WO2014199674A1 - フィルタ装置及びデュプレクサ - Google Patents

フィルタ装置及びデュプレクサ Download PDF

Info

Publication number
WO2014199674A1
WO2014199674A1 PCT/JP2014/055097 JP2014055097W WO2014199674A1 WO 2014199674 A1 WO2014199674 A1 WO 2014199674A1 JP 2014055097 W JP2014055097 W JP 2014055097W WO 2014199674 A1 WO2014199674 A1 WO 2014199674A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter unit
terminal
longitudinally coupled
coupled resonator
resonator type
Prior art date
Application number
PCT/JP2014/055097
Other languages
English (en)
French (fr)
Inventor
高峰 裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480033431.6A priority Critical patent/CN105284049B/zh
Priority to KR1020157035107A priority patent/KR20160006773A/ko
Priority to JP2015522583A priority patent/JP6176324B2/ja
Priority to KR1020177011620A priority patent/KR102022277B1/ko
Publication of WO2014199674A1 publication Critical patent/WO2014199674A1/ja
Priority to US14/963,315 priority patent/US9912318B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0052Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded
    • H03H9/0057Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/008Balance-unbalance or balance-balance networks using surface acoustic wave devices having three acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0085Balance-unbalance or balance-balance networks using surface acoustic wave devices having four acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14588Horizontally-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to a filter device in which a plurality of acoustic wave resonators are formed on a piezoelectric substrate, and more particularly to a filter device and a duplexer having a longitudinally coupled resonator type acoustic wave filter section.
  • a longitudinally coupled resonator type filter device has been widely used as a reception filter of a duplexer of a mobile phone.
  • the longitudinally coupled resonator type filter device downsizing is strongly demanded.
  • first and second longitudinally coupled resonator type filter units formed by cascading two longitudinally coupled resonator type acoustic wave filter units are connected in parallel. That is, a longitudinally coupled resonator type acoustic wave filter device having a two-stage four-element configuration is disclosed.
  • the ground terminals of adjacent IDT electrodes of the first-stage longitudinally coupled resonator type acoustic wave filter unit of the first and second longitudinally coupled resonator type acoustic wave filter units are electrically connected by wiring.
  • the virtual ground wiring is used without connecting the wiring to the ground potential. Therefore, it is not necessary to connect the virtual earth wiring to the ground potential. Therefore, downsizing can be achieved.
  • the balanced type acoustic wave filter device has a problem that a large ripple appears on the characteristics of the amplitude difference and the phase difference between the pair of balanced terminals when the ground wiring is used. Further, the unbalanced elastic wave filter device has a problem that a large ripple appears in the passband when the virtual ground wiring is used. Therefore, conventionally, virtual ground wiring has not been used.
  • An object of the present invention is to provide a filter device that uses a virtual ground wiring and can reduce ripples appearing on the filter characteristics.
  • a filter device includes a piezoelectric substrate, an input terminal, an output terminal, and first and second filter portions formed on the piezoelectric substrate.
  • the first filter unit is connected between the input terminal and the output terminal.
  • the second filter unit is connected between the input terminal and the output terminal, and is connected in parallel to the first filter unit.
  • the first filter unit includes a first longitudinally coupled resonator type acoustic wave filter unit and a second longitudinally coupled cascade connected to the first longitudinally coupled resonator type acoustic wave filter unit.
  • the second filter unit includes a third longitudinally coupled resonator type acoustic wave filter unit and a fourth longitudinally coupled resonator type acoustic wave filter connected in cascade to the third longitudinally coupled resonator type acoustic wave filter unit.
  • the first filter portion and the second filter portion are a plurality of first terminal portions connected to the hot side potential and a plurality of first terminals connected to the potential that is not the hot side potential. 2 terminal portions.
  • Virtual ground wiring is further provided.
  • a hot-side wiring portion adjacent to the virtual ground wiring and an insulating film provided on the piezoelectric substrate are further provided.
  • the hot side wiring portion adjacent to the virtual ground wiring is located on the insulating film.
  • a filter device includes a piezoelectric substrate, an input terminal, an output terminal, and first and second filter portions formed on the piezoelectric substrate.
  • the first filter unit is connected between the input terminal and the output terminal.
  • the second filter unit is connected between the input terminal and the output terminal, and is connected in parallel to the first filter unit.
  • the first filter unit includes a first longitudinally coupled resonator type acoustic wave filter unit and a second longitudinally coupled resonator that is cascade-connected to the first longitudinally coupled resonator type acoustic wave filter unit.
  • the second filter unit includes a third longitudinally coupled resonator type acoustic wave filter unit and a fourth longitudinally coupled resonator type acoustic wave filter connected in cascade to the third longitudinally coupled resonator type acoustic wave filter unit.
  • the first filter unit and the second filter unit include a plurality of first terminal portions connected to the hot side potential and a plurality of first terminals connected to a potential other than the hot side potential. 2 terminal portions.
  • Virtual ground wiring is further provided.
  • a hot side wiring portion that is three-dimensionally crossed with the virtual ground wiring is further provided.
  • an interlayer insulating film is further provided between the virtual ground wiring and the hot-side wiring portion at the three-dimensionally intersecting portion. The width of the virtual ground wiring at the portion intersecting three-dimensionally through the interlayer insulating film is made narrower than the width of the remaining portion of the virtual ground wiring.
  • the virtual earth wiring is the second longitudinally coupled resonator type.
  • At least one second terminal portion of the acoustic wave filter unit may be electrically connected to at least one second terminal portion of the fourth longitudinally coupled resonator type acoustic wave filter unit. .
  • the input terminal may be an unbalanced input terminal
  • the output terminal may be an unbalanced output terminal. That is, the filter device of the present invention may be an unbalanced filter device.
  • the input terminal may be an unbalanced input terminal
  • the output terminal may be first and second balanced output terminals. That is, the filter device according to the present invention may be a balanced filter device.
  • the filter device according to the present invention may be connected between the input terminal and the output terminal, and at least one third filter connected in parallel to the first and second filter units. A portion may be further provided.
  • a duplexer according to the present invention is provided on a first band-pass filter device comprising a filter device configured according to the present invention and the piezoelectric substrate, and is different from the first band-pass filter device. 2 band-pass filter devices.
  • the hot-side wiring portion adjacent to the virtual ground wiring is located on the insulating film, or the virtual ground wiring and the hot-side wiring portion are three-dimensionally crossed via the interlayer insulating film. Since the width of the virtual ground wiring portion in the portion is narrower than the width of the remaining virtual ground wiring portion, ripples appearing on the filter characteristics can be effectively suppressed. Therefore, it is possible not only to reduce the size by using the virtual ground wiring, but also to provide a filter device having good characteristics.
  • FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the duplexer shown in FIG.
  • FIG. 3 is a partially cutaway plan view showing an enlarged main part of the duplexer shown in FIG.
  • FIG. 4 is a plan view of a duplexer of a comparative example.
  • FIG. 5 is a diagram illustrating filter characteristics of the reception filters of the duplexers according to the first embodiment and the comparative example.
  • FIG. 6 is a schematic plan view showing an electrode structure of a filter device used as a reception filter in the embodiment shown in FIG.
  • FIG. 7 is a schematic plan view showing a first modification of the electrode structure of the filter device to which the present invention is applied.
  • FIG. 1 is a circuit diagram of a duplexer according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the duplexer shown in FIG.
  • FIG. 3 is a partially cutaway plan view showing an enlarged
  • FIG. 8 is a schematic plan view showing a second modification of the electrode structure of the filter device to which the present invention is applied.
  • FIG. 9 is a schematic plan view showing a third modification of the electrode structure of the filter device to which the present invention is applied.
  • FIG. 10 is a schematic plan view showing a fourth modification of the electrode structure of the filter device to which the present invention is applied.
  • FIG. 11 is a schematic plan view showing a fifth modification of the electrode structure of the filter device to which the present invention is applied.
  • FIG. 12 is a plan view of a duplexer according to the second embodiment of the present invention. 13 is a partially cutaway enlarged plan view showing the main part of the duplexer shown in FIG.
  • FIG. 14 is a diagram illustrating a filter configuration of a comparative example with respect to the second embodiment.
  • FIG. 15 is a diagram illustrating the filter characteristics of the reception filter in the duplexers of the second embodiment and the comparative example.
  • FIG. 1 is a circuit diagram of the duplexer of the first embodiment.
  • the duplexer 1 is configured by forming the electrode structure shown in FIG. 2 on the piezoelectric substrate 2 shown in FIG.
  • the duplexer 1 includes an antenna terminal 5, a transmission terminal 6, and a reception terminal 7.
  • the antenna terminal 5 is connected to the common connection point 8.
  • the transmission filter 3 is connected between the common connection point 8 and the transmission terminal 6.
  • a reception filter 4 is connected between the common connection point 8 and the reception terminal 7.
  • the reception filter 4 constitutes an embodiment of the filter device of the present invention. Hereinafter, details of the transmission filter 3 and the reception filter 4 will be described.
  • the transmission filter 3 is a ladder type filter.
  • a plurality of series arm resonators S1 to S7 made of an acoustic wave resonator having an IDT electrode are provided on the series arm.
  • parallel arm resonators P1 to P3 are provided on different parallel arms.
  • the parallel arm resonators P1 to P3 are also composed of acoustic wave resonators having IDT electrodes.
  • each of the series arm resonators S1 to S7 and the parallel arm resonators P1 to P3 is formed of a one-port elastic wave resonator.
  • the 1-port acoustic wave resonator includes an IDT electrode and reflectors disposed on both sides of the IDT electrode in the acoustic wave propagation direction.
  • a portion where an IDT electrode and a portion where a reflector is provided in such an acoustic wave resonator or acoustic wave filter are schematically illustrated in a shape in which X is surrounded by a rectangular frame. I will show you.
  • electrode lands constituting the common connection point 8 are shown, and this electrode land also serves as the antenna terminal 5 of FIG.
  • a ground terminal 12 connected to the parallel arm resonators P1 and P2 and a ground terminal 11 connected to the parallel arm resonator P3 are provided on the piezoelectric substrate 2.
  • the reception filter 4 includes an elastic wave resonator 13, a first filter unit 14, and a second filter unit 15.
  • the elastic wave resonator 13 is a one-port type elastic wave resonator, and one end is connected to the common connection point 8 and the other end is connected to the connection point 13A.
  • the common connection point 8 is an input terminal
  • the reception terminal 7 is an output terminal.
  • the first filter unit 14 and the second filter unit 15 are connected between the common connection point 8 and the reception terminal 7. More specifically, the first filter unit 14 and the second filter unit 15 are connected in parallel between the connection point 13 ⁇ / b> A and the reception terminal 7.
  • the first filter portion 14 and the second filter portion 15 are configured by forming the illustrated electrode structure on the piezoelectric substrate 2 as shown in FIG.
  • the first filter section 14 includes a first longitudinally coupled resonator type acoustic wave filter unit 16 and a second longitudinally coupled resonator type acoustic wave filter unit 17.
  • the first longitudinally coupled resonator type acoustic wave filter unit 16 and the second longitudinally coupled resonator type acoustic wave filter unit 17 are connected in cascade. That is, the first filter unit 14 has a two-stage cascade connection structure.
  • the first longitudinally coupled resonator type acoustic wave filter unit 16 and the second longitudinally coupled resonator type acoustic wave filter unit 17 are each composed of a 3IDT type acoustic wave resonator.
  • the first longitudinally coupled resonator type acoustic wave filter unit 16 has first to third IDTs 16a to 16c arranged in order along the acoustic wave propagation direction.
  • the second longitudinally coupled resonator type acoustic wave filter unit 17 includes first to third IDT electrodes 17a to 17c.
  • One end of the IDT electrode 16 a is connected to the ground potential, and the other end is connected to one end of the IDT electrode 17 a by the first interstage wiring 18.
  • the other end of the IDT electrode 17a is connected to the ground potential.
  • one end of the IDT electrode 16b is connected to the connection point 13A and the other end is connected to the ground potential.
  • One end of the IDT electrode 16 c is connected to the ground potential, and the other end is connected to the second interstage wiring 19.
  • One end of the IDT electrode 17 b is connected to the ground potential, and the other end is connected to the receiving terminal 7.
  • One end of the IDT electrode 17 c is connected to the second interstage wiring 19. The other end on the receiving terminal side is connected to the virtual ground wiring 20.
  • the third longitudinally coupled resonator type acoustic wave filter unit 21 and the fourth longitudinally coupled resonator type acoustic wave filter unit 22 are cascade-connected in two stages.
  • the third longitudinally coupled resonator type acoustic wave filter unit 21 includes first to third IDT electrodes 21a to 21c.
  • the fourth longitudinally coupled resonator type acoustic wave filter unit 22 includes first to third IDT electrodes 22a to 22c.
  • One end of the first IDT electrode 21 a on the antenna terminal side is connected to the ground potential, and the other end on the reception terminal side is connected to the third interstage wiring 23.
  • One end of the IDT electrode 21b is connected to the connection point 13A, and the other end is connected to the ground potential.
  • One end of the IDT electrode 21 c is connected to the ground potential, and the other end is connected to the fourth interstage wiring 24.
  • One end of the IDT electrode 22 a is connected to the IDT electrode 21 a by a third interstage wiring 23.
  • the other end of the IDT electrode 22a on the receiving terminal side is connected to the virtual ground wiring 20, and is electrically connected to the other end on the receiving terminal side of the IDT electrode 17c.
  • One end of the IDT electrode 22 b is connected to the ground potential, and the other end is connected to the receiving terminal 7.
  • One end of the IDT electrode 22c is connected to the fourth inter-stage wiring 24, and the other end is connected to the ground potential.
  • the orientations of the IDT electrodes 16a to 16c and the IDT electrodes 17a to 17c are set so that the phase of the signal flowing through the first interstage wiring 18 and the phase of the signal flowing through the second interstage wiring 19 are reversed.
  • the orientations of the IDT electrodes 21a to 21c and the IDT electrodes 22a to 22c are such that the phase of the signal flowing through the third interstage wiring 23 and the phase of the signal flowing through the fourth interstage wiring 24 are reversed. Is selected.
  • the phases of the signals flowing through the second interstage wiring 19 and the third interstage wiring 23 are also reversed. Therefore, the phases of the signals applied to the IDT electrode 17c and the IDT electrode 22a adjacent between the first and second filter portions 14 and 15 are reversed.
  • the end of the IDT electrode 17c on the side to be connected to the ground potential and the end of the IDT electrode 22a on the side to be connected to the ground potential are connected by the virtual ground wiring 20.
  • the phases of the signals applied to the IDT electrode 17c and the IDT electrode 22a are reversed, the IDT electrodes 17c and 22a are connected to the ground potential by connecting the two by the virtual ground wiring 20 as described above. It is not necessary to connect.
  • the configuration in which such a virtual ground wiring is provided has a problem that a ripple occurs in the filter characteristics, particularly in the passband.
  • a hot side wiring portion 25 adjacent to the virtual ground wiring 20 is provided on the insulating film 26. Therefore, the ripple can be effectively suppressed. This will be described more specifically below.
  • the hot-side wiring portion 25 is a wiring portion that is connected to one end of the IDT electrode 22b and one end of the IDT electrode 17b and connected to the receiving terminal 7.
  • the hot-side wiring portion 25 is electrically connected to the end of the IDT electrodes 17b and 22b on the side connected to the receiving terminal 7, and is therefore adjacent to the virtual ground wiring 20.
  • the hot-side wiring portion 25 adjacent to the virtual ground wiring 20 is disposed on the insulating film 26, the ripple can be effectively suppressed. It came to make.
  • the hot-side wiring portion 25 can be formed using an appropriate insulating material that can be electrically insulated from the piezoelectric substrate 2.
  • synthetic resin, insulating ceramics, or the like can be used.
  • a polyimide resin or the like can be suitably used. In that case, the insulating film 26 can be easily formed.
  • the hot side wiring portion adjacent to the virtual ground wiring means the hot side wiring portion closest to the virtual ground wiring.
  • hot means a signal line connected to an input terminal or output terminal.
  • the hot-side wiring portion 25 is substantially parallel to the virtual ground wiring 20 in this embodiment. Thereby, it is possible to reduce the vertical dimension shown in FIG. 2, that is, the dimension in the interstage connection direction in the first and second filter portions. But the hot side wiring part 25 does not need to be provided in parallel with the virtual earth wiring 20.
  • the hot-side wiring portion 25 does not need to be entirely located on the insulating film 26, and at least in the portion adjacent to the virtual ground wiring 20, the insulating film 26. It only has to be located above.
  • the hot-side wiring portion 25 is directly formed on the piezoelectric substrate 2 on the side closer to the receiving terminal 7 beyond the portion where the virtual ground wiring 20 is provided.
  • FIG. 5 is a diagram showing the filter characteristics of the reception filter 4 and the comparative example of the above embodiment.
  • a duplexer of a comparative example having the electrode structure of the plan view shown in FIG. 4 was prepared.
  • the transmission filter 3 is the same as that in the above embodiment.
  • the receiving filter is exactly the same as in the above embodiment except that the hot-side wiring portion 25 is formed directly on the piezoelectric substrate 2 without providing the insulating film 26.
  • the solid line in FIG. 5 shows the result of the above embodiment, and the broken line shows the result of the comparative example.
  • the ripples A and B in the pass band are suppressed because the hot-side wiring portion 25 is provided on the insulating film 26. This is presumably because the parasitic capacitance between the hot-side wiring portion 25 and the virtual ground wiring 20 is reduced by providing the insulating film 26.
  • the ripples A and B are caused by a parasitic capacitance between the hot-side wiring portion in contact with the virtual ground wiring 20 and the hot-side signal is transmitted to the virtual ground wiring 20 through the parasitic capacitance. It is thought that. Since the virtual ground wiring 20 is not connected to the ground potential, if the parasitic capacitance is large, the potential of the virtual ground wiring 20 may change greatly from 0V. As a result, the ground terminal side potential of the IDT electrode 17c connected to the virtual ground wiring 20 and the potential of the IDT electrode 22a on the ground terminal side are asymmetrical, thereby causing the ripples A and B. .
  • the parasitic capacitance is reduced by providing the insulating film 26, and therefore the ripples A and B are suppressed.
  • FIG. 6 is a schematic plan view showing an electrode structure excluding the acoustic wave resonator 13 of the reception filter 4 in the above embodiment.
  • the present invention is not limited to the filter device having the electrode structure of the above embodiment, but can also be applied to the filter device having the electrode structure according to the first to fifth modifications shown in FIGS.
  • the filter device 31 shown in FIG. 7 includes an input terminal 32 and a pair of balanced terminals 33 and 34 as output terminals. That is, the filter device 31 is a balanced filter device having a pair of balanced terminals 33 and 34. Thus, the present invention can also be applied to a balanced filter device.
  • one end of the IDT electrode 17 b of the second longitudinally coupled resonator type acoustic wave filter unit 17 of the first filter unit 14 is connected to the first balanced terminal 33.
  • One end of the IDT electrode 22 b of the fourth longitudinally coupled resonator type acoustic wave filter unit 22 is connected to the second balanced terminal 34. That is, between the balanced terminals 33 and 34, the first filter unit 14 and the second filter unit 15 are electrically connected in series via the ground potential.
  • Other configurations are the same as the electrode structure in which the first filter portion 14 and the second filter portion 15 are electrically connected in parallel to the unbalanced terminal shown in FIG.
  • the virtual ground wiring 20 can reduce the size.
  • the hot-side wiring portion adjacent to the virtual ground wiring 20 is connected to the IDT electrode 17b and the first balanced terminal 33, and the hot-side wiring portion 35 and IDT electrode 22b are connected to the second balanced portion.
  • a hot-side wiring portion 36 connecting the terminal 34 is obtained. That is, the hot side wiring portions 35 and 36 may be disposed on the insulating layer.
  • a large ripple appears in the characteristics indicating the phase difference and amplitude difference between the pair of balanced terminals.
  • ripples can be effectively suppressed as in the above embodiment.
  • a first filter unit 44 and a second filter unit 45 are connected in parallel between an input terminal 42 and an output terminal 43.
  • the first and third longitudinally coupled resonator type acoustic wave filter units of the first filter unit 44 and the second filter unit 45 are constituted by one longitudinally coupled resonator type acoustic wave filter unit 46 of 5IDT type. It is common.
  • the longitudinally coupled resonator type acoustic wave filter unit 46 includes first to fifth IDT electrodes 46a to 46e.
  • the center IDT electrode 46c is divided into two in the elastic wave propagation direction. That is, it has divided IDT portions 46c1 and 46c2.
  • the divided IDT portions 46c1 and 46c2 are connected to the second and third interstage wirings 19 and 23, respectively.
  • the IDT electrode 46 a is connected to the first interstage wiring 18, and the IDT electrode 46 e is connected to the fourth interstage wiring 24.
  • Other configurations are substantially the same as those of the electrode structure shown in FIG.
  • the filter device 51 according to the third modification shown in FIG. 9 has a configuration in which the first filter unit and the second filter unit are electrically connected in parallel with each other when viewed from the unbalanced terminal. This is substantially the same as the filter device 41. The difference is that the IDT electrodes 17b and 22b are connected to the first via the ground potential between the hot-side wiring portions 35 and 36 connected to the balanced terminals 33 and 34, similarly to the filter device 31 shown in FIG. The filter part and the second filter part are electrically connected in series. That is, a balanced filter device 51 is configured. Also in this modification, by providing the hot-side wiring portions 35 and 36 adjacent to the virtual ground wiring 20 on the insulating layer, the result of the filter characteristics can be suppressed. That is, it is possible to effectively suppress ripples appearing on the characteristics of the phase difference and amplitude difference between the pair of balanced terminals 33 and 34.
  • a third filter unit 62 is further provided in the lateral direction.
  • the third filter unit 62 is configured in the same manner as the first filter unit 14. That is, the third filter unit 62 has a structure in which a fifth longitudinally coupled resonator type acoustic wave filter unit 63 and a sixth longitudinally coupled resonator type acoustic wave filter unit 64 are cascade-connected in two stages.
  • IDT electrode 63b One end of the IDT electrode 63b is connected to the connection point 13A and the other end is connected to the ground potential. Each end of the IDT electrodes 63a and 63c is connected to the ground potential. The other ends of the IDTs 63a and 63c are connected to fifth and sixth interstage wirings 65 and 66, respectively.
  • One end of the IDT electrode 64 b is connected to the ground potential, and the other end is connected to the receiving terminal 7.
  • One end of the IDT electrode 64a is connected to the fifth interstage wiring 65, and the other end is connected to the virtual ground 20A.
  • the virtual ground wiring 20 ⁇ / b> A is connected to the IDT electrode 22 c of the second filter unit 15.
  • One end of the IDT electrode 64 c is connected to the ground potential, and the other end is connected to the sixth interstage wiring 66.
  • the IDT electrodes 63a to 63c and the IDT electrodes 64a to 64c are arranged so that the phase of the signal flowing through the fifth interstage wiring 65 and the phase of the signal flowing through the sixth interstage wiring 66 are reversed. The orientation is selected. Further, the phase of the signal flowing through the fifth interstage wiring 65 is opposite to the phase of the signal flowing through the fourth interstage wiring 24.
  • the virtual ground wiring 20A functions in the same manner as the virtual ground wiring 20 described above. Therefore, also in this modified example, it is possible to reduce the size by providing the virtual ground wiring 20A in addition to the virtual ground wiring 20. Moreover, by placing the hot side wiring portion 25 adjacent to the virtual ground wiring 20 and the hot side wiring portion 25A adjacent to the virtual ground wiring 20A on the same insulating layer or different insulating layers, respectively. Ripple appearing on the filter characteristics can be reduced.
  • the filter device 71 of the fifth modification shown in FIG. 11 is the same except that the filter device 61 is changed to a balanced type. That is, in the filter device 71, the IDT electrode 22b includes the divided IDT portions 22b1 and 22b2. The divided IDT portion 22 b 2 and the IDT electrode 17 b are commonly connected and connected to the first balanced terminal 33. Further, the divided IDT portion 22 b 1 and the IDT electrode 64 b are connected in common and connected to the second balanced terminal 34.
  • the virtual ground wiring 20, 20A can be downsized. Further, the hot-side wiring portion, that is, the hot-side wiring portion 35 adjacent to the virtual ground wiring 20 is positioned on the insulating layer, and the hot-side wiring portion 36 adjacent to the virtual ground wiring 20A is insulated. Ripple can be suppressed by positioning on the layer. That is, ripples appearing in the phase characteristics and amplitude characteristics between the first and second balanced terminals 33 and 34 can be effectively suppressed.
  • FIG. 12 is a plan view of a duplexer according to the second embodiment of the present invention.
  • the hot-side wiring portion 25B that connects the IDT electrodes 17b and 22b to the receiving terminal 7 intersects with the virtual ground wiring 20B at three-dimensional intersections 82 and 83. More specifically, interlayer insulating films 84 and 85 are formed on virtual ground wiring 20B. A hot-side wiring portion 25B is formed so as to pass over the interlayer insulating films 84 and 85. Thereby, three-dimensional intersections 82 and 83 are provided.
  • the virtual ground wiring 20 ⁇ / b> B has a portion 20 ⁇ / b> B ⁇ b> 1 having a relatively narrow width at the three-dimensional intersection 82.
  • the relatively narrow portion 20B1 is provided in a portion where the interlayer insulating film 84 is stacked.
  • the width of the portion 20B2 other than the relatively narrow portion 20B1 is relatively wide.
  • the three-dimensional intersections 82 and 83 are provided, and the hot-side wiring portion 25B is located on the interlayer insulating films 84 and 85 in the three-dimensional intersections 82 and 83. This is different from the embodiment.
  • description of 1st Embodiment is used by attaching
  • downsizing is achieved by using the virtual ground wiring 20B.
  • the hot-side wiring portion 25B is separated from the virtual ground wiring 20B via the interlayer insulating films 84 and 85. Therefore, the parasitic capacitance between the virtual ground wiring 20B and the hot-side wiring portion 25B can be reduced. Therefore, as in the case of the first embodiment, ripples appearing in the passband can be suppressed.
  • the portion overlapped with the hot-side wiring portion 25B via the interlayer insulating film 84 is a narrow portion 20B1, and constitutes the virtual ground wiring 20B. Therefore, the parasitic capacitance can be further reduced. Therefore, the ripple can be more effectively suppressed.
  • the width of the virtual ground wiring portion overlapping the hot side wiring portion 25B and the interlayer insulating films 84 and 85 is narrower than the remaining portions.
  • the entire virtual ground wiring portion positioned below the interlayer insulating film 83 is the narrow portion 20B1, but as described above, only the portion overlapping the hot-side wiring portion 25B is virtual.
  • the width of the ground wiring 20B may be narrowed. Further, the narrow portion 20B1 may reach the outside of the portion where the interlayer insulating film 84 is laminated.
  • FIG. 14 shows a filter configuration of a comparative example in which a capacitance 92 of 0.1 pF is added between the virtual ground wiring and the hot side wiring portion.
  • Other configurations of this comparative example are substantially the same as those of the second embodiment.
  • FIG. 15 shows the measurement results of the S21 characteristic between the second embodiment and the comparative example shown in FIG.
  • the second embodiment is indicated by a solid line
  • the comparative example of FIG. 14 is indicated by a broken line.
  • the ripple in the passband increases as the capacitance between the virtual ground wiring and the hot wiring portion increases.
  • the electrode structures of the first and second filter portions are not particularly limited, and are appropriately modified as in the first to fifth modifications shown in FIGS. 7 to 11 described above. can do.
  • a virtual ground wiring 20 that connects the IDT electrode 17c and the IDT electrode 22a is provided, and in the second embodiment, the IDT electrodes 17a, 17c, 22a, and 22c are connected.
  • Virtual ground wiring 20B is provided.
  • the IDT electrode connected to the virtual ground wiring is not limited to these. That is, in the first to fourth longitudinally coupled resonator type acoustic wave filter units, one end and the other end of the IDT electrode are configured, and the terminal portion connected to the hot side potential is the first terminal portion. The terminal portion connected to a potential other than the hot side potential is the second terminal portion.
  • the virtual ground is connected so as to connect at least one of the second terminal portions of the first filter portion and at least one terminal portion of the plurality of second terminal portions of the second filter portion. It suffices if wiring is provided.
  • the first filter unit and the second filter unit are electrically connected in parallel when viewed from the unbalanced terminal on at least one side of the input terminal and the output terminal. Indicated.
  • the first filter unit and the second filter unit are electrically connected via a ground potential between balanced terminals on at least one side of the input terminal and the output terminal. It does not exclude the configuration connected in series to the.
  • the present invention can also be applied to a longitudinally coupled resonator type acoustic wave filter unit having three or more IDTs including a 3IDT type acoustic wave resonator.
  • the filter device of the present invention can be constituted by devices using various elastic waves such as surface acoustic waves and boundary acoustic waves.
  • IDT electrode 22 fourth longitudinally coupled resonator type acoustic wave filter unit 22b1 , 22b2 ... divided IDT portion 23 ... third inter-stage wiring 24 ... fourth inter-stage wiring 25, 25A, 25B ... hot-side wiring portion 26 ... insulating film 31 ... filter device 32 ... on Terminal 33 ... 1st balanced terminal 34 ... 2nd balanced terminal 35, 36 ... Hot side wiring part 41 ... Filter device 42 ... Input terminal 43 ... Output terminal 44 ... 1st filter part 45 ... 2nd filter part 46 ... longitudinally coupled resonator type acoustic wave filter units 46a to 46e ... IDT electrodes 46c1 and 46c2 ... split IDT unit 51 ... filter device 61 ...
  • filter device 62 third filter unit 63 ... fifth longitudinally coupled resonator type acoustic wave Filter units 63a to 63c, 64a to 64c ... IDT electrode 65 ... fifth inter-stage wiring 66 ... sixth inter-stage wiring 71 ... filter device 81 ... duplexers 82 and 83 ... three-dimensional intersections 84 and 85 ... interlayer insulating film 92 ... Capacitances P1 to P3 ... Parallel arm resonators S1 to S7 ... Series arm resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 仮想アース配線を用いており、フィルタ特性上に現れるリップルを抑圧し得るフィルタ装置を提供する。 入力端子と出力端子との間に第1,第2のフィルタ部14,15が並列に接続されており、第1のフィルタ部14が、第1,第2の段間配線18,19により2段縦続接続されている構造を有する縦結合共振子型弾性波フィルタであり、第2のフィルタ部15が第3,第4の段間配線23,24により2段縦続接続されている構造を有する縦結合共振子型弾性波フィルタであり、第3の段間配線23と第2の段間配線19と流れる信号の位相が逆とされており、第2の段間配線19に接続されているIDT電極と、第3の段間配線23に接続されているIDT電極のホット側電位ではない電位に接続される端子部分同士が仮想アース配線20により接続されており、該仮想アース配線20に隣接しているホット側配線部分25は圧電基板2上に設けられた絶縁膜26上に配置されている、フィルタ装置1。

Description

フィルタ装置及びデュプレクサ
 本発明は、圧電基板上に複数の弾性波共振子が構成されているフィルタ装置に関し、特に、縦結合共振子型弾性波フィルタ部を有するフィルタ装置並びにデュプレクサに関する。
 従来、携帯電話機のデュプレクサの受信フィルタとして縦結合共振子型フィルタ装置が広く用いられている。縦結合共振子型フィルタ装置では、小型化が強く求められている。
 下記の特許文献1では、2つの縦結合共振子型弾性波フィルタユニットを縦続接続してなる第1,第2の縦結合共振子型フィルタ部が並列に接続されている。すなわち、2段4素子構成の縦結合共振子型弾性波フィルタ装置が開示されている。特許文献1では、第1,第2の縦結合共振子型弾性波フィルタ部の1段目の縦結合共振子型弾性波フィルタユニットの隣り合うIDT電極のアース端子同士が配線により電気的に接続されている。従って、配線をグラウンド電位に接続せずに、仮想アース配線としている。従って、仮想アース配線をグラウンド電位に接続する必要がない。よって小型化を図ることができる。
特開2008-118277号公報
 特許文献1に記載の仮想アース配線を用いた場合、グラウンド電位に接続するための端子や配線を省略することができる。従って、小型化を進めることができる。
 しかしながら、バランス型の弾性波フィルタ装置では、アース配線を用いると、一対の平衡端子間における振幅差や位相差の特性上に大きなリップルが現れるという問題があった。また、アンバランス型の弾性波フィルタ装置では、仮想アース配線を用いると、通過帯域内に大きなリップルが現れるという問題があった。従って、従来、仮想アース配線は使用されていなかった。
 本発明の目的は、仮想アース配線を用いており、フィルタ特性上に現れるリップルを低減することができる、フィルタ装置を提供することにある。
 本願の第1の発明に係るフィルタ装置は、圧電基板と、入力端子と、出力端子と、圧電基板上に形成された第1,第2のフィルタ部とを備える。第1のフィルタ部は、上記入力端子と上記出力端子との間に接続されている。第2のフィルタ部は、上記入力端子と上記出力端子との間に接続されており、上記第1のフィルタ部に並列に接続されている。
 第1の発明では、第1のフィルタ部は、第1の縦結合共振子型弾性波フィルタユニットと、第1の縦結合共振子型弾性波フィルタユニットに縦続接続されている第2の縦結合共振子型弾性波フィルタユニットと、第1の縦結合共振子型弾性波フィルタユニットと第2の縦結合共振子型弾性波フィルタユニットとを接続している第1,第2の段間配線とを有する。
 第2のフィルタ部は、第3の縦結合共振子型弾性波フィルタユニットと、第3の縦結合共振子型弾性波フィルタユニットに縦続接続されている第4の縦結合共振子型弾性波フィルタユニットと、第3,第4の縦結合共振子型弾性波フィルタユニットを接続している第3,第4の段間配線とを有する。
 第1の発明では、第1のフィルタ部と、第2のフィルタ部とが、ホット側電位に接続される複数の第1の端子部分と、ホット側電位ではない電位に接続される複数の第2の端子部分とを有する。
 上記第1のフィルタ部の複数の上記第2の端子部分の少なくとも1つの端子部分と、上記第2のフィルタ部の上記複数の第2の端子部分の少なくとも1つの端子部分とを接続するように、仮想アース配線がさらに備えられている。
 また、第1の発明では、上記仮想アース配線に隣接しているホット側配線部分と、圧電基板上に設けられた絶縁膜とがさらに備えられている。仮想アース配線に隣接している上記ホット側配線部分は、上記絶縁膜上に位置している。
 本願の第2の発明に係るフィルタ装置は、圧電基板と、入力端子と、出力端子と、圧電基板上に形成された第1,第2のフィルタ部とを備える。第1のフィルタ部は、上記入力端子と上記出力端子との間に接続されている。第2のフィルタ部は、上記入力端子と上記出力端子との間に接続されており、上記第1のフィルタ部に並列に接続されている。
 本発明では、第1のフィルタ部は、第1の縦結合共振子型弾性波フィルタユニットと、第1の縦結合共振子型弾性波フィルタユニットに縦続接続されている第2の縦結合共振子型弾性波フィルタユニットと、第1の縦結合共振子型弾性波フィルタユニットと第2の縦結合共振子型弾性波フィルタユニットとを接続している第1,第2の段間配線とを有する。
 第2のフィルタ部は、第3の縦結合共振子型弾性波フィルタユニットと、第3の縦結合共振子型弾性波フィルタユニットに縦続接続されている第4の縦結合共振子型弾性波フィルタユニットと、第3,第4の縦結合共振子型弾性波フィルタユニットを接続している第3,第4の段間配線とを有する。
 第2の発明では、第1のフィルタ部と、第2のフィルタ部とが、ホット側電位に接続される複数の第1の端子部分と、ホット側電位ではない電位に接続される複数の第2の端子部分とを有する。
 上記第1のフィルタ部の複数の上記第2の端子部分の少なくとも1つの端子部分と、上記第2のフィルタ部の複数の上記第2の端子部分の少なくとも1つの端子部分とを接続するように、仮想アース配線がさらに備えられている。
 第2の発明では、仮想アース配線に立体交差しているホット側配線部分がさらに備えられている。そして、該立体交差している部分において、仮想アース配線とホット側配線部分との間に層間絶縁膜がさらに備えられている。この層間絶縁膜を介して立体交差している部分における仮想アース配線の幅が、該仮想アース配線の残りの部分の幅よりも細くされている。
 本発明(以下、第1,第2の発明を総称して、本発明と略すこととする)のフィルタ装置のある特定の局面では、前記仮想アース配線が、前記第2の縦結合共振子型弾性波フィルタユニットの少なくとも1つの前記第2の端子部分と、前記第4の縦結合共振子型弾性波フィルタユニットの少なくとも1つの前記第2の端子部分とを電気的に接続していてもよい。
 本発明に係るフィルタ装置では、前記入力端子が不平衡入力端子であってもよく、前記出力端子が不平衡出力端子であってもよい。すなわち、本発明のフィルタ装置は、アンバランス型のフィルタ装置であってもよい。
 また、本発明に係るフィルタ装置は、前記入力端子が、不平衡入力端子であってもよく、前記出力端子が第1,第2の平衡出力端子であってもよい。すなわち、本発明に係るフィルタ装置は、バランス型のフィルタ装置であってもよい。
 本発明に係るフィルタ装置は、前記入力端子と、前記出力端子との間に接続されていてもよく、前記第1,第2のフィルタ部に並列に接続されている少なくとも1つの第3のフィルタ部をさらに備えられていてもよい。
 本発明に係るデュプレクサは、本発明に従って構成されているフィルタ装置からなる第1の帯域通過型フィルタ装置と、上記圧電基板上に設けられており、第1の帯域通過型フィルタ装置とは異なる第2の帯域通過型フィルタ装置とを備える。
 本発明によれば、仮想アース配線に隣接しているホット側配線部分が絶縁膜上に位置しており、あるいは仮想アース配線とホット側配線部分とが層間絶縁膜を介して立体交差している部分における仮想アース配線部分の幅が残りの仮想アース配線部分の幅よりも狭くされているため、フィルタ特性上に現れるリップルを効果的に抑圧することができる。従って、仮想アース配線を用いて小型化を図ることができるだけでなく、特性の良好なフィルタ装置を提供することが可能となる。
図1は、本発明の第1の実施形態に係るデュプレクサの回路図である。 図2は、図1に示したデュプレクサの平面図である。 図3は、図2に示したデュプレクサの要部を拡大して示す部分切欠平面図である。 図4は、比較例のデュプレクサの平面図である。 図5は、第1の実施形態及び比較例のデュプレクサの受信フィルタのフィルタ特性を示す図である。 図6は、図1に示した実施形態における受信フィルタとして用いられているフィルタ装置の電極構造を示す模式的平面図である。 図7は、本発明が適用されるフィルタ装置の電極構造の第1の変形例を示す模式的平面図である。 図8は、本発明が適用されるフィルタ装置の電極構造の第2の変形例を示す模式的平面図である。 図9は、本発明が適用されるフィルタ装置の電極構造の第3の変形例を示す模式的平面図である。 図10は、本発明が適用されるフィルタ装置の電極構造の第4の変形例を示す模式的平面図である。 図11は、本発明が適用されるフィルタ装置の電極構造の第5の変形例を示す模式的平面図である。 図12は、本発明の第2の実施形態に係るデュプレクサの平面図である。 図13は、図12に示したデュプレクサの要部を示す部分切欠拡大平面図である。 図14は、第2の実施形態に対する比較例のフィルタ構成を示す図である。 図15は、第2の実施形態及び比較例のデュプレクサにおける受信フィルタのフィルタ特性を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、第1の実施形態のデュプレクサの回路図である。デュプレクサ1は、図2に示す圧電基板2上に図2に示す電極構造を形成することにより構成されている。図1に戻り、デュプレクサ1はアンテナ端子5と、送信端子6と、受信端子7とを有する。アンテナ端子5は共通接続点8に接続されている。共通接続点8と、送信端子6との間に送信フィルタ3が接続されている。共通接続点8と受信端子7との間に受信フィルタ4が接続されている。
 受信フィルタ4は、本発明のフィルタ装置の一実施形態を構成している。以下、送信フィルタ3及び受信フィルタ4の詳細を説明する。
 送信フィルタ3は、ラダー型フィルタである。IDT電極を有する弾性波共振子からなる複数の直列腕共振子S1~S7が直列腕に設けられている。また、並列腕共振子P1~P3がそれぞれ異なる並列腕に設けられている。並列腕共振子P1~P3も、IDT電極を有する弾性波共振子からなる。
 図2では、上記直列腕共振子S1~S7及び並列腕共振子P1~P3を略図的に図示している。直列腕共振子S1~S7及び並列腕共振子P1~P3は、いずれも、1ポート型弾性波共振子からなる。1ポート型弾性波共振子は、IDT電極と、IDT電極の弾性波伝搬方向両側に配置された反射器とを有する。本明細書においては、このような弾性波共振子や弾性波フィルタにおけるIDT電極が設けられている部分及び反射器が設けられている部分をそれぞれXを矩形の枠で囲んだ形状で略図的に示すこととする。
 なお、図2では、共通接続点8を構成する電極ランドが図示されており、この電極ランドが図1のアンテナ端子5をも兼ねている。
 また、図2では、並列腕共振子P1,P2に接続されるアース端子12と、並列腕共振子P3に接続されるアース端子11が圧電基板2上に設けられている。
 図1に戻り、受信フィルタ4は、弾性波共振子13と、第1のフィルタ部14と第2のフィルタ部15とを有する。弾性波共振子13は、1ポート型の弾性波共振子であり、一端が共通接続点8に接続されており、他端が接続点13Aに接続されている。受信フィルタ4では、上記共通接続点8が入力端子となり、受信端子7が出力端子となる。
 共通接続点8と受信端子7との間に、第1のフィルタ部14と第2のフィルタ部15とが接続されている。より具体的には、接続点13Aと受信端子7との間において、第1のフィルタ部14と第2のフィルタ部15とが並列に接続されている。第1のフィルタ部14及び第2のフィルタ部15は図2に示すように圧電基板2上に図示の電極構造を形成することにより構成されている。
 図1に示すように、第1のフィルタ部14は、第1の縦結合共振子型弾性波フィルタユニット16と、第2の縦結合共振子型弾性波フィルタユニット17とを有する。第1の縦結合共振子型弾性波フィルタユニット16と第2の縦結合共振子型弾性波フィルタユニット17とは縦続接続されている。すなわち、第1のフィルタ部14は2段縦続接続構造を有する。
 第1の縦結合共振子型弾性波フィルタユニット16及び第2の縦結合共振子型弾性波フィルタユニット17は、それぞれ、3IDT型の弾性波共振子からなる。第1の縦結合共振子型弾性波フィルタユニット16は、弾性波伝搬方向に沿って順に配置された第1~第3のIDT16a~16cを有する。第2の縦結合共振子型弾性波フィルタユニット17も、同様に、第1~第3のIDT電極17a~17cを有する。
 IDT電極16aの一端がアース電位に接続されており、他端が第1の段間配線18によりIDT電極17aの一端に接続されている。IDT電極17aの他端はアース電位に接続される。同様に、IDT電極16bの一端が接続点13Aに他端がアース電位に接続されている。IDT電極16cの一端がアース電位に、他端が第2の段間配線19に接続されている。IDT電極17bの一端がアース電位に接続されており、他端が受信端子7に接続されている。IDT電極17cの一端が第2の段間配線19に接続されている。受信端子側の他端は、仮想アース配線20に接続されている。
 第2のフィルタ部15においても、第3の縦結合共振子型弾性波フィルタユニット21と、第4の縦結合共振子型弾性波フィルタユニット22とが2段縦続接続されている。第3の縦結合共振子型弾性波フィルタユニット21は、第1~第3のIDT電極21a~21cを有する。第4の縦結合共振子型弾性波フィルタユニット22は、第1~第3のIDT電極22a~22cを有する。第1のIDT電極21aのアンテナ端子側の一端がアース電位に接続されており、受信端子側の他端が第3の段間配線23に接続されている。
 IDT電極21bの一端が接続点13Aに、他端がアース電位に接続されている。IDT電極21cの一端がアース電位に、他端が第4の段間配線24に接続されている。IDT電極22aの一端が、第3の段間配線23により上記IDT電極21aに接続されている。IDT電極22aの受信端子側の他端は仮想アース配線20に接続されており、IDT電極17cの受信端子側の他端と電気的に接続されている。
 IDT電極22bの一端がアース電位に接続されており、他端が受信端子7に接続されている。IDT電極22cの一端が第4の段間配線24に接続されており、他端がアース電位に接続されている。第1の段間配線18を流れる信号の位相と第2の段間配線19を流れる信号の位相とが逆となるようにIDT電極16a~16c及びIDT電極17a~17cの向きが設定されている。同様に、第3の段間配線23を流れる信号の位相と、第4の段間配線24を流れる信号の位相とが逆となるように、IDT電極21a~21c及びIDT電極22a~22cの向きが選択されている。
 また、第2の段間配線19と第3の段間配線23を流れる信号の位相も逆とされている。従って、第1,第2のフィルタ部14,15間において隣り合っているIDT電極17cとIDT電極22aとの与えられる信号の位相が逆となっている。他方、IDT電極17cのアース電位に接続されるべき側の端部と、IDT電極22aのアース電位に接続されるべき側の端部とは、上記仮想アース配線20により接続されている。前述したように、IDT電極17cとIDT電極22aに与えられる信号の位相が逆とされているため、上記のように仮想アース配線20により両者を接続することによりIDT電極17c,22aをアース電位に接続せずともよい。
 そのため、図2に示すように、仮想アース配線20を圧電基板2上に設けた構成では、仮想アース配線20をアース端子に接続する必要がない。よって、小型化を進めることができる。
 もっとも、前述したように、このような仮想アース配線を設けた構成では、フィルタ特性、特に通過帯域にリップルが生じるという問題があった。これに対して、本実施形態のデュプレクサ1では、図2に示すように仮想アース配線20に隣接しているホット側配線部分25が絶縁膜26上に設けられている。そのため、上記リップルを効果的に抑制することができる。これを、以下においてより具体的に説明する。
 図2に示すように、ホット側配線部分25は、IDT電極22bの一端と、IDT電極17bの一端に接続されており、かつ受信端子7に接続されている配線部分である。また、このホット側配線部分25は、IDT電極17b,22bの受信端子7に接続される側の端部に電気的に接続されるものであるため、上記仮想アース配線20に隣接している。
 本願では、仮想アース配線20を有する構成において、仮想アース配線20に隣接しているホット側配線部分25を絶縁膜26上に配置すれば上記リップルを効果的に抑制し得ることを見出し、本発明を成すに至った。上記絶縁膜26としては、ホット側配線部分25を圧電基板2に対して、電気的に絶縁し得る適宜の絶縁性材料を用いて形成することができる。このような絶縁性材料としては、合成樹脂や絶縁性セラミックス等を用いることができる。好ましくはポリイミド樹脂などを好適に用いることができる。その場合には、絶縁膜26を容易に形成することができる。
 また、本発明において、仮想アース配線に隣接しているホット側配線部分とは、仮想アース配線に最も近いホット側の配線部分を言うものとする。
 なおホットとは、入力端子や出力端子に接続される信号線を言うものとする。
 図3に示すように、ホット側配線部分25は、本実施形態では仮想アース配線20と略並行とされている。それによって、図2に示す縦方向寸法、すなわち第1,第2のフィルタ部における段間接続方向の寸法を小さくすることが可能とされている。もっとも、ホット側配線部分25は、仮想アース配線20と平行に設けられずともよい。
 他方、図3に示すように、上記ホット側配線部分25は、その全体が絶縁膜26上に位置している必要はなく、少なくとも、仮想アース配線20と隣り合っている部分において、絶縁膜26上に位置しておればよい。本実施形態では、仮想アース配線20が設けられている部分を超えて受信端子7の近い側では、ホット側配線部分25は圧電基板2上に直接形成されている。
 図5は、上記実施形態の受信フィルタ4及び比較例のフィルタ特性を示す図である。比較のために、図4に示した平面図の電極構造を有する比較例のデュプレクサを用意した。比較例のデュプレクサ101では、送信フィルタ3は上記実施形態と同様とした。また、受信フィルタにおいては、絶縁膜26を設けることなく上記ホット側配線部分25を圧電基板2上に直接形成したことを除いては、上記実施形態と全く同様とした。
 図5の実線が上記実施形態の結果を、破線が上記比較例の結果を示す。
 図5から明らかなように、上記比較例では、矢印A,Bで示すように、通過帯域内に大きなリップルが現れている。これに対して、本実施形態によれば、このようなリップルA,Bを抑圧し得ることがわかる。
 上記のように、本実施形態において、通過帯域内におけるリップルA,Bが抑圧されるのは、絶縁膜26上にホット側配線部分25が設けられていることによる。これは、絶縁膜26を設けたことにより、ホット側配線部分25と仮想アース配線20との間の寄生容量が小さくなっているためと考えられる。
 すなわち、上記リップルA,Bが生じるのは、仮想アース配線20と接するホット側配線部分との間に寄生容量が入り、該寄生容量を介してホット側の信号が仮想アース配線20に伝送されることによると考えられる。仮想アース配線20はアース電位に接続されていないためこのような寄生容量が大きいと、仮想アース配線20の電位が0Vから大きく変化するおそれがある。その結果、仮想アース配線20に接続されているIDT電極17cのアース端子側電位と、IDT電極22aのアース端子側の電位が非対称となり、それによって上記リップルA,Bが生じているものと考えられる。
 本実施形態では、上記絶縁膜26を設けたことにより、上記寄生容量が小さくされ、従って上記リップルA,Bが抑圧されていると考えられる。
 従って、本実施形態では、上記のように、仮想アース配線20を用いるとことにより小型化を進めることができるだけでなく、通過帯域内におけるリップルを効果的に抑圧することができる。
 なお、図6は上記実施形態における受信フィルタ4の弾性波共振子13を除いた電極構造を示す模式的平面図である。もっとも、本発明は上記実施形態の電極構造を有するフィルタ装置に限らず、図7~図11に示す第1~第5の変形例に係る電極構造を有するフィルタ装置にも適用することができる。
 図7に示すフィルタ装置31では、入力端子32と、出力端子としての一対の平衡端子33,34とが備えられている。すなわち、フィルタ装置31は、一対の平衡端子33,34を有するバランス型のフィルタ装置である。このように、本発明は、バランス型のフィルタ装置にも適用することができる。
 図7に示すように、フィルタ装置31では、第1のフィルタ部14の第2の縦結合共振子型弾性波フィルタユニット17のIDT電極17bの一端が第1の平衡端子33に接続されている。また、第4の縦結合共振子型弾性波フィルタユニット22のIDT電極22bの一端が第2の平衡端子34に接続されている。すなわち、平衡端子33,34間において、第1のフィルタ部14と、第2のフィルタ部15とが接地電位を介して電気的に直列に接続されている。その他の構成は、図6に示した不平衡端子に対して第1のフィルタ部14と第2のフィルタ部15とが電気的に並列に接続されている電極構造などと同様である。
 この変形例においても、仮想アース配線20により小型化を図ることが可能とされている。また、本変形例では、仮想アース配線20に隣接するホット側配線部分とはIDT電極17bと第1の平衡端子33とを接続しているホット側配線部分35及びIDT電極22bと第2の平衡端子34とを接続しているホット側配線部分36になる。すなわち、ホット側配線部分35,36を絶縁層上に配置させればよい。前述したように、このようなバランス型のフィルタ装置においては、一対の平衡端子間の位相差及び振幅差を示す特性に大きなリップルが現れていた。これに対して、この変形例によれば、上記絶縁膜上にホット側配線部分35,36を位置させることにより、上記実施形態と同様にリップルを効果的に抑圧することができる。
 図8に示すフィルタ装置41では、入力端子42と出力端子43との間に、第1のフィルタ部44と第2のフィルタ部45とが並列に接続されている。ここでは、第1のフィルタ部44及び第2のフィルタ部45の第1,第3の縦結合共振子型弾性波フィルタユニットは、5IDT型の一つの縦結合共振子型弾性波フィルタユニット46により共通化されている。
 すなわち、縦結合共振子型弾性波フィルタユニット46は、第1~第5のIDT電極46a~46eを有する。中央のIDT電極46cが弾性波伝搬方向にニ分割されている。すなわち、分割IDT部46c1,46c2を有する。分割IDT部46c1,46c2は、それぞれ第2,第3の段間配線19,23に接続されている。また、IDT電極46aが第1の段間配線18に、IDT電極46eが第4の段間配線24に接続されている。その他の構成は図7に示した電極構造とほぼ同様である。
 本変形例においても、仮想アース配線20に隣接するホット側配線部分25を絶縁層上に位置させることにより上記実施形態と同様の効果を得ることができる。
 図9に示す第3の変形例に係るフィルタ装置51は、不平衡端子からみたときに、第1のフィルタ部と第2のフィルタ部とが互いに電気的に並列に接続されている構成を有する上記フィルタ装置41とほぼ同様である。異なることは、IDT電極17b,22bが、図7に示したフィルタ装置31と同様に、平衡端子33,34に接続されるホット側配線部分35,36の間で、接地電位を介して第1のフィルタ部と第2のフィルタ部とが電気的に直列に接続されていることにある。すなわち、バランス型のフィルタ装置51が構成されている。本変形例においても、仮想アース配線20に隣接するホット側配線部分35,36を絶縁層上に設けることにより、フィルタ特性の結果を抑制することができる。すなわち、一対の平衡端子33,34間の位相差及び振幅差の特性上に現れるリップルを効果的に抑圧することができる。
 図10に示す第4の変形例のフィルタ装置61では、第1,第2のフィルタ部14,15に加えて、さらに横方向に第3のフィルタ部62が設けられている。第3のフィルタ部62は、第1のフィルタ部14と同様に構成されている。すなわち、第3のフィルタ部62は、第5の縦結合共振子型弾性波フィルタユニット63と、第6の縦結合共振子型弾性波フィルタユニット64とを2段縦続接続した構造を有する。
 IDT電極63bの一端が接続点13Aに他端がアース電位に接続されている。IDT電極63a,63cの各一端がアース電位に接続されている。IDT63a,63cの他端が、それぞれ第5,第6の段間配線65,66に接続されている。
 IDT電極64bの一端がアース電位に、他端が受信端子7に接続されている。IDT電極64aの一端が第5の段間配線65に、他端が仮想アース20Aに接続されている。仮想アース配線20Aは、第2のフィルタ部15のIDT電極22cに接続されている。IDT電極64cの一端がアース電位に、他端が第6の段間配線66に接続されている。
 フィルタ装置61では、第5の段間配線65を流れる信号の位相と、第6の段間配線66を流れる信号の位相とが逆になるようにIDT電極63a~63c,IDT電極64a~64cの向きが選択されている。また、第5の段間配線65を流れる信号の位相は、第4の段間配線24を流れる信号の位相と逆とされている。
 よって、仮想アース配線20Aは前述した仮想アース配線20と同様に機能する。従って、この変形例においても仮想アース配線20に加えて仮想アース配線20Aを設けることにより小型化を図ることができる。しかも、仮想アース配線20に隣接しているホット側配線部分25と同じく仮想アース配線20Aに隣接しているホット側配線部分25Aとをそれぞれ、同じ絶縁層または別の絶縁層上に位置させることによりフィルタ特性上に現れるリップルを低減することができる。
 図11に示す第5の変形例のフィルタ装置71は、フィルタ装置61をバランス型に変更したことを除いては同様とされている。すなわち、フィルタ装置71では、IDT電極22bが分割IDT部22b1,22b2を有する。分割IDT部22b2とIDT電極17bとが共通接続され、第1の平衡端子33に接続されている。また、分割IDT部22b1と、IDT電極64bとが共通接続され、第2の平衡端子34に接続されている。
 本変形例においても、仮想アース配線20,20Aにより小型化を図ることができる。また、ホット側配線部分、すなわち、仮想アース配線20に隣接しているホット側配線部分35を絶縁層上に位置させることにより、また仮想アース配線20Aに隣接しているホット側配線部分36を絶縁層上に位置させることにより、リップルを抑制することができる。すなわち、第1,第2の平衡端子33,34間の位相特性及び振幅特性に現れるリップルを効果的に抑圧することができる。
 図12は、本発明の第2の実施形態に係るデュプレクサの平面図である。デュプレクサ81では、IDT電極17b,22bを受信端子7に接続するホット側配線部分25Bが仮想アース配線20Bと立体交差部82,83により立体交差している。より具体的には、仮想アース配線20B上に層間絶縁膜84,85が形成されている。この層間絶縁膜84,85上を通過するように、ホット側配線部分25Bが形成されている。それによって立体交差部82,83が設けられている。
 図13に拡大して示すように、仮想アース配線20Bは、上記立体交差部82において、相対的幅が細い部分20B1を有する。相対的に幅の狭い部分20B1は、本実施形態では、層間絶縁膜84が上に積層されている部分に設けられている。そして、相対的に幅の狭い部分20B1以外の部分20B2の幅は、相対的に広くされている。
 本実施形態は、上記立体交差部82,83が設けられており、ホット側配線部分25Bが、立体交差部82,83において層間絶縁膜84,85上に位置している点において、第1の実施形態と異なっている。なお第1の実施形態と、同一部分については同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。
 本実施形態においても仮想アース配線20Bを用いることにより小型化が図られている。しかも、本実施形態では、上記層間絶縁膜84,85を介して、ホット側配線部分25Bが、仮想アース配線20Bに対して分離されている。従って、仮想アース配線20Bと、ホット側配線部分25Bとの間の寄生容量を小さくすることができる。従って、第1の実施形態の場合と同様に、通過帯域に現れるリップルを抑圧することができる。
 特に、本実施形態では、上記ホット側配線部分25Bと層間絶縁膜84を介して重ねられている部分が、幅の狭い部分20B1となっており、仮想アース配線20Bを構成している。従って、上記寄生容量をより一層小さくすることができる。よって、上記リップルをより一層効果的に抑圧することができる。このように、ホット側配線部分25Bと層間絶縁膜84,85を介して重なり合う仮想アース配線部分の幅が残りの部分よりも狭いことが望ましい。
 本実施形態では、層間絶縁膜83の下方に位置している仮想アース配線部分全体が幅の細い部分20B1とされていたが、上記のように、ホット側配線部分25Bと重なり合う部分においてのみ、仮想アース配線20Bの幅が狭くされていてもよい。また、幅の狭い部分20B1は、層間絶縁膜84が積層されている部分よりも外側に至っていてもよい。
 図14に、仮想アース配線とホット側配線部分との間に、0.1pFの静電容量92を追加した比較例のフィルタ構成を示す。本比較例の他の構成は、第2の実施形態とほぼ同様である。
 図15は、第2の実施形態と図14に示した比較例とのS21特性の測定結果である。図15では、第2の実施形態を実線で示し、図14の比較例を破線で示した。
 第2の実施形態に比べ比較例では、仮想アース配線とホット側配線部分との間の静電容量の増加に伴い、通過帯域内のリップルが増加していることがわかる。
 従って、仮想アース配線とホット側配線部分との間の静電容量が減少するので、上記第2の実施形態では、通過帯域内のリップルが減少することが分る。
 第2の実施形態のフィルタ装置においても第1,第2のフィルタ部の電極構造は特に限定されず、前述した図7~図11に示した第1~第5の変形例のように適宜変形することができる。
 さらに、第1の実施形態では、IDT電極17cとIDT電極22aとを接続している仮想アース配線20が設けられており、第2の実施形態では、IDT電極17a,17c,22a,22cを接続している仮想アース配線20Bが設けられていた。本発明において、仮想アース配線に接続されるIDT電極はこれらに限定されない。すなわち、第1~第4の縦結合共振子型弾性波フィルタユニットでは、IDT電極の一端及び他端部分を構成しており、ホット側電位に接続される端子部分が第1の端子部分であり、ホット側電位ではない電位に接続される端子部分が第2の端子部分である。本発明では、第1のフィルタ部の第2の端子部分の少なくとも1つと、第2のフィルタ部の複数の第2の端子部分の内の少なくとも1つの端子部分とを接続するように上記仮想アース配線が備えられていればよい。
 なお、上記実施形態では、入力端子及び出力端子の少なくとも一方の側で、不平衡端子からみたときに、第1のフィルタ部と第2のフィルタ部とが電気的に並列に接続される構成を示した。上記構成は、上記実施形態で示したように、第1のフィルタ部と第2のフィルタ部とが、入力端子及び出力端子の少なくとも一方の側の平衡端子間で、接地電位を介して電気的に直列に接続されている構成を除外するものではない。本発明は3IDT型の弾性波共振子を含む3つ以上のIDTを有する縦結合共振子型弾性波フィルタユニットにも適応できる。
 また、本発明のフィルタ装置は、弾性波表面波や弾性境界波などのさまざまな弾性波を利用した装置により構成することができる。
1…デュプレクサ
2…圧電基板
3…送信フィルタ
4…受信フィルタ
5…アンテナ端子
6…送信端子
7…受信端子
8…共通接続点
11,12…アース端子
13…弾性波共振子
13A…接続点
14…第1のフィルタ部
15…第2のフィルタ部
16…第1の縦結合共振子型弾性波フィルタユニット
16a~16c…IDT電極
17…第2の縦結合共振子型弾性波フィルタユニット
17a~17c…IDT電極
18…第1の段間配線
19…第2の段間配線
20,20A…仮想アース配線
21a~21c,22a~22c…IDT電極
22…第4の縦結合共振子型弾性波フィルタユニット
22b1,22b2…分割IDT部
23…第3の段間配線
24…第4の段間配線
25,25A,25B…ホット側配線部分
26…絶縁膜
31…フィルタ装置
32…入力端子
33…第1の平衡端子
34…第2の平衡端子
35,36…ホット側配線部分
41…フィルタ装置
42…入力端子
43…出力端子
44…第1のフィルタ部
45…第2のフィルタ部
46…縦結合共振子型弾性波フィルタユニット
46a~46e…IDT電極
46c1,46c2…分割IDT部
51…フィルタ装置
61…フィルタ装置
62…第3のフィルタ部
63…第5の縦結合共振子型弾性波フィルタユニット
63a~63c,64a~64c…IDT電極
65…第5の段間配線
66…第6の段間配線
71…フィルタ装置
81…デュプレクサ
82,83…立体交差部
84,85…層間絶縁膜
92…静電容量
P1~P3…並列腕共振子
S1~S7…直列腕共振子

Claims (7)

  1.  圧電基板と、
     入力端子と、出力端子と、
     前記圧電基板上に形成されており、前記入力端子と前記出力端子との間に接続された第1のフィルタ部と、
     前記圧電基板上に形成されており、前記入力端子と前記出力端子との間に接続されており、前記第1のフィルタ部に並列に接続されている第2のフィルタ部とを備え、
     前記第1のフィルタ部が、第1の縦結合共振子型弾性波フィルタユニットと、前記第1の縦結合共振子型弾性波フィルタユニットに縦続接続されている第2の縦結合共振子型弾性波フィルタユニットと、前記第1の縦結合共振子型弾性波フィルタユニットと前記第2の縦結合共振子型弾性波フィルタユニットとを接続している第1,第2の段間配線とを有し、
     前記第2のフィルタ部が、第3の縦結合共振子型弾性波フィルタユニットと、前記第3の縦結合共振子型弾性波フィルタユニットに縦続接続されている第4の縦結合共振子型弾性波フィルタユニットと、前記第3,第4の縦結合共振子型弾性波フィルタユニットを接続している第3,第4の段間配線とを有し、
     前記第1のフィルタ部と、前記第2のフィルタ部とが、ホット側電位に接続される複数の第1の端子部分と、ホット側電位ではない電位に接続される複数の第2の端子部分とを有し、
     前記第1のフィルタ部の複数の前記第2の端子部分の少なくとも1つの端子部分と、前記第2のフィルタ部の複数の前記第2の端子部分の少なくとも1つの端子部分とを接続している仮想アース配線と、
     前記仮想アース配線に隣接しているホット側配線部分と、
     前記圧電基板上に設けられた絶縁膜とをさらに備え、前記仮想アース配線に隣接している前記ホット側配線部分が、前記絶縁膜上に位置している、フィルタ装置。
  2.  圧電基板と、
     入力端子と、出力端子と、
     前記圧電基板上に形成されており、前記入力端子と前記出力端子との間に接続された第1のフィルタ部と、
     前記圧電基板上に形成されており、前記入力端子と前記出力端子との間に接続されており、前記第1のフィルタ部に並列に接続されている第2のフィルタ部とを備え、
     前記第1のフィルタ部が、第1の縦結合共振子型弾性波フィルタユニットと、前記第1の縦結合共振子型弾性波フィルタユニットに縦続接続されている第2の縦結合共振子型弾性波フィルタユニットと、前記第1の縦結合共振子型弾性波フィルタユニットと前記第2の縦結合共振子型弾性波フィルタユニットとを接続している第1,第2の段間配線とを有し、
     前記第2のフィルタ部が、第3の縦結合共振子型弾性波フィルタユニットと、前記第3の縦結合共振子型弾性波フィルタユニットに縦続接続されている第4の縦結合共振子型弾性波フィルタユニットと、前記第3,第4の縦結合共振子型弾性波フィルタユニットを接続している第3,第4の段間配線とを有し、
     前記第1のフィルタ部と、前記第2のフィルタ部とが、ホット側電位に接続される複数の第1の端子部分と、ホット側電位ではない電位に接続される複数の第2の端子部分とを有し、
     前記第1のフィルタ部の複数の前記第2の端子部分の少なくとも1つの端子部分と、前記第2のフィルタ部の複数の前記第2の端子部分の少なくとも1つの端子部分とを接続している仮想アース配線と、
     前記仮想アース配線に立体交差しているホット側配線部分とをさらに備え、
     該立体交差している部分において、前記仮想アース配線と前記ホット側配線部分との間に設けられた層間絶縁膜をさらに備え、該層間絶縁膜を介して立体交差している部分において前記仮想アース配線の幅が、該仮想アース配線の残りの部分の幅よりも細くされている、フィルタ装置。
  3.  前記仮想アース配線が、前記第2の縦結合共振子型弾性波フィルタユニットの少なくとも1つの前記第2の端子部分と、前記第4の縦結合共振子型弾性波フィルタユニットの少なくとも1つの前記第2の端子部分とを電気的に接続している、請求項1または2に記載のフィルタ装置。
  4.  前記入力端子が不平衡入力端子であり、前記出力端子が不平衡出力端子である、請求項1~3のいずれか1項に記載のフィルタ装置。
  5.  前記入力端子が、不平衡入力端子であり、前記出力端子が第1,第2の平衡出力端子である、請求項1~3のいずれか1項に記載のフィルタ装置。
  6.  前記入力端子と、前記出力端子との間に接続されており、前記第1,第2のフィルタ部に並列に接続されている少なくとも1つの第3のフィルタ部をさらに備える、請求項1~5のいずれか1項に記載のフィルタ装置。
  7.  請求項1~6のいずれか1項に記載のフィルタ装置からなる第1の帯域通過型フィルタ装置と、
     前記圧電基板上に設けられており、かつ前記第1の帯域通過型フィルタとは異なる第2の帯域通過型フィルタ装置とを備える、デュプレクサ。
PCT/JP2014/055097 2013-06-13 2014-02-28 フィルタ装置及びデュプレクサ WO2014199674A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480033431.6A CN105284049B (zh) 2013-06-13 2014-02-28 滤波器装置以及双工器
KR1020157035107A KR20160006773A (ko) 2013-06-13 2014-02-28 필터장치 및 듀플렉서
JP2015522583A JP6176324B2 (ja) 2013-06-13 2014-02-28 フィルタ装置及びデュプレクサ
KR1020177011620A KR102022277B1 (ko) 2013-06-13 2014-02-28 필터장치 및 듀플렉서
US14/963,315 US9912318B2 (en) 2013-06-13 2015-12-09 Filter device and duplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124726 2013-06-13
JP2013-124726 2013-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/963,315 Continuation US9912318B2 (en) 2013-06-13 2015-12-09 Filter device and duplexer

Publications (1)

Publication Number Publication Date
WO2014199674A1 true WO2014199674A1 (ja) 2014-12-18

Family

ID=52021981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055097 WO2014199674A1 (ja) 2013-06-13 2014-02-28 フィルタ装置及びデュプレクサ

Country Status (5)

Country Link
US (1) US9912318B2 (ja)
JP (1) JP6176324B2 (ja)
KR (2) KR102022277B1 (ja)
CN (1) CN105284049B (ja)
WO (1) WO2014199674A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170077035A (ko) * 2015-12-25 2017-07-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
KR20180021170A (ko) 2015-07-28 2018-02-28 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
WO2018037884A1 (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 弾性波装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179253A1 (ja) * 2016-04-11 2017-10-19 株式会社村田製作所 複合フィルタ装置、高周波フロントエンド回路及び通信装置
KR102312724B1 (ko) * 2017-06-05 2021-10-13 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터 장치
CN110771035B (zh) * 2017-06-21 2023-08-08 株式会社村田制作所 弹性波装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282707A (ja) * 2003-02-24 2004-10-07 Murata Mfg Co Ltd 弾性表面波フィルタ、通信機
WO2006009021A1 (ja) * 2004-07-23 2006-01-26 Murata Manufacturing Co., Ltd. 弾性表面波装置
JP2007174307A (ja) * 2005-12-22 2007-07-05 Kyocera Corp 弾性表面波装置及び通信装置
JP2007259430A (ja) * 2006-02-24 2007-10-04 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、アンテナ共用器、及びそれらを用いた高周波モジュール、通信機器
JP2008118277A (ja) * 2006-11-01 2008-05-22 Murata Mfg Co Ltd 弾性表面波フィルタ装置及びデュプレクサ
WO2008096514A1 (ja) * 2007-02-02 2008-08-14 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
WO2011144664A1 (de) * 2010-05-21 2011-11-24 Epcos Ag Balanced/unbalanced arbeitendes saw filter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186604B2 (ja) * 1996-10-09 2001-07-11 株式会社村田製作所 弾性表面波フィルタ装置
JP3465617B2 (ja) * 1999-02-15 2003-11-10 カシオ計算機株式会社 半導体装置
JP3833569B2 (ja) 2001-12-21 2006-10-11 富士通メディアデバイス株式会社 分波器及びこれを用いた電子装置
JP3999977B2 (ja) * 2002-02-08 2007-10-31 株式会社東芝 弾性表面波フィルタ装置
KR100892195B1 (ko) * 2002-03-06 2009-04-07 파나소닉 주식회사 탄성표면파 필터, 평형형 회로 및 통신장치
JP4403861B2 (ja) 2004-03-31 2010-01-27 株式会社村田製作所 弾性表面波装置
JP2011217420A (ja) 2006-02-24 2011-10-27 Panasonic Corp 弾性表面波フィルタ、アンテナ共用器、及びそれらを用いた高周波モジュール、通信機器
JP4876658B2 (ja) * 2006-03-23 2012-02-15 パナソニック株式会社 弾性表面波フィルタ及びそれを用いた通信機器
JP5796604B2 (ja) * 2013-06-13 2015-10-21 株式会社村田製作所 分波装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282707A (ja) * 2003-02-24 2004-10-07 Murata Mfg Co Ltd 弾性表面波フィルタ、通信機
WO2006009021A1 (ja) * 2004-07-23 2006-01-26 Murata Manufacturing Co., Ltd. 弾性表面波装置
JP2007174307A (ja) * 2005-12-22 2007-07-05 Kyocera Corp 弾性表面波装置及び通信装置
JP2007259430A (ja) * 2006-02-24 2007-10-04 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、アンテナ共用器、及びそれらを用いた高周波モジュール、通信機器
JP2008118277A (ja) * 2006-11-01 2008-05-22 Murata Mfg Co Ltd 弾性表面波フィルタ装置及びデュプレクサ
WO2008096514A1 (ja) * 2007-02-02 2008-08-14 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
WO2011144664A1 (de) * 2010-05-21 2011-11-24 Epcos Ag Balanced/unbalanced arbeitendes saw filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021170A (ko) 2015-07-28 2018-02-28 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
CN107852143A (zh) * 2015-07-28 2018-03-27 株式会社村田制作所 弹性波装置
DE112016003390T5 (de) 2015-07-28 2018-04-19 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen
US10530330B2 (en) 2015-07-28 2020-01-07 Murata Manufacturing Co., Ltd. Elastic wave device
DE112016003390B4 (de) 2015-07-28 2024-06-20 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen
KR20170077035A (ko) * 2015-12-25 2017-07-05 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
KR101886531B1 (ko) 2015-12-25 2018-08-07 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
WO2018037884A1 (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 弾性波装置
JPWO2018037884A1 (ja) * 2016-08-25 2019-02-14 株式会社村田製作所 弾性波装置
US10523174B2 (en) 2016-08-25 2019-12-31 Murata Manufacturing Co., Ltd. Elastic wave device

Also Published As

Publication number Publication date
US9912318B2 (en) 2018-03-06
KR20170058435A (ko) 2017-05-26
CN105284049B (zh) 2018-06-08
US20160094198A1 (en) 2016-03-31
CN105284049A (zh) 2016-01-27
KR102022277B1 (ko) 2019-09-18
KR20160006773A (ko) 2016-01-19
JP6176324B2 (ja) 2017-08-09
JPWO2014199674A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6176324B2 (ja) フィルタ装置及びデュプレクサ
JP5765501B1 (ja) デュプレクサ
JP5690877B2 (ja) 弾性波フィルタ
WO2016190216A1 (ja) 弾性波装置および通信装置
WO2016013330A1 (ja) デュプレクサ
US10848122B2 (en) Filter and multiplexer
US7868716B2 (en) Acoustic wave filter apparatus
WO2017090269A1 (ja) フィルタ装置
JP5045760B2 (ja) 弾性波フィルタ装置
KR101983955B1 (ko) 탄성파 장치
US20190305756A1 (en) Receiving filter, multiplexer, and communication apparatus
JP2009206688A (ja) バランスフィルタ
JP5035430B2 (ja) 弾性波装置及びデュプレクサ
JP6658867B2 (ja) 複合フィルタ装置
US9148118B2 (en) Acoustic wave filter and module
JPWO2008068951A1 (ja) 弾性表面波フィルタ装置
JP7117880B2 (ja) 弾性波フィルタ、分波器および通信装置
JP5796604B2 (ja) 分波装置
WO2019049823A1 (ja) 弾性波フィルタ装置及び複合フィルタ装置
JP6402704B2 (ja) 弾性波装置、デュプレクサ及びマルチプレクサ
JP5476617B2 (ja) 弾性波装置
JP5142302B2 (ja) バランスフィルタ
WO2023032942A1 (ja) 高周波フィルタおよびマルチプレクサ
JP7132841B2 (ja) 弾性表面波素子、分波器および通信装置
JP2023066628A (ja) 弾性波装置及び通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033431.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522583

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157035107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810603

Country of ref document: EP

Kind code of ref document: A1