WO2014192368A1 - 車両の制御装置及び車両の走行制御システム - Google Patents

車両の制御装置及び車両の走行制御システム Download PDF

Info

Publication number
WO2014192368A1
WO2014192368A1 PCT/JP2014/056819 JP2014056819W WO2014192368A1 WO 2014192368 A1 WO2014192368 A1 WO 2014192368A1 JP 2014056819 W JP2014056819 W JP 2014056819W WO 2014192368 A1 WO2014192368 A1 WO 2014192368A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
collision risk
control
command value
control device
Prior art date
Application number
PCT/JP2014/056819
Other languages
English (en)
French (fr)
Inventor
敬一郎 長塚
黒田 浩司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015519701A priority Critical patent/JPWO2014192368A1/ja
Publication of WO2014192368A1 publication Critical patent/WO2014192368A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc

Definitions

  • the present invention relates to a control device of a vehicle and a travel control system of the vehicle.
  • Patent Document 1 discloses a technique for obtaining a realized course collision probability from the predicted course of another vehicle and the realized course of the host vehicle, and calculating the degree of risk of the driver based on the realized course collision probability.
  • the braking control is performed based on the prediction information, the braking control is executed even though the obstacle does not arrive on the traveling road of the vehicle by actually stopping immediately before etc. If such an operation is repeated frequently, the driver may feel uncomfortable.
  • the braking control start timing is delayed or the braking control start determination criterion is changed in order not to give a sense of incongruity to the driver, the effect may be lowered even when the braking control is truly necessary.
  • the present invention has been made in view of the above-described point, and an object thereof is to obtain a control device of a vehicle capable of more highly safe traveling control without giving a sense of discomfort to a driver. .
  • a control device of a vehicle according to the present invention for solving the above problems includes: collision risk calculation means for calculating a collision risk that the vehicle collides with an obstacle based on the external world recognition information of the external world recognition device; And driving characteristics changing means for changing the driving characteristics of the driving device accordingly.
  • the driver decreases the driving force when the driver depresses the accelerator despite the danger of the collision.
  • the vehicle can be controlled in the safe direction.
  • FIG. 2 is a functional block diagram of a control device.
  • the figure explaining the relationship between the motor rotation speed for every throttle opening, and a torque command value.
  • the figure which shows presence probability distribution in which an obstacle (pedestrian) exists on the advancing path of the own vehicle.
  • the schematic diagram in case a pedestrian and other vehicles exist ahead of self-vehicles.
  • an obstacle 301 such as a pedestrian 301 b or another vehicle 301 a may jump out to a predicted traveling path 202 of the own vehicle 201 and collide with the own vehicle 201.
  • the collision risk with the obstacle 301 is calculated based on the external world recognition information from the external world recognition sensor.
  • drive characteristic change control is performed when the collision risk is greater than the first threshold
  • braking control is performed when the collision risk is greater than or equal to the second threshold.
  • FIG. 1 is a functional block diagram of a traveling control system.
  • the traveling control system 1 is a system that controls traveling of the host vehicle 201 (see FIG. 14), and includes a control device 101, a driving device 102, and a braking device 103.
  • the host vehicle 201 is an electric car.
  • the control device 101 has a motor controller, and the drive device 102 has a motor for traveling the vehicle.
  • the braking device 103 has a braking actuator.
  • the control device 101 controls the drive device 102 and the braking device 103 based on the vehicle speed, the accelerator opening degree, the external world recognition information, and the like.
  • the vehicle speed information is acquired from the vehicle speed sensor, and the information on the accelerator opening degree is acquired from the accelerator opening degree sensor provided on the accelerator pedal.
  • the external world recognition information is acquired from the external world recognition sensor mounted on the host vehicle 201, the operation state of an on-vehicle device such as a wiper device, a headlight, and the like.
  • the external world recognition information includes a relative position with respect to the obstacle 301 located in front of the host vehicle 201 and a relative velocity vector, and further includes information such as light and dark around the vehicle, weather, road surface condition, etc. It is also good.
  • the external world recognition sensor has a stereo camera.
  • the stereo camera captures the front of the vehicle 201 with the left and right cameras, calculates the relative position of the obstacle 301 and the relative velocity vector from the parallax of the left and right images, and outputs it to the control device 101 as external world recognition information.
  • a stereo camera as the external world recognition sensor, accurate external world recognition information can be acquired with a simple configuration.
  • a combination of a monocular camera and a millimeter wave radar may be used instead of the stereo camera.
  • FIG. 2 and 3 show an example of the configuration of the control device
  • FIG. 4 is a functional block diagram of the control device.
  • the control device 101 may be configured by two modules of an ADAS (Advanced Driver Assistance System) 111 and a VCM (Vehicle Control Module) 121 as shown in FIG. 2, and as shown in FIG. It may be configured by one module of the VCM 121.
  • the ADAS 111 has a torque command value calculation means 112 and a collision risk degree calculation means 113, and the VCM 121 has a motor control means 122.
  • the torque command value calculation means 112 calculates a torque command value (requested driving force) based on the information of the vehicle speed and the accelerator opening as shown in FIG.
  • the collision risk calculation means 113 calculates the collision risk and outputs a gain according to the collision risk. Then, the final torque command value (target driving force) calculated using the torque command value and the gain is output to the motor control means 122.
  • the motor control means 122 outputs a current command value corresponding to the final torque command value to the drive device 102.
  • the drive device 102 drives the motor by the current command value.
  • FIG. 5 is a flowchart illustrating a travel control method by the travel control system.
  • processing for acquiring external world recognition information is performed, and then, in step S102, processing for calculating a collision risk is performed.
  • the collision risk (%) is a value indicating the possibility that the obstacle 301 collides with the host vehicle 201, and is calculated based on the predicted travel path 202 of the host vehicle 201 and the external world recognition information. It may be corrected according to the external environment such as the road surface condition.
  • the collision risk can be calculated, for example, using a known method described in JP-A-2010-250501. A specific calculation method of the collision risk in the present embodiment will be described later.
  • step S103 it is determined whether the collision risk is greater than a preset first threshold (D1), and in the case of the first threshold (D1) or less (no), the obstacle 301 is the host vehicle It is determined that the risk of colliding with 201 is low, and the process is ended (End). Therefore, drive characteristic change control is not performed, and normal control is performed.
  • the value of the gain for adjusting the torque command value is 1.0, and the torque command value calculated by the torque command value calculation means 112 is output to the motor control means 122 as the final torque command value as it is. . Thereby, the torque according to the accelerator opening is output from the motor.
  • step S104 it is determined whether the collision risk is larger than a second threshold (D2) set in advance, in order to select which of the braking control and the drive characteristic change control is to be performed according to the collision risk. Be done.
  • the second threshold (D2) has a value larger than the first threshold (D1) (D2> D1).
  • step S105 When the collision risk is smaller than the second threshold (D2) (no), the process shifts to step S105 to perform drive characteristic change control.
  • the drive characteristic change control processing for changing the drive characteristic is performed by changing the target drive force to be transmitted to the drive device 102 (drive characteristic change means). Specifically, control is performed to reduce the acceleration response by reducing the final torque command value (target driving force) corresponding to the accelerator opening degree than in the normal case.
  • the driving force decreases even if the driver continues to depress the accelerator pedal, and the acceleration of the host vehicle 201 is suppressed. Therefore, when the collision risk is further increased after that and the braking control is carried out exceeding the second threshold (D2), the effect of collision avoidance and collision damage reduction is obtained (because the vehicle speed is suppressed low). It will be easier.
  • the motor used for the drive device 102 of the host vehicle 201 in this embodiment can adjust the output torque linearly as compared with the internal combustion engine, the final torque command (target It is possible to control to reduce the driving force smoothly and to weaken the acceleration response smoothly, and to control in a safe direction without giving a sense of discomfort to the driver.
  • step S104 if the collision risk is greater than the second threshold (D2) (Yes) in step S104, it is determined that the collision risk is particularly high, and the process proceeds to step S106 to perform braking control.
  • the braking control can be performed in the same manner as in the prior art. First, an alarm or the like is blown into the passenger compartment to warn the driver (alarm blowing), and then control is performed to operate the braking actuator of the braking device 103 .
  • FIG. 6 is a view showing control contents executed according to a time change of the collision risk
  • FIG. 7 is a view showing change of the vehicle speed when drive characteristic change control is performed and when it is not performed.
  • the vehicle speed rises with a constant inclination, and as shown in FIG. 14, another vehicle 301a is in front of the host vehicle 201, and as shown in FIG.
  • the degree increases with the passage of time, conventionally, as shown by a two-dot chain line in FIG. 7, the vehicle speed rises with the inclination as it is.
  • the vehicle travel control system of the present invention when the collision risk exceeds the first threshold (D1), the drive characteristic change control is executed, and as shown by the solid line in FIG. It becomes loose (it becomes difficult to accelerate). Then, when the collision risk exceeds the second threshold (D2), the braking control is executed, and the deceleration is performed at a predetermined deceleration. Therefore, the collision damage can be reduced and the safety can be controlled.
  • FIG. 8 is a diagram showing the relationship between the collision risk and the gain of the torque command value.
  • the collision risk and gain are gradually graded with a constant slope as the collision risk increases between the first threshold (D1) and the second threshold (D2). It may be set to decrease, and as shown by the solid line L2 in FIG. 8, when the collision risk is low, the degree of decrease in gain is small, but the degree of decrease in gain as the collision risk becomes high. It may be set to decrease exponentially so as to increase rapidly.
  • the torque command value is decreased linearly, so that it is possible to control the vehicle more safely.
  • the gain decreases with a quadratic slope (L2)
  • the torque command value is very small, and almost the same torque as that of normal time is output. Therefore, it is possible to prevent the torque command from being significantly reduced to give the driver a sense of discomfort.
  • FIGS. 9 and 10 are diagrams showing the relationship between the torque command value and the accelerator opening degree at a certain motor rotational speed
  • FIG. 11 is a diagram showing the relationship between the motor torque and the motor rotational speed for each accelerator opening.
  • the collision danger is achieved by adjusting the gain of the torque command as described above at the same accelerator opening P1 at a certain motor rotational speed.
  • the drive characteristic is changed so as to reduce the final torque command value (target driving force) more than the smaller one.
  • the collision risk is divided into a plurality of stages according to the size, and in this embodiment, it is divided into small, medium, and large.
  • the drive characteristics may be changed so as to gradually increase the amount by which the torque command value is reduced as the collision risk increases, and may also be changed so as to increase quadratically.
  • the torque command value is usually To, but in the present embodiment, the value differs depending on the collision risk. It is adjusted to Ts when the degree of risk is small, Tm when it is medium, and Tb when it is large (however, Ts> Tm> Tb).
  • the gain is set as shown by a broken line L1 in FIG.
  • the gain is set as shown by solid line L2 in FIG.
  • the collision risk can be calculated based on, for example, the predicted travel path of the host vehicle 201, the current position of the obstacle, and the position of the obstacle after a predetermined time has elapsed.
  • the action prediction of the obstacle is performed based on the current position of the obstacle and the position after a predetermined time, and the obstacle existence probability is calculated from the action prediction and the predicted traveling path of the vehicle 201. .
  • the collision risk is calculated by dividing the TTC (collision prediction time) by the obstacle presence probability.
  • the collision risk degree calculation means 113 calculates means for calculating a predicted traveling path of the host vehicle 201, means for detecting the current position of an obstacle such as a pedestrian or another vehicle, and the position of the obstacle after a predetermined time has elapsed. Means for
  • the predicted travel path of the host vehicle 201 can be predicted by a stereo camera that is an external world recognition sensor.
  • the stereo camera can recognize the white line of the traveling lane based on the image obtained by imaging the front of the host vehicle 201. Therefore, usually, the trajectory along the traveling lane is predicted, and the traveling route is predicted based on the trajectory. Also, if there is no white line in the traveling lane, or if the host vehicle 201 clearly deviates from the lane, the behavior of the host vehicle is calculated from the vehicle speed, yaw rate, and steering angle of the host vehicle 201 to predict the trajectory. The traveling route is predicted based on the locus.
  • the determination of the current position of the obstacle, and whether the obstacle is a pedestrian or a vehicle can be detected by a stereo camera that is an external world recognition sensor.
  • Various detection methods are known, and these techniques can be used.
  • FIG. 12 is a diagram showing an existing probability distribution in which an obstacle (pedestrian) is present on the traveling path of the vehicle.
  • the driver determines that the pedestrian 301b moving toward the traveling path of the host vehicle 201 from the sideways may be jumping out on the traveling path if the speed is high, and traveling is slow if it is late We are predicting behavior to judge that it will stop in front of the road (cognitive judgment).
  • the collision risk calculation means 113 performs the same process as the driver's action prediction by obtaining an existing probability that an obstacle is estimated to be present after t seconds.
  • the driver determines that the collision risk is higher than a certain level as a result of the above-described recognition determination, the driver first releases the accelerator or releases the foot from the accelerator pedal and places the foot on the brake pedal. Then, when the obstacle really pops out, the brake pedal is depressed to perform braking. That is, the accelerator response is changed according to the collision risk degree to observe the state, and then the brake operation is performed.
  • the traveling control system 1 performs the same processing as the operation of the driver by the drive characteristic change control and the braking control.
  • FIG. 13 is a flowchart illustrating a method of calculating the position of an obstacle after a predetermined time has elapsed
  • FIG. 14 is a diagram illustrating a method of calculating a state amount.
  • step S121 first, an obstacle to be controlled is detected from the captured image, and the relative position, velocity, and acceleration of the obstacle are calculated.
  • step S122 estimation processing of the current state quantity by the Kalman filter is performed. This makes it possible to estimate the current state quantities of the pedestrian and other vehicles (obstacles) in consideration of the error of the detection result.
  • the state quantities include the relative position, velocity, and acceleration of the obstacle.
  • step S123 the movement of the obstacle follows the equation of motion (considering acceleration), and processing for predicting the position after TTC is performed. Since the current state quantity is stabilized by the Kalman filter, it is possible to estimate the future state quantity more stably.
  • step S124 position information of the past n frames is stored, and in step S125, a process of generating a presence probability distribution after TTC from the future future position estimation information is performed.
  • step S126 processing is performed to represent the distribution as a normal distribution having the variance of the past future position estimation positions. More flexible control is possible by determining the existence probability. Then, erroneous estimation suppression processing is performed using various conditions. For example, if there is a guardrail between the vehicle and a pedestrian, it is difficult for the pedestrian to jump out on the road, or if it has a high speed in the front-rear direction (the direction of travel of the vehicle) The process of suppressing erroneous estimation is performed using the condition that it is difficult to make such movement.
  • the traveling control system 1 of the present invention executes drive characteristic change control for changing the responsiveness of the drive device to the accelerator opening degree. Reduce the corresponding torque command (required driving force). Then, braking control is performed when the collision risk is greater than the second threshold (D2). Therefore, the acceleration response is first weakened first, and then the braking control is executed. As shown in FIG. 14, when the pedestrian 301 b jumps out ahead of the host vehicle 201 or when the other vehicle 301 a suddenly In the event of an interruption, it is possible to reduce the collision damage and to control in a safer direction.
  • the drive characteristic change control and the braking control are performed using the same reference as the collision risk, but for example, the collision risk is used as a determination criterion for the drive characteristic change control.
  • the conventional TTC may be used as a criterion.
  • the drive characteristic change control may be simply added to the existing configuration for performing the braking control, and the configuration can be easily introduced.
  • the host vehicle 201 is an electric vehicle and control for changing the drive characteristic of a motor
  • the host vehicle 201 is an automobile including an internal combustion engine, and the internal combustion engine
  • the present invention can also be applied to those that change the drive characteristics of
  • the present invention is not limited to the above-mentioned embodiment, and various designs are possible in the range which does not deviate from the spirit of the present invention described in the claim. It is possible to make changes.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

 ドライバに違和感を与えることなく、より安全性の高い走行制御が可能な車両の制御装置を得ること。 本発明の制御装置101は、外界認識装置の外界認識情報に基づいて車両201が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、衝突危険度に応じて駆動装置102の駆動特性を変更する駆動特性変更手段と、を有する。

Description

車両の制御装置及び車両の走行制御システム
 本発明は、車両の制御装置及び車両の走行制御システムに関する。
 従来から、ステレオカメラなどの外界認識装置によって自車両前方の障害物を認識し、自車両に衝突すると判断した場合に、制動アクチュエータを操作して衝突を回避するシステムの開発が進んでいる。そして、特許文献1には、他車両の予測進路と自車両の実現進路とから実現進路衝突確率を求め、実現進路衝突確率に基づいて運転者の危険度を算出する技術が示されている。
特開2008-250492号公報
 例えば、自車両の進行路に歩行者や他車両などの障害物が飛び込んできた場合は、衝突を十分手前で検出することが困難であり、障害物の動きから未来の位置を推定して衝突の可能性を予測している。しかしながら、あくまでも予測であるので、予測情報に基づいて制動制御を実施した場合に、実際には直前で停止するなどして障害物が自車進行路上に到達しないにもかかわらず制動制御が実行されることがあり、このような動作が頻繁に繰り返されると、ドライバに違和感を与えるおそれがある。一方、ドライバに違和感を与えないために、制動制御の開始タイミングを遅らせたり、制動制御の開始判断基準を変更したりすると、制動制御が真に必要なときにも効果が低くなるおそれがある。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、ドライバに違和感を与えることなく、より安全性の高い走行制御が可能な車両の制御装置を得ることである。
 上記課題を解決する本発明の車両の制御装置は、外界認識装置の外界認識情報に基づいて前記車両が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、該衝突危険度に応じて駆動装置の駆動特性を変更する駆動特性変更手段とを有することを特徴とする。
 本発明によれば、衝突危険度が高い場合に駆動装置の駆動特性を変更するので、例えば、衝突の危険があるにも関わらず、ドライバがアクセルを踏み込んでいる場合には、駆動力を低下させることで、車両を安全方向に制御できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
走行制御システムの機能ブロック図。 制御装置の構成の一例を示す図。 制御装置の構成の一例を示す図。 制御装置の機能ブロック図。 走行制御方法の一例を説明するフローチャート。 衝突危険度の時間変化に応じて実行される制御内容を示す図。 駆動特性変更制御による車速の変化を示す図。 衝突危険度とトルク指令値のゲインとの関係を示す図。 あるモータ回転数におけるアクセル開度とトルク指令値との関係の一例を示す図。 あるモータ回転数におけるアクセル開度とトルク指令値との関係の一例を示す図。 アクセル開度毎のモータ回転数とトルク指令値との関係を説明する図。 障害物(歩行者)が自車の進行路上に存在する存在確率分布を示す図。 障害物の一定時間経過後の位置を算出する方法を説明するフローチャート。 自車両の前方に歩行者と他車両が存在する場合の模式図。
 次に、本発明の実施の形態について図面を用いて詳細に説明する。
 本実施形態の走行制御システム1は、例えば図14に示すように、歩行者301bや他車両301aなどの障害物301が自車両201の予測進行路202に飛び出して自車両201に衝突することが予測される状況において、外界認識センサからの外界認識情報に基づき障害物301との衝突危険度を算出する。そして、第1閾値及び第2閾値と比較し、衝突危険度が第1閾値よりも大きいときは駆動特性変更制御を行い、衝突危険度が第2閾値以上の場合には制動制御を行う。
 図1は、走行制御システムの機能ブロック図である。
 走行制御システム1は、自車両201(図14を参照)の走行を制御するシステムであり、制御装置101と、駆動装置102と、制動装置103を有している。自車両201は、電気自動車である。制御装置101は、モータコントローラを有し、駆動装置102は、車両走行用のモータを有している。制動装置103は、制動アクチュエータを有している。
 制御装置101は、車速、アクセル開度、外界認識情報等に基づいて駆動装置102と制動装置103を制御する。車速情報は、車速センサから取得し、アクセル開度の情報は、アクセルペダルに設けられたアクセル開度センサから取得する。外界認識情報は、自車両201に搭載された外界認識センサや、例えばワイパー装置、前照灯などの車載装置の動作状態などから取得する。外界認識情報には、自車両201の前方に位置する障害物301との相対位置と、相対速度ベクトルが含まれており、さらに車両周囲の明暗、天候、路面状況などの情報が含まれていてもよい。
 外界認識センサは、ステレオカメラを有している。ステレオカメラは、左右のカメラで自車両201の前方を撮像し、左右の画像の視差から障害物301の相対位置と、相対速度ベクトルを算出し、外界認識情報として制御装置101に出力する。外界認識センサとして、ステレオカメラを用いることによって、簡単な構成で正確な外界認識情報を取得することができる。なお、ステレオカメラの代わりに、単眼カメラとミリ波レーダとを組み合わせたものを用いてもよい。
 図2及び図3は、制御装置の構成の一例を示す図、図4は、制御装置の機能ブロック図である。
 制御装置101は、図2に示すように、ADAS(Advanced Driver Assistance System)111と、VCM(Vehicle Control Module)121の2つのモジュールによって構成されていてもよく、また、図3に示すように、VCM121の1つのモジュールによって構成されていてもよい。ADAS111は、トルク指令値算出手段112と、衝突危険度算出手段113を有しており、VCM121は、モータ制御手段122を有している。
 トルク指令値算出手段112は、図4に示すように、車速とアクセル開度の情報に基づいてトルク指令値(要求駆動力)を算出する。衝突危険度算出手段113は、衝突危険度を算出し、その衝突危険度に応じたゲインを出力する。そして、トルク指令値とゲインを用いて算出された最終トルク指令値(目標駆動力)がモータ制御手段122に出力される。モータ制御手段122は、最終トルク指令値に応じた電流指令値を駆動装置102に出力する。駆動装置102は、電流指令値によってモータを駆動させる。
 図5は、走行制御システムによる走行制御方法を説明するフローチャートである。
 まず、ステップS101で外界認識情報を取得する処理が行われ、次いで、ステップS102で衝突危険度を算出する処理が行われる。衝突危険度(%)は、障害物301が自車両201に衝突する可能性を示す値であり、自車両201の予測進行路202と外界認識情報に基づいて算出され、明暗状態、天候状態、路面状態などの車外環境に応じて補正してもよい。衝突危険度は、例えば特開2010-250501号公報に記載された公知の方法を用いて算出することができる。本実施の形態における衝突危険度の具体的な算出方法については後述する。
 そして、ステップS103で衝突危険度が予め設定された第1閾値(D1)よりも大きいか否かが判断され、第1閾値(D1)以下(no)の場合には、障害物301が自車両201に衝突する危険性は低いと判断して、そのまま処理を終了する(End)。したがって、駆動特性変更制御は行われず、通常制御が行われる。通常制御では、トルク指令値を調整するゲインの値は、1.0とされ、トルク指令値算出手段112で算出されたトルク指令値が、そのまま最終トルク指令値としてモータ制御手段122に出力される。これにより、アクセル開度に応じたトルクがモータから出力される。
 一方、衝突危険度が第1閾値(D1)よりも大きい(Yes)場合には、障害物301が自車両201に衝突する危険性は高いと判断してステップS104に移行する。ステップS104では、衝突危険度に応じて制動制御と駆動特性変更制御のいずれを行うのかを選択するために、衝突危険度が予め設定された第2閾値(D2)よりも大きいか否かが判断される。第2閾値(D2)は、第1閾値(D1)よりも大きい値を有している(D2>D1)。
 衝突危険度が第2閾値(D2)よりも小さい(no)場合には、駆動特性変更制御を行うべく、ステップS105に移行する。駆動特性変更制御では、駆動装置102へ送信する目標駆動力を変更することにより駆動特性を変更する処理が行われる(駆動特性変更手段)。具体的には、通常時よりもアクセル開度に応じた最終トルク指令値(目標駆動力)を低減させて加速応答を弱める制御が行われる。
 したがって、例えば衝突危険度が第1閾値(D1)と第2閾値(D2)との間にある状況ではドライバがアクセルペダルを踏み続けても駆動力は低下し、自車両201の加速を抑制することで、この後さらに衝突危険度が増して、第2閾値(D2)を超えて制動制御が実施される場合には、(車速が低く抑えられるため)衝突回避や衝突被害軽減の効果が得やすくなる。
 また、この後、衝突危険度が低下した場合でも、この段階で制動制御を実施する場合と比較すると、ドライバに違和感を与えにくい。特に、本実施形態で自車両201の駆動装置102に用いられているモータは、内燃機関と比較して出力トルクをリニアに調整することができるので、アクセル開度に応じた最終トルク指令(目標駆動力)を滑らかに低減させて加速応答を円滑に弱める制御が可能であり、ドライバに違和感を与えることなく安全方向に制御することができる。
 一方、ステップS104で衝突危険度が第2閾値(D2)よりも大きい(Yes)場合には、衝突危険度が特に高いと判断して、制動制御を行うべく、ステップS106に移行する。制動制御は、従来と同様の方法で行うことができ、まず車室内にアラーム等を吹鳴させてドライバに対する警報を行い(警報吹鳴)、次いで、制動装置103の制動アクチュエータを動作させる制御が行われる。
 図6は、衝突危険度の時間変化に応じて実行される制御内容を示す図、図7は、駆動特性変更制御が行われた場合と行われない場合における車速の変化を示す図である。
 例えば、ドライバがアクセルペダルを踏むことにより車速が一定の傾きで上昇し、図14に示すように、自車両201の前方に他車両301aが割り込んできており、図6に示すように、衝突危険度が時間経過と共に上昇している場合に、従来は、図7に二点差線で示すように、そのままの傾きで車速が上昇する。一方、本発明の車両走行制御システムによれば、衝突危険度が第1閾値(D1)を超えることにより駆動特性変更制御が実行され、図7に実線で示すように、車速の上昇の傾きが緩くなる(加速しにくくなる)。そして、衝突危険度が第2閾値(D2)を超えることにより制動制御が実行され、所定の減速度で減速が行われる。したがって、衝突被害を軽減することができ、安全方向に制御することができる。
 図8は、衝突危険度とトルク指令値のゲインとの関係を示す図である。
 衝突危険度とゲインは、図8に破線L1で示すように、第1閾値(D1)と第2閾値(D2)の間で衝突危険度が高くなるのに応じてゲインが一定の傾きで漸次減少するように設定してもよく、また、図8に実線L2で示すように、衝突危険度が低いときはゲインの減少度合いは小さいが、衝突危険度が高くなるに応じてゲインの減少度合いが急激に大きくなるように、指数関数的に減少するように設定してもよい。
 ゲインが一定の傾きで漸次減少する設定の場合(L1)、トルク指令値がリニアに減少されるので、より安全に車両を制御することが可能となる。一方、ゲインが二次曲線的な傾きで減少する設定の場合(L2)には、衝突危険度が第1閾値(D1)に近いときは、衝突の可能性もそれほど高くないので、トルク指令値のゲインによる調整量は極めて小さく、通常時とほぼ同じトルクが出力される。したがって、トルク指令が大幅に減少されてドライバに違和感を与えるのを防ぐことができる。そして、衝突危険度が第2閾値(D2)に近いときは、衝突の可能性が高いので、トルク指令値のゲインによる調整量を極めて大きくし、アクセル開度に応じた最終トルク指令値(目標駆動力)を大幅に低減させて加速応答を弱める。
 図9及び図10は、あるモータ回転数におけるトルク指令値とアクセル開度との関係を示す図、図11は、アクセル開度毎のモータトルクとモータ回転数との関係を示す図である。
 本実施の形態における駆動特性変更制御では、図9及び図10に示すように、あるモータ回転数で同一のアクセル開度P1において、前述のように、トルク指令のゲインを調整することにより衝突危険度が大きい方が小さい方よりも最終トルク指令値(目標駆動力)を減少させるように駆動特性を変更させている。
 衝突危険度は、その大きさに応じて複数の段階に分けられており、本実施の形態では、小、中、大に分けられている。駆動特性は、衝突危険度が大きくなるに応じてトルク指令値を低減させる量が漸次増大するように変更させてもよく、また、二次関数的に増大するように変更させてもよい。
 トルク指令値は、図11に示すように、例えば、アクセル開度P1、モータ回転数ω1の場合でみると、通常時はToとなるが、本実施形態では、衝突危険度に応じて異なる値になり、危険度が小のときはTs、中のときはTm、大のときはTbに調整される(但し、Ts>Tm>Tb)。
 なお、図9に示すように、各衝突危険度が小から大の順番で等間隔に最終トルク指令を調整する場合、ゲインは、図8に破線L1で示すように設定する。また、図10に示すように、各衝突危険度を小から大の順番で間隔が漸次大きくなるように最終トルク指令を調整する場合、ゲインは、図8に実線L2で示すように設定する。
 次に、本実施形態における衝突危険度を算出する具体例について説明する。
 衝突危険度は、例えば自車両201の予測進行路と、障害物の現在の位置と、障害物の一定時間経過後の位置に基づいて算出することができる。本実施の形態では、障害物の現在の位置と一定時間経過後の位置に基づいて障害物の行動予測を行い、その行動予測と自車両201の予測進行路から、障害物存在確率を算出する。そして、TTC(衝突予測時間)を障害物存在確率で割ることによって衝突危険度を算出している。
 衝突危険度算出手段113は、自車両201の予測進行路を算出する手段と、歩行者や他車両等の障害物の現在位置を検出する手段と、障害物の一定時間経過後の位置を算出する手段を有している。
 自車両201の予測進行路は、外界認識センサであるステレオカメラによって予測することができる。ステレオカメラは、自車両201の前方を撮像した画像に基づき、走行レーンの白線を認識することができる。したがって、通常は、走行レーンに沿った軌跡を予測し、その軌跡に基づいて進行路を予測する。また、走行レーンの白線がない場合、あるいは、自車両201が明らかにレーンから逸脱する場合には、自車両201の車速、ヨーレート、舵角から自車両の挙動を計算して軌跡を予測し、その軌跡に基づいて進行路を予測する。
 障害物の現在位置や、障害物が歩行者なのか、車両なのか等の種別の判定は、外界認識センサであるステレオカメラによって検出することができる。検出方法は種々の技術が公知となっており、これらの技術を用いることができる。
 図12は、障害物(歩行者)が自車の進行路上に存在する存在確率分布を示す図である。
 ドライバは、図12に示すように、横方向から自車両201の進行路に向かって移動している歩行者301bの速度が速ければ進行路上に飛び出してくるかもしれないと判断し、遅ければ進行路の手前で止まるだろうと判断する行動予測を行っている(認知判断)。衝突危険度算出手段113は、ドライバの行動予測と同様の処理を、障害物がt秒後に存在していると推定される存在確率を求めることによって行う。
 ドライバは、上記した認知判断の結果、衝突危険度がある程度以上と判断した場合に、まず、アクセルを緩める、あるいはアクセルペダルから足を離してブレーキペダルに足を載せる。そして、障害物が本当に飛び出してきた場合にはブレーキペダルを踏み込んで制動を行う。すなわち、衝突危険度に応じてアクセル応答を変化させて状態を観察し、その後、ブレーキ操作を行っている。走行制御システム1は、駆動特性変更制御及び制動制御によってドライバの動作と同様の処理を行っている。
 図13は、障害物の一定時間経過後の位置を算出する方法を説明するフローチャート、図14は、状態量を算出する方法を説明する図である。
 ステップS121では、まず撮像した画像の中から制御対象とするべき、障害物の検出が行われ、障害物の相対的な位置、速度、加速度が算出される。
 ステップS122では、カルマンフィルタによる現在状態量の推定処理が行われる。これにより、検知結果の誤差を考慮した上での歩行者や他車両(障害物)の現在状態量の推定が可能となる。状態量には、障害物の相対的な位置、速度、加速度が含まれている。
 ステップS123では、障害物の移動は運動方程式(加速度考慮)に従うものとして、TTC後の位置を予測する処理が行われる。現在状態量をカルマンフィルタで安定させているので、より安定した未来状態量の推定が可能である。
 そして、ステップS124では、過去nフレームの位置情報が保存され、ステップS125では、過去の未来位置推定情報からTTC後の存在確率分布を生成する処理が行われる。
 そして、ステップS126では、過去の未来位置推定位置の分散を持つ正規分布として表現する処理が行われる。存在確率を求めることによってより柔軟な制御が可能になる。そして、各種条件を用いた誤推定抑制処理が行われる。例えば、車との間にガードレールがあれば、歩行者が車道に飛び出し難いという条件や、前後方向(自車進行方向)に大きな速度を持っていると、左右方向(車幅方向)への急な移動をし難いという条件を用いて、誤推定を抑制する処理が行われる。
 本発明の走行制御システム1は、衝突危険度が第1閾値(D1)よりも大きく第2閾値よりも小さいときには、駆動装置の応答性を変更する駆動特性変更制御を実行し、アクセル開度に応じたトルク指令(要求駆動力)を低減させる。そして、衝突危険度が第2閾値(D2)よりも大きいときには制動制御を行う。したがって、まず最初に加速応答が弱められ、次いで、制動制御が実行されるので、図14に示すように、自車両201の前方に歩行者301bが飛び出してきた場合や、他車両301aが急に割り込んできた場合に、衝突被害を軽減し、より安全方向に制御することができる。
 上記した実施形態では、衝突危険度という同一の基準を用いて駆動特性変更制御と、制動制御を行う場合について説明したが、例えば、駆動特性変更制御については衝突危険度を判断基準として用い、制動制御については従来のTTCを判断基準として用いてもよい。かかる構成とした場合、制動制御を行う既存の構成に、駆動特性変更制御を追加するだけでよく、容易に導入することができる。
 また、上記した実施形態では、自車両201が電気自動車であり、モータの駆動特性を変更する制御の場合を例に説明したが、自車両201が内燃機関を備えた自動車であり、その内燃機関の駆動特性を変更するものにも適用することができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 走行制御システム
101 制御装置
102 駆動装置
112 トルク指令値算出手段
113 衝突危険度算出手段
122 モータ制御手段
201 自車両
202 予測進行路
301 障害物
301a 他車両
301b 歩行者

Claims (9)

  1.  外界認識装置から取得した外界認識情報に基づいて自車両が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、
     該衝突危険度に応じて駆動装置の駆動特性を変更する駆動特性変更手段と、を有することを特徴とする車両の制御装置。
  2.  前記駆動特性変更手段は、前記衝突危険度が予め設定された第1閾値よりも大きい場合に、アクセル開度に応じた目標駆動力を低減させることを特徴とする請求項1に記載の車両の制御装置。
  3.  前記駆動特性は、前記衝突危険度の大きい方が小さい方よりも前記目標駆動力を低減させる量が大きくなるように変更されることを特徴とする請求項2に記載の車両の制御装置。
  4.  前記駆動特性は、前記衝突危険度が大きくなるに応じて前記目標駆動力を低減させる量が漸次増大するように変更されることを特徴とする請求項3に記載の車両の制御装置。
  5.  前記駆動特性は、前記衝突危険度が大きくなるに応じて前記目標駆動力を低減させる量が二次関数的に増大するように変更されることを特徴とする請求項3に記載の車両の制御装置。
  6.  前記制御装置によりアクセル開度に応じて制御され、且つ、車両走行用のモータを有する駆動装置と、
     外界を認識する外界認識装置と、を有し、
     請求項1記載の前記制御装置は、前記モータを制御するモータ制御手段を有することを特徴とする車両の走行制御システム。
  7.  前記駆動特性変更手段は、車速とアクセル開度に基づいて前記モータのトルク指令値を算出するトルク指令値算出手段を有し、前記トルク指令値と前記衝突危険度を用いて最終トルク指令値を算出して前記モータ制御手段に出力し、
     前記モータ制御手段は、前記最終トルク指令値に応じた電流指令値を前記モータに出力することを特徴とする請求項6に記載の車両の走行制御システム。
  8.  前記外界認識装置は、ステレオカメラを有することを特徴とする請求項6に記載の車両の走行制御システム。
  9.  前記車両を制動させる制動装置を有し、
     前記制御装置の前記駆動特性変更手段は、前記衝突危険度が予め設定された第1閾値よりも大きい場合に、アクセル開度に応じた目標駆動力を低減させ、
     前記制御装置は、前記衝突危険度が予め設定された第2閾値よりも高い場合に前記制動装置の制動制御を行うことを特徴とする請求項6に記載の走行制御システム。
PCT/JP2014/056819 2013-05-31 2014-03-14 車両の制御装置及び車両の走行制御システム WO2014192368A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519701A JPWO2014192368A1 (ja) 2013-05-31 2014-03-14 車両の制御装置及び車両の走行制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-115603 2013-05-31
JP2013115603 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192368A1 true WO2014192368A1 (ja) 2014-12-04

Family

ID=51988412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056819 WO2014192368A1 (ja) 2013-05-31 2014-03-14 車両の制御装置及び車両の走行制御システム

Country Status (2)

Country Link
JP (2) JPWO2014192368A1 (ja)
WO (1) WO2014192368A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018254A1 (ja) * 2015-07-29 2017-02-02 横浜ゴム株式会社 衝突防止システム
WO2017141765A1 (ja) * 2016-02-16 2017-08-24 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2018506460A (ja) * 2015-01-29 2018-03-08 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 車両制御装置並びに方法
JP2018060326A (ja) * 2016-10-04 2018-04-12 株式会社豊田中央研究所 トラッキング装置及びプログラム
CN110366513A (zh) * 2017-03-01 2019-10-22 本田技研工业株式会社 车辆控制***、车辆控制方法及车辆控制程序
JP6956932B1 (ja) * 2021-03-30 2021-11-02 三菱電機株式会社 運転支援装置、運転支援システム、運転支援方法、及び、運転支援プログラム
JP7509628B2 (ja) 2020-02-26 2024-07-02 株式会社Subaru 運転支援装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733391A (zh) 2018-12-10 2019-05-10 北京百度网讯科技有限公司 车辆的控制方法、装置、设备、车辆及存储介质
JP7094418B1 (ja) 2021-04-16 2022-07-01 三菱電機株式会社 交通管制装置および交通管制システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052809A (ja) * 1998-08-13 2000-02-22 Mitsubishi Electric Corp 異常接近防止装置
JP2006195623A (ja) * 2005-01-12 2006-07-27 Toyota Motor Corp 車両および車両駆動力制御方法
JP2007129827A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両のインテリジェントブレーキアシストシステム
JP2010282350A (ja) * 2009-06-03 2010-12-16 Toyota Motor Corp 衝突安全システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882797B2 (ja) * 2003-08-08 2007-02-21 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備える車両
JP4532181B2 (ja) * 2004-06-24 2010-08-25 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4980076B2 (ja) * 2007-01-11 2012-07-18 富士重工業株式会社 車両の運転支援装置
JP5655497B2 (ja) * 2010-10-22 2015-01-21 トヨタ自動車株式会社 障害物認識装置及び障害物認識方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052809A (ja) * 1998-08-13 2000-02-22 Mitsubishi Electric Corp 異常接近防止装置
JP2006195623A (ja) * 2005-01-12 2006-07-27 Toyota Motor Corp 車両および車両駆動力制御方法
JP2007129827A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd ハイブリッド車両のインテリジェントブレーキアシストシステム
JP2010282350A (ja) * 2009-06-03 2010-12-16 Toyota Motor Corp 衝突安全システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506460A (ja) * 2015-01-29 2018-03-08 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 車両制御装置並びに方法
WO2017018254A1 (ja) * 2015-07-29 2017-02-02 横浜ゴム株式会社 衝突防止システム
US10112566B2 (en) 2015-07-29 2018-10-30 The Yokohama Rubber Co., Ltd. Collision prevention system
WO2017141765A1 (ja) * 2016-02-16 2017-08-24 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2018060326A (ja) * 2016-10-04 2018-04-12 株式会社豊田中央研究所 トラッキング装置及びプログラム
CN110366513A (zh) * 2017-03-01 2019-10-22 本田技研工业株式会社 车辆控制***、车辆控制方法及车辆控制程序
CN110366513B (zh) * 2017-03-01 2022-09-13 本田技研工业株式会社 车辆控制***、车辆控制方法及存储介质
JP7509628B2 (ja) 2020-02-26 2024-07-02 株式会社Subaru 運転支援装置
JP6956932B1 (ja) * 2021-03-30 2021-11-02 三菱電機株式会社 運転支援装置、運転支援システム、運転支援方法、及び、運転支援プログラム
WO2022208675A1 (ja) * 2021-03-30 2022-10-06 三菱電機株式会社 運転支援装置、運転支援システム、運転支援方法、及び、運転支援プログラム

Also Published As

Publication number Publication date
JP6539307B2 (ja) 2019-07-03
JP2017186011A (ja) 2017-10-12
JPWO2014192368A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6539307B2 (ja) 車両の制御装置
KR102041238B1 (ko) 차량 경로 예측을 위한 시스템 및 방법
CN108583570B (zh) 车辆控制装置
JP6596772B2 (ja) 車両制御装置、車両制御方法、およびプログラム
CN108357492B (zh) 用于减轻道路车辆之间前向碰撞的设备和方法
US8515615B2 (en) Vehicle travel control apparatus
US10597013B2 (en) Driving assist device and driving assist method
CN111942352B (zh) 考虑转向路径的自适应aeb***及其控制方法
WO2017159792A1 (ja) 走行支援装置
US20120226423A1 (en) Vehicle driving support apparatus
JP6319192B2 (ja) 車速制限装置
JP2010030396A (ja) 車両用安全制御装置
JP2012051441A (ja) 自動運転車両制御装置
JP5417832B2 (ja) 車両用運転支援装置
JP2008514937A (ja) 車両用始動支援システム
US10946860B2 (en) Vehicle control apparatus
JP2008296887A (ja) 車両制御装置
JP2007062604A (ja) 車両用自動制動装置
JP2017114427A (ja) 車両制御装置及び車両制御方法
JP5565053B2 (ja) 先行車両検出装置およびこれを用いた衝突警報装置・衝突回避装置
CN108944949B (zh) 操作车辆的拥堵辅助***的方法
JP5147511B2 (ja) 車両の接触回避支援装置
JP2009252032A (ja) 車両の接触回避支援装置
JP2016011088A (ja) 車両制御装置、車両制御方法、及び、車両制御用プログラム
JP2020083275A (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804833

Country of ref document: EP

Kind code of ref document: A1