WO2014188934A1 - シリカゾル及びシリカ含有エポキシ樹脂組成物 - Google Patents

シリカゾル及びシリカ含有エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2014188934A1
WO2014188934A1 PCT/JP2014/062893 JP2014062893W WO2014188934A1 WO 2014188934 A1 WO2014188934 A1 WO 2014188934A1 JP 2014062893 W JP2014062893 W JP 2014062893W WO 2014188934 A1 WO2014188934 A1 WO 2014188934A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
silica sol
epoxy resin
mass
sol
Prior art date
Application number
PCT/JP2014/062893
Other languages
English (en)
French (fr)
Inventor
尚彦 末村
恵 嶋田
一太郎 菊永
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP14801890.6A priority Critical patent/EP3000784B1/en
Priority to US14/785,739 priority patent/US9969867B2/en
Priority to JP2015518204A priority patent/JP6458951B2/ja
Priority to KR1020157035605A priority patent/KR102225433B1/ko
Priority to CN201480029489.3A priority patent/CN105263860B/zh
Publication of WO2014188934A1 publication Critical patent/WO2014188934A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • C01B33/128Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/148Concentration; Drying; Dehydration; Stabilisation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a sol of nano-sized silica particles having an extremely low ⁇ -ray emission amount and low moisture absorption, an epoxy resin composition containing the silica particles, and a cured product thereof.
  • Silica sol is a colloidal solution in which silica particles of about 3 to 100 nm are dispersed in a solvent, and has high transparency. Further, since silica particles have high hardness and heat resistance, they are blended in resins and used as modifiers for the purpose of imparting resin hardness and heat resistance.
  • silica sol When silica sol is blended with resin, silica sol dispersed in an organic solvent or silica sol dispersed in a resin monomer is often used in consideration of compatibility and reactivity between the sol and the resin or curing agent.
  • silica powder having a hydrophobic surface may be used.
  • Resins used for semiconductor package wiring boards and semiconductor encapsulants have been filled with silica filler to reduce the coefficient of linear expansion.
  • micron-sized silica fillers have been used for these applications.
  • resins used in these have been required to have a lower coefficient of linear expansion, and studies to increase the filling rate of silica filler into the resin have been actively conducted. Has been done.
  • Patent Document 1 When a silica filler of micron size is blended with a resin at a high filling rate, the fluidity of the resin composition is lowered and handling may be difficult. It has been reported that the fluidity of a silica filler-containing resin composition is improved by blending nano-sized surface-treated silica particles (Patent Document 1).
  • nano-sized silica particles have a drawback that their hygroscopicity is higher than that of micron-sized silica particles because of their large specific surface area.
  • the resin cured product is likely to absorb moisture, causing deterioration of insulation characteristics and a decrease in strength of the cured product, resulting in reduced device reliability.
  • the silica filler used for the electronic material as described above is preferably one having a low content of radioactive elements such as uranium and thorium. This is because a semiconductor malfunction may be caused by ⁇ rays emitted from radioactive elements such as uranium and thorium.
  • silica sols are roughly classified into those manufactured using sodium silicate as a raw material and those manufactured using silicon alkoxide as a raw material.
  • Silica sol produced using sodium silicate as a raw material contains many radioactive elements such as uranium and thorium derived from the raw material. Among these radioactive elements, thorium, in particular, is difficult to remove even when sodium silicate is ion-exchanged. Therefore, it is difficult to apply a generally available silica sol using sodium silicate as a raw material to the above electronic materials.
  • silica sol using silicon alkoxide as a raw material has the advantage that it is easy to obtain a silica sol with a low content of radioactive elements in colloidal silica because the purity of silicon alkoxide as a raw material is high.
  • the silica particles have not been obtained, and when applied to the electronic materials as described above, there is a disadvantage that the performance of the device is deteriorated.
  • vapor phase method silica powder and fused method silica powder are commercially available. These silica fillers have the advantage of low hygroscopicity, but are extremely poor in dispersibility in the resin and cause thickening of the resin varnish, making it difficult to achieve a high filling rate.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, it is easy to fill a resin used for a semiconductor package wiring board and a semiconductor sealing material, and the amount of ⁇ -ray emission is extremely small.
  • Another object of the present invention is to provide a silica sol containing nano-sized silica particles having low hygroscopicity, and to provide a resin composition containing the silica sol.
  • silica sol that contains nano-sized silica particles that have extremely small ⁇ -ray emission and low hygroscopicity.
  • the amount of alpha rays emitted is 0.005 counts / cm 2 ⁇ hr or less, and the moisture absorption rate when left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH% is 0.5.
  • silica particles having an average primary particle diameter of 20 to 100 nm that is surface-modified with an organic silane compound that is less than or equal to mass%, and the ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method is 3
  • the organosilane compound is a silica sol according to the first aspect, which has an epoxy group
  • the silica particle is the silica sol according to the first aspect or the second aspect, which is heat-treated at 200 to 350 ° C.
  • the silica particles are the silica sol according to any one of the first to third aspects, wherein the silica particles are produced using activated silicic acid obtained by cation exchange of an aqueous alkali silicate solution.
  • the silica particles are made from high-purity active silicic acid obtained by adding a strong acid to active silicic acid obtained by cation exchange of an alkali silicate aqueous solution, and further undergoing cation exchange and anion exchange.
  • the silica sol according to any one of the first to third aspects which is manufactured as:
  • the silica particles are obtained through a step of further performing cation exchange and anion exchange on active silicic acid obtained by cation exchange after adding a strong acid or a salt of a strong acid to an alkali silicate aqueous solution.
  • the dispersion medium is a silica sol according to any one of the first to sixth aspects, which is an organic solvent
  • the dispersion medium is a silica sol according to any one of the first to sixth aspects, which is a resin monomer
  • the resin monomer is a silica sol according to the eighth aspect, which is an epoxy resin monomer
  • An eleventh aspect is a silica-containing epoxy resin composition containing the silica sol according to any one of the first to ninth aspects or the silica powder according to the tenth aspect, an epoxy resin monomer, and an epoxy curing agent.
  • a fourteenth aspect is a cured silica-containing epoxy resin obtained by curing the silica-containing epoxy resin composition according to any one of the eleventh to thirteenth aspects.
  • the silica sol of the present invention is a silica sol that contains nano-sized silica particles with extremely low ⁇ -ray emission and low hygroscopicity, and can be easily blended into resins used for semiconductor package wiring boards and semiconductor encapsulants. Thus, a low linear expansion coefficient can be achieved.
  • the silica sol of the present invention has an ⁇ -ray emission amount of 0.005 counts / cm 2 ⁇ hr or less and a moisture absorption rate of 0.5 mass when left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH%.
  • the amount of ⁇ -rays emitted from the silica particles can be measured with a 2 ⁇ gas flow counting low-level ⁇ -ray measuring device such as LACS-4000M manufactured by Sumitomo Chemical Co., Ltd.
  • the moisture absorption rate when the silica particles are allowed to stand for 48 hours in an environment at 23 ° C. and a relative humidity of 50 RH% is the same as that when the dried silica particle powder is left for 48 hours in an environment with a relative humidity of 50 RH%. It can be calculated by measuring the weight change. Specifically, the silica gel obtained by drying the silica sol with an 80 ° C. vacuum dryer is pulverized with a mortar and further dried at 180 ° C. for 3 hours to obtain a silica dry powder. The dry powder is collected in a 0.2 g weighing bottle and weighed. With the lid of the weighing bottle opened, the bottle is left to stand for 48 hours in an atmosphere of 23 ° C.
  • Moisture absorption (%) (Increased weight / Sample weight collected) ⁇ 100
  • the moisture absorption rate of the silica particles contained in the silica sol of the present invention is 0.5% by mass or less, preferably 0.3% by mass or less, more preferably 0.2% by mass or less.
  • the primary particle diameter of the silica particles contained in the silica sol of the present invention is 20 to 100 nm, preferably 30 to 80 nm, more preferably 40 to 70 nm.
  • the silica particle size measured by the dynamic light scattering method is obtained by diluting silica sol 10 to 100 times on a volume basis using the same solvent as the dispersion medium, For example, it can be measured as an average dispersed particle size by Zetasizer Nano manufactured by Malvern Instruments.
  • the production method of the silica sol of the present invention is not particularly limited, but it is preferably heat-treated in water at 200 to 350 ° C., more preferably 230 to 300 ° C. This heat treatment can be performed using a pressure vessel (autoclave).
  • the silica sol of the present invention is preferably produced using activated silicic acid obtained by dealkalizing an alkali silicate aqueous solution as a starting material.
  • the alkali silicate aqueous solution include a sodium silicate aqueous solution and a potassium silicate aqueous solution.
  • the dealkalization of the alkali silicate aqueous solution is preferably an ion exchange method using a cation exchange resin.
  • active silicic acid obtained by a method of neutralizing with an acid and washing and removing the generated alkali metal salt can also be used as a starting material.
  • the silica sol of the present invention is manufactured using high-purity active silicic acid obtained through a cation exchange process after adding a strong acid to active silicic acid obtained by dealkalizing an alkali silicate aqueous solution. Is more preferable.
  • the dealkalization of the alkali silicate aqueous solution is preferably an ion exchange method using a cation exchange resin.
  • the strong acid used include hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the silica sol of the present invention can be produced by the following method, but is not limited to this method.
  • the alkali silicate aqueous solution used as the starting material for example, a commercially available JIS No. 3 sodium silicate aqueous solution is used.
  • the aqueous sodium silicate solution is diluted with water to a silica concentration of about 1 to 5% by mass to prepare a dilute aqueous sodium silicate solution. This is passed through a column packed with a hydrogen-type strongly acidic cation exchange resin to obtain an active silicic acid aqueous solution.
  • Hydrochloric acid, sulfuric acid or nitric acid is added to the obtained active silicic acid aqueous solution, the pH of the active silicic acid aqueous solution is adjusted to 0 to 2, and maintained at a temperature from room temperature to 60 ° C. for 1 to 24 hours. Subsequently, the solution is passed through a column filled with a hydrogen type strongly acidic cation exchange resin, and further passed through a column filled with a hydroxyl type basic anion exchange resin to obtain a high-purity active silicic acid aqueous solution.
  • a stabilized active silicic acid solution By adding an aqueous solution of sodium hydroxide or potassium hydroxide to the obtained high-purity active silicic acid aqueous solution and adjusting the pH to 7-9, a stabilized active silicic acid solution can be obtained.
  • the stabilized active silicic acid aqueous solution preferably has a silica concentration of about 1 to 5% by mass, a sodium atom or a potassium atom represented by M, and a SiO 2 / M 2 O molar ratio of 50 to 250.
  • a high-purity water-dispersed silica sol having an average primary particle size of 10 to 30 nm can be obtained.
  • the obtained high-purity water-dispersed silica sol is further heat-treated at a high temperature of 200 to 350 ° C., whereby silica particles become dense and silica particles with low hygroscopicity can be obtained.
  • a method of heating at high temperature in water is preferred.
  • the silica particles contained in the silica sol of the present invention are surface-modified with an organosilane compound.
  • organosilane compound used for the surface modification include silazane, siloxane, or alkoxysilane and a partial hydrolyzate thereof, or a dimer to pentamer oligomer thereof.
  • silazane examples include hexamethyldisilazane and hexaethyldisilazane.
  • siloxane examples include hexamethyldisiloxane, 1,3-dibutyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, 1,3-divinyltetramethyldisiloxane, hexaethyldisiloxane, 3-glycidoxy And propylpentamethyldisiloxane.
  • alkoxysilane examples include trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, phenyldimethylmethoxysilane, chloropropyldimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, Tetrabutoxysilane, ethyltrimethoxysilane, dimethyldiethoxysilane, propyltriethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-octylmethyldiethoxysilane, n- Octadecyltrimethoxysilane, phenyltrimethoxysilane, phenylmethyldime
  • organosilane compound used for the surface modification those having an epoxy group are preferable.
  • the silane compound having an epoxy group include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycid.
  • examples include xylpropyltriethoxysilane.
  • the surface modification of the silica particles is preferably performed using an amount of 0.1 to 5 molecules of the organosilane compound per 1 nm 2 of the surface area of the silica particles.
  • the surface modification of the silica particles is preferably performed by adding a predetermined amount of an organic silane compound to the water-dispersed silica sol or the organic solvent-dispersed silica sol, and heat treatment at 5 to 100 ° C. for 0.5 to 24 hours with stirring.
  • An appropriate amount of a catalyst such as acid or alkali may be added to promote surface modification with the organosilane compound.
  • the dispersion medium of the silica sol of the present invention is water, an organic solvent or a resin monomer.
  • organic solvent as the dispersion medium of the silica sol of the present invention examples include alcohols, ketones, ethers, esters, hydrocarbons and the like. Moreover, the organic solvent used may be one type, but may be used in combination of two or more.
  • the organic solvent-dispersed silica sol can be obtained by replacing the water-dispersed silica sol with a solvent by a known method such as a distillation method.
  • Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-octanol, 2-ethyl-1 -Hexanol, allyl alcohol, benzyl alcohol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2- (methoxyethoxy) ethanol, 1 -Methoxy-2-propanol, dipropylene glycol monomethyl ether, diacetone alcohol, ethyl carbitol, butyl carbitol and the like.
  • ketones include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, diisobutyl ketone, and cyclohexanone.
  • ether examples include diethyl ether, diopy ether, diisopropyl ether, dibutyl ether, dioxane, tetrahydrofuran, 1,2-diethoxyethane and the like.
  • Esters include ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, hydroxyethyl methacrylate, hydroxyethyl acrylate, ⁇ - Examples include butyrolactone, methyl methacrylate, isobutyl acrylate, cyclohexyl acrylate, 2-ethoxyethyl acrylate, trifluoroethyl acrylate, and glycidyl methacrylate.
  • hydrocarbon examples include n-hexane, cyclohexane, benzene, toluene, xylene, solvent naphtha, styrene, halogenated hydrocarbons such as dichloromethane and trichloroethylene, and the like.
  • Examples of the resin monomer as the dispersion medium of the silica sol of the present invention include a resin monomer having an ethylenically unsaturated bond, a resin monomer having an epoxy ring, and a resin monomer having an oxetane ring.
  • the resin monomer-dispersed silica sol can be obtained by replacing the water-dispersed silica sol or the organic solvent-dispersed silica sol with a resin monomer by a known method such as a distillation method.
  • Examples of the resin monomer having an ethylenically unsaturated bond include unsaturated carboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, and phthalic acid.
  • unsaturated carboxylic acid ester compounds derived from the unsaturated carboxylic acid compounds and alcohol compounds may be mentioned.
  • the alcohol compound that reacts with the unsaturated carboxylic acid compound to produce an unsaturated carboxylic acid ester is not particularly limited, but ethylene glycol, triethylene glycol, tetraethylene glycol, tris (2-hydroxylethyl) isocyanuric acid, Examples thereof include polyol compounds having 2 to 6 hydroxyl groups, such as ethanolamine and pentaerythritol.
  • an unsaturated carboxylic acid amide compound derived from the unsaturated carboxylic acid compound and an amine compound can be exemplified.
  • examples thereof include acrylic acid amide compounds, methacrylic acid amide compounds, itaconic acid amide compounds, crotonic acid amide compounds, maleic acid amide compounds, and phthalic acid amide compounds.
  • the amine compound is not particularly limited, but ethylenediamine, diaminocyclohexane, diaminonaphthalene, 1,4-bis (aminomethyl) cyclohexane, 3,3 ′, 4,4′-tetraaminobiphenyl, tris (2-aminoethyl) )
  • Examples include amines and other polyamine compounds having 2 to 6 primary or secondary amino groups.
  • the resin monomer having an ethylenically unsaturated bond include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, nonapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 3-phenoxy-2-propanoyl acrylate, 1,6-bis (3-acryl Roxy-2-hydroxypropyl) -hexyl ether, trimethylolpropane tri (meth) acrylate, glycerol tri (
  • the resin monomer having an ethylenically unsaturated bond includes a urethane compound, a polyvalent epoxy compound and a hydroxyalkyl unsaturated carboxylic acid which can be obtained by a reaction between a polyvalent isocyanate compound and a hydroxyalkyl unsaturated carboxylic acid ester compound. Mention may also be made of compounds obtainable by reaction with ester compounds, diallyl ester compounds such as diallyl phthalate, and divinyl compounds such as divinyl phthalate.
  • a polymerizable compound having 1 to 6 epoxy rings is produced from a compound having two or more hydroxyl groups or carboxyl groups such as a diol compound, a triol compound, a dicarboxylic acid compound, or a tricarboxylic acid compound, and a glycidyl compound such as epichlorohydrin. Mention may be made of compounds having two or more glycidyl ether structures or glycidyl ester structures.
  • the resin monomer having an epoxy ring examples include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, glycerol triglycidyl ether, diethylene glycol diglycidyl ether, 2,6- Diglycidylphenyl glycidyl ether, 1,1,3-tris [p- (2,3-epoxypropoxy) phenyl] propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4'-methylenebis (N, N- Diglycidylaniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, trimethylolethane triglycidyl ether, triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine Tetraglycidyldi
  • a compound having 1 to 6 oxetane rings can be used as the resin monomer having an oxetane ring.
  • the silica sol of the present invention can be obtained as a sol having a silica concentration of 1 to 70% by mass.
  • the present invention is also a silica powder obtained by drying the silica sol of the present invention at 250 ° C. or lower. When the drying temperature exceeds 250 ° C., decomposition of the organosilane compound that is a surface modifier may occur.
  • the present invention is also a silica-containing epoxy resin composition obtained by mixing the silica sol of the present invention or the silica powder of the present invention, an epoxy resin monomer, and an epoxy curing agent.
  • the resin monomer having the epoxy ring can be used as the epoxy resin monomer used in obtaining the silica-containing epoxy resin composition of the present invention.
  • epoxy curing agent examples include phenol resins, amines, polyamide resins, imidazoles, polymercaptans, acid anhydrides, and cationic polymerization initiators.
  • phenol resin examples include phenol novolac resin and cresol novolac resin.
  • amines examples include piperidine, N, N-dimethylpiperazine, triethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, diethylenetriamine, triethylenetetramine.
  • Tetraethylenepentamine diethylaminopropylamine, N-aminoethylpiperazine, di (1-methyl-2-aminocyclohexyl) methane, mensendiamine, isophoronediamine, diaminodicyclohexylmethane, 1,3-diaminomethylcyclohexane, xylene
  • examples include diamine, metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • liquid diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, di (1-methyl-2-aminocyclohexyl) methane, mensendiamine, isophoronediamine, diamino Dicyclohexylmethane and the like can be preferably used.
  • the polyamide resin is a polyamide amine produced by condensation of dimer acid and polyamine and having a primary amine and a secondary amine in the molecule.
  • imidazoles examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, epoxy imidazole adduct, and the like.
  • Polymercaptan is, for example, one having a mercaptan group at the end of a polypropylene glycol chain or one having a mercaptan group at the end of a polyethylene glycol chain, and is preferably in a liquid form.
  • an anhydride of a compound having a plurality of carboxyl groups in one molecule is preferable.
  • These acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol trislimitate, maleic anhydride, tetrahydrophthalic anhydride, methyl Tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, succinic anhydride, methyl Examples include cyclohexene dicarboxylic acid anhydride and chlorendic acid anhydride.
  • cationic polymerization initiator one that releases a substance that initiates cationic polymerization by light or heat can be used.
  • Examples of the cationic photopolymerization initiator include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts, organometallic complexes such as iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes, nitro Examples thereof include benzyl ester, sulfonic acid derivative, phosphoric acid ester, phenol sulfonic acid ester, diazonaphthoquinone, and N-hydroxyimidosulfonate.
  • onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts
  • organometallic complexes such as iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes
  • photocationic polymerization initiator for example, “Adekaoptomer SP150”, “Adekaoptomer SP170” and other “Adekaoptomer” series (manufactured by ADEKA), UVACURE1591 (manufactured by UCB), CD -1010, CD-1011, CD-1012 (manufactured by Sartomer), Irgacure (registered trademark) 264 (manufactured by Ciba Geigy), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), and the like.
  • thermal cationic polymerization initiator any thermal cationic polymerization initiator that is activated by heating to induce ring opening of the ring-opening polymerizable group is used, and various oniums such as quaternary ammonium salts, phosphonium salts, sulfonium salts, etc. Salts are exemplified.
  • Examples of the quaternary ammonium salt include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium hydrogen sulfate, tetraethylammonium tetrafluoroborate, tetraethylammonium p-toluenesulfonate, N, N-dimethyl.
  • N-N-benzylanilinium hexafluoroantimonate N, N-dimethyl-N-benzylanilinium tetrafluoroborate
  • N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate N, N-diethyl-N-benzyl Trifluoromethanesulfonate
  • N, N-dimethyl-N- (4-methoxybenzyl) pyridinium hexafluoroantimonate N, N-die Le -N- (4- methoxybenzyl) preparative Luigi hexafluoroantimonate and the like.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluoroarsinate, tris (4-methoxyphenyl) sulfonium hexafluoroarsinate, and diphenyl (4-phenylthio). Phenyl) sulfonium hexafluoroarsinate and the like.
  • thermal cationic polymerization initiator examples include, for example, Adeka Opton (registered trademark) CP-66, Adeka Opton (registered trademark) CP-77 (manufactured by ADEKA), Sun Aid (registered trademark) SI-60L, Sun Aid ( Registered trademark SI-80L, Sun Aid (registered trademark) SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd.), CI series (manufactured by Nippon Soda Co., Ltd.), and the like.
  • a curing accelerator may be used in combination as appropriate.
  • the curing accelerator include organic phosphorus compounds such as triphenylphosphine and tributylphosphine, quaternary phosphonium salts such as ethyltriphenylphosphonium bromide and diethyl methyltriphenylphosphonium phosphate, 1,8-diazabicyclo (5,4 , 0) Undecan-7-ene, 1,8-diazabicyclo (5,4,0) undecan-7-ene and octyl acid salts, quaternary ammonium salts such as zinc octylate, tetrabutylammonium bromide, etc. .
  • These curing accelerators can be contained at a ratio of 0.001 to 0.1 parts by mass with respect to 1 part by mass of the epoxy curing agent.
  • the mixing method is not particularly limited, but a mixer or a kneader is used so that the silica sol or silica powder, the epoxy resin and the epoxy curing agent are uniformly mixed.
  • a mixer or a kneader is used so that the silica sol or silica powder, the epoxy resin and the epoxy curing agent are uniformly mixed.
  • the viscosity of the silica-containing epoxy resin composition is high and uniform mixing does not proceed rapidly, it is preferable to improve the operability by reducing the viscosity by heating to such an extent that the curing reaction does not proceed.
  • the resulting silica-containing epoxy resin composition contains the organic solvent, and it is preferable to remove the organic solvent by subjecting the composition to reduced pressure or heat treatment. .
  • the silica-containing epoxy resin composition of the present invention can be cured by heat or light to obtain a cured silica-containing epoxy resin.
  • the thermal curing temperature of the silica-containing epoxy composition of the present invention is about 80 to 200 ° C., and the thermal curing is performed for about 1 to 12 hours.
  • An apparatus such as an oven can be used for heating.
  • the active energy ray used for photocuring the silica-containing epoxy composition of the present invention has a wavelength region of 150 to 500 nm, preferably 300 to 400 nm, and the energy amount is preferably 10 to 3000 mJ / cm 2 .
  • a light source to be used a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, an ultraviolet fluorescent lamp, a chemical lamp, a xenon lamp, a zirconium lamp, or the like is desirable.
  • Example 1 JIS3 sodium silicate aqueous solution was prepared as a raw material water-soluble alkali metal silicate. Main components other than water of this sodium silicate aqueous solution were SiO 2 28.8 mass% and Na 2 O 9.47 mass%.
  • the sodium silicate aqueous solution (52.5 kg) was dissolved in pure water (367.5 kg) to prepare a sodium silicate aqueous solution (420 kg) having a SiO 2 concentration of 3.6% by mass.
  • the aqueous sodium silicate solution at 25 ° C. was passed through a column packed with hydrogen-type strongly acidic cation exchange resin Amberlite (registered trademark) IR-120B at a space velocity of 3 per hour.
  • An aqueous solution of 357 kg of active silicic acid having a SiO 2 concentration of 3.6% by mass and a pH of 2.93 was recovered in a container.
  • a strong acid to be used 10% by mass of sulfuric acid obtained by diluting a commercially available special grade sulfuric acid (manufactured by Kanto Chemical Co., Inc.) with pure water was prepared. The above-mentioned 8.9 kg of 10% by mass sulfuric acid was added to 357 kg of the active silicic acid aqueous solution obtained in the step (a) to adjust the pH to 1.54 and maintained at 20 ° C. for 48 hours to complete the step (b).
  • Amberlite registered trademark
  • IR-120B hydrogen-type strongly acidic cation exchange resin
  • liquid was passed through the column at about 25 ° C. at a space velocity of 5 per hour.
  • the total amount of the obtained liquid was subsequently passed through a column of about 25 ° C. packed with 50 liters of a hydroxyl type strongly basic anion exchange resin Amberlite (registered trademark) IRA-410 at a space velocity of 2 per hour.
  • the whole amount of the obtained liquid was applied to a column at about 25 ° C.
  • (D) Process Ion obtained by dissolving 2.1 kg of a 10% by weight aqueous solution of sodium hydroxide obtained by dissolving sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.), a commercially available special grade reagent, in pure water. By adding to 362.3 kg of the replaced aqueous solution of active silicic acid, a stabilized aqueous solution of active silicic acid was obtained. This aqueous solution had a SiO 2 concentration of 3.5% by mass, a SiO 2 / Na 2 O molar ratio of 80, and a pH of 8.20.
  • This hydrothermal treatment reaction product was an alkaline silica sol having a SiO 2 concentration of 3.5 mass%, a pH of 10.3, an average primary particle size of 13 nm, and a silica particle size of 22 nm as measured by a dynamic light scattering method.
  • Amberlite registered trademark
  • the obtained silica sol had a pH of 10.2, an average primary particle size of 45 nm, and a silica particle size of 74 nm as measured by a dynamic light scattering method.
  • Amberlite registered trademark
  • the added phenyltrimethoxysilane corresponds to 3.0 particles per 1 nm 2 of the surface area of the silica particles in the sol.
  • the eggplant-shaped flask was set on a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80 ° C.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.03% by mass, methanol of 0.5% by mass, a silica particle diameter of 74 nm measured by a dynamic light scattering method, and a measurement by a dynamic light scattering method.
  • the silica particle diameter / average primary particle diameter ratio was 1.6.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 0.1% by mass.
  • the amount of ⁇ -ray emitted from the silica powder was measured by a 2 ⁇ gas flow counting type low-level ⁇ -ray measuring device and found to be 0.002 count / cm 2 ⁇ hr.
  • Example 2 Except that the hydrothermal treatment temperature in step (h) of Example 1 was set to 200 ° C., the same procedure as in Steps (a) to (i) of Example 1 was performed, and the SiO 2 concentration was 30.0% by mass, pH 3.60, average An acidic silica sol having a primary particle diameter of 22 nm and a silica particle diameter of 45 nm measured by a dynamic light scattering method was obtained. Subsequently, a methyl ethyl ketone-dispersed silica sol was obtained in the same manner as in Steps (i) to (k) of Example 1.
  • step (k) the amount of phenyltrimethoxysilane added was 3.0 per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol has a SiO 2 concentration of 30.5% by mass, a water content of 0.07% by mass, methanol of 0.5% by mass, a silica particle diameter of 45 nm measured by a dynamic light scattering method, and a measurement by a dynamic light scattering method.
  • the silica particle diameter / average primary particle diameter ratio was 2.0.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder.
  • the moisture absorption rate of the silica powder was 0.3% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • Example 3 A methyl ethyl ketone-dispersed silica sol was obtained in the same manner as in Example 1 except that 15.1 g of epoxycyclohexyltrimethoxysilane was added in place of 12.1 g of phenyltrimethoxysilane in the step (k) of Example 1.
  • the added epoxycyclohexyltrimethoxysilane corresponds to 3.0 particles per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol had a SiO 2 concentration of 30.5 mass%, a water content of 0.07 mass%, methanol of 0.5 mass%, an average primary particle diameter of 45 nm, a silica particle diameter of 75 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by a dynamic light scattering method was 1.7.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 0.1% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • Example 4 The same procedure as in Example 1 was carried out except that 3.0 methacryloxypropyltrimethoxysilane was added per 1 nm 2 of the surface area of silica particles contained in the sol instead of phenyltrimethoxysilane, and 1000 g of methylethyl-dispersed silica sol was added. Obtained.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.07% by mass, methanol of 0.5% by mass, an average primary particle size of 45 nm, a silica particle size of 74 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 1.6.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder.
  • the moisture absorption rate of the silica powder was 0.1% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • Example 5 1000 g of methanol-dispersed silica sol (average primary particle size 45 nm) obtained in the steps (a) to (j) of Example 1 was charged into a 2 liter eggplant-shaped flask and stirred with a magnetic stirrer. After adding 4 g, heating was performed at 60 ° C. for 8 hours. After cooling to 50 ° C., 50 g of hexamethyldisilazane was added, and the surface-modified methanol-dispersed silica sol was obtained by heating at 60 ° C. for 4 hours. Subsequently, the solvent was removed with a rotary evaporator at a bath temperature of 100 ° C. under reduced pressure of 400 to 20 Torr, and dried to obtain silica powder.
  • the obtained silica powder was dispersed in methyl ethyl ketone and the silica particle diameter was measured by a dynamic light scattering method.
  • the obtained silica powder was a silica particle diameter / average primary particle diameter ratio measured by dynamic light scattering method of 1.8, 23 ° C., and left for 48 hours in an environment of 50 RH relative humidity.
  • the moisture absorption rate was less than 0.1% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • Example 6 36.7 g of an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone dispersion sol obtained in Example 1, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr. An alicyclic epoxy resin monomer-dispersed silica sol was obtained. The obtained silica sol had a SiO 2 concentration of 45.4% by mass, less than 0.1% by mass of methyl ethyl ketone, and a B-type viscosity at 23 ° C. of 1050 mPa ⁇ s.
  • an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone dispersion sol obtained in Example 1, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr.
  • Example 7 36.7 g of bisphenol F type epoxy resin monomer (YL-983U: Mitsubishi Chemical Corporation) was added to 100 g of the methyl ethyl ketone dispersion sol obtained in Example 1, and the solvent was removed at a bath temperature of 100 ° C. and 200 to 10 Torr. A bisphenol F-type epoxy resin monomer-dispersed silica sol was obtained. The obtained silica sol had a SiO 2 concentration of 45.4% by mass, methyl ethyl ketone less than 0.1% by mass, and a B-type viscosity at 50 ° C. of 2500 mPa ⁇ s.
  • Example 8 36.7 g of an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone dispersion sol obtained in Example 2, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr. An alicyclic epoxy resin monomer-dispersed silica sol was obtained. The obtained silica sol had a SiO 2 concentration of 45.4% by mass, methyl ethyl ketone less than 0.1% by mass, and a B-type viscosity at 23 ° C. of 1500 mPa ⁇ s.
  • an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone dispersion sol obtained in Example 2, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr.
  • Example 9 36.7 g of an alicyclic epoxy resin monomer (Celoxide 2021P: manufactured by Daicel Corporation) was added to 100 g of the methyl ethyl ketone-dispersed silica sol obtained in Example 3, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr.
  • the alicyclic epoxy resin monomer-dispersed silica sol was obtained.
  • the obtained alicyclic epoxy resin monomer-dispersed silica sol had a SiO 2 concentration of 45.0% by mass, methyl ethyl ketone less than 0.1% by mass, and a B-type viscosity of 1200 mPa ⁇ s at 23 ° C.
  • Example 10 36.7 g of an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone-dispersed silica sol obtained in Example 4, and the solvent was removed at a bath temperature of 100 ° C. and a reduced pressure of 200 to 10 Torr. An alicyclic epoxy resin monomer-dispersed silica sol was obtained. The obtained alicyclic epoxy resin monomer-dispersed silica sol had a SiO 2 concentration of 45.0% by mass, methyl ethyl ketone less than 0.1% by mass, and a B-type viscosity at 23 ° C. of 1100 mPa ⁇ s.
  • an alicyclic epoxy resin monomer (Celoxide 2021P: Daicel Corporation) was added to 100 g of the methyl ethyl ketone-dispersed silica sol obtained in Example 4, and the solvent was removed at a bath temperature of 100
  • Example 11 33 g of the silica powder obtained in Example 5 was charged into a fiber mixer (MX-X53: manufactured by Panasonic Corporation) and pulverized for 5 minutes. 70 g of alicyclic epoxy resin monomer (Celoxide 2021P: manufactured by Daicel Corporation) was charged into a 300 ml cylindrical flask, heated to 80 ° C., and stirred with a magnetic stirrer, and 32 g of pulverized silica powder was added. The mixture was stirred for a time to obtain an alicyclic epoxy resin monomer-dispersed silica sol. The obtained sol had a SiO 2 concentration of 30.0 mass% and a B-type viscosity of 1200 mPa ⁇ s at 23 ° C.
  • MX-X53 manufactured by Panasonic Corporation
  • the acidic silica sol was obtained by performing the steps (a), (d), (e), (f), and (i) in this example in this order.
  • the obtained acidic silica sol had a SiO 2 concentration of 30% by mass, a pH of 2.9, an average primary particle size of 12 nm, and a silica particle size of 22 nm measured by a dynamic light scattering method.
  • a methyl ethyl ketone-dispersed silica sol was obtained in the same manner as in the steps (j) and (k) of Example 1.
  • the number of phenyltrimethoxysilane added in the step (k) was 3.3 per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.03% by mass, methanol of 0.5% by mass, an average primary particle size of 12 nm, a silica particle size of 23 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by a dynamic light scattering method was 1.9.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C.
  • silica powder When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 1.7% by mass. The amount of ⁇ rays emitted from the silica powder was 0.027 count / cm 2 ⁇ hr.
  • Example 2 An acidic silica sol was obtained in the same manner as in Example 1 except that Steps (b) and (c) of Steps (a) to (i) in Example 1 were not performed.
  • the obtained acidic silica sol had a SiO 2 concentration of 30% by mass, a pH of 2.9, an average primary particle size of 40 nm, and a silica particle size of 80 nm measured by a dynamic light scattering method.
  • the same procedure as in step (j) and step (k) of Example 1 was performed to obtain a methyl ethyl ketone-dispersed silica sol.
  • the number of phenyltrimethoxysilane added in the step (k) was 3.0 per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.04% by mass, methanol of 0.5% by mass, an average primary particle size of 40 nm, a silica particle size of 80 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by a dynamic light scattering method was 2.0.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C.
  • silica powder When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 0.1% by mass. The amount of ⁇ rays emitted from the silica powder was 0.025 count / cm 2 ⁇ hr.
  • Example 3 A methyl ethyl ketone-dispersed silica sol was obtained in the same manner as in Example 1 except that the steps (g) and (h) were not performed in the steps (a) to (k) of Example 1. The number of phenyltrimethoxysilane added in the step (k) was 3.0 per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol had an SiO 2 concentration of 30.5% by mass, a water content of 0.1% by mass, methanol of 0.5% by mass, an average primary particle size of 13 nm, a silica particle size of 28 nm measured by dynamic light scattering,
  • the ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 2.2.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 1.7% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • Example 4 A methyl ethyl ketone-dispersed silica sol was obtained in the same manner as in Example 1 except that the hydrothermal treatment temperature in Step (h) was changed to 180 ° C. in Steps (a) to (k) of Example 1. The number of phenyltrimethoxysilane added in the step (k) was 3.0 per 1 nm 2 of the surface area of the silica particles in the sol.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.1% by mass, methanol of 0.5% by mass, an average primary particle size of 18 nm, a silica particle size of 35 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by a dynamic light scattering method was 1.9.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 0.9% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.002 count / cm 2 ⁇ hr.
  • a methanol sol having a silica concentration of 20% by mass and a water content of 1.2% by mass was obtained. Thereafter, 13.0 g of phenyltrimethoxysilane was added and held at 60 ° C. for 3 hours. The added phenyltrimethoxysilane corresponds to 3.0 particles per 1 nm 2 of the surface area of the silica particles in the sol. Furthermore, methanol of the dispersion medium was replaced with methyl ethyl ketone to obtain a methyl ethyl ketone dispersed silica sol.
  • the obtained sol had a SiO 2 concentration of 30.5% by mass, a water content of 0.1% by mass, methanol of 0.3% by mass, an average primary particle size of 39 nm, a silica particle size of 70 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 1.8.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder.
  • the moisture absorption rate of the silica powder when it was allowed to stand for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH% was 6.2% by mass.
  • the amount of ⁇ rays emitted from the silica powder was less than 0.001 count / cm 2 ⁇ hr.
  • the obtained silica sol had a pH of 9.30, an average primary particle size of 40 nm, and a silica particle size of 66 nm as measured by a dynamic light scattering method.
  • the water in the silica sol after hydrothermal treatment was evaporated under reduced pressure using an evaporator to adjust the silica concentration to 30.0% by mass, and then the same procedures as in steps (i) to (k) of Example 1 were performed. Thus, a methyl ethyl ketone-dispersed silica sol was obtained.
  • the obtained sol had a SiO 2 concentration of 30.0% by mass, a water content of 0.1% by mass, methanol of 0.3% by mass, an average primary particle size of 40 nm, a silica particle size of 70 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 1.8.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and relative humidity of 50 RH, the moisture absorption rate of the silica powder was 4.9% by mass.
  • the amount of ⁇ rays emitted from the silica powder was less than 0.001 count / cm 2 ⁇ hr.
  • [Comparative Example 7] A commercially available nano-sized fused silica powder (trade name: UFP-80, average primary particle size 34 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.) was prepared. 50 g of this silica powder was charged into a fiber mixer (MX-X53: Panasonic Corporation) and pulverized for 5 minutes. Add 200 g of pure water to a 1 liter beaker, add 50 g of the pulverized silica powder, and perform ultrasonic treatment for 2 hours with an ultrasonic cleaner (W-222, manufactured by Hyundai Electronics Co., Ltd.) to disperse water. A silica sol was obtained.
  • UFP-80 average primary particle size 34 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the same treatment as in the steps (j) and (k) of Example 1 was performed. That is, 250 g of the obtained water-dispersed silica sol was charged into a 1-liter separable flask, and 50 g of methanol and 0.25 g of tri-n-propylamine were added while stirring. Thereafter, the solvent was replaced while supplying methanol gas into the silica sol to obtain 250 g of a methanol-dispersed silica sol having a SiO 2 concentration of 20 mass% and a water content of 1.2 mass%.
  • methanol-dispersed silica sol 250 g was charged into a 1 liter eggplant-shaped flask, and while stirring with a magnetic stirrer, 4.0 g of phenyltrimethoxysilane was added, heated to 60 ° C. and held for 3 hours.
  • the added phenyltrimethoxysilane corresponds to 3.0 particles per 1 nm 2 of the surface area of the silica particles in the sol.
  • the eggplant-shaped flask was set on a rotary evaporator, and distillation was performed while supplying methyl ethyl ketone at a bath temperature of 80 ° C.
  • the obtained sol had a SiO 2 concentration of 15.5% by mass, water content of 0.1% by mass, methanol of 0.3% by mass, an average primary particle size of 34 nm, a silica particle size of 210 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 6.2.
  • the silica gel obtained by drying the obtained silica sol with an 80 ° C. vacuum dryer was pulverized with a mortar, and further dried at 180 ° C. for 3 hours to obtain silica powder. When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH, the moisture absorption rate of the silica powder was 0.1% by mass.
  • the amount of ⁇ rays emitted from the silica powder was 0.03 count / cm 2 ⁇ hr.
  • [Comparative Example 8] A commercially available nano-sized gas phase method silica powder (trade name: Aerosil (registered trademark) 130, average primary particle size 21 nm: manufactured by Nippon Aerosil Co., Ltd.) was prepared. 50 g of this silica powder was charged into a fiber mixer (MX-X53: Panasonic Corporation) and pulverized for 5 minutes. Add 200 g of pure water to a 1 liter beaker, add 50 g of the pulverized silica powder, and perform ultrasonic treatment for 2 hours with an ultrasonic cleaner (W-222, manufactured by Hyundai Electronics Co., Ltd.) to disperse water. A silica sol was obtained.
  • Aerosil registered trademark
  • W-222 ultrasonic cleaner
  • the same treatment as in the step (j) and the step (k) of Example 1 was performed in the same manner as in Comparative Example 7.
  • the obtained sol had a SiO 2 concentration of 15.5% by mass, water content of 0.1% by mass, methanol of 0.3% by mass, an average primary particle size of 21 nm, a silica particle size of 150 nm measured by a dynamic light scattering method, The ratio of silica particle diameter / average primary particle diameter measured by dynamic light scattering method was 7.1.
  • the silica gel obtained by drying the obtained silica sol with a vacuum dryer at 80 ° C. was pulverized in a mortar, and further dried at 180 ° C.
  • silica powder When left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH%, the moisture absorption rate of the silica powder was less than 0.1% by mass. The amount of ⁇ rays emitted from the silica powder was less than 0.001 count / cm 2 ⁇ hr.
  • Example 9 Using 100 g of the methyl ethyl ketone dispersion sol obtained in Comparative Example 3, the same procedure as in Example 6 was performed to obtain an alicyclic epoxy resin monomer-dispersed silica sol.
  • the obtained silica sol had a SiO 2 concentration of 45.4% by mass, less than 0.1% by mass of methyl ethyl ketone, and a B-type viscosity of 4500 mPa ⁇ s at 23 ° C.
  • Example 10 Using 100 g of the methyl ethyl ketone dispersion sol obtained in Comparative Example 4, the same procedure as in Example 6 was performed to obtain an alicyclic epoxy resin monomer-dispersed silica sol.
  • the obtained silica sol had a SiO 2 concentration of 45.4% by mass, methyl ethyl ketone less than 0.1% by mass, and a B-type viscosity of 1800 mPa ⁇ s at 23 ° C.
  • Example 11 Using 100 g of the methyl ethyl ketone dispersion sol obtained in Comparative Example 5, the same procedure as in Example 6 was performed to obtain an alicyclic epoxy resin monomer-dispersed silica sol.
  • the obtained silica sol had an SiO 2 concentration of 45.4% by mass, less than 0.1% by mass of methyl ethyl ketone, and a B-type viscosity of 5000 mPa ⁇ s at 23 ° C.
  • Example 12 Using 100 g of the methyl ethyl ketone dispersion sol obtained in Comparative Example 6, the same procedure as in Example 6 was performed to obtain an alicyclic epoxy resin monomer-dispersed silica sol.
  • the obtained silica sol had a SiO 2 concentration of 45.4% by mass, less than 0.1% by mass of methyl ethyl ketone, and a B-type viscosity of 4800 mPa ⁇ s at 23 ° C.
  • Example 12 Into a 300 mL four-necked flask was placed 40.5 g of the alicyclic epoxy resin monomer-dispersed silica sol obtained in Example 6 and 26.5 g of methylhexahydrophthalic anhydride, and the mixture was stirred at 80 ° C. for 40 minutes to obtain a mixture. It was. Next, 222 mg of tetrabutylphosphonium O, O′-diethyldithiophosphate (trade name: Hishicolin (registered trademark) PX-4ET: manufactured by Nippon Chemical Industry Co., Ltd.) was added to this mixture as a curing accelerator, and the mixture was stirred for 10 minutes.
  • tetrabutylphosphonium O, O′-diethyldithiophosphate trade name: Hishicolin (registered trademark) PX-4ET: manufactured by Nippon Chemical Industry Co., Ltd.
  • silica-containing epoxy resin curing composition was applied to a casting plate (a glass plate treated with a release agent SR-2410 (manufactured by Toray-Daushi Recorning Co., Ltd.), a distance of 3 mm between two glass plates). Poured and heat-treated at 90 ° C. for 2 hours and then at 150 ° C. for 1 hour to obtain a cured silica-containing epoxy resin.
  • a casting plate a glass plate treated with a release agent SR-2410 (manufactured by Toray-Daushi Recorning Co., Ltd.
  • Example 13 Example 12 except that the bisphenol F-type epoxy resin monomer-dispersed silica sol obtained in Example 7 was used in place of the alicyclic epoxy resin monomer-dispersed silica sol, and 22.3 g of methylhexahydrophthalic anhydride was used. It carried out similarly and the silica containing epoxy resin hardened
  • Example 14 to 16 A silica-containing cured epoxy resin was obtained in the same manner as in Example 12 except that the alicyclic epoxy resin monomer-dispersed silica sol obtained in Examples 8 to 10 was used as the silica sol.
  • Example 17 A silica-containing cured epoxy resin was obtained in the same manner as in Example 12 except that 31.8 g of the alicyclic epoxy resin monomer-dispersed silica sol obtained in Example 11 was used as the silica sol.
  • the obtained epoxy resin curing composition was poured into a casting plate (a glass plate treated with a release agent SR-2410 (manufactured by Toray / Daushi Reconing), a thickness of 3 mm between two glass plates), Heat treatment was carried out at 90 ° C. for 2 hours and then at 150 ° C. for 1 hour to obtain a cured epoxy resin containing no silica particles.
  • a casting plate a glass plate treated with a release agent SR-2410 (manufactured by Toray / Daushi Reconing), a thickness of 3 mm between two glass plates
  • Heat treatment was carried out at 90 ° C. for 2 hours and then at 150 ° C. for 1 hour to obtain a cured epoxy resin containing no silica particles.
  • the obtained epoxy resin curing composition was poured into a casting plate (a glass plate treated with a release agent SR-2410 (manufactured by Toray / Daushi Reconing), a thickness of 3 mm between two glass plates), Heat treatment was carried out at 90 ° C. for 2 hours and then at 150 ° C. for 1 hour to obtain a cured epoxy resin containing no silica particles.
  • a casting plate a glass plate treated with a release agent SR-2410 (manufactured by Toray / Daushi Reconing), a thickness of 3 mm between two glass plates
  • Heat treatment was carried out at 90 ° C. for 2 hours and then at 150 ° C. for 1 hour to obtain a cured epoxy resin containing no silica particles.
  • the linear expansion coefficient was measured based on JIS K-6911. The thickness of the test piece was measured accurately and measured with TMA (Thermal Mechanical Analysis) at a load of 0.05 N and a heating rate of 1 ° C./min.
  • the silica powders obtained by drying the silica sols of Examples 1 to 5 all have a very low ⁇ -ray emission amount of 0.005 counts / cm 2 ⁇ hr or less, and are maintained for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH%.
  • the moisture absorption rate when left as it is is 0.5 mass% or less and extremely low.
  • the silica powder obtained by drying the silica sols of Comparative Examples 1, 3, and 4 has a high moisture absorption rate when left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH%, and is not low in hygroscopicity.
  • the silica powder obtained by drying the silica sol of Comparative Example 2 has a moisture absorption rate of 0.5% by mass or less when left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH%. Is as high as 0.025 counts / cm 2 ⁇ hr.
  • Comparative Examples 4 and 5 although the amount of ⁇ rays emitted is low, the moisture absorption rate when left for 48 hours in an environment of 23 ° C. and a relative humidity of 50 RH% is considerably high at 6.2 and 4.9% by mass, which is low. It is not hygroscopic.
  • the silica sol of the present invention is a silica sol that contains nano-sized silica particles with extremely low ⁇ -ray emission and low hygroscopicity, and can be suitably used for a semiconductor package wiring board or a semiconductor sealing material. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 α線の放出量が0.005カウント/cm・hr以下であり、且つ23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下である有機シラン化合物により表面修飾された20~100nmの平均一次粒子径を有するシリカ粒子を含有し、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比が3.0以下であるシリカゾル。

Description

シリカゾル及びシリカ含有エポキシ樹脂組成物
 本発明は、α線の放出量が極めて低く、且つ低吸湿であるナノサイズのシリカ粒子のゾルと該シリカ粒子を含有するエポキシ樹脂組成物並びにその硬化物に関する。
 シリカゾルは、3~100nm程度のシリカ粒子が溶媒中に分散したコロイド溶液であり、高い透明性を有している。また、シリカ粒子は高い硬度や耐熱性を持つことから、樹脂等に配合されて、樹脂の硬さや耐熱性の付与を目的とした改質剤として使用されている。
 シリカゾルを樹脂に配合する際は、ゾルと樹脂又は硬化剤との相溶性、反応性を考慮して、有機溶媒に分散したシリカゾル又は樹脂モノマーに分散したシリカゾルが用いられる場合が多い。また、表面を疎水化処理したシリカ粉末が用いられることもある。
 半導体パッケージ用配線基板や半導体封止材に用いられる樹脂には、線膨張率の低減のためにシリカフィラーを充填することが行われてきた。従来、これらの用途にはミクロンサイズのシリカフィラーが使用されてきた。近年、半導体の微細化や配線基板の薄膜化に伴い、これらに使用される樹脂は、より低い線膨張率が求められており、樹脂へのシリカフィラーの充填率をより高くする検討が盛んに行われている。
 ミクロンサイズのシリカフィラーを樹脂に高い充填率で配合した場合、樹脂組成物の流動性が低下して、取り扱いが困難になる場合がある。ナノサイズの表面処理されたシリカ粒子を配合することにより、シリカフィラー含有樹脂組成物の流動性が向上することが報告されている(特許文献1)。
 一方でナノサイズのシリカ粒子はその比表面積が大きいために、吸湿性がミクロンサイズのシリカ粒子の吸湿性に比べて高くなるという欠点を有している。吸湿性の高いシリカフィラーを使用した場合、樹脂硬化物が吸湿し易くなり、絶縁特性の劣化や硬化物の強度の低下を引き起こし、デバイスの信頼性が低下するため、ナノサイズであっても低吸湿性のシリカ粒子が求められている。
 また、半導体の封止材や接着剤においては、製造工程の自動化を目的として、デバイスの位置を自動的に検知させる必要があり、透明性の高い封止樹脂が必要とされている。このような封止樹脂においても低線膨張率が求められており、エポキシ系樹脂に高い配合率で分散できるナノサイズのシリカ粒子が求められている。
 また、前記のような電子材料用途に使用されるシリカフィラーは、ウラン、トリウム等の放射性元素の含有量が少ないものが望まれる。これは、ウラン、トリウム等の放射性元素が放出するα線によって、半導体の誤動作が引き起こされることがあるためである。
 一般にシリカゾルは、珪酸ナトリウムを原料として製造されるものとシリコンアルコキシドを原料として製造されるものに大別される。珪酸ナトリウムを原料に用いて製造されたシリカゾルは、原料に由来するウラン、トリウム等の放射性元素が多く含まれる。これら放射性元素のうち、特にトリウムは珪酸ナトリウムをイオン交換しても除去されにくいため、一般に入手可能な、珪酸ナトリウムを原料とするシリカゾルを前記のような電子材料用途へ適用することは難しかった。
 一方、シリコンアルコキシドを原料としたシリカゾルは、原料であるシリコンアルコキシドの純度が高いため、コロイダルシリカ中の放射性元素の含有量が低いシリカゾルを得ることが容易であるという利点はあるが、低吸湿性のシリカ粒子が得られておらず、前記のような電子材料用途へ適用するとデバイスの性能劣化を引き起こすという欠点を有している。
 ナノサイズのシリカフィラーとしては、気相法シリカ粉末や溶融法シリカ粉末が市販されている。これらのシリカフィラーは吸湿性が低いという利点があるが、樹脂への分散性が極めて悪く、樹脂ワニスの増粘等を引き起こすため、高い充填率を達成することが困難である。
特開2011-213514号公報
 本発明の課題は、上述の従来技術の問題点を解決することにあり、半導体パッケージ用配線基板や半導体封止材に用いられる樹脂に充填が容易であり、α線の放出量が極めて小さく、且つ低吸湿性のナノサイズのシリカ粒子を含有するシリカゾルを提供すること、及びそのシリカゾルを含有する樹脂組成物を提供することにある。
 本発明者らは鋭意検討の結果、α線の放出量が極めて小さく、且つ低吸湿性のナノサイズのシリカ粒子を含有するシリカゾルを見出すに至った。
 即ち、第1観点として、α線の放出量が0.005カウント/cm・hr以下であり、且つ23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下である有機シラン化合物により表面修飾された20~100nmの平均一次粒子径を有するシリカ粒子を含有し、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比が3.0以下であるシリカゾルであり、
第2観点として、前記有機シラン化合物はエポキシ基を有するものである第1観点に記載のシリカゾルであり、
第3観点として、前記シリカ粒子は、水中で200~350℃で加熱処理されたものである第1観点又は第2観点に記載のシリカゾルであり、
第4観点として、前記シリカ粒子は、珪酸アルカリ水溶液を陽イオン交換して得られる活性珪酸を出発原料として製造されたものである第1観点~第3観点のいずれか一つに記載のシリカゾルであり、
第5観点として、前記シリカ粒子は、珪酸アルカリ水溶液を陽イオン交換して得られる活性珪酸に強酸を加えた後、更に陽イオン交換及び陰イオン交換する工程を経て得られる高純度活性珪酸を原料として製造されたものである第1観点~第3観点のいずれか一つに記載のシリカゾルであり、
第6観点として、前記シリカ粒子は、珪酸アルカリ水溶液に強酸又は強酸の塩を添加した後、陽イオン交換して得られる活性珪酸を、更に陽イオン交換及び陰イオン交換する工程を経て得られる高純度活性珪酸を原料として製造されたものである第1観点~第3観点のいずれか一つに記載のシリカゾルであり、
第7観点として、分散媒は有機溶媒である第1観点~第6観点のいずれか一つに記載のシリカゾルであり、
第8観点として、分散媒は樹脂モノマーである第1観点~第6観点のいずれか一つに記載のシリカゾルであり、
第9観点として、前記樹脂モノマーはエポキシ樹脂モノマーである第8観点に記載のシリカゾルであり、
第10観点として、第1観点~第9観点のいずれか一つに記載のシリカゾルから分散媒を除去して得られるシリカ粉末であり、
第11観点として、第1観点~第9観点のいずれか一つに記載のシリカゾル又は第10観点に記載のシリカ粉末とエポキシ樹脂モノマーとエポキシ硬化剤とを含有するシリカ含有エポキシ樹脂組成物であり、
第12観点として、第11観点に記載のシリカ含有エポキシ樹脂組成物から有機溶媒が除去されたシリカ含有エポキシ樹脂組成物であり、
第13観点として、シリカ含有率が10~90質量%である第11観点又は第12観点に記載のシリカ含有エポキシ樹脂組成物であり、
第14観点として、第11観点~第13観点のいずれか一つに記載のシリカ含有エポキシ樹脂組成物を硬化させて得られるシリカ含有エポキシ樹脂硬化物、である。
 本発明のシリカゾルは、α線の放出量が極めて小さく、且つ低吸湿性のナノサイズのシリカ粒子を含有するシリカゾルであり、半導体パッケージ用配線基板や半導体封止材に用いられる樹脂に容易に配合して、低い線膨張率を達成することができる。
 以下、本発明のシリカゾルについて詳述する。本発明のシリカゾルは、α線の放出量が0.005カウント/cm・hr以下であり、且つ23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下である有機シラン化合物により表面修飾された20~100nmの平均一次粒子径を有するシリカ粒子を含有し、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比が3.0以下であるシリカゾルである。
 シリカ粒子のα線の放出量は、乾燥させたシリカ粒子の粉末を2πガスフロー計数方式低レベルα線測定装置、例えば住友化学社製LACS-4000Mによって測定することができる。
 本発明において、シリカ粒子の23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率は、乾燥させたシリカ粒子の粉末を相対湿度50RH%の環境下で48時間放置したときの重量変化を測定することにより算出することができる。具体的には、シリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥してシリカ乾燥粉末を得る。その乾燥粉末を0.2g秤量瓶に採取し、重量を測定する。この秤量瓶の蓋を開けた状態で23℃、相対湿度50RH%の雰囲気下に48時間静置した後、蓋をして再び重量を測定する。そして以下の式により、吸湿率を算出する。
吸湿率(%)=(増加重量/採取したサンプル重量)×100
 本発明のシリカゾルに含まれるシリカ粒子の吸湿率としては0.5質量%以下であり、好ましくは0.3質量%以下、より好ましくは0.2質量%以下である。
 本発明のシリカゾルに含まれるシリカ粒子の平均一次粒子径は、該シリカ粒子を乾燥して得られるシリカ粉末の窒素吸着法による比表面積を用いて以下の換算式により算出することができる。
換算式:平均一次粒子径(nm)=2720/窒素吸着法による比表面積(m/g)
 本発明のシリカゾルに含まれるシリカ粒子の一次粒子径しては20~100nmであり、好ましくは30~80nm、より好ましくは40~70nmである。
 本発明において動的光散乱法により測定されるシリカ粒子径は、シリカゾルをその分散媒と同じ溶媒を用いて、体積基準で10~100倍に希釈し、動的光散乱法粒子径測定装置、例えばMalvern Instruments製のZetasizer Nanoによって平均分散粒子径として測定することができる。
 また、本発明のシリカゾルは、その製造方法に特に制限はないが、水中で好ましくは200~350℃で、より好ましくは230~300℃で加熱処理されたものである。この加熱処理は、耐圧容器(オートクレーブ)を用いて行うことができる。
 また、本発明のシリカゾルは、珪酸アルカリ水溶液を脱アルカリして得られる活性珪酸を出発原料として製造されたものであることが好ましい。珪酸アルカリ水溶液としては、珪酸ナトリウム水溶液、珪酸カリウム水溶液等が挙げられる。珪酸アルカリ水溶液の脱アルカリは、陽イオン交換樹脂を用いたイオン交換法が好適である。その他、酸による中和と生成するアルカリ金属塩を洗浄して除去する方法により得られる活性珪酸を出発原料として用いることもできる。
 また、本発明のシリカゾルは、珪酸アルカリ水溶液を脱アルカリして得られる活性珪酸に強酸を加えた後、陽イオン交換する工程を経て得られる高純度活性珪酸を原料として製造されたものであることがより好ましい。珪酸アルカリ水溶液の脱アルカリは、陽イオン交換樹脂を用いたイオン交換法が好適である。用いられる強酸としては、塩酸、硫酸、硝酸等が挙げられる。
 本発明のシリカゾルは、以下の方法により製造することができるが、この方法に限定されるものではない。出発原料として用いられる珪酸アルカリ水溶液は、例えば市販のJIS3号珪酸ナトリウム水溶液が用いられる。珪酸ナトリウム水溶液は、シリカ濃度約1~5質量%に水希釈され、希薄珪酸ナトリウム水溶液が調製される。これを水素型強酸性陽イオン交換樹脂が充填されたカラムに通液して、活性珪酸水溶液が得られる。得られた活性珪酸水溶液に塩酸、硫酸又は硝酸が添加され、活性珪酸水溶液のpHは0~2に調整され、室温から60℃以下の温度で1~24時間保持される。続いて水素型強酸性陽イオン交換樹脂を充填したカラムに通液し、更に水酸基型塩基性陰イオン交換樹脂を充填したカラムに通液して、高純度の活性珪酸水溶液が得られる。得られた高純度の活性珪酸水溶液に水酸化ナトリウム又は水酸化カリウムの水溶液を添加して、pHを7~9に調整することにより、安定化された活性珪酸液が得られる。安定化された活性珪酸水溶液は、シリカ濃度が約1~5質量%、ナトリウム原子又はカリウム原子をMと表して、SiO/MOモル比は50~250にすることが好ましい。この安定化された活性珪酸を70~150℃に加熱することにより、平均一次粒子径が10~30nmの高純度水分散シリカゾルが得られる。得られた高純度水分散シリカゾルは更に200~350℃の高温で加熱処理することにより、シリカ粒子が緻密となり、吸湿性の低いシリカ粒子を得ることができる。高温での加熱は水中で行う方法が好ましい。
 本発明のシリカゾルに含まれるシリカ粒子は有機シラン化合物により表面修飾されている。表面修飾に用いられる有機シラン化合物としては、シラザン、シロキサン又はアルコキシシラン及びその部分加水分解物若しくはその2量体~5量体のオリゴマーが挙げられる。
 シラザンとしては、例えばヘキサメチルジシラザン、ヘキサエチルジシラザンが挙げられる。
 シロキサンとしては、例えばヘキサメチルジシロキサン、1,3-ジブチルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、ヘキサエチルジシロキサン、3-グリシドキシプロピルペンタメチルジシロキサンが挙げられる。
 アルコキシシランとしては、例えばトリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルプロポキシシラン、フェニルジメチルメトキシシラン、クロロプロピルジメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、エチルトリメトキシシラン、ジメチルジエトキシシラン、プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-オクチルメチルジエトキシシラン、n-オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルメチルジメトキシシラン、フェネチルトリメトキシシラン、ドデシルトリメトキシシラン、n-オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、γ-メタアクリルオキシプロピルトリメトキシシラン、γ-アクリルオキシプロピルトリメトキシシラン、γ-(メタアクリルオキシプロピル)メチルジメトキシシラン、γ-メタアクリルオキシプロピルメチルジエトキシシラン、γ-メタアクリルオキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-(アミノプロピル)メチルジメトキシシラン、N-β(アミノエチル)γ-(アミノプロピル)トリメトキシシラン、N-β(アミノエチル)γ-(アミノプロピル)トリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロプロピルトリメトキシシラン、n-デシルトリメトキシシラン、ジメトキシジエトキシシラン、ビス(トリエトキシシリル)エタン、ヘキサエトキシジシロキサンが挙げられる。
 表面修飾に用いられる有機シラン化合物としては、エポキシ基を有するものが好ましい。エポキシ基を有する有シラン化合物としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等は挙げられる。
 シリカ粒子の表面修飾においては、シリカ粒子の表面積1nm当たり、有機シラン化合物の分子0.1~5個となる量を用いて表面修飾することが好ましい。シリカ粒子の表面修飾は、水分散シリカゾル又は有機溶媒分散シリカゾルに有機シラン化合物を所定量添加し、攪拌下に5~100℃で0.5~24時間の加熱処理により行うことが好ましい。有機シラン化合物による表面修飾を促進するために酸やアルカリ等の触媒を適量添加することが行われても良い。
 本発明のシリカゾルの分散媒は、水、有機溶媒又は樹脂モノマーである。
 本発明のシリカゾルの分散媒としての有機溶媒としては、アルコール、ケトン、エーテル、エステル、炭化水素等が挙げられる。また、用いられる有機溶媒は、1種類でもよいが、2種以上を混合して用いてもよい。有機溶媒分散シリカゾルは、水分散シリカゾルを蒸留法等の公知の方法で溶媒置換して得ることができる。
 アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、1-ヘキサノール、1-オクタノール、2-エチル-1-ヘキサノール、アリルアルコール、ベンジルアルコール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-(メトキシエトキシ)エタノール、1-メトキシ-2-プロパノール、ジプロピレングリコールモノメチルエーテル、ジアセトンアルコール、エチルカルビトール、ブチルカルビトール等が挙げられる。
 ケトンとしては、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソブチルケトン、シクロヘキサノン等が挙げられる。
 エーテルとしては、ジエチルエーテル、ジプオピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジオキサン、テトラヒドロフラン、1,2-ジエトキシエタン等が挙げられる。
 エステルとしては、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、γーブチロラクトン、メタクリル酸メチル、イソブチルアクリレート、シクロヘキシルアクリレート、2-エトキシエチルアクリレート、トリフルオロエチルアクリレート、メタクリル酸グリシジル等が挙げられる。
 炭化水素としては、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、ソルベントナフサ、スチレンや、ジクロロメタン、トリクロロエチレン等のハロゲン化炭化水素等が挙げられる。
 本発明のシリカゾルの分散媒としての樹脂モノマーとしては、エチレン性不飽和結合を有する樹脂モノマー、エポキシ環を有する樹脂モノマー、オキセタン環を有する樹脂モノマー等が挙げられる。樹脂モノマー分散シリカゾルは、水分散シリカゾル又は有機溶媒分散シリカゾルを蒸留法等の公知の方法で樹脂モノマーに置換して得ることができる。
 エチレン性不飽和結合を有する樹脂モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フタル酸等の不飽和カルボン酸化合物が挙げられる。
 また、前記不飽和カルボン酸化合物とアルコール化合物とから誘導される不飽和カルボン酸エステル化合物が挙げられる。例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、イタコン酸エステル化合物、クロトン酸エステル化合物、マレイン酸エステル化合物、フタル酸エステル化合物である。前記不飽和カルボン酸化合物と反応して不飽和カルボン酸エステルを生成するアルコール化合物としては特に制限はないが、エチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリス(2-ヒドロキシルエチル)イソシアヌル酸、トリエタノールアミン、ペンタエリスリトール等の、例えば2~6個の水酸基を有するポリオール化合物が挙げられる。
 また、前記不飽和カルボン酸化合物とアミン化合物とから誘導される不飽和カルボン酸アミド化合物を挙げることができる。例えば、アクリル酸アミド化合物、メタクリル酸アミド化合物、イタコン酸アミド化合物、クロトン酸アミド化合物、マレイン酸アミド化合物、フタル酸アミド化合物等である。前記アミン化合物としては特に制限はないが、エチレンジアミン、ジアミノシクロヘキサン、ジアミノナフタレン、1,4-ビス(アミノメチル)シクロヘキサン、3,3’,4,4’-テトラアミノビフェニル、トリス(2-アミノエチル)アミン等の、例えば2~6個の一級又は二級のアミノ基を有するポリアミン化合物が挙げられる。
 エチレン性不飽和結合を有する樹脂モノマーの具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ノナプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス〔4-((メタ)アクリロキシジエトキシ)フェニル〕プロパン、3-フェノキシ-2-プロパノイルアクリレート、1,6-ビス(3-アクリロキシ-2-ヒドロキシプロピル)-ヘキシルエーテル、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリス-(2-ヒドロキシルエチル)-イソシアヌル酸エステル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ノルボルニルメチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2,2-ジメチルブチルアクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-メトキシメトキシエチルアクリレート、3-ペンチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチルメタクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-メチル-2-プロピルペンチルアクリレート、5-ノルボルネン-2-イルメチルメタクリレート、i-プロピル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、sec-ブチル(メタ)クリレート、t-ペンチル(メタ)アクリレート、α-ヒドロキシメチルアクリル酸エチル、α-ヒドロキシメチルアクリル酸ブチル、α-ヒドロキシメチルアクリル酸メチル、(メタ)アクリル酸、アクリル酸n-ステアリル、イソオクチルアクリレート、イソノニルアクリレート、イソボルニル(メタ)アクリレート、エチル(メタ)アクリレート、エチルカルビトールアクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、エトキシジエチレングリコールアクリレート、シクロヘキシル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、シクロペンチルアクリレート、ジシクロペンテニルオキシエチルアクリレート、セチルアクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フタル酸水素(メタ)アクリロイルオキシエチル、ベンジル(メタ)アクリレート、メチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、グリシジルメタクリレート、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、ビニルベンゼン、ジビニルベンゼン、ビニルトルエン、スチレン、α-メチルスチレン、p-メチルスチレン等が挙げられる。なお、ここで例えばエチレングリコールジ(メタ)アクリレートとは、エチレングリコールジアクリレートとエチレングリコールジメタクリレートとを意味する。
 また、前記エチレン性不飽和結合を有する樹脂モノマーとしては、多価イソシアネート化合物とヒドロキシアルキル不飽和カルボン酸エステル化合物との反応によって得ることができるウレタン化合物、多価エポキシ化合物とヒドロキシアルキル不飽和カルボン酸エステル化合物との反応によって得ることができる化合物、フタル酸ジアリル等のジアリルエステル化合物、ジビニルフタレート等のジビニル化合物を挙げることもできる。
 エポキシ環を有する樹脂モノマーとしては、1~6個のエポキシ環を有する化合物を使用することができる。1~6個のエポキシ環を有する重合性化合物は、例えばジオール化合物、トリオール化合物、ジカルボン酸化合物、トリカルボン酸化合物等の2個以上の水酸基又はカルボキシル基を有する化合物と、エピクロルヒドリン等のグリシジル化合物から製造することができる、2個以上のグリシジルエーテル構造又はグリシジルエステル構造を有する化合物を挙げることができる。
 エポキシ環を有する樹脂モノマーの具体例としては、1,4-ブタンジオールジグリシジルエーテル、1,2-エポキシ-4-(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6-ジグリシジルフェニルグリシジルエーテル、1,1,3-トリス[p-(2,3-エポキシプロポキシ)フェニル]プロパン、1,2-シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、ビスフェノール-A-ジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルレゾルシノールジグリシジルエーテル、フタル酸ジグリシジルエステル、ネオペンチルグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、テトラブロモビスフェノール-A-ジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、水素化ビスフェノール-A-ジグリシジルエーテル、トリス-(2,3-エポキシプロピル)イソシアヌレート、1-{2,3-ジ(プロピオニルオキシ)}-3,5-ビス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3-ビス{2,3-ジ(プロピオニルオキシ)}-5-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、モノアリルジグリシジルイソシアヌレート、ジグリセロールポリジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-へキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、p-ターシャリーブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエーテル、o-フタル酸ジグリシジルエーテル、ジブロモフェニルグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,6-ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、2,2-ビス(4-グリシジルオキシフェニル)プロパン、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、2-(3,4-エポキシシクロヘキシル)-3’,4’-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4’,5’-エポキシ-2’-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(2,3-エポキシシクロペンチル)エーテル等を挙げることができる。
 オキセタン環を有する樹脂モノマーとしては、1~6個のオキセタン環を有する化合物を使用することができる。例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3,3-ジエチルオキセタン、及び3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン、ジ((3-エチル-3-オキセタニル)メチル)エーテル、及びペンタエリスリトールテトラキス((3-エチル-3-オキセタニル)メチル)エーテル等を挙げることができる。
 本発明のシリカゾルは、シリカ濃度1~70質量%のゾルとして得ることができる。
 本発明はまた、本発明のシリカゾルを250℃以下で乾燥させて得られるシリカ粉末である。乾燥温度が250℃を超えると、表面修飾剤である有機シラン化合物の分解が起こる場合がある。
 本発明はまた、本発明のシリカゾル又は本発明のシリカ粉末とエポキシ樹脂モノマーとエポキシ硬化剤とを混合して得られるシリカ含有エポキシ樹脂組成物である。
 本発明のシリカ含有エポキシ樹脂組成物を得る際に用いられるエポキシ樹脂モノマーとしては、前記エポキシ環を有する樹脂モノマーを使用することができる。
 エポキシ硬化剤としては、フェノール樹脂、アミン類、ポリアミド樹脂、イミダゾール類、ポリメルカプタン、酸無水物、カチオン重合開始剤等が挙げられる。
 フェノール樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。
 アミン類としては、例えばピペリジン、N,N-ジメチルピペラジン、トリエチレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、ジ(1-メチル-2-アミノシクロヘキシル)メタン、メンセンジアミン、イソフオロンジアミン、ジアミノジシクロヘキシルメタン、1,3-ジアミノメチルシクロヘキサン、キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。これらの中で液状であるジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、ジ(1-メチル-2-アミノシクロヘキシル)メタン、メンセンジアミン、イソフオロンジアミン、ジアミノジシクロヘキシルメタン等は好ましく用いることができる。
 ポリアミド樹脂としては、ダイマー酸とポリアミンの縮合により生成するもので、分子中に一級アミンと二級アミンを有するポリアミドアミンである。
 イミダゾール類としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、エポキシイミダゾールアダクト等が挙げられる。
 ポリメルカプタンは、例えばポリプロピレングリコール鎖の末端にメルカプタン基が存在するものや、ポリエチレングリコール鎖の末端にメルカプタン基が存在するものであり、液状のものが好ましい。
 酸無水物としては一分子中に複数のカルボキシル基を有する化合物の無水物が好ましい。これらの酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物、クロレンド酸無水物等が挙げられる。
 カチオン重合開始剤としては、光又は熱によってカチオン重合を開始させる物質を放出するものを使用することができる。
 光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄-アレン錯体、チタノセン錯体、アリールシラノール-アルミニウム錯体等の有機金属錯体類、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスホナート等が挙げられる。光カチオン重合開始剤の市販品としては、例えば、「アデカオプトマーSP150」、「アデカオプトマーSP170」等の「アデカオプトマー」シリーズ((株)ADEKA製)、UVACURE1591(UCB社製)、CD-1010、CD-1011、CD-1012(サートマー社製)、イルガキュア(登録商標)264(チバガイギー社製)、CIT-1682(日本曹達(株)製)などを挙げることができる。
 熱カチオン重合開始剤としては、加熱により活性化され開環重合性基の開環を誘発する任意の熱カチオン重合開始剤が用いられ、第4級アンモニウム塩、ホスホニウム塩、スルホニウム塩等の各種オニウム塩類が例示される。
 前記第4級アンモニウム塩としては、例えば、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムハイドロジェンサルフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムp-トルエンスルホネート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジメチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルトリフルオロメタンスルホネート、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウムヘキサフルオロアンチモネート等が挙げられる。
 前記ホスホニウム塩としては、例えば、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。
 前記スルホニウム塩としては、例えば、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロアルシネート、トリス(4-メトキシフェニル)スルホニウムヘキサフルオロアルシネート、ジフェニル(4-フェニルチオフェニル)スルホニウムヘキサフルオロアルシネート等が挙げられる。
 前記熱カチオン重合開始剤の市販品としては、例えば、アデカオプトン(登録商標)CP-66、アデカオプトン(登録商標)CP-77((株)ADEKA製)、サンエイド(登録商標)SI-60L、サンエイド(登録商標)SI-80L、サンエイド(登録商標)SI-100L(三新化学工業(株)製)、CIシリーズ(日本曹達(株)製)等が挙げられる。
 また、本発明のシリカ含有エポキシ樹脂組成物を得る際、適宜、硬化促進剤が併用されても良い。硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン等の有機リン化合物、エチルトリフェニルホスフォニウムブロマイド、メチルトリフェニルホスホニウムリン酸ジエチル等の第4級ホスフォニウム塩、1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エン、1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エンとオクチル酸の塩、オクチル酸亜鉛、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩が挙げられる。これらの硬化促進剤は、エポキシ硬化剤1質量部に対して、0.001~0.1質量部の割合で含有することができる。
 本発明のシリカ含有エポキシ樹脂組成物を得る際は、混合の方法は特に限定されないが、シリカゾル若しくはシリカ粉末とエポキシ樹脂とエポキシ硬化剤とが均一に混合されるようにミキサー又は混練機を使用することが好ましく、例えば、自転公転式攪拌機による十分な攪拌下に行うことが好ましい。
 シリカ含有エポキシ樹脂組成物の粘度が高く、均一な混合が速やかに進行しない場合は、硬化反応が進まない程度に加熱を行うことにより粘度を低下させて操作性を向上させると良い。
 また、前記エポキシ硬化剤中に有機溶媒が含まれる場合、得られるシリカ含有エポキシ樹脂組成物に有機溶媒が含まれるが、この組成物を減圧又は加熱処理することによって有機溶媒を除去することが好ましい。
 本発明のシリカ含有エポキシ樹脂組成物は、熱又は光により硬化して、シリカ含有エポキシ樹脂硬化物を得ることができる。
 本発明のシリカ含有エポキシ組成物の熱硬化温度は80~200℃程度であり、熱硬化は1~12時間程度で行われる。加熱にはオーブン等の装置を用いることができる。
 本発明のシリカ含有エポキシ組成物の光硬化に使用される活性エネルギー線としては、波長領域150~500nm、好ましくは300~400nmであり、エネルギー量としては10~3000mJ/cmが好ましい。使用する光源としては低圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、紫外線蛍光灯、ケミカルランプ、キセノンランプ、ジルコニウムランプ等が望ましい。
〔実施例1〕
 (a)工程:原料の水溶性アルカリ金属珪酸塩として、JIS3号の珪酸ナトリウム水溶液を用意した。この珪酸ナトリウム水溶液の水以外の主な成分は、SiO28.8質量%、NaO9.47質量%であった。上記珪酸ナトリウム水溶液52.5kgを純水367.5kgに溶かして、SiO濃度3.6質量%の珪酸ナトリウム水溶液420kgを調製した。次いで、25℃の上記珪酸ナトリウム水溶液を、水素型強酸性陽イオン交換樹脂アンバーライト(登録商標)IR-120Bが充填されたカラムに1時間当たりの空間速度3で通液した後、得られたSiO濃度3.6質量%、pH2.93を有する25℃の活性珪酸の水溶液357kgを容器に回収した。
 (b)工程:用いる強酸として、市販品の特級試薬の硫酸(関東化学(株)製)を純水で希釈して得られた10質量%の硫酸を用意した。(a)工程で得られた活性珪酸の水溶液357kgに上記10質量%の硫酸8.9kgを加え、pH1.54とし、20℃で48時間保持して(b)工程を終了した。
 (c)工程:上記(b)工程で得られた硫酸が添加された活性珪酸の水溶液365.9kgを、水素型強酸性陽イオン交換樹脂アンバーライト(登録商標)IR-120Bが20リットル充填された約25℃のカラムに、1時間当たりの空間速度5で通液した。得られた液の全量は、引き続き水酸基型強塩基性陰イオン交換樹脂アンバーライト(登録商標)IRA-410が50リットル充填された約25℃のカラムに1時間当たりの空間速度2で通液した。次いで、得られた液の全量を先に用いたものとは別の水素型強酸性陽イオン交換樹脂アンバーライト(登録商標)IR-120Bが10リットル充填された約25℃のカラムに、1時間当たりの空間速度10で通液し、得られた液の全量362.3kgを容器に回収した。このイオン交換された活性珪酸の水溶液は、SiO濃度3.5質量%、pH4.38であった。
 (d)工程:市販の特級試薬の水酸化ナトリウム(関東化学(株)製)を純水に溶解して得た水酸化ナトリウム10質量%水溶液2.1kgを(c)工程で得られたイオン交換された活性珪酸の水溶液362.3kgに加えることにより、安定化された活性珪酸の水溶液を得た。この水溶液は、SiO濃度3.5質量%、SiO/NaOモル比80、pH8.20を有していた。
 (e)工程:内容積3リットルのステンレス製オートクレーブ反応器に(d)工程で得られた安定化された活性珪酸の水溶液2.8kgを投入し、130℃で5時間水熱処理した。この水熱処理を5回行って水熱処理反応物14kgを得た。この水熱処理反応物は、SiO濃度3.5質量%、pH10.3、平均一次粒子径粒子径13nm、動的光散乱法により測定されるシリカ粒子径は22nmのアルカリ性シリカゾルであった。
 (f)工程:(e)工程で得られたアルカリ性シリカゾルを、限外濾過膜装置を使用して濃縮し、SiO濃度31.0質量%、pH9.27のアルカリ性シリカゾル1.6kgを得た。
 (g)工程:(f)工程で得られたアルカリ性シリカゾル1.6kgを水素型強酸性陽イオン交換樹脂アンバーライト(登録商標)IR-120Bが充填された約25℃のカラムに、1時間当たりの空間速度5で通液した。次に、市販品の特級試薬の水酸化ナトリウムを純水に溶解して得た水酸化ナトリウム10質量%水溶液16.3gを添加して、アルカリ性シリカゾルをSiO濃度30.0質量%、pH8.20、SiO/NaOモル比400に調整した。
 (h)工程:内容積3リットルのSUS製オートクレーブ反応器に、(g)工程でSiO/NaOモル比400に調整されたアルカリ性シリカゾル1.5kgを投入し、245℃で2時間30分水熱処理した。得られたシリカゾルはpH10.2、平均一次粒子径粒子径45nm、動的光散乱法により測定されるシリカ粒子径は74nmであった。
 (i)工程:(h)工程で得られたアルカリ性シリカゾル1.5kgを水素型強酸性陽イオン交換樹脂アンバーライト(登録商標)IR-120Bを充填した約25℃のカラムに、1時間当たりの空間速度10で通液して、SiO濃度30.0質量%、pH3.50の酸性シリカゾルを得た。
 (j)工程:(i)工程で得られた酸性シリカゾル1200gを2リットルのセパラブルフラスコに仕込み、攪拌しながら、メタノール200g及びトリn-プロピルアミン1.0gを添加した。その後、メタノールガスをシリカゾル中に供給しながら溶媒置換してSiO濃度20質量%、水分1.2質量%のメタノール分散シリカゾル1800gを得た。
 (k)工程:(j)工程で得られたメタノール分散シリカゾル1000gを2リットルのナス型フラスコに仕込み、マグネチックスターラーで攪拌しながら、フェニルトリメトキシシラン12.1gを添加し、60℃に加熱して3時間保持した。添加したフェニルトリメトキシシランは、該ゾル中のシリカ粒子の表面積1nm当たり3.0個に相当する。その後、ナス型フラスコをロータリーエバポレータにセットし、浴温80℃、500~350Torrの減圧下で、メチルエチルケトンを供給しながら蒸留を行うことによりメチルエチルケトン分散シリカゾルを得た。得られたゾルは、SiO濃度30.5質量%、水分0.03質量%、メタノール0.5質量%、動的光散乱法により測定されるシリカ粒子径74nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.6であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%であった。
 シリカ粉末のα線の放出量を2πガスフロー計数方式低レベルα線測定装置により測定したところ、0.002カウント/cm・hrであった。
〔実施例2〕
 実施例1の(h)工程における水熱処理温度を200℃にした以外は実施例1の(a)~(i)工程と同様に行い、SiO濃度30.0質量%、pH3.60、平均一次粒子径22nm、動的光散乱法により測定されるシリカ粒子径45nmの酸性シリカゾルを得た。続いて、実施例1の(i)工程~(k)工程と同様に行い、メチルエチルケトン分散シリカゾルを得た。(k)工程においては、添加するフェニルトリメトキシシランの量は、ゾル中のシリカ粒子の表面積1nm当たり3.0個とした。得られたゾルは、SiO濃度30.5質量%、水分0.07質量%、メタノール0.5質量%、動的光散乱法により測定されるシリカ粒子径45nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比2.0であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.3質量%であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔実施例3〕
 実施例1の(k)工程において、フェニルトリメトキシシラン12.1gの代わりにエポキシシクロヘキシルトリメトキシシランを15.1g添加した以外は、実施例1と同様に行い、メチルエチルケトン分散シリカゾルを得た。添加したエポキシシクロヘキシルトリメトキシシランは、ゾル中のシリカ粒子の表面積1nm当たり3.0個に相当する。得られたゾルは、SiO濃度30.5質量%、水分0.07質量%、メタノール0.5質量%、平均一次粒子径45nm、動的光散乱法により測定されるシリカ粒子径75nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.7であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔実施例4〕
 フェニルトリメトキシシランの代わりにメタクリロキシプロピルトリメトキシシランをゾル中に含まれるシリカ粒子の表面積1nm当たり3.0個添加すること以外は実施例1と同様に行って、メチルエチル分散シリカゾル1000gを得た。得られたゾルは、SiO濃度30.5質量%、水分0.07質量%、メタノール0.5質量%、平均一次粒子径45nm、動的光散乱法により測定されるシリカ粒子径74nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.6であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔実施例5〕
 実施例1の(a)~(j)工程によって得られたメタノール分散シリカゾル(平均一次粒子径45nm)1000gを2リットルのナス型フラスコに仕込み、マグネチックスターラーで攪拌しながらフェニルトリメトキシシラン4.4g添加した後、8時間60℃で加熱を行った。50℃に冷却後、ヘキサメチルジシラザン50gを添加し、更に4時間60℃で加熱することにより表面修飾されたメタノール分散シリカゾルを得た。続いて、ロータリーエバポレータにて、浴温100℃として、400~20Torrの減圧下で脱溶媒し、乾固させることによってシリカ粉末を得た。得られたシリカ粉末をメチルエチルケトンに分散させて動的光散乱法によるシリカ粒子径を測定したところ、80nmであった。得られたシリカ粉末は、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.8、23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%未満であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔実施例6〕
 実施例1で得られたメチルエチルケトン分散ゾル100gに脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)36.7gを添加し、浴温100℃、200~10Torrの減圧下で脱溶媒を行い、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度1050mPa・sであった。
〔実施例7〕
 実施例1で得られたメチルエチルケトン分散ゾル100gにビスフェノールF型エポキシ樹脂モノマー(YL-983U:三菱化学(株))36.7gを添加し、浴温100℃、200~10Torrで脱溶媒を行い、ビスフェノールF型エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、50℃におけるB型粘度2500mPa・sであった。
〔実施例8〕
 実施例2で得られたメチルエチルケトン分散ゾル100gに脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)36.7gを添加し、浴温100℃、200~10Torrの減圧下で脱溶媒を行い、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度1500mPa・sであった。
〔実施例9〕
 実施例3で得られたメチルエチルケトン分散シリカゾル100gに脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル製)36.7gを添加し、浴温100℃、200~10Torrの減圧下で脱溶媒を行い、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られた脂環式エポキシ樹脂モノマー分散シリカゾルは、SiO濃度45.0質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度1200mPa・sであった。
〔実施例10〕
 実施例4で得られたメチルエチルケトン分散シリカゾル100gに脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)36.7gを添加し、浴温100℃、200~10Torrの減圧下で脱溶媒を行い、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られた脂環式エポキシ樹脂モノマー分散シリカゾルは、SiO濃度45.0質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度1100mPa・sであった。
〔実施例11〕
 実施例5で得られたシリカ粉末33gをファイバーミキサー(MX-X53:パナソニック(株)製)に仕込み、5分間粉砕を行った。脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル製)70gを300mlの円筒型フラスコに仕込み、80℃に加熱し、マグネチックスターラーで攪拌しながら、粉砕したシリカ粉末32gを添加し、1時間攪拌して脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたゾルはSiO濃度30.0質量%、23℃におけるB型粘度1200mPa・sであった。
〔比較例1〕
 実施例1における(a)工程、(d)工程、(e)工程、(f)工程、(i)工程をこの順に行って、酸性シリカゾルを得た。得られた酸性シリカゾルは、SiO濃度30質量%、pH2.9、平均一次粒子径12nm、動的光散乱法により測定されるシリカ粒子径22nmであった。得られた酸性ゾル1200gを用いて、実施例1の(j)工程、(k)工程と同様に行って、メチルエチルケトン分散シリカゾルを得た。(k)工程において添加したフェニルトリメトキシシランは、ゾル中のシリカ粒子の表面積1nm当たり3.3個とした。得られたゾルは、SiO濃度30.5質量%、水分0.03質量%、メタノール0.5質量%、平均一次粒子径12nm、動的光散乱法により測定されるシリカ粒子径23nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.9であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は1.7質量%であった。シリカ粉末のα線の放出量は0.027カウント/cm・hrであった。
〔比較例2〕
 実施例1の(a)~(i)工程の内、(b)工程及び(c)工程を行わない以外は実施例1と同様に行って酸性シリカゾルを得た。得られた酸性シリカゾルは、SiO濃度30質量%、pH2.9、平均一次粒子径40nm、動的光散乱法により測定されるシリカ粒子径80nmであった。得られた酸性シリカゾル1200gを用いて、実施例1の(j)工程、(k)工程と同様に行って、メチルエチルケトン分散シリカゾルを得た。(k)工程において添加したフェニルトリメトキシシランは、ゾル中のシリカ粒子の表面積1nm当たり3.0個とした。得られたゾルは、SiO濃度30.5質量%、水分0.04質量%、メタノール0.5質量%、平均一次粒子径40nm、動的光散乱法により測定されるシリカ粒子径80nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比2.0であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%であった。シリカ粉末のα線の放出量は0.025カウント/cm・hrであった。
〔比較例3〕
 実施例1の(a)~(k)工程おいて、(g)工程及び(h)工程を行わない以外は実施例1と同様に行って、メチルエチルケトン分散シリカゾルを得た。(k)工程において添加したフェニルトリメトキシシランは、ゾル中のシリカ粒子の表面積1nm当たり3.0個とした。得られたゾルは、SiO濃度30.5質量%、水分0.1質量%、メタノール0.5質量%、平均一次粒子径13nm、動的光散乱法により測定されるシリカ粒子径28nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比2.2であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は1.7質量%であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔比較例4〕
 実施例1の(a)~(k)工程おいて、(h)工程における水熱処理温度を180℃にした以外は実施例1と同様に行って、メチルエチルケトン分散シリカゾルを得た。(k)工程において添加したフェニルトリメトキシシランは、ゾル中のシリカ粒子の表面積1nm当たり3.0個とした。得られたゾルは、SiO濃度30.5質量%、水分0.1質量%、メタノール0.5質量%、平均一次粒子径18nm、動的光散乱法により測定されるシリカ粒子径35nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.9であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.9質量%であった。シリカ粉末のα線の放出量は0.002カウント/cm・hrであった。
〔比較例5〕
 アルコキシドを原料として製造された市販の水分散シリカゾル(クォートロン(登録商標)PL-3L、SiO濃度19質量%、平均一次粒子径39nm、動的光散乱法により測定されるシリカ粒子径62nm:扶桑化学工業(株)製)を準備した。この水分散シリカゾル1000gを2リットルのセパラブルフラスコに仕込み、メタノール200gを添加した後、トリ-n-プロピルアミン1.0gを添加し、その後メタノールガスをシリカゾル中に供給しながら溶媒置換して、シリカ濃度20質量%、水分1.2質量%のメタノールゾルを得た。その後、フェニルトリメトキシシラン13.0gを添加し、60℃で3時間保持した。添加したフェニルトリメトキシシランは、該ゾル中のシリカ粒子の表面積1nm当たり3.0個に相当する。更に分散媒のメタノールをメチルエチルケトンで置換して、メチルエチルケトン分散シリカゾルを得た。得られたゾルは、SiO濃度30.5質量%、水分0.1質量%、メタノール0.3質量%、平均一次粒子径39nm、動的光散乱法により測定されるシリカ粒子径70nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.8であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は6.2質量%であった。シリカ粉末のα線の放出量は0.001カウント/cm・hr未満であった。
〔比較例6〕
 比較例5で使用した市販の水分散シリカゾル2000gに市販品の特級試薬の水酸化ナトリウム(関東化学(株)製)を純水に溶解して得た水酸化ナトリウム10質量%12.6gを添加して、アルカリ性水分散シリカゾル2013gを得た(SiO濃度19質量%、SiO/Naモル比400、pH8.99)。内容積3リットルのステンレス製オートクレーブ反応器に、前記アルカリ性水分散シリカゾル2013gを投入し、200℃で2時間30分間水熱処理した。得られたシリカゾルはpH9.30、平均一次粒子径40nm、動的光散乱法により測定されるシリカ粒子径66nmであった。得られた水熱処理後のシリカゾル中の水をエバポレータを用いて減圧蒸発させて、シリカ濃度を30.0質量%に調整した後、実施例1の(i)~(k)工程と同様に行って、メチルエチルケトン分散シリカゾルを得た。得られたゾルは、SiO濃度30.0質量%、水分0.1質量%、メタノール0.3質量%、平均一次粒子径40nm、動的光散乱法により測定されるシリカ粒子径70nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比1.8であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は4.9質量%であった。シリカ粉末のα線の放出量は0.001カウント/cm・hr未満であった。
〔比較例7〕
 市販のナノサイズの溶融シリカ粉末(商品名:UFP-80、平均一次粒子径34nm、電気化学工業(株)製)を準備した。このシリカ粉末50gをファイバーミキサー(MX-X53:パナソニック(株))に仕込み、5分間粉砕を行った。1リットルビーカーに純水200gを仕込み、粉砕後の前記シリカ粉末50gを添加し、超音波洗浄機(W-222、本多電子(株)製)にて2時間超音波処理を行って水分散シリカゾルを得た。得られた水分散シリカゾル250gを用いて、実施例1の(j)工程及び(k)工程と同様の処理を行った。即ち、得られた水分散シリカゾル250gを1リットルのセパラブルフラスコに仕込み、攪拌しながら、メタノール50g及びトリn-プロピルアミン0.25gを添加した。その後、メタノールガスをシリカゾル中に供給しながら溶媒置換してSiO濃度20質量%、水分1.2質量%のメタノール分散シリカゾル250gを得た。続いて、得られたメタノール分散シリカゾル250gを1リットルのナス型フラスコに仕込み、マグネチックスターラーで攪拌しながら、フェニルトリメトキシシラン4.0gを添加し、60℃に加熱して3時間保持した。添加したフェニルトリメトキシシランは、該ゾル中のシリカ粒子の表面積1nm当たり3.0個に相当する。その後、ナス型フラスコをロータリーエバポレータにセットし、浴温80℃、500~350Torrの減圧下で、メチルエチルケトンを供給しながら蒸留を行うことによりメチルエチルケトン分散シリカゾルを得た。得られたゾルは、SiO濃度15.5質量%、水分0.1質量%、メタノール0.3質量%、平均一次粒子径34nm、動的光散乱法により測定されるシリカ粒子径210nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比6.2であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%であった。シリカ粉末のα線の放出量は0.03カウント/cm・hrであった。
〔比較例8〕
 市販のナノサイズの気相法シリカ粉末(商品名:アエロジル(登録商標)130、平均一次粒子径21nm:日本アエロジル(株)製)を準備した。このシリカ粉末50gをファイバーミキサー(MX-X53:パナソニック(株))に仕込み、5分間粉砕を行った。1リットルビーカーに純水200gを仕込み、粉砕後の前記シリカ粉末50gを添加し、超音波洗浄機(W-222、本多電子(株)製)にて2時間超音波処理を行って水分散シリカゾルを得た。得られた水分散シリカゾル250gを用いて、比較例7と同様に実施例1の(j)工程及び(k)工程と同様の処理を行った。得られたゾルは、SiO濃度15.5質量%、水分0.1質量%、メタノール0.3質量%、平均一次粒子径21nm、動的光散乱法により測定されるシリカ粒子径150nm、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比7.1であった。得られたシリカゾルを80℃真空乾燥機で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥させてシリカ粉末とした。23℃、相対湿度50RH%の環境下で48時間放置したときのシリカ粉末の吸湿率は0.1質量%未満であった。シリカ粉末のα線の放出量は0.001カウント/cm・hr未満であった。
〔比較例9〕
 比較例3で得られたメチルエチルケトン分散ゾル100gを用いて、実施例6と同様に行って、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度4500mPa・sであった。
〔比較例10〕
 比較例4で得られたメチルエチルケトン分散ゾル100gを用いて、実施例6と同様に行って、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度1800mPa・sであった。
〔比較例11〕
 比較例5で得られたメチルエチルケトン分散ゾル100gを用いて、実施例6と同様に行って、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度5000mPa・sであった。
〔比較例12〕
 比較例6で得られたメチルエチルケトン分散ゾル100gを用いて、実施例6と同様に行って、脂環式エポキシ樹脂モノマー分散シリカゾルを得た。得られたシリカゾルは、SiO濃度45.4質量%、メチルエチルケトン0.1質量%未満、23℃におけるB型粘度4800mPa・sであった。
〔比較例13〕
 比較例7で得られたメチルエチルケトン分散シリカゾル100gと脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)35gを混合し、ロータリーエバポレータで浴温100℃、200~10Torrの減圧下で脱溶媒を行ったところ、脱溶媒の途中で粘度が著しく上昇し、流動性を消失した。流動性が消失した時点でメチルエチルケトンは3質量%残存していた。
〔比較例14〕
 比較例7で得られたメチルエチルケトン分散シリカゾル100gとビスフェノールF型エポキシ樹脂(YL-983U:三菱化学(株))35gを混合し、ロータリーエバポレータで脱溶媒した所、脱溶媒途中で粘度が著しく上昇し、流動性を消失した。流動性が消失した時点でメチルエチルケトンは6質量%残存していた。
〔比較例15〕
 比較例8で得られたメチルエチルケトン分散シリカゾル100gと脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)35gを混合し、ロータリーエバポレータで浴温100℃、200~10Torrの減圧下で脱溶媒を行ったところ、脱溶媒の途中で粘度が著しく上昇し、流動性を消失した。流動性が消失した時点でメチルエチルケトンは2質量%残存していた。
〔比較例16〕
 比較例8で得られたメチルエチルケトン分散シリカゾル100gとビスフェノールF型エポキシ樹脂(YL-983U:三菱化学(株))35gを混合し、ロータリーエバポレータで脱溶媒した所、脱溶媒途中で粘度が著しく上昇し、流動性を消失した。流動性が消失した時点でメチルエチルケトンは5質量%残存していた。
(エポキシ硬化物の作製)
 実施例6~11及び比較例9~12に記載の脂環式エポキシ樹脂モノマー分散シリカゾル又はビスフェノールF型エポキシ樹脂モノマー分散シリカゾルを用いて、下記の方法でエポキシ硬化物を作製し、硬化物の物性を測定した。
〔実施例12〕
 300mLの四つ口フラスコに実施例6で得られた脂環式エポキシ樹脂モノマー分散シリカゾル40.5gとメチルヘキサヒドロフタル酸無水物26.5gを入れ、80℃で40分間攪拌して混合物を得た。次いでこの混合物に硬化促進剤としてテトラブチルホスホニウムO,O’-ジエチルジチオホスフェート(商品名:ヒシコーリン(登録商標)PX-4ET:日本化学工業(株)製)222mgを加えて10分間攪拌を行い、更に減圧下で2分間脱泡を行って、シリカ含有エポキシ樹脂硬化用組成物を得た。得られたシリカ含有エポキシ樹脂硬化用組成物には残留有機溶媒は検出されなかった。得られたシリカ含有エポキシ樹脂硬化用組成物を注型板(離型剤SR-2410(東レ・ダウシリコーニング(株)製)で処理されたガラス板、ガラス板2枚の間隔3mm厚)に流し込み、90℃で2時間、続いて150℃で1時間の加熱処理を行い、シリカ含有エポキシ樹脂硬化物を得た。
〔実施例13〕
 脂環式エポキシ樹脂モノマー分散シリカゾルの代わりに実施例7で得られたビスフェノールF型エポキシ樹脂モノマー分散シリカゾルを使用し、メチルヘキサヒドロフタル酸無水物22.3gを使用した以外は、実施例12と同様に行って、シリカ含有エポキシ樹脂硬化物を得た。
〔実施例14~16〕
 シリカゾルとして、実施例8~10で得られた脂環式エポキシ樹脂モノマー分散シリカゾルを用いたこと以外は実施例12と同様に行って、それぞれシリカ含有エポキシ樹脂硬化物を得た。
〔実施例17〕
 シリカゾルとして、実施例11で得られた脂環式エポキシ樹脂モノマー分散シリカゾルを31.8g用いたこと以外は実施例12と同様に行って、シリカ含有エポキシ樹脂硬化物を得た。
〔比較例17~20〕
 シリカゾルとして、比較例9~12で得られた脂環式エポキシ樹脂モノマー分散シリカゾルを用いたこと以外は実施例12と同様に行って、シリカ含有エポキシ樹脂硬化物を得た。
〔比較例21〕
 脂環式エポキシ樹脂モノマー(セロキサイド2021P:(株)ダイセル)22.8gとメチルヘキサヒドロフタル酸無水物27.4gを入れ、80℃で40分間攪拌して混合物を得た。次いでこの混合物に硬化促進剤としてテトラブチルホスホニウムO,O’-ジエチルジチオホスフェート(商品名:ヒシコーリン(登録商標)PX-4ET:日本化学工業(株)製)222mgを加えて10分間攪拌を行い、更に減圧下で2分間脱泡を行って、エポキシ樹脂硬化用組成物を得た。得られたエポキシ樹脂硬化用組成物を注型板(離型剤SR-2410(東レ・ダウシリコーニング(株)製)で処理されたガラス板、ガラス板2枚の間隔3mm厚)に流し込み、90℃で2時間、続いて150℃で1時間の加熱処理を行い、シリカ粒子を含有しないエポキシ樹脂硬化物を得た。
〔比較例22〕
 ビスフェノールF型エポキシ樹脂モノマー22.8gとメチルヘキサヒドロフタル酸無水物22.8gを入れ、80℃で40分間攪拌して混合物を得た。次いでこの混合物に硬化促進剤としてテトラブチルホスホニウムO,O’-ジエチルジチオホスフェート(商品名:ヒシコーリン(登録商標)PX-4ET:日本化学工業(株)製)222mgを加えて10分間攪拌を行い、更に減圧下で2分間脱泡を行って、エポキシ樹脂硬化用組成物を得た。得られたエポキシ樹脂硬化用組成物を注型板(離型剤SR-2410(東レ・ダウシリコーニング(株)製)で処理されたガラス板、ガラス板2枚の間隔3mm厚)に流し込み、90℃で2時間、続いて150℃で1時間の加熱処理を行い、シリカ粒子を含有しないエポキシ樹脂硬化物を得た。
(エポキシ硬化物の物性評価)
 得られたシリカ含有エポキシ樹脂硬化物について、3点曲げ強度試験、透過率、線膨張率、煮沸吸水率を測定した。
(3点曲げ強度の測定)
 JIS K-6911に基づき引張り試験機を用いて測定した。
試験片の高さ及び幅を測定し、試験片を支え、その中央に加圧くさびで荷重を加え、試験片が折れたときの荷重を測定し、曲げ強度(σ)を算出した。曲げ強度σ:(MPa){kgf/mm}、P:試験片が折れたときの荷重(N){kgf}、L:支点間距離(mm)、W:試験片の幅(mm)、h:試験片の高さ(mm)とした。
σ=(3PL)/(2Wh
曲げ弾性率(E):(MPa){kgf/mm}は、F/Y:荷重-たわみ曲線の直線部分のこう配(N/mm){kgf/mm}とすると、
E=〔L/(4Wh)〕×〔F/Y〕
(透過率の測定)
 分光光度計(型式UV-3600:(株)島津製作所製)を用いて200~800nmの透過率を測定した。
(線膨張率の測定)
 線膨張率の測定の測定は、JIS K-6911に基づき測定した。試験片の厚みを正確に測定してTMA(Thermal Mechanical Analysis)で荷重0.05N、昇温速度1℃/分で測定した。線膨張係数αは30~80℃における試験片の長さの変化量(ΔL1)/試験片の初期の長さ(L)×50=αで求めた。
(煮沸吸水率の測定)
 JIS K-6911に基づき測定した。50℃に保持した恒温槽中で試験片を24時間空気中で乾燥処理を行った。乾燥処理後の試験片をデシケーター中で20℃まで冷却し重量を測定した。100℃の沸騰蒸留水中に乾燥処理後の試験片を入れて100時間煮沸した後取り出し、20℃の流水中で30分間冷却し、水分を拭き取り、直ちに吸水後の重量を測定した。
A:煮沸吸水率(%)、W:煮沸前の試験片の重量(g)、W:煮沸後の試験片の重量(g)とした。
A=〔(W-W)/W〕×100

実施例12~17のエポキシ樹脂硬化物は、比較例21、22のシリカを含有しないエポキシ樹脂硬化物に比べて煮沸吸水率が低下した。一方、比較例17~20のエポキシ樹脂硬化物は、煮沸吸水率が比較例21のシリカを含有しないエポキシ樹脂硬化物に比べて劣化した。
 実施例1~5のシリカゾルを乾燥させたシリカ粉末は、いずれもα線の放出量が0.005カウント/cm・hr以下と極めて低く、23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下で極めて低い。
 一方、比較例1、3、4のシリカゾルを乾燥させたシリカ粉末は、23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が高く、低吸湿性ではない。また、比較例2のシリカゾルを乾燥させたシリカ粉末は、23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下であるものの、α線の放出量が0.025カウント/cm・hrと高くなっている。比較例4、5では、α線の放出量は低いものの、23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が6.2、4.9質量%と相当高く、低吸湿性ではない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のシリカゾルは、α線の放出量が極めて小さく、且つ低吸湿性のナノサイズのシリカ粒子を含有するシリカゾルであり、半導体パッケージ用配線基板や半導体封止材に好適に利用することができる。

Claims (14)

  1.  α線の放出量が0.005カウント/cm・hr以下であり、且つ23℃、相対湿度50RH%の環境下で48時間放置したときの吸湿率が0.5質量%以下である有機シラン化合物により表面修飾された20~100nmの平均一次粒子径を有するシリカ粒子を含有し、動的光散乱法により測定されるシリカ粒子径/平均一次粒子径の比が3.0以下であるシリカゾル。
  2.  前記有機シラン化合物はエポキシ基を有するものである請求項1に記載のシリカゾル。
  3.  前記シリカ粒子は、水中で200~350℃で加熱処理されたものである請求項1又は2に記載のシリカゾル。
  4.  前記シリカ粒子は、珪酸アルカリ水溶液を陽イオン交換して得られる活性珪酸を出発原料として製造されたものである請求項1~3のいずれか一項に記載のシリカゾル。
  5.  前記シリカ粒子は、珪酸アルカリ水溶液を陽イオン交換して得られる活性珪酸に強酸を加えた後、更に陽イオン交換及び陰イオン交換する工程を経て得られる高純度活性珪酸を原料として製造されたものである請求項1~3のいずれか一項に記載のシリカゾル。
  6. 前記シリカ粒子は、珪酸アルカリ水溶液に強酸又は強酸の塩を添加した後、陽イオン交換して得られる活性珪酸を、更に陽イオン交換及び陰イオン交換する工程を経て得られる高純度活性珪酸を原料として製造されたものである請求項1~3のいずれか一項に記載のシリカゾル。
  7.  分散媒は有機溶媒である請求項1~6のいずれか一項に記載のシリカゾル。
  8.  分散媒は樹脂モノマーである請求項1~6のいずれか一項に記載のシリカゾル。
  9.  前記樹脂モノマーはエポキシ樹脂モノマーである請求項8に記載のシリカゾル。
  10.  請求項1~9のいずれか一項に記載のシリカゾルから分散媒を除去して得られるシリカ粉末。
  11.  請求項1~9のいずれか一項に記載のシリカゾル又は請求項10に記載のシリカ粉末とエポキシ樹脂モノマーとエポキシ硬化剤とを含有するシリカ含有エポキシ樹脂組成物。
  12.  請求項11に記載のシリカ含有エポキシ樹脂組成物から有機溶媒が除去されたシリカ含有エポキシ樹脂組成物。
  13.  シリカ含有率が10~90質量%である請求項11又は12に記載のシリカ含有エポキシ樹脂組成物。
  14.  請求項11~13のいずれか一項に記載のシリカ含有エポキシ樹脂組成物を硬化させて得られるシリカ含有エポキシ樹脂硬化物。
PCT/JP2014/062893 2013-05-20 2014-05-14 シリカゾル及びシリカ含有エポキシ樹脂組成物 WO2014188934A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14801890.6A EP3000784B1 (en) 2013-05-20 2014-05-14 Silica sol and silica-containing epoxy resin composition
US14/785,739 US9969867B2 (en) 2013-05-20 2014-05-14 Silica sol and silica-containing epoxy resin composition
JP2015518204A JP6458951B2 (ja) 2013-05-20 2014-05-14 シリカゾル及びシリカゾルの製造方法、シリカ粉末の製造方法、シリカ含有エポキシ樹脂組成物の製造方法並びにシリカ含有エポキシ樹脂硬化物の製造方法
KR1020157035605A KR102225433B1 (ko) 2013-05-20 2014-05-14 실리카 졸 및 실리카 함유 에폭시 수지 조성물
CN201480029489.3A CN105263860B (zh) 2013-05-20 2014-05-14 硅溶胶以及含二氧化硅的环氧树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-106394 2013-05-20
JP2013106394 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188934A1 true WO2014188934A1 (ja) 2014-11-27

Family

ID=51933494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062893 WO2014188934A1 (ja) 2013-05-20 2014-05-14 シリカゾル及びシリカ含有エポキシ樹脂組成物

Country Status (7)

Country Link
US (1) US9969867B2 (ja)
EP (1) EP3000784B1 (ja)
JP (1) JP6458951B2 (ja)
KR (1) KR102225433B1 (ja)
CN (1) CN105263860B (ja)
TW (1) TWI597238B (ja)
WO (1) WO2014188934A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016502A (ja) * 2016-07-25 2018-02-01 扶桑化学工業株式会社 シリカ粒子、シリカ粒子含有組成物、オルガノゾル及びシリカ粒子の製造方法
WO2023032680A1 (ja) * 2021-08-31 2023-03-09 日産化学株式会社 エポキシ基含有オルガノシリカゾル、エポキシ樹脂組成物、及びその製造方法
WO2023145780A1 (ja) * 2022-01-28 2023-08-03 日産化学株式会社 低誘電正接シリカゾル及び低誘電正接シリカゾルの製造方法
WO2023163169A1 (ja) * 2022-02-28 2023-08-31 日産化学株式会社 限外ろ過法によるシリカゾルの濃縮方法
WO2023188928A1 (ja) * 2022-03-29 2023-10-05 日産化学株式会社 かご型ケイ酸塩、及びその製造方法
WO2023188930A1 (ja) * 2022-03-29 2023-10-05 日産化学株式会社 層状ケイ酸塩の製造方法、及びシリカナノシートの製造等におけるその応用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102205327B1 (ko) * 2013-06-10 2021-01-19 닛산 가가쿠 가부시키가이샤 실리카 졸 및 실리카 졸의 제조 방법
WO2018187563A1 (en) 2017-04-06 2018-10-11 Nissan Chemical America Corporation Hydrocarbon formation treatment micellar solutions
US10683452B2 (en) 2017-09-11 2020-06-16 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
US10577526B2 (en) * 2017-09-11 2020-03-03 Saudi Arabian Oil Company Loss circulation material composition having an acidic nanoparticle based dispersion and polyamine
US10233380B1 (en) 2017-09-11 2019-03-19 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion and a polyamine
US10316238B2 (en) 2017-09-11 2019-06-11 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
US11279865B2 (en) 2017-09-11 2022-03-22 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion, an epoxy resin, and a polyamine
CN113247910A (zh) * 2021-06-02 2021-08-13 厦门宜宏盛硅胶制品有限公司 一种耐水耐老化型硅胶按键及制备工艺
CN117730055A (zh) * 2022-01-28 2024-03-19 日产化学株式会社 低介质损耗角正切二氧化硅溶胶及低介质损耗角正切二氧化硅溶胶的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213514A (ja) 2010-03-31 2011-10-27 Admatechs Co Ltd シリカ粒子材料、シリカ粒子材料含有組成物、およびシリカ粒子の表面処理方法
WO2012113650A2 (de) * 2011-02-22 2012-08-30 Evonik Degussa Gmbh Verfahren zur herstellung wässriger kolloidaler silikasole hoher reinheit aus alkalimetallsilikatlösungen
JP2013126925A (ja) * 2011-12-16 2013-06-27 Jgc Catalysts & Chemicals Ltd シリカ粒子、その製造方法および半導体実装用ペースト

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180911A (ja) * 1984-02-27 1985-09-14 Nippon Chem Ind Co Ltd:The 高純度シリカおよびその製造法
JPS623011A (ja) * 1985-06-27 1987-01-09 Nitto Chem Ind Co Ltd 高純度シリカの製造方法
JPH0757685B2 (ja) * 1986-02-05 1995-06-21 日東化学工業株式会社 高純度シリカの製造方法
JPH01230422A (ja) * 1988-03-10 1989-09-13 Nippon Chem Ind Co Ltd 高純度シリカ及びその製造方法
JP2646150B2 (ja) * 1990-08-27 1997-08-25 出光興産 株式会社 撥水性シリカゾルおよびその製造方法
JP3225549B2 (ja) * 1991-09-25 2001-11-05 日産化学工業株式会社 高純度の水性シリカゾルの製造法
JP3225553B2 (ja) * 1991-10-11 2001-11-05 日産化学工業株式会社 高純度の水性シリカゾルの製造方法
DE69310950T2 (de) * 1992-02-27 1997-10-23 Nissan Chemical Ind Ltd Verfahren zur Herstellung eines wässrigen Kieselsäuresols hoher Reinheit
JP4222582B2 (ja) * 1999-03-04 2009-02-12 日本化学工業株式会社 高純度シリカゾルの製造方法
KR100680680B1 (ko) * 2003-12-23 2007-02-08 삼성코닝 주식회사 실리카 졸 및 그 제조 방법
JP5127452B2 (ja) * 2005-08-10 2013-01-23 日揮触媒化成株式会社 異形シリカゾルの製造方法
JPWO2008123373A1 (ja) * 2007-03-27 2010-07-15 扶桑化学工業株式会社 コロイダルシリカ及びその製造方法
JPWO2009008509A1 (ja) * 2007-07-11 2010-09-09 日産化学工業株式会社 無機粒子を含有した液状エポキシ樹脂形成用製剤
EP2110415A1 (de) * 2008-04-18 2009-10-21 Nanoresins AG Anorganische Nanopartikel und damit hergestellte Polymerkomposite
JP5232545B2 (ja) * 2008-06-23 2013-07-10 ニチアス株式会社 シリカゲル
CN101570332B (zh) * 2009-06-12 2011-04-20 中国地质大学(武汉) 一种高纯度、低放射性球形硅微粉的制备方法
JP2012162426A (ja) * 2011-02-08 2012-08-30 Jgc Catalysts & Chemicals Ltd シリカ系微粒子の分散ゾル、該分散ゾルの製造方法および塗料組成物
JP5920976B2 (ja) * 2012-04-19 2016-05-24 株式会社アドマテックス シリカ粒子及びその製造方法、半導体封止用樹脂組成物及びその製造方法
JP6203672B2 (ja) * 2013-03-29 2017-09-27 株式会社アドマテックス 3次元実装型半導体装置、樹脂組成物及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213514A (ja) 2010-03-31 2011-10-27 Admatechs Co Ltd シリカ粒子材料、シリカ粒子材料含有組成物、およびシリカ粒子の表面処理方法
WO2012113650A2 (de) * 2011-02-22 2012-08-30 Evonik Degussa Gmbh Verfahren zur herstellung wässriger kolloidaler silikasole hoher reinheit aus alkalimetallsilikatlösungen
JP2013126925A (ja) * 2011-12-16 2013-06-27 Jgc Catalysts & Chemicals Ltd シリカ粒子、その製造方法および半導体実装用ペースト

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016502A (ja) * 2016-07-25 2018-02-01 扶桑化学工業株式会社 シリカ粒子、シリカ粒子含有組成物、オルガノゾル及びシリカ粒子の製造方法
WO2023032680A1 (ja) * 2021-08-31 2023-03-09 日産化学株式会社 エポキシ基含有オルガノシリカゾル、エポキシ樹脂組成物、及びその製造方法
KR102652800B1 (ko) 2022-01-28 2024-04-01 닛산 가가쿠 가부시키가이샤 저유전정접 실리카졸 및 저유전정접 실리카졸의 제조방법
WO2023145780A1 (ja) * 2022-01-28 2023-08-03 日産化学株式会社 低誘電正接シリカゾル及び低誘電正接シリカゾルの製造方法
JP7339613B1 (ja) * 2022-01-28 2023-09-06 日産化学株式会社 低誘電正接シリカゾル及び低誘電正接シリカゾルの製造方法
KR20230160956A (ko) * 2022-01-28 2023-11-24 닛산 가가쿠 가부시키가이샤 저유전정접 실리카졸 및 저유전정접 실리카졸의 제조방법
WO2023163169A1 (ja) * 2022-02-28 2023-08-31 日産化学株式会社 限外ろ過法によるシリカゾルの濃縮方法
WO2023188930A1 (ja) * 2022-03-29 2023-10-05 日産化学株式会社 層状ケイ酸塩の製造方法、及びシリカナノシートの製造等におけるその応用
KR20230141779A (ko) * 2022-03-29 2023-10-10 닛산 가가쿠 가부시키가이샤 바구니형 규산염 및 그 제조 방법
KR20230141780A (ko) * 2022-03-29 2023-10-10 닛산 가가쿠 가부시키가이샤 층상 규산염의 제조 방법, 및 실리카 나노 시트의 제조등에 있어서의 그 응용
WO2023188928A1 (ja) * 2022-03-29 2023-10-05 日産化学株式会社 かご型ケイ酸塩、及びその製造方法
JP7401031B1 (ja) 2022-03-29 2023-12-19 日産化学株式会社 かご型ケイ酸塩、及びその製造方法
JP7401030B1 (ja) 2022-03-29 2023-12-19 日産化学株式会社 層状ケイ酸塩の製造方法、及びシリカナノシートの製造等におけるその応用
KR102656769B1 (ko) 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 바구니형 규산염 및 그 제조 방법
KR102656777B1 (ko) 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 층상 규산염의 제조 방법, 및 실리카 나노 시트의 제조 등에 있어서의 그 응용
US11999625B2 (en) 2022-03-29 2024-06-04 Nissan Chemical Corporation Method of producing layered silicate, and application thereof in production of silica nanosheet and so on
US12012368B2 (en) 2022-03-29 2024-06-18 Nissan Chemical Corporation Cage silicate and method for producing the same

Also Published As

Publication number Publication date
EP3000784A1 (en) 2016-03-30
US20160068664A1 (en) 2016-03-10
JP6458951B2 (ja) 2019-01-30
CN105263860B (zh) 2017-06-27
EP3000784B1 (en) 2020-07-15
JPWO2014188934A1 (ja) 2017-02-23
TW201509809A (zh) 2015-03-16
TWI597238B (zh) 2017-09-01
KR102225433B1 (ko) 2021-03-08
KR20160010556A (ko) 2016-01-27
US9969867B2 (en) 2018-05-15
CN105263860A (zh) 2016-01-20
EP3000784A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6458951B2 (ja) シリカゾル及びシリカゾルの製造方法、シリカ粉末の製造方法、シリカ含有エポキシ樹脂組成物の製造方法並びにシリカ含有エポキシ樹脂硬化物の製造方法
US9376322B2 (en) Process for producing colloidal silica particles
JP5574111B2 (ja) シリカ粒子を含有する重合性有機化合物の組成物の製造方法
EP3009398B1 (en) Silica sol and method for producing silica sol
EP3009480B1 (en) Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
US20100305237A1 (en) Silica-containing epoxy curing agent and cured epoxy resin product
JP5376124B2 (ja) 反応性モノマー分散シリカゾル、その製造方法、硬化用組成物及びその硬化体
JP2019189509A (ja) 表面処理シリカ粒子及び表面処理シリカ粒子の製造方法
WO2012124390A1 (ja) シリカ含有エポキシ硬化剤の製造方法
JP6320838B2 (ja) (メタ)アクリル基を有する重合体で被覆された金属酸化物粒子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029489.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14785739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014801890

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157035605

Country of ref document: KR

Kind code of ref document: A