WO2014192581A1 - Au含有ヨウ素系エッチング液の処理方法、および処理装置 - Google Patents

Au含有ヨウ素系エッチング液の処理方法、および処理装置 Download PDF

Info

Publication number
WO2014192581A1
WO2014192581A1 PCT/JP2014/063275 JP2014063275W WO2014192581A1 WO 2014192581 A1 WO2014192581 A1 WO 2014192581A1 JP 2014063275 W JP2014063275 W JP 2014063275W WO 2014192581 A1 WO2014192581 A1 WO 2014192581A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
etching solution
potential
cathode
concentration
Prior art date
Application number
PCT/JP2014/063275
Other languages
English (en)
French (fr)
Inventor
千絵 古堅
広宣 小久保
Original Assignee
アサヒプリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒプリテック株式会社 filed Critical アサヒプリテック株式会社
Priority to CN201480021400.9A priority Critical patent/CN105164317B/zh
Priority to JP2014543381A priority patent/JP5669995B1/ja
Publication of WO2014192581A1 publication Critical patent/WO2014192581A1/ja
Priority to HK16101230.0A priority patent/HK1213303A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals

Definitions

  • the present invention relates to a method and apparatus for processing an Au-containing iodine-based etching solution. Specifically, the present invention relates to a technique for efficiently recovering metallic Au from an iodine-containing iodine-based etching solution by electrolysis at a high recovery rate and recovering the iodine (I 3 ⁇ ) concentration to restore the etching ability.
  • Au for example, Au plating
  • Au plating is used for integrated circuit boards such as semiconductors and electronic parts such as terminal terminals and connectors.
  • An iodine-based etchant is widely used as an Au etchant.
  • the iodine-based etching solution is a solution in which iodine (I 2 ) is dissolved in an aqueous solution of potassium iodide (KI), and iodine exists as I 3 ⁇ in the aqueous solution and reacts with the iodine (I 3 ⁇ ). Then, Au is etched (dissolved).
  • the used iodine-based etchant after etching Au contains Au ions (for example, iodide complex [AuI 2 ] ⁇ ). Since Au is an expensive material, various techniques for recovering Au from used iodine-based etching solutions have been proposed. An electrolysis method is widely used as a technique for recovering Au from a used iodine-based etching solution.
  • the electrolysis method is a method in which Au-containing iodine-based etching solution is electrolyzed to deposit Au on the cathode surface and recovered.
  • the used etching solution after recovering Au is discarded without being reused because iodine (I 3 ⁇ ) having etching ability is reduced (I ⁇ ) and the etching ability is reduced. It was.
  • Patent Document 1 discloses a method of recovering iodine (I 3 ⁇ ) by oxidizing Au (I ⁇ ) reduced by recovering Au by performing electrolysis treatment of a used iodine-based etching solution. Techniques have been proposed that allow the etching capacity to be regenerated and reused.
  • the physical properties (composition, iodine concentration, etc.) of the etching solution containing Au vary depending on the iodine concentration in the object to be processed and the iodine-based etching solution. Therefore, while recovering Au in a high yield, It was very difficult to perform the regeneration stably.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is to recover the iodine (I 3 ⁇ ) concentration from the Au-containing etching solution at a high recovery rate and preferably to adjust the iodine (I 3 ⁇ ) concentration before use.
  • the purpose is to establish a technique that can recover the etching performance by recovering to almost the same level as the state of the etching solution.
  • the present invention that has solved the above problems is a method of treating an etching solution that recovers the iodine (I 3 ⁇ ) concentration while recovering the Au in the Au-containing iodine-based etching solution by electrolysis. Is carried out while maintaining the cathode potential at ⁇ 0.7 V or more (when the reference potential is the reference electrode Ag / AgCl) and the anode potential at +1.0 V or less (when the reference potential is the reference electrode Ag / AgCl). Has a summary.
  • the electrolysis is performed by diaphragm electrolysis in which a cathode and an anode are partitioned by a diaphragm.
  • the diaphragm electrolysis is performed by supplying the Au-containing iodine-based etchant continuously from the supply source of the Au-containing iodine-based etchant to the cathode side partitioned by the diaphragm and recovering Au.
  • a method of supplying iodine (I 3 ⁇ ) concentration to the partitioned anode side It is also a preferred embodiment that the iodine concentration on the cathode side partitioned by the diaphragm is adjusted to such an extent that re-dissolution of Au deposited on the cathode does not occur.
  • the cathode for electrolysis, the anode, the reference electrode serving as a reference for the electrode potential of the cathode or the anode, and the reference And a power source for controlling the current or the voltage between the electrodes so that the electrode potential on the side where the reference electrode is installed is within a predetermined range based on the potential measured by the electrode, and the reference electrode is not installed
  • the electrode on the side has physical means for adjusting the electrode potential to be within a predetermined range.
  • means for adjusting the wetted area of the electrode on the side where the reference electrode is not installed is preferable.
  • the cathode potential and anode potential during electrolysis are appropriately controlled, so that Au in the Au-containing etching solution can be recovered at a high recovery rate and the iodine (I 3 ⁇ ) concentration is recovered. Then, the etching ability can be regenerated. Further, by partitioning with a diaphragm, Au deposition on the cathode side and iodine (I 3 ⁇ ) concentration recovery on the anode side can be performed more efficiently, so that the electrolysis time can be shortened.
  • the iodine in the Au-containing iodine-based etching solution in which Au deposited on the cathode is newly supplied because the iodine (I 3 ⁇ ) concentration on the cathode side is controlled. (I 3 ⁇ ) prevents re-dissolution and Au can be recovered with good yield.
  • the electrode potential and the anode potential can be easily controlled appropriately.
  • FIG. 1 is a schematic view showing a configuration example of diaphragm electrolysis.
  • FIG. 2 is a schematic view showing another configuration example of diaphragm electrolysis.
  • FIG. 3 is a schematic view showing another configuration example of diaphragm electrolysis.
  • FIG. 4 is a schematic view showing another configuration example of diaphragm electrolysis.
  • FIG. 5 is a schematic diagram showing a configuration example in which the wire connected to the electrode B is moved up and down by the wire length adjusting means.
  • FIG. 6 is a schematic view showing a configuration example in which a plurality of liquid discharge valves are provided on the side surface of the electrolytic cell.
  • FIG. 7 is a schematic diagram illustrating a configuration example in which the liquid contact areas of the electrode A and the electrode B are different.
  • FIG. 8 is a schematic diagram illustrating a configuration example in which a plurality of electrodes B having different liquid contact areas are provided.
  • the inventors of the present invention recovered Au at a high recovery rate from an iodine-based etching solution (Au-containing etching solution) containing Au after etching (used) by electrolysis, and at the same time iodine (I 3 - )
  • Au-containing etching solution iodine-based etching solution
  • I 3 - iodine
  • the concentration of iodine (I 3 ⁇ ) in the Au-containing etching solution is high, re-dissolution of Au deposited and deposited on the cathode surface by electrolysis (hereinafter sometimes referred to as electrodeposition) may occur. all right.
  • the iodine-based etchant before use for etching (hereinafter also referred to as pre-use etchant) has an iodine (I 3 ⁇ ) concentration that exhibits the etching ability in order to exhibit sufficient etching ability. It is set high.
  • the present inventors reduce the concentration of iodine (I 3 ⁇ ) remaining after electrolysis by increasing the voltage at the time of electrolysis and increasing the reduction rate of iodine (I 3 ⁇ ) at the cathode. It was investigated. As a result, re-dissolution of electrodeposited Au was suppressed and Au could be recovered in high yield, but it was found that the following problems occurred.
  • the pH of the regenerated etching solution became unstable, the iodine (I 3 ⁇ ) concentration was low, and the etching ability was insufficient.
  • the pH of the regenerated etching solution varied greatly compared to the pH of the etching solution before use. Specifically, when a high voltage is applied, the cathode potential becomes lower than the potential at which Au deposition occurs and the pH increases due to the reaction (a) above, or the anode potential becomes higher than the potential at which oxidation of I ⁇ occurs. A phenomenon that the pH was lowered by the reaction of (b) occurred.
  • the etching performance of the regenerated etching solution is higher than that of the pre-use etching solution, so that when reused as it is, Au is excessively etched, which causes the etching failure. It becomes.
  • the pH of the regenerated etching solution becomes higher, the etching performance of the regenerated etching solution becomes lower than that of the pre-use etching solution. Become.
  • the present inventors have further studied to achieve a high Au recovery rate, solve the above problems of pH fluctuation and iodine concentration reduction, and provide a reusable regenerated etching solution. It was.
  • the cathode potential during electrolysis or -0.7 V (if the reference potential and the reference electrode Ag / AgCl, the same applies hereinafter) to maintain the above reaction H 2 at the cathode is generated (a ) Can be suppressed, and precipitation of Au and reduction of iodine (I 3 ⁇ ) can be achieved while maintaining a pH of about the same level as the pre-use etching solution.
  • the cathode potential falls below ⁇ 0.7 V, for example, as shown in Experimental Example 3, the pH rises greatly, so that it cannot be reused as an etching solution as it is.
  • a preferred cathode potential is ⁇ 0.5 V or more, preferably ⁇ 0.1 V or less.
  • the anode potential during electrolysis is set to +1.0 V or less (the reference potential is the reference electrode Ag). In the case of / AgCl, it is necessary to control so that the same can be maintained.
  • a preferred anode potential is +0.6 V or less, preferably +0.3 V or more.
  • the means for maintaining the cathode potential and the anode potential at predetermined values is not particularly limited.
  • a power source that controls the current or the voltage between the electrodes so that the electrode potential is in a predetermined range, and the electrode on the side where the reference electrode is not installed is physically adjusted so that the electrode potential is in the predetermined range. It is desirable to have an objective means.
  • the “electrode potential is in a predetermined range” is a range of electrode potentials necessary for a target reaction at the cathode and the anode.
  • the electrode potential in a predetermined range when used in the processing method of the Au-containing etching solution provided in the present invention is a cathode potential of ⁇ 0.7 V or more and an anode potential of +1.0 V or less.
  • the method for adjusting the electrode potential to be within a predetermined range is not particularly limited.
  • a reference electrode (Ag / AgCl) is installed on either the cathode or anode A side, and the potential of the electrode A on the side where the reference electrode is installed is obtained from the reference electrode (Ag / AgCl) and the electrode A. Based on the information, the current or the interelectrode voltage may be controlled so that the desired potential is obtained.
  • the physical means for adjusting the potential of the other electrode B on which the reference electrode is not installed is not particularly limited.
  • a means for adjusting the liquid contact area between the electrode B and a liquid (for example, an electrolyzed liquid) is desirable.
  • the liquid contact area of the electrode B for example, (1) means for changing the liquid contact area of the electrode B immersed in the liquid by moving the electrode B up and down, and (2) several types of electrodes B having different surface areas are prepared.
  • means for appropriately selecting the electrode B to be used so as to obtain a desired potential can be considered.
  • physical means that can be considered other than adjustment of the wetted area for example, (3) Since the overvoltage varies depending on the material of the electrode B, it is also effective to appropriately select and change the material of the electrode B. Any one or a combination of these means may be used to control the potential of the electrode B.
  • the electrode material include stainless steel and titanium as the cathode, and stainless steel as the anode and titanium coated with an oxide (for example, iridium oxide).
  • the specific device configuration for realizing the above (1) and (2) is not particularly limited.
  • a mechanism for automatically raising and lowering the electrode B according to the potential may be provided (see, for example, FIG. 5.
  • Other configurations are omitted, and other configurations may be the same as those in FIGS. 1 to 4 (the same applies to FIGS. 6 to 8).
  • the potential of the electrode B can be adjusted by moving the electrode B up and down to change the liquid contact area.
  • a plurality of liquid discharge valves having different heights from the electrolytic cell bottom may be provided in the electrolytic cell (see, for example, FIG. 6).
  • the liquid surface height of the liquid can be raised and lowered to adjust the liquid contact area with the electrode B.
  • the voltage potential of the electrode B can be adjusted by changing the area of the electrode B in relation to the area of the electrode A (see, for example, FIG. 7).
  • a mechanism is provided in which a plurality of electrodes B having different liquid contact areas are previously installed and connected to a power source via a current control means such as a controller. (See, for example, FIG. 8).
  • the potential of the electrode B can be adjusted by selecting one or a plurality of electrodes B through which a current is passed through the controller so as to obtain a desired potential.
  • the anode potential tends to increase, so the anode area is made larger than the cathode area. It is desirable.
  • the liquid contact resistance of the anode is reduced, and the anode potential can be controlled to the predetermined value.
  • the Au-containing etching solution When the Au-containing etching solution is electrolyzed with the cathode potential and anode potential adjusted to a predetermined value as described above, Au ions can be deposited on the cathode as metallic Au. Further, the reaction (a) in which H 2 is generated at the cathode can be suppressed. Further, the reaction (b) in which O 2 is generated at the anode can be suppressed, and precipitation of I 2 can be prevented. Therefore, the pH of the regeneration etchant is approximately equal to the pH before the etchant used, and iodine (I 3 -) concentration of iodine prior to use etching solution (I 3 -) can be restored to substantially the same concentration.
  • the pH almost equal to that of the pre-use etchant means that the etching ability equivalent to that of the pre-use etchant can be exhibited.
  • the specific amount of change varies somewhat depending on the pH of the etching solution before use, but is generally within a range of ⁇ 0.5 of the pH of the etching solution before use.
  • the iodine (I 3 ⁇ ) concentration substantially equivalent to the pre-use etching solution means an iodine (I 3 ⁇ ) concentration that can dissolve and remove at least unnecessary Au as the etching solution.
  • an iodine (I 3 ⁇ ) concentration that can dissolve and remove at least unnecessary Au as the etching solution.
  • the iodine (I 3 ⁇ ) concentration in the etching solution before use is 100%, if the iodine (I 3 ⁇ ) concentration is within the range of ⁇ 50%, unnecessary Au
  • the iodine (I 3 ⁇ ) concentration be ⁇ 10%, and still more preferable that the iodine (I 3 ⁇ ) concentration be within ⁇ 5%. It is. In order to approach the iodine (I 3 ⁇ ) concentration in the etching solution before use, it is desirable to appropriately control the electrode potential to prevent iodine precipitation and the like.
  • the Au-containing etching solution is supplied to an electrolysis tank in which a cathode and an anode are installed and electrolyzed. At that time, if Au deposited on the cathode is not re-dissolved by I 3 ⁇ generated at the anode, This is desirable because the time required for electrolysis can be shortened. Specifically, it is desirable to perform electrolysis of a diaphragm provided with a diaphragm that can be electrically connected and does not allow an Au-containing etching solution to pass through.
  • the Au-containing etching solution can be adjusted to different liquid qualities in the cathode chamber and the anode chamber by dividing the electrolysis tank into the anode side (anode chamber) and the cathode side (cathode chamber) by the diaphragm.
  • the concentration of iodine (I 3 ⁇ ) in the Au-containing etching solution supplied to the cathode chamber is high, the iodine cannot be sufficiently reduced at the cathode potential, and the precipitated Au may be redissolved.
  • the iodine concentration (I 3 ⁇ ) on the cathode chamber side may be reduced by dilution or the like to such an extent that iodine (I 3 ⁇ ) can be sufficiently reduced at the cathode potential.
  • the above problem is that the Au-containing etching solution is continuously supplied from the supply source of the Au-containing etching solution (for example, an Au-containing etching solution storage tank or etching apparatus) to the electrolysis tank. Often occur when electrolysis is performed continuously.
  • the iodine (I 3 ⁇ ) concentration contained in the Au-containing etching solution supplied to the cathode chamber may not be constant, and when the iodine concentration (I 3 ⁇ ) becomes high, it precipitates. This is because Au is redissolved.
  • the supply amount of the Au-containing etching solution to the cathode chamber is [current (A (ampere))> iodine concentration (of the Au-containing etching solution supplied to the cathode side).
  • the supply amount of the Au-containing etching solution in consideration of the iodine (I 3 ⁇ ) concentration, re-dissolution of the precipitated Au can be suppressed and the Au recovery rate can be increased.
  • the specific iodine (I 3 ⁇ ) concentration in the cathode chamber is not particularly limited, but is preferably 60 mmol / L or less, more preferably 20 mmol / L or less.
  • FIG. 1 is an example of a schematic configuration diagram of diaphragm electrolysis.
  • the diaphragm electrolysis tank is composed of a cathode chamber 2 and an anode chamber 7 partitioned by a diaphragm 5.
  • the diaphragm 5 is a film that can conduct electricity and does not allow liquid to pass through the cathode chamber 2 and the anode chamber 7, and examples thereof include a cation exchange membrane and a microporous film.
  • the cathode chamber 2 is provided with a cathode 3 and a reference electrode 4 (Ag / AgCl).
  • An anode 6 is installed in the anode chamber 7.
  • the cathode potential may be controlled at a constant potential so that the potential difference between the reference electrode 4 and the cathode is measured and fed back to the DC power source 9 so that the cathode potential can be kept constant.
  • the set value of the interelectrode voltage and current may be controlled by a computer so that the cathode potential is maintained within the predetermined range based on the feedback.
  • the used etching solution tank 1 stores an Au-containing etching solution that is used for etching Au and discharged during the manufacturing process of the electronic material.
  • the liquid property of the Au-containing etching solution targeted in the present invention is not particularly limited, and may be basic, neutral, or acidic. However, if the pH of the etching solution is strongly basic or strongly acidic, the object to be plated may be damaged. Therefore, the pH of the etching solution before use is often adjusted to about 1 to 7 in many cases. Therefore, the pH of the Au-containing etching solution after use is generally about 1-7.
  • the concentration of Au in the Au-containing etching solution is not particularly limited.
  • an Au-containing etching solution contains approximately 0.1 to 10 g / L of Au.
  • electrolysis can be performed stably regardless of the concentration of Au.
  • the iodine (I 3 ⁇ ) concentration in the Au-containing etching solution is not particularly limited because it varies depending on the etching conditions and the like, but is generally about 10 to 200 mmol / L.
  • the used etchant tank 1 and the cathode chamber 2 are connected by a pipe line via the pump P1, and the Au-containing etchant is supplied to the cathode chamber 2.
  • the cathode chamber 2 and the anode chamber 7 are connected by a pipe line via a pump P2, and an etching solution (used etching solution) after Au deposition is finished is supplied to the anode chamber 7.
  • an etching solution used etching solution
  • the oxidation of iodine is mainly performed, and the regeneration of the etching ability (recovery of iodine (I 3 ⁇ ) concentration) is performed.
  • the electrolytic solution previously filled in the anode chamber 7 is not particularly limited, and for example, an iodine-based etching solution may be filled.
  • the electrolytic solution previously filled in the anode chamber 7 is not particularly limited as long as it has a property of conducting electricity.
  • the anode chamber 7 may be filled with the iodine-based etching solution before use.
  • Anode chamber 7 and the electric deconstructed etchant tank 8 is connected in line via the pump P3, iodine (I -) is oxidized, iodine (I 3 -) concentration was restored reproduction etchant electrical It is supplied to the decomposed etching solution tank 8.
  • the pH of the regenerated etching solution supplied to the electrolyzed etching solution tank 8 is substantially the same as that of the pre-use etching solution (preferably ⁇ 0.5), and iodine (I) of the iodine-based etching solution previously filled in the cathode chamber. 3 ⁇ ) Although there are some fluctuations depending on the concentration, the iodine (I 3 ⁇ ) concentration is equivalent to the pre-use etching solution (preferably ⁇ 50%). Therefore, the regenerated etching solution can be used as it is for the etching of Au.
  • the Au deposited on the cathode 3 may be recovered from the cathode 3 by any means, and can be easily recovered by scraping means such as a scraper.
  • the cathode potential and the anode potential during electrolysis are appropriately controlled, so that Au can be recovered in a high yield, and the used etching solution has substantially the same pH as the etching solution before use. And can be regenerated to an equivalent iodine concentration.
  • the anode chamber 7 (capacity 300 mL) was provided with an anode 6 (electrode having a titanium surface coated with iridium oxide; surface area 26.4 cm 2 ). Incidentally, it was set to the surface area of the cathode surface area of the anode chamber 7 such that the desired anodic potential is obtained twice (13.2cm 2) (26.4cm 2) .
  • a potassium iodide aqueous solution (iodine-based etching solution A: potassium iodide concentration 80 g / L, iodine (I 3 ⁇ ) concentration: 3 g / L (about 10 mmol / L)) in which iodine is dissolved in advance. Filled. Also in the anode chamber 7, an aqueous potassium iodide solution in which iodine is dissolved in advance (iodine-based etching solution B: potassium iodide concentration 80 g / L, iodine (I 3 ⁇ ) concentration: 40 g / L (about 150 mmol / L)) Filled.
  • iodine-based etching solution A potassium iodide concentration 80 g / L, iodine (I 3 ⁇ ) concentration: 3 g / L (about 10 mmol / L)
  • an Au-containing etching solution (dissolved Au concentration 1.2 g / L, potassium iodide concentration 80 g / L, iodine (I 3 ⁇ ) concentration 40 g / L (about 150 mmol / L)) is used from the used etching solution tank 1. Electrolysis was performed by continuously supplying the cathode chamber 2 while adjusting the supply amount with the pump P1.
  • a direct current power source 9 is measured so that the potential difference between the reference electrode 4 (Ag / AgCl) installed in the cathode chamber 2 and the cathode 3 is measured and the cathode potential is maintained at ⁇ 0.3 V (vs. Ag / AgCl). Controlled the output.
  • the anode potential was maintained at +0.6 V or less (vs. Ag / AgCl) by adjusting the anode area.
  • the supply amount of the Au-containing etching solution is 17 mL / hr based on the iodine (I 3 ⁇ ) concentration, iodine reduction rate, cathode potential ( ⁇ 0.3 V), and current density (9 mA / cm 2 ).
  • the reduction amount of iodine in the cathode chamber 2 was made to exceed the supply amount of the used etching solution.
  • the used etching solution in the cathode chamber 2 in which Au was deposited by electrolysis and the Au concentration decreased was supplied to the anode chamber 7 by the pump P2.
  • the supply amount of the pump P2 was controlled so as to be about the same as the supply amount of the Au-containing etching solution from the pump P1 (17 mL / hr).
  • iodine ions reduced by the reaction in the cathode chamber 2 are oxidized, and iodine (I 3 ⁇ ) is regenerated. Then, the regenerated etching solution whose iodine (I 3 ⁇ ) concentration has been recovered by such an oxidizing action is supplied to the electrolyzed etching solution tank 8 via the pump P3 in substantially the same amount (17 mL / hr).
  • the composition of each of the Au-containing etchant in the used etchant tank 1 and the regenerated etchant in the electrolyzed etchant tank 8 was examined and described in Table 1.
  • the composition of the pre-use etchant was examined in advance before the etchant was used for etching Au.
  • the Au concentration contained in the regenerated etching solution was less than 5 mg / L, and Au could be recovered in a high yield.
  • the pH of the etching solution before use and the pH of the regenerated etching solution are both 3.3, and the iodine (I 3 ⁇ ) concentration of the regenerated etching solution obtained during the electrolysis without changing the pH.
  • the iodine (I 3 ⁇ ) concentration was the same as that of the pre-use etching solution, and the composition was almost the same, so that it was confirmed that it was in a state suitable for reuse.
  • Example 2 Next, the change in pH of the liquid before and after electrolysis in the range of the cathode potential and anode potential specified in the present invention was examined.
  • the following experiment was conducted using an electrolysis test facility having the configuration shown in FIG. In addition, it is the structure similar to the said Experimental example 1 except having supplied the reproduction
  • capacitance 100mL capacity of the cathode chamber 2 and the anode chamber 7 was 100 mL, the surface area of the cathode was 3 cm 2 , and the surface area of the anode was 9 cm 2 .
  • Electrolysis was performed for 1 hour, and the cathode potential, the anode potential, the pH of the cathode chamber and the pH of the anode chamber were examined. The results are shown in Table 2.
  • Example 3 The change in pH in the cathode chamber when the cathode potential range specified in the present invention was outside the range was examined. Except that the cathode potential was changed to -1.0 V (vs. Ag / AgCl), the following experiment was conducted in the same manner as in Experimental Example 2, using the same electrolysis test facility as shown in FIG. Went. The results are shown in Table 3.
  • Example 4 The pH variation in the anode chamber when the anode potential range defined in the present invention was out of the range was examined.
  • the following experiment was conducted using an electrolysis test facility having the configuration shown in FIG. FIG. 3 is a batch type membrane electrolysis.
  • the cathode titanium plate (surface area 2.9 cm 2), the anode using the electrode produced by coating the surfaces of the titanium plate with iridium oxide (surface area 8.8 cm 2).
  • the Au-containing etching solution used in Experimental Example 1 dissolved Au concentration 1.2 g / L, potassium iodide concentration 80 g / L, iodine (I 3 ⁇ ) concentration 40 g / L (approximately 150 mmol / L)
  • the anode chamber 7 was filled with the iodine-based etching solution B in advance.
  • Electrolysis When performing the electrolysis, the electrolysis was performed while adjusting the cathode potential to maintain -0.7 V (vs. Ag / AgCl). Electrolysis was started from +0.48 V (electrolysis time 0 minutes), and the anode potential was raised to +1.89 V (electrolysis time 240 minutes) at the end of electrolysis. Electrolysis was performed for 4 hours, and the change in pH of the anode chamber was examined. The results are shown in Table 4.

Abstract

 使用済みヨウ素系エッチング液からAuを高い回収率で回収しつつ、ヨウ素(I3 -)濃度を回復してエッチング能力の再生もできる技術を確立すること。 電気分解してAu含有ヨウ素系エッチング液中のAuを回収すると共に、ヨウ素(I3 -)濃度を回復するエッチング液の処理方法であって、前記電気分解は陰極電位を-0.7V以上(基準電位を参照電極Ag/AgClとした場合)、及び陽極電位を+1.0V以下(基準電位を参照電極Ag/AgClとした場合)に維持して行うこと。

Description

Au含有ヨウ素系エッチング液の処理方法、および処理装置
 本発明はAu含有ヨウ素系エッチング液の処理方法、および処理装置に関する。詳細には電気分解によりAu含有ヨウ素系エッチング液から金属Auを高い回収率で効率良く回収すると共に、ヨウ素(I3 -)濃度を回復してエッチング能力の再生を図る技術に関するものである。
 半導体などの集積回路基板や、ターミナル端子やコネクタなどの電子部品には導電性や耐久性の観点からAu(例えばAuめっき)が使用されている。Auめっきされた基板や電子部品の表面を微細加工する際に、不要なAuはエッチング液で溶解・除去している。Auのエッチング液としては、ヨウ素系エッチング液が汎用されている。ヨウ素系エッチング液とは、ヨウ化カリウム(KI)水溶液にヨウ素(I2)を溶解させたものであり、ヨウ素は該水溶液中でI3 -として存在し、該ヨウ素(I3 -)と反応してAuがエッチング(溶解)される。
 Auをエッチングした後の使用済みヨウ素系エッチング液にはAuイオン(例えばヨウ化物錯体[AuI2-)が含まれている。Auは高価な材料であるため、使用済みヨウ素系エッチング液からAuを回収する技術が各種提案されている。使用済みヨウ素系エッチング液からAuを回収する技術として電気分解法が汎用されている。
 電気分解法はAu含有ヨウ素系エッチング液を電気分解して陰極表面にAuを析出させて回収する方法である。Auを回収した後の使用済みエッチング液は、エッチング能力を有するヨウ素(I3 -)が還元(I-)されてエッチング能力が低下していることから、再利用されることなく、廃棄処分されていた。
 しかしながら近年、環境汚染防止や経済的要請から、使用済みヨウ素系エッチング液からAuを回収するだけでなく、使用済みヨウ素系エッチング液のエッチング能力(ヨウ素(I3 -)濃度)を再生(回復)し、ヨウ素系エッチング液として再利用することが望まれている。例えば特許文献1には、使用済みヨウ素系エッチング液を隔膜電気分解処理することで、Auを回収すると共に、還元されたヨウ素(I-)を酸化させてヨウ素(I3 -)を回復させてエッチング能力の再生を図り、再利用を可能とする技術が提案されている。
特開平3-202484号公報
 しかしながらエッチングに使用した後のAu含有ヨウ素系エッチング液(以下、Au含有エッチング液ということがある)を隔膜電気分解処理すると陰極側でAuが析出(電着)する下記反応(I)と同時に、
  [AuI2- + e- → Au+2I- ・・・(I)
 一旦電着したAuが再溶解する下記反応(II)が起こるため、
  2Au + I- + I3 - → 2AuI2 -・・・(II)
 Auの回収率が極めて低くなってしまうという問題があった。
 特にAu含有エッチング液の物性(組成、ヨウ素濃度など)は、被処理物やヨウ素系エッチング液中のヨウ素濃度などによっても変わってくるため、高収率でAuの回収を行いつつ、エッチング液の再生も安定して行うことは非常に困難であった。
 本発明は上記のような事情に着目してなされたものであって、その目的は、Au含有エッチング液からAuを高い回収率で回収しつつ、ヨウ素(I3 -)濃度を好ましくは使用前のエッチング液の状態とほぼ同レベルまで回復させてエッチング能力の再生もできる技術を確立することにある。
 上記課題を解決し得た本発明とは、電気分解によりAu含有ヨウ素系エッチング液中のAuを回収すると共に、ヨウ素(I3 -)濃度を回復するエッチング液の処理方法であって前記電気分解は陰極電位を-0.7V以上(基準電位を参照電極Ag/AgClとした場合)、及び陽極電位を+1.0V以下(基準電位を参照電極Ag/AgClとした場合)に維持して行うことに要旨を有する。
 前記電気分解は、隔膜で陰極と陽極が仕切られた隔膜電気分解で行うことも好ましい実施態様である。
 また前記隔膜電気分解は、前記Au含有ヨウ素系エッチング液の供給源から前記隔膜で仕切られた陰極側に連続的に前記Au含有ヨウ素系エッチング液を供給してAuを回収した後、前記隔膜で仕切られた陽極側に供給してヨウ素(I3 -)濃度を回復させる方法であって、
 前記隔膜で仕切られた陰極側のヨウ素濃度は、陰極に析出したAuの再溶解が生じない程度に調整することも好ましい実施態様である。
 また実施においては、前記隔膜で仕切られた陰極側に供給するAu含有ヨウ素系エッチング液の供給量を下記式(1)を満足するように調整することも好ましい。
 電流(A(アンペア))>I3 -濃度A×供給量B×F ・・・(1)
 (式中、
   I3 -濃度A:陰極側に供給されるAu含有ヨウ素系エッチング液のヨウ素(I3 -)濃度(mol/L)、
   供給量B:Au含有ヨウ素系エッチング液の陰極側への供給量(L/sec)
   F:ファラデー定数(A(アンペア)・sec/mol))
 また本発明では陰極電位と陽極電位を前記の範囲に制御するための装置として、電気分解用の陰極、および陽極と、前記陰極、または前記陽極の電極電位の基準となる参照電極と、前記参照電極により測定される電位に基づいて前記参照電極を設置した側の電極電位が所定の範囲になるように電流または電極間電圧を制御する電源と、を有し、前記参照電極を設置しなかった側の電極は、電極電位が所定の範囲となるように調整する物理的手段を有することも好ましい実施態様である。
 前記物理的手段としては、前記参照電極を設置しなかった側の電極の接液面積を調整する手段が好ましい。
 本発明によれば、電気分解中の陰極電位、および陽極電位を適切に制御しているため、Au含有エッチング液中のAuを高い回収率で回収できると共に、ヨウ素(I3 -)濃度を回復してエッチング能力の再生もできる。また隔膜で仕切ることにより、陰極側のAu析出と陽極側のヨウ素(I3 -)濃度回復がより効率的に行なえるため、電解時間を短縮できる。また連続的にAu含有エッチング液を供給する場合も、陰極側のヨウ素(I3 -)濃度を制御しているため陰極に析出したAuが新たに供給されたAu含有ヨウ素系エッチング液中のヨウ素(I3 -)により再溶解することを防止し、Auを収率良く回収できる。
 また本発明の処理装置を用いると、容易に電極電位と陽極電位を適切に制御することができる。
図1は、隔膜電気分解の一構成例を示す概略図である。 図2は、隔膜電気分解の他の構成例を示す概略図である。 図3は、隔膜電気分解の他の構成例を示す概略図である。 図4は、隔膜電気分解の他の構成例を示す概略図である。 図5は、電極Bを接続したワイヤをワイヤ長調節手段で上下させる構成例を示す概略図である。 図6は、電解槽側面に液体排出バルブを複数設けた構成例を示す概略図である。 図7は、電極Aと電極Bの接液面積が異なる構成例を示す概略図である。 図8は、接液面積の異なる複数の電極Bを設けた構成例を示す概略図である。
 本発明者らは、電気分解法により、Auをエッチングした後(使用済み)のAuを含有するヨウ素系エッチング液(Au含有エッチング液)からAuを高い回収率で回収すると共に、ヨウ素(I3 -)濃度を回復してAu含有エッチング液のエッチング能力を高いレベルで安定して再生(以下、使用済みエッチング液の再生ということがある。)する方法を提供するため、鋭意研究を重ねた。
 まず、従来の電気分解法によって使用済みエッチング液の再生を行った場合に、Auの回収率が低くなる原因について検討した。その結果、Au含有エッチング液中のヨウ素(I3 -)濃度が高いと、電気分解によって陰極表面に付着して析出(以下、電着ということがある。)したAuの再溶解が起こることがわかった。すなわち、エッチングに使用する前のヨウ素系エッチング液(以下、使用前エッチング液ということがある。)は、十分なエッチング能力を発揮させるために、エッチング能力を発揮するヨウ素(I3 -)濃度が高く設定されている。そのため、Au含有エッチング液には溶解したAuだけでなく、消費されなかったヨウ素(I3 -)が残存している。残存しているヨウ素(I3 -)は、電気分解時に還元されて、I-となり(前記(I)の反応)、Auを溶解する能力を喪失するが、Au含有エッチング液に高濃度でヨウ素(I3 -)が含まれていると、電気分解で還元されずに残存したヨウ素(I3 -)によって析出したAuが再溶解されてしまうことがわかった(前記(II)の反応)。
 そこで本発明者らは、電気分解する際の電圧を高くして、陰極でのヨウ素(I3 -)還元率を高めることで、電気分解後に残存するヨウ素(I3 -)濃度を低減することを検討した。その結果、電着したAuの再溶解が抑制され、Auを高収率で回収できるが、次のような問題が生じることがわかった。
 Auの回収率を高めるために高電圧にすると、陰極では下記水素発生反応(a)が起こった。
  2H2O + 2e- →2OH- +H2 ・・・(a)
 また陽極では下記酸素発生反応(b)が起こると共に、ヨウ素(固体:I2)が析出し、再生エッチング液(電気分解でエッチング能力が再生されたエッチング液)のヨウ素(I3 -)濃度が低下した。
  2H2O → O2 + 4e- + 4H+ ・・・(b)
 そのため、再生エッチング液のpHが不安定になると共に、ヨウ素(I3 -)濃度が低く、エッチング能力が不十分であることがわかった。上記(a)、(b)の反応が生じた結果、再生エッチング液のpHは使用前エッチング液のpHと比べて大きな変動が生じた。具体的には、高電圧をかけると陰極電位がAuの析出が起こる電位よりも低くなり上記(a)の反応によってpHが上がる、あるいは陽極電位がIの酸化が起こる電位よりも高くなり上記(b)の反応によってpHが下がる現象が起こった。例えば再生エッチング液のpHが低くなった場合、使用前エッチング液と比べて再生エッチング液のエッチング性能が高くなってしまうため、そのまま再利用すると、Auが過度にエッチングされてしまい、エッチング不良の原因となる。また再生エッチング液のpHが高くなった場合、使用前エッチング液と比べて再生エッチング液のエッチング性能が低くなってしまうため、そのまま再利用すると、Auのエッチングが十分行えず、エッチング不良の原因となる。
 またヨウ素が析出するとI2として析出した分、再生エッチング液中のヨウ素(I3 -)濃度が低下してエッチング能力が不足することがわかった。
 したがってAu含有エッチング液を電気分解してエッチング能力を再生(好ましくはヨウ素(I3 -)濃度を使用前エッチング液とほぼ同レベルまで回復)して、再利用を可能とするためには、使用前エッチング液と再生エッチング液とでヨウ素濃度や、pHの変動を抑える必要があることがわかった。
 以上の知見に基づいて、本発明者らは高いAu回収率を達成すると共に、上記pH変動やヨウ素濃度低下の問題を解決して、再利用可能な再生エッチング液を提供すべく更に研究を重ねた。
 その結果、Au含有エッチング液を電気分解してAuの回収とヨウ素(I3 -)濃度の回復を行う場合に、電気分解中の陰極電位と陽極電位を所定の範囲に制御することが有効であることを見出した。
 具体的には、電気分解中の陰極電位を-0.7V以上(基準電位を参照電極Ag/AgClとした場合、以下同じ)に維持することで、陰極でH2が発生する上記反応(a)を抑制して、使用前エッチング液とほぼ同じ程度のpHに維持しつつ、Auの析出とヨウ素(I3 -)の還元を図ることができる。一方、陰極電位が-0.7Vを下回ると例えば実験例3に示すようにpHが大きく上昇してしまうため、そのままではエッチング液として再利用できない。好ましい陰極電位は-0.5V以上であって、好ましくは-0.1V以下である。
 一方、陽極電位が高い場合、陽極でI2が析出してしまい、再生エッチング液のヨウ素(I3 -)濃度を十分に回復できず、再利用できない。また例えば実験例4に示すようにpHが大きく低下してしまうため、再生エッチング液として要求されるエッチング能力が不足する。したがってI2の析出を抑制して、ヨウ素の酸化反応を進行させてヨウ素(I3 -)濃度を回復させるためには、電気分解中の陽極電位を+1.0V以下(基準電位を参照電極Ag/AgClとした場合、以下同じ)に維持できるように制御する必要がある。好ましい陽極電位は+0.6V以下であって、好ましくは+0.3V以上である。なお、電気分解中、陽極電位は常に一定の値を維持する必要はなく、上記所定の値を満足するのであれば、変動してもよい。
 陰極電位と陽極電位を所定の値に維持するための手段は特に限定されない。好ましい処理装置としては、電気分解用の陰極、および陽極と、前記陰極、または陽極の電極電位の基準となる参照電極と、参照電極により測定される電位に基づいて前記参照電極を設置した側の電極電位が所定の範囲になるように電流または電極間電圧を制御する電源と、を有し、参照電極を設置しなかった側の電極は、電極電位が所定の範囲となるように調整する物理的手段を有するものであることが望ましい。「電極電位が所定の範囲」とは、陰極、および陽極において目的とする反応に必要な電極電位の範囲である。例えば本発明で提供する上記Au含有エッチング液の処理方法に用いる場合における所定の範囲の電極電位とは陰極電位-0.7V以上、陽極電位+1.0V以下である。
 また電極電位を所定の範囲となるように調整する方法としても特に限定されない。例えば陰極または陽極のいずれか一方の電極A側に参照電極(Ag/AgCl)を設置し、参照電極を設置した側の電極Aの電位は、参照電極(Ag/AgCl)と電極Aから得られる情報に基づいて上記所望の電位となるように電流または電極間電圧を制御すればよい。参照電極を設置しなかったもう一方の電極Bの電位を調整する物理的手段は特に限定されない。例えば電極Bと液体(例えば被電気分解液)との接液面積を調整する手段が望ましい。電極Bの接液面積を調整する手段としては例えば(1)電極Bを上下させることにより液体に浸漬する電極Bの接液面積を変更する手段や、(2)表面積の異なる電極Bを数種類準備して所望の電位となるように使用する電極Bを適宜選択する手段などが考えられる。接液面積の調整以外に考えられる物理的手段として、例えば(3)電極Bの材料により過電圧が変わるため、電極Bの材料を適宜選択・変更することも有効である。これらの手段をいずれか1つ、あるいは複数組み合わせて電極Bの電位を制御してもよい。なお、電極材料としては、陰極はステンレスやチタンが例示され、陽極はステンレス、チタンに酸化物(例えば酸化イリジウム)を被覆したものが例示される。
 上記(1)(2)を実現する具体的な装置構成としては、特に限定されない。例えば上記(1)の方法で電極Bの接液面積を変更する手段としては、電位に応じて電極Bを自動的に上下させる機構を設けてもよい(例えば図5参照。なお、図中、他の構成は省略しており、他の構成として図1~図4と同様でもよい。図6~図8についても同じ)。電極Bを上下させて接液面積を変えることで、電極Bの電位を調整できる。あるいは電解槽に電解槽底からの高さの異なる液体排出バルブを複数設けてもよい(例えば図6参照)。液体排出バルブを適宜開閉することで、液体の液面高さを上下させて電極Bとの接液面積を調整できる。また電極Bの面積を電極Aの面積との関係で変更することで(例えば図7参照)、電極Bの電圧電位を調整することが可能である。また上記(2)の方法で電極Bの電位を調整する手段としては、予め接液面積の異なる複数の電極Bを設置して制御器などの電流制御手段を介して電源と接続させる機構を設けてもよい(例えば図8参照)。所望の電位となるように制御器を介して電流を流す電極Bを一本または複数選択することで、電極Bの電位を調整できる。また、上記電極電位の調整手段と共に、電解液を攪拌や循環させることも電極電位の調整に好適であるため、必要に応じて、攪拌手段や循環設備を設けてもよい。これら手段は複数組み合わせて電極Bの接液面積を制御してもよい。
 例えば上記電極Aとして陰極の電位を参照電極を用いて制御し、上記電極Bとして陽極の接液面積を調整する場合は、陽極電位が上昇する傾向にあるため陰極面積よりも陽極面積を大きくすることが望ましい。陽極面積を大きくすることで陽極の接液抵抗が低減され、陽極電位を上記所定の値に制御できる。
 上記のように所定の値に調整した陰極電位と陽極電位でAu含有エッチング液を電気分解すると、Auイオンを金属Auとして陰極に析出させることができる。また陰極でH2が発生する上記反応(a)を抑制できる。更に陽極でOが発生する上記反応(b)を抑制し、かつIの析出も防止できる。そのため、再生エッチング液のpHは使用前エッチング液のpHとほぼ同等であり、またヨウ素(I3 -)濃度も使用前エッチング液のヨウ素(I3 -)濃度とほぼ同等まで回復できる。
 使用前エッチング液とほぼ同等のpHとは、使用前エッチング液と同等のエッチング能力を発揮できることである。具体的な変化量は使用前エッチング液のpHにより多少変わるが、おおむね使用前エッチング液のpHの±0.5の範囲内である。再生エッチング液のpHを使用前エッチング液のpH±0.5の範囲内とするためには、陰極室、陽極室におけるpHの変化量を±0.5の範囲内とすることが望ましい。
 使用前エッチング液とほぼ同等のヨウ素(I3 -)濃度とは、エッチング液として少なくとも不要なAuを溶解・除去できる程度のヨウ素(I3 -)濃度を意味する。例えばエッチング条件にもよるが、使用前エッチング液のヨウ素(I3 -)濃度を100%としたときに、その±50%の範囲内のヨウ素(I3 -)濃度であれば、不要なAuを溶解・除去することが可能であり、エッチング効率を向上させる観点からは±20%のヨウ素(I3 -)濃度であることがより好ましい。また再生エッチング液を使用前エッチング液として利用するためには、±10%のヨウ素(I3 -)濃度であることが更に好ましく、より更に好ましくは±5%以内のヨウ素(I3 -)濃度である。使用前エッチング液のヨウ素(I3 -)濃度に近づけるためには、電極電位を適切に制御してヨウ素の析出等を防ぐことが望ましい。
 Au含有エッチング液は陰極と陽極が設置されている電気分解槽に供給して電気分解するが、その際、陰極に析出したAuが、陽極で発生したI3 -によって再溶解されないようにすると、電気分解にかかる時間を短縮できるため望ましい。具体的には、電気的導通が可能であって、かつAu含有エッチング液を通さない隔膜を設けた隔膜電気分解をすることが望ましい。
 また隔膜電気分解の場合、隔膜によって電気分解槽を陽極側(陽極室)と陰極側(陰極室)に分けることで、Au含有エッチング液を陰極室と陽極室で夫々異なる液質に調整できる。例えば陰極室に供給するAu含有エッチング液のヨウ素(I3 -)濃度が高い場合、上記陰極電位では該ヨウ素を十分に還元できず、析出したAuの再溶解が生じることがある。そのため、上記陰極電位で十分にヨウ素(I3 -)を還元できる程度まで陰極室側のヨウ素濃度(I3 -)を希釈などによって低減させてもよい。
 Au含有エッチング液のヨウ素濃度が高い場合の上記問題は、Au含有エッチング液の供給源(例えばAu含有エッチング液の貯留槽やエッチング装置)から連続的にAu含有エッチング液を電気分解槽に供給して連続式で電気分解する際に生じることが多い。連続式で電気分解する場合、陰極室に供給されたAu含有エッチング液に含まれるヨウ素(I3 -)濃度が一定していないことがあり、ヨウ素濃度(I3 -)が高くなると、析出したAuが再溶解されるためである。
 そこで本発明では、連続式で電気分解する場合は、陰極室へのAu含有エッチング液の供給量が、[電流(A(アンペア))>ヨウ素濃度(陰極側に供給されるAu含有エッチング液のI3 -濃度(mol/L))×Au含有ヨウ素系エッチング液の陰極側への供給量(L/sec)×F(ファラデー定数:A(アンペア)・sec/mol)]を満足するように調整することが望ましい。ヨウ素(I3 -)濃度を考慮してAu含有エッチング液の供給量を調整することで、析出したAuの再溶解を抑制してAuの回収率を高めることができる。
 上記したように連続式で電気分解する場合、陰極室のヨウ素(I3 -)濃度は、析出したAuの再溶解が生じない程度に調整することが望ましい。具体的な陰極室のヨウ素(I3 -)濃度は特に限定されないが、好ましくは60mmol/L以下、より好ましくは20mmol/L以下である。陰極室内のヨウ素濃度を適切に調整することによって、Auの回収率を高めることができる。
 なお、一度に一定量を処理するバッチ式の場合、陰極室側のヨウ素(I3 -)濃度が高くても上記電位条件でAuを高い回収率で回収できる。バッチ式の場合、電気分解中に新たにヨウ素(I3 -)が供給されないため、陰極室内のヨウ素(I3 -)が還元されてヨウ素(I3 -)濃度が漸減し、Auの再溶解が抑制されるからである。
 以下、Au含有エッチング液の処理方法として、本発明の好ましい実施形態である隔膜電気分解に基づいて説明するが、本発明は下記実施態様に限定されず、適宜変更を加えて実施することができる。
 Au含有エッチング液の電気分解には、各種公知の電気分解装置を用いることができる。図1は、隔膜電気分解の概略構成図の一例である。隔膜電気分解槽は、隔膜5で仕切られた陰極室2と陽極室7で構成されている。なお、隔膜5は、電気的導通が可能で、かつ陰極室2と陽極室7とで液体を透過させない性質を有する膜であり、例えば陽イオン交換膜、マイクロポーラスフィルムなどが例示される。陰極室2には陰極3と参照電極4(Ag/AgCl)が設置されている。また陽極室7には陽極6が設置されている。
 陰極電位は、参照電極4と陰極との電位差を測定して直流電源9にフィードバックし、陰極電位が一定に維持できるように定電位制御すればよい。あるいは該フィードバックに基づいて陰極電位が上記所定の範囲に維持されるように電極間電圧や電流の設定値をコンピューターで制御してもよい。
 使用済みエッチング液槽1には、電子材料の製造過程でAuのエッチングに使用されて排出されたAu含有エッチング液が貯留されている。本発明で対象とするAu含有エッチング液の液性は特に限定されず、塩基性、中性、酸性のいずれであってもよい。もっともエッチング液のpHが強塩基性や強酸性であると被メッキ物にダメージを与える恐れがあるため、使用前エッチング液のpHは1~7程度に適宜調整されていることが多い。そのため使用後のAu含有エッチング液もおおむねpHは1~7程度である。
 Au含有エッチング液中のAuの濃度も特に限定されない。例えばAu含有エッチング液にAuはおおむね0.1~10g/L程度含まれている。本発明ではAuの濃度の多少に関わらず、安定して電気分解することができる。またAu含有エッチング液中のヨウ素(I3 -)濃度もエッチング条件等によって変動するため特に限定されないが、おおむね10~200mmol/L程度含まれている。
 使用済みエッチング液槽1と陰極室2はポンプP1を介して管路で接続されており、Au含有エッチング液は陰極室2へ供給される。
 陰極室2と陽極室7はポンプP2を介して管路で接続されており、Auの析出が終わった後のエッチング液(使用済みエッチング液)が陽極室7へ供給される。陽極室7では主にヨウ素の酸化が行われ、エッチング能力の再生(ヨウ素(I3 -)濃度の回復)が行われる。なお、隔膜を設けた場合には、電気分解前に予め陽極室7にも電解液を入れておく必要がある。連続式で電気分解する場合は、陽極室7に予め充填しておく電解液としては特に限定されず、例えばヨウ素系エッチング液を充填しておけばよい。ヨウ素(I3 -)濃度は、おおむね10~200mmol/L程度に調整しておくことも望ましい。またバッチ式で電気分解する場合は、陽極室7に予め充填しておく電解液としては、電気を通す性質を有するものであれば特に限定されない。例えば再生エッチング液の液質を使用前エッチング液と同程度に復元する観点からは、使用前のヨウ素系エッチング液を陽極室7に充填しておけばよい。
 陽極室7と電気分解済みエッチング液槽8はポンプP3を介して管路で接続されており、ヨウ素(I-)が酸化され、ヨウ素(I3 -)濃度が回復した再生エッチング液は、電気分解済みエッチング液槽8へ供給される。
 電気分解済みエッチング液槽8へ供給された再生エッチング液のpHは使用前エッチング液とほぼ同等(好ましくは±0.5)であり、また陰極室に予め充填したヨウ素系エッチング液のヨウ素(I3 -)濃度によって多少の変動はあるが、ヨウ素(I3 -)濃度も使用前エッチング液と同等(好ましくは±50%)である。したがって再生エッチング液をそのままエッチング液としてAuのエッチングに利用することができる。
 また、図2のように再生エッチング液を使用済みエッチング液槽1に供給することも可能であるし、図4のように液の移動にポンプを用いず、オーバーフローさせることも可能である。
 なお、陰極3で析出したAuは陰極3から任意の手段で回収すればよく、例えばスクレーパーなどの掻き取り手段によって、容易に回収できる。
 以上、本発明によれば、電気分解中の陰極電位、および陽極電位を適切に制御しているため、Auを高収率で回収できると共に、使用済みエッチング液を使用前エッチング液とほぼ同じpHであり、かつ同等のヨウ素濃度に再生することができる。
 本願は、2013年5月31日に出願された日本国特許出願第2013-116205号に基づく優先権の利益を主張するものである。2013年5月31日に出願された日本国特許出願第2013-116205号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 (実験例1)
 本発明の方法に基づいて、Au含有エッチング液からAuの回収、およびヨウ素濃度(I3 -)の回復を行った。図1に示す構成を有する電気分解試験設備を用いて以下の実験を行った。隔膜5には陽イオン交換膜(デュポン社製:ナフィオン424(登録商標))を用いた。また陰極室2(容量300mL)には陰極3(チタン板;表面積13.2cm2)と参照電極4(Ag/AgCl)を設置した。また陽極室7(容量300mL)には陽極6(チタンの表面を酸化イリジウムで被覆した電極;表面積26.4cm2)を設置した。なお、所望の陽極電位が得られるように陽極室7の表面積を陰極表面積(13.2cm2)の2倍(26.4cm)に設定した。
 陰極室2には、予めヨウ素を溶解させたヨウ化カリウム水溶液(ヨウ素系エッチング液A:ヨウ化カリウム濃度80g/L、ヨウ素(I3 -)濃度:3g/L(約10mmol/L))を充填した。また陽極室7にも、予めヨウ素を溶解させたヨウ化カリウム水溶液(ヨウ素系エッチング液B:ヨウ化カリウム濃度80g/L、ヨウ素(I3 -)濃度:40g/L(約150mmol/L))を充填した。
 続いて、Au含有エッチング液(溶解Au濃度1.2g/L、ヨウ化カリウム濃度80g/L、ヨウ素(I3 -)濃度40g/L(約150mmol/L))を使用済みエッチング液槽1からポンプP1で供給量を調整しながら、連続的に陰極室2に供給して電気分解を行った。
 その際、陰極室2に設置した参照電極4(Ag/AgCl)と陰極3との電位差を測定して陰極電位が-0.3V(vs.Ag/AgCl)に維持されるように直流電源9の出力を制御した。陽極電位は上記陽極面積の調整により+0.6V以下(vs.Ag/AgCl)に維持した。
 なお、Au含有エッチング液の供給量は、ヨウ素(I3 -)濃度、ヨウ素還元率、陰極電位(-0.3V)、および電流密度(9mA/cm2)に基づいて、17mL/hrとなるように調整し、陰極室2でのヨウ素の還元量が使用済みエッチング液の供給量を上回るようにした。
 電気分解してAuが析出され、Au濃度が減少した陰極室2内の使用済みエッチング液は、ポンプP2で陽極室7に供給した。その際、ポンプP1からのAu含有エッチング液の供給量と同程度(17mL/hr)になるようにポンプP2の供給量を制御した。
 陽極室7では、前記陰極室2での反応に伴い還元されたヨウ素イオンが酸化され、ヨウ素(I3 -)が再生される。そしてこのような酸化作用を受けてヨウ素(I3 -)濃度が回復した再生エッチング液は、ポンプP3を介して電気分解済みエッチング液槽8にポンプP1からの供給量とほぼ同量(17mL/hr)となるように供給した。
 上記隔膜電気分解は、8時間継続した。
 電気分解後、使用済みエッチング液槽1のAu含有エッチング液、および電気分解済みエッチング液槽8の再生エッチング液の各液の組成について調べて表1に記した。なお、使用前エッチング液の組成は、エッチング液をAuのエッチングに使用する前に予め調べた。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の条件を満足する電気分解条件で処理することにより、再生エッチング液中に含まれるAu濃度は5mg/L未満であり、Auを高収率で回収できた。また使用前のエッチング液のpHと再生エッチング液のpHはいずれも3.3であり、pHが変動することなく、更に、電気分解中に得られた再生エッチング液のヨウ素(I3 -)濃度は150~160mmol/Lであり、使用前エッチング液と同等のヨウ素(I3 -)濃度であり、ほぼ同じ組成であるため、再利用に適した状態であることが確認された。
 (実験例2)
 次に本発明で規定する陰極電位、陽極電位の範囲における電気分解前後の液のpH変化を調べた。図2に示す構成を有する電気分解試験設備を用いて以下の実験を行った。なお、陽極室7から再生エッチング液をポンプP3を介して使用済みエッチング液槽1(容量100mL)に供給した以外は、上記実験例1と同様の構成である。陰極室2、および陽極室7の各容量は100mLとし、陰極の表面積は3cm2、陽極の表面積は9cm2とした。
 陰極電位が-0.7V(vs.Ag/AgCl)に維持されるように直流電源9の出力を制御すると共に、Au含有エッチング液の供給量を10mL/hrに調整した以外は上記実験例1と同様にして隔膜電気分解を行った。
 電気分解を1時間行い、陰極電位、陽極電位、陰極室のpHと陽極室のpHの変動を調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、陰極電位と陽極電位を本発明の範囲内で制御すると、陰極室(3.3→3.8)、陽極室(3.6→3.6)共にpH変化は±0.5以内となることが確認された。
 (実験例3)
 本発明で規定する陰極電位の範囲を外れた場合の陰極室におけるpH変化を調べた。陰極電位を-1.0V(vs.Ag/AgCl)に変更した以外は、上記実験例2と同じく図2に示す構成を有する電気分解試験設備を用い、実験例2と同じ方法で以下の実験を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、陰極電位を-0.7Vよりも低く設定した場合(-1.0V)、陰極室内の液のpHが3.3(電解開始0分)から7.1(電解開始60分)に変動しており、pHが+0.5を超えて大きく変動した。
 (実験例4)
 本発明で規定する陽極電位の範囲を外れた場合の陽極室におけるpH変動を調べた。
 図3に示す構成を有する電気分解試験設備を用いて以下の実験を行った。図3はバッチ式の隔膜電気分解である。陰極にはチタン板(表面積2.9cm2)、陽極にはチタン板の表面を酸化イリジウムで被覆した電極(表面積8.8cm2)を用いた。
 陰極室2(容量100mL)には上記実験例1で用いたAu含有エッチング液(溶解Au濃度1.2g/L、ヨウ化カリウム濃度80g/L、ヨウ素(I3 -)濃度40g/L(約150mmol/L))を充填すると共に、陽極室7(容量100mL)には予め上記ヨウ素系エッチング液Bを充填した。
 電気分解を行うに際しては、陰極電位が-0.7V(vs.Ag/AgCl)を維持するように調整して電気分解を行った。陽極電位は+0.48V(電解時間0分)から電解を開始し、電解終了時には+1.89V(電解時間240分)となるように陽極電位を上昇させた。電気分解を4時間行い陽極室のpHの変動を調べた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、陽極電位を+1.0Vを超えて高くすると陽極室内の液のpHが3.6(電解時間0分、陽極電位+0.48V)から2.1(電解時間4時間、陽極電位+1.89V)に変動しており、pHが-0.5を超えて大きく変動した。
 1 使用済みエッチング液槽
 2 陰極室
 3 陰極
 4 参照電極
 5 隔膜
 6 陽極
 7 陽極室
 8 電気分解済みエッチング液槽
 9 直流電源

Claims (6)

  1.  電気分解によりAu含有ヨウ素系エッチング液中のAuを回収すると共に、ヨウ素(I3 -)濃度を回復するエッチング液の処理方法であって、
     前記電気分解は陰極電位を-0.7V以上(基準電位を参照電極Ag/AgClとした場合)、及び陽極電位を+1.0V以下(基準電位を参照電極Ag/AgClとした場合)に維持して行うことを特徴とするAu含有ヨウ素系エッチング液の処理方法。
  2.  前記電気分解は、隔膜で陰極と陽極が仕切られた隔膜電気分解である請求項1に記載の処理方法。
  3.  前記隔膜電気分解は、前記Au含有ヨウ素系エッチング液の供給源から前記隔膜で仕切られた陰極側に連続的に前記Au含有ヨウ素系エッチング液を供給してAuを回収した後、前記隔膜で仕切られた陽極側に供給してヨウ素(I3 -)濃度を回復させる方法であって、
     前記隔膜で仕切られた陰極側のヨウ素濃度は、陰極に析出したAuの再溶解が生じない程度に調整するものである請求項2に記載の処理方法。
  4.  前記隔膜で仕切られた陰極側に供給するAu含有ヨウ素系エッチング液の供給量を下記式(1)を満足するように調整するものである請求項3に記載の処理方法。
     電流(A(アンペア))>I3 -濃度A×供給量B×F ・・・(1)
     (式中、
       I3 -濃度A:陰極側に供給されるAu含有ヨウ素系エッチング液のヨウ素(I3 -)濃度(mol/L)、
       供給量B:Au含有ヨウ素系エッチング液の陰極側への供給量(L/sec)
       F:ファラデー定数(A(アンペア)・sec/mol))
  5.  電気分解によりAu含有ヨウ素系エッチング液中のAuを回収すると共に、ヨウ素(I3 -)濃度の回復に用いられる装置であって、
     電気分解用の陰極、および陽極と、
     前記陰極、または前記陽極の電極電位の基準となる参照電極と、
     前記参照電極により測定される電位に基づいて前記参照電極を設置した側の電極電位が所定の範囲になるように電流または電極間電圧を制御する電源とを有し、
     前記参照電極を設置しなかった側の電極は、電極電位が所定の範囲となるように調整する物理的手段を有することを特徴とするAu含有ヨウ素系エッチング液の処理装置。
  6.  前記物理的手段は、前記参照電極を設置しなかった側の電極の接液面積を調整する手段である、請求項5に記載のAu含有ヨウ素系エッチング液の処理装置。
     
PCT/JP2014/063275 2013-05-31 2014-05-20 Au含有ヨウ素系エッチング液の処理方法、および処理装置 WO2014192581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480021400.9A CN105164317B (zh) 2013-05-31 2014-05-20 含Au碘系蚀刻液的处理方法以及处理装置
JP2014543381A JP5669995B1 (ja) 2013-05-31 2014-05-20 Au含有ヨウ素系エッチング液の処理方法、および処理装置
HK16101230.0A HK1213303A1 (zh) 2013-05-31 2016-02-03 碘系蝕刻液的處理方法以及處理裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013116205 2013-05-31
JP2013-116205 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192581A1 true WO2014192581A1 (ja) 2014-12-04

Family

ID=51988615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063275 WO2014192581A1 (ja) 2013-05-31 2014-05-20 Au含有ヨウ素系エッチング液の処理方法、および処理装置

Country Status (5)

Country Link
JP (1) JP5669995B1 (ja)
CN (1) CN105164317B (ja)
HK (1) HK1213303A1 (ja)
TW (1) TWI652230B (ja)
WO (1) WO2014192581A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965030A (zh) * 2016-06-20 2016-09-28 昆山鸿福泰环保科技有限公司 一种碘化金废液中金回收工艺
JP6167254B1 (ja) * 2017-02-15 2017-07-19 松田産業株式会社 ヨウ素系エッチング廃液からのAu回収とエッチング溶液を再生する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850565A (zh) * 2020-07-16 2020-10-30 昆山全亚冠环保科技有限公司 一种从蚀刻废液中回收金和碘的方法
CN115710641A (zh) * 2022-12-02 2023-02-24 成都泰美克晶体技术有限公司 一种金薄膜湿法刻蚀液中贵金属金的回收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184281A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素による化学エッチング方法
JPH03202484A (ja) * 1989-12-28 1991-09-04 Miyama Kk 金回収用電解装置
JP2003105570A (ja) * 2001-09-28 2003-04-09 Kawasaki Kasei Chem Ltd 貴金属の回収方法ならび回収装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188690A (en) * 1981-05-13 1982-11-19 Nec Corp Recovering method for gold from waste liquid of stripping of gold plating
KR20080108886A (ko) * 2007-06-11 2008-12-16 아사히 프리텍 가부시키가이샤 금속 회수장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184281A (ja) * 1988-01-14 1989-07-21 Tanaka Kikinzoku Kogyo Kk ヨウ素による化学エッチング方法
JPH03202484A (ja) * 1989-12-28 1991-09-04 Miyama Kk 金回収用電解装置
JP2003105570A (ja) * 2001-09-28 2003-04-09 Kawasaki Kasei Chem Ltd 貴金属の回収方法ならび回収装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965030A (zh) * 2016-06-20 2016-09-28 昆山鸿福泰环保科技有限公司 一种碘化金废液中金回收工艺
JP6167254B1 (ja) * 2017-02-15 2017-07-19 松田産業株式会社 ヨウ素系エッチング廃液からのAu回収とエッチング溶液を再生する方法
WO2018150811A1 (ja) * 2017-02-15 2018-08-23 松田産業株式会社 ヨウ素系エッチング廃液からのAu回収とエッチング溶液を再生する方法

Also Published As

Publication number Publication date
CN105164317B (zh) 2016-11-02
CN105164317A (zh) 2015-12-16
JPWO2014192581A1 (ja) 2017-02-23
JP5669995B1 (ja) 2015-02-18
HK1213303A1 (zh) 2016-06-30
TWI652230B (zh) 2019-03-01
TW201512104A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5669995B1 (ja) Au含有ヨウ素系エッチング液の処理方法、および処理装置
JP6604466B2 (ja) 銅の製造方法及び銅の製造装置
JP5125278B2 (ja) エッチング廃液の電解酸化方法
US4906340A (en) Process for electroplating metals
JP4425271B2 (ja) 銅または銅合金をエッチングまたはピクリングする際に用いられる鉄含有エッチング液を再生するための方法およびその方法を実施するための装置
US5705048A (en) Apparatus and a process for regenerating a CUCl2 etchant
KR100558129B1 (ko) 전해질내의 물질의 농도를 조절하는 방법 및 장치
JP2005187865A (ja) 銅エッチング廃液から電解により銅を回収する方法及び装置
USRE34191E (en) Process for electroplating metals
CN109312482B (zh) 从碘系蚀刻废液中回收Au和再生蚀刻溶液的方法
EP0058506B1 (en) Bipolar refining of lead
JP2002129399A (ja) 金属表面処理装置とこれを用いた金属表面処理方法
CN113755900B (zh) 一种电解锌锰用旧铅基阳极调控再制膜方法
JPH073476A (ja) 銅エッチング液の再生方法
CN1215099A (zh) 再生CuCl2浸蚀剂的装置和方法
JP2022543601A (ja) 鉛含有電解液からの金属回収
JP2005270779A (ja) 重金属の分離方法および分離装置
JP6473102B2 (ja) コバルトの電解採取方法
Oxley et al. Apparatus and a process for regenerating a CuCl2 etchant
JPS62235482A (ja) エツチング廃液の再生方法及び装置
CN115537880A (zh) 金属离子回收装置及具备该回收装置的电极制造装置
JP2009167453A (ja) 酸性塩化物水溶液からの鉄の電解採取方法
JP2019151912A (ja) コバルト電解採取方法
JP2002241970A (ja) 塩化鉄系エッチング疲労液の再生方法
Yaro et al. Copper Recovery from Spent Etchant Cupric Chloride Solution by Electrowinning Method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021400.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014543381

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803349

Country of ref document: EP

Kind code of ref document: A1