  • the cross tension test is a case where the nugget diameter is 6 mm and the breaking load is about 9 kN.
  • the plug break was obtained in the same manner as in Example 2.
  • FIG. 34 is a graph showing the relationship between the stroke and the load F in the cross tension test of Example 2, Comparative Example 4 and Comparative Example 5, and FIG. 35 is the breaking load of Example 2, Comparative Example 4 and Comparative Example 5.
  • FIG. 34 and 35 even in the case of spot welding of three steel plates 2, according to Example 2, the same breaking load as that of Comparative Example 5 is obtained, and the breaking mode is the conventional welding of Comparative Example 4. Then, it was found that plug breakage that could not be realized was obtained.
  • the present invention is not limited to the embodiment described above, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Absent.
  • the cooling time in the above-described embodiment can be appropriately designed so that a predetermined cross breaking strength can be obtained according to the application time of the low frequency power, the carbon composition of the steel plate 2 and the shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Resistance Welding (AREA)

Abstract

スポット溶接部が強度と靭性を有し、十字引張試験等の破断試験で得られる破断強度が高い、溶接構造部材及びこのような構造部材の溶接方法を提供することを目的とし、本発明の溶接方法では、面同士を重ね合わせた鋼板(2)を一対の電極(14)で挟み、上記一対の電極(14)間に直流又は第1の周波数の電力を印加して、形成した溶接部(3)によって上記鋼板(2)同士をスポット溶接する方法であって、上記一対の電極(14)間に直流又は第1の周波数の電力を印加した後に冷却期間を設け、次に、上記電極(14)に上記第1の周波数よりも高い第2の周波数の電力を印加し、上記第2の周波数の電力によって、上記鋼板(2)と上記一対の電極(14)とが接触する領域の外周部近傍を加熱すると共に、上記溶接部(3)の鋼板(2)の重なり合う接合端部領域を加熱する構成とした。

Description

溶接構造部材及び溶接方法
 本発明は溶接構造部材及び溶接方法に関する。さらに、詳しくは、本発明は高靱性のスポット溶接部を備えた溶接構造部材と構造部材の溶接方法に関する。
 スポット溶接装置は、重ね合わせた鋼板同士を溶接するために用いられている。図36は、一般的に行われている鋼板50同士のスポット溶接を模式的に示す断面図である。図36に示すように、鋼板50同士のスポット溶接は、鋼板50同士の重ね合わせ部分を一対の電極52で挟み、この電極52に矢印方向に所定の力を作用させて鋼板50同士を加圧する。次に、加圧状態を保持しながら電極52へkAオーダーの大電流を通電し、鋼板50同士の圧着部分をジュール発熱、所謂、抵抗加熱にて瞬間溶融し、ナゲット54と呼ばれる所定径の溶融した塊を形成することによって、スポット溶接が行われる(例えば、非特許文献1参照)。ナゲット54は、溶融凝固部とも呼ばれている。
 図37は従来のスポット溶接による溶接部断面の詳細図である。図37に示すように、スポット溶接部53には、溶融凝固部54と、溶融凝固部54を包囲する熱影響部55と、熱影響部55において鋼板50,50との境界に形成されるコロナボンド部位57と、熱影響部55と鋼板50,50との境界に生じ得る空隙58と、が形成される。熱影響部55は、HAZとも呼ばれている。コロナボンド部位57及び空隙58は、それぞれ圧接部位、シートセパレーション先端と呼ばれている。
 さらに、空隙58には散り56が生じる場合がある。散り56は、スポット溶接時に溶けた鋼が、溶融凝固部54の領域から熱溶着影響部55を通って外部に飛び出ることで、鋼板50,50との重ね合わせ部分の空隙58に生じ、溶融凝固部54の一部となっている。散り56は中散りとも呼ばれている。散り56が発生することにより、溶接部53の内部に球状の空洞のブローホールを生成させたり、飛散した散り56がスポット溶接部53以外の鋼板部位に付着したりする。散り56の発生は、スポット溶接の後で行う塗装工程での欠陥に繋がる可能性があるので好ましくない。しかしながら、散り56は不可避的に生じているのが現状である。
 ところで、近年、車両の生産ラインで使用されるスポット溶接では、車両の軽量化及び安全性の両立を図るため、車体用素材として高張力鋼板が用いられるようになってきた。
 図38は、高張力鋼板のスポット溶接強度を調べるための引張試験に用いられる試料の平面図であり、(A)が重ね合わせ継ぎ手の試料を、(B)が十字継ぎ手の試料を示している。図38(A)に示す重ね合わせ継ぎ手の試料では、2枚の長方形の鋼板50がその長手方向の端部で重ね合わせられ、端部でスポット溶接されている。図38(B)に示す十字継ぎ手の試料では、2枚の長方形の鋼板50を十字形状に交差させ、この交差する箇所がスポット溶接されている。点線で囲んだ略楕円状部は溶接で形成されたナゲット54である。十字引張試験で印加される力56を矢印で示している。
 図39はスポット溶接部の十字引張試験の破断様式を模式的に示す図である。図39に示すように、破断様式は、(a)ナゲット内面上破断と、(b)ナゲット内プラグ状破断と、(c)熱影響部内プラグ状破断と、(d)母材破断と、(e)図示しない複合型破断と、に分類されている。複合型破断は、上記破断様式の(b)~(d)の組合せによる破断である。一般に、破断位置が上記の破断様式の(b)から(d)に移るにつれて、十字破断強度が増すという傾向がある。
 高張力鋼板のスポット溶接強度において、十字継ぎ手の剥離強度は材料強度が上がっても増加し難く、寧ろ安定した強度が得難くなることが報告されている。十字継ぎ手の剥離において安定した引張り強度が得られない理由は、ナゲット54の円周上の応力集中の度合いが極めて高いことに起因すると考えられている。このような事情により、溶接領域強度の靭性を確保する点から、実際の車体に強度の高い鋼板を適用するにあたっては、溶接領域が硬くなり過ぎないよう炭素量を一定水準以下とするなど、組成面や相手材との組み合わせを勘案すること等で制約を設けているのが現状である。
 一方、高張力鋼板を用いると、効率的に車体を軽量化できるが、さらに強度と延性の双方を向上させた高張力鋼板が望まれている。車体用鋼板の強度をさらに向上させることにより、いっそうの軽量化を見込むことができる。車体用鋼板の延性を向上させることにより、プレス成形性や製品状態での衝突時の十分な変形能を確保することができる。通常、車体用鋼板は強度を上げると延性は低下する傾向を示す。車体用鋼板自体の強度と延性を同時に向上させるためには、材料の炭素含有量を高めることが効果的である。しかしながら、車体用鋼板のスポット溶接においては、スポット溶接領域が炭素含量に比例して硬く、脆くなるため、安定した十分な強度を得難かった。
 このようなスポット溶接部の強度を溶接工法で解決しようとする取り組みが、これまで種々なされてきている。例えば、溶融接合部を所定の大きさに形成した後、後通電で焼戻しを施すことが試みられている。しかしながら、車体組み立てに用いる抵抗スポット溶接では、一打点あたりに要する工程時間は高々1秒以内で行うことが求められており、現状の溶接設備で後通電などで焼戻しした場合、その焼戻し効果は極めて限定されたものとなる。あるいは、焼戻しで十分な効果を得ようとした場合、工程の要求時間を大幅に超える時間が必要となる。これは、従来式の溶接機で焼き戻し作業を行うと、通電電流は電極直下が通電されるので、焼戻し効果を得たい箇所と主に発熱する箇所がずれているからである。
 従来のスポット溶接において、溶接部の強度回復は、溶融凝固部の靭性を回復しようとするものであった。この場合、ナゲット周辺の熱影響部にはコロナボンドと呼ばれる弱い結合状態の領域が存在するが、この結合状態は、コロナボンドが脆弱なため、スポット溶接箇所の接合強度には寄与しないとされていた。つまり、この領域の硬さは鋼板の材料組成で決まるものとされ、強度と靱性の改善や、この領域の接合状態の強度改善は行われていなかった。
 特許文献1には、1対の電極を有しているスポット溶接機と1対の電極の片方に巻回して配設される加熱コイルを有している高周波誘導加熱手段とを備えたスポット溶接装置が開示されている。この高周波誘導加熱手段は、ワークの被溶接部分を誘導加熱する加熱コイルと加熱コイルへ高周波電力を供給する高周波電源とから構成されている。
 高強度と高靭性を両立させる鋼として、微細結晶粒の複合組織鋼が研究されているが、炭化物の析出が有効な手段であることがわかってきた(特許文献2参照)。炭化物の析出のためには、材料の炭素含有量を高めておくことが必要であるが、炭素量が高い場合にはスポット溶接部が硬くなりすぎることから、脆化し接合部強度が著しく低下する問題がある。このため、広く使われる自動車用鋼板は、炭素含有量を0.15wt%程度以下に抑制してきた。また、スポット溶接の電極形状や通電条件の検討は行なわれてきた。しかし、電極への通電によって形成されたスポット溶接領域においては、スポット溶接領域の冷却が速いので、溶融凝固部と熱影響部の金属組織がこの冷却によってマルテンサイト組織となること迄の検討は行っているが、これ以上の検討はなされていない。
 特許文献3には、重ね合わせた鋼板のスポット溶接において、低周波通電の次に高周波通電を行う溶接方法が開示されている。
 図40は、特許文献3における鋼板の加熱状態を示す図である。図40(A)は、低周波電流だけによる鋼板50の加熱領域を示す平面図であり、電極52の軸断面を鋼板50に投影した円形内部52Aが主たる加熱領域となる。図40(B)は、図40(A)のX-X方向の温度分布であり、鋼板50において、電極52の軸断面を鋼板50に投影した円形内部52Aが集中的に加熱される。
 一方、高周波電流は電極52の表面及び外周領域に電流が集中する。低周波電流と高周波電流の分布が異なるのは、所謂表皮厚さに関係している。
 図40(C)は、高周波電流だけによる鋼板50の加熱領域を示す平面図である。電極52(図36参照)の軸断面を鋼板50に投影した外周円及び外周円近傍、つまり、円形外部となるリング状の近傍領域52Bが主たる加熱領域となる。図40(D)は、図40(C)のX-X方向の温度分布である。鋼板50において、電極52の軸断面を鋼板50に投影した外周円及び外周円近傍の略リング状の近傍領域52Bが抵抗加熱される。
 従って、重ね合わせた2枚の鋼板50へ低周波電源と高周波電源とから電力を同時に印加したとき、鋼板50の加熱領域は、図40(E)に示すように低周波電流の通過領域となる円形内部52Aと高周波電流の通過領域となるリング状の近傍領域52Bを重畳したものとなる。さらに、これらの電流で生じる鋼板50の温度分布は、図40(F)に示すように低周波電流による温度分布(図40(B)参照)と高周波電流による温度分布(図40(D)参照)を重畳したものとなる。
特開2005-211934号公報 特開2007-332457号公報 国際公開公報WO2011/JP2011/013793 特許第4006513号公報
社団法人溶接学会編、「溶接・接合便覧」、丸善株式会社、平成2年9月30日、pp.392-398 早川正夫、松岡三郎、「原子間力顕微鏡による焼戻しマルテンサイトの組織解析」、まてりあ、43巻、第9号、pp.717-723、2004年
 従来のスポット溶接において、溶接部の強度回復を行う試みは、特許文献3により開始されているが、さらに、溶融凝固部の強度改善が要求されている。
 本発明の第1の目的は、上記課題に鑑み、スポット溶接部が強度と靭性を有し、十字引張試験等の破断試験で得られる破断強度が高い、溶接構造部材を提供することにある。本発明の第2の目的は、このような構造部材の溶接方法を提供することにある。
 上記第1の目的を達成するため、本発明の溶接構造部材は、鋼板の面同士を重ね合わせスポット溶接によって溶接部を形成して接合した鋼板から成る溶接構造部材であって、溶接部は、溶融凝固部と、溶融凝固部を取り囲む熱影響部と、を備え、溶接面における硬さは、熱影響部の外側領域から熱影響部に行くにつれて、鋼板の母材硬さよりも硬くなっていることを特徴とする。
 上記構成において、熱影響部及び溶融凝固部の金属組織は、好ましくは、焼戻しマルテンサイト組織からなる。熱影響部の鋼板同士は、好ましくは、固相接合している。溶接部の十字引張り試験の破断経路は、好ましくは、溶融凝固部以外の領域に沿って亀裂が進展する破断経路となる。この溶接部の十字引張り試験の破断経路は、好ましくは、熱影響部の内部で亀裂の進展方向が変化する破断経路となるような接合強度を有している。
 上記構成によれば、スポット溶接部が高い強度と靭性を有し、十字引張試験等の破断試験で得られる破断強度が高い溶接構造部材が得られる。溶接部は、好ましくは、冷却期間において、鋼板のマルテンサイト変態終了点を切る温度よりも低い温度に冷却される。
 上記第2の目的を達成するため、本発明のスポット溶接方法は、面同士を重ね合わせた鋼板を一対の電極で挟み、一対の電極間に直流又は第1の周波数の電力を印加して、形成した溶接部によって鋼板同士をスポット溶接する方法であって、一対の電極間に直流又は第1の周波数の電力を印加した後に冷却期間を設け、次に、電極に第1の周波数よりも高い第2の周波数の電力を印加し、第2の周波数の電力によって、鋼板と一対の電極とが接触する領域の外周部近傍を加熱すると共に、溶接部の鋼板の重なり合う接合端部領域を加熱することを特徴とする。
 上記構成において、第2の周波数の電力を印加した後で所定の時間が経過した後に、電極への加圧を停止してもよい。
 上記構成によれば、重ね合わせた鋼板を一対の電極で挟み、抵抗加熱で溶融凝固部を形成し、溶融凝固部の周縁領域を直流又は低周波の電力よりも周波数の高い高周波電力で加熱し、強度と靭性の高い溶接構造部材を製造することができる。
 本発明によれば、スポット溶接部が高い強度と靭性を有し、十字引張試験の破断強度が高い溶接構造部材及び溶接方法を提供することができる。
本発明の実施形態に係る溶接構造部材をスポット溶接する溶接装置の構成の一例を模式的に示す図である。 図1に示す溶接装置の電気回路図である。 本発明における加熱波形の一例を示す図である。 重ね合わせた2枚の鋼板へ低周波電源と高周波電源とから電力を同時に印加したとき鋼板に生じる電流分布を模式的に示す断面図である。 鋼板を2枚重ね合わせた場合の高周波電流による加熱状態を示す断面図である。 冷却期間における鋼板の冷却を模式的に説明する図である。 高周波による第3通電の期間における鋼板の加熱を模式的に説明する図である。 高周波通電後における焼戻しを模式的に説明する図である。 鋼板を3枚重ね合わせた場合の高周波電流による加熱状態を示す断面図である。 スポット溶接部の十字引張試験の破断様式のJIS分類を示す図であり、(a)は界面破断、(b)は部分プラグ破断、(c)及び(d)はプラグ破断を示している。 低周波電源と高周波電源からの電力印加をオシロスコープで測定した波形の一例である。 比較例1において低周波電源による電力印加を模式的に説明する図である。 比較例2の通電パターンを示す図である。 比較例3の低周波電源による電力印加と電気炉による熱処理を模式的に説明する図である。 実施例1、比較例1及び比較例3で作製したスポット溶接部材のスポット溶接部のほぼ中央断面における硬さ分布の一例を示す図である。 比較例2で作製したスポット溶接部材のスポット溶接部のほぼ中央断面における硬さ分布の一例を示す図である。 鋼板の溶接部の組織観察を行った領域を示す断面図である。 (a)~(d)は、それぞれ実施例1、比較例1、比較例2及び比較例3のナゲット端部断面の組織を示す光学像である。 実施例1、比較例1及び比較例3の十字引張試験における、引張りつまりストロークと荷重Fの関係を示すグラフである。 比較例2の十字引張試験におけるストロークと荷重Fの関係を示すグラフである。 十字引張試験で破断した溶接部のナゲット断面を示す光学像であり、(a)は実施例1、(b)は比較例1、(c)は比較例2、(d)は比較例3である。 実施例1、比較例1及び比較例3で作製したスポット溶接部材の破断荷重を示す図である。 実施例1、比較例1及び比較例3で作製したスポット溶接部材の破断荷重とナゲット径との関係を示す図である。 実施例1、比較例1及び比較例3で作製したスポット溶接部材の引張試験後の外観光学像であり、(a)は実施例1を、(b)は比較例1を、(c)は比較例3を示している。 実施例2、比較例4及び比較例5で作製したスポット溶接部材のスポット溶接部のほぼ中央断面における硬さ分布の一例を示す図である。 鋼板の溶接部の組織観察を行った領域を示す断面図である。 鋼板の溶接部の組織観察を行った領域を示す断面図であり、(a)~(c)は、それぞれ実施例2、比較例4及び比較5のナゲット端部断面の組織を示す光学像である。 実施例2の十字引張試験における、ストロークと荷重Fの関係を示すグラフである。 十字引張試験で破断した溶接部のナゲットを示す光学像であり、(a)は外観を、(b)は断面を示している。 比較例4の十字引張試験におけるストロークと荷重Fの関係を示すグラフである。 比較例4の十字引張試験で破断した溶接部のナゲット断面を示す光学像であり、(a)は外観を、(b)は断面を示している。 比較例5の十字引張試験におけるストロークと荷重Fの関係を示すグラフである。 比較例5の十字引張試験で破断した溶接部のナゲット断面を示す光学像であり、(a)は外観を、(b)は断面を示している。 実施例2、比較例4及び比較例5の十字引張試験におけるストロークと荷重Fの関係を示すグラフである。 実施例2、比較例4及び比較例5の破断荷重を示す図である。 一般的に行われている鋼板同士のスポット溶接を模式的に示す断面図である。 従来のスポット溶接による溶接部断面の詳細図である。 高張力鋼板のスポット溶接強度を調べるための引張試験に用いられる試料の平面図であり、(A)が重ね合わせ継ぎ手の試料を、(B)が十字継ぎ手の試料を示している。 スポット溶接部の十字引張試験の破断様式を模式的に示す図である。 特許文献3における鋼板の加熱状態を示す図である。
 1:溶接構造部材
 2:鋼板
2B,2C:リング状領域
 3:スポット溶接部
 4:溶融凝固部
 5:熱影響部
10:溶接装置
10A:溶接用回路部
10B:溶接部
12:ガンアーム
12A:ガンアームの上部
12B:ガンアームの上部
13:電極支持部
14:電極
15:浮遊インダクタンス
16:低周波電源
17:コンデンサ
18:高周波電源
20:通電制御部
21:バイパスコンデンサ
22:商用電源
23:高周波電流阻止用インダクタンス
24:低周波電源制御部
26:溶接トランス
28:発振器
30:整合トランス
32:高周波電流
34:低周波電流
 以下、図面を参照しながら本発明の実施形態を説明する。
(溶接装置)
 図1は、本発明の実施形態に係る溶接構造部材1をスポット溶接する溶接装置10の構成の一例を模式的に示す図である。図1に示すように、溶接装置10は、電極アーム12と、電極アーム12の上部12Aと、下部12Bにそれぞれ一端が接続されている電極支持部13と、各電極支持部13の他端にそれぞれ接続される一対の電極14と、電極アーム12にインダクタンス15を介して接続される溶接用電源16と、電極アーム12にコンデンサ17を介して接続される高周波電源18と、溶接用電源16及び高周波電源18の各出力制御を行う通電制御部20と、を含んで構成されている。
 なお、金属材の溶接装置10は、図示していないが、電極アーム12を支持する固定ベース、電極アーム12を駆動する駆動機構、電極支持部13から一方の電極14を押し出す押圧機構などをさらに備えている。押圧機構は、後述する被溶接構造部材1となる鋼板2,2を電極14,14で加圧するために使用される。
 電極アーム12は上部アーム12Aと下部アーム12Bとを備え、各電極支持部13を介して電極14,14にそれぞれ接続されている。電極アーム12はガンアームとも呼ばれている。図示するガンアーム12は、所謂C字形状を有しているので、C型ガンアームと呼ばれている。ポータブル型やロボット型等の溶接装置において、C型ガンアーム12以外にはX型ガン等も使用され得る。電極アーム12の形状はどのようなものでも適用可能であるが、以下の説明においては、C型ガンアーム12を用いて溶接する場合を説明する。
 一対の電極14,14は隙間を有して対向しており、その隙間に2枚の鋼板2,2が挿入される。電極14は例えば銅材で、円や楕円の形状やロッド状をなしている。
 図2は図1に示す溶接装置10の電気回路図である。図2に示すように、溶接装置10の電気回路は、点線で囲んだ溶接用回路部10Aと溶接部10Bとからなる。溶接用回路部10Aは、溶接用電源16と高周波電源18とインダクタンス15とコンデンサ17と溶接用電源16及び高周波電源18の各出力制御を行う通電制御部20等の電気回路とからなる。溶接部10Bは、溶接用回路部10Aに電気的に接続される回路を構成しており、ガンアーム12とガンアーム12に電気的に接続される一対の電極14,14とこれら一対の電極14,14に挟まれる鋼板2,2とから構成される。
 溶接用電源16は低周波電源であり、例えば出力周波数が50Hz又は60Hzである商用電源22と、商用電源22の一端に接続される低周波電源制御部24と、商用電源22の他端と低周波電源制御部24の出力端に接続される溶接トランス26と、から構成されている。溶接トランス26の2次巻き線の両端が、それぞれ、C型ガンアーム12の上部アーム12Aの左側端部及び下部アーム12Bの左側端部に接続されている。低周波電源制御部24は、サイリスタなどの電力制御用半導体素子及びゲート駆動回路等から構成されており、商用電源22から電極14への通電制御などを行う。
 溶接トランス26のC型ガンアーム12側、即ち二次側巻き線26Aに並列にバイパスコンデンサ21が接続されている。バイパスコンデンサ21は、高周波電源18の周波数に対して低い容量性インピーダンスを有している。このため、高周波電源18からの高周波電圧が二次側巻き線26Aに印加される電圧を最小限にし、溶接トランス26の一次側への高周波誘起電圧を低くすることができる。又、溶接トランス26の二次側巻線26Aに直列に高周波電流阻止用インダクタンス23が接続されている。高周波電流阻止用インダクタンス23は、低周波の電流には殆ど影響しないが、高周波電源18の電流が、低周波電源16側に流入するのを防ぐ作用を有している。
 高周波電源18は、発振器28と発振器28の出力端に接続される整合トランス30とから構成されている。整合トランス30の一端がC型ガンアーム12の上部アーム12Aに接続されている。整合トランス30の他端は、コンデンサ17を介してC型ガンアーム12の下部アーム12Bに接続されている。このコンデンサ17は、後述する直列共振回路の整合用コンデンサを兼ねることができる。コンデンサ17の容量値は、発振器28の発振周波数とC型ガンアーム12の浮遊インダクタンス15に依存する。発振器28は、各種のトランジスタを用いたインバータなどから構成されており、電極14への高周波電源18の通電電力等を制御する。
 図2に示すように、溶接トランス26の2次巻き線に接続されるC型ガンアーム12から電極14,14までの経路は、インダクタンス15を有している。インダクタンス15はC型ガンアーム12で形成される浮遊インダクタンスを利用することができる。コンデンサ17が整合用コンデンサを兼ねる場合には、この整合用コンデンサ17とインダクタンス15とによる直列共振回路を構成してもよい。
(溶接方法)
 次に、本発明の構造部材の溶接方法について説明する。
 (1)最初に鋼板2に圧力を印加する。
 (2)低周波の第1通電で鋼板2の表面に付着している酸化スケールを除去する。低周波の第1通電により、スパッタの発生量を減少させることができる。
 (3)低周波の第2通電で本溶接をする。ナゲットが成長し、座屈と共にへそ部が発生する。
 (4)冷却期間(クール期間)が設けられる。
 (5)高周波の第3通電で、鋼板2の溶接箇所の焼き戻しを行う。
 (6)加圧を停止して、電極14を鋼板2から離す。つまり、鋼板2に印加されていた圧力を無くす。
 図3は加熱波形の一例を示す図である。図3に示すように、低周波電源16から第1通電を行い(図中、「低周波第1」)、次に第1通電を終了し、所定の時間経過した後で、低周波電源16から第2通電を行う(図中、「低周波第2」)。この第2通電の後は、冷却期間である。所定の冷却期間の後、図1に示す高周波電源18からの第3通電を行う。第3通電の終了後、鋼板2は冷却される。
(鋼板に生じる電流分布)
 図4は、重ね合わせた2枚の鋼板2へ低周波電源16と高周波電源18とから電力を同時に印加したとき鋼板2に生じる電流分布を模式的に示す断面図である。図4において、実線は高周波電源18による高周波電流32を示し、点線は低周波電源16による低周波電流34を示している。電極14は銅からなり、この電極14のチップ先端の直径は6mmで、低周波電源16の周波数は50Hzである。1枚の鋼板2の厚さは例えば1.2mm、高周波電源18の周波数は例えば25kHzである。図4に示すように、低周波電流34は電極14,14の内部全体を流れるので、鋼板2には、おおよそナゲット径の断面積幅で通電される。なお、低周波電源16と高周波電源18の溶接部の加熱領域の名称は、特に断らない限り図40で説明した名称を用いる。
 図5は、鋼板2を2枚重ね合わせた場合の高周波電流32による加熱状態を示す断面図である。図5に示すように、鋼板2は、高周波電流32によって、リング状の近傍領域2Bと鋼板2の接合面の端部2Cとが加熱される。この端部2Cも、鋼板2の表面側に形成されるリング状の近傍領域2Bと同様にリング状となっている。2箇所の近傍領域2Bと鋼板2の接合面の端部2Cとが、高周波電流32が集中して流れる部位である。これにより、重ね合わせた鋼板2において、2箇所の近傍領域2Bと鋼板2の接合面の端部2Cとの3ヶ所が高周波電流32で温度が最も上昇する部位となる。鋼板2の接合面の端部2Cが高周波電流32で加熱されると、熱影響部5において鋼板2の境界には、従来形成されていたコロナボンド部(図37で符号57を付した部位参照)ではなく、固相接合が形成される。
(表皮厚さ)
 鋼板2の表皮厚さは、鋼板2へ低周波数又は高周波数の電力を印加した場合に電流が浸透する大凡の深さである。鋼板2の表皮厚さは周波数の-1/2乗で変化する。このため、鋼板2の表皮厚さは同じ材料であれば低周波数程厚くなり、高周波数になれば薄くなる。一般にスポット溶接用の電源は50Hz又は60Hzなので、電極14のチップ先端の直径6mm程度であれば、電流は電極14の全体に流れる。
 一方、鋼板2の表面だけを加熱する場合は、高周波電源18の周波数を調整することにより、表面から所定の表皮厚さとなるように設定することができる。よって、高周波電源18で加熱される外周領域のリング状の近傍領域の加熱幅を選択するには、高周波電源18の周波数を設定すればよい。つまり、高周波電流32の周波数を変えることによって、外周領域の加熱幅が変えられ、リング状の近傍領域2B及び端部2Cに焼戻し等の加熱処理をして、リング状の近傍領域2B及び端部2Cを軟化させることができる。
 図6は、冷却期間における鋼板2の冷却を模式的に説明する図である。図6に示すように、鋼板2の冷却は、電極14への抜熱冷却と、電極14が鋼板2に接触した円周方向への伝熱冷却で進行する。この場合、電極14は水で冷却されているので、電極14への抜熱冷却による抜熱量が大きく、冷却の進行は、ナゲット中央部から端部へと進行する。クール期間時間が長いほど冷却域は広がる。冷却の進行とともにナゲット部は焼入れされ、オーステナイト組織から硬くて脆いマルテンサイト組織に変わる。
 図7は、高周波による第3通電の期間における、鋼板2の加熱を模式的に説明する図である。図7に示すように、高周波通電ではナゲットの外周部に広範囲な蓄熱リングができる。ナゲット部の冷却による焼入れは高周波による第3通電の期間も継続するが、蓄熱リングの熱により、外方向への冷却の進行度は著しく減衰される。
 図8は、高周波通電後における焼戻しを模式的に説明する図である。図8に示すように、高周波による第3通電の終了後に電極14を上昇させて、鋼板2に印加していた圧力を開放する。この電極14の開放と同時に蓄熱リングからナゲット中央方向の低温域に熱が流入し、電極14が接触していた領域全体を均熱にする。この流入した熱によりナゲット部は焼戻しされ、靭性値の高い焼戻しマルテンサイト組織に変わる。つまり、ナゲット部は、蓄熱リングからの流入した熱で焼入れ状態の溶接部が焼戻される。高周波の通電経路は溶接中央部を通る低周波と異なり、高周波の特性である表皮効果によって、主に溶接部の外周の鋼板2の表層部に通電経路をつくり、高周波電流32の磁束密度が高まる部位で、リング状の蓄熱域(蓄熱リングと呼ぶ。)を発生させる。
 高周波通電により溶接部が焼戻しされ、靭性値の高い焼戻しマルテンサイト組織に変わるためには、冷却期間において、スポット溶接部3がMf(マルテンサイト変態終了)点を切る温度(Mf温度と呼ぶ。)よりも低い温度に冷却されることが必要である。Mf点を切る温度は、鋼板2の組成で変化する。例えば、0.26%の炭素(C)を含有する鋼板2のMf温度は300℃程度である。
 Mf点を切った部位を再加熱すると、焼戻しマルテンサイトの組織となり靭性が向上する。本発明の特徴は、角の無い硬さ分布が得られる点にある。溶接箇所の全領域の温度が、Mf温度の300℃以下に達しない状況、つまり、不完全焼入れ部分が含まれる状態から焼戻しが開始された場合には、後述する図16の比較例2に示すように、溶接箇所断面における硬さ分布において、硬さ分布がM字状となり、鋼板2の母材と熱影響部5の端部とに生じる硬さが高い領域、つまり角の形で残り、破断モード不良や破断強度不足となるので好ましくない。
 本発明のスポット溶接部3の全域が300℃以下に冷却されていれば、硬さ分布は、後述する図15の実施例1に示すように、硬さがほぼ一定で鋼板2の母材と熱影響部5の端部とに生じる角の発生は無くなり、熱影響部5から溶融凝固部5が靭性の高い焼戻しマルテンサイト組織となる。この場合、低周波のみの溶接に高周波通電加熱をプラスして溶接部を焼戻すことで、十字引張り試験における引張破断強度が概ね倍増する。たとえば、低周波による溶接における引張破断強度が3.5kN~4kNであった場合、本発明の溶接による引張破断強度は、7kN~8kN以上となる。
 硬さ分布の基本的な形は冷却時間(冷却)で作られ、溶接部内部の硬さの上げ下げは、高周波の投入電力量(熱)により調整できる。冷却でMf点(300℃)を切った部位の組織は、焼戻しにより焼入れマルテンサイトから焼戻しマルテンサイトに変わる。
 スポット溶接後のスポット溶接部3の組織は、後述する図18(a)に示すように、輪郭のある笹状の組織となる。高周波電力が大きくなると、笹状の焼戻し組織が粗くなる。加熱時間や出力の大きさにより濃淡や粗さが変わる。長時間冷却後の焼戻しでは輪郭のある微細な組織が作り出せるが、スポット溶接では時間の制約があり、笹状の組織となってしまう。
 例えば、スポット溶接部3の硬さ分布において、角部の最適硬さを550~560(Hv)と想定した場合、組織の冷却時間と高周波電力の関係は以下のようになる。
  (a)高出力印加で組織が粗くなる。
  (b)高出力及び長時間印加で組織が粗くなり炭化物が析出して濃くなる。
  (c)長時間で炭化物が析出して濃くなる。
 一方、従来の低周波通電の溶接だけの組織では、後述する図18(b)に示すように、はっきりとした輪郭ができず濃淡のみで条件により笹状やウロコ状の組織を示す。不完全な焼戻しの場合には、はっきりとした輪郭ができず、モズクに似た海綿状の組織を示し、形や密度も乱れる。
 冷却において、Mf点を切らない部位はオーステナイトからの変遷部として、硬さ分布に角状で残存する。組織は硬くてもろい。
 本発明によれば、引張破断強度、破断モード、組織を比較して、冷却時間や高周波電力の大きさ、高周波電力の印加時間を決めることができる。尚、上記は板厚、つまり、t=1.2mmの条件である。
 上記説明においては、スポット溶接する対象を鋼板2,2とした例を示したが、形状は板に限らず如何なる形状でもよい。また、鋼板2は2枚をスポット溶接する例を示したが、3枚以上の複数の板の溶接であってもよい。
 図9は、鋼板を3枚重ね合わせた場合の高周波電流32による加熱状態を示す断面図である。図9に示すように、鋼板2を3枚重ね合わせた場合には、高周波電流32によって、2箇所のリング状の近傍領域2Bと、2箇所の鋼板2の接合面の端部2Cと、からなる4箇所のリング状領域2B,2Cが加熱される。
 図10は、溶接構造部材1のスポット溶接部3を十字引張試験したときの破断様式のJIS分類を示すもので、(a)は界面破断、(b)は部分プラグ破断、(c)及び(d)はプラグ破断を示している。
 図10(a)の界面破断は、十字引張試験の負荷方向とクラックの進展方向が最後まで異なり、破断強度が低い。図10(b)の部分プラグ破断は、クラックの進展方向がナゲットの内部で変わる破断様式であり、破断強度が低い。図10(c)のプラグ破断は、クラックの進展方向が、熱影響部5の内部で変わる破断様式であり、破断強度が高くなる。図10(d)のプラグ破断は、クラックの進展方向が、熱影響部5の外部から始まる所謂母材破断であり、破断強度が高くなる。
 以下に示す実施例の溶接構造部材1では、十字引張試験の破断様式は図10のJIS分類で表し、スポット溶接がプラグ破断の場合を、スポット溶接ができたと判定する。なお、スポット溶接部3の各部の名称は、特に断らない限り図39で説明した名称を用いる。
 以下、実施例により本発明をさらに詳細に説明する。
(2枚の鋼板のスポット溶接)
 以下に、溶接装置10によって鋼板2をスポット溶接する具体例について詳細に説明する。
 2枚の鋼板2のスポット溶接を行った。用いた鋼板2、低周波電源16、高周波電源18等の条件を以下に示す。
 鋼板2:厚さ1.2mm,大きさ50mm×150mm
 低周波電源16:50Hz、電極14は銅製であり、この電極14のチップ先端の直径が6mm、チップ先端のRが40mm、電源容量を50kVAとした。
 低周波電源16の通電時間:0.34秒
 高周波電源18:25kHz,29kW
 高周波電源18の通電時間:0.7秒
 鋼板2の組成(質量%)は、鉄以外の成分として、例えばC(炭素)が0.26%含有されている。
 図3を参照して、実施例1の低周波電源16と高周波電源18からの電力印加について、説明する。
 最初に、低周波電源16から電力を印加して溶接を行った。低周波電源16の投入は、図3に示すように、第1通電及び第2通電の2段階の通電で行った。第1通電による第1電流の立ち上がりを1サイクル(0.02秒)とし、次に第1電流の最大値を保持する第1通電をサイクル(0.02秒)とした。第1電流の値の最大値は約9kAである。第1通電の後で、1サイクル(0.02秒)の冷却をした後、第2通電を行った。第2通電による第2電流値の最大値を7.2kAとして14サイクル通電した。低周波電源16による2段階の通電は冷却等も含めて17サイクルである。1サイクルは0.02秒であるので、溶接時間は0.34秒であった。低周波電源16からの第2通電の終了後、クール時間を1秒とした。次に、高周波電源18からの電力を29kWで0.7秒間印加した。高周波電源18からの電力の印加後、0.02秒後に電極14による加圧を停止した。
 図11は、低周波電源16と高周波電源18からの電力印加をオシロスコープで測定した波形の一例である。
実施例1では、図3のクール期間を1秒、周波数25kHzの高周波電力による第3通電を、29kWで0.7秒行った。
(比較例1)
 実施例1に対する比較例1として、2枚の鋼板2のスポット溶接を低周波電源16のみの通電によって溶接をした。つまり、通常のスポット溶接を行った。用いた鋼板2と電極14は、実施例1と同じである。
 図12は、比較例1において低周波電源16による電力印加を模式的に説明する図である。通電パターンを以下に示す。
  第1通電による第1電流の立ち上がり:1サイクル(0.02秒)
  第1通電(図中、「低周波第1」と表記):9kA、1サイクル(0.02秒)
  冷却:1サイクル(0.02秒)
  第2通電(図中、「低周波第2」と表記):5.5kA、6kA、7.2kA、14サイクル(0.28秒)
  第3通電(図中、「低周波第3」と表記):3.6kA、5サイクル(0.1秒)
 第2通電時の電流値でナゲット径が決まる。通常のスポット溶接を行った後の溶接箇所の断面の観察によりナゲット径を測定した。第2通電時の電流が5.5kA、6kA、6.5kA、7.2KAのときのナゲット部は、それぞれ約4.4mm、約4.9mm、約5.4mm、約6mmであった。
(比較例2)
 比較例2は、比較例1の第2通電と第3通電との間にクール期間を1秒挿入したスポット溶接である。クール期間を挿入した以外の低周波の第1~第3通電等の加熱条件は、比較例1と同じである。
  図13は、比較例2の通電パターンを示す図である。通電パターンを以下に示す。
  低周波第1通電による第1電流の立ち上がり:1サイクル(0.02秒)
  低周波第1通電:9.0kA、1サイクル(0.02秒)
  低周波冷却:1サイクル(0.02秒)
  低周波第2通電:7.2kA、14サイクル(0.28秒)
  クール期間:50サイクル(1秒)
  低周波第3通電:6.0kA、10サイクル(0.2秒)
  ホールド時間:1サイクル(0.02秒)
(比較例3)
 実施例1に対する比較例3として、比較例1の通電パターンで低周波電源16のみの通電によって溶接し、この溶接を行った鋼板を、電気炉で熱処理した。熱処理は、300℃で30分行った。
 図14は、比較例3の低周波電源16による電力印加と電気炉による熱処理を模式的に説明する図である。通電パターンを以下に示す。
  比較例3:第1通電による第1電流の立ち上がり:1サイクル(0.02秒)
       第1通電:9kA、1サイクル(0.02秒)
       冷却:1サイクル(0.02秒)
       第2通電:7.2kA、14サイクル(0.28秒)
       第3通電:3.6kAで5サイクル(0.1秒)
 図15は、実施例1、比較例1及び比較例3で作製したスポット溶接部材1のスポット溶接部3のほぼ中央断面における硬さ分布の一例を示す図である。図15の横軸はスポット溶接部3の鋼板2,2の重ね合わせ部に沿った方向の位置を示しており、スポット溶接部3の断面と対比させて示している。図15の縦軸はビッカース硬さ(HV)である。スポット溶接前の鋼板(母材)2のビッカース硬さ(HV)は465HV程度である。図15に示す実施例1、比較例1及び比較例3における低周波の第2通電の電流は何れも7.2kA、14サイクルであり、ナゲット径は6mmである。
 図15に示すように、実施例1の場合、測定位置の左側、つまり、熱影響部5の左外部側の硬さは455~470HV、熱影響部5の左側の硬さは460~550HV、溶融凝固部4の硬さは530~550HV、熱影響部5の右側の硬さは530~410HV、熱影響部5の右外部側の硬さは455~460HVとなっていることが分かった。実施例1の硬さ分布は、母材の硬さである465HVに対して、熱影響部5及び溶融凝固部4の硬さは530~550HVの間でほぼ平坦な硬さ分布となっている。
 図15に示すように、比較例1の場合、測定位置の左側、つまり、熱影響部5の左外部側及び右外部側の硬さ分布は、約610HVのピークで角状の形状を有しており、熱影響部5及び溶融凝固部4の硬さは580~620HVの平坦な硬さ分布となっている。
 実施例1と比較例1のスポット溶接部3の硬さ分布を比較する。実施例1では、比較例1の熱影響部5の最外側で生じた角がなく、全体に硬さが低くなっていることが分かる。溶融凝固部4の中央部の硬さは約530~550HV程度であり、母材の硬さである465HVよりも約85HV位高い硬さとなっている。
 実施例1のスポット溶接部3の硬さ分布は、低周波電力を印加した後で電気炉により焼き戻しの熱処理をした比較例3よりも、溶融凝固部4の中央部の硬さは若干低いがほぼ類似の硬さ分布が得られた。
 図16は、比較例2で作製したスポット溶接部材1のスポット溶接部3のほぼ中央断面における硬さ分布の一例を示す図である。図16の縦軸はビッカース硬さ(HV)である。スポット溶接前の鋼板(母材)2のビッカース硬さ(HV)は465HV程度である。比較例2の中央断面における硬さ分布は、比較例1に対して、角部の強度が上がり、ナゲット部の硬さが低下したM字型の硬さ分布が得られた。
(ナゲット端部断面の組織観察)
 図17は、鋼板2の溶接部の組織観察を行った領域を示す断面図であり、図18(a)~(d)は、それぞれ実施例1、比較例1、比較例2及び比較例3のナゲット端部断面の組織を示す光学像である。倍率は1000倍である。鋼板2の溶接部の表面の金属組織は、特許文献4及び非特許文献2に開示されている電解研磨法で平坦化したものである。
 図18(a)に示すように、実施例1のナゲット端部断面の組織は、焼戻しマルテンサイト組織である。図18(b)に示すように、比較例1のナゲット端部断面の組織は、焼入れマルテンサイト組織である。図18(c)に示すように、比較例2のナゲット端部断面の組織は、実施例1の焼戻しマルテンサイト組織に類似の組織である。図18(d)に示すように、比較例3のナゲット端部断面の組織は、焼戻しマルテンサイト組織ある。
 実施例1及び比較例2、3の溶接試料の十字引張試験を行い、破断荷重F(kN)を求めた。
 図19は、実施例1、比較例1及び比較例3の十字引張試験における引張り、つまりストロークと荷重Fの関係を示すグラフであり、図20は、比較例2の十字引張試験におけるストロークと荷重Fの関係を示すグラフである。図21は、十字引張試験で破断した溶接部のナゲット断面を示す光学像であり、(a)は実施例1、(b)は比較例1、(c)は比較例2、(d)は比較例3である。
 図19に示すように、十字引張試験における引張り、つまりストロークは、比較例1、比較例3、実施例1の順に大きくなっていることが分かる。図20に示すように、比較例2の十字引張試験におけるストロークは、比較例3と類似の特性を示すことが分かる。
 上記十字引張試験の結果から、実施例1の溶接試料の強度が大きいことが分かる。
 実施例1の溶接構造部材1のサンプル数は5である。
 ナゲット径が6mmの場合には、各溶接構造部材1の破断荷重は、それぞれ8.39kN、8.02kN、7.90kN、7.26kN、8.64kNであり、破断荷重の平均値FAVは8.04kN、破断荷重の最大値と最小値の差である範囲Rは1.38kN、標準偏差(σ)は0.47kN、破断荷重の平均値FAVとナゲット径の比(FAV/ND)は1.34kN/mmであった。実施例1の各溶接構造部材1の破断は、図21(a)に示すように、何れもプラグ破断であった。十字引張試験で得た各測定値を、表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の溶接試料の十字引張試験を行い、破断荷重F(kN)を求めた。比較例1の溶接構造部材のサンプル数は5である。
 ナゲット径が6mmの場合には、各溶接構造部材の破断荷重は、それぞれ4.6kN、4.20kN、4.50kN、4.59kN、4.36kNであり、破断荷重の平均値FAVは4.45kN、破断荷重の最大値と最小値の差である範囲Rは0.40kN、標準偏差(σ)は0.15kN、破断荷重の平均値FAVとナゲット径の比(FAV/ND)は0.74kN/mmであった。比較例1の各溶接構造部材の破断は、図21(b)に示すように、界面破断又は部分プラグ破断であった。
 比較例2の溶接試料の十字引張試験を行い、破断荷重F(kN)を求めた。比較例2の溶接構造部材のサンプル数は5である。
 ナゲット径が6mmの場合には、各溶接構造部材の破断荷重は、それぞれ7.00kN、6.79kN、7.46kN、6.96kN、7.59kNであり、破断荷重の平均値FAVは7.16kN、破断荷重の最大値と最小値の差である範囲Rは0.80kN、標準偏差(σ)は0.31kN、破断荷重の平均値FAVとナゲット径の比(FAV/ND)は1.21kN/mmであった。比較例2の各溶接構造部材の破断は、図21(c)に示すように、部分プラグ破断であった。
 比較例2は、比較例1の低周波電力の第2通電と第3通電との間にクール期間を設けた溶接試料である。上記結果から、比較例2では、比較例1に比較して、十字引張試験の破断荷重Fが向上し、破断モードも比較例1の界面破断は生起しないで、部分プラグ破断が得られたが、実施例1及び後述する比較例3の完全なプラグ破断は得られなかった。
 比較例3の溶接試料の十字引張試験を行い、破断荷重F(kN)を求めた。比較例3の溶接構造部材のサンプル数は5である。
 ナゲット径が6mmの場合には、各溶接構造部材の破断荷重は、それぞれ7.75kN、7.60kN、7.95kN、8.15kN、8.11kNであり、破断荷重の平均値FAVは7.91kN、破断荷重の最大値と最小値の差である範囲Rは0.55kN、標準偏差(σ)は0.21kN、破断荷重の平均値FAVとナゲット径の比(FAV/ND)は1.32kN/mmであった。比較例3の各溶接構造部材の破断は、図21(d)に示すように、プラグ破断であった。
 図22は、実施例1、比較例1及び比較例3で作製したスポット溶接部材1の破断荷重を示す図である。図22の縦軸は破断荷重(kN)である。図22に示すように、実施例1、比較例1及び比較例3の平均破断荷重は、それぞれ8.04kN、4.45kN、7.91kNであった。十字引張試験から、実施例1の溶接資料の破断荷重は、比較例1の約2倍であり、かつ、比較例3の破断荷重と同様の強度が得られることが分かる。さらに、実施例1の十字引張試験の破断モードでは、比較例3の破断モードと同様にプラグ破断(図10(c)及び(d)参照)が実現できた。つまり、比較例1及び比較例2の破断モードが界面破断又は部分プラグ破断であるのと比較して、実施例1では破断モードも改善されたことが分かる。
(小径のナゲット形成)
 実際のスポット溶接では、電極14のチップ先端の変形や磨耗により直径が減少する。このため、同じ電流を流している場合には、電極14の電流密度は漸次変化する。一般にスポット溶接では、溶接回数、つまりショット数が増えると、電極14の電流密度は低下し、結果としてナゲット径は小さくなる傾向がある。上記したように、低周波の第2通電時の電流値でナゲット径が決まる。ナゲット径が6mmよりも小さい5.4mm、4.9mm、4.4mmとなるように、第2通電時の電流値を小さくしてスポット溶接を行った。スポット溶接の他の条件は、電極14の直径が6mmの実施例1、比較例1及び比較例3の場合と同じである。
(実施例1における小径のナゲット形成)
 第2通電時の電流値を6.5kA、6.0kA、5.5kAとして、ナゲット径をそれぞれ、5.4mm、4.9mm、4.4mmとした。第2通電時のサイクル数は、14サイクルである。溶接構造部材1のサンプル数は5である。これらの条件は、後述する比較例1及び比較例3でも同じである。
 ナゲット径が5.4mmの場合には、各溶接構造部材1の破断荷重は、それぞれ7.21kN、6.82kN、7.15kN、6.96kN、6.26kNであり、破断荷重の平均値FAVは6.88kN、範囲Rは0.95kN、標準偏差(σ)は0.34kN、FAV/NDは1.27kN/mmであった。
 ナゲット径が4.9mmの場合には、各溶接構造部材1の破断荷重は、それぞれ5.70kN、5.84kN、5.87kN、5.60kN、5.68kNであり、破断荷重の平均値FAVは5.74kN、範囲Rは0.27kN、標準偏差(σ)は0.10kN、FAV/NDは1.17kN/mmであった。
 ナゲット径が4.4mmの場合には、各溶接構造部材1の破断荷重は、それぞれ5.99kN、6.28kN、5.99kN、5.59kN、5.55kNであり、破断荷重の平均値FAVは5.88kN、範囲Rは0.73kN、標準偏差(σ)は0.27kN、FAV/NDは1.34kN/mmであった。これらの十字引張試験で得た各測定値を、ナゲット径が6mmの場合も含めて表2に纏めて示す。
Figure JPOXMLDOC01-appb-T000002
(比較例1における小径のナゲット形成)
 第2通電時の電流値を実施例1と同様にして、ナゲット径がそれぞれ、5.4mm、4.9mm、4.4mmの溶接構造部材を作製した。溶接構造部材のサンプル数は5である。
 ナゲット径が5.4mmの場合には、各溶接構造部材の破断荷重は、それぞれ3.03kN、3.03kN、2.89kN、3.22kN、3.10kNであり、破断荷重の平均値FAVは3.05kN、範囲Rは0.33kN、標準偏差(σ)は0.11kN、FAV/NDは0.57kN/mmであった。ナゲット径が4.9mmの場合には、各溶接構造部材の破断荷重は、それぞれ2.90kN、3.36kN、3.44kN、3.12kN、3.02kNであり、破断荷重の平均値FAVは3.17kN、範囲Rは0.54kN、標準偏差(σ)は0.20kN、FAV/NDは0.65kN/mmであった。ナゲット径が4.4mmの場合には、各溶接構造部材の破断荷重は、それぞれ2.61kN、2.50kN、2.23kN、2.16kN、2.80kNであり、破断荷重の平均値FAVは2.46kN、範囲Rは0.64kN、標準偏差(σ)は0.24kN、FAV/NDは0.56kN/mmであった。これらの十字引張試験で得た各測定値を、ナゲット径が6mmの場合も含めて表3に纏めて示す。
Figure JPOXMLDOC01-appb-T000003
(比較例3における小径のナゲット形成)
 第2通電時の電流値を実施例1と同様にして、ナゲット径がそれぞれ、5.4mm、4.9mm、4.4mmの溶接構造部材を作製した。溶接構造部材1のサンプル数は5である。
 ナゲット径が5.4mmの場合には、各溶接構造部材の破断荷重は、それぞれ5.73kN、6.39kN、7.72kN、7.06kN、6.50kNであり、破断荷重の平均値FAVは6.68kN、範囲Rは1.99kN、標準偏差(σ)は0.67kN、FAV/NDは1.24kN/mmであった。ナゲット径が4.9mmの場合には、それぞれ6.03kN、6.62kN、6.64kN、5.66kN、5.60kNであり、破断荷重の平均値FAVは6.11kN、範囲Rは1.04kN、標準偏差(σ)は0.45kN、FAV/NDは1.25kN/mmであった。ナゲット径が4.4mmの場合には、各溶接構造部材の破断荷重は、それぞれ5.34kN、5.91kN、5.77kN、5.13kN、5.16kNであり、破断荷重の平均値FAVは5.46kN、範囲Rは0.78kN、標準偏差(σ)は0.32kN、FAV/NDは1.24kN/mmであった。これらの十字引張試験で得た各測定値を、ナゲット径が6mmの場合も含めて表4に纏めて示す。
Figure JPOXMLDOC01-appb-T000004
 図23は、実施例1、比較例1及び比較例3で作製したスポット溶接部材1の破断荷重とナゲット径との関係を示す図である。図23の縦軸は破断荷重(kN)であり、横軸はナゲット径(mm)である。図23に示すように、実施例1の溶接構造部材1の十字引張り試験時の破断荷重は、約6~8kN以上が容易に得られた。これらの値は、比較例1の場合の破断荷重である2~4kN以上の大凡2倍以上であり、低周波の通電後に電気炉で熱処理を施した比較例3の場合と同様の破断荷重である。実施例1では、後熱における高周波電力を調整した場合、本発明の溶接構造部材1の十字引張り試験時の破断荷重は、ナゲット径が6mmの場合には、8kN以上とすることもできる。この破断荷重は従来の溶接構造部材、つまり、比較例1の破断荷重の2倍以上の強度である。従って、実施例1の溶接構造部材1で得た破断荷重は、低周波電源16だけのスポット溶接の場合の比較例1に比較して、破断荷重を著しく高めることができた。
 図24は、実施例1、比較例1及び比較例3で作製したスポット溶接部材1の引張試験後の外観光学像であり、(a)は実施例1を、(b)は比較例1を、(c)は比較例3を示している。図24から明らかなように、実施例1及び比較例3では、ナゲット径を変化させてもプラグ破断が得られた。しかしながら、比較例1では、ナゲット径を変化させても界面破断又は部分プラグ破断であり、実施例1及び比較例2のプラグ破断は得られなかった。
 上記した実施例及び比較例の十字引張り試験時の破断荷重の結果から、厚さが1.2mmの鋼板の2枚の溶接から、低周波溶接後に一定の冷却期間を設けて、溶接部全体がMf点以下になった後に、高周波通電で溶接部の外周域に発生させておいた蓄熱リングの熱を溶接部に流入させ、焼入れ状態の溶接部を焼戻すことで、溶接部の破断強度の向上と破断モードの改善ができることが分かった。
 溶接部の冷却は水冷した電極14への抜熱に大きく依存し、冷却の進行は溶接部中心から外周方向へ進行する。溶接部全体がMf点以下の大凡300℃の温度になるには、使用した直径が6mmの電極14では、冷却時間が0.7秒以上必要であることが判明した。
(3枚の鋼板のスポット溶接)
 次に、実施例1で用いた鋼板2を3枚重ね合わせてスポット溶接を行った。
 3枚の鋼板2のスポット溶接は、実施例1と同様にして行った。通電パターンを以下に示す。
  低周波第1通電による第1電流の立ち上がり:1サイクル(0.02秒)
  低周波第1通電:9.0kA、1サイクル(0.02秒)
  低周波冷却:1サイクル(0.02秒)
  低周波第2通電:6.5kA、14サイクル(0.28秒)
  クール期間:60サイクル(1.2秒)
  高周波通電:29kW、0.6秒
  ホールド時間:1サイクル(0.02秒)
(比較例4)
 実施例2に対する比較例4として、3枚の鋼板2のスポット溶接を、比較例1と同様にして行った。通電パターンを以下に示す。
  第1通電による第1電流の立ち上がり:1サイクル(0.02秒)
  第1通電:9kA、1サイクル(0.02秒)
  冷却:1サイクル(0.02秒)
  第2通電:6.5kA、14サイクル(0.28秒)
  第3通電:3.3kA、5サイクル(0.1秒)
  ホールド時間:1サイクル(0.02秒)
(比較例5)
 実施例2に対する比較例5として、3枚の鋼板2のスポット溶接を、比較例2と同様にして行った。比較例2の通電パターンで低周波電源16のみの通電によって溶接をし、この溶接を行った鋼板を、電気炉で熱処理をした。熱処理は、300℃で30分行った。
 図25は、実施例2、比較例4及び比較例5で作製したスポット溶接部材1のスポット溶接部3のほぼ中央断面における硬さ分布の一例を示す図である。図25の横軸はスポット溶接部3の鋼板2を3枚重ね合わせ部に沿った方向の位置を示しており、スポット溶接部3の断面と対比させて示している。図25の縦軸はビッカース硬さ(HV)である。スポット溶接前の鋼板(母材)2のビッカース硬さ(HV)は465HV程度である。図25に示す実施例2、比較例4及び比較例5における低周波の第2通電の電流は何れも6.5kAであり、推定ナゲット径は約6mmである。
 図25に示すように、実施例2の場合、測定位置の左側、つまり、熱影響部5の左外部側の硬さは470HV、熱影響部5の左側の硬さは530~550HV、溶融凝固部4の硬さは520HV、熱影響部5の右側の硬さは550HV、熱影響部5の右外部側の硬さは470HVとなっていることが分かった。実施例2の硬さ分布は、比較例4の通常溶接に比較して、全体に硬さが低下しており、比較例4に比較して、肩部の硬さが低い弓形の硬さ分布となった。
 図25に示すように、比較例5の硬さ分布は、比較例4と同様の硬さ分布の形状を有しているが、全体に約20~30HV程度低い硬さとなっていることが分かる。
 実施例2と比較例4のスポット溶接部3の硬さ分布を比較する。実施例2では、比較例4の熱影響部の最外側で生じた角はあるものの、全体に硬さが低くなっていることが分かる。溶融凝固部4の中央部の硬さは520~530HV程度であり、母材の硬さである465HVよりも約55~65HV位高い硬さとなっている。
 実施例2と比較例5のスポット溶接部3の硬さ分布を比較する。実施例2では、比較例5の熱影響部の最外側で生じた角があるものの、全体に硬さが低くなっていることが分かる。実施例2の溶融凝固部4の中央部における硬さは、比較例5に比較して約10~20HV低下していることが分かる。
(ナゲット端部断面の組織観察)
 図26は、鋼板2の溶接部の組織観察を行った領域を示す断面図であり、図27は、鋼板2の溶接部の組織観察を行った領域を示す断面図で、(a)~(c)は、それぞれ実施例2、比較例4及び比較5のナゲット端部断面の組織を示す光学像である。倍率は1000倍である。図27(a)に示すように、実施例2のナゲット端部断面の組織は、焼戻しマルテンサイトの組織である。図27(b)に示すように、比較例4のナゲット端部断面の組織は、焼入れマルテンサイト組織である。図27(c)に示すように、比較例5のナゲット端部断面の組織は、焼戻しマルテンサイトの組織である。
 実施例2及び比較例4及び5の溶接試料の十字引張試験を行い、破断荷重F(kN)を求めた。実施例2の溶接構造部材1のサンプル数は5である。推定ナゲット径が6mmにおいて、実施例2の各溶接構造部材1の破断荷重は、それぞれ8.07kN、8.54kN、8.75kN、8.86kN、9.09kNであり、破断荷重の平均値FAVは8.66kN、破断荷重の最大値と最小値の差である範囲Rは1.02kN、標準偏差(σ)は0.35kN、破断荷重の平均値FAVとナゲット径の比(FAV/ND)は1.42kN/mmであった。これらの十字引張試験で得た各測定値を表5に纏めて示す。
Figure JPOXMLDOC01-appb-T000005
 図28は、実施例2の十字引張試験における、ストロークと荷重Fの関係を示すグラフであり、図29は、十字引張試験で破断した溶接部のナゲットを示す光学像であり、(a)は外観を、(b)は断面を示している。図28に示すように、十字引張試験は、ナゲット径が6mmで、破断荷重が9.09kNの場合である。図28に示すように、実施例2では、何れの溶接構造部材1もプラグ破断した。
 比較例4の溶接構造部材は通常の低周波溶接で作製し、そのサンプル数は5である。
 推定ナゲット径が6mmの場合には、各溶接構造部材の破断荷重は、それぞれ4.53kN、5.27kN、5.36kN、4.9kN、4.99kNであり、破断荷重の平均値FAVは5.01kN、範囲Rは0.83kN、標準偏差(σ)は0.29kN、FAV/NDは、0.82kN/mmであった。これらの十字引張試験で得た各測定値を表6に纏めて示す。
Figure JPOXMLDOC01-appb-T000006
 図30は、比較例4の十字引張試験におけるストロークと荷重Fの関係を示すグラフであり、図31は、比較例4の十字引張試験で破断した溶接部のナゲット断面を示す光学像で、(a)は外観を、(b)は断面を示している。図30に示すように、十字引張試験は、ナゲット径が6mmで、破断荷重が約5kNの場合である。図31に示すように、比較例4では、ナゲット及び熱影響部に焼きが入ってしまい、硬く脆い組織になっていた。この状態で十字引張試験を行うと、亀裂の進展がナゲット中心部方向に瞬間的に進み、その結果として界面破断という破断形態であった。比較例4の溶接構造部材では、破断荷重は、実施例2の約1/2である。比較例4の溶接構造部材の破断は溶融凝固部における破断と推定され、実施例2のようなプラグ破断は得られなかった。
 比較例5の溶接構造部材は、比較例4の通常の低周波溶接を行った後で、電気炉を使用し、300℃で30分熱処理して作製した。サンプル数は5である。推定ナゲット径が6mmの場合には、各溶接構造部材の破断荷重は、それぞれ8.99kN、8.50kN、8.58kN、9.53kN、8.67kNであり、破断荷重の平均値FAVは8.85kN、範囲Rは1.03kN、標準偏差(σ)は0.38kN、FAV/NDは、1.45kN/mmであった。比較例5では、何れの溶接構造部材も、実施例2と同様にプラグ破断した。これらの十字引張試験で得た各測定値を表7に纏めて示す。
Figure JPOXMLDOC01-appb-T000007
 図32は、比較例5の十字引張試験におけるストロークと荷重Fの関係を示すグラフであり、図33は、比較例5の十字引張試験で破断した溶接部のナゲット断面を示す光学像で、(a)は外観を、(b)は断面を示している。図32に示すように、十字引張試験は、ナゲット径が6mmで、破断荷重が約9kNの場合である。図33に示すように、比較例5の破断モードは、実施例2と同様にプラグ破断が得られた。
 実施例2、比較例4及び比較例5の結果を纏めて示す。
 図34は、実施例2、比較例4及び比較例5の十字引張試験におけるストロークと荷重Fの関係を示すグラフであり、図35は、実施例2、比較例4及び比較例5の破断荷重を示す図である。図34及び35から、3枚の鋼板2のスポット溶接の場合でも、実施例2によれば、比較例5と同様の破断荷重が得られ、かつ、破断モードは、比較例4の従来の溶接では実現できなかったプラグ破断が得られることが分かった。
 本発明は上記した実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。上述した実施形態における、冷却時間は、低周波電力の印加時間、鋼板2の炭素組成等や形状に応じて、所定の十字破断強度が得られるように適宜に設計することが可能である。
 

Claims (8)

  1.  鋼板の面同士を重ね合わせスポット溶接によって溶接部を形成して接合した上記鋼板から成る溶接構造部材であって、
     上記溶接部は、溶融凝固部と、該溶融凝固部を取り囲む熱影響部と、を備え、
     溶接面における硬さは、上記熱影響部の外側領域から当該熱影響部に行くにつれて、上記鋼板の母材硬さよりも硬くなっていることを特徴とする、溶接構造部材。
  2.  前記熱影響部及び前記溶融凝固部の金属組織が、焼戻しマルテンサイト組織からなることを特徴とする、請求項1に記載の溶接構造部材。
  3.  前記熱影響部の前記鋼板同士が、固相接合していることを特徴とする、請求項1に記載の溶接構造部材。
  4.  前記溶接部の十字引張り試験の破断経路が、前記溶融凝固部以外の領域に沿って亀裂が進展する破断経路となることを特徴とする、請求項1に記載の溶接構造部材。
  5.  前記溶接部の十字引張り試験の破断経路が、前記熱影響部の内部で亀裂の進展方向が変化する破断経路となるような接合強度を有していることを特徴とする、請求項1に記載の溶接構造部材。
  6.  面同士を重ね合わせた鋼板を一対の電極で挟み、上記一対の電極間に直流又は第1の周波数の電力を印加して、形成した溶接部によって上記鋼板同士をスポット溶接する方法であって、
     上記一対の電極間に直流又は第1の周波数の電力を印加した後に冷却期間を設け、
     次に、上記電極に上記第1の周波数よりも高い第2の周波数の電力を印加し、
     上記第2の周波数の電力によって、上記鋼板と上記一対の電極とが接触する領域の外周部近傍を加熱すると共に、
     上記溶接部の鋼板の重なり合う接合端部領域を加熱することを特徴とする、溶接方法。
  7.  前記第2の周波数の電力を印加した後で所定の時間が経過した後に、前記電極への加圧を停止することを特徴とする、請求項6に記載の溶接方法。
  8.  前記溶接部が、前記冷却期間において、前記鋼板のマルテンサイト変態終了点を切る温度よりも低い温度に冷却されることを特徴とする、請求項6又は7に記載の溶接方法。
     
PCT/JP2014/067243 2013-06-27 2014-06-27 溶接構造部材及び溶接方法 WO2014208747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480036480.5A CN105339123B (zh) 2013-06-27 2014-06-27 焊接构造部件和焊接方法
EP14818601.8A EP3015215B1 (en) 2013-06-27 2014-06-27 Welded structural member and welding method
JP2015524141A JP6438880B2 (ja) 2013-06-27 2014-06-27 溶接構造部材及び溶接方法
US14/901,592 US20160368080A1 (en) 2013-06-27 2014-06-27 Welding structural member and welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013135642 2013-06-27
JP2013-135642 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208747A1 true WO2014208747A1 (ja) 2014-12-31

Family

ID=52142070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067243 WO2014208747A1 (ja) 2013-06-27 2014-06-27 溶接構造部材及び溶接方法

Country Status (5)

Country Link
US (1) US20160368080A1 (ja)
EP (1) EP3015215B1 (ja)
JP (1) JP6438880B2 (ja)
CN (1) CN105339123B (ja)
WO (1) WO2014208747A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209917A (ja) * 2015-05-12 2016-12-15 Jfeスチール株式会社 はく離破断強度に優れたスポット溶接部の判定方法
JP2016209919A (ja) * 2015-05-12 2016-12-15 Jfeスチール株式会社 スポット溶接部材
WO2016208204A1 (en) 2015-06-26 2016-12-29 Neturen Co., Ltd. Direct resistance heating simulation method
JP6777270B1 (ja) * 2019-05-28 2020-10-28 Jfeスチール株式会社 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP2020203292A (ja) * 2019-06-14 2020-12-24 富士電機株式会社 スポット溶接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206037A1 (de) * 2016-04-12 2017-10-26 Volkswagen Aktiengesellschaft Widerstandsschweißvorrichtung und Verfahren zum Fügen von Bauteilen
JP6055154B1 (ja) * 2016-08-29 2016-12-27 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
MX2021011062A (es) * 2019-03-14 2021-10-13 Nippon Steel Corp Metodo de fabricacion de junta soldada, junta soldada, dispositivo de templado y aparato de soldadura.
JP7269191B2 (ja) * 2020-03-02 2023-05-08 株式会社豊田中央研究所 スポット溶接方法
US11952639B1 (en) * 2022-12-23 2024-04-09 GM Global Technology Operations LLC Methods for tempering of steel for riveting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211934A (ja) 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd スポット溶接装置
JP4006513B2 (ja) 2002-06-13 2007-11-14 独立行政法人物質・材料研究機構 材料評価方法
JP2007332457A (ja) 2006-05-17 2007-12-27 Nissan Motor Co Ltd 超高強度鋼板及びこれを用いた自動車用強度部品
US20080203139A1 (en) * 2001-06-29 2008-08-28 Mccrink Edward J Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
WO2011013793A1 (ja) 2009-07-31 2011-02-03 高周波熱錬株式会社 溶接構造部材及び溶接方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269683A (en) * 1975-12-08 1977-06-09 Mitsubishi Electric Corp Method and device for ultrasonic inspection of resistance welding
JP2732339B2 (ja) * 1992-09-29 1998-03-30 株式会社フジクラ アルミニュウム被覆鋼線の電気抵抗溶接方法
JPH11129077A (ja) * 1997-10-29 1999-05-18 Miyachi Technos Corp 抵抗溶接電源装置
JP2001009573A (ja) * 1999-06-25 2001-01-16 Sumitomo Metal Ind Ltd 高張力鋼板の溶接継手およびその溶接方法
JP2003001432A (ja) * 2001-06-25 2003-01-08 Ryoda Sato 電圧上昇式溶接方法および溶接装置
US7132617B2 (en) * 2002-02-20 2006-11-07 Daimlerchrysler Corporation Method and system for assessing quality of spot welds
JP5305194B2 (ja) * 2008-09-30 2013-10-02 高周波熱錬株式会社 金属材の溶接装置
JP5305195B2 (ja) * 2008-09-30 2013-10-02 高周波熱錬株式会社 金属材の溶接方法
WO2010038779A1 (ja) * 2008-09-30 2010-04-08 高周波熱錬株式会社 金属材の溶接装置及び金属材の溶接方法
CN102328148B (zh) * 2011-08-29 2013-05-15 李文龙 一种中碳钢或低合金钢的钢丝格栅焊接方法
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手
KR101737712B1 (ko) * 2012-08-10 2017-05-18 신닛테츠스미킨 카부시키카이샤 겹침 용접 부재, 자동차용 부품, 겹침부의 용접 방법 및 겹침 용접 부재의 제조 방법
CN103394801B (zh) * 2013-08-16 2015-11-04 天津商科数控设备有限公司 汽车金属薄板无飞溅动态加热自适应电阻焊接的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203139A1 (en) * 2001-06-29 2008-08-28 Mccrink Edward J Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
JP4006513B2 (ja) 2002-06-13 2007-11-14 独立行政法人物質・材料研究機構 材料評価方法
JP2005211934A (ja) 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd スポット溶接装置
JP2007332457A (ja) 2006-05-17 2007-12-27 Nissan Motor Co Ltd 超高強度鋼板及びこれを用いた自動車用強度部品
WO2011013793A1 (ja) 2009-07-31 2011-02-03 高周波熱錬株式会社 溶接構造部材及び溶接方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPAN WELDING SOCIETY: "Welding/Bonding Handbook", 30 September 1990, MARUZEN, pages: 392 - 398
M. HAYAKAWA; S. MATSUOKA: "Structural Analysis of Tempered Martensite under an Atomic Force Microscope", MATERIA JAPAN, vol. 43, no. 9, 2004, pages 717 - 723

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209917A (ja) * 2015-05-12 2016-12-15 Jfeスチール株式会社 はく離破断強度に優れたスポット溶接部の判定方法
JP2016209919A (ja) * 2015-05-12 2016-12-15 Jfeスチール株式会社 スポット溶接部材
WO2016208204A1 (en) 2015-06-26 2016-12-29 Neturen Co., Ltd. Direct resistance heating simulation method
US10668556B2 (en) 2015-06-26 2020-06-02 Neturen Co., Ltd. Direct resistance heating simulation method
JP6777270B1 (ja) * 2019-05-28 2020-10-28 Jfeスチール株式会社 抵抗スポット溶接部および抵抗スポット溶接方法、並びに抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
JP2020203292A (ja) * 2019-06-14 2020-12-24 富士電機株式会社 スポット溶接方法
JP7360610B2 (ja) 2019-06-14 2023-10-13 富士電機株式会社 スポット溶接方法

Also Published As

Publication number Publication date
CN105339123B (zh) 2018-11-06
EP3015215A4 (en) 2017-03-01
EP3015215B1 (en) 2018-08-08
JP6438880B2 (ja) 2018-12-19
US20160368080A1 (en) 2016-12-22
JPWO2014208747A1 (ja) 2017-02-23
CN105339123A (zh) 2016-02-17
EP3015215A1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6438880B2 (ja) 溶接構造部材及び溶接方法
JP5467480B2 (ja) 溶接構造部材及び溶接方法
JP5293227B2 (ja) 高強度薄鋼板の抵抗スポット溶接方法
KR101289370B1 (ko) 금속재의 용접 장치 및 금속재의 용접 방법
TWI601588B (zh) Resistance point welding method
WO2014025063A1 (ja) 重ね合せ溶接部材、自動車用部品、重ね合せ部の溶接方法、及び、重ね合せ溶接部材の製造方法
JP5267640B2 (ja) 抵抗スポット溶接継手の評価方法
KR102650264B1 (ko) 저항 스폿 용접 방법 및 저항 스폿 용접 이음매의 제조 방법
JP5895430B2 (ja) 高強度薄鋼板の抵抗スポット溶接継手および抵抗スポット溶接方法
WO2004040023A1 (ja) 鋼材の溶接継手における熱影響部の靭性向上方法
WO2016043278A1 (ja) レーザ溶接継手及びレーザ溶接方法
JP2008229720A (ja) 引張強度に優れた高張力鋼板スポット溶接継手、それを有する自動車部品、および高張力鋼板のスポット溶接方法
JP2010059451A (ja) 溶接継手およびその製造方法
JP2016055337A (ja) 溶接方法及び溶接構造物
JP5305194B2 (ja) 金属材の溶接装置
JP5206448B2 (ja) 高強度薄鋼板の抵抗スポット溶接方法
JP5305195B2 (ja) 金属材の溶接方法
JP7115223B2 (ja) 抵抗スポット溶接継手の製造方法
JP2009291797A (ja) 溶接継手およびその製造方法
JP6225717B2 (ja) 溶接継手の形成方法
CN113891773B (zh) 电阻点焊部和电阻点焊方法、以及电阻点焊接头和电阻点焊接头的制造方法
JP2010090440A (ja) 片側スポット溶接性に優れた高強度鋼材および片側スポット溶接方法
JP2023145265A (ja) スポット溶接継手及びスポット溶接継手の製造方法
JP2020199522A (ja) 高強度鋼板の抵抗溶接方法
Codd Seam Welding and Cooling-Control Heat-Treatment of Martensitic Stainless Steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036480.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14901592

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014818601

Country of ref document: EP