WO2014063653A1 - 利用三维波束码本进行通信的方法、装置及基站 - Google Patents

利用三维波束码本进行通信的方法、装置及基站 Download PDF

Info

Publication number
WO2014063653A1
WO2014063653A1 PCT/CN2013/085985 CN2013085985W WO2014063653A1 WO 2014063653 A1 WO2014063653 A1 WO 2014063653A1 CN 2013085985 W CN2013085985 W CN 2013085985W WO 2014063653 A1 WO2014063653 A1 WO 2014063653A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
vector
antenna
kth
codebook
Prior art date
Application number
PCT/CN2013/085985
Other languages
English (en)
French (fr)
Inventor
武雨春
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014063653A1 publication Critical patent/WO2014063653A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, apparatus, and base station for communicating using a three-dimensional beam codebook. Background technique
  • Multi-antenna technology is widely used in current mainstream wireless communication systems.
  • the cellular system includes LTE (Long Term Evolution) system, WiMAX (World Interoperability for Microwave Access), and short-range wireless communication.
  • the system has various versions of WiFi (Wireless Fidelity) system.
  • the multi-antenna technology mainly uses a plurality of transmitting antennas and a plurality of receiving antennas between the transmitter and the receiver for transmission and reception processing, that is, MIMO (Multiple Input Multiple Output Multiple Input Multiple Output) )technology.
  • the transmitting station is usually a plurality of linearly arranged antennas.
  • the typical number is 2 and 4, and the configuration of up to 8 antennas is introduced in the Rel-10 (version 10) version of the LTE system. . Even so, in the current civil communication system, there are at most eight antennas arranged in a line along a horizontal or vertical direction.
  • the transmitter has more available spatial degrees of freedom because of the more number of transmitting antennas, so that the active beamforming of the transmitter can be realized, that is, the transmitter with the antenna array can be A plurality of spatial regions of controllable size range are radiated on the three-dimensional airspace. This opens up the possibility of a new and higher spectrum efficiency direction for wireless communication systems.
  • the above-mentioned transmitter with an array antenna needs to obtain more system gain due to the number of transmitting antennas, among which The design problem of the codebook in three-dimensional space must be solved. Otherwise, the possible performance gains theoretically provided by the array antenna cannot be obtained.
  • LTE R8 a design scheme of a transmission codebook of up to 4 antennas is defined in LTE R8.
  • This scheme defines one, two, and four streams of transmitted codebooks for up to four transmit antennas.
  • the design background of these codebooks is mainly SU-MIMO (Single User-MIMO), and the antenna structure is up to four antennas arranged in a line in a ULA (Uniform Linear Array) array.
  • This codebook obviously cannot be directly used in antenna array systems like 8-column 4-line scenes.
  • these codebooks are mainly used for precoding in the horizontal direction, failing to achieve the orientation of multiple elevation angles in the vertical direction, and not enabling beam mapping in three dimensions.
  • a base station transmission codebook of 8 antennas is defined in LTE R10.
  • This codebook is suitable for both MU-MIMO (Multiple User-MIMO) and SU-MIMO.
  • the number of streams supported is: any number between 1 and 8.
  • this codebook is designed for a base station system with up to 8 antennas arranged in the horizontal direction. It is also not suitable for pointing at multiple elevation angles in the vertical direction, nor can it realize beam mapping in three-dimensional space, and is not suitable for the number of antennas.
  • Embodiments of the present invention provide a method, an apparatus, and a base station for performing communication using a three-dimensional beam codebook in a wireless communication system, and can form a beam that can be directed to multiple directions in a three-dimensional space.
  • a first aspect of the present invention provides a method for communicating by using a three-dimensional beam codebook in a wireless communication system, which may include: performing precoding processing on L data streams by using a three-dimensional beam codebook matrix to generate NXM pre-coded data, The three-dimensional beam codebook matrix can be used for precoding of a three-dimensional beam space; the number of rows of the three-dimensional beam codebook matrix is NXM, and the number of columns of the three-dimensional beam codebook matrix is L; At least one of the L new data streams formed by the NXM pre-coded data, the antenna array comprising N x M antennas, the day in the first array direction The number of line ports is M, the number of antenna ports in the direction of the second array is N; LN x M,
  • L l
  • the L data streams form a kth beam
  • the three-dimensional beam codebook matrix is:
  • the first vector of the kth beam is a spatial narrow beam pointing in the direction of the second array
  • l is a second vector of the kth beam, pointing to a spatial beam in the direction of the first array
  • v ( ⁇ Ml is the second vector of length M)
  • the three-dimensional beam codebook matrix is:
  • the first vector of the kth beam is a spatial narrow beam directed to the second array direction
  • V V M-1 is the ith second vector of the kth beam, pointing to the first array side
  • the range of i is an integer greater than or equal to 1 and less than or equal to M, k Is a positive integer.
  • the kth beam serves one or more terminals.
  • the spacing between the antenna elements is the spatial beam position of the main lobe of the kth beam in the second array direction.
  • k is the beamforming vector used by the kth beam in the first array direction
  • a To M - is the element in the ⁇ vector
  • b is the interval between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the direction vector of the kth beam in the first array direction, The spatial beam position of the main lobe of the kth beam in the first array direction.
  • A is the element of the kth beam in the vector of A
  • j represents an imaginary unit
  • j*j -l
  • the position between the antenna elements normalized to the wavelength of the transmission signal in the direction of the direction vector of the kth beam in the second array direction is the main lobe of the kth beam in the direction of the second array Space beam position.
  • k is the beamforming vector used by the kth beam in the first array direction
  • is the main lobe spatial beam position of the kth beam in the first array direction.
  • ⁇ 8( ⁇ ) or k:- cos( 6>), wherein the 61 is a beam angle of the first array direction of the antenna array;
  • the beam angle in the array direction which is the beam angle of the second array direction of the antenna array.
  • 3 ⁇ 4 ⁇ , where the said is the half beamwidth corresponding to the first beamforming vector.
  • Combining the first possible implementation of the first aspect, or the second possible implementation of the first aspect, or the third possible implementation of the first aspect, or the fourth possible implementation of the first aspect Means, or a fifth possible implementation of the first aspect, or a sixth possible implementation of the first aspect, or a seventh possible implementation of the first aspect, or an eighth possible aspect of the first aspect
  • at least one of the first vector and the second vector is: a 4-antenna transmission codebook in an eighth version of the LTE-LTE system, or an 8
  • K is a positive integer, which is a beam codebook having a V1 column selected from a beam codebook matrix of the nl beam, and W n ( 2 ) is selected from the beam code matrix of the n2th beam.
  • the beam codebook of 2 columns, W ⁇ K ) is the beam codebook with v k columns selected in the beam codebook matrix of the Kth beam, nl and n2 are positive integers smaller than K, and ⁇ is not greater than N
  • a positive integer, ⁇ ⁇ 1 1 ! 1 ⁇ 1 , is a positive integer not greater than M.
  • is a positive integer
  • W n ( 2 ) a beam codebook having a v 2 column selected from a beam codebook matrix of the n2th beam
  • W ⁇ K ) is a beam code having a v k column selected from a beam codebook matrix of the Kth beam Ben, nl and n2 are both less than K
  • K is a positive integer not greater than N
  • v ⁇ 1 1 ! 1 v 1
  • is a positive integer not greater than M.
  • the K beams have the same or different powers.
  • the L new data streams formed by the N x M precoded data are mapped onto the antenna array in the order of the first array direction and the second array direction.
  • a second aspect of the present invention provides an apparatus for communicating by using a three-dimensional beam codebook in a wireless communication system, which may include: a precoding module, configured to perform precoding processing on the L data streams by using a three-dimensional beam codebook matrix to generate NXM pre-coded data, wherein the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space;
  • a precoding module configured to perform precoding processing on the L data streams by using a three-dimensional beam codebook matrix to generate NXM pre-coded data, wherein the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space
  • the number of rows of the three-dimensional beam codebook matrix is N x M, and the number of columns of the three-dimensional beam codebook matrix is L;
  • a transmitting module configured to be connected to the precoding module, configured to send, by using an antenna array, at least one of L new data streams formed by the N x M precoded data, where the antenna array includes N x M
  • the number of antenna ports in the first array direction is M
  • the number of antenna ports in the second array direction is N
  • LN x M the number of antenna ports in the second array direction
  • L l
  • the L data streams form a kth beam
  • the three-dimensional beam codebook matrix is:
  • the first vector of the kth beam is a spatial narrow beam pointing in the direction of the second array, l , is the second vector of the kth beam, pointing to the direction of the first array
  • v ( ⁇ Ml is each element in the second vector of length M, k is a positive integer.
  • the three-dimensional beam codebook matrix is:
  • the first vector of the kth beam is a spatial narrow beam directed to the second array direction
  • V V M-1 is the ith second vector of the kth beam, pointing to the first array side
  • v o , ⁇ ⁇ V M-1 is each element of the second vector of length M
  • the value range of i is an integer greater than or equal to 1 and less than or equal to M, where k is A positive integer.
  • the kth beam serves one or more terminals.
  • the spacing between the antenna elements is the spatial beam position of the main lobe of the kth beam in the second array direction.
  • a k is a beamforming vector used by the kth beam in the first array direction, where. , where M is the element in the ⁇ vector, and b is the interval between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the direction vector of the kth beam in the first array direction, The spatial beam position of the main lobe of the kth beam in the first array direction.
  • A is the element of the kth beam in the vector
  • j represents an imaginary unit
  • j*j -l
  • the position between the antenna elements normalized to the wavelength of the transmission signal in the direction of the direction vector of the k beams in the second array direction is the main lobe space of the kth beam in the direction of the second array Beam position.
  • k is the beamforming vector used by the kth beam in the first array direction
  • is the individual elements in the ⁇ vector
  • is the main lobe spatial beam position of the k-th beam in the first array direction.
  • the 61 is the beam angle of the first array direction of the antenna array
  • ⁇ 8( ⁇ ) or k:- cos( 6>), wherein the 61 is a beam angle of the first array direction of the antenna array;
  • the beam angle of an array direction which is the beam angle of the second array direction of the antenna array.
  • ⁇ , where, is the half-beam width corresponding to the first beamforming vector.
  • ⁇ , ] ⁇ 0 , where 0 is the first beamforming vector.
  • 0 is the first beamforming vector.
  • At least one of the first vector and the second vector is: a 4-antenna transmission codebook in an eighth version of the LTE-LTE system, or an 8-antenna transmission codebook in a tenth version of LTE .
  • the L data streams form K beams
  • the three-dimensional beam codebook matrix is:
  • W n Vl is a beam codebook with a V1 column selected in a beam codebook matrix of the nl beam
  • W n ( 2 ) is selected from a beam code matrix of the n2th beam
  • the beam codebook with v 2 columns, W ⁇ K ) is the beam codebook with v k columns selected in the beam codebook matrix of the Kth beam
  • nl and n2 are positive integers smaller than K
  • W W ⁇ ),
  • K is a positive integer
  • (x nl, n2, ......, ⁇ ) a beam power allocation factor, ⁇ 3 ⁇ 4 ⁇ ) nl-th beam for the first beam matrix selected from a codebook having ⁇
  • the beam codebook of 1 column, W n ( 2 ) is the beam codebook with v 2 columns selected in the beam codebook matrix of the n2th beam, W ⁇ VK ) is the beam codebook matrix of the Kth beam
  • the selected beam codebook with v k columns, nl and n2 are positive integers smaller than K, and ⁇ is a positive integer not greater than N, ⁇ is a positive integer not greater than ⁇ .
  • the one of the two beams respectively serves multiple terminals .
  • the one beams have the same or different powers.
  • the method further includes: a mapping module, The L data streams corresponding to the NXM pre-coded data are mapped to the antenna array in the order of the first array direction and the second array direction.
  • a third aspect of the present invention provides a base station, which may include: a wireless modem and an antenna array coupled to the wireless modem; wherein the antenna array includes N x M antennas, and the number of antenna ports in the first array direction is M The number of antenna ports in the second array direction is N; the M and N are positive integers; the wireless modem is configured to perform precoding processing on the L data streams by using the three-dimensional beam codebook matrix to generate NXM Data stream, and mapping L new data streams formed by NXM pre-coded data onto an antenna array; the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space, the three-dimensional beam codebook matrix The number of rows is N x M, the number of columns of the three-dimensional beam codebook matrix is L, LN x M and is a positive integer; and the antenna array is configured to send at least one of the L new data streams.
  • the wireless modem is specifically configured to: perform precoding processing on the L signals by using a three-dimensional beam codebook matrix to generate NXM data streams, and follow the first array direction and the second array.
  • the order of the directions maps L new data streams formed by N x M precoded data onto the antenna array.
  • the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space; the number of rows of the three-dimensional beam codebook matrix is NXM, The number of columns of the three-dimensional beam codebook matrix is L; the N x M pre-programs are transmitted through the antenna array At least one of the L new data streams formed by the coded data, the antenna array includes NXM antennas, the number of antenna ports in the first array direction is M, and the number of antenna ports in the second array direction is N; LN x M, and the L, M and N are both positive integers.
  • FIG. 1 is a schematic flowchart of a method for performing communication using a three-dimensional beam codebook in a wireless communication system according to an embodiment of the present invention
  • FIG. 2.1 is a narrow beam generated by three-dimensional codebooks of two streams in an elevation angle and an azimuth direction according to an embodiment of the present invention
  • FIG. 2.2 is a narrow beam projection view of a three-dimensional codebook generated by two streams in an elevation angle and an azimuth direction according to an embodiment of the present invention
  • FIG. 3.1 is an elevation angle in three different directions, an azimuth angle according to an embodiment of the present invention
  • FIG. 3.2 is a projection view of a beam having an elevation angle in all three directions with azimuth angles in the full direction;
  • Fig. 3.3 shows a three-dimensional beam codebook matrix of the present invention;
  • the implemented narrow beam is directed to the beam pattern of the user (UE) at different positions in the spatial elevation direction;
  • FIG. 3.4 shows the narrow beam of the three-dimensional beam codebook matrix of the present invention pointing to users at different positions in the spatial azimuth direction Schematic diagram of the beam;
  • FIG. 3.5 is a schematic diagram showing the beam of the user at different height positions of the narrow beam pointing space in the three-dimensional beam codebook matrix of the present invention;
  • the wireless communication system according to Example 4 of the present invention utilizing a three-dimensional beam codebooks for a schematic view of the communication device structures;
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the antenna array of the present invention may generally include two directions, which may be generally referred to as a first array direction and a second array direction, for example, when using horizontal and vertical concepts.
  • first array direction may be a horizontal direction or a vertical direction
  • second array direction may also be a horizontal or vertical direction (note that when the first array direction is a horizontal direction)
  • the second array direction is a vertical direction, and vice versa).
  • the first array direction when the two concepts of row and column are used to represent the direction of the antenna array, the first array direction may be a row direction or a column direction, and the second array direction may also be a row direction or a column direction (note that attention is required) When the first array direction is the row direction, the second array direction is the column direction, and vice versa).
  • the first array direction when the two directions of the elevation direction and the azimuth direction are used to represent the direction of the antenna array, the first array direction may be an elevation direction or an azimuth direction, and the second array direction may also be an elevation direction or an orientation.
  • the angular direction (note that when the first array direction is the elevation direction, the second array direction is the azimuthal direction, and vice versa).
  • the direction name of the antenna array can be defined by the user, as long as the arrangement of the antenna array can be distinguished.
  • the antenna array may include ⁇ M antennas, the number of antenna ports in the first array direction is M, the number of antenna ports in the second array direction is N; LN x M, and the L, M And N are both positive integers.
  • FIG. 1 is a schematic flow chart of a method for communicating by using a three-dimensional beam codebook in a wireless communication system according to an embodiment of the present invention. As shown in FIG. 1, the method of the embodiment of the present invention may include:
  • Step S110 performing precoding processing on the L data streams by using a three-dimensional beam codebook matrix to generate N x M pre-coded data.
  • the number of rows of the three-dimensional beam codebook matrix is N x M
  • the number of columns of the three-dimensional beam codebook matrix is L.
  • the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space.
  • Step S111 transmitting, by the antenna array, at least one of the L new data streams formed by the N x M pre-coded data.
  • N X M precoded data can be mapped into L new parts into L new data streams.
  • the encoded data may be mapped into one stream, or the plurality of encoded data may be mapped into one stream, so the number of data streams is less than or equal to the number of the encoded data.
  • the antenna array may send the mapped L new data streams, or selectively transmit some of the data streams.
  • L l
  • the L data streams form a kth beam
  • the three-dimensional beam codebook matrix is:
  • the first vector of the kth beam is a spatial narrow beam pointing in the direction of the second array, l , is the second vector of the kth beam, pointing to the direction of the first array
  • v ( ⁇ Ml is the individual element in the second vector of length M, and k is a positive integer.
  • the three-dimensional beam codebook matrix can be:
  • the first vector of the kth beam is a spatial narrow beam directed to the second array direction
  • VV M-1 is the ith second vector of the kth beam, which is the i-th spatial beam pointing in the direction of the first array, where V 0 0 w', ' ⁇ v V ⁇ l ⁇ i ⁇ , ' ⁇ ... ⁇ , ' V v V MM ⁇ i ' ⁇ -_1 is each element of the second vector of length ⁇ , i ranges from 1 to greater than or equal to M, and k is a positive integer.
  • the kth beam serves one or more terminals.
  • L and i take a value of 1, the formula (0) can be obtained.
  • the data stream may be precoded by extracting the column of the corresponding stream number from the formula (1).
  • Table 1 an 8x4 (where 8 represents the number of antenna elements in the column direction of the antenna array, and 4 represents the number of antenna elements in the row direction of the antenna array).
  • the codebook corresponding to the antenna array includes: Table 1: Codebook corresponding to the kth beam of the 8x4 antenna array
  • k is in the range [0, K-1], where K is an integer, and the value range is a positive integer not greater than N, where W k ⁇ l ;; 2 "' lj ⁇ is from the codebook matrix w k(, selects among the j columns.
  • the data flow referred to in the embodiment of the present invention refers to a resource occupying different spatial dimensions on the same time-frequency resource, and the English description is a stream layer.
  • the number of independent data is called the number of streams or the number of layers.
  • the array antenna is a uniform linear array
  • the interval between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the direction vector of the beam in the second array direction, such as d l/2, indicating that the interval between the antenna elements is 1/2 wavelength
  • "*" indicates multiplication in both the present embodiment and the subsequent embodiments.
  • the main beams of the different generated directions are required to be separated by a certain distance.
  • k is the beamforming vector used by the kth beam in the first array direction, where. , where M is the element in the ⁇ vector, and b is the interval between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the direction vector of the kth beam in the first array direction, The spatial beam position of the main lobe of the kth beam in the first array direction.
  • V the main beams of different generated directions are separated by a certain distance.
  • the array antenna is a non-uniform linear antenna array
  • A is the beamforming vector used by the kth beam in the second array direction
  • To ⁇ is an element in the vector
  • j represents an imaginary unit
  • j*j -l
  • the position between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the direction vector is the main lobe spatial beam position of the kth beam in the second array direction.
  • the array antenna is a non-uniform hook line day, and the array is arranged according to the array elements of the antenna array, generating Two vectors, including: according to equation (5)
  • the position between the antenna elements normalized to the wavelength of the transmitted signal in the direction of the upward direction vector is the main lobe spatial beam position of the kth beam in the first array direction.
  • V'' In order to understand the specific form of V'', it can be recorded.
  • the first array direction is the column direction or the elevation direction
  • the second array direction is the row direction or the horizontal direction
  • the calculated H 3 ⁇ 4, wherein the first piece goods ⁇ 5 a half-beamwidth beamforming vector corresponding to A, calculated by the direction of the synthetic method of FIG.
  • can be calculated by any of the woodward pattern synthesis method, the Chebyshev synthesis method or the Taylor synthesis method.
  • d 0.5
  • SLR 13dB
  • d 0.5
  • L N/2
  • the first array direction is the column direction or the elevation direction
  • the second array direction is the row direction or the horizontal direction
  • the corresponding half-beam width which is calculated by the pattern synthesis method. For example, it can be calculated by any of the woodward pattern synthesis method, the Chebyshev synthesis method or the Taylor synthesis method.
  • the calculation method of ⁇ 0 is the same as the calculation method of ⁇ , and is not mentioned here.
  • the first vector or the second in the equation (1) can transmit a codebook for 4 antennas in the eighth version of the Long Term Evolution (LTE, Long Term Evolution) (LTE R8). Or send a codebook for 8 antennas in the tenth version of the Long Term Evolution (LTE, Long Term Evolution) (LTERIO). Or it is a codebook that already exists in other prior art. Also, when the number of multiple antennas is greater than 4 and less than 8 or greater than 8, it may be considered to combine the multi-column antennas into one column of antennas and then use the codebook of the same column.
  • a 4-digit codebook is defined in LTE Rel-8 of 3GPP TS 36.211, as shown in Table 2 below: Table 2: 4-digit codebook defined in LTE Rel-8
  • Table 6.3.4.2.3-2 Codebook for transmission on antenna ports ⁇ 0,1,2,3 ⁇ and for CSI reporting based on antenna ports ⁇ 0,1,2,3 ⁇ or ⁇ l 5,16,17, 18 ⁇ .
  • the codebook generated by the equation (1) according to the embodiment of the present invention can achieve backward compatibility with the LTER 8.
  • the codebooks transmitted by the eight antennas in LTER10 can also be used, as shown in Tables 3 and 4.
  • Table 3 Number of codebooks when 8 antennas are transmitted in LTER10 (refer to 3GPP TS 36.213)
  • m in a beam correspondence can take any one of 0-15, that is, according to Table 4 above, there are 16 ways to take each beam. In a specific implementation, by adding in the first array direction or the second array direction of the antenna array
  • is a codebook matrix of a total of K beams
  • K is a positive integer
  • ⁇ ' is a beam codebook with a V1 column selected from a beam codebook matrix of the nl beam
  • > is the n2th beam a beam codebook matrix having a column selected beam codebook) for the first beam K beam codebook matrix selected from a codebook having a beam v k columns
  • NL and n2 is a positive integer less than K
  • V ⁇ V
  • V is a positive integer not greater than ⁇ .
  • is the codebook matrix of a total of one beam
  • is a positive integer
  • the beam codebook with the ⁇ ! column selected in the beam codebook matrix, criz ( 2 V2 ) is the beam codebook with the column selected from the beam codebook matrix of the n2th beam, and is the Kth beam Beam code with v k column selected in the beam codebook matrix
  • V is a positive integer not greater than M.
  • L data streams are pre-coded by using a three-dimensional beam codebook matrix to generate NXM pre-coded data;
  • the number of rows is NX M, the number of columns of the three-dimensional beam codebook matrix is L; and at least one of the L new data streams formed by the NX M precoded data is transmitted through the antenna array, the antenna
  • the array includes NX M antennas, the number of antenna ports in the first array direction is M, the number of antenna ports in the second array direction is N; L ⁇ NXM, and the L, M, and N are positive integers.
  • the beam generating device for example, the base station
  • the beam generating device Ability to communicate with one or more users in different three-dimensional angular regions on the same time-frequency resource.
  • Figures 2.1 and 2.2 show perspective and projection views of a narrow beam pattern generated by a two-dimensional three-dimensional codebook in the elevation and azimuth directions. As shown in FIG. 2.1 and FIG.
  • the three-dimensional beam codebook according to the embodiment of the present invention when a precoding vector having a narrow beam width is used for both the column and the row directions of the antenna array direction, the three-dimensional beam codebook according to the embodiment of the present invention also points in the horizontal elevation direction. Different azimuth directions, at this time, whether in the elevation direction or the azimuth direction, the transmitter of the beam generating device realizes communication of narrow beams of multiple users on a narrow area of the three-dimensional space through the three-dimensional codebook.
  • Fig. 3.1 and Fig. 3.2 show perspective views of a perspective view and a projected view of the omnidirectional direction with elevation angles in three different directions.
  • the three-dimensional beam codebook according to the embodiment of the present invention can be used to different beam directions at different elevation angles.
  • FIG. 3.3 is a schematic diagram showing a beam of a user (UE) at a different position in a direction of a spatial direction of a narrow beam directed by a three-dimensional beam codebook matrix of the present invention, as shown in FIG. 3.3, after precoding processing using the three-dimensional beam codebook of the present invention Three different beams are transmitted through the antenna array, respectively pointing to three users UE1, UE2 and UE3 in different elevation directions.
  • Figure 3.4 shows a schematic diagram of a beam of a narrow beam directed to a user at different locations in the azimuthal direction of the space using the three-dimensional beam codebook matrix of the present invention.
  • Figure 3.4 after the three-dimensional beam codebook precoding process of the present invention, three different beams are transmitted through the antenna array, respectively pointing to three users UE1, UE2 and UE3 in different azimuth directions.
  • Figure 3.5 is a diagram showing the beam of a user in a narrow beam pointing space at different height positions of the space realized by the three-dimensional beam codebook matrix of the present invention.
  • the three-dimensional beam codebook precoding process of the present invention transmits three different beams through the antenna array, respectively, to three users UE1, UE2 and UE3 at different spatial height positions.
  • the first vector may be generated, and then the second vector v ′ may be generated.
  • the same may be adopted.
  • the sequence of the first array direction and the second array direction are pre-coded by the codebook in the three-dimensional beam codebook matrix of the embodiment of the present invention, and the pre-coded multi-stream data stream is pressed.
  • the order of the second array direction after the first array direction is mapped to the array elements of the corresponding antenna array for transmission.
  • the first vector ⁇ is a vector in the column direction and is a vector in the row direction
  • when performing data mapping it is also mapped to the antenna array in the order of the first column and the subsequent row.
  • the first vector is a vector in the row direction and is a vector in the column direction
  • when performing data mapping it is also mapped to the antenna array in the order of the preceding and following columns.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium may store a program, and when the program is executed, the wireless communication system provided by the embodiment of the present invention may be included.
  • embodiments of the present invention also provide related devices.
  • the apparatus 4 for communicating using a three-dimensional beam codebook in a wireless communication system according to an embodiment of the present invention may include a precoding module 41 and a transmitting module 42, wherein:
  • the precoding module 41 is configured to perform precoding processing on the L data streams by using the three-dimensional beam codebook matrix to generate NX M pre-coded data.
  • the number of rows of the three-dimensional beam code matrix is NX M
  • the number of columns of the three-dimensional beam codebook matrix is L.
  • the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space.
  • the sending module 42 is configured to send, by using an antenna array, at least one of the L new data streams formed by the NXM pre-coded data, where the antenna array includes NX M antennas, and the antennas in the first array direction
  • the number of ports is M
  • the number of antenna ports in the direction of the second array is N
  • L ⁇ NX M and the L, M, and N are positive integers.
  • an antenna array may generally include two directions, which may be generally referred to as a first array direction and a second array direction, for example, when represented by two concepts of horizontal and vertical.
  • the first array direction may be a horizontal direction or a vertical direction
  • the second array direction may also be a horizontal or vertical direction (it is noted that when the first array direction is a horizontal direction, The second array direction is vertical, and vice versa).
  • the first array direction may be a row direction or a column direction
  • the second array direction may also be a row direction or a column direction (note that attention is required)
  • the first array direction is the row direction
  • the second array direction is the column direction, and vice versa.
  • the first array direction is the row direction
  • the second array direction is the column direction, and vice versa.
  • the direction may be an elevation direction or a tens of thousands of angles
  • the second array may also be in the direction of the first direction or the first to the 10,000-degree angle (note that when the first array direction is the elevation direction, the The second array direction is the azimuthal direction, and vice versa).
  • the direction name of the antenna array can be defined by the user, as long as the arrangement of the antenna array can be distinguished.
  • the antenna array may include one antenna, the number of antenna ports in the first array direction is ⁇ , the number of antenna ports in the second array direction is N; L ⁇ NX M, and the L, M and N is a positive integer.
  • L l
  • the L data streams form a kth beam
  • the three-dimensional beam codebook matrix used in the precoding module 41 can be:
  • the first vector of the kth beam is a spatial narrow beam pointing in the direction of the second array) V; ill is a second vector of the kth beam, and is a spatial beam pointing in the direction of the first array,
  • '-x is each element in the second vector of length ⁇ , k is a positive integer.
  • L M
  • L data streams form a kth beam.
  • the three-dimensional beam codebook matrix used in the precoding module 41 can be:
  • the first vector of the kth beam is a spatial narrow beam directed to the second array direction
  • the three-dimensional beam codebook matrix of equation (1) may be formed by multiplying each of vW « ⁇ '" ... to form a column of column elements.
  • the data stream may be precoded by extracting the column of the corresponding stream number from the formula (1).
  • Table 1 an 8x4 (where 8 represents the number of antenna elements in the column direction of the antenna array, and 4 represents the number of antenna elements in the row direction of the antenna array).
  • the codebook corresponding to the antenna array includes: Table 1: Codebook corresponding to the kth beam of the 8x4 antenna array
  • k is in the range [0, K-l], where K is an integer and the value ranges from a positive integer not greater than N, where ⁇ ⁇ ' ⁇ ' is the j columns selected from the codebook matrix.
  • the culvert of m is in the range [0, K-l], where K is an integer and the value ranges from a positive integer not greater than N, where ⁇ ⁇ ' ⁇ ' is the j columns selected from the codebook matrix.
  • vv ⁇ ... ⁇ -' may be selected W / ( v' j
  • the data flow referred to in the embodiment of the present invention refers to a resource occupying different spatial dimensions on the same time-frequency resource, and the English description is a stream layer.
  • the number of independent data is called the number of streams or the number of layers.
  • is the beamforming vector used by the kth beam in the second array direction
  • A. to ⁇ is an element in the A vector
  • j represents an imaginary unit
  • j*j -l
  • d is the wavelength of the transmitted signal in the direction of the direction vector of the kth beam in the second array direction
  • the main beams of the patterns generated between different As are required to be separated by a certain distance.
  • the array antenna is a uniform linear array
  • the k-th beam is used in the first array direction
  • the ⁇ is the element in the ⁇ vector
  • b is the direction of the direction vector of the k-th beam in the first array direction.
  • the spacing between antenna elements normalized to the wavelength of the transmitted signal is the spatial beam position of the main lobe of the kth beam in the first array direction.
  • the main beams of different generated directions are required to be separated by a certain distance.
  • the array antenna is a non-uniform linear antenna array,
  • A is the beamforming vector used by the kth beam in the second array direction
  • is the individual elements in the A vector
  • j represents an imaginary unit
  • j*j -l
  • A is the main lobe spatial beam position of the kth beam in the second array direction.
  • the array antenna is a non-uniform linear antenna array, and the array is arranged according to the array elements of the antenna array Two vectors, including: according to equation (5)
  • the woodward pattern synthesis method can be calculated by any of the woodward pattern synthesis method, the Chebyshev synthesis method or the Taylor synthesis method.
  • d 0.5
  • SLR 13dB
  • the first array direction is the column direction or the elevation direction
  • the second array direction is the row direction or the horizontal direction
  • ⁇ ⁇ - (: ⁇ 5( ⁇ )5 ⁇ ( ⁇ ) ;
  • ⁇ sin ⁇ sin ( ) or - sin( ⁇ )sin((9), where 0 is the elevation angle of the antenna array, The azimuth of the antenna array.
  • the 1 is the first beamforming vector.
  • the corresponding half beam width, the 1 ⁇ 0 is calculated by the pattern synthesis method. such as, It can be calculated by any of the woodward pattern synthesis method, the Chebyshev synthesis method or the Taylor synthesis method.
  • the calculation method of ⁇ 0 is the same as the calculation method, and will not be described here.
  • the first vector in equation (1) or the first The two vectors can transmit a codebook for 4 antennas in the eighth version (LTE R8) of the Long Term Evolution (LTE). Or send a codebook for 8 antennas in the tenth version of the Long Term Evolution (LTE, Long Term Evolution) (LTE R10). Or it is a codebook that already exists in other prior art. Also, when the number of multiple antennas is greater than 4 and less than 8 or greater than 8, it may be considered to combine the multi-column antennas into one column of antennas and then use the codebook of the same column.
  • a 4-digit codebook is defined in LTE Rel-8 of 3GPP TS36.211, as shown in Table 2 below: Table 2: 4-digit codebook defined in LTE Rel-8
  • Replacement page (Article 26) ,
  • V " ⁇ ⁇ '- 1 " in equation (1) is taken from the above table.
  • the codebook generated by the equation (1) according to the embodiment of the present invention can achieve backward compatibility with LTER 8.
  • the codebooks transmitted by the eight antennas in LTER10 can also be used, as shown in Tables 3 and 4.
  • Table 3 Number of codebooks when 8 antennas are transmitted in LTER10 (refer to 3GPP TS 36.213)
  • the antenna codebook in the prior art is added in the direction of the first array or the second array in the antenna array by adding the vectors described in the equations (2) - (5) ,
  • the embodiment of the present invention can be fully compatible with the existing system, so that the corpse of the prior art can be directly connected to the beam system of the embodiment of the present invention, and demodulated according to the original manner. Feedback, the behavior of the user device is not affected at all.
  • W is a total of K beam codebook matrix
  • K is a positive integer
  • 1 is the beam nl-th beam codebook matrix selected from a codebook having a beam column 1 V, 2 V2) for the first beam of n2
  • ⁇ > is the beam codebook with the ⁇ ) column selected from the beam codebook matrix of the second beam
  • nl and ⁇ 2 are smaller than ⁇
  • is a positive integer not greater than ⁇
  • the required 3D beam codebook matrix is:
  • K) is the power allocation factor of the beam, which is the beam codebook with v 1 column selected from the beam codebook matrix of the nl beam, provoke ( ⁇ is selected for the beam codebook matrix of the n2th beam
  • the beam codebook of v 2 columns, VA ) is the beam codebook with v k columns selected in the beam codebook matrix of the Kth beam
  • nl and n2 are positive integers smaller than K
  • K is not greater than N
  • ⁇ ⁇ , ⁇ , replacement page (Article 26) Is a positive integer not greater than M.
  • L data streams are pre-coded by using a three-dimensional beam codebook matrix to generate NXM pre-coded data;
  • the number of rows is NX M, the number of columns of the three-dimensional beam codebook matrix is L; and at least one of the L new data streams formed by the NX M precoded data is transmitted through the antenna array, the antenna
  • the array includes NX M antennas, the number of antenna ports in the first array direction is M, the number of antenna ports in the second array direction is N; L ⁇ NXM, and the L, M, and N are positive integers.
  • the beam generating device for example, the base station
  • the beam generating device Ability to communicate with one or more users in different three-dimensional angular regions on the same time-frequency resource.
  • Figures 2.1 and 2.2 show perspective views of a perspective view and a projected view of a narrow beam pattern generated by a two-dimensional three-dimensional codebook in the elevation and azimuth directions. As shown in FIG. 2.1 and FIG.
  • the three-dimensional beam codebook according to the embodiment of the present invention also points in the horizontal elevation direction. Different azimuth directions, at this time, whether in the elevation direction or the azimuth direction, the transmitter of the beam generating device realizes communication of narrow beams of multiple users on a narrow area of the three-dimensional space through the three-dimensional codebook.
  • Figures 3.1 and 3.2 show perspective views of a perspective view and a projected view of the elevation angle in three different directions, the horizontal azimuth being an omnidirectional pattern. As shown in FIG. 3.1 and FIG.
  • the three-dimensional beam codebook according to the embodiment of the present invention can point to different elevation directions in different elevation angle beams, and then can generate a wide beam in the horizontal azimuth direction, and at a horizontal azimuth angle.
  • SU-MIMO single-user multiple input multiple output
  • MU-MIMO multiple users Input multiple output
  • 3.3 shows a three-dimensional beam using the present invention ⁇ ⁇
  • FIG. 3.3 A beam diagram of a user (UE) at different positions in the direction of the spatial elevation angle, as shown in FIG. 3.3, using the three-dimensional beam codebook precoding process of the present invention, three different beams are transmitted through the antenna array, respectively pointing at different elevation directions Three users UE1, UE2 and UE3.
  • Figure 3.4 shows a schematic diagram of a user's beam at different locations in the azimuthal direction of the narrow beam implemented using the three-dimensional beam codebook matrix of the present invention.
  • three different beams are transmitted through the antenna array, respectively pointing to three users UEK UE2 and UE3 in different azimuth directions.
  • Figure 3.5 is a diagram showing the beam of a user of a narrow beam directed at different heights in a spatial position using the three-dimensional beam codebook matrix of the present invention. As shown in Figure 3.5, after the three-dimensional beam codebook precoding process of the present invention, three different beams are transmitted through the antenna array, respectively pointing to three users UE1, UE2 and UE3 at different spatial height positions.
  • the first vector ⁇ is generated, and then the second vector v ' is generated.
  • the transmission is performed by mapping to the array elements of the corresponding antenna array in the order of the first array direction and the second array direction.
  • the first vector ⁇ is a vector in the column direction and is a vector in the row direction
  • when performing data mapping it is also mapped to the antenna array in the order of the first column and the subsequent row.
  • the device 4 of the present invention may further include: a mapping module (not shown), configured to map the L data streams corresponding to the NXM pre-coded data in the order of the first array direction and the second array direction. On the antenna array.
  • a mapping module (not shown), configured to map the L data streams corresponding to the NXM pre-coded data in the order of the first array direction and the second array direction.
  • an embodiment of the present invention further provides a base station, including an antenna array 52 coupled to a wireless modem by a wireless modem 51;
  • the antenna array 52 includes NX M antennas, the first "array ⁇ " ⁇ on Wan - long port number is M, a second antenna port in the array direction
  • the quantity is N; the M and N are both positive integers;
  • the wireless modem 51 is configured to perform precoding processing on the L data streams by using the three-dimensional beam codebook matrix to generate N XM data streams, and map the L new data streams formed by the NXM pre-coded data to the antenna.
  • the three-dimensional beam codebook matrix can be used for precoding of three-dimensional beam space, the number of rows of the three-dimensional beam codebook matrix is NX M, and the number of columns of the three-dimensional beam codebook matrix is L, L NX M And being a positive integer;
  • the antenna array 52 is configured to send at least one of the L new data streams.
  • the wireless modem 51 is specifically configured to: perform precoding processing on the L signals by using the three-dimensional beam codebook matrix to generate NXM data streams, and follow the first array direction and the second array direction.
  • the sequence maps L new data streams formed by NXM precoded data onto the antenna array.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线通信***中利用三维波束码本进行通信的方法、装置及基站,其中所述方法包括:利用三维波束码本矩阵对L个数据流进行预编码处理以生成NxM个预编码后的数据;所述三维波束码本矩阵的行数为NxM,所述三维波束码本矩阵的列数为L;通过天线阵列发送由所述NxM个预编码后的数据形成的L个新数据流中至少一个数据流,所述天线阵列包括NxM个天线,在第一阵列方向上的天线端口数量为M,在第二阵列方向上的天线端口数量为N;L≤NxM,且所述L、M和N均为正整数。实施本发明实施例,可实现在三维空间中形成多个指向多个方向的波束。

Description

利用三维波 行通信的方法、 装置及基站 本申请要求于 2012 年 10 月 25 日提交中国专利局、 申请号为 201210411846.5、 发明名称为 "利用三维波束码本进行通信的方法、 装置及基 站" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及利用三维波束码本进行通信的方法、装置 及基站。 背景技术
在无线通信***的发展中,天线技术是当前无线通信***中最活跃的研究 领域之一。 当前的主流的无线通信***中都大量使用了多天线技术,蜂窝*** 有 LTE( Long Term Evolution长期演进 )***、 WiMAX(World interoperability for Microwave Access 全球微波接入互操作)***等, 短距离无线通信***有各个 版本的 WiFi ( Wireless Fidelity无线高保真 ) ***。 目前正在使用的上述无线通 信***中,多天线技术主要是使用发送机与接收机之间的多个发送天线和多个 接收天线进行发送和接收处理, 即 MIMO ( Multiple Input Multiple Output多入 多出)技术。 这些***中使用的 MIMO技术, 发送站通常是多根线状排列的天 线, 典型的数目有 2根、 4根, 在 LTE*** Rel-10 (版本 10 )版本中引入了最多 8 根天线的配置。 即使这样, 在当前的民用通信***中, 最多也就是 8根沿某一 水平或垂直方向的线状排列的天线了。
随着天线技术的发展和进步,更多可能的天线数目的阵列天线被引入到发 送机上来, 尤其是引入到体积相对较大的基站发送机身上来。 更多的天线数的 面状天线 (多排, 多列), 如 8列 4排的面状天线阵。 阵列天线引入到发送机上 后, 发送机由于有更多的发送天线数目, 因而具有了更多可用的空间自由度, 从而可以实现发送机的主动波束赋形,即具有天线阵列的发送机可以在三维空 域上辐射出多个大小范围可控的空间区域。从而为无线通信***新更高的频谱 效率方向的演进提供了可能。
上述具有阵列天线的发送机要获得更多发送天线数带来的***增益,其中 必须解决三维空间的码本的设计问题。否则无法得到阵列天线在理论上提供的 可能的性能增益。
在现有技术中, LTE R8中定义了最多 4天线的发送码本的设计方案。 这种 方案为最多 4个发送天线定义了 1流, 2流和 4流的发送码本。这些码本的设计背 景主要是 SU-MIMO ( Single User-MIMO单用户 MIMO ), 并且其天线结构是 ULA (均匀线性阵列 Uniform Linear Array ) 阵的最多 4个沿一条直线排列的天 线。 这种码本显然不能直接用于类似 8列 4行场景的天线阵列***。 尤其是, 这 些码本主要是用于水平方向上的预编码, 不能够实现垂直方向上多仰角的指 向, 更不能实现三维空间的波束映射。
另一种现有技术的方案中, LTE R10中定义了 8天线的基站发送码本。 这 种码本既适合于 MU-MIMO ( Multiple User-MIMO多用户 MIMO ), 也适合于 SU-MIMO, 其支持的流数分别为: 1至 8之间的任意数目。 同样的, 这种码本 是为按水平方向排列的最多 8天线的基站***设计的, 其也不适合在垂直方向 上多仰角的指向, 也不能实现三维空间的波束映射, 更不适合天线数大于 8的 基站***。 发明内容
本发明实施例提供无线通信***中利用三维波束码本进行通信的方法、装 置及基站, 可在三维空间中形成能指向多个方向的波束。 本发明第一方面提供一种无线通信***中利用三维波束码本进行通信的 方法, 可包括: 利用三维波束码本矩阵对 L个数据流进行预编码处理以生成 N X M个预 编码后的数据, 所述三维波束码本矩阵能够用于三维波束空间的预编码; 所述 三维波束码本矩阵的行数为 N X M , 所述三维波束码本矩阵的列数为 L; 通过天线阵列发送由所述 N X M个预编码后的数据形成的 L个新数据流 中至少一个数据流,所述天线阵列包括 N x M个天线,在第一阵列方向上的天 线端口数量为 M, 在第二阵列方向上的天线端口数量为 N; L N x M, 且所 述 L、 M和 N均为正整数。
在第一种可能的实现方式中, L=l , 且所述 L个数据流形成第 k个波束, 所述三维波束码本矩阵为:
w(1) = ¼{1 k
Figure imgf000004_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束,
Figure imgf000004_0002
l ,为第 k个波束的第二向量, 为指向第一阵列方向上 个空间波束, 这里 v( ^M-l为长度为 M的所述第二向量中
所述三维波束码本矩阵为:
Figure imgf000004_0003
其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
V V M-1 为第 k个波束的第 i个第二向量,为指向第一阵列方
{i} 7{i} 7{i }
向上的第 i个空间波束, 其中 vo , νι VM-1为长度为 M的所述
:二向量的各个元素, i的取值范围为大于等于 1 且小于等于 M的整数, k 为正整数。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式, 在第三种可能的实现方式中, 所述第 k个波束服务于一个或多个终端。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方 式 , 在 第 四 种 可 6匕 ' 实 现 方 式 中 ,
Figure imgf000005_0001
其中, A是第 k个波束在第二阵列方向上使用的波束成形向量, 其中 。 , 到 ^为 向量中的各个元素, j表示一虚数单位, j*j=-l , d为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔, 为所述第 k个波束的主波瓣在第二阵列方向上的空间波 束位置。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式,或第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现 方式, 在第五种可能的实现方式中,
l)
Figure imgf000005_0002
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量, 其中 A 到 ,M—工为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式, 在第六种可能的实现方式中,
Figure imgf000006_0001
其中, A是第 k个波束在 到 ^为 A向量中的各个元素, j表示一虚数单位, j*j=-l , dn ( η=0,...,Ν-1 ) 为所述第 k个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, 为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。
结合第一方面的第一种可能的实现方式, 或第一方面的第二种可能的实现方 式, 或第一方面的第六种可能的实现方式, 在第七种可能的实现方式中,
V
Figure imgf000006_0002
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。, 到 M—工为^向量中的各个元素, bn ( n=0,...,M-l )为所述第 k个波束在第一 阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的 位置, "^为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。
结合第一方面的第四种可能的实现方式,或第一方面的第六种可能的实现 方式, 在第八种可能的实现方式中, \=cos(< )或者 ί\=- cos(6>) , 其中, 所 述 为天线阵列的第一阵列方向的波束角;
或者, \ = cos(^)sin(6 或者 ί¾ = _cos(^)sin(6 或者 ί¾ = sin sin(6>)或 者 ί¾ =— sin(^)sin(<9) ,其中,所述 为天线阵列的第一阵列方向的波束角, 所述 ^为天线阵列的第二阵列方向的波束角。
结合第一方面的第五种可能的实现方式,或第一方面的第七种可能的实现 方式, 在第九种可能的实现方式中, ^^ =∞8(< )或者 k:- cos(6>) , 其中, 所 述 61为天线阵列的第一阵列方向的波束角;
或者, ^ k =cos(^)sin(6 或者 =_cos(^)sin(< )或者 =sin( )sin(6>) 或者 sini^sin^), 其中, 所述 ^为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。
结合第一方面的第四种可能的实现方式,或第一方面的第六种可能的实现 方式, 或第一方面的第八种可能的实现方式, 在第十种可能的实现方式中, ί\=¾^, 其中, 所述 是第一个波束成形向量 所对应的半波束宽度。
结合第一方面的第五种可能的实现方式,或第一方面的第七种可能的实现 方式, 或第一方面的第九种可能的实现方式, 在第十一种可能的实现方式中, Ψ,=ί^Ψ0, 其中, 所述 0是第一个波束成形向量《。所对应的半波束宽度。 结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式,或第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现 方式,或第一方面的第五种可能的实现方式,或第一方面的第六种可能的实现 方式,或第一方面的第七种可能的实现方式,或第一方面的第八种可能的实现 方式,或第一方面的第九种可能的实现方式,或第一方面的第十种可能的实现 方式,或第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中, 所述第一向量与第二向量中的至少一项为: 长期演进*** LTE的第八版本中 的 4天线发送码本、 或 LTE的第十版本中的 8天线发送码本。
结合第一方面, 在第十三种可能的实现方式中, 其特征在于, L=v, 所述 L个数据流形成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000008_0001
其中, K为正整数, 为第 nl个波束的波束码本矩阵中选出的具有 Vl 列的波束码本, Wn ( 2 )为第 n2个波束的波束码本矩阵中选出的具有 v2列的波束 码本, W^K)为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码本, nl 和 n2均为小于 K的正整数,Κ为不大于 N的正整数, ν =∑1 1!1 ν 1 , 为不大 于 M的正整数。
结合第一方面, 在第十四种可能的实现方式中, L=v, 所述 L个数据流形 成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000008_0002
其中, Κ为正整数, ρ ( x=nl , η2, , Κ ) 为波束的功率分配因子, 为第 nl个波束的波束码本矩阵中选出的具有 ^列的波束码本, Wn ( 2 )为 第 n2个波束的波束码本矩阵中选出的具有 v2列的波束码本, W^K)为第 K个 波束的波束码本矩阵中选出的具有 vk列的波束码本, nl和 n2均为小于 K的 正整数, K为不大于 N的正整数, v =1 1!1 v 1 , ^为不大于 M的正整数。 结合第一方面的第十三种可能的实现方式,或第一方面的第十四种可能的 实现方式, 在第十五种可能的实现方式中, 所述 K个波束分别服务于多个终 端。
结合第一方面的第十三种可能的实现方式,或第一方面的第十四种可能的 实现方式, 或第一方面的第十五种可能的实现方式,在第十六种可能的实现方 式中, 所述 K个波束有相同或不同的功率。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式,或第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现 方式,或第一方面的第五种可能的实现方式,或第一方面的第六种可能的实现 方式,或第一方面的第七种可能的实现方式,或第一方面的第八种可能的实现 方式,或第一方面的第九种可能的实现方式,或第一方面的第十种可能的实现 方式,或第一方面的第十一种可能的实现方式,或第一方面的第十二种可能的 实现方式, 或第一方面的第十三种可能的实现方式,或第一方面的第十四种可 能的实现方式,或第一方面的第十五种可能的实现方式, 或第一方面的第十六 种可能的实现方式,在第十七种可能的实现方式中,在所述通过所述天线阵列 发送由所述 N X M个预编码后的数据形成的 L个新数据流中至少一个数据流 的步骤之前, 还包括:
将所述由 N x M个预编码后的数据形成的 L个新数据流按照先第一阵列 方向后第二阵列方向的顺序映射到所述天线阵列上。
本发明第二方面提供一种无线通信***中利用三维波束码本进行通信的 装置, 可包括: 预编码模块,用于利用三维波束码本矩阵对 L个数据流进行预编码处理以 生成 N X M个预编码后的数据,所述三维波束码本矩阵能够用于三维波束空间 的预编码; 所述三维波束码本矩阵的行数为 N x M, 所述三维波束码本矩阵的 列数为 L;
发送模块, 与所述预编码模块连接, 用于通过天线阵列发送由所述 N x M 个预编码后的数据形成的 L个新数据流中至少一个数据流,所述天线阵列包括 N x M个天线,在第一阵列方向上的天线端口数量为 M,在第二阵列方向上的 天线端口数量为 N; L N x M, 且所述 L、 M和 N均为正整数。
在第一种可能的实现方式中, L=l , 且所述 L个数据流形成第 k个波束, 所述三维波束码本矩阵为:
w(1) = ¼{1 k
Figure imgf000010_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束,
Figure imgf000010_0002
l ,为第 k个波束的第二向量, 为指向第一阵列方向上
{1} {1}
的一个空间波束, 这里 v( ^M-l为长度为 M的所述第二向量中 的各个元素, k为正整数。 所述三维波束码本矩阵为:
Figure imgf000011_0001
其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
V V M-1 为第 k个波束的第 i个第二向量,为指向第一阵列方
{i } {i }
向上的第 i个空间波束, 其中 vo , νι VM-1为长度为 M的所述 第二向量的各个元素, i的取值范围为大于等于 1且小于等于 M的整数, k 为正整数。
结合第二方面的第一种可能的实现方式,结合第二方面的第二种可能的实 现方式,在第三种可能的实现方式中,所述第 k个波束服务于一个或多个终端。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方 式 种 可 的 实 现 方 式 中
Figure imgf000011_0002
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 。 , 到 ^为 向量中的各个元素, j表示一虚数单位, j*j=-l , d为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔, 为所述第 k个波束的主波瓣在第二阵列方向上的空间波 束位置。
结合第二方面的第二种可能的实现方式,或第二方面的第三种可能的实现 方式, 或第二方面的第四种可能的实现方式, 在第五种可能的实现方式中
Figure imgf000012_0001
其中,, ak是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。, 到 ,M—工为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。
结合第二方面的第二种可能的实现方式,或第二方面的第三种可能的实现 方式, 在第六种可能的实现方式中,
Figure imgf000012_0002
其中, A是第 k个波束在 到 ^为 向量中的各个元素, j表示一虚数单位, j*j=-l , dn ( η=0,...,Ν-1 ) 为所述第 k个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, 为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。
结合第二方面的第二种可能的实现方式, 或第二方面的第三种可能的实现方 式, 或第二方面的第六种可能的实现方式, 在第七种可能的实现方式中,
Figure imgf000013_0001
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。 , 到 ^^为^向量中的各个元素, bn (η=0,...,Μ-1 )为所述第 k个波束在第一 阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的 位置, "^为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。
结合第二方面的第四种可能的实现方式,或第二方面的第六种可能的实现 方式, 在第八种可能的实现方式中, \=cos(6 或者 ί\=- cos(6>) , 其中, 所 述 61为天线阵列的第一阵列方向的波束角; 或者, i\ =cos(^)sin(6 或者^ ί =_cos(^)sin(6 或者 i¾ =sin(^)sin(6>)或 者 ί¾ =— sin(^)sin((9) ,其中,所述 为天线阵列的第一阵列方向的波束角, 所述 ^为天线阵列的第二阵列方向的波束角。
结合第二方面的第五种可能的实现方式,或第二方面的第七种可能的实现 方式, 在第八种可能的实现方式中, ^^ =∞8(< )或者 k:- cos(6>) , 其中, 所 述 61为天线阵列的第一阵列方向的波束角;
或者, ^ k =cos(^)sin(6 或者 =_cos(^)sin(< )或者 =sin(^)sin(6>) 或者 sini^sin^), 其中, 所述 ^为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。
结合第二方面的第四种可能的实现方式,或第二方面的第六种可能的实现 方式, 或第二方面的第八种可能的实现方式, 在第十种可能的实现方式中,
^ = Μ\ , 其中, 所述 是第一个波束成形向量 所对应的半波束宽度。
结合第二方面的第五种可能的实现方式,或第二方面的第七种可能的实现 方式, 或第二方面的第九种可能的实现方式, 在第十一种可能的实现方式中, Ψ, = ]^Ψ0 , 其中, 所述 0是第一个波束成形向量《。所对应的半波束宽度。
结合第二方面的第一种可能的实现方式,或第二方面的第二种可能的实现 方式,或第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现 方式,或第二方面的第五种可能的实现方式,或第二方面的第六种可能的实现 方式,或第二方面的第七种可能的实现方式,或第二方面的第八种可能的实现 方式,或第二方面的第九种可能的实现方式,或第二方面的第十种可能的实现 方式,或第二方面的第十一种可能的实现方式,在第十二种可能的实现方式中, 所述第一向量与第二向量中的至少一项为: 长期演进*** LTE的第八版本中 的 4天线发送码本、 或 LTE的第十版本中的 8天线发送码本。
结合第二方面, 在第十三种可能的实现方式中, 其特征在于, L=v, 所述 L个数据流形成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000014_0001
其中, K为正整数, Wn Vl)为第 nl个波束的波束码本矩阵中选出的具有 Vl 列的波束码本, Wn ( 2 )为第 n2个波束的波束码本矩阵中选出的具有 v2列的波束 码本, W^K)为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码本, nl 和 n2均为小于 K的正整数, K为不大于 N的正整数, v =∑1 1!1 v 1 , ¼为不 大于 M的正整数。 结合第二方面, 在第十四种可能的实现方式中, L=v, 所述 L个数据流形 成 K个波束, 所述三维波束码本矩阵为:
WW = ^ ),
Figure imgf000015_0001
其中, K为正整数, ( x=nl , n2, ...... , Κ )为波束的功率分配因子, \¾νι)为第 nl个波束的波束码本矩阵中选出的具有 ¥1列的波束码本, Wn ( 2 )为 第 n2个波束的波束码本矩阵中选出的具有 v2列的波束码本, W^VK)为第 K个 波束的波束码本矩阵中选出的具有 vk列的波束码本, nl和 n2均为小于 K的 正整数,Κ为不大于 N的正整数,
Figure imgf000015_0002
^为不大于 Μ的正整数。 结合第二方面的第十三种可能的实现方式,或第二方面的第十四种可能的 实现方式, 在第十五种可能的实现方式中, 所述 Κ个波束分别服务于多个终 端。
结合第二方面的第十三种可能的实现方式,或第二方面的第十四种可能的 实现方式, 或第二方面的第十五种可能的实现方式,在第十六种可能的实现方 式中, 所述 Κ个波束有相同或不同的功率。
结合第二方面的第一种可能的实现方式,或第二方面的第二种可能的实现 方式,或第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现 方式,或第二方面的第五种可能的实现方式,或第二方面的第六种可能的实现 方式,或第二方面的第七种可能的实现方式,或第二方面的第八种可能的实现 方式,或第二方面的第九种可能的实现方式,或第二方面的第十种可能的实现 方式,或第二方面的第十一种可能的实现方式,或第二方面的第十二种可能的 实现方式, 或第二方面的第十三种可能的实现方式,或第二方面的第十四种可 能的实现方式,或第二方面的第十五种可能的实现方式, 或第二方面的第十六 种可能的实现方式, 在第十七种可能的实现方式中, 还包括: 映射模块, 用于将 N X M个预编码后的数据对应的 L个数据流按照先第 一阵列方向后第二阵列方向的顺序映射到所述天线阵列上。 本发明第三方面提供一种基站, 可包括: 无线调制解调器和与无线调制 解调器耦合连接的天线阵列; 其中, 所述天线阵列包括 N x M个天线, 在第一阵列方向上的天线端口 数量为 M,在第二阵列方向上的天线端口数量为 N;所述 M和 N均为正整数; 所述无线调制解调器, 用于利用三维波束码本矩阵对 L个数据流进行预 编码处理以生成 N X M个数据流, 并将 N X M个预编码后的数据形成的 L个 新数据流映射到天线阵列上;所述三维波束码本矩阵能够用于三维波束空间的 预编码, 所述三维波束码本矩阵的行数为 N x M, 所述三维波束码本矩阵的列 数为 L, L N x M且为正整数; 所述天线阵列, 用于发送所述 L个新数据流中的至少一个数据流。 在第一种可能的实现方式中, 所述无线调制解调器具体用于: 利用三维 波束码本矩阵对 L个信号进行预编码处理以生成 N X M个数据流, 并按照先 第一阵列方向后第二阵列方向的顺序将 N x M个预编码后的数据形成的 L个 新数据流映射到所述天线阵列上。
由上可见, 在本发明的一些可行的实施方式中, 利用三维波束码本矩阵对
L个数据流进行预编码处理以生成 N X M个预编码后的数据, 所述三维波束码 本矩阵能够用于三维波束空间的预编码; 所述三维波束码本矩阵的行数为 N X M,所述三维波束码本矩阵的列数为 L;通过天线阵列发送由所述 N x M个预编 码后的数据形成的 L个新数据流中至少一个数据流, 所述天线阵列包括 N X M 个天线, 在第一阵列方向上的天线端口数量为 M, 在第二阵列方向上的天线端 口数量为 N; L N x M, 且所述 L、 M和 N均为正整数。 附图说明
图 1 为本发明实施例的无线通信***中利用三维波束码本进行通信的方 法的流程示意图; 图 2.1为本发明实施例的仰角和方位角方向上各 2流的三维码本生成的窄 波束方向图的立体图; 图 2.2为本发明实施例的仰角和方位角方向上各 2流的三维码本生成的窄 波束投影图; 图 3.1为本发明实施例的仰角在 3个不同方向, 方位角在全向上的波束的 方向图的立体图; 图 3.2为本发明实施例的仰角在 3个不同方向, 方位角在全向上的波束的 投影图; 图 3.3示出了本发明的三维波束码本矩阵实现的窄波束指向空间仰角方向 上不同位置上的用户 (UE ) 的波束示意图; 图 3.4示出了本发明的三维波束码本矩阵实现的窄波束指向空间方位角方 向上不同位置上的用户的波束示意图; 图 3.5示出了本发明的三维波束码本矩阵实现的窄波束指向空间不同高度 位置上的用户的波束示意图; 图 4 为本发明实施例的无线通信***中利用三维波束码本进行通信装置 的结构组成示意图; 图 5为本发明实施例的基站的一种结构示意图。 具体实施方式
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 作进一步地详细描述。
具体实现中,根据天线阵列的排布, 本发明的天线阵列通常可包括两个方 向, 通常可称该两个方向为第一阵列方向和第二阵列方向, 比如, 当用水平和 垂直两个概念来代表天线阵列的方向时,所述第一阵列方向可为水平方向或者 垂直方向, 所述第二阵列方向也可为水平或者垂直方向(需要注意的是, 当第 一阵列方向为水平方向时, 所述第二阵列方向则为垂直方向, 反之亦然)。 再 如, 当用行和列两个概念来代表天线阵列的方向时, 所述第一阵列方向可为行 方向或者列方向,所述第二阵列方向也可为行方向或者列方向(需要注意的是, 当第一阵列方向为行方向时, 所述第二阵列方向则为列方向, 反之亦然)。 再 如, 当用仰角方向和方位角方向两个概念来代表天线阵列的方向时,所述第一 阵列方向可为仰角方向或者方位角方向,所述第二阵列方向也可为仰角方向或 者方位角方向(需要注意的是, 当第一阵列方向为仰角方向时, 所述第二阵列 方向则为方位角方向, 反之亦然)。 除此之外, 天线阵列的方向名称可由用户 自行定义, 只要能区分天线阵列的排布即可。 比如, 所述天线阵列可包括 Ν χ M个天线, 在第一阵列方向上的天线端口数量为 M, 在第二阵列方向上的天 线端口数量为 N; L N x M, 且所述 L、 M和 N均为正整数。
图 1 为本发明实施例的无线通信***中利用三维波束码本进行通信的方 法的流程示意图。 如图 1所示, 本发明实施例的方法可包括:
步骤 S110, 利用三维波束码本矩阵对 L个数据流进行预编码处理以生成 N x M个预编码后的数据, 具体实现中, 所述三维波束码本矩阵的行数为 N x M, 所述三维波束码本矩阵的列数为 L。 所述三维波束码本矩阵能够用于三维 波束空间的预编码。
步骤 S111 , 通过天线阵列发送由所述 N x M个预编码后的数据形成的 L 个新数据流中至少一个数据流。 N X M个预编码后的数据可以映射到为 L个部 分成为 L个新数据流中。 其中, 一个编码后的数据可以映射为一个流, 也可以 将多个编码后的数据映射为一个流,因此数据流的数量小于等于所述编码后的 数据的个数。
在本发明实施例中,天线阵列可以发送映射后的 L个新数据流,也可以选 择性地发射其中的部分数据流
在一些可行的实施方式中, L=l, 且所述 L个数据流形成第 k个波束, 所 述三维波束码本矩阵为:
w(1) = ¼{1 k
式(0 )
Figure imgf000019_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束,
Figure imgf000019_0002
l ,为第 k个波束的第二向量, 为指向第一阵列方向上
{1} {1}
的一个空间波束, 这里 v( ^M-l为长度为 M的所述第二向量中 的各个元素, k为正整数。
所述三维波束码本矩阵可为:
Figure imgf000020_0001
(1) 其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
V V M-1 为第 k个波束的第 i个第二向量,为指向第一阵列方 向上的第 i个空间波束, 其中 V0 0 w',' ν v VΓl{i},' ·…··,' Vv VMM{i'}-_1为长度为 Μ的所述 第二向量的各个元素, i的取值范围为大于等于 1且小于等于 M的整数, k 为正整数。
在一些可行的实施方式中, 所述第 k个波束服务于一个或多个终端。
在一些可行的实施方式中,可通过将 分别与每个 vW =[ … v^]相 乘形成一列 WM)的列元素的方式形成式(1 )所述的三维波束码本矩阵, 当 L 和 i取值为 1时, 就能得到式(0)。 具体实现中, 当需要发送的数据流数小于 L 时, 可从式(1) 中提取相应流数的列对数据流进行预编码。 比如, 如表 1 所示, 一个 8x4 (其中, 8代表天线阵列在列方向的天线阵元数, 4代表天线 阵列在行方向的天线阵元数) 天线阵列对应的码本包括: 表 1: 8x4天线阵列第 k个波束对应的码本
Figure imgf000020_0002
Figure imgf000021_0001
其中, k的取值范围是 [0, K-1], 其中 K为整数, 取值范围为不大于 N的 正整数, 其中 Wk {l;;2"'lj}是从码本矩阵 wk(, 中选出其中的 j个列。 此处, m的涵 义是表示具体实现中, vW=[ v'i! … U的选择可能有 m种可能(即 ^、 νί2}...νίΜί都有 m种可能), 而其中的第 m个 vii ==[[ … ― J对应的三维波 束码本矩阵为 W
需要说明的是, 本发明实施例所指的数据流,是指数据在同一时频资源上 占用不同空间维度的资源, 其英文描述是流(stream)者层 (layer )。 通常说 发送多流时,是指在同一时频资源上并行发送多个相互独立的数据,这些相互 独立的数据个数称为流数或层数。
在一些可行的 施方式中, 当阵列天线为均匀直线阵时,
Figure imgf000021_0002
(2)
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量,其中 。 , 到 ^为 向量中的各个元素, j表示一虚数单位, j*j=-l, d为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔,如 d=l/2表示天线阵元之间的间隔为 1/2个波长, 为所述 第 k个波束的主波瓣在第二阵列方向上的空间波束位置, "*"在本实施例及后 续实施例均表示相乘。 具体实现中, 为了保证式(2 )中的 产生的每个方向波束间正交或低干 扰, 则要求不同的 间产生的方向图的主波束间隔一定的距离。
在一些可行的实施方式中, 当阵列天线为均匀直线阵时,
Figure imgf000022_0001
( 3 )
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量, 其中 ,。, 到 ,M—工为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。 具体实现中, 为了保证 V产生的每个方向波束间正交或低干扰, 则要求 不同的 间产生的方向图的主波束间隔一定的距离。
在一些可行的实施方式 , 当阵列天线为非均匀直线天线阵,
式 ( 4 )
Figure imgf000022_0002
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 到 ^为 向量中的各个元素, j表示一虚数单位, j*j=-l, dn (η=0,...,Ν-1) 为所述第 k个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, 为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。 为便于理解 的具体生成方式, 可记录
= DKUK
Figure imgf000023_0001
-j2^d¾*0
e
-j2^d¾*l
e
Uk=a(-i\) e -j2^d¾*(N-l) 相应的, 所述阵列天线为非均勾直线天; ,阵, 所述才艮据天线阵列的阵元排 布, 生成第二向量, 包括: 根据式 (5)
式(5
Figure imgf000023_0002
ak是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。, a. 为 向量中的各个元素, bn (n=0,...,M-l )为所述第 k个波束在第一阵列方 向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的位置, 为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。
于 理 解 V'' 的 具 体 生 成 方 式 , 可 记 录
Figure imgf000024_0001
具体实现中,式( 2 )或式( 4 )中的 可根据式 = cos 或者 ^ = -cos(^) 计算, 其中, 所述 为天线阵列的第一阵列方向的波束角; 比如, 当第一阵列 方向为列方向或者仰角方向时, 所述 为天线阵列的仰角。 或者, 所述 可 根据 A = cosO)sin( ) 或者 i\ =— cosW) sin(6>) 或者 i\ = S1n(^) sinW) 或者 =— sin sin( 计算, 其中, 所述 为天线阵列的第一阵列方向的波束角, 所 述 为天线阵列的第二阵列方向的波束角。 比如, 当第一阵列方向为列方向或 者仰角方向, 第二阵列方向为行方向或者水平方向时, 对于对水平角方向 X 轴: = cos(^)sin(^)或者 A = -cos(^)sin(^) . 对水平角方向 y 轴: i\=sm(^)Sm(^)或者 =_sinW)sin( , 其中, 所述 为天线阵列的仰角, 所
述 为天线阵列的方位角。或者, 所述 根据 =H¾计算, 其中, 所述^ 5疋 第一个波束成形向量 A所对应的半波束宽度, 所述 通过方向图综合法计算 得到。 比如, ^可通过 woodward方向图综合法、 契比雪夫综合法或者泰勒综 合法中任一种计算得到。 比如, 当通过 woodward方向图综合法计算^ 5时, 当 d = 0.5, 旁瓣功率比 SLR= 13dB时,
Figure imgf000025_0001
, 其对应的矩阵为
1 0 … 0
0 1 … 0
0 0 '·. 0
0 0 … 1 则对这个波束成形向量矩阵,半波束宽度 (波束零点间隔) =^ = 1/( ¾ 为 在波束正交时的间隔值为。 对 d = 0.5时, L=N/2, 即 =i/(w« = 2/N。 则
1
e
Uk =a(-kQ0) =
-jl7£l0k(N-\)IN
e
式(6) 所以总共可用的向量 ^的数量为 ≤2^^」。 N=8, d=l/2时 Κ=8。 同样的, 当通过契比雪夫综合法或者泰勒综合法计算出 ^ 5后, 仍然釆用 式( 6 )计算 和 ^ , 在此不进行赞述。 具体实现中,式( 3 )或式( 5 )中的 可根据 = cos 或者 = -cos(^) 计算, 其中, 所述 为天线阵列的第一阵列方向的波束角; 比如, 当第一阵列 方向为列方向或者仰角方向时, 所述 为天线阵列的仰角。 或者, 所述 可 根据 =cos(0)sin(^)或者 =— cos(^)sin ( )或者 =sinW)sin(0)或者 =— sin( )sin(( )计算, 其中, 所述 为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。 比如, 当第一阵列方向为 列方向或者仰角方向, 第二阵列方向为行方向或者水平方向时,对于对水平角 方向 X轴: =cos(0)sin(^)或者 =— cos(^)sin( ); 对水平角方向 y轴: Ψ, =5ίη(φ)5ίη(θ)或者 ^k =— sin( )sin(( ) , 其中, 所述 为天线阵列的仰 角, 所述 为天线阵列的方位角。 或者, 所述 根据 Ψέ=ΑΨ。计算, 其中, 所述 ^0是第一个波束成形向量"。所对应的半波束宽度, 所述 通过方向 图综合法计算得到。 比如, 可通过 woodward方向图综合法、 契比雪夫综 合法或者泰勒综合法中任一种计算得到。 ψ0的计算方式与 ^的计算方式原 理相同, 在此不进行赞述。
在一些可行的实施方式中,为了使本发明实施例的码本能够应用于现有的 无线通信***中 (可称之为: 后向兼容), 式(1 )中的第一向量 或者第二向 量 可为长期演进***(LTE, Long Term Evolution ) 的第八版本 ( LTE R8 ) 中的 4天线发送码本。 或者为长期演进***(LTE, Long Term Evolution ) 的 第十版本(LTERIO) 中的 8天线发送码本。 或者为其他现有技术中已经存在 的码本。 并且, 当多天线数大于 4且小于 8或者大于 8时, 可以考虑将多列天 线合并成一列天线然后使用同一列的码本。 在 3GPP TS36.211的 LTE Rel-8中定义了 4发的码本, 如下表 2所示: 表 2: LTE Rel-8中定义的 4发码本
Table 6.3.4.2.3-2: Codebook for transmission on antenna ports {0,1,2,3} and for CSI reporting based on antenna ports {0,1,2,3} or {l 5,16,17,18}.
Figure imgf000027_0001
其中 ^=/-2 1^/ , 为 householder变换 (豪斯霍尔德变换) 。 也就是 , ..
说, LTE中 4发的用于 4天线的码本矩阵共有 16个, 母个分別可以爻待 4 。 即 在考虑与 LTE***后向兼容时, 式 (1)中的 V0 Vl V
>」为取上表 中对应的各列。 当
Figure imgf000028_0001
按上表 2所述来取时, 按本发明 实施例的式 (1) 生成的码本即可以实现与 LTER8的后向兼容。 另外, 如果要实现与 LTER10的 8个发射天线的码本的后向兼容, 同样可以 使用 LTER10中的 8个天线发射的码本, 如表 3和表 4所示。 表 3: LTER10中 8个天线发射时的码本个数 (参考 3GPPTS36.213)
Figure imgf000028_0002
表 4: Nx4天线阵列的单个^: 对应的最大 流码本生成方法
Figure imgf000028_0003
只是一个波束对应中的 m值可以取 0-15中的任何一项, 即, 按上表 4, 每 个波束共有 16种 ^的取法。 具体实现中, 通过在天线阵列的第一阵列方向或者第二阵列方向上加式
27
替换页 (细则第 26条) (2) - (5) 中所述的向量, 而在另一阵列方向上加现有技^ l^ ^^^^^ 即可实现本发明实施例与现有***的完全兼容,使得现有技术中的用户设备可 以直接接入到本发明实施例的波束***中, 并按原有的方式进行解调和反馈, 用户设备的行为不受任何影响。
具体实现中, 当天线***有多个波束需要同时发送时, 需要利用可对多个 波束进行编码的三维波束码本矩阵。 比如, L个数据流形成 K个波束, 且所述 K个波束的功率相同, 此时, 假设 L=v。 所需的三維波束码本矩阵为: 式 (7)
Figure imgf000029_0001
其中, 为总共 K个波束的码本矩阵, K为正整数, ^ΐ' )为第 nl个波 束的波束码本矩阵中选出的具有 Vl列的波束码本, >为第 n2个波束的波束 码本矩阵中选出的具有 列的波束码本, )为第 K个波束的波束码本矩阵 中选出的具有 vk列的波束码本, nl和 n2为小于 K的正整数, K为不大于 N 的正整数, V =V,。 V,为不大于 Μ的正整数。 相应的, 在一些可行的实施方式中, L个数据流形成 Κ个波束, 且所述 Κ 个波束的功率不相同, 此时, 假设 L=v。 所需的三維波束码本矩阵为: v) =
Figure imgf000029_0002
(8) 其中, '为总共 Κ个波束的码本矩阵, Κ为正整数, x (x=nl, η2, ......, Κ) 为波束的功率分配因子, 为第 nl个波束的波束码本矩阵中选出的具 有 ¥!列的波束码本, „( 2 V2 )为第 n2个波束的波束码本矩阵中选出的具有 列 的波束码本, )为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码
28
替换页 (细则第 26条) 本, nl和 n2均为小于 K的正整数, Κ为不大于 Ν的主整数, S ^ ,
V,为不大于 M的正整数。
作为实施例的一种特例, 当要求总功率不变时, 则所有的功率分配归子的 总和为 1, 即∑: „=1。
由上可见, 在本发明实施例的一些可行的实施方式中, 利用三維波束码本 矩阵对 L个数据流进行预编码处理以生成 NXM个预编码后的数据; 所述三 维波束码本矩阵的行数为 NX M, 所述三维波束码本矩阵的列数为 L; 通过天 线阵列发送由所述 NX M个预编码后的数据形成的 L个新数据流中至少一个 数据流,所述天线阵列包括 NX M个天线,在第一阵列方向上的天线端口数量 为 M, 在第二阵列方向上的天线端口数量为 N; L^NXM, 且所述 L、 M和 N均为正整数。 由此可实现在三维空间中形成能指向多个方向的波束, 能实现 三維空间的波束映射。并且通过本发明实施例的三維码本所形成的波束在空间 的指向位置可以通过选用不同的码本来实现,这样使用本发明实施例的三維码 本进行无线通信时, 波束生成设备 (比如, 基站) 能够与相同时频资源上处于 不同三維角度区域的一个或者多个用户进行通信。 比如, 图 2.1和图 2.2示出 了仰角和方位角方向上 2 流的三维码本生成的窄波束方向图的立体图和投影 图的立体图。 如图 2.1和图 2.2可知, 当作为天线阵列方向的列与行的方向都 使用具有较窄波束宽度的预编码向量时,采用本发明实施例的三維波束码本在 水平仰角方向上也指向多个不同的方位角方向, 此时, 无论在仰角方向还是方 位角方向上,波束生成设备的发射机都通过三维码本在三維空间的较窄区域上 实现对多用户的较窄波束的通信。 再如, 图 3.1和图 3.2示出了仰角在 3个不 同方向, 水平方位角为全向的方向图的立体图和投影图的立体图。 如图 3.1和 图 3.2可知, 采用本发明实施例的三維波束码本可在不同的仰角波束指向不同
29
替 ( 第 26条) ,
的仰角方向, 然后在水平方位角方向上可以产生很宽 ^VIT果 r jtCT 在' ^干万 ' 角方向上可以做 SU-MIMO (单用户多输入多输出) 或 MU-MIMO (多用户多 输入多输出)。 图 3.3 示出了本发明的三維波束码本矩阵实现的窄波束指向空 间仰角方向上不同位置上的用户 (UE) 的波束示意图, 如图 3.3, 采用本发明 的三維波束码本预编码处理后通过天线阵列发射了 3个不同的波束,分別指向 处于不同仰角方向上的三个用户 UE1、 UE2和 UE3。 图 3.4示出了采用本发明 的三維波束码本矩阵实现的窄波束指向空间方位角方向上不同位置上的用户 的波束示意图。 如图 3.4, 采用本发明的三维波束码本预编码处理后通过天线 阵列发射了 3个不同的波束, 分别指向处于不同方位方向上的三个用户 UE1、 UE2和 UE3。图 3.5示出了本发明的三維波束码本矩阵实现的窄波束指向空间 不同高度位置上的用户的波束示意图。 如图 3.5, 采用本发明的三維波束码本 预编码处理后通过天线阵列发射了 3个不同的波束,分别指向处于不同空间高 度位置上的三个用户 UE1、 UE2和 UE3。
在一些可行的实施方式中, 可先生成第一向量 , 后生成第二向量 v', 由 此, 当通过本发明实施例的三維波束码本矩阵将数据流映射到天线上时, 同样 可采用先第一阵列方向后第二阵列方向的顺序通过本发明实施例的三維波束 码本矩阵中的码本对所述多流数据流进行预编码操作,并将预编码后的多流数 据流按所述先第一阵列方向后第二阵列方向的顺序映射到对应天线阵列的阵 元上进行发送。 比如, 当第一向量 ^为列方向的向量, 为行方向的向量时, 在进行数据映射时, 同样采用先列后行的顺序映射到天线阵列上。 当第一向量 为行方向的向量, 为列方向的向量时, 在进行数据映射时, 同样采用先行 后列的顺序映射到天线阵列上。
具体实现中, 本发明实施例还提供一种计算机存储介质, 其中, 该计算机 存储介质可存储有程序,给程序执行时可包括本发明实施例提供的无线通信系
30
替换页 (细则第 26条) 统中利用三维波束码本进行通信的方法的各买施例中的部分或拿
为更好实施本发明的方法实施例的各方案,本发明实施例还提供了相关装 置。
图 4 为本发明的可用于实施本发明的方法实施例的无线通信***中利用 三维波束码本进行通信的装置的一实施例的结构组成示意图。如图 4所示, 本 发明实施例的无线通信***中利用三維波束码本进行通信的装置 4 可包括预 编码模块 41和发送模块 42, 其中:
预编码模块 41, 用于利用三维波束码本矩阵对 L个数据流进行预编码处 理以生成 NX M个预编码后的数据,具体实现中,所述三維波束码本矩阵的行 数为 NX M, 所述三维波束码本矩阵的列数为 L。 所述三维波束码本矩阵能够 用于三维波束空间的预编码。
发送模块 42, 用于通过天线阵列发送所述 NXM个预编码后的数据形成 的 L个新数据流中至少一个数据流, 所述天线阵列包括 NX M个天线, 在第 一阵列方向上的天线端口数量为 M, 在第二阵列方向上的天线端口数量为 N; L^NX M, 且所述 L、 M和 N均为正整数。
具体实现中, 根据天线阵列的排布, 一个天线阵列通常可包括两个方向, 通常可称该两个方向为第一阵列方向和第二阵列方向, 比如, 当用水平和垂直 两个概念来代表天线阵列的方向时,所述第一阵列方向可为水平方向或者垂直 方向, 所述第二阵列方向也可为水平或者垂直方向 (需要注意的是, 当第一阵 列方向为水平方向时, 所述第二阵列方向则为垂直方向, 反之亦然)。 再如, 当用行和列两个概念来代表天线阵列的方向时,所述第一阵列方向可为行方向 或者列方向, 所述第二阵列方向也可为行方向或者列方向 (需要注意的是, 当 第一阵列方向为行方向时, 所述第二阵列方向则为列方向, 反之亦然)。 再如, 当用仰角方向和方位角方向两个概念来代表天线阵列的方向时,所述第一阵列
31
替换页 (细则第 26条) ^ , ,
方向可为仰角方向或者万位角万向,所述第二阵列万向也可 Ίψ ^ΠΓ向或首—万 位角方向 (需要注意的是, 当第一阵列方向为仰角方向时, 所述第二阵列方向 则为方位角方向, 反之亦然)。 除此之外, 天线阵列的方向名称可由用户自行 定义, 只要能区分天线阵列的排布即可。 比如, 所述天线阵列可包括 ΝΧΜ个 天线, 在第一阵列方向上的天线端口数量为 Μ, 在第二阵列方向上的天线端 口数量为 N; L^NX M, 且所述 L、 M和 N均为正整数。
在一些可行的实施方式中, L=l, 且所述 L个数据流形成第 k个波束, 所 述预编码模块 41 中所使用的三維波束码本矩阵可为:
式(0)
Figure imgf000033_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束 ) V; ill , 为第 k个波束的第二向量, 为指向第一阵列方向上 的一个空间波束, 这里 '-x 为长度为 Μ的所述第二向量中 的各个元素, k为正整数。
在一些可行的实施方式中, L=M, 且所述 L个数据流形成第 k个波束 所述预编码模块 41 中所使用的三维波束码本矩阵可为: Ά
Figure imgf000033_0002
W 、 =
Figure imgf000033_0003
( 1 )
其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
32 替 26 /-1 为第 k个波束的第 i个第二向量 ^^向 阵 向上的第 i个空间波束, 其中 ν^}νι{'}, · · ', VM-l为长度为 M的所述 第二向量的各个元素, i的取值范围为大于等于 1 且小于等于 M的整数, k 为正整数。 在一些可行的实施方式中, 可通过将 ^分別与每个 vW « ν'" … 相 乘形成一列 ">的列元素的方式形成式 (1 ) 所述的三維波束码本矩阵。 当 L 和 i取值为 1时, 就能得到式 (0)。 具体实现中, 当需要发送的数据流数小于 L 时, 可从式 (1 ) 中提取相应流数的列对数据流进行预编码。 比如, 如表 1 所示, 一个 8x4 (其中, 8代表天线阵列在列方向的天线阵元数, 4代表天线 阵列在行方向的天线阵元数) 天线阵列对应的码本包括: 表 1 : 8x4天线阵列第 k个波束对应的码本
Figure imgf000034_0001
其中, k的取值范围是 [0, K-l], 其中 K为整数, 取值范围为不大于 N的 正整数, 其中^ Ϊ '^'是从码本矩阵 中选出其中的 j个列。 此处, m的涵
33
替换页 (细则第 26条〕 . ... 「 ," ,,, Ί
义是表示具体实现中, v v } … ^ -'」的选择可能 W / ( v'j
W—「,,w 、,w
都有 m种可能), 而其中的第 1^个 '' =^' ν·'" … 对应的三維波 束码本矩阵为 。
需要说明的是, 本发明实施例所指的数据流, 是指数据在同一时频资源上 占用不同空间維度的资源, 其英文描述是流 (stream) 者层 (layer)。 通常说 发送多流时, 是指在同一时频资源上并行发送多个相互独立的数据, 这些相互 独立的数据个数称为流数或层数。
一些可行的实施方式中, 当阵列天线为均句直线阵时,
Figure imgf000035_0001
其中, Α是第 k个波束在第二阵列方向上使用的波束形成向量,其中 A。, 到 ^为 A向量中的各个元素, j 表示一虚数单位, j*j=-l, d 为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔,如 d=l/2表示天线阵元之间的间隔为 1/2个波长, 为所述 第 k个波束的主波瓣在第二阵列方向上的空间波束位置。 具体实现中, 为了保证式 (2) 中的 ^产生的每个方向波束间正交或低干 扰, 则要求不同的 A间产生的方向图的主波束间隔一定的距离。
在一些可行的实施方式中, 当阵列天线为均 直线阵时,
Figure imgf000035_0002
(3)
34
替换页 (细则第 26条) 其中, 第 k个波束在第一阵列方向上使用的波東形 , 到 ^^^为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。 具体实现中, 为了保证 ν'产生的每个方向波束间正交或低干扰, 则要求 不同的 间产生的方向图的主波束间隔一定的距离。 在一些可行的实施方 当阵列天线为非均 直线天线阵,
式(4)
Figure imgf000036_0001
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 。, 到 ^为 A向量中的各个元素, j表示一虛数单位, j*j=-l, dn (η=0,...,Ν-1 ) 为所述第 k 个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, A为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。 为便于理解 ^的具体生成方式, 可记录
n = Dkuk 1)
Figure imgf000036_0002
35
替 ( 第 26条)
Figure imgf000037_0001
e
e
Uk = a(-ak ) = e -;2^ί¾ *(Λ'-1) 相应的, 所述阵列天线为非均匀直线天线阵, 所述根据天线阵列的阵元排 布, 生成第二向量, 包括: 根据式 (5)
式(5)
Figure imgf000037_0002
• ' "k,M -、 是第 k个波束在第一阵列方向上使用的波束形成向量,其中 。,到 ak k,M- 为 A向量中的各个元素, (η=0,...,Μ-1 ) 为所述第 k个波束在第一阵列方 向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的位置, 为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。 为 便 于 理 解 V ' 的 具 ^ 生 成 方 式 , 可 记 录
e
一 e
Figure imgf000037_0003
e
36
替换页 (细则第 26条)
Figure imgf000038_0001
具体实现中,式 (2)或式 (4)中的 可根据式 =cos^)或者 =— eQS( 计算, 其中, 所述 0为天线阵列的第一阵列方向的波束角; 比如, 当第一阵列 方向为列方向或者仰角方向时, 所述 0为天线阵列的仰角。 或者, 所述 可 根据 =cos(^)sin(^)或者 ί =-cos sin(<9) 或者 =sin(^)sin(^)或者 =一 sin(^sinW计算, 其中, 所述 0为天线阵列的第一阵列方向的波束角, 所述 为天线阵列的第二阵列方向的波束角。 比如, 当第一阵列方向为列方向 或者仰角方向, 第二阵列方向为行方向或者水平方向时, 对于对水平角方向 X 轴: =cos(^)sin(^)或者 =-cos(^)sin(^) . 对水平角 方向 y 轴: ^t=sin((Z))sin( 或者 i\=_sinW)sin( ), 其中, 所述 0为天线阵列的仰角, 所 述 ^为天线阵列的方位角。 或者, 所述 根据 =A:^>计算, 其中, 所述^ >是 第一个波束成形向量 A所对应的半波束宽度, 所述 通过方向图综合法计算 得到。 比如, 可通过 woodward方向图综合法、 契比雪夫综合法或者泰勒综 合法中任一种计算得到。 比如, 当通过 woodward方向图综合法计算^ >时, 当 d = 0.5, 旁瓣功率比 SLR= 13dB时,
37
替换页 (细则第 26条) A =[ι,ι,...,ι], 其对应的矩阵
1 0 0
0 1 0
0 0 0
0 0 1 则对这个波束成形向量矩阵,半波束宽度 (波束零点间隔)
Figure imgf000039_0001
l/(N 为 在波束正交时的间隔值为。 对 d = 0.5时, L=N/2, 即 =1/( )=2^。 贝, j
1
-j27£^klN
e
Uk =a(-kQ0)
Figure imgf000039_0002
式 (6) 所以总共可用的向量 ^的数量为 ^^礼 」。 N=8, d=l/2时 K=8。 同样的, 当通过契比雪夫综合法或者泰勒综合法计算出 ^ )后, 仍然采用 式 (6) 计算 和 ^, 在此不进行赘述。 具体实现中,式(3)或式(5)中的 可根据 ΨΑ = cos(^)或者 = -cos(^) 计算, 其中, 所述 0为天线阵列的第一阵列方向的波束角; 比如, 当第一阵列 方向为列方向或者仰角方向时, 所述 0为天线阵列的仰角。 或者, 所述 可 根据 =cos„ 或者 =—cos sin 或者 Ψ =sin(„ 或者 =-sin(^)sin )计算, 其中, 所述 0为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。 比如, 当第一阵列方向为 列方向或者仰角方向, 第二阵列方向为行方向或者水平方向时, 对于对水平角 方向 X轴: ΨΑ = )3(0)5ίη( )或者 Ψλ =—(:ο5(^)5ίη(^) ; 对水平角方向 y轴: ^sin^sin ( )或者 =— sin(^)sin((9), 其中, 所述 0为天线阵列的仰 角, 所述 为天线阵列的方位角。 或者, 所述 根据 ΨΑ= :Ψ。计算, 其中,
38
替换页 (细则第 26条) 所述1 是第一个波束成形向量 。所对应的半波束宽度, 所述1 ^0通过方向 图综合法计算得到。 比如,
Figure imgf000040_0001
可通过 woodward方向图综合法、 契比雪夫综 合法或者泰勒综合法中任一种计算得到。 ^0 的计算方式与 的计算方式原理相 同, 在此不进行赘述。
在一些可行的实施方式中,为了使本发明实施例的码本能够应用于现有的 无线通信***中 (可称之为: 后向兼容), 式 (1 ) 中的第一向量 ^或者第二向 量 可为长期演进*** (LTE, Long Term Evolution) 的第八版本 (LTE R8) 中的 4天线发送码本。 或者为长期演进*** (LTE, Long Term Evolution) 的 第十版本 (LTE R10) 中的 8天线发送码本。 或者为其他现有技术中已经存在 的码本。 并且, 当多天线数大于 4且小于 8或者大于 8时, 可以考虑将多列天 线合并成一列天线然后使用同一列的码本。 在 3GPP TS36.211的 LTE Rel-8中定义了 4发的码本, 如下表 2所示: 表 2: LTE Rel-8中定义的 4发码本
39
替换页 (细则第 26条) . ._. ,, ,
based on antenna ports {0,1,2,3} or {l 5,16,17,18}.
Figure imgf000041_0001
其中 Wn =I-2u , 为 householder变换 (豪斯霍尔德变换) 。 也就是 说, LTE中 4发的用于 4天线的码本矩阵共有 16个, 每个分別可以支持 4流。 即 替换页 (细则第 26条) ,
在考虑与 LTE*** 容时, 式 (1)中的 V = "■ ^'-1」为取上表
Figure imgf000042_0001
V
中对应的各列。 当 V0 Vi Λ-'」按上表 2所述来取时, 按本发明 实施例的式 (1) 生成的码本即可以实现与 LTER8的后向兼容。 另外, 如果要实现与 LTER10的 8个发射天线的码本的后向兼容, 同样可以 使用 LTER10中的 8个天线发射的码本, 如表 3和表 4所示。 表 3: LTER10中 8个天线发射时的码本个数 (参考 3GPPTS36.213)
Figure imgf000042_0002
表 4: Nx4天线阵列的单个^^对应的最大 流码本生成方法
Figure imgf000042_0003
只是一个波束对应中的 m值可以取 0-15中的任何一项, 即, 按上表 4, 每 个波束共有 16种 的取法。 具体实现中, 通过在天线阵列的第一阵列方向或者第二阵列方向上加式 (2) - (5) 中所述的向量, 而在另一阵列方向上加现有技术中的天线码本,
41
替换页 (细则第 26条) 9 ·
即可实现本发明实施例与现有***的完全兼容,使得现有技木甲的用尸议薈可 以直接接入到本发明实施例的波束***中, 并按原有的方式进行解调和反馈, 用户设备的行为不受任何影响。
具体实现中, 当天线***有多个波束需要同时发送时, 需要利用可对多个 波束进行编码的三维波束码本矩阵。 比如, L个数据流形成 K个波束, 且所述 K个波束的功率相同, 此时, 假设 L=v。 所需的三维波束码本矩阵为: 式 (7)
Figure imgf000043_0001
其中, W为总共 K个波束的码本矩阵, K为正整数, 1 为第 nl个波 束的波束码本矩阵中选出的具有 v1列的波束码本, 2 V2)为第 n2个波束的波束 码本矩阵中选出的具有 v2列的波束码本, χ >为第 Κ个波束的波束码本矩阵 中选出的具有 ¥)^列的波束码本, nl和 η2为小于 Κ的正整数, Κ为不大于 Ν 的正整数, ν =ν,·, V,为不大于 Μ的正整数。 相应的, 在一些可行的实施方式中, L个数据流形成 Κ个波束, 且所述 Κ 个波束的功率不相同, 此时, 假设 L=v。 所需的三維波束码本矩阵为:
Figure imgf000043_0002
其中, ' '为总共 K个波束的码本矩阵, K为正整数, A (x=n 1, n2, ......,
K) 为波束的功率分配因子, 为第 nl个波束的波束码本矩阵中选出的具 有 v1列的波束码本, „( ^为第 n2个波束的波束码本矩阵中选出的具有 v2列 的波束码本, VA )为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码 本, nl和 n2均为小于 K的正整数, K为不大于 N的正整数, ν =∑ ν,·, 替换页 (细则第 26条) 为不大于 M的正整数。
作为实施例的一种特例, 当要求总功率不变时, 则所有的功率分配归子的 总和为 1, 即∑ P„=l。
由上可见, 在本发明实施例的一些可行的实施方式中, 利用三維波束码本 矩阵对 L个数据流进行预编码处理以生成 NXM个预编码后的数据; 所述三 维波束码本矩阵的行数为 NX M, 所述三维波束码本矩阵的列数为 L; 通过天 线阵列发送由所述 NX M个预编码后的数据形成的 L个新数据流中至少一个 数据流,所述天线阵列包括 NX M个天线,在第一阵列方向上的天线端口数量 为 M, 在第二阵列方向上的天线端口数量为 N; L^NXM, 且所述 L、 M和 N均为正整数。 由此可实现在三維空间中形成能指向多个方向的波束, 能实现 三維空间的波束映射。并且通过本发明实施例的三维码本所形成的波束在空间 的指向位置可以通过选用不同的码本来实现,这样使用本发明实施例的三维码 本进行无线通信时, 波束生成设备 (比如, 基站) 能够与相同时频资源上处于 不同三維角度区域的一个或者多个用户进行通信。 比如, 图 2.1和图 2.2示出 了仰角和方位角方向上 2 流的三维码本生成的窄波束方向图的立体图和投影 图的立体图。 如图 2.1和图 2.2可知, 当作为天线阵列方向的列与行的方向都 使用具有较窄波束宽度的预编码向量时,采用本发明实施例的三維波束码本在 水平仰角方向上也指向多个不同的方位角方向, 此时, 无论在仰角方向还是方 位角方向上,波束生成设备的发射机都通过三維码本在三維空间的较窄区域上 实现对多用户的较窄波束的通信。 再如, 图 3.1和图 3.2示出了仰角在 3个不 同方向, 水平方位角为全向的方向图的立体图和投影图的立体图。 如图 3.1和 图 3.2可知, 采用本发明实施例的三维波束码本可在不同的仰角波束指向不同 的仰角方向, 然后在水平方位角方向上可以产生很宽的波束, 此时在水平方位 角方向上可以做 SU-MIMO (单用户多输入多输出) 或 MU-MIMO (多用户多 输入多输出)。 3.3 示出了采用本发明的三维波束^^ ^
向空间仰角方向上不同位置上的用户 (UE) 的波束示意图, 如图 3.3, 采用本 发明的三维波束码本预编码处理后通过天线阵列发射了 3个不同的波束,分别 指向处于不同仰角方向上的三个用户 UE1、 UE2和 UE3。 图 3.4示出了采用本 发明的三維波束码本矩阵实现的窄波束指向空间方位角方向上不同位置上的 用户的波束示意图。 如图 3.4, 采用本发明的三維波束码本预编码处理后通过 天线阵列发射了 3 个不同的波束, 分別指向处于不同方位方向上的三个用户 UEK UE2和 UE3。 图 3.5示出了采用本发明的三維波束码本矩阵实现的窄波 束指向空间不同高度位置上的用户的波束示意图。 如图 3.5, 采用本发明的三 維波束码本预编码处理后通过天线阵列发射了 3个不同的波束,分別指向处于 不同空间高度位置上的三个用户 UE1、 UE2和 UE3。
在一些可行的实施方式中, 可先生成第一向量 ^, 后生成第二向量 v', 由 此, 当通过本发明实施例的三維波束码本矩阵将数据流映射到天线上时, 同样 可采用先第一阵列方向后第二阵列方向的顺序通过本发明实施例的三維波束 码本矩阵中的码本对所述多流数据流进行预编码操作,并将预编码后的多流数 据流按所述先第一阵列方向后第二阵列方向的顺序映射到对应天线阵列的阵 元上进行发送。 比如, 当第一向量 ^为列方向的向量, 为行方向的向量时, 在进行数据映射时, 同样采用先列后行的顺序映射到天线阵列上。 当第一向量
^为行方向的向量, v'为列方向的向量时, 在进行数据映射时, 同样采用先行 后列的顺序映射到天线阵列上。 则本发明的装置 4还可包括: 映射模块(未图 示), 用于将 N X M个预编码后的数据对应的 L个数据流按照先第一阵列方向 后第二阵列方向的顺序映射到所述天线阵列上。
相应的, 如图 5所示, 本发明实施例还提供了一种基站, 包括无线调制 解调器 51与无线调制解调器耦合连接的天线阵列 52;
44 替 ( 26 . ^ / . i ^ , ,. -. 其中,所述天线阵列 52包括 NX M个天线,在第" ^阵 「万 ^上—的久 口数量为 M, 在第二阵列方向上的天线端口数量为 N; 所述 M和 N均为正整 数;
所述无线调制解调器 51, 用于利用三維波束码本矩阵对 L个数据流进行 预编码处理以生成 N XM个数据流, 并将 NXM个预编码后的数据形成的 L 个新数据流映射到天线阵列上;所述三维波束码本矩阵能够用于三維波束空间 的预编码, 所述三维波束码本矩阵的行数为 NX M, 所述三維波束码本矩阵的 列数为 L, L NX M且为正整数; 所述天线阵列 52, 用于发送所述 L个新数据流中的至少一个数据流。 在一些可行的实施方式中, 所述无线调制解调器 51具体用于:利用三維 波束码本矩阵对 L个信号进行预编码处理以生成 NXM个数据流, 并按照先 第一阵列方向后第二阵列方向的顺序将 NXM个预编码后的数据形成的 L个 新数据流映射到所述天线阵列上。
以上所列举的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、一种无线通信***中利用三维波束码本进行通信的方法, 其特征在于, 包括:
利用三维波束码本矩阵对 L个数据流进行预编码处理以生成 N X M个预 编码后的数据, 所述三维波束码本矩阵能够用于三维波束空间的预编码; 所述 三维波束码本矩阵的行数为 N X M , 所述三维波束码本矩阵的列数为 L;
通过天线阵列发送由所述 N X M个预编码后的数据形成的 L个新数据流 中至少一个数据流,所述天线阵列包括 N x M个天线,在第一阵列方向上的天 线端口数量为 M, 在第二阵列方向上的天线端口数量为 N; L N x M, 且所 述 L、 M和 N均为正整数。
2、 如权利要求 1所述的方法, 其特征在于, L=l , 且所述 L个数据流形 成第 k个波束, 所述三维波束码本矩阵为:
w(1) = ¼{1 k
Figure imgf000047_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束,
Figure imgf000047_0002
l ,为第 k个波束的第二向量, 为指向第一阵列方向上
{1} {1}
的一个空间波束, 这里 v( ^M-l为长度为 M的所述第二向量中 的各个元素, k为正整数。
3、 如权利要求 1所述的方法, 其特征在于, L=M, 且所述 L个数据流
Figure imgf000048_0001
其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
V V M-1 为第 k个波束的第 i个第二向量,为指向第一阵列方 向上的第 i个空间波束, 其中 V0 0 w',' ν v VΓl{i},' ·…· ·,' Vv VMM{i'}-_1为长度为 Μ的所述 第二向量的各个元素, i的取值范围为大于等于 1 且小于等于 M的整数, k 为正整数。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述第 k个波束服务于 -个或多个终端。
5 、 ^口权利要求 2 或 3 所述的 方 法
Figure imgf000048_0002
其中, A是第 k个波束在第二阵列方向上使用的波束成形向量, 其中 。 , 到 ^为 A向量中的各个元素, j表示一虚数单位, j*j=-l , d为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔, 为所述第 k个波束的主波瓣在第二阵列方向上的空间波 束位置。
6、 如权利要求 2-5中任一项所述的方法, 其特征在于,
Figure imgf000049_0001
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量, 其中 ,。, 到 ,M—工为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。
7、 如权利要求 2或 3所述的方法, 其特征在于,
Figure imgf000049_0002
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 。 , 到 ^为 A向量中的各个元素, j表示一虚数单位, j*j=-l , dn ( η=0,...,Ν-1 ) 为所述第 k个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, 为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。
8、 如权利要求 2或 3或 7所述的方法, 其特征在于,
Figure imgf000050_0001
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。, 到 ^^为^向量中的各个元素, bn (η=0,...,Μ-1 )为所述第 k个波束在第一 阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的 位置, "^为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。
9、 如权利要求 5或 7所述的方法, 其特征在于,
\=cos(< )或者 ί\=- cos(6>) , 其中, 所述 为天线阵列的第一阵列方向 的波束角;
或者, \ = cos sin(6>)或者 ί¾ = _cos(^)sin(6 或者 ί¾ = sin sin(6>)或 者 ί¾ =— sin(^)sin((9) ,其中,所述 为天线阵列的第一阵列方向的波束角, 所述 ^为天线阵列的第二阵列方向的波束角。
10、 如权利要求 6或 8所述的方法, 其特征在于,
Yk=cos(< )或者 k:- cos(6>) , 其中, 所述 为天线阵列的第一阵列方向 的波束角;
或者, Yk =cos(^)sin(6 或者 =_cos(^)sin(< )或者 =sin( )sin(6>) 或者 ^ k =— sin(^)sin(<9), 其中, 所述 为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。
11、 如权利要求 5、 7、 9中任一项所述的方法, 其特征在于, ί\=¾^, 其中, 所述 是第一个波束成形向量 A所对应的半波束宽度。
12、如权利要求 6、 8、 10中任一项所述的方法,其特征在于, Yk :]^^, 其中, 所述^ 是第一个波束成形向量《。所对应的半波束宽度。
13、 如权利要求 2至 12中任一项所述的方法, 其特征在于, 所述第一向 量与第二向量中的至少一项为: 长期演进*** LTE的第八版本中的 4天线发 送码本、 或 LTE的第十版本中的 8天线发送码本。
14、 如权利要求 1所述的方法, 其特征在于, L=v, 所述 L个数据流形成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000051_0001
其中, K为正整数, 为第 nl个波束的波束码本矩阵中选出的具有 Vl 列的波束码本, Wn ( 2 )为第 n2个波束的波束码本矩阵中选出的具有 v2列的波束 码本, wK 为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码本, nl 和 n2均为小于 K的正整数,Κ为不大于 N的正整数, v =∑1 1!1 v 1 , Vl为不大 于 M的正整数。
15、 如权利要求 1所述的方法, 其特征在于, L=v, 所述 L个数据流形成 K个波束, 所述三维波束码本矩阵为:
WW
Figure imgf000052_0001
其中, K为正整数, p ( x=nl , η2, , Κ ) 为波束的功率分配因子, 为第 nl个波束的波束码本矩阵中选出的具有 ^列的波束码本, Wn ( 2 )为 第 n2个波束的波束码本矩阵中选出的具有 v2列的波束码本, W^K)为第 K个 波束的波束码本矩阵中选出的具有 vk列的波束码本, nl和 n2均为小于 K的 正整数, K为不大于 N的正整数, V : !^^^ , ¼为不大于 M的正整数。
16、 如权利要求 14或 15所述的方法, 其特征在于, 所述 K个波束分别 服务于多个终端。
17、如权利要求 14-16中任一项所述的方法, 其特征在于, 所述 K个波束 有相同或不同的功率。
18、 如权利要求 1-17 中任一项所述的方法, 其特征在于, 在所述通过所 述天线阵列发送由所述 N X M个预编码后的数据形成的 L个新数据流中至少 一个数据流的步骤之前, 还包括:
将所述由 N x M个预编码后的数据形成的 L个新数据流按照先第一阵列 方向后第二阵列方向的顺序映射到所述天线阵列上。
19、一种无线通信***中利用三维波束码本进行通信的装置 ,其特征在于 , 包括:
预编码模块,用于利用三维波束码本矩阵对 L个数据流进行预编码处理以 生成 N X M个预编码后的数据,所述三维波束码本矩阵能够用于三维波束空间 的预编码; 所述三维波束码本矩阵的行数为 N x M, 所述三维波束码本矩阵的 列数为 L;
发送模块, 与所述预编码模块连接, 用于通过天线阵列发送由所述 N x M 个预编码后的数据形成的 L个新数据流中至少一个数据流,所述天线阵列包括 N x M个天线,在第一阵列方向上的天线端口数量为 M,在第二阵列方向上的 天线端口数量为 N; L N x M, 且所述 L、 M和 N均为正整数。
20、 如权利要求 19所述的的装置, 其特征在于, L=l , 且所述 L个数据
w(1) = ¼{1 k
Figure imgf000053_0001
其中, 为第 k个波束的第一向量,为指向第二阵列方向上的空间窄波束, {1) -{1) -{1)
V V V M-1 ,为第 k个波束的第二向量, 为指向第一阵列方向上 的一个空间波束, 这里 ν;1}, · · · , 为长度为 Μ的所述第二向量中 的各个元素, k为正整数。
21、 如权利要求 19所述的装置, 其特征在于, L=M, 且所述 L个数据
Figure imgf000054_0001
其中, 为第 k个波束的第一向量, 为指向第二阵列方向的空间窄波束,
V V M-1 为第 k个波束的第 i个第二向量,为指向第一阵列方
{i } 7{i }
向上的第 i个空间波束, 其中 vo , νι VM-1为长度为 M的所述 第二向量的各个元素, i的取值范围为大于等于 1且小于等于 M的整数, k 为正整数。
22、 如权利要求 20或 21所述的装置, 其特征在于, 所述第 k个波束服 务于一个或多个终端,
23、 如权利要求 20 或 21 所述的装置, 其特征在于 ,
Figure imgf000055_0001
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 。 , 到 ^为 A向量中的各个元素, j表示一虚数单位, j*j=-l, d为所述第 k个 波束在第二阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天 线阵元间的间隔, 为所述第 k个波束的主波瓣在第二阵列方向上的空间波 束位置。
24、 如权利要求 20-22中任一项所述的装置, 其特征在于,
1)
Figure imgf000055_0002
其中,, ak是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。, 到 ,M—工为^向量中的各个元素, b为所述第 k个波束在第一阵列方向上的方 向矢量所在方向上的对发送信号波长归一化的天线阵元间的间隔, 为所述 第 k个波束的主波瓣在第一阵列方向上的空间波束位置。
25、 如权利要求 20或 21所述的装置, 其特征在于,
Figure imgf000056_0001
其中, A是第 k个波束在第二阵列方向上使用的波束形成向量, 其中 。 , 到 ^为 A向量中的各个元素, j表示一虚数单位, j*j=-l , dn ( η=0,...,Ν-1 ) 为所述第 k个波束在第二阵列方向上的方向矢量所在方向上的对发送信号波 长归一化的天线阵元间的位置, 为所述第 k个波束的在第二阵列方向上的 主波瓣空间波束位置。
26、 如权利要求 20或 21或 25所述的装置, 其特征在于,
V V V; V M-1
Figure imgf000056_0002
其中, 《k是第 k个波束在第一阵列方向上使用的波束形成向量,其中 ,。 , 到 ^^为^向量中的各个元素, bn ( n=0, ...,M-l )为所述第 k个波束在第一 阵列方向上的方向矢量所在方向上的对发送信号波长归一化的天线阵元间的 位置, "^为所述第 k个波束的在第一阵列方向上的主波瓣空间波束位置。
27、 如权利要求 23或 25所述的装置, 其特征在于, \ =cos(6>)或者 ί\=- cos(6>) , 其中, 所述 为天线阵列的第一阵列方向 的波束角;
或者, \ = cos(^)sin(6 或者 ί¾ = _cos(^)sin(6 或者 ί¾ = sin sin(6>)或 者 ί¾ =— sin(^)sin(<9) ,其中,所述 为天线阵列的第一阵列方向的波束角, 所述 ^为天线阵列的第二阵列方向的波束角。
28、 如权利要求 24或 26所述的装置, 其特征在于,
Yk=cos(< )或者 k:- cos(6>) , 其中, 所述 为天线阵列的第一阵列方向 的波束角;
或者, =cos(^)sin(6 或者 =_cos(^)sin(< )或者 =sin( )sin(6>) 或者 ψι^ sini^sin^), 其中, 所述 ^为天线阵列的第一阵列方向的波 束角, 所述 为天线阵列的第二阵列方向的波束角。
29、如权利要求 23、 25、 27中任一项所述的装置,其特征在于, ί\=¾^, 其中, 所述 是第一个波束成形向量 所对应的半波束宽度。
30、如权利要求 24、 26、 28中任一项所述的装置,其特征在于, =kY。, 其中, 所述^ 是第一个波束成形向量《。所对应的半波束宽度。
31、 如权利要求 20至 30中任一项所述的装置, 其特征在于, 所述第一向 量与第二向量中的至少一项为: 长期演进*** LTE的第八版本中的 4天线发 送码本、 或 LTE的第十版本中的 8天线发送码本。
32、 如权利要求 19所述的装置, 其特征在于, L=v, 所述 L个数据流形 成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000058_0001
其中, K为正整数, 为第 nl个波束的波束码本矩阵中选出的具有 Vl 列的波束码本, Wn ( 2 )为第 n2个波束的波束码本矩阵中选出的具有 v2列的波束 码本, W^VK)为第 K个波束的波束码本矩阵中选出的具有 vk列的波束码本, nl
Figure imgf000058_0002
33、 如权利要求 19所述的装置, 其特征在于, L=v, 所述 L个数据流形 成 K个波束, 所述三维波束码本矩阵为:
Figure imgf000058_0003
其中, Κ为正整数, Ρχ ( x=nl , η2, , Κ )为波束的功率分配因子, 为第 nl个波束的波束码本矩阵中选出的具有 ^列的波束码本, Wn ( 2 )为 第 n2个波束的波束码本矩阵中选出的具有 v2列的波束码本, W^K)为第 K个 波束的波束码本矩阵中选出的具有 vk列的波束码本, nl和 n2均为小于 K的
Figure imgf000058_0004
34、 如权利要求 32或 33所述的装置, 其特征在于, 所述 K个波束分别 服务于多个终端。
35、如权利要求 32-34中任一项所述的装置, 其特征在于, 所述 K个波束 有相同或不同的功率。
36、 如权利要求 19-35中任一项所述的装置, 其特征在于, 还包括: 映射模块, 用于将 N X M个预编码后的数据对应的 L个数据流按照先第 一阵列方向后第二阵列方向的顺序映射到所述天线阵列上。
37、 一种基站, 其特征在于, 包括: 无线调制解调器和与无线调制解调 器耦合连接的天线阵列; 其中, 所述天线阵列包括 N x M个天线, 在第一阵列方向上的天线端口 数量为 M,在第二阵列方向上的天线端口数量为 N;所述 M和 N均为正整数; 所述无线调制解调器, 用于利用三维波束码本矩阵对 L个数据流进行预 编码处理以生成 N X M个数据流, 并将 N X M个预编码后的数据形成的 L个 新数据流映射到天线阵列上;所述三维波束码本矩阵能够用于三维波束空间的 预编码, 所述三维波束码本矩阵的行数为 N x M, 所述三维波束码本矩阵的列 数为 L, L N x M且为正整数; 所述天线阵列, 用于发送所述 L个新数据流中的至少一个数据流。
38、 如权利要求 37所述的基站, 其特征在于, 所述无线调制解调器具体 用于: 利用三维波束码本矩阵对 L个信号进行预编码处理以生成 N X M个数 据流,并按照先第一阵列方向后第二阵列方向的顺序将 N X M个预编码后的数 据形成的 L个新数据流映射到所述天线阵列上。
PCT/CN2013/085985 2012-10-25 2013-10-25 利用三维波束码本进行通信的方法、装置及基站 WO2014063653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210411846.5 2012-10-25
CN201210411846.5A CN103780291B (zh) 2012-10-25 2012-10-25 利用三维波束码本进行通信的方法、装置及基站

Publications (1)

Publication Number Publication Date
WO2014063653A1 true WO2014063653A1 (zh) 2014-05-01

Family

ID=50544035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085985 WO2014063653A1 (zh) 2012-10-25 2013-10-25 利用三维波束码本进行通信的方法、装置及基站

Country Status (2)

Country Link
CN (1) CN103780291B (zh)
WO (1) WO2014063653A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199957B1 (en) * 2016-01-29 2020-12-30 Rohde & Schwarz GmbH & Co. KG Over the air measurement module
CN107370523A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 码本配置的选择方法及执行该方法的电子设备
EP3639383A1 (en) * 2017-06-16 2020-04-22 Fraunhofer Gesellschaft zur Förderung der Angewand Transmitter, receiver, wireless communication network and methods for operating the same
KR102236754B1 (ko) * 2017-09-15 2021-04-06 블루 다뉴브 시스템스, 인크. 능동적 안테나 시스템에서 코드북 기반 mu-mimo 동작을 활성화하기 위한 포트-빔 프리 코딩
US10305568B1 (en) * 2017-12-15 2019-05-28 Motorola Mobility Llc Coding main beam information in CSI codebook

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017953A1 (zh) * 2009-08-14 2011-02-17 中兴通讯股份有限公司 一种确定小区参考信号位置的方法及装置
CN102291201A (zh) * 2011-08-17 2011-12-21 东南大学 一种面向双码本结构的低复杂度码本搜索方法
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534143B (zh) * 2008-03-12 2012-11-28 电信科学技术研究院 一种应用多天线发射双数据流的方法及装置
CN101615937B (zh) * 2008-06-27 2013-08-07 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
ATE548811T1 (de) * 2008-06-30 2012-03-15 Alcatel Lucent Verfahren zur zuweisung von vorkodierungsvektoren in einem mobilen zellularen netzwerk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017953A1 (zh) * 2009-08-14 2011-02-17 中兴通讯股份有限公司 一种确定小区参考信号位置的方法及装置
CN102291201A (zh) * 2011-08-17 2011-12-21 东南大学 一种面向双码本结构的低复杂度码本搜索方法
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法

Also Published As

Publication number Publication date
CN103780291B (zh) 2017-04-19
CN103780291A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
US11817925B2 (en) Method and apparatus for explicit CSI reporting in advanced wireless communication systems
US10141992B2 (en) Codebook design and structure for advanced wireless communication systems
WO2017014610A1 (ko) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
EP2961081B1 (en) Method for transmitting signal in multi-antenna wireless communication system and apparatus for same
WO2014099341A1 (en) Method and apparatus for antenna array channel feedback
EP2965444A2 (en) Precoding matrix codebook design for advanced wireless communications systems
WO2014099343A1 (en) Method and apparatus for antenna array channel feedback
WO2014099346A1 (en) Method and apparatus for antenna array channel feedback
EP3637713B1 (en) Nr uplink codebook configuration method and related device
WO2014063653A1 (zh) 利用三维波束码本进行通信的方法、装置及基站
CN106452538A (zh) 用于多输入多输出通信的短期反馈的方法和装置
US20190036573A1 (en) Method for transmitting and receiving codebook based signal in multi-antenna wireless communication system and apparatus therefor
US20220200666A1 (en) High-resolution codebook for distributed mimo transmission
CN106452536B (zh) 用于多输入多输出通信的长期反馈的方法和装置
US9258045B2 (en) Method for efficiently transmitting signal in multi-antenna wireless communication system and apparatus for same
WO2015123838A1 (zh) 一种数据传输方法,及发射装置
CN106537805B (zh) 一种码本、基于该码本生成预编码器的方法与装置
US20230370138A1 (en) Csi codebook for multi-trp coherent joint transmission
CN106612133A (zh) 用于多输入多输出通信的方法和装置
CN108023616A (zh) 一种用于多天线***的ue、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849776

Country of ref document: EP

Kind code of ref document: A1