WO2014183707A1 - 波束赋形方法、确定索引集合的方法、装置和存储介质 - Google Patents

波束赋形方法、确定索引集合的方法、装置和存储介质 Download PDF

Info

Publication number
WO2014183707A1
WO2014183707A1 PCT/CN2014/078555 CN2014078555W WO2014183707A1 WO 2014183707 A1 WO2014183707 A1 WO 2014183707A1 CN 2014078555 W CN2014078555 W CN 2014078555W WO 2014183707 A1 WO2014183707 A1 WO 2014183707A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
channel quality
quality information
initial
original
Prior art date
Application number
PCT/CN2014/078555
Other languages
English (en)
French (fr)
Inventor
肖华华
陈艺戬
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014183707A1 publication Critical patent/WO2014183707A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a beamforming method, a method, apparatus, and storage medium for determining an index set.
  • Beamforming is a signal processing technology.
  • each of the eight antennas forms a beam in a fixed direction, and multiple ray antennas are used to form beams in multiple directions.
  • the requirement of coverage is to transmit the data in the direction in which the signal is to be transmitted when transmitting the data, so as to achieve the purpose of directional transmission of data.
  • the linear array shown in Figures 2a, 2b can also be a planar antenna array as shown in Figures 2c, 2d.
  • Beamforming allows the data to be transmitted in a specified direction by weighting the antenna elements. Through the beamformed directional data transmission, the energy is concentrated in a useful direction, and the signal-to-noise ratio of the system is increased, thereby improving the coverage of the system.
  • Beamforming can be adjusted only in the horizontal azimuth. As shown in Fig. 3a, it only distinguishes mobile stations with different horizontal azimuths. For horizontal azimuths, mobile stations with different vertical elevation angles cannot be distinguished. It can also be adjusted only on the vertical elevation angle. As shown in Fig. 3b, it can distinguish users with different elevation angles.
  • These two beamformings are called two-dimensional beamforming.
  • the beam can also be adjusted in the horizontal and vertical dimensions at the same time to form a three-dimensional beamforming. As shown in FIG. 4, the three-dimensional beamforming is a stereo beamforming that considers both the horizontal azimuth and the vertical elevation angle.
  • Shape technology which can adaptively adjust the horizontal azimuth angle and adaptively adjust the vertical pitch angle, so as to distinguish between the receiving end of different azimuth angles and the receiving end of different pitch angles.
  • one beam is transmitted at the same time, as in the long term evolution system.
  • LTE Long Term Evolution
  • R8 Release 8 version
  • R9 Radio Service 9
  • RI rank Indicator
  • the first type of communication node selects a beam for transmitting data.
  • the present invention is directed to a beamforming method, a method, apparatus, and storage medium for determining an index set, achieving beamforming accuracy of beamforming and reducing feedback, improving system performance, and increasing system coverage.
  • a first aspect of the embodiments of the present invention provides a beamforming method, where the beamforming method includes:
  • the second type of communication node is an application terminal.
  • the step of transmitting the original beam comprises:
  • a set of antennas with the same polarization direction is selected to transmit the original beam.
  • the step of transmitting the original beam comprises: Selecting a group of antennas of the same polarization direction arranged in the same row to transmit the original beam or selecting a group of antennas of the same polarization direction arranged in the same column to transmit the original beam.
  • the step of determining a destination beam for transmitting data according to the initial beam index set includes:
  • the distance between the weight information of the first compared index corresponding beam and the beam weight information corresponding to the index in any one of the initial beam index sets is greater than a second threshold, wherein the distance refers to the chord of the two weight information Distance
  • the correlation between the weight information of the first compared index corresponding beam and the beam weight information corresponding to the index in any one of the initial beam index sets is less than a third threshold, wherein the correlation refers to two weight information.
  • the weight information of the first compared index corresponding beam and the index weight information corresponding to the index in any one of the initial beam index sets are not in the same group, wherein the beam grouping is pre-determined;
  • the beam corresponding to the target beam index set is determined to be the target beam.
  • a second aspect of the embodiments of the present invention provides a method for determining an initial beam index set, where the method for determining an initial beam index set includes:
  • the first type of communication node is a wireless communication device.
  • the channel quality information includes, but is not limited to, received power, received signal to noise ratio, and One of the received signal-to-noise ratio and the received carrier-to-noise ratio.
  • the determining the initial beam index set according to the channel quality information includes: determining a channel quality information maximum value in the original beam;
  • the channel quality information of the second compared index corresponding beam is greater than the first threshold; b2.
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are less than the second threshold,
  • the distance between the weight information of the compared index corresponding beam and the weight information of the index corresponding beam in any other original beam index set is greater than a third threshold, wherein the distance refers to a chord of two weight information.
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are different from the second threshold, and the weight information of the compared index corresponding beam and any other original beam index set
  • the correlation of the weight information of the index corresponding to the beam is less than the fourth threshold, wherein the correlation refers to the inner product of the two weight information;
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are different from the second threshold, and the compared index corresponding beam weight information and any other original beam index set
  • the weight information of the index corresponding beam in the index is not in the same group, wherein the beam grouping is pre-divided.
  • the first threshold value may include at least one of the following:
  • a third aspect of the embodiments of the present invention provides a device for implementing beamforming, where the device includes: a sending module, configured to send an original beam;
  • the receiving module is configured to receive the initial beam index set determined by the second type of communication node; the first determining module is configured to determine the target beam according to the initial beam index set.
  • a fourth aspect of the embodiments of the present invention provides a device for implementing beamforming, where the device includes: a calculating module, configured to receive an original beam sent by the first type of communication node, and calculate channel quality information of the beam;
  • a second determining module configured to determine an initial beam index set according to channel quality information of the beam
  • a fifth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method according to any one of the first aspects of the embodiments of the present invention. .
  • a sixth aspect of the embodiments of the present invention provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method according to any one of the second aspects of the embodiments of the present invention. .
  • FIG. la is a schematic diagram of an H-face fan-shaped Ra eight antenna
  • Figure lb is a schematic diagram of an E-faced fan-shaped eight-eight antenna
  • Figure lc is a schematic diagram of a pyramidal eight-antenna
  • Figure Id is a schematic diagram of a conical Lap eight antenna structure
  • 2a is a schematic diagram of a single-polarized linear array structure in an array antenna system
  • 2b is a schematic diagram of a dual-polarized linear array structure in an array antenna system
  • 2c is a schematic diagram of a single-polarized planar array structure in an array antenna system
  • 2d is a schematic diagram of a dual-polarized planar array structure in an array antenna system
  • Figure 3a is a schematic diagram of a two-dimensional beamforming structure with different azimuth angles of the same pitch angle;
  • Figure 3b is a two-dimensional beamforming diagram with different azimuth angles of different elevation angles.
  • Figure 4 is a schematic diagram of a three-dimensional beam!!
  • FIG. 5 is a schematic flowchart diagram of a method for beamforming according to an embodiment of the present invention. The preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • the embodiments of the present invention are directed to the problem that the determination of the beam for transmitting data is not accurate enough and has a large amount of feedback, and provides a beamforming method, a method and device for determining a beam to be fed back, and the first type of communication node and the The second type of communication nodes cooperate to select the beam, which reduces the beam feedback amount, improves the accuracy of the selected beam, improves the performance of the wireless communication system, and increases the coverage of the system.
  • an embodiment of the present invention provides a beamforming method, which can be applied to a system including at least one second type of communication node, where the beamforming method includes:
  • Step 10 Send an original beam.
  • Step 20 Receive an initial beam index set determined by the second type communication node according to the original beam.
  • Step 30 Determine a target beam used to transmit data according to the initial beam index set.
  • the first type of communication node selects the target beam by cooperation with the second type of communication node, Improving the accuracy of beamforming; wherein the second type of communication node determines the initial beam index set according to the original beam and feeds it back to the first type of communication node; the first type of communication node determines the initial beam index set according to the initial beam index set.
  • Target beam Preferably, the initial beam index set and the destination beam may be one, two or even multiple, and the number of beams may be determined according to the size and selection method of the information to be transmitted, thereby increasing the coverage of the system.
  • the second type of communication node is an application terminal.
  • the second type of communication node in the embodiment of the present invention is an application terminal, such as a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, a personal digital assistant, a Bluetooth, etc., but is not limited thereto, and all terminals capable of receiving data It is applicable in the present invention.
  • step 10 the specific steps of step 10 include:
  • Step 101 Select a group of antennas with the same polarization direction to transmit the original beam.
  • step 101 is performed to select a group of antennas with the same polarization direction to transmit the original beam, so that the energy is concentrated in a useful direction. Increase the signal-to-noise ratio of the system, thus increasing the coverage of the system.
  • step 10 the specific steps of step 10 include:
  • Step 102 Select an antenna of the same polarization direction arranged in the same row to transmit the original beam or select a group of antennas of the same polarization direction arranged in the same column to transmit the original beam.
  • step 102 is performed to select a group of antennas of the same polarization direction arranged in the same row to transmit the original beam or select the same group arranged in the same column.
  • the antenna in the polarization direction transmits the original beam.
  • the weighting process of the antenna unit enables the data to be transmitted in a specified direction, so that the energy concentration is in a useful direction, and the signal-to-noise ratio of the system is increased, thereby improving the performance of the wireless communication system.
  • step 30 the specific steps of step 30 include:
  • Step 301 sequentially select an index from the initial beam index as the first compared index. And deleting from the initial beam index set, if the first compared index satisfies one of the following conditions, the first compared index is merged into the target beam index set:
  • the distance between the weight information of the first compared index corresponding beam and the beam weight information corresponding to the index in any one of the initial beam index sets is greater than a second threshold, wherein the distance refers to the chord of the two weight information Distance
  • the correlation between the weight information of the first compared index corresponding beam and the beam weight information corresponding to the index in any one of the initial beam index sets is less than a third threshold, wherein the correlation refers to two weight information Inner product
  • the weight information of the first compared index corresponding beam and the index weight information corresponding to the index in any one of the initial beam index sets are not in the same group, wherein the beam grouping is pre-determined;
  • Step 302 Determine that a beam corresponding to the target beam index set is a target beam.
  • the specific implementation of the steps 301 and 302 is as follows:
  • the received initial beam index set is S2
  • the destination beam index set is S3, and S3 is initialized to an empty set.
  • the distance refers to the chord distance of the two weight vectors; bl: the weight information corresponding to the beam and the weight information of any one of the beams in the S2 set are less than the third threshold D2.
  • the correlation refers to the inner product of two weight vectors; cl: the weight information corresponding to the beam is not in the same group as the weight corresponding to any one of the beams in the S2 set, where the beam grouping is pre-divided. Step 301 is repeated until the set S2 is empty. Step 302: Determine the number of elements in the S3 set as the number of beams of the final transmitted data, and the beam corresponding to the index in S3 is the destination beam finally used to transmit data.
  • the beam grouping in step cl refers to a beam that is pre-divided by the first communication node and the second type of communication node, and satisfies the conditions of vector orthogonality and intra-group correlation between the groups, and the grouping standard thereof It can be carried out according to general standards in communication technology.
  • the determination of the second threshold value D1 and the third threshold value D2 may be an average value determined by trial and error, or may be an artificially set value, which may be determined according to the accuracy of the transmitted data, etc., and is not limited to a fixed value. .
  • the embodiment of the present invention further provides a method for determining an initial beam index set, which is applicable to a system including at least one first type of communication node, and the method for determining an initial beam index set includes:
  • Step 40 Receive a signal corresponding to the original beam sent by the first type of communication node, and calculate channel quality information.
  • Step 50 Determine an initial beam index set according to the channel quality information, and feed back to the first type of communication node.
  • the method of the foregoing embodiment of the present invention may be specifically applied to the second type of communication node of the foregoing system, and the destination beam is selected by the cooperation of the first type of communication node and the second type of communication node, thereby improving the accuracy of beamforming;
  • the second type of communication node is used to determine the initial beam index set and improve the accuracy of the selected beam.
  • the first type of communication node is a wireless communication device.
  • the first type of communication node in the embodiment of the present invention is a wireless communication device, such as a macro base station, a micro base station, a repeater, a relay, a remote device, a wireless access point, etc., but is not limited thereto, and all can be sent.
  • Wireless communication devices for data are applicable in the present invention.
  • the channel quality information includes, but is not limited to, one of a received power, a received signal to noise ratio, a received signal to interference and noise ratio, and a received carrier to interference and noise ratio.
  • different channel quality information may be selected according to different requirements of the first type of communication node and the second type of communication node to determine an initial beam index set, or multiple interfaces may be combined at the same time, such as this.
  • the received power and the received signal to noise ratio are used together to determine the beam to be fed back, and the accuracy of beam selection is improved.
  • step 50 according to the channel quality information, the specific steps for determining the initial beam index set include:
  • Step 501 Determine a maximum value of channel quality information in the original beam.
  • Step 502 Define a beam index corresponding to the original beam as a set of original beam indexes, and sequentially select an index from the original beam index as a second compared index, and delete the second compared index from the original beam index set, if The second compared index is merged into the initial beam index set by one of the following conditions:
  • the channel quality information of the second compared index corresponding beam is greater than the first threshold; b2.
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are less than the second threshold,
  • the distance between the weight information of the compared index corresponding beam and the weight information of the index corresponding beam in any other original beam index set is greater than a third threshold, wherein the distance refers to a chord of two weight information.
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are different from the second threshold, and the weight information of the compared index corresponding beam and any other original beam index set
  • the correlation of the weight information of the index corresponding to the beam is less than the fourth threshold, wherein the correlation refers to the inner product of the two weight information;
  • the channel quality information of the second compared index corresponding beam and the maximum value of the channel quality information are different from the second threshold, and the compared index corresponding beam weight information and any other original beam index set
  • the weight information of the index corresponding beam in the index is not in the same group, wherein the beam grouping is pre-divided.
  • the specific implementation of the steps 501 and 502 is as follows:
  • the set of beam indexes corresponding to the original beam is S1, the initial beam index set is S2, and S2 is initialized to an empty set.
  • Step 502 Select a beam in S1 and delete it from S1. If it satisfies one of the following conditions, merge into the set S2; a2: The channel quality information of the beam is greater than the first threshold TH1; b2: The channel quality information of the beam differs from the maximum value of the channel quality information by less than the second threshold value D1, and the corresponding weight information is associated with any one of the beams in the S2 set.
  • the weight information distance is greater than the third threshold value D2.
  • the distance refers to the chord distance of the two weight information
  • b2 the channel quality information of the beam differs from the maximum value of the channel quality information by less than the second threshold value D1, and the corresponding weight information and any one of the S2 sets
  • the weight information correlation of the beam is less than the fourth threshold value D3.
  • the correlation refers to the inner product of the two weight information
  • c2 the channel quality information of the beam and the maximum value of the channel quality information differ by less than the second threshold value D 1
  • the corresponding weight information and the S2 set Any one of the beams is not in the same group, and the beam packets here are pre-divided.
  • Step 502 is iterated until the set S1 is empty.
  • the index in S2 is the M beam index in the initial beam index, and the number of elements in the S2 set is determined as the number M of beams to be fed back.
  • the beam grouping in step d2 refers to a beam in which the first type of communication node and the second type of communication node are pre-divided, and the vector orthogonal to the group and the intra-group correlation are satisfied, and the grouping standard can be based on the communication.
  • the general standard in technology is carried out.
  • the determination of the second threshold value D1, the third threshold value D2, and the fourth threshold value D3 may be an average value determined by trial and error, or may be an artificially set value, and may be based on accuracy of transmission data, etc. The decision is not limited to a fixed value.
  • the first threshold value may include one of the following: e. a pre-configured fixed value
  • the method for determining the first threshold value in the embodiment of the present invention is not limited to the above three methods, and other methods capable of accurately determining the first threshold value are applicable in the present invention.
  • the first type of communication node is assumed to be a base station
  • the second type of communication node is a mobile terminal.
  • N beam horn antennas are configured on the base station.
  • the N beam can be 12, 15, 18, 24 Equal positive integer.
  • Each horn antenna can transmit beams in a different direction.
  • the base station can select one or more horn antennas to transmit data for the same terminal, wherein the data transmitted by the horn is directional, and is a beam. .
  • the base station and the terminal complete the selection of the P-eight antennas for transmitting data, that is, beam selection, by the following steps.
  • the base station sequentially selects a horn antenna to transmit signals in N beam time slots, and each time is bound to a latitude eight antenna index.
  • the terminal selects to receive the signal transmitted by the base station in the N beam time slots, and calculates the channel quality information of the corresponding received signal, such as the received power.
  • the channel quality information corresponding to the i-th time slot is, two i ⁇ ⁇ , ⁇ ⁇
  • the base station receives the index sent by the terminal, and selects the beam finally used to transmit the data by the following method.
  • each group of beams is physically adjacent to three horn antennas.
  • the first group is 1, 2 ⁇
  • the i-th group is ⁇ Il, i, i+l ⁇ , where the number in parentheses is the beam index, which corresponds to the physically arranged antenna.
  • step (4.3) Repeat step (4.2) until set S2 is empty.
  • the time slot here is an OFDM symbol in an Orthogonal Frequency Division Multiplexing (OFDM) system, or an OFDMA symbol of Orthogonal Frequency Division Multiplexing Access (OFDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the channel quality information in step (2) may also be a received signal to noise ratio, a received signal to interference and noise ratio, a received carrier to interference and noise ratio, and the like. It is no longer exhaustive here.
  • selecting M initial beams in step (3) can be performed as follows:
  • the beam grouping means that the base station and the terminal are pre-divided.
  • each group of beams is physically adjacent to three horn antennas.
  • the first group is ⁇ ⁇ m , l, 2 ⁇
  • the i group is ⁇ il, i, i+l ⁇ , where the number in parentheses is the beam index, which corresponds to the physically arranged antenna.
  • step (3.3) Repeat step (3.2) until set S1 is empty.
  • step (4) can directly determine the destination beam of the final transmitted data.
  • the first type of communication node is assumed to be a base station, and the second type of communication node is a mobile terminal.
  • Each sector on the base station is equipped with an Nt linear array of antennas, each of which has the same polarization direction, such as positive 45. Polarized antenna or negative 45° polarized antenna or horizontally polarized antenna or vertically polarized antenna.
  • the antenna array is shown in Figure 2(a).
  • a simple example is that it is a DFT vector, ie
  • ⁇ [1 ... e ⁇ w ⁇ f . ⁇ is the direction in which the beam is directed.
  • the base station and the terminal complete the beam selection of the transmitted data by the following steps.
  • the base station sequentially selects a beam weight vector to weight the antenna to form a beamforming transmission signal in each time slot, and each time is bound to a weight vector index.
  • the terminal selects to receive the signal transmitted by the base station in the time slots, and calculates the channel quality information of the corresponding received signal, such as the received power.
  • the base station receives the index sent by the terminal, and selects the beam finally used to transmit the data by the following method.
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the weight information in each group of beams is related and the chord distance is as large as possible, and the weight vectors between the groups are orthogonal.
  • step (4.3) Repeat step (4.2) until set S2 is empty.
  • the base station and the terminal complete the beam selection process, and the base station transmits data to the terminal according to the finally determined beam.
  • This process can be performed periodically in a certain cycle. Or it is performed by the terminal after triggering the base station when necessary. It may also be performed after the base station triggers according to the current channel quality information.
  • the time slot here is an OFDM symbol in an Orthogonal Frequency Division Multiplexing (OFDM) system, or an OFDMA symbol of Orthogonal Frequency Division Multiplexing Access (OFDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the channel quality information in step (2) may also be a received signal to noise ratio, a received signal to interference and noise ratio, a received carrier to interference and noise ratio, and the like.
  • step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and the weight of any beam in the S2 set
  • the information distance is greater than Dl.
  • step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and the weight of any beam in the S2 set
  • the information correlation is less than D2.
  • correlation refers to the inner product of two weight information; wherein, the superscript indicates a conjugate transpose of the vector.
  • selecting the M feedback beams in step (3) may be as follows get on:
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the weight information in each group of beams is related and the chord distance is as large as possible.
  • the weight vectors between groups are orthogonal.
  • step (3.3) Repeat step (3.2) until set S1 is empty.
  • step (4) can directly determine the destination beam of the final transmitted data.
  • step (3.2) may be replaced by: selecting a beam with a channel quality information greater than TH1 in S1, or a beam whose channel quality information differs from the maximum channel quality information by less than D3, and It is deleted from S1, and the weight information corresponding to the beam is greater than the weight information of any one of the beams in the S2 set.
  • step (3.2) may be replaced by: selecting a beam with a channel quality information greater than TH1 in S1, or a beam whose channel quality information differs from the maximum channel quality information by less than D3, and It is deleted from S1, the beam corresponds to The weight information has a correlation with the weight information of any one of the beams in the S2 set is less than D2.
  • the first type of communication node is assumed to be a base station, and the second type of communication node is a mobile terminal.
  • Each sector on the base station is equipped with an antenna of Nt root linearly polarized arrays, and each antenna may be positive 45. Polarized antenna or negative 45° polarized antenna or horizontally polarized antenna or vertically polarized antenna.
  • the antenna array is shown in Figure 2 (b). This Nt antenna can be virtualized into beams in different directions by ⁇ weight vector.
  • the direction of the beam, the weight vector of the entire antenna array can be expressed as the base station and the terminal complete the beam selection of the transmitted data by the following steps:
  • the base station sequentially selects the weight vector of one sub-array in the time slots to weight the antennas of the same polarization direction to form a beam transmission signal, and each time is bound to an index.
  • selecting the weight of the sub-array to transmit data can reduce the time slot of the transmitting beam by multiple.
  • the terminal selects to receive the signal transmitted by the base station in each time slot, and calculates channel quality information of the corresponding received signal, such as received power.
  • the base station receives the index sent by the terminal, and selects a beam that is finally used to transmit data by the following method. Let all the received initial beam index sets be S2, and the destination beam index set finally used to send data is S3, and S3 is initialized to an empty set. The final determination of the beam is completed by the following steps (4.1) to (4.4).
  • the beam grouping here means that the base station and the terminal are pre-divided. For example, the weight information in each group of beams is correlated and the chord distance is as large as possible, and the weight vectors between the groups are orthogonal.
  • step (4.3) Repeat step (4.2) until set S2 is empty.
  • the base station and the terminal complete the beam selection process, and the base station transmits data to the terminal according to the finally determined beam.
  • This process can be performed periodically in a certain cycle. Or it is performed by the terminal after triggering the base station when necessary. It may also be performed after the base station triggers according to the current channel quality information.
  • the time slot here, the OFDM symbol in the Orthogonal Frequency Division Multiplexing (OFDM) system, or the OF DMA of the Orthogonal Frequency Division Multiplexing Access (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the channel quality information in step (2) may also be a received signal to noise ratio, a received signal to interference and noise ratio, a received carrier to interference and noise ratio, and the like.
  • step (4.2) is replaced by the following method: Select one of S2 The beams are removed from S2, and the weight information corresponding to the beam is greater than the weight information of any one of the beams in the S2 set.
  • step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and the weight of any beam in the S2 set
  • the information correlation is less than D2.
  • selecting the M feedback beams in step (3) can be performed as follows:
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the weight information in each group of beams is related and the chord distance is as large as possible.
  • the weight vectors between groups are orthogonal.
  • step (3.3) Repeat step (3.2) until set S1 is empty.
  • step (4) can directly determine the destination beam of the final transmitted data.
  • step (3.2) can be replaced by the following method: Select a beam in the SI whose channel quality information is larger than TH1, or a beam whose channel quality information differs from the maximum channel quality information by less than D3, and delete it from S1.
  • the weight information corresponding to the beam and any of the S2 sets The weight information distance of one beam is greater than Dl.
  • step (3.2) may be replaced by: selecting a beam in S1 whose channel quality information is greater than TH1, or a beam whose channel quality information differs from the maximum channel quality information by less than D3, and It is deleted from S1, and the weight information corresponding to the beam and the weight information of any one of the beams in the S2 set are less than D2.
  • the first type of communication node is assumed to be a base station, and the second type of communication node is a mobile terminal.
  • Each sector on the base station is equipped with an antenna of an Nt root plane array, and each antenna has the same polarization direction, for example, positive 45. Polarized antenna or negative 45° polarized antenna or horizontally polarized antenna or vertically polarized antenna.
  • the antenna array is shown in Figure 2(c). These antennas are arranged in N 1 rows and M 1 columns. This Nt antenna can be virtualized into beams in different directions by ⁇ weight vector. Among them, its weight vector is ⁇ , ⁇ is the column vector of the norm of xl, i two, ⁇ ', ⁇ ⁇ wake up.
  • the base station and the terminal pass two The selection process of the beam is completed in one stage.
  • the beam selection for the same column antenna is completed by the following steps.
  • the base station sequentially selects one beam weight v vector in N v time slots to weight the antennas of the same column to form a beamforming transmission signal, and each time is bound to a weight vector index.
  • the terminal selects to receive the signal transmitted by the base station in N v time slots, and calculates channel quality information, such as received power, of the corresponding received signal.
  • the channel quality information corresponding to the i-th time slot is (3 ⁇ 4/,, i2 ⁇ , ⁇ ', ⁇ ⁇ .
  • the base station receives the index sent by the terminal, and determines the beam shaping weight of the column.
  • the selection of the same row of antenna beams is accomplished by the following steps:
  • the base station sequentially selects a beam weight ⁇ 3 ⁇ 4 vector in N A time slots to weight the antennas of the same row to form a beamforming transmission signal, and each time is bound to a weight vector index.
  • the terminal selects a signal received from the base station in the time slots N h, and calculates the received signal corresponding to the channel quality information, such as reception power.
  • the base station receives the index sent by the terminal, and determines the beam index of the antenna of the line by the following method.
  • the beam grouping refers to the base station and the terminal pre-divided.
  • the weight information in each set of beams is correlated and the chord distance is as large as possible, and the weight vectors between the groups are orthogonal.
  • step (4.3) Repeat step (4.2) until set S2 is empty.
  • the base station determines the beam weight determined by the first stage and the weight determined by the second stage to form the final weight. Which process can be
  • the base station transmits data to the terminal according to the finally determined beam. This process can be performed periodically in a certain cycle. Or it is performed by the terminal after triggering the base station when necessary. It may also be performed after the base station triggers according to the current channel quality information.
  • the time slot here is an OFDM symbol in an Orthogonal Frequency Division Multiplexing (OFDM) system, or an OFDMA symbol of Orthogonal Frequency Division Multiplexing Access (OFDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the channel quality information in step (2) may also be a received signal to noise ratio, a received signal to interference and noise ratio, a received carrier to interference and noise ratio, and the like.
  • the second stage of the step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and any one of the S2 sets
  • the weight information distance of the beam is greater than Dl.
  • the second stage of the step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and any one of the S2 sets
  • the weight information correlation of the beam is less than D2.
  • correlation refers to two weights
  • the inner product of the quantity r Where the superscript H represents the conjugate transpose of the vector.
  • the selection of the M feedback beams in step (3) of the second phase can be performed as follows:
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the weight information in each group of beams is related and the chord distance is as large as possible.
  • the weight vectors between groups are orthogonal.
  • step (3.3) Repeat step (3.2) until set S1 is empty.
  • the step (4) of the second stage can directly determine the destination beam of the final transmitted data.
  • the second step (3.2) can be replaced by the following method:
  • the weight information corresponding to the beam and any of the S2 sets The weight information distance of one beam is greater than Dl.
  • the second step (3.2) can be replaced by the following method:
  • the first type of communication node is assumed to be a base station, and the second type of communication node is a mobile terminal.
  • Each sector on the base station is configured with an antenna of an Nt root plane array, and each antenna has a polarization direction, such as positive 45. Polarized antenna or negative 45° polarized antenna or horizontally polarized antenna or vertically polarized antenna.
  • the antenna array is shown in Figure 2(d). These antennas are arranged in 1 row and 1 column.
  • the Nt antenna can be virtualized into N B ⁇ m beams in different directions by N B ⁇ m weight vectors.
  • the weight vector of all the antennas of the line can be expressed as the base station column using the weights corresponding to the beams in the two directions to form a final
  • the base station and the terminal complete the selection process of the beam in two stages.
  • the beam selection for the same column antenna is completed by the following steps.
  • the base station sequentially selects one beam weight vector in N v time slots to weight the antennas of the same column to form a beamforming transmission signal, and each time is bound to a weight vector index.
  • the terminal selects to receive the signal transmitted by the base station in N v time slots, and calculates channel quality information, such as received power, of the corresponding received signal.
  • the channel quality information corresponding to the i-th time slot is (3 ⁇ 4/,, i2 ⁇ , ⁇ ', ⁇ ⁇ .
  • the base station receives the index sent by the terminal, and determines the beam shaping weight of the column.
  • the selection of the same row of antenna beams is accomplished by the following steps:
  • the base station sequentially selects a beam weight vector in N A time slots to weight the antennas of the same polarization direction in the same row to form a beamforming transmission signal, and each time is bound to a weight vector index. .
  • the terminal selects a signal received from the base station in the time slots N h, and calculates the received signal corresponding to the channel quality information, such as reception power.
  • the base station receives the index sent by the terminal, and determines the beam index of the antenna of the line by the following method.
  • the beam grouping refers to the base station and the terminal pre-divided well.
  • the weight information in each group of beams is related and the chord distance is as large as possible, and between groups The weight vectors are orthogonal.
  • step (4.3) Repeat step (4.2) until set S2 is empty.
  • the weights determined in the second phase form the final weight. Which process can be
  • the base station transmits data to the terminal according to the finally determined beam. This process can be performed periodically in a certain cycle. Or it is performed by the terminal after triggering the base station when necessary. It may also be performed after the base station triggers according to the current channel quality information.
  • the time slot here is an OFDM symbol in an Orthogonal Frequency Division Multiplexing (OFDM) system, or an OFDMA symbol of Orthogonal Frequency Division Multiplexing Access (OFDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the channel quality information in step (2) may also be a received signal to noise ratio, a received signal to interference and noise ratio, a received carrier to interference and noise ratio, and the like.
  • the second stage of the step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and any one of the S2 sets
  • the weight information distance of the beam is greater than Dl.
  • the second step (4.2) is replaced by the following method: selecting a beam in S2 and deleting it from S2, the weight information corresponding to the beam and the S2 set
  • the weight information correlation of any one of the beams is less than D2.
  • the selection of the M feedback beams in step (3) of the second phase can be performed as follows:
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the beam grouping means that the base station and the terminal are pre-divided.
  • the weight information in each group of beams is related and the chord distance is as large as possible.
  • the weight vectors between groups are orthogonal.
  • step (3.3) Repeat step (3.2) until set S1 is empty.
  • the step (4) of the second stage can directly determine the destination beam of the final transmitted data.
  • the second step (3.2) can be replaced by the following method:
  • the weight information corresponding to the beam and any of the S2 sets The weight information distance of one beam is greater than Dl.
  • the distance refers to the sinus distance of the two weight information - ⁇ ww ⁇ ⁇ ; where the superscript H represents the vector Conjugate transposition.
  • the second step (3.2) can be replaced by the following method:
  • the embodiment of the present invention further provides a device for implementing beamforming, which can be applied to a first type of communication node, and the device includes:
  • the sending module 01 is configured to send the original beam.
  • the receiving module 02 is configured to receive an initial beam index set determined by the second type of communication node.
  • the first determining module 03 is configured to determine the target beam according to the initial beam index set.
  • the specific structure of the foregoing sending module 01 may include a wireless transmitting interface such as a transmitting antenna or a transmitting antenna array.
  • the specific structure of the receiving module 02 may include a wireless receiving interface, such as a receiving sweet antenna or a receiving antenna array.
  • the specific structure of the first determining module 03 may include a processor and a storage medium; the storage medium stores a readable instruction; the processor is connected to the storage medium through an internal communication interface or an address bus and a data bus; The processor runs the readable instructions to implement a function of determining a target beam from the initial set of beam indices.
  • the processor can be a microprocessor, a central processing unit or a digital signal processor or the like.
  • the first determining module 03 may also be an electronic component having a processing function, such as a programmable logic array.
  • the embodiment of the present invention further provides a device for implementing beamforming, which can be applied to a second type of communication node, and the device includes:
  • the calculating module 04 is configured to receive the original beam sent by the first type of communication node, and calculate channel quality information of the beam;
  • a second determining module 05 configured to determine an initial beam index set according to channel quality information of the beam
  • the sending module 06 is configured to send the initial beam index set to the first type of communication node.
  • the specific structure of the computing module 04 may include a calculator or a processor having computing functions.
  • the specific structure of the second determining module 05 may include a processor and a storage medium; the storage medium stores a readable instruction; the processor is connected to the storage medium through an internal communication interface or an address bus and a data bus; The processor runs the readable instructions to implement a function of determining a target beam from the initial set of beam indices.
  • the processor can be a microprocessor, a central processing unit or a digital signal processor or the like.
  • the first determining module 05 may also be an electronic component having a processing function, such as a programmable logic array.
  • the specific structure of the sending module 06 may include a transmitting interface, such as a transmitting antenna.
  • the first type of communication node and the second type of communication node cooperate to select a beam, which reduces the beam feedback amount, improves the accuracy of the selected beam, improves the performance of the wireless communication system, and increases The coverage of the system. All of the embodiments of the beamforming method described above and the method of determining the initial beam index set and their beneficial effects are applicable in the system for beamforming.
  • the embodiment of the invention further describes a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method applicable to any one of the first type of communication nodes. .
  • the computer storage medium may be a storage device having a storage function such as a USB flash drive, an optical disk, a DVD, or a magnetic tape; and the computer storage medium is preferably a non-transitory storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供一种波束赋形方法、确定初始波束索引集合的方法及装置,涉及无线通信领域。其中,波束赋形方法,应用于至少包括一个第二类通信节点的***,所述波束赋形方法包括:发送原始波束;接收所述第二类通信节点根据所述原始波束确定的初始波束索引集合;根据所述初始波束索引集合确定用来发送数据的目的波束。通过第一类通信节点和第二类通信节点协作来选择波束,在减小波束反馈量的同时,提高了选择波束的准确性,提高了无线通讯***的性能,增加了***的覆盖范围。本发明还同时公开了两种计算机存储介质。

Description

波束赋形方法、 确定索引集合的方法、 装置和存储介质 技术领域 本发明涉及无线通信领域, 特别涉及一种波束赋形方法、 确定索引集 合的方法、 装置和存储介质。 背景技术 波束赋形是一种信号处理技术, 对于喇叭类天线, 如图 1 所示, 每个 喇口八天线形成一个固定方向的波束, 通过多个喇八天线形成多个方向的波 束以达到覆盖的要求, 在发送数据时选择信号要发送的方向上的喇 P八天线 进行发送, 从而达到定向发送数据的目的。 对于阵列天线***, 如图 2a、 2b所示的线性阵列, 也可以是图 2c、 2d所示的平面天线阵列。 波束赋形通 过对天线单元进行加权处理, 使得数据能够按指定的方向定向发送。 通过 波束赋形的定向数据发送, 使得能量集中在有用的方向, 增加了***的信 噪比, 从而提高了***的覆盖范围。
波束赋形可以只在水平方位角上进行调整, 如图 3a所示, 它只区分水 平方位角不一样的移动站, 而对于水平方位角一样, 垂直俯仰角不同的移 动站是不能区分的, 也可是只在垂直府仰角上进行调整, 如图 3b所示, 它 能区分府仰角不同的用户。 这两种波束赋形叫二维波束赋形。 当然, 波束 也可以同时再水平和垂直维度上进行调整, 形成三维波束赋形, 如图 4所 示, 三维波束赋形是一种同时考虑水平方位角和垂直俯仰角的一种立体的 波束赋形技术, 它既能自适应地调整水平方位角度, 又能自适应地调整垂 直俯仰角度, 从而既能区分不同方位角的接收端, 也能区分不同俯仰角的 接收端。 已有的波束选择方法中, 有同时发送一个波束的, 如在长期演进***
( LTE: Long Term Evolution )中, 其协议为 Release 8版本, 简称 R8版本, 端口 5 实现的波束赋形, 它通过第一类通信节点选择要发送数据的波束。 有同时发送两个波束的, 如在长期演进***(LTE: Long Term Evolution ) 中, 其协议为 Release 9版本, 简称 R9版本, 端口 7和端口 8实现的波束 赋形, 它需要第二类通信节点反馈预编矩阵指示 (PMI: Pre-coding Matrix Indicator ), 秩指示(RI: Rank Indicator )来实现波束的选择。 或者根据时 分复用***的信道互异性, 第一类通信节点来选择发送数据的波束。 这些 方法, 一面限制了发送数据的波束个数, 如 1个或者 2个, 另外一方面, 因为只是第一类通信节点或者第二类通信节点来选择发送数据的波束, 所 以不够准确, 或者有较大的反馈量, 如 R9里的基于 PMI和 RI反馈的方法 中, 就需要反馈 PMI和 RI。 发明内容 本发明期望提供一种波束赋形方法、 确定索引集合的方法、 装置和存 储介质, 实现波束赋形的波束选择的准确性和降低反馈量, 提高***性能, 增加***的覆盖范围。
为达到上述期望, 本发明实施例第一方面提供一种波束赋形方法, 所 述波束赋形方法, 包括:
发送原始波束;
接收第二类通信节点根据所述原始波束确定的初始波束索引集合; 根据所述初始波束索引集合确定用来发送数据的目的波束。
其中, 所述第二类通信节点为应用终端。
优选地的, 发送原始波束的步骤包括:
选择极化方向相同的一组天线发送原始波束。
优选地, 发送原始波束的步骤包括: 选择排列在同一行的一组同一极化方向的天线发送原始波束或者选择 排列在同一列的一组同一极化方向的天线发送原始波束。
其中, 根据所述初始波束索引集合确定用来发送数据的目的波束的步 骤包括:
依次从初始波束索引中选择一个索引作为第一被比较索引, 并从初始 波束索引集合中删除, 如果所述第一被比较索引满足下面条件之一, 将第 一所述被比较索引并入目的波束索引集合:
al . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的距离大于第二门限值, 其中所述距离指 两个权值信息的弦距离;
bl . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的相关性小于第三门限值, 其中所述相关 性指两个权值信息的内积;
cl . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息不在同一组, 其中所述的波束分组是预先 分好的;
确定目的波束索引集合对应的波束为目的波束。
本发明实施例第二方面提供一种确定初始波束索引集合的方法, 所述 确定初始波束索引集合的方法, 包括:
接收第一类通信节点发送的原始波束对应的信号, 并计算信道质量信 息;
根据所述信道质量信息, 确定初始波束索引集合, 并反馈给所述第一 类通信节点。
优选地, 所述第一类通信节点为无线通信设备。
优选的, 所述信道质量信息包括但不限于接收功率、 接收信噪比、 接 收信干噪比和接收载干噪比之一。
其中, 根据所述信道质量信息, 确定初始波束索引集合的步骤包括: 确定原始波束中信道质量信息最大值;
定义原始波束对应的波束索引为原始波束索引集合, 依次从原始波束 索引中选择一个索引作为第二被比较索引, 将所述第二被比较索引从原始 波束索引集合中删除, 如果满足下列条件之一, 将所述第二被比较索引合 并到初始波束索引集合中:
a2. 第二被比较索引对应波束的信道质量信息大于第一门限值; b2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的距离大于第 三门限值, 其中所述距离指两个权值信息的弦距离;
c2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的相关性小于 第四门限值, 其中所述相关性指两个权值信息的内积;
d2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息不在同一分 组, 其中所述的波束分组是预先分好的。
优选地, 所述第一门限值可包括以下至少之一:
e. 预先配置的固定值;
f . 所述原始波束中所有波束的信道质量信息的平均值;
g. 将所述原始波束的信道质量信息按从大到小的顺序排列, 并依次取 大于初始波束索引集合对应波束个数的原始波束的信道质量信息的平均 值。
本发明实施例第三方面提供一种实现波束赋形的装置, 所述装置包括: 发送模块, 配置为发送原始波束;
接收模块, 配置为接收第二类通信节点确定的初始波束索引集合; 第一确定模块, 配置为根据所述初始波束索引集合确定目的波束。 本发明实施例第四方面提供一种实现波束赋形的装置, 所述装置包括: 计算模块, 配置为接收所述第一类通信节点发送的原始波束, 并计算 波束的信道质量信息;
第二确定模块, 配置为根据所述波束的信道质量信息确定初始波束索 引集合;
发送模块, 配置为向所述第一类通信节点发送所述初始波束索引集合。 本发明实施例第五方面提供一种计算机存储介质, 所述计算机存储介 质中存储有计算机可执行指令, 所述计算机可执行指令用于执行本发明实 施例第一方面任一项所述的方法。
本发明实施例第六方面提供一种计算机存储介质, 所述计算机存储介 质中存储有计算机可执行指令, 所述计算机可执行指令用于执行本发明实 施例第二方面任一项所述的方法。
本发明实施例的上述技术方案至少具有如下有益效果:
本发明实施例的波束赋形方法中, 通过第一类通信节点和第二类通信 节点协作来选择波束, 在减小波束反馈量的同时, 提高了选择波束的准确 性, 提高了无线通讯***的性能, 增加了***的覆盖范围。 附图说明 图 la为一种 H面扇形喇八天线示意图;
图 lb为一种 E面扇形喇八天线示意图;
图 lc为一种角锥喇八天线示意图; 图 Id为一种圓锥喇 p八天线结构示意图;
图 2a为一种的阵列天线***中单极化线性阵列结构示意图
图 2b为一种的阵列天线***中双极化线性阵列结构示意图
图 2c为一种的阵列天线***中单极化平面阵列结构示意图
图 2d为一种的阵列天线***中双极化平面阵列结构示意图
图 3 a为一种不同方位角相同俯仰角的二维波束赋形结构示意图; 图 3b为一种相同方位角不同俯仰角的二维波束赋形示意图
图 4为一种三维波束!!武形示意图;
图 5为本发明实施例提供的波束赋形的方法的流程示意图。 具体实施方式 以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
本发明实施例针对现有技术中发送数据的波束的确定不够准确且有较 大反馈量的问题, 提供一种波束赋形方法、 确定待反馈波束方法及装置, 通过第一类通信节点和第二类通信节点协作来选择波束, 在减小波束反馈 量的同时, 提高了选择波束的准确性, 提高了无线通讯***的性能, 增加 了***的覆盖范围。
如图 5 所示, 本发明实施例提供一种波束赋形方法, 可应用于至少包 括一个第二类通信节点的***, 所述波束赋形方法, 包括:
步骤 10, 发送原始波束;
步骤 20, 接收所述第二类通信节点根据所述原始波束确定的初始波束 索引集合;
步骤 30, 根据所述初始波束索引集合确定用来发送数据的目的波束。 节点中, 第一类通信节点通过与第二类通信节点的协作来选择目的波束, 提高波束赋形的准确性; 其中第二类通信节点的作用为根据原始波束确定 初始波束索引集合, 并将其反馈给第一类通信节点; 第一类通信节点则根 据初始波束索引集合确定其目的波束。 优选地, 所述初始波束索引集合及 所述目的波束可以为一个, 两个甚至多个, 可根据需传输的信息的大小及 选择的方法决定波束的个数, 增加了***的覆盖范围。
其中, 所述第二类通信节点为应用终端。
本发明实施例中所述第二类通信节点为应用终端, 如数据卡、 手机、 笔记本电脑、 个人电脑、 平板电脑、 个人数字助理、 蓝牙等等, 但不仅限 于此, 所有能够接收数据的终端在本发明中均适用。
本发明的上述实施例中, 步骤 10的具体步骤包括:
步骤 101, 选择极化方向相同的一组天线发送原始波束。
本发明实施例中, 若发送原始信息时釆用双极化线性阵列的天线阵列, 则须执行步骤 101, 选择极化方向相同的一组天线发送原始波束,使能量集 中在有用的方向上, 增加***的信噪比, 从而提高了***的覆盖范围。
本发明的上述实施例中, 步骤 10的具体步骤包括:
步骤 102,选择排列在同一行的一组同一极化方向的天线发送原始波束 或者选择排列在同一列的一组同一极化方向的天线发送原始波束。
本发明实施例中, 若发送原始信息时釆用平面阵列天线, 则须执行步 骤 102,选择排列在同一行的一组同一极化方向的天线发送原始波束或者选 择排列在同一列的一组同一极化方向的天线发送原始波束。 其中, 通过对 天线单元进行加权处理, 使得数据能够按指定的方向定向发送, 使能量集 中在有用的方向上, 增加了***的信噪比, 从而提高了无线通讯***的性
6 fj匕
匕。
优选地, 本发明实施例中, 步骤 30的具体步骤包括:
步骤 301, 依次从初始波束索引中选择一个索引作为第一被比较索引, 并从初始波束索引集合中删除, 如果所述第一被比较索引满足下面条件之 一, 将第一所述被比较索引并入目的波束索引集合:
al. 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的距离大于第二门限值, 其中所述距离指 两个权值信息的弦距离;
bl. 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的相关性小于第三门限值, 其中所述相关 性指两个权值信息的内积;
cl. 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息不在同一组, 其中所述的波束分组是预先 分好的;
步骤 302, 确定目的波束索引集合对应的波束为目的波束。
本发明具体实施例中, 步骤 301及步骤 302的具体实施, 举例如下: 设接收到的初始波束索引集合为 S2, 目的波束索引集合为 S3, 且 S3 初始化为空集。 步骤 301, 选择 S2里的一个波束, 如果它满足如下条件之 一, 则并入集合 S3 : al : 该波束对应的权值信息与 S2集合里的任何一个 波束的权值信息距离大于第二门限值 Dl。 这里, 距离指两个权值向量的弦 距离; bl : 该波束对应的权值信息与 S2集合里的任何一个波束的权值信息 相关性小于第三门限值 D2。 这里, 相关性指两个权值向量的内积; cl : 该 波束对应的权值信息与 S2集合里的任何一个波束对应的权值不在同一组, 这里的波束分组指预先分好的。 重复执行步骤 301直到集合 S2为空。 步骤 302: 确定 S3集合的元素个数为最终的发送数据的波束个数, S3里的索引 对应的波束即为最终用来发送数据的目的波束。
优选的, 步骤 cl中的波束分组是指第一通信节点与第二类通信节点预 先分好的, 满足组之间的向量正交且组内相关等条件的波束, 其分组标准 可根据通信技术中的一般标准进行。 其中, 第二门限值 D1 和第三门限值 D2的确定可为反复试验确定的平均值, 也可为人为设定的值, 可根据传输 数据的精确度等决定, 不仅限于一固定值。
为了更好的实现上述目的, 本发明实施例还提供一种确定初始波束索 引集合的方法, 可应用于至少包括一个第一类通信节点的***, 所述确定 初始波束索引集合的方法, 包括:
步骤 40, 接收所述第一类通信节点发送的原始波束对应的信号, 并计 算信道质量信息;
步骤 50, 根据所述信道质量信息, 确定初始波束索引集合, 并反馈给 所述第一类通信节点。
本发明上述实施例所述方法可具体应用于上述***的第二类通信节点 中, 通过第一类通信节点与第二类通信节点的协作来选择目的波束, 提高 波束赋形的准确性; 其中, 第二类通信节点用于确定初始波束索引集合, 提高选择波束的准确性。
其中, 本发明的上述实施例中, 所述第一类通信节点为无线通信设备。 本发明实施例中所述第一类通信节点为无线通信设备, 如宏基站、 微 基站、 直放站、 中继、 拉远设备、 无线接入点等等, 但不仅限于此, 所有 能够发送数据的无线通信设备在本发明中均适用。
优选地, 本发明的上述实施例中, 所述信道质量信息包括但不限于接 收功率、 接收信噪比、 接收信干噪比和接收载干噪比之一。
本发明实施例中可根据第一类通信节点和第二类通信节点的需求侧重 点不同选择不同的信道质量信息来确定初始波束索引集合, 也可以同时结 合多个来更优的选择, 如本发明的具体实施例中釆用接收功率和接收信噪 比来共同确定待反馈波束, 提高波束选择的准确性。
优选地, 本发明的上述实施例中, 步骤 50中根据所述信道质量信息, 确定初始波束索引集合的具体步骤包括:
步骤 501, 确定原始波束中信道质量信息最大值;
步骤 502, 定义原始波束对应的波束索引为原始波束索引集合, 依次从 原始波束索引中选择一个索引作为第二被比较索引, 将所述第二被比较索 引从原始波束索引集合中删除, 如果满足下列条件之一, 将所述第二被比 较索引合并到初始波束索引集合中:
a2. 第二被比较索引对应波束的信道质量信息大于第一门限值; b2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的距离大于第 三门限值, 其中所述距离指两个权值信息的弦距离;
c2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的相关性小于 第四门限值, 其中所述相关性指两个权值信息的内积;
d2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息不在同一分 组, 其中所述的波束分组是预先分好的。
本发明实施例中, 步骤 501及步骤 502的具体实施, 举例如下: 设原始波束对应的波束索引的集合为 Sl, 初始波束索引集合为 S2, 且 S2初始化为空集。 步骤 502, 选择 S1里的一个波束, 并将其从 S1中删除, 如果它满足如下条件之一, 则并入集合 S2; a2: 该波束的信道质量信息大 于第一门限值 TH1 ; b2:该波束的信道质量信息与信道质量信息的最大值相 差小于第二门限值 Dl, 且对应的权值信息与 S2集合里的任何一个波束的 权值信息距离大于第三门限值 D2。 这里, 距离指两个权值信息的弦距离; b2: 该波束的信道质量信息与信道质量信息的最大值相差小于第二门限值 D1,且对应的权值信息与 S2集合里的任何一个波束的权值信息相关性小于 第四门限值 D3。 这里, 相关性指两个权值信息的内积; c2: 该波束的信道 质量信息与信道质量信息的最大值相差小于第二门限值 D 1, 且对应的权值 信息与 S2集合里的任何一个波束不在同一组,这里的波束分组预先分好的。 重复执行步骤 502直到集合 S1为空。 S2里的索引即为初始波束索引中的 M 个波束索引, 确定 S2集合的元素个数为待反馈的波束个数M。
优选的, 步骤 d2中的波束分组是指第一类通信节点与第二类通信节点 预先分好的, 满足组之间的向量正交且组内相关等条件的波束, 其分组标 准可根据通信技术中的一般标准进行。 其中, 第二门限值 Dl、 第三门限值 D2及第四门限值 D3的确定可为反复试验确定的平均值, 也可为人为设定 的值, 可根据传输数据的精确度等决定, 不仅限于一固定值。
其中, 本发明的上述实施例中, 所述第一门限值可包括以下其中之一: e. 预先配置的固定值;
f . 所述原始波束中所有波束的信道质量信息的平均值;
g. 将所述原始波束的信道质量信息按从大到小的顺序排列, 并依次取 大于初始波束索引集合对应波束个数的原始波束的信道质量信息的平均 值。
本发明实施例中 所述第一门限值的确定方法不仅限于以上三种方法, 其他能够准确确定第一门限值的方法在本发明中均适用。
优选地, 为了更好的描述本发明的方法, 举例说明如下:
具体实施例 1 :
本实施例中, 第一类通信节点假设为基站, 而第二类通信节点为移动 终端。 基站上配置 Nbeam个喇叭天线, 比如, Nbeam可以是 12、 15、 18、 24 等正整数。 每个喇叭天线可朝一个不同的方向上发送波束, 同一时刻, 基 站可以选择其中的 1 个或多个喇叭天线为同一个终端发送数据, 其中喇叭 发送的数据是具有方向性的, 是一个波束。 基站和终端通过如下步骤完成 发送数据的喇 P八天线选择, 即波束选择。
( 1 )基站在 Nbeam个时隙内, 依次选择一个喇叭天线发送信号, 每个 时刻与一个喇八天线索引绑定。
( 2 )终端选择在 Nbeam个时隙内接收基站发送的信号, 并计算对应的 接收信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量 信息为 , i二 · ·,ΝΒ
( 3 )终端反馈最大的 Μ个 对应的波束索引反馈给基站
( 4 )基站接收终端发送的索引, 并通过如下方法从中选择最终用来发 送数据的波束。
设所有接收到的初始波束索引集合为 S2, 最终用来发数据的目的波束 索引集合为 S3, 且 S3初始化为空集。 通过如下步骤(4.1 ) 至步骤(4.4 ) 完成波束的最终确定。
( 4.1 )在 S2里选择一个信道质量信息 最大的波束索引, 并将其从 S2中删除, 将其并入集合 S3。
( 4.2 )选择 S2里的一个波束, 并将其从 S2中删除, 该波束与 S3里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里, 都是物理上相邻的三个喇叭天线, 比如, 第一 组为 ,1,2},第 i组为 {i-l, i, i+l}, 其中括号里的数字为波束索引, 它 对应着物理上排列的喇 天线。
( 4.3 )重复执行步骤(4.2 )直到集合 S2为空。
( 4.4 )确定 S3集合的元素个数为最终的发送数据的波束个数, S3里 的索引对应的波束即为最终用来发送数据的波束。 通过步骤(1 ) - ( 4 )基站和终端完成了波束的选择过程, 基站按最终 确定的波束对该终端发送数据。 这个过程是可以在一定的周期周期性地进 行。 或者由终端在必要时触发基站后进行。 也可以是基站根据当前的信道 质量信息触发后进行。
这里的时隙, 在正交频分复用 ( Orthogonal Frequency Division Multiplexing,OFDM ) ***里的 OFDM符号, 或者正交频分复用多址接入 ( Orthogonal Frequency Division Multiplexing Access,OFDMA ) 的 OFDMA 符号。
在另外的实施例中, 步骤( 2 )里的信道质量信息也可以是接收信噪比, 接收信干噪比, 接收载干噪比等。 这里不再累述。
在另外的实施例中, 步骤( 3 )里选择 M个初始波束可以按如下方式进 行:
设所有的原始波束索引集合为 Sl, 用来发数据的初始波束索引集合为 S2, 且 S2初始化为空集。 通过如下步骤(3.1 )至步骤(3.4 ) 完成波束的 最终确定。
( 3.1 )在 S1里选择一个波束索引, 并将其从 S1中删除, 将其并入集 合 S2。
( 3.2 )选择 S1里的一个波束, 并将其从 S1 中删除, 该波束与 S2里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里, 都是物理上相邻的三个喇叭天线, 比如, 第一 组为 { ^∞m ,l,2},第 i组为 {i-l, i, i+l}, 其中括号里的数字为波束索引, 它 对应着物理上排列的喇 天线。
( 3.3 )重复执行步骤(3.2 )直到集合 S1为空。
( 3.4 )确定 S2集合的元素个数为初始波束的个数 M, S2里的索引对 应的波束即为初始的 M个波束。 这时, 步骤(4 )可以直接确定最终的发送数据的目的波束。
具体实施例 2:
本实施例中, 第一类通信节点假设为基站, 而第二类通信节点为移动 终端。 基站上每个扇区配置有 Nt根线性阵列的天线, 每根天线的极化方向 都一样, 比如正 45。 极化天线或负 45° 极化天线或水平极化天线或垂直极 化天线, 天线排列如图 2(a)所示。 这 Nt根天线, 可以通过 Ns∞m个权值向量 将其虚拟成个 Ns∞m不同方向的波束。 其中, 它权值向量为 为 N, x l的范 数为 1 的列向量, i = UBeam 一个简单的例子是, 它是 DFT 矢量, 即
^ = ^[1 … e^w^ f 。 θ 即为波束的指向方向。 基站和终端通过如 下步骤完成发送数据的波束选择。
( 1 )基站在 个时隙内, 依次选择一个波束权值向量对天线进行加 权形成波束赋形发送信号, 每个时刻与一个权值向量索引绑定。
( 2 )终端选择在 个时隙内接收基站发送的信号, 并计算对应的接 收信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量信 息为 Cg/,, i = U
( 3 )终端反馈最大的 M个 对应的波束索引反馈给基站
( 4 )基站接收终端发送的索引, 并通过如下方法从中选择最终用来发 送数据的波束。
设所有接收到的初始波束索引集合为 S2, 最终用来发数据的目的波束 索引集合为 S3, 且 S3初始化为空集。 通过如下步骤(4.1 ) 至步骤(4.4 ) 完成波束的最终确定。
( 4.1 )在 S2里选择一个信道质量信息 最大的波束索引, 并将其从 S2中删除, 将其并入集合 S3。
( 4.2 )选择 S2里的一个波束, 并将其从 S2中删除, 该波束与 S3里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间 的权向量是正交的。
( 4.3 )重复执行步骤(4.2 )直到集合 S2为空。
( 4.4 )确定 S3集合的元素个数为最终的发送数据的波束个数, S3里 的索引对应的波束即为最终用来发送数据的目的波束。
通过步骤(1 ) - ( 4 )基站和终端完成了波束的选择过程, 基站按最终 确定的波束对该终端发送数据。 这个过程是可以在一定的周期周期性地进 行。 或者由终端在必要时触发基站后进行。 也可以是基站根据当前的信道 质量信息触发后进行。
这里的时隙, 在正交频分复用 ( Orthogonal Frequency Division Multiplexing,OFDM ) ***里的 OFDM符号, 或者正交频分复用多址接入 ( Orthogonal Frequency Division Multiplexing Access,OFDMA ) 的 OFDMA 符号。
在另外的实施例中, 步骤( 2 )里的信道质量信息也可以是接收信噪比, 接收信干噪比, 接收载干噪比等。
在另外的实施例中, 步骤(4.2 )用下面的方法替换: 选择 S2里的一个 波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合里的任何一 个波束的权值信息距离大于 Dl。 这里, 距离指两个权值信息的弦距离 d = ^\-\ Wi HWj \2; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 步骤(4.2 )用下面的方法替换: 选择 S2里的一个 波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合里的任何一 个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值信息的内积 ; 其中, 上标 表示对向量的共轭转置。
在另外的实施例中, 步骤( 3 )里选择 M个反馈的波束可以按如下方式 进行:
设所有的原始波束索引集合为 Sl, 用来发数据的初始波束索引集合为 S2, 且 S2初始化为空集。 通过如下步骤(3.1 )至步骤(3.4 ) 完成波束的 最终确定。
( 3.1 )在 S1里选择信道质量信息最大的波束索引, 并将其从 S1中删 除, 将其并入集合 S2。
( 3.2 )选择 S1里的一个信道质量信息大于 TH1的波束, 或者其信道 质量信息与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该 波束与 S2里的任何一个波束不在同一个组里。 这里的波束分组, 指基站和 终端预先分好的, 比如, 这里的波束分组, 指基站和终端预先分好的, 比 如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间的权向量 是正交的。
( 3.3 )重复执行步骤(3.2 )直到集合 S1为空。
( 3.4 )确定 S2集合的元素个数为待发送的波束个数M, S2里的索引 对应的波束即为初始的 M个波束。
这时, 步骤(4 )可以直接确定最终的发送数据的目的波束。
当然, 在另外的实施例中, 步骤(3.2 )可以用如下方法替换: 选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值向量的弦距离 =小— \ w w}\ ; 其中, 上标 H表示对向量的 共轭转置。
当然, 在另外的实施例中, 步骤(3.2 )可以用如下方法替换: 选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值向量的内积 r = ; 其中, 上标 H表示对向量的共轭 转置。
具体实施例 3:
本实施例中, 第一类通信节点假设为基站, 而第二类通信节点为移动 终端。 基站上每个扇区配置有 Nt根线性双极化阵列的天线, 每根天线可以 是正 45。 极化天线或负 45° 极化天线或水平极化天线或垂直极化天线, 天 线排列如图 2 (b)所示。这 Nt根天线,可以通过 ^ 个权值向量将其虚拟成 个 不同方向的波束。 其中, 权值向量为 ^, ^为 N, x l的范数为 1的列向 i = \, , Nne 一个简单的例子是, 处于同一极化方向的天线子阵列, 它 是 DFT矢量, 即 =, [1 β 2 π]θ' … 1 f 。 6;.即为该极化方向天线子阵列
^t
波束的指向方向 , 则整个天线阵列 的权值向量可以表示为 基站和终端通过如下步骤完成发送数据的波束选择
Figure imgf000019_0001
( 1 )基站在 个时隙内, 依次选择一个子阵列的权向量 对同一个 极化方向的天线进行加权以形成波束发送信号, 每个时刻与一个 索引绑 定。
其中,选择子阵列的权值发送数据,可以成倍地减小发送波束的时隙。
( 2 )终端选择在 个时隙内接收基站发送的信号, 并计算对应的接 收信号的信道质量信息, 如接收功率。 其中, 第 i 个时隙对应的信道质量 信息为 C¾/,, i = U B
( 3 )终端反馈最大的 M个 对应的波束索引反馈给基站
( 4 )基站接收终端发送的索引, 并通过如下方法从中选择最终用来发 送数据的波束。 设所有接收到的初始波束索引集合为 S2, 最终用来发数据的目的波束 索引集合为 S3, 且 S3初始化为空集。 通过如下步骤(4.1 )至步骤(4.4) 完成波束的最终确定。
( 4.1 )在 S2里选择一个波束索引, 并将其从 S2中删除, 将其并入集 合 S3。
(4.2)选择 S2里的一个波束, 并将其从 S2中删除, 该波束与 S3里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间 的权向量是正交的。
(4.3)重复执行步骤( 4.2 ) 直到集合 S2为空。
(4.4)确定 S3集合的元素个数为最终的发送数据的波束个数, S3里 的索引对应的波束即为选择的最终选择的波束, 用该波束对应的权值形成 整个天线阵列的权值, 并用整个阵列的权值来发送数据的波束。 用子阵列的权值 生成整个阵列的权值方式为,
Figure imgf000020_0001
通过步骤( 1 ) _ ( 4 )基站和终端完成了波束的选择过程, 基站按最终 确定的波束对该终端发送数据。 这个过程是可以在一定的周期周期性地进 行。 或者由终端在必要时触发基站后进行。 也可以是基站根据当前的信道 质量信息触发后进行。
这里的时隙, 在正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM) ***里的 OFDM 符号, 或者正交频分复用多址接入 ( Orthogonal Frequency Division Multiplexing Access, OF DMA ) 的 OF DMA 符号。
在另外的实施例中, 步骤( 2 )里的信道质量信息也可以是接收信噪比, 接收信干噪比, 接收载干噪比等。
在另外的实施例中, 步骤(4.2)用下面的方法替换: 选择 S2 里的一 个波束, 并将其从 S2 中删除, 该波束对应的权值信息与 S2集合里的任何 一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值向量的弦距离 d = ^\-\Wi HWj\2; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 步骤(4.2)用下面的方法替换: 选择 S2 里的一 个波束, 并将其从 S2 中删除, 该波束对应的权值信息与 S2集合里的任何 一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值向量的内积 r = \Wl HWJ\ 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 步骤(3)里选择 M个反馈的波束可以按如下方式 进行:
设所有的原始波束索引集合为 Sl, 用来发数据的初始波束索引集合为 S2, 且 S2初始化为空集。 通过如下步骤( 3.1 )至步骤( 3.4 ) 完成波束的 最终确定。
( 3.1 )在 S1里选择信道质量信息最大的波束索引, 并将其从 S1中删 除, 将其并入集合 S2。
( 3.2)选择 S1里的一个信道质量信息大于 TH1的波束, 或者其信道 质量信息与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该 波束与 S2里的任何一个波束不在同一个组里。 这里的波束分组, 指基站和 终端预先分好的, 比如, 这里的波束分组, 指基站和终端预先分好的, 比 如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间的权向量 是正交的。
( 3.3)重复执行步骤( 3.2 ) 直到集合 S1为空。
( 3.4)确定 S2集合的元素个数为待发送的波束个数 M, S2里的索引 对应的波束即为初始的 M个波束。
这时, 步骤(4)可以直接确定最终的发送数据的目的波束。
当然, 在另外的实施例中, 步骤(3.2)可以用如下方法替换: 选择 SI里的一个信道质量信息大于 TH1的波束, 或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息距离大于 Dl。 这里, 距 离指两个权值向量的弦距离 =小—
Figure imgf000022_0001
; 其中, 上标 H表示对向量的共 轭转置。
当然, 在另外的实施例中, 步骤(3.2)可以用如下方法替换: 选择 S1里的一个信道质量信息大于 TH1的波束, 或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值信息的内积 r =
Figure imgf000022_0002
; 其中, 上标 H表示对向量的共轭 转置。
具体实施例 4:
本实施例中, 第一类通信节点假设为基站, 而第二类通信节点为移动 终端。 基站上每个扇区配置有 Nt根平面阵列的天线, 每根天线的极化方向 都一样, 比如正 45。 极化天线或负 45° 极化天线或水平极化天线或垂直极 化天线, 天线排列如图 2(c)所示, 这些天线排列成N1行M1列。 这 Nt根天 线, 可以通过^ 个权值向量将其虚拟成个 不同方向的波束。 其中, 它权值向量为 ^,^为 xl的范数为 1的列向量, i二 ,··',ΝΒ醒 。 一个简单的 例 子 是 , 每 一 列 的 天 线 的 权 值 它 是 DFT 矢 量 , 即 w;=^[\ β2π]φ· … ― Wif。 即为该列波束的指向方向, / = i,...,Nv。每一 行的天线的权值它是 DFT 矢量, 即 =_^[1 … e 2 - 。 即为 该行波束的波束的指向方向, m二 \,'",Nh。 基站列用这两个方向的波束对应 的权值形成最终的权值为 W = Wk ®W 或者 = ® 这里, Vh同一列天线 的权值, ^^为同一行天线的权值, ®表示 kronecker积。 基站和终端通过两 个阶段完成对波束的选择过程。
第一阶段, 通过如下步骤, 完成对同一列天线的波束选择。
(1 )基站在 Nv个时隙内, 依次选择一个波束权值 v向量对同 1 列的 天线进行加权形成波束赋形发送信号, 每个时刻与一个权值向量索引绑定。
( 2 )终端选择在 Nv个时隙内接收基站发送的信号, 并计算对应的接收 信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量信息 为 (¾/,, i二 \,··',Νν
(3)终端反馈最大的 对应的波束索引反馈给基站
(4)基站接收终端发送的索引, 并确定该列的波束赋形权值为 ;。 第二阶段, 通过如下步骤完成对同一行天线波束的选择:
(1 )基站在 NA个时隙内, 依次选择一个波束权值^ ¾向量对同 1行的 天线进行加权形成波束赋形发送信号, 每个时刻与一个权值向量索引绑定。
( 2 )终端选择在 Nh个时隙内接收基站发送的信号, 并计算对应的接收 信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量信息 为 (¾/,, i = \,'",Nh
( 3 )终端反馈最大的 M个 对应的波束索引反馈给基站
(4)基站接收终端发送的索引, 并确通过如下方式确定该行的天线的 波束索引。
设所有接收到的初始波束索引集合为 S2, 最终用来发数据的目的波束 索引集合为 S3, 且 S3初始化为空集。 通过如下步骤(4.1 ) 至步骤(4.4) 完成波束的最终确定。
(4.1 )在 S2里选择一个波束索引, 并将其从 S2中删除, 将其并入集 合 S3。
(4.2)选择 S2里的一个波束, 并将其从 S2中删除, 该波束与 S3里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间 的权向量是正交的。
(4.3)重复执行步骤(4.2)直到集合 S2为空。
(4.4)确定 S3集合的元素个数为最终的发送数据的波束个数, S3里 的索引对应的波束即为最终用来发送数据的波束。
通过步骤(1 ) - (4)基站和终端完成了第二阶段的波束的选择过程,
^^设选择的波束对应的权值为 基站通过第一阶段确定的波 束权值 和第二阶段确定的权值形成最终的权值。 其中这个过程可以为
Wm=Wo v pt®W^m = m --mk , 或者 Wm =W ^nn , 这里, ®表示 kronecker积。 基站按最终确定的波束对该终端发送数据。 这个过程是可以 在一定的周期周期性地进行。 或者由终端在必要时触发基站后进行。 也可 以是基站根据当前的信道质量信息触发后进行。
这里的时隙, 在正交频分复用 ( Orthogonal Frequency Division Multiplexing,OFDM ) ***里的 OFDM符号, 或者正交频分复用多址接入 ( Orthogonal Frequency Division Multiplexing Access,OFDMA ) 的 OFDMA 符号。
在另外的实施例中, 步骤( 2 )里的信道质量信息也可以是接收信噪比, 接收信干噪比, 接收载干噪比等。
在另外的实施例中, 第二阶段的步骤(4.2)用下面的方法替换: 选择 S2里的一个波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合 里的任何一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值信息的 弦巨离 = -1 if ; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 第二阶段的步骤(4.2)用下面的方法替换: 选择 S2里的一个波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合 里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值向 量的内积 r =
Figure imgf000025_0001
; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 第二阶段的步骤( 3 )里选择 M个反馈的波束可以 按如下方式进行:
设所有的原始波束索引集合为 Sl, 用来发数据的初始波束索引集合为 S2, 且 S2初始化为空集。 通过如下步骤(3.1 )至步骤(3.4 ) 完成波束的 最终确定。
( 3.1 )在 S1里选择信道质量信息最大的波束索引, 并将其从 S1中删 除, 将其并入集合 S2。
( 3.2 )选择 S1里的一个信道质量信息大于 TH1的波束, 或者其信道 质量信息与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该 波束与 S2里的任何一个波束不在同一个组里。 这里的波束分组, 指基站和 终端预先分好的, 比如, 这里的波束分组, 指基站和终端预先分好的, 比 如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间的权向量 是正交的。
( 3.3 )重复执行步骤(3.2 )直到集合 S1为空。
( 3.4 )确定 S2集合的元素个数为待发送的波束个数M, S2里的索引 对应的波束即为待反馈的 M个波束对应的索引。
这时, 第二阶段的步骤( 4 )可以直接确定最终的发送数据的目的波束。 当然, 在另外的实施例中, 第二阶段的步骤(3.2 ) 可以用如下方法替 换:
选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值信息的弦距离 =小— \ w w}\ ; 其中, 上标 H表示对向量的 共轭转置。 当然, 在另外的实施例中, 第二阶段的步骤(3.2) 可以用如下方法替 换:
选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值向量的内积 r =
Figure imgf000026_0001
其中, 上标 H表示对向量的共轭 转置。
具体实施例 5:
本实施例中, 第一类通信节点假设为基站, 而第二类通信节点为移动 终端。 基站上每个扇区配置有 Nt根平面阵列的天线, 每根天线有一个极化 方向, 比如正 45。 极化天线或负 45° 极化天线或水平极化天线或垂直极化 天线, 天线排列如图 2(d)所示, 这些天线排列成 11列。 这 Nt根天线, 可以通过 NB∞m个权值向量将其虚拟成个 NB∞m不同方向的波束。 其中, 它权 值向量为 , ^为 N,xl的范数为 1 的列向量, ί = ,'··,ΝΒ 一个简单的例 子是,每一列的天线的权值它是 DFT矢量,即 J =~^[l β2πιφ' … e 即为该列波束的指向方向, / = 1,.. NV。 每一行的同一极化方向的天线的权 值它是 DFT矢量, 即 m A=~^[i β2π]θ' … Μ2 f。 即为该行波束的波束 的指向方向, 1 = \,·'·,Νν , 该行所有天线的权值矢量可以表示为 基站列用这两个方向的波束对应的权值形成最终
Figure imgf000026_0002
的权值为 = A® v,或者 = v® A,这里, ν同一列天线的权值, W11为 同一行天线的权值, ®表示 kronecker积。 基站和终端通过两个阶段完成对 波束的选择过程。
第一阶段, 通过如下步骤, 完成对同一列天线的波束选择。 (1 )基站在 Nv个时隙内, 依次选择一个波束权值 向量对同 1 列的 天线进行加权形成波束赋形发送信号, 每个时刻与一个权值向量索引绑定。
( 2 )终端选择在 Nv个时隙内接收基站发送的信号, 并计算对应的接收 信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量信息 为 (¾/,, i二 \,··',Νν
(3)终端反馈最大的 对应的波束索引反馈给基站
(4)基站接收终端发送的索引, 并确定该列的波束赋形权值为 ;。 第二阶段, 通过如下步骤完成对同一行天线波束的选择:
(1 )基站在 NA个时隙内, 依次选择一个波束权值 向量对同 1行的 同一极化方向的天线进行加权形成波束赋形发送信号, 每个时刻与一个权 值向量索引绑定。
( 2 )终端选择在 Nh个时隙内接收基站发送的信号, 并计算对应的接收 信号的信道质量信息, 如接收功率。 其中, 第 i个时隙对应的信道质量信息 为 (¾/,, i = \,'",Nh
( 3 )终端反馈最大的 M个 对应的波束索引反馈给基站
(4)基站接收终端发送的索引, 并确通过如下方式确定该行的天线的 波束索引。
设所有接收到的初始波束索引集合为 S2, 最终用来发数据的目的波束 索引集合为 S3, 且 S3初始化为空集。 通过如下步骤(4.1 ) 至步骤(4.4) 完成波束的最终确定。
(4.1 )在 S2里选择一个波束索引, 并将其从 S2中删除, 将其并入集 合 S3。
(4.2)选择 S2里的一个波束, 并将其从 S2中删除, 该波束与 S3里 的任何一个波束不在同一个组里。 这里的波束分组, 指基站和终端预先分 好的, 比如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间 的权向量是正交的。
(4.3)重复执行步骤(4.2)直到集合 S2为空。
(4.4)确定 S3集合的元素个数为最终的发送数据的波束个数, S3里 的索引对应的波束即为最终用来发送数据的波束。
通过步骤(1 ) - (4)基站和终端完成了第二阶段的波束的选择过程, 支设选择的波束对应的权值为 J^,m =mx,---mk , 则该行天线的波束赋形权值
。 基站通过第一阶段确定的波束权值
Figure imgf000028_0001
和第二阶段确定的权值形成最终的权值。 其中这个过程可以为
Wm =Wo v pt®W^m = ml,--mk , 或者 Wm =W <8>W;,m = mk , 这里, ®表示 kronecker积。 基站按最终确定的波束对该终端发送数据。 这个过程是可以 在一定的周期周期性地进行。 或者由终端在必要时触发基站后进行。 也可 以是基站根据当前的信道质量信息触发后进行。
这里的时隙, 在正交频分复用 ( Orthogonal Frequency Division Multiplexing,OFDM ) ***里的 OFDM符号, 或者正交频分复用多址接入 ( Orthogonal Frequency Division Multiplexing Access,OFDMA ) 的 OFDMA 符号。
在另外的实施例中, 步骤( 2 )里的信道质量信息也可以是接收信噪比, 接收信干噪比, 接收载干噪比等。
在另外的实施例中, 第二阶段的步骤(4.2)用下面的方法替换: 选择 S2里的一个波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合 里的任何一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值向量的 弦巨离 = -1 if ; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 第二阶段的步骤(4.2)用下面的方法替换: 选择 S2里的一个波束, 并将其从 S2中删除, 该波束对应的权值信息与 S2集合 里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值向 量的内积 r =
Figure imgf000029_0001
; 其中, 上标 H表示对向量的共轭转置。
在另外的实施例中, 第二阶段的步骤( 3 )里选择 M个反馈的波束可以 按如下方式进行:
设所有的原始波束索引集合为 Sl, 用来发数据的初始波束索引集合为 S2, 且 S2初始化为空集。 通过如下步骤(3.1 )至步骤(3.4 ) 完成波束的 最终确定。
( 3.1 )在 S1里选择信道质量信息最大的波束索引, 并将其从 S1中删 除, 将其并入集合 S2。
( 3.2 )选择 S1里的一个信道质量信息大于 TH1的波束, 或者其信道 质量信息与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该 波束与 S2里的任何一个波束不在同一个组里。 这里的波束分组, 指基站和 终端预先分好的, 比如, 这里的波束分组, 指基站和终端预先分好的, 比 如, 每组波束里的权值信息是相关的且弦距离尽量大, 而组之间的权向量 是正交的。
( 3.3 )重复执行步骤(3.2 )直到集合 S1为空。
( 3.4 )确定 S2集合的元素个数为待发送的波束个数M, S2里的索引 对应的波束即为待反馈的 M个波束对应的索引。
这时, 第二阶段的步骤( 4 )可以直接确定最终的发送数据的目的波束。 当然, 在另外的实施例中, 第二阶段的步骤(3.2 ) 可以用如下方法替 换:
选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息距离大于 Dl。 这里, 距离指两个权值信息的弦距萬 小— \ w w}\ ; 其中, 上标 H表示对向量的 共轭转置。
当然, 在另外的实施例中, 第二阶段的步骤(3.2 ) 可以用如下方法替 换:
选择 S1里的一个信道质量信息大于 TH1的波束,或者其信道质量信息 与最大信道质量信息相差小于 D3的波束,并将其从 S1中删除, 该波束对应 的权值信息与 S2集合里的任何一个波束的权值信息相关性小于 D2。 这里, 相关性指两个权值信息的内积 r = ; 其中, 上标 H表示对向量的共轭 转置。
为了更好的实现上述目的, 本发明实施例又提供一种实现波束赋形的 装置, 可应用于第一类通信节点, 所述装置包括:
发送模块 01, 配置为发送原始波束;
接收模块 02, 配置为接收第二类通信节点确定的初始波束索引集合; 第一确定模块 03, 配置为根据所述初始波束索引集合确定目的波束。 上述发送模块 01的具体结构可包括无线发送接口, 如发送天线或发送 天线阵列。
所述接收模块 02的具体结构可包括无线接收接口, 如接收甜天线或接 收天线阵列。
所述第一确定模块 03的具体结构可包括处理器及存储介质; 所述存储 介质上存储有可读指令; 所述处理器通过内部通信接口或地址总线和数据 总线与所述存储介质相连; 所述处理器运行所述可读指令, 实现根据初始 波束索引集合确定目的波束的功能。 所述处理器可为微处理器、 中央处理 器或数字信号处理器等。 在具体的实现过程中, 所述第一确定模块 03还可 是可编程逻辑阵列等具有处理功能的电子元器件的。
为了更好的实现上述目的, 本发明实施例还提供一种实现波束赋形的 装置, 可应用于第二类通信节点, 所述装置包括: 计算模块 04, 配置为接收所述第一类通信节点发送的原始波束, 并计 算波束的信道质量信息;
第二确定模块 05, 配置为才艮据所述波束的信道质量信息确定初始波束 索引集合;
发送模块 06, 配置为向所述第一类通信节点发送所述初始波束索引集 合。
所述计算模块 04的具体结构可包括计算器或具有计算功能的处理器。 述第二确定模块 05具体结构可包括处理器及存储介质; 所述存储介质 上存储有可读指令; 所述处理器通过内部通信接口或地址总线和数据总线 与所述存储介质相连; 所述处理器运行所述可读指令, 实现根据初始波束 索引集合确定目的波束的功能。 所述处理器可为微处理器、 中央处理器或 数字信号处理器等。 在具体的实现过程中, 所述第一确定模块 05还可是可 编程逻辑阵列等具有处理功能的电子元器件的。
所述发送模块 06的具体结构可包括发送接口, 如发送天线等结构。 本发明的实施例中, 通过第一类通信节点和第二类通信节点协作来选 择波束, 在减小波束反馈量的同时, 提高了选择波束的准确性, 提高了无 线通讯***的性能, 增加了***的覆盖范围。 其中上述波束赋形方法及确 定初始波束索引集合方法的所有实施例及其有益效果在本实现波束赋形的 ***中均适用。
本发明实施例还记载一种计算机存储介质, 所述计算机存储介质中存 储有计算机可执行指令, 所述计算机可执行指令用于执行可应用于第一类 通信节点的任一项所述的方法。
本发明实施例还记载了另一种计算机存储介质, 所述计算机存储介质 中存储有计算机可执行指令, 所述计算机可执行指令用于执行可应用于第 二类通信节点所述的方法。 所述计算机存储介质可为 U盘、 光盘、 DVD或磁带等具有存储功能的 存储设备; 具体的所述计算机存储介质优选为非瞬间存储介质。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 凡按照本发明原理所作的修改, 都应当理解为落入本发明的保护 范围。

Claims

权利要求书
1. 一种波束赋形方法, 所述波束赋形方法, 包括:
发送原始波束;
接收第二类通信节点根据所述原始波束确定的初始波束索引集合; 根据所述初始波束索引集合确定用来发送数据的目的波束。
2. 根据权利要求 1所述的波束赋形方法, 其中, 所述第二类通信节点 为应用终端。
3. 根据权利要求 1所述的波束赋形方法, 其中, 发送原始波束的步骤 包括:
选择极化方向相同的一组天线发送原始波束。
4. 根据权利要求 1所述的波束赋形方法, 其中, 发送原始波束的步骤 包括:
选择排列在同一行的一组同一极化方向的天线发送原始波束或者选择 排列在同一列的一组同一极化方向的天线发送原始波束。
5. 根据权利要求 1所述的波束赋形方法, 其中, 根据所述初始波束索 引集合确定用来发送数据的目的波束的步骤包括:
依次从初始波束索引中选择一个索引作为第一被比较索引, 并从初始 波束索引集合中删除, 如果所述第一被比较索引满足下面条件之一, 将第 一所述被比较索引并入目的波束索引集合:
al . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的距离大于第二门限值, 其中所述距离指 两个权值信息的弦距离;
bl . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息的相关性小于第三门限值, 其中所述相关 性指两个权值信息的内积;
cl . 第一被比较索引对应波束的权值信息与任何一个初始波束索引集 合里的索引对应的波束权值信息不在同一组, 其中所述的波束分组是预先 分好的;
确定目的波束索引集合对应的波束为目的波束。
6. 一种确定初始波束索引集合的方法, 所述确定初始波束索引集合的 方法, 包括:
接收第一类通信节点发送的原始波束对应的信号, 并计算信道质量信 息;
根据所述信道质量信息, 确定初始波束索引集合, 并反馈给所述第一 类通信节点。
7. 根据权利要求 6所述的确定初始波束索引集合的方法, 其中, 所述 第一类通信节点为无线通信设备。
8. 根据权利要求 6所述的确定初始波束索引集合的方法, 其中, 所述 信道质量信息包括但不限于接收功率、 接收信噪比、 接收信干噪比和接收 载干噪比之一。
9. 根据权利要求 6所述的确定初始波束索引集合的方法, 其中, 根据 所述信道质量信息, 确定初始波束索引集合的步骤包括:
确定原始波束中信道质量信息最大值;
定义原始波束对应的波束索引为原始波束索引集合, 依次从原始波束 索引中选择一个索引作为第二被比较索引, 将所述第二被比较索引从原始 波束索引集合中删除, 如果满足下列条件之一, 将所述第二被比较索引合 并到初始波束索引集合中:
a2. 第二被比较索引对应波束的信道质量信息大于第一门限值; b2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的距离大于第 三门限值, 其中所述距离指两个权值信息的弦距离;
c2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息的相关性小于 第四门限值, 其中所述相关性指两个权值信息的内积;
d2. 第二被比较索引对应波束的信道质量信息与所述信道质量信息的 最大值相差小于第二门限值, 且所述被比较索引对应波束的权值信息与其 它任何一个原始波束索引集合里的索引对应波束的权值信息不在同一分 组, 其中所述的波束分组是预先分好的。
10. 根据权利要求 9所述的确定初始波束索引集合的方法, 其中, 所述 第一门限值包括以下至少之一:
e. 预先配置的固定值;
f . 所述原始波束中所有波束的信道质量信息的平均值;
g. 将所述原始波束的信道质量信息按从大到小的顺序排列, 并依次取 大于初始波束索引集合对应波束个数的原始波束的信道质量信息的平均 值。
11. 一种实现波束赋形的装置, 所述装置包括:
发送模块, 配置为发送原始波束;
接收模块, 配置为接收第二类通信节点确定的初始波束索引集合; 第一确定模块, 配置为根据所述初始波束索引集合确定目的波束。
12. 一种实现波束赋形的装置, 所述装置包括:
计算模块, 配置为接收第一类通信节点发送的原始波束, 并计算波束 的信道质量信息; 第二确定模块, 配置为根据所述波束的信道质量信息确定初始波束索 引集合;
发送模块, 配置为向所述第一类通信节点发送所述初始波束索引集合。
13、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 1至 5任一项所述的方 法。
14、 一种计算机存储介质, 所述计算机存储介质中存储有计算机可执 行指令, 所述计算机可执行指令用于执行权利要求 6至 10任一项所述的方 法。
PCT/CN2014/078555 2013-11-20 2014-05-27 波束赋形方法、确定索引集合的方法、装置和存储介质 WO2014183707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310589504.7 2013-11-20
CN201310589504.7A CN104660311B (zh) 2013-11-20 2013-11-20 一种波束赋形方法、确定初始波束索引集合的方法及装置

Publications (1)

Publication Number Publication Date
WO2014183707A1 true WO2014183707A1 (zh) 2014-11-20

Family

ID=51897766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078555 WO2014183707A1 (zh) 2013-11-20 2014-05-27 波束赋形方法、确定索引集合的方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN104660311B (zh)
WO (1) WO2014183707A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160805A (zh) * 2015-03-31 2016-11-23 富士通株式会社 波束选择方法、装置以及通信***
CN109004958A (zh) * 2017-06-06 2018-12-14 财团法人工业技术研究院 用户设备及其操作方法,网络装置及其操作方法
CN112436877A (zh) * 2020-11-17 2021-03-02 江苏韦伯通讯科技有限公司 一种波束处理方法及装置
US20220247463A1 (en) * 2019-06-13 2022-08-04 Mitsubishi Electric Corporation Method, base station, system and computer program for massive mimo communication

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9872337B2 (en) * 2015-12-09 2018-01-16 Google Llc Backhaul-optimized beamforming in IEEE 802.11ad networks
CN106921422B (zh) * 2015-12-24 2021-05-07 上海诺基亚贝尔股份有限公司 用于mmw信道中的混合波束成形的信道估计的方法和***
US10181891B2 (en) 2016-05-26 2019-01-15 Qualcomm Incorporated System and method for beam switching and reporting
US10498406B2 (en) 2016-05-26 2019-12-03 Qualcomm Incorporated System and method for beam switching and reporting
US10541741B2 (en) 2016-05-26 2020-01-21 Qualcomm Incorporated System and method for beam switching and reporting
US10651899B2 (en) 2016-05-26 2020-05-12 Qualcomm Incorporated System and method for beam switching and reporting
CN107888260B (zh) * 2016-09-30 2020-10-20 电信科学技术研究院 一种波束选择方法及相关设备
CN107888263A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 物理下行控制信道的传输方法和装置、基站及终端
CN108347272B (zh) 2017-01-25 2020-12-15 华为技术有限公司 一种基于波束组进行通信的方法及设备
WO2019028860A1 (en) 2017-08-11 2019-02-14 Qualcomm Incorporated SCALABLE METHOD FOR BEAM SELECTION INDICATION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用***的多天线通信方法
US20090225728A1 (en) * 2008-03-10 2009-09-10 Zhifeng Tao Analogue Beamforming
CN102067472A (zh) * 2008-08-15 2011-05-18 上海贝尔股份有限公司 基于固定波束族的波束赋形方法、基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用***的多天线通信方法
US20090225728A1 (en) * 2008-03-10 2009-09-10 Zhifeng Tao Analogue Beamforming
CN102067472A (zh) * 2008-08-15 2011-05-18 上海贝尔股份有限公司 基于固定波束族的波束赋形方法、基站和用户设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160805A (zh) * 2015-03-31 2016-11-23 富士通株式会社 波束选择方法、装置以及通信***
CN109004958A (zh) * 2017-06-06 2018-12-14 财团法人工业技术研究院 用户设备及其操作方法,网络装置及其操作方法
US20220247463A1 (en) * 2019-06-13 2022-08-04 Mitsubishi Electric Corporation Method, base station, system and computer program for massive mimo communication
CN112436877A (zh) * 2020-11-17 2021-03-02 江苏韦伯通讯科技有限公司 一种波束处理方法及装置
CN112436877B (zh) * 2020-11-17 2022-08-05 江苏韦伯通讯科技有限公司 一种波束处理方法及装置

Also Published As

Publication number Publication date
CN104660311A (zh) 2015-05-27
CN104660311B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2014183707A1 (zh) 波束赋形方法、确定索引集合的方法、装置和存储介质
WO2015161795A1 (zh) 一种信道状态信息测量的方法、***及设备
JP5391335B2 (ja) 多入力多出力ビーム形成のデータ送信方法及び装置
WO2015109774A1 (zh) 获取方法、波束发送方法、通信节点、***和存储介质
WO2013000260A1 (zh) 信道信息反馈方法及装置
CN109327918B (zh) 一种低开销的fdd大规模mimo下行信道重建方法
CN105027458B (zh) 一种信道信息获取的方法、装置及***
WO2018171604A1 (zh) 信息的传输方法和设备
EP3026823B1 (en) Method and device for acquiring channel information
WO2013091305A1 (zh) 波束赋形方法、通信站及移动站
EP3142261B1 (en) Antenna port mapping method and device
WO2013139163A1 (zh) 一种双流波束赋形方法及装置
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信***
WO2016001951A1 (ja) 送信制御装置及びプログラム
WO2016183803A1 (zh) 天线阵列的信道信息反馈方法与装置
WO2011110123A2 (zh) 数据传输方法和装置
WO2014063653A1 (zh) 利用三维波束码本进行通信的方法、装置及基站
CN107947837B (zh) 一种波束分组扫描方法和装置
WO2015096143A1 (zh) 一种传输信道状态信息的传输方法和设备
Yao et al. Multi-beam on-demand power allocation MAC protocol for MIMO terahertz communication networks
WO2017113112A1 (zh) 一种确定预编码矩阵的方法及装置
JP2014512706A (ja) 高速rfリンク技術
WO2015067031A1 (zh) 一种信道信息获取的方法、装置
CN110912600B (zh) 一种通信方法、装置、设备及存储介质
CN110417692B (zh) 上行信道的追踪方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797456

Country of ref document: EP

Kind code of ref document: A1