WO2014196264A1 - 光情報記録媒体、再生方法、及び再生装置 - Google Patents

光情報記録媒体、再生方法、及び再生装置 Download PDF

Info

Publication number
WO2014196264A1
WO2014196264A1 PCT/JP2014/060171 JP2014060171W WO2014196264A1 WO 2014196264 A1 WO2014196264 A1 WO 2014196264A1 JP 2014060171 W JP2014060171 W JP 2014060171W WO 2014196264 A1 WO2014196264 A1 WO 2014196264A1
Authority
WO
WIPO (PCT)
Prior art keywords
pit
medium
reproduction
super
information
Prior art date
Application number
PCT/JP2014/060171
Other languages
English (en)
French (fr)
Inventor
峻之 中
博久 山田
山本 真樹
田島 秀春
小西 正人
Original Assignee
シャープ株式会社
メモリーテック・ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, メモリーテック・ホールディングス株式会社 filed Critical シャープ株式会社
Priority to US14/895,241 priority Critical patent/US9412408B2/en
Priority to CN201480031827.7A priority patent/CN105264602B/zh
Priority to EP14808270.4A priority patent/EP3007172A4/en
Priority to JP2015521332A priority patent/JP6289457B2/ja
Publication of WO2014196264A1 publication Critical patent/WO2014196264A1/ja
Priority to US15/200,049 priority patent/US9552838B2/en
Priority to US15/369,916 priority patent/US9666222B2/en
Priority to US15/489,811 priority patent/US9767838B2/en
Priority to US15/678,240 priority patent/US9978415B2/en
Priority to US15/944,822 priority patent/US10068605B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/0079Zoned data area, e.g. having different data structures or formats for the user data within data layer, Zone Constant Linear Velocity [ZCLV], Zone Constant Angular Velocity [ZCAV], carriers with RAM and ROM areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0052Reproducing involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/013Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track for discrete information, i.e. where each information unit is stored in a distinct discrete location, e.g. digital information formats within a data block or sector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/013Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track for discrete information, i.e. where each information unit is stored in a distinct discrete location, e.g. digital information formats within a data block or sector
    • G11B2007/0133Details of discrete information structures, e.g. shape or dimensions of pits, prepits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24065Layers assisting in recording or reproduction below the optical diffraction limit, e.g. non-linear optical layers or structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers

Definitions

  • the present invention relates to an optical information recording medium capable of recording information, and a reproducing method and apparatus for reproducing the same.
  • an optical information recording medium (super-resolution medium) on which information is recorded at high density by a pit array including pits having a length shorter than the optical system resolution limit of the reproducing apparatus is used as the optical system resolution limit.
  • Super-resolution technology has been proposed.
  • the optical system super-resolution limit is ⁇ / 4NA where ⁇ is the wavelength of the reproduction light emitted from the reproduction apparatus and NA is the numerical aperture of the objective lens.
  • Patent Document 1 is an example of the super-resolution medium.
  • Patent Document 1 includes a first area where content is recorded by pits (concave and / or convex) including a length shorter than the optical system resolution limit length, and medium identification information for specifying the type of medium.
  • An optical information recording medium to which a second area recorded by pits is assigned is disclosed. Further, in this optical information recording medium, the pits for forming the medium identification information are formed with a length longer than the optical system resolution limit.
  • the pit length and pit interval formed in the first area are different from the pit length and pit interval formed in the second area. That is, there is a difference between the information recording density in the first area and the information recording density in the second area.
  • the present invention has been made in view of the above problems, and an object thereof is an optical information recording medium capable of improving the reproduction quality of information, and a reproducing apparatus capable of reproducing the optical information recording medium. And so on.
  • an optical information recording medium provides: A first area in which information is recorded by a first pit row including a pit having a length shorter than the length of the optical system resolution limit of the reproduction apparatus; An optical information recording medium having a recording layer assigned with a second area in which information is recorded by a second pit row composed of pits having a length equal to or longer than the optical system resolution limit length, The reflectance calculated from the reflected light amount obtained from the longest pit or the longest space in the first pit row is calculated from the reflected light amount obtained from the first reflectance and the longest pit or the longest space in the second pit row.
  • the first pit row is formed such that the first reflectance is substantially the same as the second reflectance.
  • (a) is a figure which shows an example of the pit shape in a data area
  • (b) is a figure in (a). It is a figure which shows the signal strength obtained from the reproduction
  • FIG. 4 is a diagram illustrating an example of the super-resolution medium, where (a) illustrates a state in which reproduction light is irradiated to a part of the medium information area (near the longest space), and (b) illustrates one data area. It is a figure which shows the state by which reproduction
  • FIG. 1 It is a block diagram which shows an example of the reproducing
  • (A) is a figure which shows the relationship between a pit and an output signal at the time of sampling a normal medium with the reproduction clock suitable for a normal medium, and PRML decoding
  • (b) is a figure which changes a normal medium into a super-resolution medium. It is a figure which shows the relationship between a pit at the time of sampling with a suitable reproduction
  • an optical information recording medium (hereinafter referred to as a super-resolution medium 1) having a super-resolution area having a BD (Blu-ray Disc: registered trademark) type cross-sectional structure as an example of a read-only medium.
  • a super-resolution medium 1 may be, for example, an optical information recording medium capable of recording information or a DVD type.
  • FIG. 2 shows the appearance of the super-resolution medium 1 according to this embodiment.
  • the super-resolution medium 1 that is a disk-shaped medium includes a data area 2 (first area) in which content such as video and software is recorded, and information about the super-resolution medium 1, for example.
  • the medium information area 3 (second area) in which is recorded has a recording layer assigned in advance.
  • FIG. 3 is an enlarged view of a part of the super-resolution medium 1 shown in FIG.
  • the data area 2 and the medium information area 3 include a plurality of pits P1 (pits in the first pit row), pits P2 (pits in the second pit row), and pits P2 between the pits P1.
  • a plurality of spaces S1 (first space) and space S2 (second space) formed in the middle are arranged in the circumferential direction at predetermined track pitches TpD and TpR (predetermined intervals). Is formed.
  • the first pit row is formed by the pits P1 and the spaces S1 in the data area 2
  • the second pit row is formed by the pits P2 and the spaces S2 in the medium information area 3.
  • a mark edge recording method is adopted in which information can be recorded using pits P1 and P2 and spaces S1 and S2 having different shapes and sizes.
  • a modulation recording method (recording coding method) called 1-7PP (1-7 Parity Preserve / Prohibit RMTR (RepeatedmMinimum Transition Run Length)) is used. That is, in this method, the pits P1 and P2 are formed by a modulation method which is one type of (1, 7) RLL modulation (Run Length Limited).
  • RLL modulation Raster Length Limited
  • information is recorded by pits (or recording marks) and spaces of 2T to 8T.
  • the length of the pit P1 in the data area 2 may be expressed as “D2T to D8T”
  • the length of the pit P1 in the medium information area 3 may be expressed as “R2T to R8T”.
  • the above modulation does not depend on the bit string pattern of the original information (information before modulation), and the recording pattern has a predetermined frequency bandwidth (that is, a combination of recording marks and spaces limited by a plurality of types).
  • the recording density is increased by extending the length of the shortest recording mark or space beyond that of the original information.
  • the 2-bit unit of the original information is converted into 3-channel bit units, and the recording pattern after conversion is limited to a length from 2 channel bits (2T) to 8 channel bits (8T).
  • the frequency bandwidth is limited by being modulated into a recording mark and a space.
  • modulation by the 1-7PP modulation recording method is suitable for high density recording.
  • the modulation method is not limited to 1-7PP modulation, and other high density such as (1,7) RLL modulation other than 1-7PP modulation, 8/16 modulation, (2,7) RLL modulation, etc.
  • a modulation method suitable for recording may be used.
  • Data area 2 As shown in FIG. 2, the data area 2 is allocated between the medium information areas 3, and the above-mentioned contents are recorded by providing the pit P1 when the substrate is molded.
  • This pit P1 is a pit having a length of D2T to D8T in FIG. 3, and the length D2T of the shortest pit P1min is shorter than the optical system resolution limit of the reproducing apparatus. That is, since the content is recorded including the pit P1 having a length shorter than the optical system resolution limit of the reproducing apparatus (super-resolution recording form), recording with higher density than that of a normal medium is possible.
  • the pit having the length of D8T is the longest pit P1max that is the longest among the plurality of pits P1 formed in the data area 2.
  • the shortest space S1 is the shortest space S1min (not shown), and the longest space S1 is the longest space S1max (longest first space). (See (a) of FIG. 1).
  • the medium information area 3 is allocated in advance to the innermost and outermost peripheral portions of the super-resolution medium 1, and information about the super-resolution medium 1 is recorded by pits P2 (normally Recording format).
  • the pit P2 is a pit P2 having a length of R2T to R8T in FIG. 3, and the length R2T of the shortest pit P2min is greater than or equal to the optical system resolution limit of the reproducing apparatus. That is, the length of all the pits P2 in the medium information area 3 is longer than the length of the shortest pit P1min in the data area 2, and the information recording density in the medium information area 3 is lower than that in the data area 2.
  • the pit having the length of R8T is the longest pit P2max that is the longest of the plurality of pits P2 formed in the medium information area 3.
  • the shortest space S2 is the shortest space S2min (not shown), and the longest space S2 is the longest space S2max (longest second space). (Refer to FIG. 6A).
  • medium information area 3 is provided on the inner circumference and the outer circumference of the super-resolution medium 1, it is not limited to this and may be assigned to either the inner circumference or the outer circumference.
  • the super-resolution medium 1 is an optical information recording medium using so-called super-resolution technology.
  • the data area 2 is a super-resolution area where information is reproduced by the super-resolution technique
  • the medium information area 3 is a non-super-resolution area where information is reproduced without using the super-resolution technique. .
  • Information relating to the super-resolution medium 1 is recorded in the medium identification information for specifying the super-resolution medium 1, the area position information for specifying the position in the data area 2, the data area 2 and the medium information area 3.
  • Data management information for managing existing data is included.
  • the medium identification information includes the type of optical information recording medium (BD, DVD, etc., or read-only type, write once type, rewritable type, etc.), disc type identification information such as information indicating recording capacity, and / or individual information. Individual identification information (medium unique number for copy protection) for identifying the optical information recording medium (the super-resolution medium 1).
  • the information regarding the super-resolution medium 1 includes reproduction speed information, reproduction light intensity information, polarity information, and / or region position information.
  • the medium identification information may include reproduction speed information and reproduction light intensity information.
  • the playback speed information indicates the playback speed required for seamless playback of content such as video information.
  • the reproduction speed information includes reproduction speed range information, contents, etc. necessary for obtaining an analog waveform that can be converted into a digital signal when the super-resolution medium 1 is irradiated with appropriate reproduction light (reproduction laser). Digital processing information necessary for converting an analog waveform reproduced for reproduction into a digital signal, or a combination thereof is included.
  • the above playback speed range information indicates that when super-resolution playback is possible by heat, if the playback speed is too fast, heat will be insufficient and super-resolution playback will be impossible, and if it is too slow, the generated thermal energy will increase.
  • This is information that defines the reproduction speed in order to obtain an analog waveform stably by super-resolution reproduction because the medium is damaged too much.
  • the reproduction speed is a linear speed during reproduction (relative speed between the optical head (reproduction light irradiation) position and the reproduction position of the optical information recording medium, which is generated when the optical information recording medium is rotated by a spindle motor during medium reproduction). ).
  • the digital processing information includes, for example, reproduction clock switching information, reproduction speed switching information, or a combination thereof.
  • reproduction clock switching information for example, when the information recorded in the data area 2 and the medium information area 3 recorded in the 1-7PP modulation method and having different recording densities is reproduced, the obtained analog waveform is converted into a digital signal. This information is necessary for
  • the reproduction light intensity information includes reproduction light intensity range information necessary for obtaining an analog waveform that can be converted into a digital signal when the super-resolution medium 1 is irradiated with reproduction light (reproduction laser).
  • reproduction light reproduction light
  • the reproduction light intensity range information is information that defines the reproduction light intensity in order to obtain a stable analog waveform by super-resolution reproduction without imposing an excessive burden on the reproduction apparatus.
  • the polarity information indicates whether the pits P1 and P2 have a concave shape (in-pit format) or a convex shape (on-pit format) with respect to the incident side of the reproduction light of the super-resolution medium 1.
  • the polarity of the tracking error signal is determined by the polarity of the pits P1 and P2. Different.
  • the pit polarity information is the value of the first derivative of the tracking error signal related to the distance from the center of the super-resolution medium 1 when the reproduction light irradiation position is in the center of the track (on-track state). This is information that makes it possible to immediately determine whether the signal is the amplitude center of the tracking error signal that becomes positive or the amplitude center of the tracking error signal that becomes negative.
  • the area position information includes data area position information indicating the position of the data area 2 in the super-resolution medium 1.
  • the data area position information includes information indicating the reproduction start position and / or reproduction end position of information in the data area 2, information indicating the reproduction start position and / or reproduction end position of information in the medium information area 3, or a combination thereof Is mentioned.
  • a suitable information reproduction condition is different between the data area 2 and the medium information area 3 having different recording densities, and the reproduction apparatus continuously connects the data area 2 and the medium information area 3 to each other. In the case of reproduction, the information is necessary for the reproduction apparatus in order to switch to the information reproduction condition set for each of these two areas.
  • Information playback conditions are conditions that must be set in order for the playback device to play back information recorded on an optical information recording medium, such as playback light intensity, playback speed, or tracking servo technique. Point to.
  • FIG. 4 shows a cross-sectional view of the super-resolution medium 1.
  • FIG. 5 is a diagram showing the polarities of the pits P1 and P2.
  • the super-resolution medium 1 is provided with a cover layer 6, a functional layer 5, and a substrate 4 in order from the side on which the reproduction light L emitted from the reproduction apparatus is incident.
  • the substrate 4 is made of, for example, polycarbonate (PC) having a diameter of about 120 mm and a thickness of about 1.1 mm.
  • PC polycarbonate
  • P2 records various information (in-pit format). That is, the concave portions formed in the substrate 4 are the pits P1 and P2.
  • the pits P1 and P2 may have a convex shape, or may have a concave shape and a convex shape. That is, the pits P1 and P2 only need to be concave and / or convex.
  • the structure when the pits P1 and P2 have a convex shape (on-pit format) will be described in the third embodiment.
  • the cover layer 6 may be made of a material having a high transmittance at the wavelength of the reproduction light L, and may be formed of a film made of polycarbonate (polycarbonate film) and a transparent adhesive material, for example.
  • the functional layer 5 is a layer for generating a super-resolution phenomenon, and is formed on the substrate 4 by, for example, sputtering.
  • the functional layer 5 is made of, for example, tantalum (Ta) having a thickness of about 12 nm.
  • the functional layer 5 may be composed of two or more types of films. In this case, for example, a light absorbing film made of tantalum having a thickness of about 8 nm capable of absorbing the reproduction light L, and a zinc oxide having a thickness of about 50 nm ( And a super-resolution reproducing film made of ZnO). In this case, the information recording density can be increased.
  • the functional layer may be composed of two or more functional layers 5.
  • an intermediate layer may be provided between each functional layer 5.
  • the material of the intermediate layer include an ultraviolet curable resin, but are not limited thereto, and any material having a high transmittance at the wavelength of the reproduction light L may be used.
  • at least the pits P1 may be formed on the side where the reproduction light L is incident on each intermediate layer. In this case, the recording capacity of the super-resolution medium 1 can be further increased.
  • the functional layer 5 Since the functional layer 5 is provided, the information recorded by the pits P1 in the data area 2 can be reproduced.
  • the functional layer 5 is made of a thin metal film or the like, a pit signal having a length shorter than the optical system resolution limit length can be reproduced by a temperature change of the functional layer 5.
  • the functional layer 5 is composed of a light absorption film and a super-resolution reproduction film, when the reproduction light is irradiated onto the pit P1, an irradiation region (laser spot) of the reproduction light is formed on the super-resolution medium 1, In the irradiation area, a transmittance distribution is generated due to the temperature distribution caused by the light intensity distribution. As a result, the irradiation area is in a quasi-reduced state, so that the information recorded by the pits P1 can be reproduced, and more information can be recorded than a normal medium.
  • FIG. 1A shows an example of the shape of the pits in the data area 2
  • FIG. 1B shows a signal obtained from the reproduction light L irradiated in the one-dot chain line including the longest space S1max shown in FIG. It is a figure which shows intensity
  • the ratio between the length of a pit (record mark) and the length of a space (eg, 8T space) corresponding to the pit (eg, 8T pit) is expressed as “duty”, and the ratio is 1: 1. The case is expressed as “duty 50%”.
  • the length (duty) of this pit and space can be increased or decreased within a range that can be reproduced by the reproducing apparatus.
  • the present inventors pay attention to the fact that this increase / decrease is possible, and in a super-resolution medium having a super-resolution area and a non-super-resolution area, by changing the length of pits and spaces, the super-resolution is achieved. It has been found that the reflectance in the region can be improved, and as a result, the reproduction quality of information in the super-resolution medium can be improved.
  • the pit P1 has a reflectance in the data area 2 (first reflectance), and a reflectance in the medium information area 3 (second reflectance). It is formed in the data area 2 so as to be substantially the same. In other words, the first pit row formed in the data area 2 including the pit P1 is formed so that the first reflectance is substantially the same as the second reflectance. In other words, in the data area 2, the reproduction apparatus can perform the above-described two reflections without providing different definition of the reflectance in the data area 2 and the medium information area 3 with respect to the super-resolution medium 1 or the reproduction apparatus.
  • the pits P1 are formed so that the rates can be treated as substantially the same.
  • the reflectance of the present embodiment is obtained by the detector of the playback device, for example, when the playback light emitted from the playback device is irradiated to the longest pit or the longest space when tracking the recording track (track). It is the ratio of the value calculated from the maximum amount of reflected light from the recording layer to the intensity of the reproduction light.
  • the reflectance is not limited to the above ratio, and may be the ratio of the intensity of reflected light from the recording layer to the intensity of reproduction light.
  • the first reflectance (reflectance obtained from the data area 2) is the amount of reflected light obtained from the longest pit P1max or the longest space S1max of the first pit row.
  • the second reflectance (reflectance obtained from the medium information area 3) refers to a reflectance calculated from the amount of reflected light obtained from the longest pit P2max or the longest space S2max of the second pit row.
  • the amount of reflected light obtained from the longest pit or the longest space can also be referred to as the amount of reflected light generated when the reproduction light L is reflected on the longest pit or the longest space.
  • the recording layer is a layer in which information is recorded in a normal medium or a super-resolution medium, and is composed of a pit and a reflective layer in a reproduction-only optical information recording medium.
  • the reflective layer is a layer provided between a substrate and a cover layer that can reproduce information recorded on a normal medium or a super-resolution medium.
  • This reflective layer refers to a functional layer in a super-resolution medium, and is composed of, for example, a metal or metal alloy having a thickness of several tens of nanometers in a normal medium.
  • the size of the pit P1 (solid oval shape in the figure) in the super-resolution medium 1 is equal to the pit P1 ′ in a general super-resolution medium. It is formed so as to be slightly smaller than the size of (the elliptical shape of the broken line in the figure). That is, the pit P1 is formed so that the duty of the pit P1 is smaller than the duty of the space S1 (that is, smaller than the duty of the pit P1 'of a general super-resolution medium).
  • An example of this general super-resolution medium is a super-resolution medium as a comparative example shown in FIG. 9, and in this case, the pit P1 'corresponds to the pit P101 shown in FIG.
  • the pit P1 of the super-resolution medium 1 and the pit P1 'of a general super-resolution medium have a similar shape. That is, the pit P1 is changed in the radial direction in the same manner as the circumferential length in accordance with the change in the duty. For example, if the pit length (pit P1 ′) is 0.448 ⁇ m and the width is 0.112 ⁇ m when the duty is 50%, and the duty is changed to 45%, the pit (pit P1) length is 0. 404 ⁇ m and width is 0.101 ⁇ m. However, it is sufficient that at least the length in the circumferential direction is changed, and the width may be the same as the length of the pit P1 ', for example.
  • the data area 2 is a super-resolution area in which information is recorded by a plurality of pits P1 including a length shorter than the length of the optical system resolution limit.
  • the medium information area 3 is a non-super-resolution area in which information is recorded by a plurality of pits P2 having a length equal to or longer than the optical system resolution limit.
  • the upper limit of the pit length and space length (pit interval) is defined by the modulation recording method used for information recording, so the information recording density in the optical information recording medium depends on the length of the shortest pit. Is different.
  • the shortest pit length is 2T
  • the longest pit length is 8T, which is four times the shortest pit length.
  • the playback device acquires the data area 2
  • the reflectance at the predetermined position is positions corresponding to each other in each area. For example, the longest pits in the data area 2 and the medium information area 3 (longest pits P1max and P2max) or the longest spaces (longest space S1max). And S2max).
  • the reproducing apparatus performs various controls such as focus control using the reflectance. Therefore, when the above difference occurs, when information reproduction in one area (for example, data area 2) and information reproduction in the other area (for example, medium information area 3) are continuously performed, for example, In the other area, the size of the reproduction light irradiation area formed on the optical information recording medium changes (out of focus), and the reproduction apparatus performs focus control again each time the area is changed. May be necessary.
  • the reproducing apparatus can handle the super-resolution medium 1 in which the reflectance obtained from the data area 2 is the same as the reflectance obtained from the medium information area 3. The fact that these two reflectances are substantially the same will be described with reference to FIG.
  • FIG. 1B shows a signal between the super-resolution medium 1 and a general super-resolution medium when the reproduction light L is irradiated on the longest space S1max of the data area 2 shown in FIG. It shows the difference in strength.
  • the signal intensity in the range of the circumferential positions x1 to x2 shown in FIG. T represents the maximum value of the signal intensity when the reproduction light L is irradiated to the non-super-resolution area (for example, the medium information area 3), T 0 represents the signal intensity 0, and T ⁇ T 0 A value proportional to the value is measured as the reflectance.
  • the maximum value of the signal intensity (broken line in the figure) shown by a general super-resolution medium is smaller than T.
  • the value is substantially the same as T. That is, the reflectance obtained from the super-resolution medium 1 is larger than the reflectance obtained from a general super-resolution medium and is substantially the same as the reflectance obtained from the non-super-resolution area.
  • the reproduction light L when the reproduction light L is irradiated on a space of a general super-resolution medium, the reproduction light L is irradiated not only on the space but also on the pit P1 '.
  • the signal intensity obtained from the pit is smaller than the signal intensity obtained from the space, the signal intensity is reduced by the amount irradiated to the pit P1 '.
  • the pit P1 is formed by adjusting the duty so that the length of the space S1 corresponding to the pit P1 is larger than the length of the pit P1. ing. That is, as shown in FIG. 1A, the pit P1 has a length of the longest space S1max and an irradiation area (a circular portion of FIG. 1A) formed by the reproduction light L on the super-resolution medium 1. ) In the data area 2 so as to be equal to or larger than the diameter.
  • the reproduction light L irradiated to the longest space S1max is not irradiated (or hardly irradiated) to the pit P1, the possibility that the signal intensity becomes small can be almost eliminated. Therefore, it is possible to obtain a signal intensity that is substantially the same as the signal intensity obtained from the medium information area 3 (longest space S2max) that is a non-super-resolution area, that is, the reflectance.
  • the pit P1 since the pit P1 has the shape (size) as described above, information reproduction in the other area (between each area) In the case of continuous reproduction), the reflectivity in each region is not substantially the same (difference that cannot be handled as the same in the reproduction apparatus), for example, irradiation of reproduction light formed on an optical information recording medium The possibility that the size of the region changes can be reduced. Therefore, even during the continuous reproduction, information can be reproduced quickly and reliably without performing focus control again.
  • the amount of reflected light (reflected light amount) obtained when the optical information recording medium is irradiated with reproduction light also has some influence on the pits of adjacent tracks. Determined by the length of the longest space. Further, the reflectivity increases as the amount of reflected light increases.
  • the pit P1 is formed in the data region 2 so that the length of the longest space S1max is equal to or larger than the diameter of the irradiation region, thereby reflecting the longest space S1max.
  • the rate is increasing. That is, the pit P1 is formed in the data region 2 so that the reflectance in the longest space S1max is substantially the same as the reflectance in the longest space S2max (see FIG. 6A).
  • the length of the longest space S1max is not necessarily greater than or equal to the diameter of the spot of the reproduction light L.
  • the reflectance obtained from the data area 2 is substantially the same as the reflectance obtained from the medium information area 3 (for example, the reproducing apparatus uses the reflectance obtained from the data area 2 (longest space S1max) as the medium information).
  • the diameter may be smaller than the above-mentioned diameter as long as it is within the range that can be regarded as the same as the reflectance obtained from the region 3 (the longest space S2max).
  • One example thereof will be described in Embodiment 2.
  • the shape of the pit P1 may be set based on the reflectance obtained from the longest pit P1max.
  • the pits P1 and pits P2 provided on the substrate 4 of the super-resolution medium 1 are manufactured, for example, by performing injection molding on a master produced by a cutting machine.
  • pits P1 and P2 are preferably formed continuously.
  • the lengths of the pits P1 and P2 are different from each other, but also the length of the pit P1 is different from the length of the pit P1 '. Therefore, as the formation conditions of the pits P1 and P2, not only the speed of forming the pits P1 and P2 but also the write strategy of the data area 2 and the medium information area 3 are different from each other.
  • the pit P1 and the pit P2 in the vicinity of the boundary portion 3 are pits having an intermediate shape between the pit P1 and the pit P2, and information may not be correctly reproduced. Therefore, it is preferable to provide a desired range as an intermediate area from the boundary between the data area 2 and the medium information area 3. In this case, predetermined information that does not affect the reproduction of information about the super-resolution medium 1 and information such as content may be recorded in the intermediate area by the pits P1 and / or pits P2.
  • FIG. 6 is a view showing an embodiment of the super-resolution medium 1
  • FIG. 6A is a view showing a state in which the reproduction light L is irradiated to a part of the medium information area 3 (near the longest space S2max).
  • b) is a diagram showing a state in which the reproduction light L is irradiated to a part of the data region 2 (near the longest space S1max).
  • the size of the super-resolution medium 1 in this embodiment, the thickness of each layer, and the material are as described above.
  • the track pitch TpR of the medium information area 3 and the track pitch TpD of the data area 2 are 0.32 ⁇ m.
  • the track pitch TpR of the medium information area 3 may be 0.35 ⁇ m.
  • information is recorded using the 1-7PP modulation recording method.
  • the length of the longest pit P2max (8T pit) and the longest space S2max (8T space) is 0.596 ⁇ m. That is, both the pit P2 and the space S2 have a duty of 50%, and the length of the shortest pit P2min (2T pit, not shown) in the medium information area 3 is 0.149 ⁇ m.
  • the length of the longest pit P1max (8T pit) is 0.404 ⁇ m
  • the length of the longest space S1max (8T space) is 0.492 ⁇ m. is there. That is, the duty of the pit P1 is about 45%
  • the duty of the space S1 is about 55%
  • the length of the shortest pit P1min (2T pit, not shown) in the data area 2 is 0.101 ⁇ m ( ⁇ 0.112 ⁇ m). ⁇ 2 ⁇ 0.45).
  • the length of 0.112 ⁇ m is the length of the shortest pit P101min in the data area 102 in a comparative example described later. That is, the data area 2 of this embodiment is obtained by changing the duty of the data area 102 in the comparative example as described above.
  • the recording capacity of the medium information area 3 is 25 GB
  • the recording capacity of the data area 2 is 33.3 GB (these recording capacities are equivalent to the recording capacity when the super-resolution medium 1 is a disk having a diameter of 120 mm. Is).
  • the wavelength of the reproduction light L (reproduction light L of the reproduction optical system) emitted from the reproduction apparatus capable of reproducing the super-resolution medium 1 of the first embodiment is ⁇
  • the numerical aperture of the objective lens included in the reproduction apparatus is NA.
  • the optical system resolution limit of the reproducing apparatus is represented by ⁇ / 4NA.
  • 405 nm
  • NA 0.85
  • the data area 2 is an ultra-long one in which at least one length of the pit P1 (space S1) is less than the optical system resolution limit length (less than 119 nm). It is a resolution area.
  • the medium information area 3 is a non-super-resolution area in which the length of all pits P2 (space S2) is equal to or longer than the optical system resolution limit (119 nm or more).
  • the super-resolution medium 1 of the first embodiment includes a data area 2 in which information is recorded by a first pit row including a pit P1 having a length shorter than 119 nm, and a pit having a length of 119 nm or more.
  • the super-resolution medium 1 is reproduced by a reproducing apparatus having the wavelength ⁇ of the reproducing light and the numerical aperture NA of the objective lens.
  • FIG. 7 is a view showing the appearance of the super-resolution medium 101
  • FIG. 8 is an enlarged view of part b of the super-resolution medium 101
  • FIG. 9 is a diagram showing a state in which the reproduction light L is irradiated to a part of the data area 102 (near the longest space S101max). Note that the playback apparatus that plays back the super-resolution medium 101 is the same as that used in the first embodiment.
  • the basic structure of the super-resolution medium 101 is the same as that of the super-resolution medium 1 except that the shape of the pit P101 (space S101) in the data area 102 is different from the shape of the pit P1 (space S1) in the data area 2. is there. That is, the shape and arrangement of the pits P102 in the medium information area 103 are the same as the shape and arrangement of the pits P2 shown in FIG. 6A, and “R2T ′” and “R8T ′” shown in FIG. These correspond to “R2T” and “R8T”, respectively.
  • the super-resolution medium 101 records the data area 102 in which content is recorded and information about the super-resolution medium 101, as in the super-resolution medium 1.
  • a medium information area 103 is allocated in advance.
  • a plurality of pits P101 and P102 and a plurality of spaces S102 and S102 formed between the pits have a predetermined track pitch. It is formed so as to form a row in the circumferential direction.
  • the length D2T ′ of the shortest pit P101min (2T pit, not shown) is 0.112 ⁇ m
  • the length D8T ′ of the longest pit P101max (8T pit) is 0.448 ⁇ m. It is.
  • the length of the longest space S101max (8T space) is also 0.448 ⁇ m. That is, in this comparative example, both the pits P101 and the spaces S101 have a duty of 50%.
  • the recording capacity of the data area 2 (equivalent recording capacity when the super-resolution medium 101 is a disk having a diameter of 120 mm) is 33.3 GB.
  • the reproduction light L is irradiated not only on the space S101 but also on a part of the pit P101. That is, the reflectance acquired by the playback device is reduced by the amount of irradiation to the pit P101. For this reason, the reflectance is lower than the reflectance obtained in the longest space S102max (not shown) of the medium information area 103, and in some cases, it is necessary to perform focus control again during the continuous reproduction. .
  • the data area 2 has the above-described duty (the length of the pit P1 and the space S1). That is, the duty of the pit P1 in the data area 2 is smaller than the duty of the pit P101 in the data area 102, and the length of the longest space S1max is irradiated with the reproduction light L as shown in FIG. It is larger than the area.
  • the reproduction light L is not irradiated to the pits P1 existing around the longest space S1max. Therefore, the reflectance obtained from the longest space S1max in the data area 2 and the longest space S2max in the medium information area 3 are used. Can be treated as the same in the reproducing apparatus. Therefore, the super-resolution medium 1 can quickly and surely reproduce the information recorded in the other area during the continuous reproduction.
  • FIGS. 10 and 11 are diagrams illustrating experimental results of one experimental example regarding the super-resolution medium 1.
  • FIG. In this experimental example appropriate values were verified as the lengths of the pits P1 and the spaces S1 in the data area 2.
  • this verification result is merely an example, and the allowable range is changed according to the reproduction status.
  • FIG. 10 shows the reflectivity of optical information recording media “Pit group A” to “Pit group D” having different pit lengths from ODU-1000 ( ⁇ : 405 nm, NA : 0.85), and shows the measurement result when the intensity of the reproduction light is 1.0 mW.
  • “Pit group A” is an optical information recording medium including a non-super-resolution area composed only of pits having a length equal to or longer than the optical system resolution limit.
  • the length of the shortest pit of “Pit group A” is 0.149 ⁇ m (duty 50% standard).
  • “Pit group B” to “Pit group D” are optical information recording media including a super-resolution area including at least one pit having a length shorter than the optical system resolution limit.
  • the length of the shortest pit of “Pit group B” to “Pit group D” is 0.112 ⁇ m (duty 50% standard).
  • the lengths of pits and spaces (pit and space duty) of “Pit group B”, “Pit group C”, and “Pit group D” are different from each other, and the pit lengths (pit duty) are decreasing in order. .
  • the duty of the pit in each optical information recording medium is ⁇ "Pit group B" ... 51.7% (duty 48.3% of space) ⁇ "Pit group C”: 50.3% (duty of space: 49.7%) ⁇ "Pit group D” ... 48.8% (duty of space: 51.2%) It has become.
  • Each optical information recording medium is formed by sequentially laminating a functional layer made of tantalum having a thickness of 12 nm and a cover layer made of a polycarbonate film and a transparent adhesive material having a thickness of 100 ⁇ m on a substrate. . Further, information is recorded on each optical information recording medium by the 1-7PP modulation recording method. That is, the length of the shortest pit (shortest space) is 2T, and the length of the longest pit (longest space) is 8T.
  • the longest pit and the longest space are formed so that the reflectance in each optical information recording medium is within a predetermined range in which the focus control can be performed.
  • the predetermined range can be said to be an allowable range of reflectance obtained from each optical information recording medium, which is treated as the same in the reproducing apparatus.
  • the predetermined range is a predetermined error range including both the reflectance obtained from the data area 2 and the reflectance obtained from the medium information area 3. In other words. Then, when these two reflectances are within the predetermined range, the two reflectances may be substantially the same.
  • the predetermined range includes (1) deformation of the substrate that occurs during manufacturing, (2) thickness distribution of the substrate, the information recording layer composed of the functional layer / reflective film, or the cover layer, and (3) the light source included in the reproducing device, detection Taking into account manufacturing variations of detectors (detectors) and the like, and (4) measurement errors during focusing between optical information recording media, it is preferably within about ⁇ 5% with respect to a predetermined reference.
  • the predetermined reference is preferably based on the reflectance applied to the longest space of the non-super-resolution medium. That is, when the super-resolution area (data area 2) and the non-super-resolution area (medium information area 3) are provided as in the super-resolution medium 1, the measured reflectance is non-super-resolution. It is preferably within about ⁇ 5% based on the reflectance of the region.
  • the reflectance (10.56%) of “Pit group A” is set as the predetermined reference, and the predetermined range (allowable range of reflectance) is 10.03% or more. 11.12% or less is set.
  • the measurement results of the reflectances of “Pit group B”, “Pit group C”, and “Pit group D” are “9.51%”, “10.27%”, and “10. 52% ". Further, the reflectances of the “Pit group C” and the “Pit group D” have a small difference from the reflectance of the “Pit group A”, and are within the predetermined range.
  • the reflectance obtained from the data area 2 is changed to the medium information area 3 that is the non-super-resolution area. If the reflectance is the same as that obtained from the reproduction device, the reproduction apparatus can handle it. That is, even in continuous reproduction of the data area 2 and the medium information area 3 having different information recording densities, there is no trouble in reproducing information due to a difference in reflectance such as defocusing, and stable information reproduction is possible. It can be carried out.
  • FIG. 11 shows the value of i-MLSE (Integrated-Maximum Likelihood Sequence Error Estimation) representing the reproduction signal quality in each optical information recording medium of “Pit group B”, “Pit group C”, and “Pit group D”. The result of having measured is shown.
  • i-MLSE Integrated-Maximum Likelihood Sequence Error Estimation
  • i-MLSE In order to suppress errors during reproduction and to reproduce information quickly, it is necessary to obtain good reproduction signal quality. Generally, the value of i-MLSE is required to be 15.5% or less.
  • the i-MLSE values of “Pit group B”, “Pit group C”, and “Pit group D” are “10.0%”, “10.5%”, “15. 2% ". From this measurement result, even if the shape of the pit P1 of the super-resolution medium 1 is changed to a value different from the pit duty of a general super-resolution medium, good information can be reproduced. I understand. That is, it can be understood that the super-resolution medium 1 can maintain the reproduction signal quality of a general super-resolution medium.
  • “Pit group C” and “Pit group D” are preferably applied as the data area 2 of the super-resolution medium 1. That is, when the 1-7PP modulation recording method is used, even if the duty of the pit P1 in the data area 2 is larger than the duty of the space, it should be smaller than the pit duty of a general super-resolution medium. It is understood that the pit duty of a general super-resolution medium is not necessarily 50%. Accordingly, in the super-resolution medium 1 having the data area 2 and the medium information area 3 having different information recording densities, the reflectance obtained from the data area 2 is the same as the reflectance obtained from the medium information area 3. Can be handled by the playback device, and good playback of information can be performed in the playback device.
  • the lengths of the pits P1 and the spaces S1 are shorter than the lengths of the pits P1 and the spaces S1 of the first embodiment corresponding to the pits P1 and the spaces S1. This is different from the first embodiment.
  • Other configurations for example, the pit shape of the medium information area 3) are the same as those in the first embodiment.
  • the longest space S1max is irradiated when the reproduction light L is irradiated to the longest space S1max.
  • a part of the pit P1 existing around S1max is also irradiated, and the obtained reflectance is lowered by the amount irradiated to the part.
  • the pit P1 is such that the reflectance obtained from the longest space S1max is the same as the reflectance obtained from the longest space S2max (see FIG. 6A) in the reproducing apparatus. Should just be formed.
  • the length of the longest space S1max is less than the diameter of the irradiation region of the reproduction light L, information can be reproduced without being out of focus during the continuous reproduction.
  • FIG. 12A is a diagram showing a state in which the reproduction light L is irradiated to a part of the data area 2 (near the longest space S1max) in one example of the super-resolution medium 1 of the present embodiment.
  • the length of the longest pit P1max (8T pit) is 0.339 ⁇ m, and the length of the longest space S1max (8T space) is 0. 413 ⁇ m. That is, the duty of the pit P1 is about 45%, the duty of the space S1 is about 55%, and the length of the shortest pit P1min (2T pit, not shown) in the data area 2 is about 0.085 ⁇ m ( ⁇ 0. 094 ⁇ m ⁇ 2 ⁇ 0.45).
  • the length of 0.094 ⁇ m is the length of the shortest pit P101min in the data area 102 in a comparative example described later. That is, the data area 2 of this embodiment is obtained by changing the duty of the data area 102 in the comparative example as described above.
  • the track pitch TpD of the data area 2 is 0.32 ⁇ m
  • the recording capacity of the data area 2 (equivalent recording capacity when the super-resolution medium 1 is a 120 mm diameter disk) is 40 GB. . That is, the recording capacity is increased because the length of the pit P1 and the length of the space S1 are shorter than those of the embodiment of the first embodiment.
  • the length of the longest space S1max is smaller than the diameter of the irradiation area of the reproduction light L.
  • FIG. 12B shows a state in which the reproduction light L is irradiated on a part of the data area 102 (near the longest space S101max) in the super-resolution medium 101 as a comparative example of the super-resolution medium 1 of the present embodiment.
  • FIG. 12B shows a state in which the reproduction light L is irradiated on a part of the data area 102 (near the longest space S101max) in the super-resolution medium 101 as a comparative example of the super-resolution medium 1 of the present embodiment.
  • the length of the shortest pit P101min (2T pit, not shown) in the data area 2 is 0.094 ⁇ m, and the track pitch TpD in the data area 2 is 0.32 ⁇ m. It is.
  • the length of the longest pit P1max (8T pit) and the length of the longest space S1max (8T space) are both 0.376 ⁇ m. That is, both the pit P101 and the space S101 have a duty of 50%.
  • the recording capacity of the data area 2 (equivalent recording capacity when the super-resolution medium 101 is a disk having a diameter of 120 mm) is 40 GB.
  • the size of the pit P1 in this embodiment is smaller than the size of the pit P101 corresponding to the pit P1 in the comparative example. That is, the duty of the pit P1 of this embodiment is smaller than the duty of the pit P101 of the comparative example. Therefore, the ratio of a part of the pits P1 included in the irradiation region to the irradiation region of the reproduction light L in the present embodiment is included in the irradiation region with respect to the irradiation region of the reproduction light L in the comparative example. It is smaller than the ratio occupied by a part of the pit P101.
  • the reflectance obtained from the longest space S1max of the data region 2 can be increased as compared with the comparative example.
  • the reflectance obtained from the longest space S1max in the data area 2 can be treated as the same as the reflectance obtained from the longest space S2max in the medium information area 3 in the reproducing apparatus.
  • the recording capacity of the data area 2 can be increased.
  • FIG. 13 is a diagram illustrating an experimental result of one experimental example regarding the super-resolution medium 1.
  • appropriate values are verified as the lengths of the pits P1 and the spaces S1 in the data area 2.
  • this verification result is merely an example, and the allowable range is changed according to the reproduction status.
  • the evaluator used in this experimental example is the same as the evaluator used in the experimental example of the first embodiment.
  • the structures of the optical information recording media of “Pit group E” to “Pit group G” are “Pit group B” to “Pit group D” used in the experimental example of Embodiment 1 except for the shape of pits.
  • the optical information recording medium has the same structure. Therefore, detailed description thereof will be omitted.
  • FIG. 13 shows the reflectivity of optical information recording media “Pit group A”, “Pit group E” to “Pit group G” with different pit lengths, using a BD standard evaluator, and the intensity of reproduced light is 1 The result measured as 0.0 mW is shown.
  • “Pit group E” to “Pit group G” are optical information recording media including a super-resolution area including at least one pit having a length shorter than the length of the optical system resolution limit.
  • the length of the shortest pit of “Pit group E” to “Pit group G” is 0.094 ⁇ m (duty 50% standard).
  • the lengths of pits and spaces (pit and space duty) of “Pit group E”, “Pit group F”, and “Pit group G” are different from each other, and the pit lengths (pit duty) are decreasing in order. . Further, when the reproduction light L is irradiated to the longest space of “Pit group E” to “Pit group G”, the reproduction light L is also irradiated to a part of the pit.
  • the measurement results of the reflectances of “pit group E”, “pit group F”, and “pit group G” are “9.85%”, “10.37%”, and “10. 40% ". Further, the reflectances of the “pit group F” and the “pit group G” are small in difference from the reflectance of the “pit group A”, and are within the predetermined range.
  • the reproduction apparatus can handle it.
  • the size of the pit P1 is made smaller than that of the example of the first embodiment. As a result, when the reproduction light L is irradiated to the longest space S2max, the reproduction light L is irradiated to the pit P1. However, by reducing the duty of the pit P1, it becomes possible to handle the reflectance in the reproducing apparatus. That is, the recording capacity of the super-resolution medium 1 can be increased.
  • FIG. 14 is a diagram showing the polarities of the pits P1 and P2.
  • the super-resolution medium 1 of this embodiment is different from that of Embodiment 1 (in-pit) in that convex pits P1 and P2 are formed on a substrate 4 (formed in an on-pit format). Format).
  • Other configurations are the same as those in the first embodiment.
  • FIG. 15 is a diagram illustrating an example of the super-resolution medium 1
  • FIG. 15A is a diagram illustrating a state in which the reproduction light L is irradiated to a part of the medium information region 3 (near the longest space S2max).
  • B is a figure which shows the state by which the reproducing light L was irradiated to a part (near longest space S1max) of the data area 2.
  • FIG. 15 is a diagram illustrating an example of the super-resolution medium 1
  • FIG. 15A is a diagram illustrating a state in which the reproduction light L is irradiated to a part of the medium information region 3 (near the longest space S2max).
  • B is a figure which shows the state by which the reproducing light L was irradiated to a part (near longest space S1max) of the data area 2.
  • FIG. 15A is a diagram illustrating a state in which the reproduction light L is irradiated to a part of the medium information region
  • the super-resolution medium 1 in the present embodiment is the same as the embodiment shown in FIG. 6 except that the shapes of the pits P1 and P2 are convex. Therefore, as shown in FIG. 15A, when the reproduction light L is irradiated to the longest space S2max of the medium information area 3, the reproduction light L is not irradiated to the pit P2. Further, as shown in FIG. 15B, even when the reproduction light L is irradiated to the longest space S1max of the data area 2, unlike the general super-resolution medium, the reproduction light is applied to the pit P1. L is not irradiated.
  • the reflectance obtained from the longest space S1max of the data area 2 and the longest space S2max of the medium information area 3 are the same as in the first embodiment.
  • the obtained reflectance can be treated as the same in the reproducing apparatus.
  • the super-resolution medium 1 has a configuration in which the track pitch TpD of the data area 2 of the super-resolution medium 1 in the second embodiment is narrowed.
  • FIG. 16 is a diagram showing a state in which the reproduction light L is irradiated to a part of the data region 2 (near the longest space S1max).
  • the length of the longest pit P1max (8T pit) is 0.301 ⁇ m
  • the length of the longest space S1max (8T space) is 0.451 ⁇ m.
  • the duty of the pit P1 is about 40%
  • the duty of the space S1 is about 60%
  • the length of the shortest pit P1min (2T pit, not shown) in the data area 2 is about 0.075 ⁇ m ( ⁇ 0. 094 ⁇ m ⁇ 2 ⁇ 0.40).
  • the length of 0.094 ⁇ m is the length of the shortest pit P101min of the data area 102 in the comparative example of the second embodiment as described in the example of the second embodiment. That is, the data area 2 of this embodiment is obtained by changing the duty of the data area 102 in the comparative example as described above.
  • the track pitch TpD of the data area 2 is 0.29 ⁇ m
  • the recording capacity of the data area 2 is 44 GB. .
  • the recording capacity is further increased.
  • the length of the longest space S1max is smaller than the diameter of the irradiation area of the reproduction light L formed on the super-resolution medium 1.
  • the super-resolution medium 101 as a comparative example of the present example has the same structure as that of the comparative example of the second embodiment, the description thereof is omitted here.
  • a state in which the reproduction light L is irradiated on a part of the data area 102 (near S101max) of the super-resolution medium 101 is shown in FIG. Note that the track pitch of the data region 102 is 0.32 ⁇ m.
  • the size of the pit P1 in this example is smaller than the size of the pit P101 corresponding to the pit P1 in the comparative example.
  • the track pitch TpD is narrowed, there is a possibility that the reproduction light L irradiated to the longest space S1max is irradiated to the pit P1 of the adjacent track. Therefore, in this case, the reflectance may be reduced. Therefore, in this example, the duty of the pit P1 is made smaller than the pit P1 in the example of the second embodiment.
  • the reproduction light L can be avoided from irradiating the pit P1 of the adjacent track, so that the influence of the decrease in the track pitch TpD on the measured reflectance of the pit P1 of the adjacent track can be eliminated. it can.
  • the reproducing apparatus can handle the reflectance obtained from the data area 2 as being the same as the reflectance obtained from the medium information area 3.
  • the track pitch TpD and the size of the pit P1 in the data area 2 in this embodiment are smaller than the track pitch and the size of the pit P101 in the comparative example, so the number of track pitches is larger than that in the comparative example. And the number of pits increases. Therefore, the recording capacity can be increased as compared with the comparative example. Further, since the size of the track pitch TpD and the pit P1 in the data area 2 in the example of the second embodiment is smaller, the recording capacity can be further increased.
  • the duty of the longest pit P1max may be smaller than the duty of the longest pit of a general super-resolution medium, and the duty of other pits P1 may be the same as the pit duty of a general super-resolution medium. . That is, only the duty of the longest space S1max may be larger than the longest space of a general super-resolution medium.
  • the shortest pit (shortest space) or a pit conforming thereto (space conforming to it) occupies most of the influence on the reproduction signal quality, and the longest pit or the longest space has little influence on the reproduction signal quality.
  • the shortest pit is a 2T pit
  • the corresponding pit is a 3T pit
  • the shortest space is a 2T space
  • the corresponding pit is a 3T space.
  • the reproduction signal quality can be further improved by making only the longest pit or the longest space duty smaller than that of a general super-resolution medium. In other words, it is possible to reproduce information better.
  • the duty of the pit P1 may be the same as that of a general super-resolution medium, and the width of the pit P1 may be shorter than that of a general super-resolution medium. The depth may be reduced.
  • the reproduction light L irradiated to the longest space S1max is also irradiated to a part of the pit P1 existing in the vicinity of the longest space S1max.
  • the width of the pit P1 is short, a ratio of a part of the pit P1 to the irradiation region formed by the reproduction light L can be reduced as compared with a general super-resolution medium.
  • the depth of the pit P1 is shallow, the reflectance obtained from a part of the pit P1 can be made closer to the reflectance obtained from the longest space S1max as compared with the case of a general super-resolution medium. .
  • the reflectance obtained from the data area 2 can be brought close to the reflectance value obtained from the medium information area 3 and can be treated as the same in the reproducing apparatus.
  • the shape of the pit P1 only needs to be set so that the size of the longest space S1max that substantially determines the reflectance in the data region 2 satisfies the above (1) and (2).
  • FIG. 17 shows a schematic configuration of the playback apparatus 10 according to the present embodiment.
  • the playback apparatus 10 of the present embodiment can play back both the super-resolution medium 1 of any of the first to fourth embodiments and the normal medium.
  • the reproducing apparatus 10 includes a laser control circuit 14, a signal processing circuit / control unit 17 (signal processing means), a servo processing circuit 18 (servo processing means), a spindle motor 19, and an optical pickup 20 (reproducing light irradiation means). ), An optical pickup motor 21 is provided.
  • the optical pickup 20 irradiates the super-resolution medium 1 or the normal medium with reproduction light, and includes a polarization beam splitter 12, a laser light source 13, and a detector 15.
  • the optical information recording medium 11 in the figure may be a super-resolution medium 1 or a normal medium.
  • the reproducing apparatus 10 rotates the optical information recording medium 11 by the spindle motor 19 and moves the optical pickup 20 to a predetermined position by the optical pickup motor 21.
  • the intensity of the reproduction light emitted from the laser light source 13 by the laser control circuit 14 is set to a predetermined intensity, and the reproduction light is emitted from the laser light source 13.
  • the reproduction light is irradiated onto the optical information recording medium 11 via the polarization beam splitter 12, and the reflected light from the optical information recording medium 11 reaches the detector 15 via the polarization beam splitter 12.
  • the detector 15 outputs an electrical signal based on the reflected light that has arrived, and the electrical signal is sent to the servo processing circuit 18 to perform various servo controls (for example, focusing servo and tracking servo).
  • the electric signal is sent to the signal processing circuit / control unit 17.
  • the signal processing circuit / control unit 17 Based on the electrical signal, the signal processing circuit / control unit 17 issues a drive instruction to the optical pickup motor 21 or decodes and generates reproduction data and outputs it to an external device (for example, a display device).
  • FIG. 18 shows the configuration of the signal processing circuit / control unit 17.
  • the signal processing circuit / control unit 17 decodes a reproduction signal waveform such as reproduction data obtained by the optical pickup 20 irradiating the reproduction light to the data area 2 by the PR (12221) ML system.
  • a signal processing unit 22, a medium identification unit 23, and an access position control unit 24 are provided.
  • the signal processing unit 22 processes the electric signal indicating the medium identification information sent from the optical pickup 20 and gives it to the medium identification unit 23.
  • the medium identification unit 23 identifies the optical information recording medium 11 based on the electric signal indicating the medium identification information given by the signal processing unit 22. Also, the electric signal indicating the content sent from the optical pickup 20 is decoded as reproduction data and output to the external device.
  • the access position control unit 24 controls the optical pickup motor 21 so that the optical pickup 20 accesses a desired position of the optical information recording medium 11.
  • the access position control unit 24 identifies the optical information recording medium 11 by the medium identification unit 23. It is desirable to control the access position based on the above.
  • a tracking servo technique in the servo processing circuit 18 will be described.
  • a tracking servo method there is a method using a detector that receives reflected light from the detector 15 at least in two and a phase difference is generated in a detection signal from the divided detector.
  • tracking becomes unstable in a high recording density area (data area 2) where the equivalent recording capacity of a disk having a diameter of 120 mm is, for example, 45 GB or more, and continuous from the medium information area 3 to the data area 2. This may cause the playback to fail. For this reason, in the data area 2, it is necessary to change the tracking servo method.
  • the PP method in the 3-beam method, the PP method, the DPP method, or the like, since a sufficient tracking error signal can be obtained even in a region where the recording density is high, tracking can be performed stably.
  • a servo processing circuit 18 such as a 3-beam method, a PP method, or a DPP method
  • a servo processing circuit 18 that can track both the data area 2 and the medium information area 3 in the servo processing circuit 18, as in the super-resolution medium 1. Even when the recording density of one area is higher than the recording density of the other area, the information recorded in these two areas having different recording densities can be reproduced quickly and reliably. .
  • the signal processing circuit / control unit 17 preferably includes a reproduction clock control unit or a reproduction speed control unit (both not shown).
  • the reproduction clock control unit reproduces the signal processing unit 22 based on the identification result of the optical information recording medium 11 by the medium identification unit 23.
  • the clock is used as it is (that is, a reproduction clock suitable for a normal medium) or switched to a reproduction clock suitable for the super-resolution medium 1.
  • the reproduction speed control unit controls the spindle motor 19 based on the identification result of the optical information recording medium 11 by the medium identification unit 23 to keep the reproduction speed as it is (that is, a reproduction speed suitable for a normal medium), or Then, the playback speed is switched to a playback speed suitable for the super-resolution medium 1.
  • the signal processing circuit / control unit 17 may be provided with a reproduction speed information acquisition unit (reproduction speed information acquisition means) (not shown).
  • the reproduction speed information acquired by the reproduction speed information acquisition unit is output to the reproduction clock control unit or the reproduction speed control unit, so that the optical information loaded in the reproduction apparatus 10 even if the medium identification unit 23 is not provided.
  • a reproduction clock and reproduction speed suitable for the recording medium 11 can be realized.
  • the signal processing circuit / control unit 17 preferably includes a power control unit (not shown).
  • the power control unit When the power control unit is provided, the power control unit directly uses the intensity of the reproduction light emitted from the laser light source 13 based on the identification result of the optical information recording medium 11 by the medium identification unit 23 (that is, the normal medium). Or the laser control circuit 14 is controlled to switch to the reproduction light intensity suitable for the super-resolution medium 1.
  • the signal processing circuit / control unit 17 may be provided with a reproduction light intensity information acquisition unit (reproduction light intensity information acquisition means) (not shown).
  • the reproduction light intensity information acquired by the reproduction light intensity information acquisition unit is output to the power control unit, so that even if the medium identification unit 23 is not provided, the optical information recording medium 11 loaded in the reproduction apparatus 10 is recorded. Reproduction light having suitable intensity can be emitted.
  • the signal processing circuit / control unit 17 preferably includes a polarity identification unit (polarity identification means) (not shown).
  • the signal processing unit 22 processes the electrical signal (polarity identification signal) indicating the polarity information sent from the optical pickup 20 and gives the signal to the polarity identification unit.
  • the polarity identification unit identifies the polarity of the pits of the optical information recording medium 11 based on the polarity identification signal given by the signal processing unit 22.
  • the servo processing circuit 18 performs tracking servo based on the identification result of the polarity of the pits of the optical information recording medium 11 by the polarity identification unit.
  • the signal processing circuit / control unit 17 includes an area position information recognition unit (area position information recognition unit) and an information reproduction condition control unit (information reproduction condition control unit).
  • the signal processing unit 22 processes an electrical signal (data area position signal) indicating the data area position information sent from the optical pickup 20, This is given to the region position information recognition unit.
  • the area position information recognition unit recognizes the position of the data area of the optical information recording medium 11 based on the data area position signal given by the signal processing unit 22.
  • the information reproduction condition control unit switches to an information reproduction condition suitable for the data region based on the recognition result of the data region position by the region position information recognition unit. That is, the information reproduction condition control unit controls the laser control circuit 14 and / or the spindle motor 19 to switch to the reproduction light intensity and / or reproduction speed suitable for the super-resolution medium 1.
  • the optical pickup motor 21 is controlled by the access position control unit 24 of the signal processing circuit / control unit 17, and the reproduction light from the laser light source 13 is reproduced.
  • the medium information area which is the access position of the optical information recording medium 11 at the initial stage of reproduction is irradiated with the intensity of the reproduction light for the normal medium determined in advance for the initial use.
  • the medium identification information indicating whether or not it is in the form is processed by the signal processing unit 22 of the signal processing circuit / control unit 17 via the detector 15, and the optical information recording medium 11 is identified by the medium identification unit 23. .
  • the data area 2 is accessed, and the contents of the data area 2 are reproduced as reproduction data via the detector 15 and the signal processing unit 22.
  • PRML Partial-Response-Maximum-Likelihood decoding
  • the modulation recording method of information recorded in the data area 2 is, for example, an MFM (Modified FrequencyModulation) modulation recording system
  • information recording is performed with 1T, 1.5T, and 2T pits and spaces.
  • the degree of freedom of the shape of the pit P1 that can be selected for limiting the reflectance to be substantially the same as the reflectance of the medium information area 3 is limited, and there is a possibility that good reproduction signal quality cannot be maintained.
  • information recording is performed with pits and spaces from 2T to 8T.
  • the amount of reflected light is determined mainly by the length of the 8T space that has little influence on the reproduction signal quality. For this reason, when the 1-7PP modulation recording method is adopted in the information recording of the super-resolution medium 1, the degree of freedom of the shape of the selectable pit P1 can be increased, and the production of the super-resolution medium 1 is easy. Can be.
  • the PR (12221) ML system is adopted as the decoding system of the signal processing unit 22. That is, in the reproduction method of the present embodiment, a reproduction signal waveform such as reproduction data obtained by irradiating the data region 2 with reproduction light is decoded by the PR (12221) ML system. Thereby, the reproducing apparatus 10 can cope with the super-resolution medium 1 having a high degree of freedom in the shape of the pits P1 that can be selected, and information can be reproduced with high reliability while maintaining good reproduction signal quality.
  • the decoding method of the signal processing unit 22 is not limited to the PR (12221) ML method, and any decoding method that can decode information recorded in the super-resolution medium 1 by a predetermined modulation method may be used.
  • a decoding method such as a binary detection method or a PR (1221) ML method may be used.
  • the optical information recording medium 11 is identified by the medium identifying unit 23 and the identification result of the optical information recording medium 11 is a normal medium, the intensity of the reproduction light and the reproduction clock are not switched, and the normal medium is recorded.
  • the data area is accessed.
  • the power control unit controls the laser control circuit 14 based on the identification result to obtain the predetermined super-resolution medium 1. It is possible to adjust the reproduction light intensity to a suitable level. Along with this adjustment, the reproduction clock control unit can change the reproduction clock to a predetermined reproduction clock for the super-resolution medium 1 based on the identification result.
  • the pits P1 and P2 recorded in the medium information area 3 of the super-resolution medium 1 are in the in-pit format or on-pit format.
  • the pit polarity information indicating whether or not is reproduced.
  • the pit polarity signal indicating the pit polarity information is sent to the signal processing unit 22 via the detector 15 and processed by the signal processing unit 22, and then the polarity identification unit identifies the polarity of the pits P1 and P2. .
  • the servo processing circuit 18 selects a servo process suitable for tracking servo of the super-resolution medium 1 based on the identification result of the polarity of the pits P1 and P2 by the polarity identification unit.
  • the data area position information indicating the position of the data area 2 recorded in the medium information area 3 is reproduced.
  • the data area position signal indicating the data area position information is sent to the signal processing unit 22 via the detector 15, processed by the signal processing unit 22, and then the area position information recognition unit recognizes the position of the data area 2. Is done.
  • the data area 2 is accessed with the reproduction light intensity for the super-resolution medium 1, and the information reproduction condition control unit performs the data area 2 based on the recognition result of the position of the data area 2 by the area position information recognition unit.
  • the information reproduction condition control unit controls the laser control circuit 14 or / and the spindle motor 19 to switch to reproduction light intensity or / and reproduction speed suitable for the data area 2.
  • the content of the data area 2 is reproduced as reproduction data via the detector 15 and the signal processing unit 22.
  • the signal processing circuit / control unit 17 may be provided with a reproduction speed information acquisition unit.
  • the identification result by the medium identification unit 23 is the super-resolution medium 1
  • a reproduction signal indicating reproduction speed information is reproduced from the reproduction speed information acquisition unit via the detector 15 and the signal processing unit 22.
  • the playback clock may be changed to a predetermined playback clock for the super-resolution medium 1 based on the playback signal.
  • the medium identification information may not include the reproduction light intensity information.
  • the signal processing circuit / control unit 17 may be provided with a reproduction light intensity acquisition unit.
  • a reproduction signal indicating reproduction light intensity information is transmitted through the detector 15 and the signal processing unit 22 to a reproduction light intensity information acquisition unit.
  • To the power control unit and the laser control circuit 14 is controlled to adjust the reproduction light intensity suitable for the super-resolution medium 1 determined in advance based on the reproduction signal.
  • the playback apparatus 10 identifies whether the loaded optical information recording medium is the super-resolution medium 1 or not. Can be performed easily and accurately with low reproduction light intensity. Thereby, the reproducing apparatus 10 can reproduce both the super-resolution medium 1 and the normal medium. In addition, since the above identification can be performed with the low reproduction light intensity for the normal medium, the power consumption of the reproduction apparatus 10 can be suppressed, and the normal medium is destroyed with the reproduction light intensity for the super-resolution medium 1. There is no end.
  • the reproducing apparatus 10 can handle the reflectance obtained from the data area 2 and the reflectance obtained from the medium information area 3 as the same. Therefore, during the continuous playback, the playback device 10 can perform information playback in the other area without performing control again for control that can be maintained in the other area among the playback controls in one area. .
  • the reason why the playback device 10 preferably switches the playback clock between the super-resolution medium 1 and the normal medium is that the playback-only normal medium is the playback clock for the normal medium and the playback for the super-resolution medium 1.
  • the playback-only normal medium is the playback clock for the normal medium and the playback for the super-resolution medium 1.
  • each information is recorded on the normal medium by the 1-7PP modulation method. That is, pits having a length from the shortest pit 2T to the longest pit 8T are provided on the substrate with reference to the length T of the channel bit.
  • reproduction of an optical information recording medium is performed by irradiating the pits provided on the substrate with reproduction light and performing PRML decoding on the result obtained by sampling the output signal obtained from the reflected light with the reproduction clock. Is done.
  • FIG. 19A shows a state in which the normal medium is sampled by the reproduction clock for the normal medium and PRML decoded, and the output signal corresponds to the pits on the lower side of the figure.
  • FIG. 19B shows a state in which the above-mentioned normal medium is sampled by the reproduction clock for the super-resolution medium 1 and PRML decoded, and the output signal corresponds to the pit on the lower side of the figure. .
  • the normal medium is reproduced with a reproduction clock for the super-resolution medium 1
  • the super-resolution medium 1 has a linear density twice that of the normal medium.
  • the reproduction clock width for the super-resolution medium 1 is half of the reproduction clock width for the normal medium.
  • the PRML-decoded signal is “1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 0 ⁇ 0” as shown in FIG. ⁇ 0 ⁇ 0 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ .
  • the signal “1 ⁇ 1 ⁇ 1 ⁇ 1” is set to 2T pits and “1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1”. It becomes necessary to process the signal “1 ⁇ 1 ⁇ 1” as 4T pits, which complicates the circuit.
  • the reproducing apparatus 10 preferably switches the reproduction clock between the super-resolution medium 1 and the normal medium.
  • the reproduction clock switching information is recorded by a pit P2 having a length longer than the optical system resolution limit length of the reproduction apparatus 10. For this reason, reproduction can be performed with a reproduction clock for a normal medium, and useless switching of the reproduction clock is not required.
  • the circuit load becomes large, such as two reference oscillators. Therefore, instead of switching the playback clock, the playback speed may be switched.
  • the reproduction speed when the super-resolution medium 1 has a linear density twice that of a normal medium, when the reproduction speed is switched and the speed is halved, the speed at which the reproduced signal is transferred is equivalent to that of the normal medium. Therefore, even if the reproduction clock is not switched, the above-described problem that the reproduction reliability is lowered does not occur. Therefore, instead of switching the reproduction clock, the reproduction speed may be switched.
  • the circuit load can be reduced compared with the configuration in which the reproduction clock is switched, but the transfer speed of the super-resolution medium 1 is not different from that of the normal medium. Conversely, in the case of a configuration in which the reproduction clock is switched, the information transfer rate of the super-resolution medium 1 can be increased.
  • the reproducing apparatus 10 preferably switches the reproducing light intensity between the super-resolution medium 1 and the normal medium.
  • the super-resolution medium has a higher intensity than the reproduction light intensity for normal media. 1, it is necessary to reproduce information recorded in at least the data area 2.
  • the possibility that the deterioration of the normal medium is accelerated can be prevented by reproducing the normal medium with the reproduction light intensity for the normal medium.
  • the reproduction light intensity information is recorded by pits P2 having a length longer than the length of the optical system resolution limit of the reproduction apparatus 10. For this reason, in the super-resolution medium 1, the reproduction light intensity information can be reproduced with the reproduction light intensity for the normal medium, so that unnecessary switching of the reproduction clock is not required.
  • the reason why it is preferable for the playback apparatus 10 to identify the polarities of the pits P1 and P2 will be described.
  • the reproducing apparatus 10 performs tracking servo using the PP method, the DPP method, or the like
  • the sign of the tracking error signal differs depending on the polarity of the pits P1 and P2. Therefore, when the polarities of the pits P1 and P2 are not identified, the tracking error signal when the reproduction light irradiation position is in an on-track state is the tracking error signal related to the distance from the center of the super-resolution medium 1.
  • the value of the first derivative is the amplitude center of the tracking error signal that is positive or the amplitude center of the tracking error signal that is negative. Therefore, in this case, for example, it is necessary to confirm whether or not the reflected light amount varies due to the presence of the pits P1 and P2 to confirm whether or not the on-track state is present.
  • the reproducing apparatus 10 identifies the polarity of the pits P1 and P2 based on the pit polarity information recorded on the super-resolution medium 1, the tracking servo can be quickly performed on the super-resolution medium 1. it can. Furthermore, the degree of freedom of the tracking servo technique can be increased, and the reproduction apparatus 10 can be easily produced.
  • the information recorded in the data area 2 and the medium information area 3 can be reproduced with good quality and the load on the optical pickup 20 can be reduced.
  • the control block (particularly the signal processing circuit / control unit 17) of the reproducing apparatus 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). And may be realized by software.
  • the playback device 10 includes a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only Memory) in which the above-described program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • a computer or CPU
  • the recording medium a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the optical information recording medium (super-resolution medium 1) is: A first area in which information is recorded by a first pit row including a pit having a length shorter than the length of the optical system resolution limit of the reproduction apparatus; An optical information recording medium having a recording layer assigned with a second area in which information is recorded by a second pit row composed of pits having a length equal to or longer than the optical system resolution limit length, The reflectance calculated from the reflected light amount obtained from the longest pit or the longest space in the first pit row is calculated from the reflected light amount obtained from the first reflectance and the longest pit or the longest space in the second pit row.
  • the first pit row is formed such that the first reflectance is substantially the same as the second reflectance.
  • information is recorded in the first area by the first pit row including a pit having a length shorter than the length of the optical system resolution limit of the reproducing apparatus.
  • information is recorded by a second pit row composed of pits having a length equal to or longer than the optical system resolution limit.
  • the recording density of information in the optical information recording medium varies depending on the length of the shortest pit.
  • the pits forming the first pit row and the pits forming the second pit row are different from each other.
  • the recording densities of information in the first area and the second area are different from each other.
  • the first pit row is formed so that the first reflectance is substantially the same as the second reflectance.
  • the first reflectance and the second reflectance are not substantially the same during continuous reproduction between the areas, for example, the size of the irradiation area formed by the reproduction light on the optical information recording medium.
  • the possibility of changing can be reduced. Therefore, information can be reproduced promptly and reliably without performing focus control again during the continuous reproduction.
  • a second pit row composed of pits having a length longer than the optical system resolution limit of the reproducing apparatus is formed. Therefore, the information recorded in the second area can be reproduced with the intensity of reproduction light suitable for reproducing information on a normal medium.
  • various information information regarding a super-resolution medium, such as medium identification information, reproduction speed information, a medium specific number, is mentioned, for example.
  • the first reflectance is substantially the same as the second reflectance
  • the second reflectance means that the first area and the second area of the optical information recording medium (super-resolution medium 1) or the reproducing apparatus are mutually connected.
  • the reproduction apparatus has such a size that the two reflectances can be treated as the same without providing different reflectance specifications.
  • the optical information recording medium according to aspect 2 of the present invention is the aspect 1, Of the plurality of first spaces (space S1) formed between the plurality of pits forming the first pit row, the longest first space is the longest first space (longest space S1max), Of the plurality of second spaces (space S2) formed between the plurality of pits forming the second pit row, the longest second space is the longest second space (longest space S2max).
  • the first pit row is preferably formed so that the reflectance in the longest first space is substantially the same as the reflectance in the longest second space.
  • the first pit row is formed in the first region so that the reflectance in the first longest space is substantially the same as the reflectance in the longest second space. Therefore, information can be reproduced quickly and reliably even during the continuous reproduction.
  • an optical information recording medium is the aspect 2
  • the length of the longest first space is preferably equal to or greater than the diameter of an irradiation area formed on the optical information recording medium by the reproduction light emitted from the reproduction apparatus.
  • the first reflectance is a reflectance derived only from the longest first space.
  • the second reflectance is a reflectance derived only from the longest second space.
  • the optical information recording medium provides: Reproduced by a reproducing apparatus having a reproduction light wavelength ( ⁇ ) of 405 nm and an objective lens numerical aperture (NA) of 0.85, A first area in which information is recorded by a first pit row including pits having a length shorter than 119 nm; An optical information recording medium having a recording layer to which information is recorded by a second area in which information is recorded by a second pit row composed of pits having a length of 119 nm or more, The reflectance calculated from the reflected light amount obtained from the longest pit or the longest space in the first pit row is calculated from the reflected light amount obtained from the first reflectance and the longest pit or the longest space in the second pit row.
  • the first pit row is formed such that the first reflectance is substantially the same as the second reflectance.
  • reproduction is performed by the super-resolution technique in the first area, and non-super-resolution technique is performed in the second area.
  • Can be played by changing the intensity or the like of the reproduction light, reproduction is performed by the super-resolution technique in the first area, and non-super-resolution technique is performed in the second area.
  • optical information recording medium according to Aspect 5 of the present invention is any one of Aspects 1 to 4,
  • the first pit row is preferably formed using a 1-7PP modulation recording system.
  • the information recording density can be increased as compared with the case where information is recorded using pits having the same length. Also, good signal quality can be obtained.
  • an optical information recording medium is any one of Aspects 1 to 5
  • the second area preferably includes medium identification information for specifying the type of medium.
  • the medium identification information can be reproduced with the intensity of reproduction light suitable for reproducing information on a normal medium. Therefore, the optical information recording medium can be identified as a super-resolution medium by using the intensity of reproduction light suitable for information reproduction on a normal medium.
  • An optical information recording medium reproducing method is the optical information recording medium reproducing method according to aspect 5, It is preferable to decode the reproduction signal waveform obtained by irradiating the first region with the reproduction light by the PR (12221) ML method.
  • reproduction corresponding to an optical information recording medium having a high degree of freedom in the shape of the pits forming the first pit row in the first region that is, an optical information recording medium that is easy to produce can be performed.
  • information can be reproduced with high reliability while maintaining good reproduction signal quality.
  • an optical information recording medium reproducing device is an optical information recording medium reproducing device capable of reproducing the optical information recording medium of aspect 5.
  • Reproduction light irradiation means for irradiating the optical information recording medium with reproduction light Preferably, the reproduction light irradiating means includes signal processing means for decoding a reproduction signal waveform obtained by irradiating the first region with the reproduction light by a PR (12221) ML system.
  • the reproducing apparatus can cope with an optical information recording medium having a high degree of freedom in the shape of the pits forming the first pit row in the first region, that is, an optical information recording medium that is easy to produce, Information can be reproduced with high reliability while maintaining good reproduction signal quality.
  • the optical information recording medium (super-resolution medium) according to the present invention is suitable for various optical disks such as an optical readable disk, a magneto-optical disk, and a phase change disk.
  • the present invention can also be applied to an information recording medium having a recording mark having a length shorter than the image limit length.
  • the reproducing method and reproducing apparatus according to the present invention can be applied to the method and apparatus for reproducing the optical information recording medium according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

 第1ピット列の最長ピット(P1max)、または、最長スペース(S1max)から得られる反射光量から算出される反射率を第1反射率、第2ピット列の最長ピット(P2max)、または、最長スペース(S2max)から得られる反射光量から算出される反射率を第2反射率とした場合、第1ピット列は、第1反射率が第2反射率と略同一となるように形成されている。

Description

光情報記録媒体、再生方法、及び再生装置
 本発明は、情報が記録可能な光情報記録媒体、並びに、その再生方法および再生装置に関する。
 近年、高画質映像等の膨大な情報を保存するために、光情報記録媒体の大容量化、即ち記録密度を高めることが求められている。そこで、再生装置が有する光学系解像限界の長さより短い長さを有するピットを含むピット列によって情報が高密度記録された光情報記録媒体(超解像媒体)を、上記光学系解像限界以下の長さを有するピットを含まないピットからなるピット列によって情報が記録された光情報記録媒体(通常媒体)を再生する場合の再生光強度(再生レーザパワー)よりも高い再生光強度で再生する超解像技術が提案されている。なお、光学系超解像限界は、再生装置が出射する再生光の波長をλ、対物レンズの開口数をNAとした場合、λ/4NAとなる。
 上記超解像媒体の例として、特許文献1が挙げられる。特許文献1には、光学系解像限界の長さより短い長さを含むピット(凹及び/または凸)によりコンテンツが記録された第1領域と、媒体の種類を特定するための媒体識別情報がピットにより記録された第2領域とが割り当てられた光情報記録媒体が開示されている。また、この光情報記録媒体では、上記媒体識別情報を形成するピットが、光学系解像限界の長さ以上で形成されている。これにより、超解像媒体の媒体識別時に、通常媒体の情報再生に適した再生レーザパワーで超解像媒体であることを識別させることができる。
国際公開第2007/100139号(2007年9月7日公開)
 しかしながら、特許文献1の光情報記録媒体では、第1領域に形成されたピットの長さ及びピット間隔と、第2領域に形成されたピットの長さ及びピット間隔とが互いに異なっている。すなわち、第1領域における情報の記録密度と、第2領域における情報の記録密度に差異が生じている。
 この場合、第1領域から得られる反射率と、第2領域から得られる反射率との間に、再生装置がこれらの反射率を略同一とみなすことができない差異が生じる可能性がある。この差異が生じた場合には、一方の領域の情報再生と、他方の領域の情報再生とが連続して行われた場合には、他方の領域においてフォーカスが外れてしまうなどの現象が生じる可能性がある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、情報の再生品質を向上させることが可能な光情報記録媒体、及び、該光情報記録媒体を再生可能な再生装置等を実現することである。
 上記の課題を解決するために、本発明の一態様に係る光情報記録媒体は、
 再生装置が有する光学系解像限界の長さより短い長さのピットを含む第1ピット列により情報が記録された第1領域と、
 上記光学系解像限界の長さ以上の長さを有するピットからなる第2ピット列により情報が記録された第2領域と、が割り当てられた記録層を有する光情報記録媒体であって、
 上記第1ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第1反射率、上記第2ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第2反射率とした場合、
 上記第1ピット列は、上記第1反射率が上記第2反射率と略同一となるように形成されている。
 本発明の一態様によれば、情報の再生品質を向上させることができるという効果を奏する。
本発明の一実施形態に係る超解像媒体のピットの形状について説明するための図であり、(a)はデータ領域におけるピット形状の一例を示す図であり、(b)は(a)に示す最長スペースを含む一点鎖線内に照射された再生光から得られる信号強度を示す図である。 上記超解像媒体の外観を示す斜視図である。 上記超解像媒体における基板の要部構成を示す平面図である。 上記超解像媒体の構造を示す断面図である。 上記超解像媒体が備えるピットの極性を示す図である。 上記超解像媒体の一実施例を示す図であり、(a)は媒体情報領域の一部(最長スペース近傍)に再生光が照射された状態を示す図、(b)はデータ領域の一部(最長スペース近傍)に再生光が照射された状態を示す図である。 上記超解像媒体の比較例としての超解像媒体の外観を示す斜視図である。 上記比較例としての超解像媒体における基板の要部構成を示す平面図である。 上記比較例としての超解像媒体のデータ領域の一部(最長スペース近傍)に再生光Lが照射された状態を示す図である。 上記超解像媒体に関する一実験例の実験結果を示す図である。 上記超解像媒体に関する一実験例の実験結果を示す図である。 本発明の別の一実施形態に係る超解像媒体の一実施例と、当該超解像媒体の比較例とを示す図であり、(a)は上記一実施例におけるデータ領域の一部(最長スペース近傍)に再生光が照射された状態を示す図であり、(b)は上記比較例におけるデータ領域の一部(最長スペース近傍)に再生光Lが照射された状態を示す図である。 上記超解像媒体に関する一実験例の実験結果を示す図である。 本発明のさらに別の一実施形態に係る超解像媒体が備えるピットの極性を示す図である。 上記超解像媒体の一実施例を示す図であり、(a)は媒体情報領域の一部(最長スペース近傍)に再生光が照射された状態を示す図であり、(b)はデータ領域の一部(最長スペース近傍)に再生光が照射された状態を示す図である。 本発明のさらに別の一実施形態に係る超解像媒体の一実施例におけるデータ領域の一部(最長スペース近傍)に再生光が照射された状態を示す図である。 本発明のさらに別の一実施形態に係る再生装置の一例を示すブロック図である。 上記再生装置の信号処理回路・制御部の概略構成の一例を示すブロック図である。 (a)は、通常媒体を通常媒体に適した再生クロックでサンプリングし、PRML復号した場合のピットと出力信号との関係を示す図であり、(b)は、通常媒体を超解像媒体に適した再生クロックでサンプリングし、PRML復号した場合のピットと出力信号との関係を示す図である。
 〔実施形態1〕
 本発明の一実施形態に係る光情報記録媒体について、図1~図11を用いて説明すると以下の通りである。なお、本実施形態では、再生専用媒体で、断面構造がBD(Blu-ray Disc:登録商標)タイプの超解像領域を有する光情報記録媒体(以下、超解像媒体1とする)を例として説明するが、これに限られない。超解像媒体1としては、例えば、情報の記録が可能な光情報記録媒体であってもよいし、DVDタイプであってもよい。
 〔超解像媒体1の構造〕
 図2は、本実施形態に係る超解像媒体1の外観を示している。図2に示すように、円盤状の媒体である超解像媒体1は、例えば映像やソフトウェアなどのコンテンツが記録されているデータ領域2(第1領域)と、例えば超解像媒体1に関する情報が記録されている媒体情報領域3(第2領域)とが予め割り当てられた記録層を有している。
 また、図3は、図2に示す超解像媒体1のa部を拡大して示している。図3に示すように、データ領域2および媒体情報領域3には、複数のピットP1(第1ピット列のピット)、ピットP2(第2ピット列のピット)と、当該ピットP1間、ピットP2間のそれぞれに形成された複数のスペースS1(第1スペース)、スペースS2(第2スペース)とが、所定のトラックピッチTpD、TpR(所定の間隔)ごとに、周方向に列をなすように形成されている。換言すれば、データ領域2には、ピットP1及びスペースS1によって第1ピット列が形成されており、媒体情報領域3には、ピットP2及びスペースS2によって第2ピット列が形成されている。
 データ領域2および媒体情報領域3の情報記録には、形状および大きさが異なるピットP1、P2およびスペースS1、S2を用いて情報を記録可能なマークエッジ記録方式が採用されている。本実施形態では、そのうちの1-7PP(1-7 Parity Preserve/Prohibit RMTR(Repeated Minimum Transition Run Length))と呼ばれる変調記録方式(記録符号化方式)が用いられている。すなわち、この方式では、(1,7)RLL変調(Run Length Limited)の1種である変調方式によって、ピットP1、P2が形成されている。例えばBDにおいては、2T~8Tのピット(または記録マーク)及びスペースによって、情報が記録される。本実施形態では、便宜上、データ領域2のピットP1の長さを「D2T~D8T」と表現し、媒体情報領域3のピットP1の長さを「R2T~R8T」と表現する場合がある。
 なお、上記変調は、元情報(変調前の情報)のビット列パターンに依存することなく所定の周波数帯域幅(即ち、複数種類で制限された記録マークとスペースとの組み合わせ)を有した記録パターンへと元情報のビット列パターンを変換すると共に、最短の記録マークまたはスペースの長さを元情報のそれらの長さよりも拡大することで、記録密度を増大させるものである。1-7PP変調記録方式の場合、元情報の2ビット単位が3チャネルビット単位に変換され、変換後の記録パターンとして2チャネルビット(2T)から8チャネルビット(8T)までの長さに制限された記録マークとスペースとに変調されることで、周波数帯域幅を制限する。これと共に、最短の記録マーク及びスペースの長さは、元情報のそれらの長さの1.5倍の長さとなる。それゆえ、1-7PP変調記録方式による変調は高密度記録に好適である。なお、変調方式は1-7PP変調に限られるものではなく、1-7PP変調以外の(1,7)RLL変調の他、8/16変調、(2,7)RLL変調等の他の高密度記録に適した変調方式を用いてもよい。
 (データ領域2)
 データ領域2は、図2に示すように、媒体情報領域3の間に割り当てられ、基板成型時にピットP1を設けることにより、上記コンテンツが記録されている。このピットP1は、図3におけるD2T~D8Tの長さを有するピットであり、最短ピットP1minの長さD2Tが、再生装置の有する光学系解像限界よりも短い。すなわち、再生装置が有する光学系解像限界より短い長さのピットP1も含めて上記コンテンツを記録するため(超解像記録形態)、通常媒体より高密度な記録が可能となっている。
 なお、D8Tの長さを有するピットが、データ領域2に形成された複数のピットP1のうち、最長である最長ピットP1maxである。また、複数のピットP1の間に形成された複数のスペースS1のうち、最短であるスペースS1が最短スペースS1min(不図示)であり、最長であるスペースS1が最長スペースS1max(最長第1スペース)(図1の(a)参照)である。
 (媒体情報領域3)
 媒体情報領域3は、図2に示すように、超解像媒体1の最内周部と最外周部とに予め割り当てられ、超解像媒体1に関する情報がピットP2によって記録されている(通常記録形態)。このピットP2は、図3におけるR2T~R8Tの長さを有するピットP2であり、最短ピットP2minの長さR2Tが、再生装置が有する光学系解像限界以上である。すなわち、媒体情報領域3の全ピットP2の長さは、データ領域2の上記最短ピットP1minの長さより長く、媒体情報領域3における情報の記録密度は、データ領域2よりも低い。
 なお、R8Tの長さを有するピットが、媒体情報領域3に形成された複数のピットP2のうち、最長である最長ピットP2maxである。また、複数のピットP2の間に形成された複数のスペースS2のうち、最短であるスペースS2が最短スペースS2min(不図示)であり、最長であるスペースS2が最長スペースS2max(最長第2スペース)(図6の(a)参照)である。
 また、媒体情報領域3は、超解像媒体1の内周及び外周に設けられているが、これに限定されるものではなく、内周及び外周のいずれかに割り当てられていてもよい。
 以上のように、超解像媒体1は、いわゆる超解像技術を用いた光情報記録媒体である。そして、データ領域2は、超解像技術により情報が再生される超解像領域であり、媒体情報領域3は、超解像技術を用いずに情報が再生される非超解像領域である。
 (媒体情報領域3の記録情報例)
 超解像媒体1に関する情報には、超解像媒体1を特定するための媒体識別情報、データ領域2における位置を特定するための領域位置情報、データ領域2および媒体情報領域3に記録されているデータを管理するためのデータ管理情報等が含まれる。
 上記媒体識別情報には、光情報記録媒体の種類(BD、DVD等、または、再生専用型、追記型、書換え型等)、記録容量を示す情報などのディスクタイプ識別情報、及び/または、個々の光情報記録媒体を識別(超解像媒体1を識別)するための個体識別情報(コピープロテクトのための媒体固有番号)などが含まれる。
 また、上記超解像媒体1に関する情報には、再生速度情報、再生光強度情報、極性情報、及び/または、領域位置情報が含まれていることが好ましい。また、媒体識別情報は、再生速度情報、及び再生光強度情報を含んでいても良い。
 上記再生速度情報には、映像情報等のコンテンツをシームレスに再生するために必要となる再生速度が示されている。また、上記再生速度情報には、超解像媒体1に適切な再生光(再生レーザ)を照射した場合に、デジタル信号化可能なアナログ波形を得るために必要な再生速度範囲情報、コンテンツ等を再生するために再生されたアナログ波形をデジタル信号化するときに必要なデジタル処理情報、または、その組み合わせなどが含まれている。
 上記再生速度範囲情報は、超解像再生が熱によって可能になる場合に、再生速度が速すぎると熱が不足し超解像再生が不可能になり、遅すぎると発生する熱エネルギーが増大しすぎて媒体にダメージを与えてしまうため、超解像再生により安定にアナログ波形を得るために、再生速度を規定する情報である。
 なお、再生速度とは、再生時の線速度(媒体再生時にスピンドルモータによって光情報記録媒体が回転することによって生じる、光学ヘッド(再生光照射)位置と光情報記録媒体の再生位置との相対速度)のことを指す。
 上記デジタル処理情報には、例えば、再生クロック切替情報、再生速度切替情報、またはその組み合わせなどが含まれる。これらの情報は、例えば1-7PP変調方式で記録され、かつ、記録密度が互いに異なるデータ領域2および媒体情報領域3に記録された情報を再生した場合、得られるアナログ波形をデジタル信号化する場合に必要となる情報である。
 上記再生光強度情報には、超解像媒体1に再生光(再生レーザ)を照射した場合に、デジタル信号化可能なアナログ波形を得るために必要な再生光強度範囲情報などが含まれる。超解像再生が熱によって可能になる場合、再生光強度が低すぎると熱が不足し超解像再生が不可能になり、高すぎると発生する熱エネルギーが増大しすぎて媒体にダメージを与えてしまい、かつ、再生装置に負担がかかってしまう。再生光強度範囲情報は、超解像再生により、再生装置に過度な負担をかけることなく安定したアナログ波形を得るために、再生光強度を規定する情報である。
 上記極性情報には、超解像媒体1の再生光を入射する側に対して、ピットP1、P2が凹形状(インピット形式)であるか、または、凸形状(オンピット形式)であるかを表すピット極性情報などが含まれる。例えばトラッキングサーボをプッシュプル(PP(Push-Pull))法や差動プッシュプル(DPP(Differential Push-Pull))法などを用いて行う場合、ピットP1、P2の極性によってトラッキング誤差信号の正負が異なる。ピット極性情報は、再生光の照射位置がトラックの中心にある状態(オントラック状態)である場合のトラッキング誤差信号が、超解像媒体1の中心からの距離に関するトラッキング誤差信号の一次微分の値が正となるトラッキング誤差信号の振幅中心であるのか、または、負となるトラッキング誤差信号の振幅中心であるのか、を直ちに判別可能とする情報である。
 上記領域位置情報には、超解像媒体1におけるデータ領域2の位置を表すデータ領域位置情報などが含まれる。データ領域位置情報としては、データ領域2における情報の再生開始位置及び/または再生終了位置を表す情報、媒体情報領域3における情報の再生開始位置及び/または再生終了位置を表す情報、または、その組み合わせが挙げられる。データ領域位置情報は、例えば記録密度が互いに異なるデータ領域2と媒体情報領域3とにおいて、それぞれ適した情報再生条件が異なり、かつ、再生装置がデータ領域2と媒体情報領域3とを連続して再生する場合、これら2つの領域ごとに設定された情報再生条件へと切り替えるために再生装置において必要となる情報である。
 なお、情報再生条件とは、再生光強度、再生速度、または、トラッキングサーボの手法などのうち、再生装置が光情報記録媒体に記録された情報を再生するために設定が必要となる条件のことを指す。
 (超解像媒体1の具体的構造)
 次に、超解像媒体1の具体的構造について説明する。図4は、超解像媒体1の断面図を示す。また、図5は、ピットP1、P2の極性を示す図である。
 図4に示すように、超解像媒体1は、再生装置から出射された再生光Lが入射される側から順に、カバー層6、機能層5及び基板4が設けられている。
 基板4は、例えば、直径約120mm、厚さ約1.1mmのポリカーボネート(PC)からなり、基板4の、再生光Lが入射する側には、図5に示すように、凹形状のピットP1、P2によって各種情報が記録されている(インピット形式)。すなわち、基板4に形成された凹部がピットP1、P2である。なお、ピットP1、P2は、凸形状からなっていてもよく、凹形状及び凸形状からなっていてもよい。すなわち、ピットP1、P2は、凹及び/または凸からなっていればよい。なお、ピットP1、P2が凸形状からなる場合(オンピット形式)の構造については、実施形態3にて説明する。
 カバー層6は、例えば、厚さ約100μmの紫外線硬化樹脂(例えば、再生光Lの波長λ=405nmにおける屈折率1.50)からなる。カバー層6の材質は、再生光Lの波長において透過率の高いものであればよく、例えばポリカーボネートからなるフィルム(ポリカーボネートフィルム)と透明粘着材とで形成されていてもよい。
 機能層5は、超解像現象を発生させるための層であり、基板4上に、例えばスパッタリングにより形成されている。機能層5は、例えば、厚さ約12nmのタンタル(Ta)からなる。機能層5は、2種類以上の膜から構成されていてもよく、この場合例えば、再生光Lを吸収可能な、厚さ約8nmのタンタルからなる吸光膜と、厚さ約50nmの酸化亜鉛(ZnO)からなる超解像再生膜とから構成されていてもよい。この場合、情報の記録密度を高めることができる。
 また、機能層は、2層以上の機能層5から構成されていてもよい。この場合には、各々の機能層5の間に中間層が設けられていてもよい。中間層の材質としては、例えば紫外線硬化樹脂が挙げられるが、これに限らず、再生光Lの波長において透過率の高いものであればよい。また、各中間層の、再生光Lが入射する側に少なくともピットP1が形成されてもよい。この場合、超解像媒体1の記録容量をさらに高めることができる。
 この機能層5が設けられていることにより、データ領域2のピットP1によって記録された情報が再生可能となる。機能層5が薄い金属膜等からなる場合、機能層5の温度変化によって光学系解像限界の長さより短い長さのピットの信号が再生可能となる。また、機能層5が、吸光膜と超解像再生膜とからなる場合、ピットP1に再生光を照射すると、超解像媒体1上に再生光の照射領域(レーザスポット)が形成され、当該照射領域内に、光強度分布により生じる温度分布によって、透過率の分布が生じる。その結果、上記照射領域が擬似的に縮小した状態となり、これにより、ピットP1によって記録された情報が再生可能となり、通常媒体より多くの情報を記録することができる。
 (各領域のピット形状)
 次に、図1を用いて、超解像媒体1のピットP1の形状(大きさ)について説明する。図1の(a)はデータ領域2におけるピットの形状の一例を示し、図1の(b)は(a)に示す最長スペースS1maxを含む一点鎖線内に照射された再生光Lから得られる信号強度を示す図である。本実施形態では、ピット(記録マーク)の長さと、当該ピット(例えば8Tピット)に対応するスペース(例えば8Tスペース)の長さとの比を「duty」と表現し、その比が1:1の場合を「duty50%」と表現する。
 このピット及びスペースの長さ(duty)は、再生装置によって再生可能な範囲内で増減可能である。本発明者らは、この増減可能であることに着目し、超解像領域と非超解像領域とを備えた超解像媒体において、ピット及びスペースの長さを変更することによって超解像領域における反射率の向上を図り、ひいては、当該超解像媒体における情報の再生品質の向上を図ることができることを見出した。
 上記再生品質の向上を実現するために、超解像媒体1では、ピットP1は、データ領域2における反射率(第1反射率)が、媒体情報領域3における反射率(第2反射率)と略同一となるように、データ領域2に形成されている。換言すれば、ピットP1を含む、データ領域2に形成された第1ピット列は、上記第1反射率が上記第2反射率と略同一となるように形成されている。さらに換言すれば、データ領域2には、超解像媒体1または再生装置に対して、データ領域2及び媒体情報領域3に互いに異なる反射率の規定を設けることなく、再生装置が上記2つの反射率を略同一と扱えるように、ピットP1が形成されている。
 なお、本実施形態の反射率とは、例えば再生装置が出射した再生光が、記録トラック(トラック)へのトラッキング時に、最長ピットまたは最長スペースに照射されることにより、上記再生装置のディテクタで得られる、記録層からの最大の反射光量から算出される値の、再生光の強度に対する割合のことである。なお、上記反射率は上記割合に限定されず、再生光の強度に対する記録層からの反射光の強度の割合などであってもよい。
 すなわち、本実施形態の超解像媒体1においては、上記第1反射率(データ領域2から得られる反射率)とは、第1ピット列の最長ピットP1maxまたは最長スペースS1maxから得られる反射光量から算出される反射率を指す。一方、上記第2反射率(媒体情報領域3から得られる反射率)とは、第2ピット列の最長ピットP2maxまたは最長スペースS2maxから得られる反射光量から算出される反射率を指す。なお、最長ピットまたは最長スペースから得られる反射光量とは、当該最長ピットまたは最長スペースに再生光Lが反射することによって生じる反射光の光量とも換言できる。
 ここで、記録層とは、通常媒体または超解像媒体において情報が記録されている層のことであり、再生専用の光情報記録媒体ではピットと反射層とからなる。反射層とは、通常媒体または超解像媒体に記録された情報を再生可能とする基板とカバー層との間に設けられた層である。この反射層は、超解像媒体では機能層のことを指し、通常媒体では、例えば、厚さ数十nmの金属または金属合金などからなる。
 より具体的には、図1の(a)に示すように、超解像媒体1におけるピットP1(同図の実線の楕円形状)の大きさは、一般的な超解像媒体におけるピットP1’(同図の破線の楕円形状)の大きさよりも一回り小さくなるように形成されている。すなわち、ピットP1のdutyが、スペースS1のdutyよりも小さくなる(すなわち、一般的な超解像媒体のピットP1’のdutyよりも小さくなる)ように、ピットP1が形成されている。なお、この一般的な超解像媒体の一例として、図9に示す比較例としての超解像媒体が挙げられ、この場合ピットP1’は図9に示すピットP101に相当する。
 本実施形態では、超解像媒体1のピットP1と、一般的な超解像媒体のピットP1’とは相似形となっている。すなわち、ピットP1は、dutyの変更に伴って、半径方向の長さも周方向の長さと同様に変更となる。例えば、duty50%のときのピットの長さ(ピットP1’)が0.448μm、幅が0.112μmである場合に、duty45%に変更した場合には、ピット(ピットP1)の長さは0.404μm、幅が0.101μmとなる。しかし、少なくとも周方向の長さが変更されればよく、幅については、例えばピットP1’の長さと同一であってもよい。
 ここで、上述したように、超解像媒体1では、データ領域2は、光学系解像限界の長さより短い長さを含む複数のピットP1により情報が記録された超解像領域であり、媒体情報領域3は、光学系解像限界の長さ以上の長さを有する複数のピットP2により情報が記録された非超解像領域である。
 一般に、ピット長およびスペース長(ピット間隔)は、情報記録に用いられる変調記録方式によってそれぞれの上限値が規定されるため、最短ピットの長さに応じて、光情報記録媒体における情報の記録密度が異なる。上述の1-7PP変調記録方式の場合、最短ピット長が2Tとなり、最長ピット長が最短ピット長の4倍の8Tとなる。
 すなわち、超解像媒体1においてはピットP1、P2の長さが互いに異なるので、データ領域2および媒体情報領域3において上記情報の記録密度が互いに異なる。この場合、仮にピットP1とスペースS1との長さ、及び、ピットP2とスペースS2との長さがそれぞれ同じ(duty50%)であるとした場合には、再生装置が取得する、データ領域2の所定位置における反射率と、媒体情報領域3の所定位置における反射率との間に、再生装置がこれらの反射率を同一とみなすことができない差異が生じる可能性がある。なお、これらの所定位置とは、各領域において互いに対応する位置であり、例えばデータ領域2および媒体情報領域3のそれぞれにおける最長ピットどうし(最長ピットP1maxとP2max)、または最長スペースどうし(最長スペースS1maxとS2max)等を指す。
 また一般に、再生装置では、反射率を用いてフォーカス制御等の各種制御が行われる。そのため、上記差異が生じた場合には、一方の領域(例えばデータ領域2)の情報再生と、他方の領域(例えば媒体情報領域3)の情報再生とが連続して行われた場合に、例えば、他方の領域において、光情報記録媒体上に形成される再生光の照射領域の大きさが変わり(フォーカスが外れてしまい)、領域が変更されるたびに、再生装置が再度のフォーカス制御を行うことが必要となる可能性がある。
 超解像媒体1では、データ領域2と媒体情報領域3とで記録密度の差異が生じているが、図1の(a)に示すように、一般的な超解像媒体のピットP1’とは異なる形状を有する(形状が限定された)ピットP1がデータ領域2に形成されている。そのため、上記記録密度の差異があっても、データ領域2から得られる反射率が、媒体情報領域3から得られる反射率と同一である超解像媒体1として再生装置に扱わせることができる。これら2つの反射率が略同一であることについて、図1の(b)を用いて説明する。
 図1の(b)は、図1の(a)に示すデータ領域2の最長スペースS1maxに再生光Lが照射されたときの、超解像媒体1と一般的な超解像媒体との信号強度の違いを示すものである。同図においては、図1の(a)に示す周方向位置x1~x2の範囲の信号強度が示されている。また、Tは、非超解像領域(例えば媒体情報領域3)に再生光Lを照射したときの信号強度の最大値を示し、Tは信号強度0を示しており、T-Tの値に比例した値が反射率として測定される。
 図1の(b)に示すように、一般的な超解像媒体が示す信号強度(同図の破線)の最大値はTよりも小さい。一方、超解像媒体1の場合(同図の実線)には、Tと略同一の値となっている。すなわち、超解像媒体1から得られる反射率は、一般的な超解像媒体から得られる反射率よりも大きく、かつ非超解像領域から得られる反射率と略同一となっている。
 図1の(a)に示すように、一般的な超解像媒体のスペースに再生光Lが照射された場合、再生光Lは、当該スペースだけでなくピットP1’にも照射される。一般に、ピットから得られる信号強度は、スペースから得られる信号強度よりも小さくなるため、ピットP1’に照射された分だけ信号強度が小さくなる。
 一方、超解像媒体1では、上述のように、dutyを調整して、ピットP1の長さよりも当該ピットP1に対応するスペースS1の長さの方が大きくなるように、ピットP1が形成されている。すなわち、ピットP1は、図1の(a)に示すように、最長スペースS1maxの長さが、再生光Lが超解像媒体1上に形成した照射領域(図1の(a)の円形部分)の直径以上となるように、データ領域2に形成されている。
 そのため、最長スペースS1maxに照射された再生光LがピットP1には照射されない(または、ほとんど照射されない)ので、信号強度が小さくなる可能性をほとんど排除できる。それゆえ、非超解像領域である媒体情報領域3(最長スペースS2max)から得られる信号強度とほぼ同じ信号強度、つまり反射率を得ることができる。
 以上のように、超解像媒体1では、ピットP1が上記のような形状(大きさ)を有しているため、一方の領域の情報再生に連続した他方の領域の情報再生(各領域間における連続再生)時に、各領域における反射率が略同一ではない(再生装置において同一と扱えない程度の差異が生じる)ために生じる可能性、例えば光情報記録媒体上に形成される再生光の照射領域の大きさが変わるといった可能性を低減させることができる。そのため、上記連続再生時においても、再度のフォーカス制御を行うことなく、迅速かつ確実に情報再生を行うことが可能となる。
 すなわち、上記連続再生時に、一方の領域の再生制御のうち、他方の領域において維持可能な制御については再度の制御を行うことなく、他方の領域の情報再生を行うことが可能となり、情報の再生品質を向上させることができる。
 また、1-7PP変調記録方式においては、光情報記録媒体に再生光が照射されたときに得られる反射光の光量(反射光量)は、隣接トラックのピットも多少の影響を及ぼすが、主として、最長スペースの長さによって決まる。また、反射光量の増加に伴って反射率が増加する。
 そこで、超解像媒体1では、上述のように、最長スペースS1maxの長さが、上記照射領域の直径以上となるように、ピットP1をデータ領域2に形成することにより、最長スペースS1maxの反射率を高めている。すなわち、ピットP1は、最長スペースS1maxにおける反射率が、最長スペースS2max(図6の(a)参照)における反射率と略同一となるように、データ領域2に形成されている。
 なお、最長スペースS1maxの長さは、再生光Lのスポットの直径以上である必要は必ずしもない。すなわち、データ領域2から得られる反射率が媒体情報領域3から得られる反射率と略同一であれば(例えば、再生装置が、データ領域2(最長スペースS1max)から得られる反射率を、媒体情報領域3(最長スペースS2max)から得られる反射率と同一であるとみなすことが可能な範囲内であれば)、上記直径未満であってもよい。その一例については、実施形態2において説明する。
 また、他の変調記録方式が用いられた場合には、最長スペースS1maxから得られる反射率を基準として、データ領域2の反射率を向上させるためにピットP1の形状(duty)を設定する必要は必ずしもなく、例えば最長ピットP1maxから得られる反射率を基準に当該ピットP1の形状が設定されてもよい。
 ところで、超解像媒体1の基板4に設けられているピットP1およびピットP2は、例えばカッティングマシンにより作製された原盤に対して射出成型を行うことにより製造されるが、原盤作製時にかかる時間を増加させないことを考慮すると、ピットP1およびピットP2は連続して形成されることが好ましい。しかしながら、ピットP1、P2の長さが互いに異なるだけでなく、ピットP1の長さはピットP1’の長さとも異なる。ゆえに、ピットP1とピットP2との形成条件としては、ピットP1及びピットP2を形成する速度だけでなく、データ領域2及び媒体情報領域3のライトストラテジも互いに異なるので、データ領域2及び媒体情報領域3の境界部分付近におけるピットP1およびピットP2は、ピットP1とピットP2との中間的な形状のピットとなり、正しく情報が再生できない可能性がある。そこで、データ領域2と媒体情報領域3との境界部分から所望の範囲を中間領域として設けることが好ましい。この場合、中間領域には、超解像媒体1に関する情報やコンテンツなどの情報の再生に影響を与えない所定の情報が、ピットP1及び/またはピットP2により記録されていてもよい。
 〔実施例〕
 次に、本実施形態の超解像媒体1の一実施例について、図6を用いて説明する。図6は、超解像媒体1の一実施例を示す図であり、(a)は媒体情報領域3の一部(最長スペースS2max近傍)に再生光Lが照射された状態を示す図、(b)はデータ領域2の一部(最長スペースS1max近傍)に再生光Lが照射された状態を示す図である。
 本実施例における超解像媒体1の大きさ、各層の厚み、材質は上述したとおりである。媒体情報領域3のトラックピッチTpR、及びデータ領域2のトラックピッチTpDは、0.32μmである。なお、媒体情報領域3のトラックピッチTpRは、0.35μmであってもよい。また、本実施例では、1-7PP変調記録方式を用いて情報が記録されている。
 図6の(a)に示すように、媒体情報領域3は、最長ピットP2max(8Tピット)及び最長スペースS2max(8Tスペース)の長さが0.596μmである。すなわち、ピットP2及びスペースS2のdutyがともに50%となっており、媒体情報領域3の最短ピットP2min(2Tピット、不図示)の長さは0.149μmである。
 一方、図6の(b)に示すように、データ領域2は、最長ピットP1max(8Tピット)の長さが0.404μmであり、最長スペースS1max(8Tスペース)の長さが0.492μmである。すなわち、ピットP1のdutyが約45%、スペースS1のdutyが約55%となっており、データ領域2の最短ピットP1min(2Tピット、不図示)の長さは0.101μm(≒0.112μm×2×0.45)である。
 なお、0.112μmという長さは、後述の比較例におけるデータ領域102の最短ピットP101minの長さである。すなわち、比較例におけるデータ領域102のdutyを上記のように変更したものが、本実施例のデータ領域2である。
 また、媒体情報領域3の記録容量は25GBであり、データ領域2の記録容量は33.3GBである(これらの記録容量は、超解像媒体1を直径120mmのディスクとしたときの相当記録容量である)。
 さらに、本実施例1の超解像媒体1を再生可能な再生装置が出射する再生光L(再生光学系の再生光L)の波長をλ、当該再生装置が備える対物レンズの開口数をNAとした場合に、再生装置の光学系解像限界は、λ/4NAで表される。本実施例1では、λ=405nm、NA=0.85であり、光学系解像限界はλ/4NA=0.119μm(=119nm)である。
 すなわち、本実施例1の超解像媒体1において、データ領域2は、ピットP1(スペースS1)の少なくとも1つの長さが光学系解像限界の長さ未満(119nm未満)となっている超解像領域である。一方、媒体情報領域3は、全てのピットP2(スペースS2)の長さが光学系解像限界の長さ以上(119nm以上)となっている非超解像領域となっている。換言すれば、本実施例1の超解像媒体1は、119nmより短い長さのピットP1を含む第1ピット列により情報が記録されたデータ領域2と、119nm以上の長さを有するピットからなる第2ピット列により情報が記録された媒体情報領域3と、が割り当てられた記録層を有している。そして、当該超解像媒体1は、上記再生光の波長λ及び対物レンズの開口数NAである再生装置によって再生される。
 〔比較例〕
 次に、本実施形態の比較例としての超解像媒体101について、図7~図9を用いて説明する。図7は、超解像媒体101の外観を示す図であり、図8は、超解像媒体101のb部を拡大して示している。また、図9は、データ領域102の一部(最長スペースS101max近傍)に再生光Lが照射された状態を示す図である。なお、超解像媒体101を再生する再生装置は、実施例1に用いられるものと同じである。
 超解像媒体101の基本構造は、データ領域102のピットP101(スペースS101)の形状がデータ領域2のピットP1(スペースS1)の形状と異なることを除いて、超解像媒体1と同様である。すなわち、媒体情報領域103におけるピットP102の形状および配置は、図6の(a)に示すピットP2の形状および配置と同じであり、図8に示す「R2T’」及び「R8T’」は、ぞれぞれ「R2T」及び「R8T」に対応する。
 具体的には、図7に示すように、超解像媒体101は、超解像媒体1と同様、コンテンツが記録されているデータ領域102と、超解像媒体101に関する情報が記録されている媒体情報領域103とが予め割り当てられている。また、図8に示すように、データ領域102および媒体情報領域103には、複数のピットP101、P102と、当該ピット間に形成された複数のスペースS102、S102とが、所定のトラックピッチで、周方向に列をなすように形成されている。
 データ領域102において、最短ピットP101min(2Tピット、不図示)の長さD2T’は0.112μmであり、図9に示すように、最長ピットP101max(8Tピット)の長さD8T’は0.448μmである。また、最長スペースS101max(8Tスペース)の長さも0.448μmである。すなわち、本比較例においては、ピットP101およびスペースS101のdutyはともに50%である。なお、データ領域2の記録容量(超解像媒体101を直径120mmのディスクとしたときの相当記録容量)は33.3GBである。
 〔比較例との対比〕
 比較例としての超解像媒体101では、図9に示すように、再生光LがスペースS101だけでなく、ピットP101の一部にも照射されている。すなわち、ピットP101への照射分だけ、再生装置が取得する反射率が低下する。そのため、当該反射率は、媒体情報領域103の最長スペースS102max(不図示)において得られる反射率よりも低い値となるため、場合によっては、上記連続再生時に再度のフォーカス制御を行う必要性が生じる。
 一方、上記実施例の超解像媒体1では、データ領域2は、上記のようなduty(ピットP1およびスペースS1の長さ)としている。すなわち、データ領域2のピットP1のdutyは、データ領域102のピットP101のdutyよりも小さくなっており、図6の(b)に示すように、最長スペースS1maxの長さが再生光Lの照射領域よりも大きくなっている。
 そのため、超解像媒体1では、再生光Lが最長スペースS1maxの周囲に存在するピットP1に照射されないので、データ領域2の最長スペースS1maxから得られる反射率と、媒体情報領域3の最長スペースS2maxから得られる反射率とを、再生装置において同一と扱うことができる。それゆえ、超解像媒体1では、上記連続再生時に、他方の領域に記録された情報を迅速かつ確実に再生することが可能となる。
 〔実験例〕
 次に、図10及び図11を用いて、本実施形態に係る超解像媒体1に関する一実験例について説明する。図10及び図11は、超解像媒体1に関する一実験例の実験結果を示す図である。この実験例では、データ領域2におけるピットP1及びスペースS1の長さ(duty)として適切な値を検証したものである。ただし、この検証結果は一例にすぎず、再生状況に応じてその許容範囲は変更される。
 図10は、ピットの長さが互いに異なる光情報記録媒体「Pit群A」~「Pit群D」の反射率を、BD標準の評価機であるパルステック製ODU-1000(λ:405nm、NA:0.85)で、再生光の強度を1.0mWとして測定した結果を示すものである。
 図10において、「Pit群A」は、光学系解像限界の長さ以上の長さを有するピットのみからなる非超解像領域を含む光情報記録媒体である。「Pit群A」の最短ピットの長さは0.149μm(duty50%基準)である。
 「Pit群B」~「Pit群D」は、光学系解像限界の長さより短い長さを有するピットを少なくとも1つ含む超解像領域を含む光情報記録媒体である。「Pit群B」~「Pit群D」の最短ピットの長さは、0.112μm(duty50%基準)である。
 「Pit群B」、「Pit群C」及び「Pit群D」のピット及びスペースの長さ(ピット及びスペースのduty)は互いに異なり、ピットの長さ(ピットのduty)が順に小さくなっている。各光情報記録媒体におけるピットのdutyは、
・「Pit群B」…51.7%(スペースのduty48.3%)
・「Pit群C」…50.3%(スペースのduty49.7%)
・「Pit群D」…48.8%(スペースのduty51.2%)
となっている。
 また、各光情報記録媒体は、基板上に、厚さ12nmのタンタルからなる機能層と、厚さ100μmの、ポリカーボネートフィルムと透明粘着材とからなるカバー層とが順に積層されて構成されている。さらに、各光情報記録媒体には、1-7PP変調記録方式にて情報が記録されている。すなわち、最短ピット(最短スペース)の長さは2T、最長ピット(最長スペース)の長さは8Tである。
 再生装置が安定したフォーカス制御を行うためには、各光情報記録媒体における反射率が当該フォーカス制御を行うことが可能な所定の範囲内となるように、最長ピット及び最長スペースが形成されている必要がある。上記所定の範囲とは、再生装置において同一と扱われる、各光情報記録媒体から得られる反射率の許容範囲といえる。本実施形態の超解像媒体1でいえば、上記所定の範囲が、データ領域2から得られる反射率と、媒体情報領域3から得られる反射率との両方が含まれる所定の誤差範囲であると換言することもできる。そして、これら2つの反射率が上記所定の範囲内である場合に、当該2つの反射率が略同一であるとしてもよい。
 上記所定の範囲は、(1)製造時に生じる基板の変形、(2)基板、機能層・反射膜からなる情報記録層、またはカバー層の膜厚分布、(3)再生装置が備える光源、検出器(ディテクタ)等の製造ばらつき、(4)各光情報記録媒体間でのフォーカス時の測定誤差等を考慮すると、所定の基準に対して約±5%以内であることが好ましい。
 また、上述のように、非超解像媒体の最長スペースは、当該媒体上に形成される再生光の照射領域よりも大きい。そのため、上記所定の基準は、非超解像媒体の最長スペースに照射した反射率を基準とすることが好ましい。すなわち、超解像媒体1のように、超解像領域(データ領域2)と非超解像領域(媒体情報領域3)とを備えている場合、測定される反射率は、非超解像領域の反射率を基準として約±5%以内であることが好ましい。
 本実験例では、図10に示すように、「Pit群A」の反射率(10.56%)を上記所定の基準とし、上記所定の範囲(反射率の許容範囲)が10.03%以上、11.12%以下に設定されている。
 図10に示すように、「Pit群B」、「Pit群C」及び「Pit群D」の反射率の測定結果は、それぞれ「9.51%」、「10.27%」、「10.52%」となった。また、「Pit群C」及び「Pit群D」の反射率は、「Pit群A」の反射率との差が小さく、上記所定の範囲内となった。
 この測定結果から、ピットのdutyが小さくなる(ピットの長さが短くなる)につれ、スペースのdutyが大きくなる(スペースの長さが長くなる)ため、最長スペース(8Tスペース)に照射したときの反射率も増加していることがわかる。また、「ピット群C」及び「ピット群D」の反射率は、上記所定の範囲となっているので、当該反射率と、「ピット群A」の反射率とは、再生装置において同一と扱えることがわかる。
 したがって、超解像媒体1では、超解像領域であるデータ領域2のピットP1の長さを小さくするほど、データ領域2から得られる反射率を、非超解像領域である媒体情報領域3から得られる反射率と同一であると再生装置に扱わせることができる。すなわち、情報の記録密度が互いに異なるデータ領域2及び媒体情報領域3の連続再生においても、フォーカスが外れる等の反射率の差異に伴う情報再生の支障が生じることがなく、安定した情報の再生を行うことができる。
 次に、図11は、「Pit群B」、「Pit群C」及び「Pit群D」の各光情報記録媒体における再生信号品質を表すi-MLSE(Integrated-Maximum Likelihood Sequence Error Estimation)の値を測定した結果を示す。
 再生時のエラーを抑制し、迅速に情報の再生を行うためには、良好な再生信号品質を得る必要があり、一般に、i-MLSEの値としては15.5%以下となることが要求される。
 図11に示すように、「Pit群B」、「Pit群C」及び「Pit群D」のi-MLSEの値は、それぞれ「10.0%」、「10.5%」、「15.2%」となった。この測定結果から、超解像媒体1のピットP1の形状を、一般的な超解像媒体のピットのdutyと異なる値となるように変更しても、良好な情報の再生を行うことができることがわかる。すなわち、超解像媒体1においても、一般的な超解像媒体の再生信号品質を維持できることがわかる。
 また、図10及び図11の測定結果から、超解像媒体1のデータ領域2としては、「Pit群C」及び「Pit群D」を適用することが好ましいことがわかる。すなわち、1-7PP変調記録方式を用いた場合、データ領域2のピットP1のdutyが、スペースのdutyよりも大きい場合であっても、一般的な超解像媒体のピットのdutyよりも小ければよいことがわかる(一般的な超解像媒体のピットのdutyが50%とは限らない)。これにより、情報の記録密度が互いに異なるデータ領域2及び媒体情報領域3を有する超解像媒体1において、データ領域2から得られる反射率を、媒体情報領域3から得られる反射率と同一であると再生装置に扱わせることができるとともに、再生装置において良好な情報の再生を行うことができる。
 〔実施形態2〕
 本発明の他の実施形態について、図12~図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態に係る超解像媒体1は、ピットP1及びスペースS1の長さが、当該ピットP1及びスペースS1に対応する実施形態1のピットP1及びスペースS1の長さよりも短くなっている点で、実施形態1とは異なる。それ以外の構成(例えば、媒体情報領域3のピット形状等)は、実施形態1と同様である。
 この場合、最長スペースS1maxの長さが、超解像媒体1上に形成された再生光Lの照射領域の直径よりも短くなるため、再生光Lが最長スペースS1maxに照射された場合、最長スペースS1maxの周囲に存在するピットP1の一部にも照射され、当該一部への照射分だけ、得られる反射率が低くなる。
 しかし、この場合であっても、最長スペースS1maxから得られる反射率が、最長スペースS2max(図6の(a)参照)から得られる反射率と再生装置において同一であると扱える程度に、ピットP1が形成されていればよい。これにより、最長スペースS1maxの長さが、上記再生光Lの照射領域の直径未満であっても、上記連続再生時に、フォーカスが外れることなく情報の再生を行うことが可能となる。
 〔実施例〕
 次に、本実施形態の超解像媒体1の一実施例について、図12を用いて説明する。図12の(a)は、本実施形態の超解像媒体1の一実施例におけるデータ領域2の一部(最長スペースS1max近傍)に再生光Lが照射された状態を示す図である。
 なお、本実施形態の超解像媒体1の媒体情報領域3に再生光Lが照射された状態は、図6の(a)と同じである。また、以下に述べる以外の構成についても、実施形態1における実施例の構成と同様である。したがって、これらの詳細な説明は省略する。
 本実施例では、図12の(a)に示すように、データ領域2は、最長ピットP1max(8Tピット)の長さが0.339μmであり、最長スペースS1max(8Tスペース)の長さが0.413μmである。すなわち、ピットP1のdutyが約45%、スペースS1のdutyが約55%となっており、データ領域2の最短ピットP1min(2Tピット、不図示)の長さは約0.085μm(≒0.094μm×2×0.45)である。
 なお、0.094μmという長さは、後述の比較例におけるデータ領域102の最短ピットP101minの長さである。すなわち、比較例におけるデータ領域102のdutyを上記のように変更したものが、本実施例のデータ領域2である。
 また、本実施例では、データ領域2のトラックピッチTpDは0.32μmであり、データ領域2の記録容量(超解像媒体1を直径120mmのディスクとしたときの相当記録容量)は40GBである。すなわち、実施形態1の実施例と比べ、ピットP1の長さ及びスペースS1の長さが短くなっているので、上記記録容量が増加している。また、最長スペースS1maxの長さは上記再生光Lの照射領域の直径よりも小さくなっている。
 〔比較例〕
 図12の(b)は、本実施形態の超解像媒体1の比較例としての超解像媒体101におけるデータ領域102の一部(最長スペースS101max近傍)に再生光Lが照射された状態を示す図である。
 なお、上記比較例の媒体情報領域103に再生光Lが照射された状態は、図6の(a)と同じである。また、以下に述べる以外の構成についても、実施形態1における比較例の構成と同様である。したがって、これらの詳細な説明は省略する。
 本実施形態の比較例に係る超解像媒体101では、データ領域2の最短ピットP101min(2Tピット、不図示)の長さは0.094μmであり、データ領域2のトラックピッチTpDは0.32μmである。
 また、図12の(b)に示すように、データ領域102は、最長ピットP1max(8Tピット)の長さ及び最長スペースS1max(8Tスペース)の長さは、ともに0.376μmである。すなわち、ピットP101及びスペースS101のdutyがともに50%となっている。なお、データ領域2の記録容量(超解像媒体101を直径120mmのディスクとしたときの相当記録容量)は40GBである。
 〔比較例との対比〕
 図12の(a)及び(b)に示すように、本実施例及び比較例においては、スペースS1max、S101maxに照射された再生光Lは、ピットP1、P101の一部にそれぞれ照射される。そのため、ピットP1、P101への照射分だけ、再生装置が取得する反射率が低下する。
 一方、本実施例のピットP1の大きさは、比較例の、当該ピットP1に対応するピットP101の大きさよりも小さい。すなわち、本実施例のピットP1のdutyは、比較例のピットP101のdutyよりも小さい。そのため、本実施例における、上記再生光Lの照射領域に対する、当該照射領域に含まれるピットP1の一部が占める割合は、比較例における、上記再生光Lの照射領域に対する、当該照射領域に含まれるピットP101の一部が占める割合よりも小さくなっている。
 したがって、本実施例では、比較例よりも、データ領域2の最長スペースS1maxから得られる反射率を高めることができる。そして、本実施例では、データ領域2の最長スペースS1maxから得られる反射率を、媒体情報領域3の最長スペースS2maxから得られる反射率と再生装置において同一であると扱うことができる。
 このように、超解像媒体1では、最長スペースS1maxの長さが再生光Lの照射領域の直径未満であっても、実施形態1と同様、上記連続再生時に、他方の領域の情報を迅速かつ確実に再生することが可能となる。
 また、実施形態1に比べ、ピットP1の形状が小さいため、データ領域2の記録容量を増加させることができる。
 〔実験例〕
 次に、図13を用いて、本実施形態に係る超解像媒体1に関する一実験例について説明する。図13は、超解像媒体1に関する一実験例の実験結果を示す図である。この実験例は、データ領域2におけるピットP1及びスペースS1の長さ(duty)として適切な値を検証したものである。ただし、この検証結果は一例にすぎず、再生状況に応じてその許容範囲は変更される。
 なお、本実験例において用いた評価機は、実施形態1の実験例において用いた評価機と同じである。また、「Pit群E」~「Pit群G」の各光情報記録媒体の構造は、ピットの形状を除いて、実施形態1の実験例において用いた「Pit群B」~「Pit群D」の光情報記録媒体と同様の構造を有している。したがって、これらの詳細な説明は省略する。
 図13は、ピットの長さが互いに異なる光情報記録媒体「Pit群A」、「Pit群E」~「Pit群G」の反射率を、BD標準の評価機で、再生光の強度を1.0mWとして測定した結果を示すものである。
 図13において、「Pit群E」~「Pit群G」は、光学系解像限界の長さより短い長さを有するピットを少なくとも1つ含む超解像領域を含む光情報記録媒体である。「Pit群E」~「Pit群G」の最短ピットの長さは、0.094μm(duty50%基準)である。
 「Pit群E」、「Pit群F」及び「Pit群G」のピット及びスペースの長さ(ピット及びスペースのduty)は互いに異なり、ピットの長さ(ピットのduty)が順に小さくなっている。また、「Pit群E」~「Pit群G」の最長スペースに再生光Lが照射された場合、再生光Lがピットの一部にも照射される。
 図13に示すように、「ピット群E」、「ピット群F」及び「ピット群G」の反射率の測定結果は、それぞれ「9.85%」、「10.37%」、「10.40%」となった。また、「ピット群F」及び「ピット群G」の反射率は、「ピット群A」の反射率との差が小さく、上記所定の範囲内となった。
 この測定結果から、ピットのdutyが小さくなるにつれ、スペースのdutyが大きくなるため、最長スペース(8Tスペース)に照射したときの反射率も増加していることがわかる。また、「ピット群F」及び「ピット群G」の反射率は、上記所定の範囲となっているので、当該反射率と、「ピット群A」の反射率とは、再生装置において同一と扱えることがわかる。
 したがって、超解像媒体1では、超解像領域であるデータ領域2のピットP1の長さを小さくするほど、データ領域2から得られる反射率を、非超解像領域である媒体情報領域3から得られる反射率と同一であると再生装置に扱わせることができる。
 また、ピットP1の大きさを実施形態1の実施例よりも小さくし、その結果、最長スペースS2maxに再生光Lが照射されたときに、当該再生光LがピットP1に照射された場合であっても、ピットP1のdutyを小さくすることで、再生装置における上記反射率の扱いが可能となる。すなわち、超解像媒体1の記録容量の増大化を図ることができる。
 〔実施形態3〕
 本発明の他の実施形態について、図14~図15に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図14は、ピットP1、P2の極性を示す図である。図14に示すように、本実施形態の超解像媒体1は、凸形状のピットP1、P2が基板4に形成されている(オンピット形式で形成されている)点で、実施形態1(インピット形式)とは異なる。それ以外の構成は、実施形態1と同様である。
 〔実施例〕
 次に、本実施形態の超解像媒体1の一実施例について、図15を用いて説明する。図15は、超解像媒体1の一実施例を示す図であり、(a)は媒体情報領域3の一部(最長スペースS2max近傍)に再生光Lが照射された状態を示す図であり、(b)はデータ領域2の一部(最長スペースS1max近傍)に再生光Lが照射された状態を示す図である。
 本実施例における超解像媒体1は、ピットP1、P2の形状が凸形状であること以外の構成は、図6に示す実施例と同じである。そのため、図15の(a)に示すように、媒体情報領域3の最長スペースS2maxに再生光Lが照射された場合には、ピットP2に再生光Lが照射されることはない。また、図15の(b)に示すように、データ領域2の最長スペースS1maxに再生光Lが照射された場合であっても、一般的な超解像媒体とは異なり、ピットP1に再生光Lが照射されることはない。
 したがって、超解像媒体1では、ピットP1、P2が凸形状であっても、実施形態1と同様、データ領域2の最長スペースS1maxから得られる反射率と、媒体情報領域3の最長スペースS2maxから得られる反射率とを、再生装置において同一と扱うことができる。
 〔実施形態4〕
 本発明の他の実施形態について、図16に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態に係る超解像媒体1は、実施形態2における超解像媒体1のデータ領域2のトラックピッチTpDを狭めた構成である。
 〔実施例〕
 次に、本実施形態の超解像媒体1の一実施例について、図16を用いて説明する。図16は、データ領域2の一部(最長スペースS1max近傍)に再生光Lが照射された状態を示す図である。
 なお、本実施形態の超解像媒体1の媒体情報領域3に再生光Lが照射された状態は、図6の(a)と同じである。また、以下に述べる以外の構成についても、実施形態2における実施例の構成と同様である。したがって、これらの詳細な説明は省略する。
 本実施例では、図16に示すように、データ領域2は、最長ピットP1max(8Tピット)の長さが0.301μmであり、最長スペースS1max(8Tスペース)の長さが0.451μmである。すなわち、ピットP1のdutyが約40%、スペースS1のdutyが約60%となっており、データ領域2の最短ピットP1min(2Tピット、不図示)の長さは約0.075μm(≒0.094μm×2×0.40)である。
 なお、0.094μmという長さは、実施形態2の実施例において述べたように、実施形態2の比較例におけるデータ領域102の最短ピットP101minの長さである。すなわち、当該比較例におけるデータ領域102のdutyを上記のように変更したものが、本実施例のデータ領域2である。
 また、本実施例では、データ領域2のトラックピッチTpDは0.29μmであり、データ領域2の記録容量(超解像媒体1を直径120mmのディスクとしたときの相当記録容量)は44GBである。
 すなわち、実施形態2の実施例に比べ、ピットP1の長さ及びスペースS1の長さが短くなっているので、上記記録容量はさらに増加している。また、最長スペースS1maxの長さは、超解像媒体1上に形成された再生光Lの照射領域の直径よりも小さくなっている。
 〔比較例〕
 本実施例の比較例としての超解像媒体101は、実施形態2の比較例の構造と同一であるため、ここではその説明を省略する。なお、超解像媒体101のデータ領域102の一部(S101max近傍)に再生光Lが照射された状態は、図12の(b)に示されている。なお、データ領域102のトラックピッチは0.32μmである。
 〔比較例との対比〕
 実施形態2と同様、本実施例のピットP1の大きさは、比較例の、当該ピットP1に対応するピットP101の大きさよりも小さい。また、本実施例では、トラックピッチTpDを狭めているので、最長スペースS1maxに照射された再生光Lが、隣接トラックのピットP1に照射される可能性がある。そのため、この場合には、反射率が低下してしまう可能性がある。そのため、本実施例では、ピットP1のdutyを、実施形態2の実施例におけるピットP1よりもさらに小さくしている。
 これにより、上記再生光Lが、隣接トラックのピットP1に照射されることを回避できるので、トラックピッチTpDの減少による隣接トラックのピットP1の、測定される反射率に与える影響を排除することができる。
 また、実施形態2と同様、最長スペースS1maxに照射された再生光Lが、当該最長スペースS1maxと同一トラック上のピットP1の一部に照射されたとしても、その照射部分を比較例に比べ小さくすることができるので、データ領域2から得られる反射率を、媒体情報領域3から得られる反射率と同一であると再生装置に扱わせることができる。
 また、上記のように、本実施例におけるデータ領域2のトラックピッチTpD及びピットP1の大きさは、比較例のトラックピッチ及びピットP101の大きさよりも小さいので、比較例に比べ、トラックピッチの本数及びピット数が多くなる。そのため、比較例に比べ、記録容量を増大させることができる。さらに、実施形態2の実施例におけるデータ領域2のトラックピッチTpD及びピットP1の大きさよりも小さいので、さらに記録容量を増大させることができる。
 〔実施形態1~4に係る超解像媒体1の変形例〕
 なお、(1)データ領域2から得られる反射率を、媒体情報領域3から得られる反射率と同一であると再生装置に扱わせることができ、(2)再生装置において良好な情報の再生を行うことができるのであれば、上述したようなピットP1の形状に限定されない。
 例えば、最長ピットP1maxのdutyのみが一般的な超解像媒体の最長ピットのdutyよりも小さく、その他のピットP1のdutyは一般的な超解像媒体のピットのdutyと同一であってもよい。すなわち、最長スペースS1maxのdutyのみが一般的な超解像媒体の最長スペースよりも大きくてもよい。
 一般に、最短ピット(最短スペース)またはそれに準じるピット(それに準じるスペース)が再生信号品質に与える影響の大部分を占め、最長ピットまたは最長スペースが再生信号品質に与える影響が少ない。なお、1-7PP変調記録方式の場合、最短ピットは2Tピット、それに準じるピットは3Tピットであり、最短スペースは2Tスペース、それに準じるピットは3Tスペースである。
 そのため、最長ピットまたは最長スペースのdutyのみを、一般的な超解像媒体よりも小さくすることにより、再生信号品質をさらに向上させることができる。すなわち、さらに良好な情報の再生を行うことが可能となる。
 また、ピットP1のdutyを一般的な超解像媒体のピットと同一とした上で、一般的な超解像媒体のピットよりも、ピットP1の幅を短くしてもよいし、ピットP1の深さを浅くしてもよい。
 ピットP1のdutyが一般的な超解像媒体のピットと同じである場合、例えば最長スペースS1maxに照射された再生光Lが、当該最長スペースS1max近傍に存在するピットP1の一部にも照射される。
 しかし、ピットP1の幅が短い場合、一般的な超解像媒体の場合に比べ、再生光Lが形成する照射領域に対してピットP1の一部が占める割合を少なくすることができる。また、ピットP1の深さが浅い場合には、一般的な超解像媒体の場合に比べ、上記ピットP1の一部から得られる反射率を最長スペースS1maxから得られる反射率に近づけることができる。
 それゆえ、いずれの場合であっても、データ領域2から得られる反射率を、媒体情報領域3から得られる反射率の値に近づけ、再生装置において同一と扱わせることが可能となる。
 すなわち、データ領域2における反射率を実質的に決定する最長スペースS1maxの大きさが、上記(1)および(2)を満たすように、ピットP1の形状が設定されていればよい。
 〔実施形態5〕
 本発明の他の実施形態について、図17~図19に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 <再生装置10の構成>
 図17は、本実施形態に係る再生装置10の概略構成を示している。本実施形態の再生装置10は、上記実施の形態1~4の何れかの超解像媒体1と、通常媒体との両方を再生可能である。
 再生装置10は、図示のように、レーザ制御回路14、信号処理回路・制御部17(信号処理手段)、サーボ処理回路18(サーボ処理手段)、スピンドルモータ19、光ピックアップ20(再生光照射手段)、光ピックアップ用モータ21を備えている。光ピックアップ20は、超解像媒体1または通常媒体に再生光を照射するものであり、偏光ビームスプリッタ12、レーザ光源13、および検出器15を備えている。なお、図中の光情報記録媒体11は、超解像媒体1である場合と、通常媒体である場合とがある。
 再生装置10は、まず、スピンドルモータ19により光情報記録媒体11を回転させ、光ピックアップ用モータ21により光ピックアップ20を所定位置に移動させる。次に、レーザ制御回路14によりレーザ光源13から出射される再生光の強度を所定の強度とし、レーザ光源13から再生光を出射させる。この再生光が、偏光ビームスプリッタ12を介して、光情報記録媒体11に照射され、光情報記録媒体11からの反射光が、偏光ビームスプリッタ12を介して検出器15に到達する。
 検出器15は、到達した反射光に基づいて電気信号を出力し、該電気信号は、サーボ処理回路18に送られ、各種のサーボ制御(例えばフォーカシングサーボおよびトラッキングサーボ)が行われる。また、該電気信号は、信号処理回路・制御部17へ送られる。信号処理回路・制御部17は、該電気信号に基づいて、光ピックアップ用モータ21へ駆動指示を行うか、または、再生データを復号生成し、外部装置(例えば表示装置)に出力する。
 図18は、信号処理回路・制御部17の構成を示している。信号処理回路・制御部17は、光ピックアップ20がデータ領域2に再生光を照射することにより得られた再生データなどの再生信号波形を、PR(12221)ML方式にて復号するものであり、図示のように、信号処理部22、媒体識別部23およびアクセス位置制御部24を備えている。
 信号処理部22は、光ピックアップ20から送られた媒体識別情報を示す電気信号を処理し、媒体識別部23に与える。媒体識別部23は、信号処理部22により与えられた上記媒体識別情報を示す電気信号に基づいて、光情報記録媒体11の識別を行う。また、光ピックアップ20から送られたコンテンツを示す電気信号を、再生データとして復号し、上記外部装置に出力する。
 アクセス位置制御部24は、光情報記録媒体11の所望の位置に光ピックアップ20がアクセスするように、光ピックアップ用モータ21を制御する。なお、超解像媒体1にてデータ領域2のトラックピッチと媒体情報領域3のトラックピッチとが異なる場合には、アクセス位置制御部24は、媒体識別部23による光情報記録媒体11の識別結果に基づいて、アクセス位置を制御することが望ましい。
 ここで、サーボ処理回路18におけるトラッキングサーボの手法について説明する。例えば、トラッキングサーボの手法には、検出器15における反射光を受光するディテクタを少なくとも2分割し、分割したディテクタからの検出信号に位相差が生じることを利用した手法がある。しかし、この手法の場合、直径120mmのディスクでの相当記録容量が例えば45GB以上といった記録密度の高い領域(データ領域2)ではトラッキングが不安定になり、媒体情報領域3からデータ領域2へと連続した再生ができなくなる可能性が生じる。このため、データ領域2では、トラッキングサーボの手法を変更する必要が生じる。
 一方、3ビーム法、PP法、またはDPP法などでは、記録密度が高い領域であっても十分なトラッキングエラー信号が得られるため、トラッキングを安定して行うことが可能である。データ領域2と媒体情報領域3とをともにトラッキング可能なトラッキングサーボの手法(3ビーム法、PP法、またはDPP法など)をサーボ処理回路18に採用することで、超解像媒体1のように一方の領域の記録密度が他方の領域の記録密度よりも高い場合であっても、記録密度の異なるこれら2つの領域に記録された情報を、迅速にかつ確実に連続して再生することができる。
 また、信号処理回路・制御部17は、再生クロック制御部、または、再生速度制御部(ともに不図示)を備えていることが好ましい。
 上記再生クロック制御部、または再生速度制御部を備えている場合、再生クロック制御部は、媒体識別部23による光情報記録媒体11の識別結果に基づいて、信号処理部22にて利用される再生クロックをそのまま(すなわち、通常媒体に適した再生クロック)とするか、または、超解像媒体1に適した再生クロックに切り替える。再生速度制御部は、媒体識別部23による光情報記録媒体11の識別結果に基づいて、スピンドルモータ19を制御して再生速度をそのまま(すなわち、通常媒体に適した再生速度)とするか、または、超解像媒体1に適した再生速度に切り替える。
 なお、上記では、光情報記録媒体11の媒体識別情報に再生速度情報が含まれている場合の処理を例示しているが、媒体識別情報に再生速度情報が含まれていない場合もある。この場合、信号処理回路・制御部17に再生速度情報取得部(再生速度情報取得手段)(不図示)が備えられていればよい。再生速度情報取得部によって取得された再生速度情報が、再生クロック制御部または再生速度制御部に出力されることにより、媒体識別部23を備えていなくても、再生装置10に装填された光情報記録媒体11に適した再生クロック及び再生速度を実現できる。
 さらに、信号処理回路・制御部17は、パワー制御部(不図示)を備えていることが好ましい。
 上記パワー制御部を備えている場合、パワー制御部は、媒体識別部23による光情報記録媒体11の識別結果に基づいて、レーザ光源13から出射される再生光の強度をそのまま(すなわち、通常媒体に適した再生光強度)とするか、または、レーザ制御回路14を制御して、超解像媒体1に適した再生光の強度に切り替える。
 なお、上記では、光情報記録媒体11の媒体識別情報に再生光強度情報が含まれている場合の処理を例示しているが、媒体識別情報に再生光強度情報が含まれていない場合もある。この場合、信号処理回路・制御部17に再生光強度情報取得部(再生光強度情報取得手段)(不図示)が備えられていればよい。再生光強度情報取得部によって取得された再生光強度情報が、パワー制御部に出力されることにより、媒体識別部23を備えていなくても、再生装置10に装填された光情報記録媒体11に適した強度を有する再生光の出射を実現できる。
 さらに、信号処理回路・制御部17は、極性識別部(極性識別手段)(不図示)を備えていることが好ましい。
 上記極性識別部を備えている場合、信号処理部22は、光ピックアップ20から送られた極性情報を示す電気信号(極性識別信号)を処理し、極性識別部に与える。極性識別部は、信号処理部22により与えられた上記極性識別信号に基づいて、光情報記録媒体11のピットの極性の識別を行う。サーボ処理回路18は、極性識別部による光情報記録媒体11のピットの極性の識別結果に基づいて、トラッキングサーボを行う。
 さらに、信号処理回路・制御部17は、領域位置情報認識部(領域位置情報認識手段)、および情報再生条件制御部(情報再生条件制御手段)を備えていることが好ましい。
 上記領域位置情報認識部、および情報再生条件制御部を備えている場合、信号処理部22は、光ピックアップ20から送られたデータ領域位置情報を示す電気信号(データ領域位置信号)を処理し、領域位置情報認識部に与える。領域位置情報認識部は、信号処理部22により与えられた上記データ領域位置信号に基づいて、光情報記録媒体11のデータ領域の位置を認識する。情報再生条件制御部は、領域位置情報認識部によるデータ領域の位置の認識結果に基づいて、データ領域に適した情報再生条件へと切り替える。つまり、情報再生条件制御部は、レーザ制御回路14、及び/またはスピンドルモータ19を制御して、超解像媒体1に適した再生光の強度及び/または再生速度に切り替える。
 <再生装置10の処理動作>
 次に、再生装置10の処理動作について説明する。
 再生装置10に、光情報記録媒体11が装填されると、信号処理回路・制御部17のアクセス位置制御部24によって、光ピックアップ用モータ21が制御され、レーザ光源13からの再生光が、再生初期用として予め定められていた通常媒体用の再生光の強度で、光情報記録媒体11の再生初期のアクセス位置である媒体情報領域に照射される。そして、媒体情報領域に記録されている、光情報記録媒体11が超解像媒体であるか、通常媒体であるかを示す媒体識別情報、すなわち、光情報記録媒体11のデータ領域が超解像形態か否かを示す媒体識別情報が、検出器15を介して、信号処理回路・制御部17の信号処理部22によって処理され、媒体識別部23で、光情報記録媒体11の識別が行われる。
 その後、データ領域2にアクセスされ、データ領域2のコンテンツが、検出器15および信号処理部22を介して再生データとして再生される。
 ここで、信号処理部22における復号方式について説明する。CD及び/またはDVDよりも高密度に、1-7PP変調記録方式によって情報が記録されたBDでは、PRML(Partial Response Maximum Likelihood)復号が用いられる。なお、PRMLの例としては、BDXL(TM)で用いられるPR(12221)MLなどが挙げられる。
 データ領域2に記録される情報の変調記録方式が、例えばMFM(Modified FrequencyModulation)変調記録方式である場合、1T、1.5Tおよび2Tのピットおよびスペースにより情報記録がなされるため、データ領域2の反射率を媒体情報領域3の反射率と略同一とするために選択できるピットP1の形状の自由度が限られてしまい、良好な再生信号品質を保てない可能性が生じる。しかしながら、1-7PP変調記録方式によって情報が記録された光情報記録媒体であれば、2Tから8Tまでのピットおよびスペースにより情報記録がなされる。さらに、再生信号品質に与える影響が少ない8Tスペースの主に長さによって反射光量が決まる。このため、超解像媒体1の情報記録において1-7PP変調記録方式が採用されている場合、選択できるピットP1の形状の自由度を高くすることができ、超解像媒体1の生産を容易にすることができる。
 加えて、本実施形態では、信号処理部22の復号方式としてPR(12221)ML方式を採用している。すなわち、本実施形態の再生方法では、データ領域2に再生光を照射することによって得られた再生データなどの再生信号波形を、PR(12221)ML方式にて復号する。これにより、選択できるピットP1の形状の自由度が高い超解像媒体1に再生装置10が対応できるとともに、良好な再生信号品質を保って信頼性高く情報を再生することができる。
 なお、信号処理部22の復号方式としては、上記PR(12221)ML方式に限定されず、超解像媒体1に所定の変調方式によって記録された情報が復号可能である復号方式であれば、2値検出方式、または、PR(1221)ML方式などの復号方式であってもよい。
 (再生装置10の処理動作の別例)
 また、上記信号処理回路・制御部17が、上記再生クロック制御部、上記パワー制御部、上記極性識別部、上記領域位置情報認識部、および上記情報再生条件制御部を備えている場合における再生装置10の処理動作の別例について説明する。以下では、主として、上述した再生装置10の処理動作と異なる点を説明する。
 まず、媒体識別部23により光情報記録媒体11の識別が行われ、光情報記録媒体11の識別結果が通常媒体であった場合、再生光の強度及び再生クロックは切り替えられることなく、通常媒体のデータ領域がアクセスされる。一方、媒体識別部23による識別結果が超解像媒体1であった場合、パワー制御部は、上記識別結果に基づいてレーザ制御回路14を制御して、予め定められた超解像媒体1に適した再生光の強度に調整することが可能となる。この調整とともに、再生クロック制御部は、上記識別結果に基づいて、再生クロックを予め定められている超解像媒体1用の再生クロックに変更することが可能となる。
 また、少なくともトラッキングサーボの手法としてPP法またはDPP法などを用いている場合は、超解像媒体1の媒体情報領域3に記録されている、ピットP1、P2がインピット形式であるか、オンピット形式であるかを示すピット極性情報が再生される。該ピット極性情報を示すピット極性信号は、検出器15を介して信号処理部22に送られ、信号処理部22によって処理された後、極性識別部によってピットP1、P2の極性の識別が行われる。サーボ処理回路18は、極性識別部によるピットP1、P2の極性の識別結果に基づいて、超解像媒体1のトラッキングサーボに適したサーボ処理を選択する。
 続いて、媒体情報領域3に記録されている、データ領域2の位置を示すデータ領域位置情報が再生される。該データ領域位置情報を示すデータ領域位置信号は、検出器15を介して信号処理部22に送られ、信号処理部22によって処理された後、領域位置情報認識部でデータ領域2の位置の認識が行われる。
 その後、データ領域2が、超解像媒体1用の再生光強度でアクセスされるとともに、領域位置情報認識部によるデータ領域2の位置の認識結果に基づいて、情報再生条件制御部がデータ領域2に適した情報再生条件に切り替える。つまり、情報再生条件制御部は、レーザ制御回路14、または/およびスピンドルモータ19を制御して、データ領域2に適した再生光強度、または/および再生速度に切り替える。そして、データ領域2のコンテンツが、検出器15および信号処理部22を介して再生データとして再生される。
 なお、上記では、光情報記録媒体11の媒体識別情報に再生速度情報および再生光強度情報が含まれている場合の処理を例示しているが、媒体識別情報に再生速度情報が含まれていない場合もある。この場合、上記信号処理回路・制御部17に再生速度情報取得部が備えられていればよい。そして、媒体識別部23による識別結果が超解像媒体1であった場合には、再生速度情報を示す再生信号が、検出器15および信号処理部22を介して、再生速度情報取得部から再生クロック制御部または再生速度制御部へと送られることにより、上記再生信号に基づいて、再生クロックを予め定められている超解像媒体1用の再生クロックに変更されればよい。
 また、媒体識別情報に再生光強度情報が含まれていない場合もある。この場合、上記信号処理回路・制御部17に再生光強度取得部が備えられていればよい。そして、媒体識別部23による識別結果が超解像媒体1であった場合には、再生光強度情報を示す再生信号が、検出器15および信号処理部22を介して、再生光強度情報取得部からパワー制御部へと送られ、レーザ制御回路14が制御されることにより、上記再生信号に基づいて、予め定められた超解像媒体1に適した再生光強度に調整されればよい。
 以上のように、再生装置10は、超解像媒体1が上述のような構成であるため、装填された光情報記録媒体が超解像媒体1であるか否かの識別を、通常媒体用の低い再生光の強度で、容易に、かつ的確に行うことができる。これにより、再生装置10は、超解像媒体1と通常媒体とのいずれの媒体も再生できる。また、上記識別を通常媒体用の低い再生光の強度で行えるため、再生装置10の消費電力を抑えることができ、さらに、超解像媒体1用の再生光の強度で通常媒体を破壊してしまうことがない。
 また、再生装置10は、超解像媒体1の各情報を再生する場合には、データ領域2から得られる反射率と、媒体情報領域3から得られる反射率とを同一であると扱える。そのため、再生装置10は、上記連続再生時に、一方の領域の再生制御のうち、他方の領域において維持可能な制御については再度の制御を行うことなく、他方の領域の情報再生を行うことができる。
 <種々の処理が行われる理由>
 (再生クロックの切り替え理由)
 ここで、再生装置10が、超解像媒体1と通常媒体とで再生クロックを切り替えることが好ましい理由について、再生専用の通常媒体が、通常媒体用の再生クロックおよび超解像媒体1用の再生クロックで再生される場合を例として図19の(a)及び(b)を用いて説明する。
 なお、上記通常媒体は、1-7PP変調方式により各情報が記録されている。すなわち、チャネルビットの長さTを基準にして、最短ピット2Tから、最長ピット8Tまでの長さのピットが基板上に設けられている。また、光情報記録媒体の再生は、基板上に設けられているピットに、再生光を照射し、その反射光により得られる出力信号を再生クロックでサンプリングした結果をPRML復号することで信号が再生される。図19の(a)は、上記通常媒体を上記通常媒体用の再生クロックでサンプリングし、PRML復号した様子を示しており、出力信号は、同図下側にあるピットに対応している。図19の(b)は、上記通常媒体を超解像媒体1用の再生クロックでサンプリングし、PRML復号した様子を示しており、出力信号は、同図下側にあるピットに対応している。
 上記通常媒体が、超解像媒体1用の再生クロックで再生される場合について説明する。なお、超解像媒体1は、上記通常媒体の2倍の線密度であるとする。このため、超解像媒体1用の再生クロック幅は、上記通常媒体用の再生クロック幅の半分となる。
 上述のような超解像媒体1用の再生クロックで通常媒体を再生すると、図19の(b)に示すように、PRML復号された信号は、「1・1・1・1・0・0・0・0・1・1・1・1・1・1・1・1」となる。このため、図19の(a)に示す通常媒体の再生時と同様の状態とするために、「1・1・1・1」の信号を2Tピット、「1・1・1・1・1・1・1・1」の信号を4Tピットとして処理する必要が生じ、回路が複雑化する。よって、通常媒体と超解像媒体1とをそれぞれ最適な状態で再生するためには、それぞれの場合で、再生クロックを変更することが好ましい。そして、以上のことから、再生装置10は、超解像媒体1と通常媒体とで再生クロックを切り替えることが好ましい。
 また、上記再生クロック切替情報は、再生装置10が有する光学系解像限界の長さより長い長さのピットP2によって記録されている。このため、通常媒体用の再生クロックで再生でき、無駄な再生クロックの切り替えを必要としない。
 また、再生装置10では、通常媒体と超解像媒体1とで再生クロックを切り替えた場合、基準発振器が2台になるなど回路負担が大きくなる。そこで、再生クロックを切り替える代わりに、再生速度を切り替えてもよい。
 例えば、超解像媒体1が通常媒体の2倍の線密度である場合、再生速度を切り替えてその速度を半分にすると、再生される信号が転送される速度は通常媒体の場合と同等になるため、再生クロックを切り替えなくとも、上述のような再生の信頼性が低下するといった問題を生じることがなくなる。したがって、再生クロックを切り替える代わりに、再生速度を切り替える構成としてもよい。
 なお、再生速度を切り替える構成の場合、再生クロックを切り替える構成と比較して回路負担を低減できるが、超解像媒体1の転送速度が通常媒体と変わらなくなる。逆に、再生クロックを切り替える構成の場合、超解像媒体1の情報の転送速度を速くできる。
 (再生光強度の切り替え理由)
 ここで、再生装置10が、超解像媒体1と通常媒体とで再生光強度を切り替えることが好ましい理由について説明する。超解像再生が熱によって可能になる場合、再生光強度が低すぎると熱が不足し超解像再生が不可能になるため、通常媒体用の再生光強度より高い強度にて超解像媒体1の少なくともデータ領域2に記録された情報を再生する必要がある。一方で、通常媒体を通常媒体用の再生光強度にて再生することで、通常媒体の劣化が早まる可能性を阻止できる。また、上記再生光強度情報は、再生装置10が有する光学系解像限界の長さより長い長さのピットP2によって記録されている。このため、超解像媒体1では、再生光強度情報を通常媒体用の再生光強度で再生できるので、無駄な再生クロックの切り替えを必要としない。
 (ピット極性の識別理由)
 また、再生装置10が、ピットP1、P2の極性を識別することが好ましい理由について説明する。再生装置10が例えばトラッキングサーボをPP法やDPP法などを用いて行う場合、ピットP1、P2の極性によってトラッキング誤差信号の正負が異なる。このため、ピットP1、P2の極性の識別を行わない場合には、再生光の照射位置がオントラック状態である場合のトラッキング誤差信号が、超解像媒体1の中心からの距離に関するトラッキング誤差信号の一次微分の値が正となるトラッキング誤差信号の振幅中心であるのか、または、負となるトラッキング誤差信号の振幅中心であるのか、の判別を直ちに行うことができない。ゆえにこの場合には、例えばピットP1、P2の存在による反射光量の変動の有無を確認してオントラック状態にあるか否かを確認する必要が生じる。
 一方、再生装置10が超解像媒体1に記録されたピット極性情報に基づいてピットP1、P2の極性の識別を行うことで、超解像媒体1に対してトラッキングサーボを迅速に行うことができる。さらに、トラッキングサーボの手法の自由度を高くすることができ、再生装置10の生産を容易にすることができる。
 (データ領域2の位置認識理由)
 また、再生装置10が、データ領域2の位置を認識することが好ましい理由について説明する。超解像再生が熱によって可能になる場合、例えば媒体情報領域3に記録された情報を良好な品質で再生し、かつ光ピックアップ20にかかる負荷を低減させるために、データ領域2と媒体情報領域3との再生速度および再生光強度を、媒体情報領域3に記録された情報を再生可能な再生速度の上限値および再生光強度の下限値と同一にすると、記録密度の高いデータ領域2では、超解像再生に必要な熱が不足し、超解像再生ができない可能性がある。そこで、データ領域2の再生時には、再生速度を遅くする、または、再生光強度を高めることで、データ領域2においても記録された情報を良好な品質で再生し、かつ光ピックアップ20にかかる負荷を低減させることができる。
 ゆえに、データ領域2の位置を認識することで、データ領域2と媒体情報領域3とのそれぞれに対して許容される再生速度の上限値および再生光強度の下限値を考慮した再生条件に切り替え可能となり、データ領域2と媒体情報領域3とに記録された情報をそれぞれ良好な品質で再生でき、かつ光ピックアップ20にかかる負荷を低減させることができる。
 〔ソフトウェアによる実現例〕
 再生装置10の制御ブロック(特に信号処理回路・制御部17)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、再生装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る光情報記録媒体(超解像媒体1)は、
 再生装置が有する光学系解像限界の長さより短い長さのピットを含む第1ピット列により情報が記録された第1領域と、
 上記光学系解像限界の長さ以上の長さを有するピットからなる第2ピット列により情報が記録された第2領域と、が割り当てられた記録層を有する光情報記録媒体であって、
 上記第1ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第1反射率、上記第2ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第2反射率とした場合、
 上記第1ピット列は、上記第1反射率が上記第2反射率と略同一となるように形成されている。
 上記の構成によれば、第1領域には、再生装置が有する光学系解像限界の長さより短い長さのピットを含む第1ピット列により情報が記録されている。また、第2領域には、光学系解像限界の長さ以上の長さを有するピットからなる第2ピット列により情報が記録されている。
 一般に、最短ピットの長さに応じて、光情報記録媒体における情報の記録密度が異なる。また、上記第1ピット列を形成するピットと上記第2ピット列を形成するピットとの長さが互いに異なる。そのため、第1領域および第2領域における情報の記録密度は互いに異なる。この場合、第1反射率と第2反射率との間に、再生装置がこれらの反射率を略同一とみなすことができない差異が生じ、この差異が情報の再生に影響を与える可能性がある。
 本発明の一態様に係る光情報記録媒体では、第1ピット列が、第1反射率が第2反射率と略同一となるように形成されている。
 それゆえ、各領域間における連続再生時に、第1反射率及び第2反射率が互いに略同一ではないために生じる可能性、例えば再生光が光情報記録媒体上に形成する照射領域の大きさが変わるといった可能性を低減させることができる。そのため、上記連続再生時に、再度のフォーカス制御を行うことなく、迅速かつ確実に情報の再生を行うことが可能となる。
 すなわち、上記連続再生時に、一方の領域の再生制御のうち、他方の領域において維持可能な制御については再度の制御を行うことなく、他方の領域の情報再生を行うことが可能となり、情報の再生品質を向上させることができる。
 また、第2領域には、再生装置が有する光学系解像限界以上の長さのピットからなる第2ピット列が形成されている。そのため、通常媒体の情報再生に適した再生光の強度で、第2領域に記録されている情報を再生することができる。なお、この情報としては、例えば、媒体識別情報、再生速度情報、媒体固有番号などの各種情報(超解像媒体に関する情報)が挙げられる。
 なお、「上記第1反射率が上記第2反射率と略同一となる」とは、光情報記録媒体(超解像媒体1)または再生装置に対して、第1領域及び第2領域に互いに異なる反射率の規定を設けることなく、再生装置が上記2つの反射率を同一と扱える程度の大きさとなると換言することもできる。
 さらに、本発明の態様2に係る光情報記録媒体は、態様1において、
 上記第1ピット列を形成する複数のピットの間に形成された複数の第1スペース(スペースS1)のうち、最長である第1スペースを最長第1スペース(最長スペースS1max)とし、
 上記第2ピット列を形成する複数のピットの間に形成された複数の第2スペース(スペースS2)のうち、最長である第2スペースを最長第2スペース(最長スペースS2max)としたとき、
 上記第1ピット列は、上記最長第1スペースにおける反射率が、上記最長第2スペースにおける反射率と略同一となるように形成されていることが好ましい。
 上記の構成によれば、第1最長スペースにおける反射率が、最長第2スペースにおける反射率と略同一となるように、上記第1ピット列が第1領域に形成されている。それゆえ、上記連続再生時においても、迅速かつ確実に情報再生を行うことができる。
 さらに、本発明の態様3に係る光情報記録媒体は、態様2において、
 上記最長第1スペースの長さは、上記再生装置が出射した再生光が上記光情報記録媒体上に形成する照射領域の直径以上であることが好ましい。
 上記の構成によれば、最長第1スペースの長さが、再生光が光情報記録媒体上に形成する照射領域の直径以上であるので、最長第1スペースに再生光が照射されたときに、最長第1スペースと同一トラック上に存在する、第1ピット列を形成するピットに当該再生光が照射されることがない。そのため、第1反射率は、最長第1スペースにのみ由来する反射率となる。
 一方、第2領域においては、最長第2スペースの長さが、上記再生光の照射領域の直径よりも大きいので、第2反射率は、最長第2スペースにのみ由来する反射率となる。
 それゆえ、上記のようにピットを形成することにより、第1反射率を、第2反射率とほぼ同一の値として、再生装置に扱わせることができる。
 さらに、本発明の態様4に係る光情報記録媒体は、
 再生光の波長(λ)が405nmであり、対物レンズの開口数(NA)が0.85である再生装置により再生され、
 119nmより短い長さのピットを含む第1ピット列により情報が記録された第1領域と、
 119nm以上の長さを有するピットからなる第2ピット列により情報が記録された第2領域と、が割り当てられた記録層を有する光情報記録媒体であって、
 上記第1ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第1反射率、上記第2ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第2反射率とした場合、
 上記第1ピット列は、上記第1反射率が、上記第2反射率と略同一となるように形成されている。
 上記の構成によれば、態様1における効果に加えて、再生光の強度等を変更することにより、第1領域においては超解像技術による再生を行い、第2領域においては非超解像技術による再生を行うことができる。
 さらに、本発明の態様5に係る光情報記録媒体は、態様1から4のいずれかにおいて、
 上記第1ピット列は、1-7PP変調記録方式を用いて形成されていることが好ましい。
 上記の構成によれば、同一長さのピットを用いて情報を記録した場合に比べ、情報の記録密度を増大させることができる。また、良好な信号品質を得ることができる。
 さらに、本発明の態様6に係る光情報記録媒体は、態様1から5のいずれかにおいて、
 上記第2領域には、媒体の種類を特定するための媒体識別情報が含まれることが好ましい。
 上記の構成によれば、通常媒体の情報再生に適した再生光の強度で、媒体識別情報を再生することができる。それゆえ、通常媒体の情報再生に適した再生光の強度を用いて、上記光情報記録媒体を超解像媒体であると識別させることができる。
 また、本発明の態様7に係る光情報記録媒体の再生方法は、態様5の光情報記録媒体の再生方法であって、
 上記第1領域に再生光を照射することによって得られた再生信号波形を、PR(12221)ML方式にて復号することが好ましい。
 上記の構成によれば、上記第1領域における第1ピット列を形成するピットの形状の自由度が高い光情報記録媒体、つまり、生産が容易な光情報記録媒体に対応した再生を行うことができるとともに、良好な再生信号品質を保って信頼性高く情報を再生することができる。
 さらに、本発明の態様8に係る光情報記録媒体の再生装置は、態様5の光情報記録媒体を再生可能な光情報記録媒体の再生装置であって、
 上記光情報記録媒体に再生光を照射する再生光照射手段と、
 上記再生光照射手段が上記第1領域に上記再生光を照射することにより得られた再生信号波形を、PR(12221)ML方式にて復号する信号処理手段と、を備えていることが好ましい。
 上記の構成によれば、上記第1領域における第1ピット列を形成するピットの形状の自由度が高い光情報記録媒体、つまり、生産が容易な光情報記録媒体に再生装置が対応できるとともに、良好な再生信号品質を保って信頼性高く情報を再生することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明に係る光情報記録媒体(超解像媒体)は、光学読取式のディスク、光磁気ディスク、相変化型ディスク等、種々の光ディスクに対して好適であるが、磁気ディスクなど、光学系解像限界の長さより短い長さの記録マークを有する情報記録媒体にも適用できる。また、本発明に係る再生方法及び再生装置は、本発明に係る光情報記録媒体を再生する方法及び装置に適用できる。
 1  超解像媒体(光情報記録媒体)
 2  データ領域(第1領域)
 3  媒体情報領域(第2領域)
 5  機能層
 10 再生装置
 17 信号処理回路・制御部(信号処理手段)
 20 光ピックアップ(再生光照射手段)
 P1 ピット(第1ピット列のピット)
 P2 ピット(第2ピット列のピット)
 P1max 最長ピット
 P2max 最長ピット
 S1max 最長スペース
 S2max 最長スペース
 L  再生光
 λ  波長
 NA 開口数
 

Claims (5)

  1.  再生装置が有する光学系解像限界の長さより短い長さのピットを含む第1ピット列により情報が記録された第1領域と、
     上記光学系解像限界の長さ以上の長さを有するピットからなる第2ピット列により情報が記録された第2領域と、が割り当てられた記録層を有する光情報記録媒体であって、
     上記第1ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第1反射率、上記第2ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第2反射率とした場合、
     上記第1ピット列は、上記第1反射率が上記第2反射率と略同一となるように形成されていることを特徴とする光情報記録媒体。
  2.  再生光の波長が405nmであり、対物レンズの開口数が0.85である再生装置により再生され、
     119nmより短い長さのピットを含む第1ピット列により情報が記録された第1領域と、
     119nm以上の長さを有するピットからなる第2ピット列により情報が記録された第2領域と、が割り当てられた記録層を有する光情報記録媒体であって、
     上記第1ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第1反射率、上記第2ピット列の最長ピット、または、最長スペースから得られる反射光量から算出される反射率を第2反射率とした場合、
     上記第1ピット列は、上記第1反射率が上記第2反射率と略同一となるように形成されていることを特徴とする光情報記録媒体。
  3.  上記第1ピット列は、1-7PP変調記録方式を用いて形成されていることを特徴とする請求項1または2に記載の光情報記録媒体。
  4.  請求項3に記載の光情報記録媒体の再生方法であって、
     上記第1領域に再生光を照射することによって得られた再生信号波形を、PR(12221)ML方式にて復号することを特徴とする光情報記録媒体の再生方法。
  5.  請求項3に記載の光情報記録媒体を再生可能な光情報記録媒体の再生装置であって、
     上記光情報記録媒体に再生光を照射する再生光照射手段と、
     上記再生光照射手段が上記第1領域に上記再生光を照射することにより得られた再生信号波形を、PR(12221)ML方式にて復号する信号処理手段と、を備えていることを特徴とする光情報記録媒体の再生装置。
     
PCT/JP2014/060171 2013-06-07 2014-04-08 光情報記録媒体、再生方法、及び再生装置 WO2014196264A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/895,241 US9412408B2 (en) 2013-06-07 2014-04-08 Optical information recording medium having first and second pit row of identical reflectance
CN201480031827.7A CN105264602B (zh) 2013-06-07 2014-04-08 光信息记录介质、再生方法以及再生装置
EP14808270.4A EP3007172A4 (en) 2013-06-07 2014-04-08 OPTICAL INFORMATION RECORDING MEDIUM, PLAYING METHOD AND PLAYING DEVICE
JP2015521332A JP6289457B2 (ja) 2013-06-07 2014-04-08 光情報記録媒体、再生方法、及び再生装置
US15/200,049 US9552838B2 (en) 2013-06-07 2016-07-01 Optical information recording medium having first and second pit row of identical reflectance
US15/369,916 US9666222B2 (en) 2013-06-07 2016-12-06 Optical information recording medium having first and second pit row of identical reflectance
US15/489,811 US9767838B2 (en) 2013-06-07 2017-04-18 Optical information recording medium and reproduction method
US15/678,240 US9978415B2 (en) 2013-06-07 2017-08-16 Optical information recording medium having first and second pit rows of identical reflectance
US15/944,822 US10068605B2 (en) 2013-06-07 2018-04-04 Optical information recording medium having first and second pit row of identical reflectance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013120958 2013-06-07
JP2013-120958 2013-06-07

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/895,241 A-371-Of-International US9412408B2 (en) 2013-06-07 2014-04-08 Optical information recording medium having first and second pit row of identical reflectance
US15/200,049 Continuation US9552838B2 (en) 2013-06-07 2016-07-01 Optical information recording medium having first and second pit row of identical reflectance
US15/200,049 Continuation-In-Part US9552838B2 (en) 2013-06-07 2016-07-01 Optical information recording medium having first and second pit row of identical reflectance

Publications (1)

Publication Number Publication Date
WO2014196264A1 true WO2014196264A1 (ja) 2014-12-11

Family

ID=52007918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060171 WO2014196264A1 (ja) 2013-06-07 2014-04-08 光情報記録媒体、再生方法、及び再生装置

Country Status (5)

Country Link
US (6) US9412408B2 (ja)
EP (1) EP3007172A4 (ja)
JP (6) JP6289457B2 (ja)
CN (6) CN108133716B (ja)
WO (1) WO2014196264A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133716B (zh) * 2013-06-07 2020-07-28 夏普株式会社 光信息记录介质以及再生方法
EP3054448B1 (en) * 2013-09-30 2022-06-29 Sharp Kabushiki Kaisha Information recording medium
US9653114B1 (en) * 2016-10-11 2017-05-16 International Business Machines Corporation Detecting media defects
CN108320758B (zh) * 2018-02-02 2019-12-20 中国科学院上海光学精密机械研究所 一种可逆相变材料高密度存储装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220148A (ja) * 1988-02-26 1989-09-01 Ricoh Co Ltd 光ディスク媒体
JPH06162575A (ja) * 1992-06-17 1994-06-10 Matsushita Electric Ind Co Ltd 光学的情報記録媒体およびその情報記録再生方法と記録再生装置
JPH1145458A (ja) * 1997-07-30 1999-02-16 Ricoh Co Ltd 光ディスクと光ディスク装置
JP2007519143A (ja) * 2003-12-30 2007-07-12 サムスン エレクトロニクス カンパニー リミテッド 情報保存媒体、これに記録された情報再生装置及び方法
WO2007100139A1 (ja) 2006-03-03 2007-09-07 Sharp Kabushiki Kaisha 光情報記録媒体、該光情報記録媒体の再生装置、該再生装置の制御方法及び制御プログラム、並びに該制御プログラムを記録した記録媒体
WO2009050994A1 (ja) * 2007-10-19 2009-04-23 Sharp Kabushiki Kaisha 光情報記録媒体再生装置およびその制御方法
JP2009099229A (ja) * 2007-10-18 2009-05-07 Hitachi Ltd デジタル情報再生方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529131B2 (ja) * 1990-10-04 1996-08-28 富士写真フイルム株式会社 情報記録媒体
US5493561A (en) 1992-06-17 1996-02-20 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and information recording and reproducing method thereof
JPH11149643A (ja) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd 光記録媒体
US7649824B2 (en) * 2002-07-01 2010-01-19 Panasonic Corporation Optical storage medium control data region
KR100750111B1 (ko) * 2003-05-20 2007-08-17 삼성전자주식회사 정보 저장매체 및 데이터의 기록 및/또는 재생 장치
KR20050071331A (ko) * 2003-12-30 2005-07-07 삼성전자주식회사 정보저장매체, 이에 기록된 정보재생장치 및 방법
CN101379560B (zh) * 2006-02-02 2011-04-06 太阳诱电株式会社 光信息记录介质、以及其制造方法及记录方法
JP4877933B2 (ja) * 2006-03-14 2012-02-15 株式会社リコー 情報再生装置
JP2007317313A (ja) * 2006-05-26 2007-12-06 Tdk Corp 光ディスク、光ディスクの再生方法及びシステム
US8040785B2 (en) * 2006-05-30 2011-10-18 Panasonic Corporation Optical disc, optical disc manufacturing method, optical disc recording device and optical disc reproduction device
EP2503550A1 (en) * 2006-12-26 2012-09-26 Panasonic Corporation Device for reproducing information from an optical recording medium, device for recording information on an optical recording medium, and reproduction signal processing method
JP4903081B2 (ja) * 2007-05-17 2012-03-21 株式会社日立製作所 光ディスク媒体及びトラッキング方法
US8134909B2 (en) * 2007-07-10 2012-03-13 Sharp Kabushiki Kaisha Optical information storage medium, optical information storage medium playback apparatus, method of controlling optical information storage medium playback apparatus, control program of optical information storage medium playback apparatus, and storage medium storing the program therein
WO2009028593A1 (ja) * 2007-08-30 2009-03-05 Sharp Kabushiki Kaisha 超解像光記録媒体、光記録媒体再生装置、光記録媒体再生装置の制御方法、光記録媒体再生装置制御プログラム、並びにそれを記録したコンピュータ読み取り可能な記録媒体
WO2010103742A1 (ja) * 2009-03-09 2010-09-16 パナソニック株式会社 光学的情報記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法、および、光学的情報記録媒体の製造方法
JP2010267369A (ja) * 2009-04-16 2010-11-25 Sharp Corp 光情報記録媒体、光情報記録媒体の再生装置、光情報記録媒体の再生方法及び光情報記録媒体の記録再生方法
WO2010125015A1 (en) * 2009-04-28 2010-11-04 Thomson Licensing Optical storage medium comprising tracks with modified mark dimensions, and respective apparatus for reading of data
JP5130253B2 (ja) * 2009-05-12 2013-01-30 株式会社日立製作所 再生パワー調整方法および光情報再生装置
JP4933640B2 (ja) * 2010-06-11 2012-05-16 シャープ株式会社 光情報記録媒体
EP2600346A4 (en) * 2010-07-30 2017-01-04 Mitsubishi Electric Corporation Optical information recording medium and drive device
CN108133716B (zh) * 2013-06-07 2020-07-28 夏普株式会社 光信息记录介质以及再生方法
CN111755032B (zh) 2013-07-16 2021-07-16 夏普株式会社 再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220148A (ja) * 1988-02-26 1989-09-01 Ricoh Co Ltd 光ディスク媒体
JPH06162575A (ja) * 1992-06-17 1994-06-10 Matsushita Electric Ind Co Ltd 光学的情報記録媒体およびその情報記録再生方法と記録再生装置
JPH1145458A (ja) * 1997-07-30 1999-02-16 Ricoh Co Ltd 光ディスクと光ディスク装置
JP2007519143A (ja) * 2003-12-30 2007-07-12 サムスン エレクトロニクス カンパニー リミテッド 情報保存媒体、これに記録された情報再生装置及び方法
WO2007100139A1 (ja) 2006-03-03 2007-09-07 Sharp Kabushiki Kaisha 光情報記録媒体、該光情報記録媒体の再生装置、該再生装置の制御方法及び制御プログラム、並びに該制御プログラムを記録した記録媒体
JP2009099229A (ja) * 2007-10-18 2009-05-07 Hitachi Ltd デジタル情報再生方法
WO2009050994A1 (ja) * 2007-10-19 2009-04-23 Sharp Kabushiki Kaisha 光情報記録媒体再生装置およびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007172A4

Also Published As

Publication number Publication date
CN108269592A (zh) 2018-07-10
CN108133716B (zh) 2020-07-28
US20170084301A1 (en) 2017-03-23
US20160314812A1 (en) 2016-10-27
CN108133715A (zh) 2018-06-08
US20160125908A1 (en) 2016-05-05
US9412408B2 (en) 2016-08-09
US9552838B2 (en) 2017-01-24
JP6756024B2 (ja) 2020-09-16
JP2019215952A (ja) 2019-12-19
JP6401370B2 (ja) 2018-10-10
US9767838B2 (en) 2017-09-19
JP2018190485A (ja) 2018-11-29
CN108269593B (zh) 2020-06-02
JP6595140B2 (ja) 2019-10-23
JP2019215953A (ja) 2019-12-19
CN108133717B (zh) 2020-06-02
CN108133716A (zh) 2018-06-08
CN108269592B (zh) 2020-04-17
CN105264602A (zh) 2016-01-20
CN108133717A (zh) 2018-06-08
US20180226097A1 (en) 2018-08-09
US9978415B2 (en) 2018-05-22
CN108133715B (zh) 2020-06-02
CN108269593A (zh) 2018-07-10
EP3007172A1 (en) 2016-04-13
JP6538250B2 (ja) 2019-07-03
JP2018032462A (ja) 2018-03-01
US10068605B2 (en) 2018-09-04
CN105264602B (zh) 2018-04-03
JP2019145198A (ja) 2019-08-29
JP6289457B2 (ja) 2018-03-07
EP3007172A4 (en) 2016-06-29
US20170365289A1 (en) 2017-12-21
US20170221518A1 (en) 2017-08-03
JP6756023B2 (ja) 2020-09-16
JPWO2014196264A1 (ja) 2017-02-23
US9666222B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
JP6595140B2 (ja) 光情報記録媒体、及び再生方法
US8154967B2 (en) Optical recording medium, recording/reproduction apparatus, recording method, and recording/reproduction method with adjustment data for multiple layers
JP2018139166A (ja) 再生装置
JPWO2009008434A1 (ja) 光情報記録媒体、光情報記録媒体再生装置、光情報記録媒体再生装置の制御方法、光情報記録媒体再生装置制御プログラム、および当該プログラムを記録した記録媒体
JP2004127468A (ja) 光ディスクおよび光ディスク装置
JP4543084B2 (ja) 情報記録媒体、情報再生装置及び方法、並びに、情報記録媒体の製造装置及び方法
US20140071798A1 (en) Multilayer information recording medium, and information playback method and information recording method employing same
JP5191198B2 (ja) 光記録媒体、光記録再生システム
JP2006277879A (ja) 光ディスク
JP2013168199A (ja) 再生方法、および再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031827.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521332

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014808270

Country of ref document: EP