WO2016001951A1 - 送信制御装置及びプログラム - Google Patents

送信制御装置及びプログラム Download PDF

Info

Publication number
WO2016001951A1
WO2016001951A1 PCT/JP2014/003539 JP2014003539W WO2016001951A1 WO 2016001951 A1 WO2016001951 A1 WO 2016001951A1 JP 2014003539 W JP2014003539 W JP 2014003539W WO 2016001951 A1 WO2016001951 A1 WO 2016001951A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
phase difference
radio wave
wave output
determination unit
Prior art date
Application number
PCT/JP2014/003539
Other languages
English (en)
French (fr)
Inventor
毅雄 金井
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2014/003539 priority Critical patent/WO2016001951A1/ja
Priority to US14/879,104 priority patent/US9780852B2/en
Publication of WO2016001951A1 publication Critical patent/WO2016001951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present invention relates to a transmission control device and a program.
  • TM8 Transmission Mode 8
  • TM8 Transmission Mode 8
  • TM8 Transmission Mode 8
  • a base station configuration of TM8 in order to realize orthogonality of radio waves output from a plurality of antennas, for example, an arrangement in which the directions of the plurality of antennas are ⁇ 45 degrees has been adopted.
  • the first antenna is orthogonal to the first antenna, and the path between the mobile terminal and the second antenna is the same as the first antenna, and is parallel to the first antenna.
  • the beam direction and A phase difference between a radio wave output from the first antenna and a radio wave output from the second antenna based on the polarization characteristic determined by the beam characteristic determination unit and a beam characteristic determination unit that determines the polarization characteristic;
  • the first antenna outputs The second phase difference that determines the phase difference between the wave and the radio wave output from the third antenna and the phase difference between the radio wave output from the second antenna and the radio wave output from the fourth antenna as the second phase difference A
  • the first phase difference determination unit includes a first phase in a first layer among a plurality of layers to which each of a plurality of beams having different beam directions and polarization characteristics is transmitted.
  • the phase difference may be determined
  • the second phase difference determination unit may determine the second phase difference in the first layer
  • the transmission control device may perform the second phase difference in the second layer among the plurality of layers.
  • the phase difference between the radio wave output from the first antenna and the radio wave output from the second antenna and the phase difference between the radio wave output from the third antenna and the radio wave output from the fourth antenna are determined by the first phase difference.
  • a third phase difference determining unit that determines a third phase difference that forms a polarization plane orthogonal to the polarization plane to be formed; a radio wave output from the first antenna in the second layer; and a radio wave output from the third antenna.
  • Phase difference between and A fourth phase difference determining unit that determines a phase difference between the radio wave output from the second antenna and the radio wave output from the fourth antenna as a fourth phase difference that is the same phase difference as the second phase difference;
  • the transmission control unit may further include a first antenna, a second antenna, a third antenna, and a second antenna based on the first phase difference, the second phase difference, the third phase difference, and the fourth phase difference. You may control the phase of the electromagnetic wave which 4 antennas output.
  • the transmission control device includes a codebook acquisition unit that acquires a codebook for precoding in Transmission Mode 4 that is a transmission mode of LTE (Long Term Evolution) defined by 3GPP (3rd Generation Partnership Project), and a first codebook acquisition unit.
  • a code book editing unit that edits the code book acquired by the code book acquisition unit based on the phase difference, the second phase difference, the third phase difference, and the fourth phase difference, and a transmission control unit May control the phase of the radio wave output from the first antenna, the second antenna, the third antenna, and the fourth antenna using the code book edited by the code book editing unit.
  • each of the first antenna and the second antenna, and the third antenna and the fourth antenna may be a cross dipole antenna.
  • the transmission control apparatus may comply with Transmissio Mode 8, which is an LTE transmission mode defined by 3GPP.
  • FIG. 1 schematically shows an example of a beam formed by a transmission control apparatus and a code book used by the transmission control apparatus. It is a figure for demonstrating the calculation method of phase difference (delta) which a 2nd phase difference determination part and a 4th phase difference determination part determine.
  • FIG. 4 schematically shows another example of a beam formed by a transmission control device and a code book used by the transmission control device.
  • FIG. 4 schematically shows another example of a beam formed by a transmission control device and a code book used by the transmission control device.
  • FIG. Another example of a functional structure of a transmission control apparatus is shown roughly.
  • Another example of a functional structure of a transmission control apparatus is shown roughly.
  • An example of the beam formed with a transmission control apparatus is shown roughly.
  • An example of the beam formed with a transmission control apparatus is shown roughly.
  • the transmission control apparatus 100 performs wireless communication with the mobile terminal 200.
  • the mobile terminal 200 may be any terminal as long as it is a terminal capable of wireless communication, such as a mobile phone such as a smartphone, a tablet terminal, a PC (Personal Computer), and the like.
  • the transmission control device 100 may wirelessly communicate with a plurality of mobile terminals 200.
  • the transmission control apparatus 100 may be a radio communication base station.
  • the transmission control apparatus 100 is an eNB (evolved Node B).
  • the transmission control device 100 is, for example, a wireless LAN access point.
  • the transmission control apparatus 100 includes a first antenna 10, a second antenna 20, a third antenna 30, and a fourth antenna 40.
  • the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40 may be linear antennas.
  • the first antenna 10 and the second antenna 20 are orthogonal to each other, and the path between the first antenna 10 and the mobile terminal 200 is the same as the path between the second antenna 20 and the mobile terminal 200. Good.
  • the first antenna 10 and the second antenna 20 are, for example, cross dipole antennas.
  • a cross dipole antenna is two dipole antennas orthogonal to each other at the center point.
  • the first antenna 10 and the second antenna 20 are arranged at an angle of 45 degrees with respect to the horizontal plane, for example.
  • the third antenna 30 may be arranged in parallel with the first antenna 10.
  • the third antenna 30 and the fourth antenna 40 are orthogonal to each other, and the path between the third antenna 30 and the mobile terminal 200 is the same as the path between the fourth antenna 40 and the mobile terminal 200.
  • the third antenna 30 and the fourth antenna 40 are, for example, cross dipole antennas.
  • the third antenna 30 and the fourth antenna 40 are arranged at an angle of 45 degrees with respect to the horizontal plane.
  • the polarization planes of the vector synthesized radio waves become vertically polarized waves. Further, when radio waves having opposite phases are output by the first antenna 10 and the second antenna 20, the plane of polarization of the vector synthesized radio wave becomes horizontal polarization.
  • a radio wave having a phase difference of 90 degrees is output by the first antenna 10 and the second antenna 20, the sum of both vectors rotates with time and becomes circularly polarized. The same applies to the third antenna 30 and the fourth antenna 40.
  • the transmission control apparatus 100 includes a test signal transmission unit 101, a feedback signal reception unit 102, a beam characteristic determination unit 104, a first phase difference determination unit 111, a second phase difference determination unit 112, a third phase difference determination unit 113, and a fourth.
  • a phase difference determination unit 114, a transmission control unit 120, a code book acquisition unit 130, and a code book editing unit 140 are provided.
  • it is not necessarily essential that the transmission control apparatus 100 includes all of these configurations.
  • the test signal transmission unit 101 transmits a test signal to the mobile terminal 200.
  • the test signal transmission unit 101 transmits a sounding frame, which is a frame for radio propagation channel estimation, to the mobile terminal 200.
  • the feedback signal receiving unit 102 receives a feedback signal from the mobile terminal 200.
  • the feedback signal receiving unit 102 receives, for example, SRS (Sounding Reference Signal), PMI (Precoding Matrix Indicator), CQI (Channel Quality Indicator), RI (Rank Indication), and the like as feedback signals.
  • the feedback signal reception unit 102 may receive CSI (Channel State Information) feedback including the reception state of the mobile terminal 200 with respect to the sounding frame transmitted by the test signal transmission unit 101 from the mobile terminal 200.
  • CSI Channel State Information
  • the beam characteristic determining unit 104 determines the beam characteristic based on the feedback signal received by the feedback signal receiving unit 102.
  • the beam characteristic determination unit 104 determines a beam direction indicating the direction of the beam formed by the transmission control apparatus 100 as the beam characteristic.
  • the beam characteristic determination unit 104 may use any method as long as it can determine the beam direction.
  • the beam characteristic determination unit 104 determines the beam direction from the phase difference of the feedback signal received by the feedback signal reception unit 102.
  • the beam characteristic determining unit 104 may calculate CSI (Channel State Information) based on the SRS received by the feedback signal receiving unit 102, and may determine the beam direction based on the calculated CSI.
  • the beam characteristic determination unit 104 may determine the beam direction based on the CSI feedback received from the mobile terminal 200 by the feedback signal reception unit 102 based on the mobile terminal 200.
  • the beam characteristic determination unit 104 determines the polarization characteristic of the beam formed by the transmission control apparatus 100 as the beam characteristic.
  • the polarization characteristic indicates, for example, whether the polarization plane is vertical polarization, horizontal polarization, circular polarization, elliptical polarization, or the like.
  • the beam characteristic determination unit 104 may use any method as long as the polarization characteristic can be determined.
  • the beam characteristic determination unit 104 determines the polarization characteristic of a test signal having high reception sensitivity among a plurality of test signals that are transmitted from the test signal transmission unit 101 to the mobile terminal 200 and have different polarization characteristics. This is determined based on the feedback signal from the mobile terminal 200. For example, when the feedback signal received by the feedback signal receiving unit 102 includes data designating the polarization characteristic, the beam characteristic determination unit 104 determines the polarization characteristic according to the data.
  • the first phase difference determination unit 111 is based on the polarization characteristics determined by the beam characteristic determination unit 104, and the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 and The phase difference between the radio wave output from the third antenna 30 and the radio wave output from the fourth antenna 40 is determined as the first phase difference.
  • the first phase difference determination unit 111 determines the first phase difference so that the polarization plane formed by the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 is vertical polarization. To do. Further, for example, the first phase difference determination unit 111 performs the first phase difference so that the plane of polarization formed by the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 becomes horizontal polarization. To decide. Further, for example, the first phase difference determination unit 111 performs the first phase difference so that the polarization plane formed by the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 is circularly polarized. To decide.
  • the second phase difference determining unit 112 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction determined by the beam characteristic determining unit 104 and the second phase difference.
  • the phase difference between the radio wave output from the antenna 20 and the radio wave output from the fourth antenna 40 is determined as the second phase difference.
  • the second phase difference determining unit 112 is determined by the beam characteristic determining unit 104 and the direction of the beam formed by the radio waves output from the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40.
  • the second phase difference may be determined to match the measured beam direction.
  • the first phase difference determination unit 111 includes: The first phase difference in the first layer may be determined, and the second phase difference determination unit 112 may determine the second phase difference in the first layer.
  • the third phase difference determination unit 113 outputs the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 in the second layer of the plurality of layers, and the third antenna 30 outputs
  • the phase difference between the radio wave to be transmitted and the radio wave output from the fourth antenna 40 may be determined as a third phase difference that forms a polarization plane orthogonal to the polarization plane formed by the first phase difference.
  • the fourth phase difference determination unit 114 includes a phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 in the second layer, and the radio wave output from the second antenna 20 and the fourth antenna.
  • the phase difference from the radio wave output by 40 may be determined as a fourth phase difference that is the same phase difference as the second phase difference.
  • the transmission control unit 120 includes the first antenna 10 and the second antenna 20 according to the first phase difference determined by the first phase difference determination unit 111 and the second phase difference determined by the second phase difference determination unit 112.
  • the phase of radio waves output from the third antenna 30 and the fourth antenna 40 may be controlled.
  • the transmission control unit 120 generates a code book based on the determined first phase difference and second phase difference, and based on the generated code book, the first antenna 10, the second antenna 20, and the third antenna 30 and the phase of the radio wave output from the fourth antenna 40 may be controlled.
  • the transmission control unit 120 includes the first phase difference determined by the first phase difference determination unit 111, the second phase difference determined by the second phase difference determination unit 112, and the third phase difference determination unit 113.
  • Radio waves output from the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40 according to the determined third phase difference and the fourth phase difference determined by the fourth phase difference determination unit 114. May be controlled in phase.
  • the transmission control unit 120 generates a code book based on the determined first phase difference, second phase difference, third phase difference, and fourth phase difference, and based on the generated code book, The phase of radio waves output from the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40 may be controlled.
  • the codebook acquisition unit 130 acquires a codebook for precoding in Transmission Mode 4, which is an LTE (Long Term Evolution) transmission mode defined by 3GPP (3rd Generation Partnership Project).
  • the code book acquisition unit 130 may read a code book stored in advance in a storage medium included in the transmission control apparatus 100. Moreover, the code book acquisition part 130 may receive a code book from another apparatus.
  • the code book editing unit 140 determines the first phase difference determined by the first phase difference determination unit 111, the second phase difference determined by the second phase difference determination unit 112, and the third phase difference determination unit 113. Based on the third phase difference and the fourth phase difference determined by the fourth phase difference determination unit 114, the code book acquired by the code book acquisition unit 130 is edited.
  • the transmission control unit 120 uses the code book edited by the code book editing unit 140 to control the phase of radio waves output from the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40. Also good.
  • FIG. 3 schematically shows an example of a beam formed when the code book 1 acquired by the code book acquisition unit 130 and the code book 1 without being edited are used.
  • FIG. 3 shows the beam formed when the codebook 1 is used when the distance between the first antenna 10 and the second antenna 20 and the third antenna 30 and the fourth antenna 40 is 0.6 ⁇ . An example is shown.
  • circularly polarized layer 1 (sometimes referred to as L-1) and layer 3 (sometimes referred to as L-3) in the direction of 0 degrees.
  • L-0 circularly polarized layer 0
  • L-2 layer 2
  • FIG. 4 schematically shows an example of a beam formed when code book 0, code book 2, and code book 3 are used.
  • Codebook 0 as shown in FIG. 4, linearly polarized L-0 and L-2 are formed in the direction of 0 degrees, and linearly polarized L-1 and L ⁇ are formed in the direction of ⁇ 56 degrees. 3 is formed.
  • Codebook 2 as shown in FIG. 4, linearly polarized L-0 and L-2 are formed in the direction of 0 degrees, and linearly polarized L-1 and L-2 are formed in the directions of ⁇ 56 degrees.
  • L-3 is formed.
  • circularly polarized L-1 and L-3 are formed in the direction of 0 degree, and circularly polarized L-0 and L-3 are formed in the direction of ⁇ 56 degrees.
  • L-2 is formed.
  • FIG. 5 schematically shows an example of a beam formed by the transmission control apparatus 100 and a code book 150 used by the transmission control apparatus 100.
  • FIG. 5 illustrates a case where two layers are configured by four antennas.
  • the beam direction determined by the beam characteristic determining unit 104 is ⁇ 0
  • the polarization plane of L-0 is vertical polarization
  • the polarization plane of L-1 is horizontal polarization.
  • the first phase difference determining unit 111 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 and the third phase.
  • the phase difference between the radio wave output from the antenna 20 and the radio wave output from the fourth antenna 40 is determined to be zero.
  • the second phase difference determination unit 112 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the third phase difference determining unit 113 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20 and the third phase.
  • the phase difference between the radio wave output from the antenna 20 and the radio wave output from the fourth antenna 40 is determined to be 180 degrees.
  • the fourth phase difference determination unit 114 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the transmission control unit 120 uses the phase differences determined by the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114 to generate the code book 150. May be generated.
  • the transmission control unit 120 is a codebook edited using the phase differences determined by the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114. May be received from the code book editing unit 140.
  • the codebook editing unit 140 is determined by the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114 received from the transmission control unit 120.
  • the code book received from the code book acquisition unit 130 is edited using the phase difference, and the edited code book is transmitted to the transmission control unit 120.
  • FIG. 6 is a diagram for explaining a method of calculating the phase difference ⁇ determined by the second phase difference determination unit 112 and the fourth phase difference determination unit 114. Since the equivalent delay distance of the phase difference ⁇ is ⁇ / 2 ⁇ , the relationship between ⁇ 0 and ⁇ is as shown in Equation 1 below.
  • can be calculated by the following formula 2.
  • FIG. 7 schematically shows another example of the beam formed by the transmission control apparatus 100 and the code book 150 to be used.
  • the beam direction determined by the beam characteristic determination unit 104 is ⁇ 0
  • the polarization plane of L-0 is parallel to the first antenna 10 and the third antenna 30, and the polarization plane of L-1 is the second polarization plane.
  • the antenna 20 and the fourth antenna 40 are parallel to each other will be described.
  • the first phase difference determination unit 111 includes a phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20, and the radio wave output from the third antenna 20 and the radio wave output from the fourth antenna 40. Is determined to be 180 degrees.
  • the second phase difference determination unit 112 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the third phase difference determination unit 113 includes a phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20, and the radio wave output from the third antenna 20 and the radio wave output from the fourth antenna 40. Is determined to be 180 degrees.
  • the fourth phase difference determination unit 114 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the transmission control unit 120 uses the phase differences determined by the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114, as shown in FIG.
  • a code book 150 may be generated.
  • FIG. 8 schematically shows another example of the beam formed by the transmission control apparatus and the code book to be used.
  • the beam direction determined by the beam characteristic determination unit 104 is ⁇ 0
  • the polarization plane of L-0 is a left-handed circular polarization
  • the polarization plane of L-1 is a right-handed circular polarization. explain.
  • the first phase difference determination unit 111 includes a phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20, and the radio wave output from the third antenna 20 and the radio wave output from the fourth antenna 40. Is determined to be 90 degrees.
  • the first phase difference determination unit 111 sets the phase of the first antenna 10 to ⁇ 1 and the phase of the second antenna 20 to j in order to form a left-handed circularly polarized wave.
  • the second phase difference determination unit 112 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the third phase difference determination unit 113 includes a phase difference between the radio wave output from the first antenna 10 and the radio wave output from the second antenna 20, and the radio wave output from the third antenna 20 and the radio wave output from the fourth antenna 40. Is determined to be 90 degrees.
  • the third phase difference determining unit 113 sets the phase of the first antenna 10 to j and the phase of the second antenna 20 to ⁇ 1 in order to form a right-handed circularly polarized wave.
  • the fourth phase difference determination unit 114 determines the phase difference between the radio wave output from the first antenna 10 and the radio wave output from the third antenna 30 based on the beam direction ⁇ 0 determined by the beam characteristic determination unit 104.
  • the phase difference between the radio wave output from the second antenna 20 and the radio wave output from the fourth antenna 40 is determined as ⁇ .
  • the transmission control unit 120 uses the phase differences determined by the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114, as shown in FIG.
  • a code book 150 may be generated.
  • the first phase difference determination unit 111, the second phase difference determination unit 112, the third phase difference determination unit 113, and the fourth phase difference determination unit 114 are determined. Any two orthogonal polarization planes can be formed in any direction according to the phase difference.
  • any two orthogonally polarized waves that are orthogonal to each other can be formed, and two circularly polarized waves that are arbitrarily orthogonal to each other can be formed.
  • the transmission control apparatus 100 may be compliant with TM8.
  • the polarization characteristics of radio waves to be transmitted can be switched between linear polarization and circular polarization according to the communication environment. It is possible to realize beam forming of four antennas and two layers capable of forming a beam in the direction of.
  • FIG. 9 and 10 schematically show another example of the functional configuration of the transmission control apparatus 100.
  • the transmission control apparatus 100 illustrated in FIG. 9 includes a fifth antenna 50, a sixth antenna 60, a seventh antenna 70, and an eighth antenna 80, a fifth phase difference determination unit 115, a sixth phase difference determination unit 116, and a seventh rank.
  • the transmission control apparatus 100 is different from the transmission control apparatus 100 shown in FIGS. 1 and 2 in that it further includes a phase difference determination unit 117 and an eighth phase difference determination unit 118.
  • Other functional configurations may be the same as those of the transmission control device 100 illustrated in FIGS. 1 and 2.
  • the transmission control apparatus 100 illustrated in FIG. 9 may configure two layers with eight antennas.
  • FIGS. 11 and 12 schematically show an example of a beam formed by the transmission control apparatus 100 shown in FIGS. 9 and 10.
  • FIG. 11 illustrates a case where the polarization characteristic determined by the beam characteristic determination unit 104 is a linear polarization
  • FIG. 12 illustrates that the polarization characteristic determined by the beam characteristic determination unit 104 is a circular polarization. The case of a wave is illustrated.
  • the transmission control apparatus 100 uses the first antenna 10 and the second antenna 20, the third antenna 30 and the fourth antenna 40, the fifth antenna 50, and the sixth antenna as the L-0 polarization plane 90.
  • 60, the seventh antenna 70, and the eighth antenna 80 each form a horizontally polarized wave
  • the L-1 polarization plane 91 serves as the first antenna 10, the second antenna 20, the third antenna 30, and the fourth antenna 40.
  • Vertical polarization is formed in each of the fifth antenna 50, the sixth antenna 60, the seventh antenna 70, and the eighth antenna 80.
  • the transmission control apparatus 100 includes, as the polarization plane 90, the first antenna 10 and the second antenna 20, the third antenna 30 and the fourth antenna 40, the fifth antenna 50 and the sixth antenna 60, and the seventh antenna.
  • a left-handed circularly polarized wave is formed in each of the antenna 70 and the eighth antenna 80, and the first antenna 10 and the second antenna 20, the third antenna 30 and the fourth antenna 40, the fifth antenna 50 and the fifth antenna 50 are used as the polarization plane 91.
  • a right-handed circularly polarized wave is formed in each of the six antennas 60, the seventh antenna 70, and the eighth antenna 80.
  • the transmission control apparatus 100 uses the third antenna 30 and the fourth antenna 40 based on the phase of the radio wave formed by the first antenna 10 and the second antenna 20 based on the beam direction determined by the beam characteristic determination unit 104.
  • the phase difference between the formed radio wave, the phase of the radio wave formed by the fifth antenna 50 and the sixth antenna 60, and the phase difference of the radio wave formed by the seventh antenna 70 and the eighth antenna 80 are controlled.
  • the transmission control apparatus 100 can switch the polarization characteristic of the radio wave to be transmitted between the linearly polarized wave and the circularly polarized wave according to the communication environment, and forms a beam in an arbitrary direction. It is possible to realize beam forming with 8 antennas and 2 layers.
  • each unit of the transmission control apparatus 100 may be realized by hardware or may be realized by software. Further, it may be realized by a combination of hardware and software. Further, the computer may function as the transmission control apparatus 100 by executing the program.
  • the program may be installed from a computer-readable medium or a storage device connected to a network to a computer constituting at least a part of the transmission control device 100.
  • a program that is installed in a computer and causes the computer to function as the transmission control apparatus 100 according to the present embodiment works on a CPU or the like to cause the computer to function as each unit of the transmission control apparatus 100.
  • Information processing described in these programs functions as a specific means in which software and hardware resources of the transmission control apparatus 100 cooperate with each other by being read by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

 複数のアンテナを用いたより効率的なビームフォーミング技術が望まれていた。そこで、第1アンテナと、第1アンテナと直交し、かつ、移動端末との間のパスが第1アンテナと同一の第2アンテナと、第1アンテナと平行に配置された第3アンテナと、第3アンテナと直交し、かつ、移動端末との間のパスが第3アンテナと同一の第4アンテナと、移動端末から受信したフィードバック信号に基づいて、ビーム方向及び偏波特性を決定するビーム特性決定部と、ビーム特性決定部が決定した偏波特性に基づいて、第1アンテナが出力する電波と第2アンテナが出力する電波との間の位相差及び第3アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を第1の位相差に決定する第1位相差決定部と、決定部が決定したビーム方向に基づいて、第1アンテナが出力する電波と第3アンテナが出力する電波との間の位相差及び第2アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を第2の位相差に決定する第2位相差決定部と、第1の位相差及び第2の位相差に従って、第1アンテナ、第2アンテナ、第3アンテナ及び第4アンテナが出力する電波の位相を制御する送信制御部とを備える送信制御装置を提供する。

Description

送信制御装置及びプログラム
 本発明は、送信制御装置及びプログラムに関する。
 3GPP(3rd Generation Partnership Project)によって規定されたLTE(Long Term Evolution)の送信モードの一つとして、Dual Layer Beamforming(TM8:Transmission Mode 8)が知られている(例えば、特許文献1参照)。TM8の基地局構成としては、複数のアンテナが出力する電波の直交性を実現するべく、例えば、複数のアンテナのそれぞれの向きを±45度とする配置が採用されていた。
 [先行技術文献]
 [特許文献]
 [特許文献1]特表2013-529008号公報
 複数のアンテナを用いたより効率的なビームフォーミング技術が望まれていた。
 本発明の第1の態様によれば、第1アンテナと、第1アンテナと直交し、かつ、移動端末との間のパスが第1アンテナと同一の第2アンテナと、第1アンテナと平行に配置された第3アンテナと、第3アンテナと直交し、かつ、移動端末との間のパスが第3アンテナと同一の第4アンテナと、移動端末から受信したフィードバック信号に基づいて、ビーム方向及び偏波特性を決定するビーム特性決定部と、ビーム特性決定部が決定した偏波特性に基づいて、第1アンテナが出力する電波と第2アンテナが出力する電波との間の位相差及び第3アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を第1の位相差に決定する第1位相差決定部と、ビーム特性決定部が決定したビーム方向に基づいて、第1アンテナが出力する電波と第3アンテナが出力する電波との間の位相差及び第2アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を第2の位相差に決定する第2位相差決定部と、第1の位相差及び第2の位相差に従って、第1アンテナ、第2アンテナ、第3アンテナ及び第4アンテナが出力する電波の位相を制御する送信制御部とを備える送信制御装置が提供される。
 上記送信制御装置において、第1位相差決定部は、ビーム方向及び偏波特性の少なくともいずれかが異なる複数のビームのそれぞれが送信される複数のレイヤのうちの第1のレイヤにおける第1の位相差を決定してよく、第2位相差決定部は、第1のレイヤにおける第2の位相差を決定してよく、上記送信制御装置は、複数のレイヤのうちの第2のレイヤにおける第1アンテナが出力する電波と第2アンテナが出力する電波との間の位相差及び第3アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を、第1の位相差により形成される偏波面と直交する偏波面を形成する第3の位相差に決定する第3位相差決定部と、第2のレイヤにおける第1アンテナが出力する電波と第3アンテナが出力する電波との間の位相差及び第2アンテナが出力する電波と第4アンテナが出力する電波との間の位相差を、第2の位相差と同一の位相差である第4の位相差に決定する第4位相差決定部とをさらに備えてよく、送信制御部は、第1の位相差、第2の位相差、第3の位相差及び第4の位相差に基づいて、第1アンテナ、第2アンテナ、第3アンテナ及び第4アンテナが出力する電波の位相を制御してよい。
 上記送信制御装置は、3GPP(3rd Generation Partnership Project)によって規定されたLTE(Long Term Evolution)の送信モードであるTransmission Mode 4におけるプリコーディング用のコードブックを取得するコードブック取得部と、第1の位相差、第2の位相差、第3の位相差及び第4の位相差に基づいて、コードブック取得部が取得したコードブックを編集するコードブック編集部とをさらに備えてよく、送信制御部は、コードブック編集部によって編集されたコードブックを用いて、第1アンテナ、第2アンテナ、第3アンテナ及び第4アンテナが出力する電波の位相を制御してよい。上記送信制御装置において、第1アンテナ及び第2アンテナと、第3アンテナ及び第4アンテナとのそれぞれは、クロスダイポールアンテナであってよい。上記送信制御装置は、3GPPによって規定されたLTEの送信モードであるTransmissio Mode 8に準拠してよい。
 本発明の第2の態様によれば、コンピュータを、上記送信制御装置として機能させるためのプログラムが提供される。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
送信制御装置の機能構成の一例を概略的に示す。 送信制御装置の機能構成の一例を概略的に示す。 コードブック取得部が取得したコードブック1及び編集を加えずにコードブック1を用いた場合に形成されるビームの一例を概略的に示す 編集を加えずにコードブック0、コードブック2、コードブック3を用いた場合に形成されるビームの一例を概略的に示す。 送信制御装置により形成するビーム及び送信制御装置が使用するコードブックの一例を概略的に示す。 第2位相差決定部及び第4位相差決定部が決定する位相差δの算出手法を説明するための図である。 送信制御装置により形成するビーム及び送信制御装置が使用するコードブックの他の一例を概略的に示す。 送信制御装置により形成するビーム及び送信制御装置が使用するコードブックの他の一例を概略的に示す。 送信制御装置の機能構成の他の一例を概略的に示す。 送信制御装置の機能構成の他の一例を概略的に示す。 送信制御装置により形成するビームの一例を概略的に示す。 送信制御装置により形成するビームの一例を概略的に示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1及び図2は、送信制御装置100の機能構成の一例を概略的に示す。本実施形態に係る送信制御装置100は、移動端末200と無線通信する。移動端末200は、無線通信可能な端末であればどのような端末であってもよく、例えば、スマートフォン等の携帯電話、タブレット端末及びPC(Personal Computer)等である。
 送信制御装置100は、複数の移動端末200と無線通信してよい。送信制御装置100は、無線通信基地局であってよい。例えば、送信制御装置100は、eNB(evolved Node B)である。また、送信制御装置100は、例えば、無線LANのアクセスポイントである。
 送信制御装置100は、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40を備える。第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40は、線状アンテナであってよい。
 第1アンテナ10と第2アンテナ20とは直交し、かつ、第1アンテナ10と移動端末200との間のパスと、第2アンテナ20と移動端末200との間のパスとが同一であってよい。第1アンテナ10及び第2アンテナ20は、例えば、クロスダイポールアンテナである。クロスダイポールアンテナとは、互いの中心点で直交する2つのダイポールアンテナである。第1アンテナ10及び第2アンテナ20は、例えば、水平面に対して45度の角度で配置される。
 第3アンテナ30は、第1アンテナ10と平行に配置されてよい。第3アンテナ30と第4アンテナ40とは直交し、かつ、第3アンテナ30と移動端末200との間のパスと、第4アンテナ40と移動端末200との間のパスとが同一であってよい。第3アンテナ30及び第4アンテナ40は、例えば、クロスダイポールアンテナである。第3アンテナ30及び第4アンテナ40は、例えば、水平面に対して45度の角度で配置される。
 第1アンテナ10及び第2アンテナ20によって同位相の電波が出力されると、ベクトル合成された電波の偏波面が垂直偏波となる。また、第1アンテナ10及び第2アンテナ20によって逆位相の電波が出力されると、ベクトル合成された電波の偏波面が水平偏波となる。また、第1アンテナ10及び第2アンテナ20によって、90度の位相差の電波が出力されると、両ベクトルの和が時間と共に回転し、円偏波となる。第3アンテナ30及び第4アンテナ40についても同様である。
 送信制御装置100は、試験信号送信部101、フィードバック信号受信部102、ビーム特性決定部104、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113、第4位相差決定部114、送信制御部120、コードブック取得部130及びコードブック編集部140を備える。なお、送信制御装置100がこれらのすべての構成を備えることは必須とは限らない。
 試験信号送信部101は、移動端末200に対して、試験信号を送信する。試験信号送信部101は、例えば、無線伝搬路推定用のフレームであるサウンディングフレームを移動端末200に対して送信する。
 フィードバック信号受信部102は、移動端末200からフィードバック信号を受信する。フィードバック信号受信部102は、フィードバック信号として、例えば、SRS(Sounding Reference Signal)、PMI(Precoding Matrix Indicator)、CQI(Channel Quality Indicator)及びRI(Rank Indication)等を受信する。フィードバック信号受信部102は、試験信号送信部101が送信したサウンディングフレームに対する移動端末200の受信状態を含むCSI(Channel State Information)フィードバックを、移動端末200から受信してもよい。
 ビーム特性決定部104は、フィードバック信号受信部102が受信したフィードバック信号に基づいてビーム特性を決定する。
 例えば、ビーム特性決定部104は、ビーム特性として、送信制御装置100が形成するビームの方向を示すビーム方向を決定する。ビーム特性決定部104は、ビーム方向を決定できれば、どのような手法を用いてもよい。例えば、ビーム特性決定部104は、フィードバック信号受信部102が受信したフィードバック信号の位相差から、ビーム方向を決定する。また、ビーム特性決定部104は、フィードバック信号受信部102が受信したSRSを元にCSI(Channel State Information)を算出して、算出したCSIに基づいてビーム方向を決定してもよい。また、ビーム特性決定部104は、フィードバック信号受信部102が移動端末200から受信したCSIフィードバックを移動端末200に基づいて、ビーム方向を決定してもよい。
 また、例えば、ビーム特性決定部104は、ビーム特性として、送信制御装置100が形成するビームの偏波特性を決定する。偏波特性は、例えば、偏波面が垂直偏波であるか、水平偏波であるか、円偏波であるか、楕円偏波であるか等を示す。ビーム特性決定部104は、偏波特性を決定できれば、どのような手法を用いてもよい。例えば、ビーム特性決定部104は、試験信号送信部101が移動端末200に対して送信した、それぞれ偏波特性が異なる複数の試験信号のうち、受信感度が高い試験信号の偏波特性を、移動端末200からのフィードバック信号に基づいて決定する。また、例えば、フィードバック信号受信部102が受信したフィードバック信号に偏波特性を指定するデータが含まれている場合、ビーム特性決定部104は、当該データに従って偏波特性を決定する。
 第1位相差決定部111は、ビーム特性決定部104によって決定された偏波特性に基づいて、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ30が出力する電波と第4アンテナ40が出力する電波との間の位相差を第1の位相差に決定する。例えば、第1位相差決定部111は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波とにより形成される偏波面が垂直偏波となるように第1の位相差を決定する。また、例えば、第1位相差決定部111は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波とにより形成される偏波面が水平偏波となるように第1の位相差を決定する。また、例えば、第1位相差決定部111は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波とにより形成される偏波面が円偏波となるように第1の位相差を決定する。
 第2位相差決定部112は、ビーム特性決定部104により決定されたビーム方向に基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を第2の位相差に決定する。第2位相差決定部112は、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40のそれぞれが出力する電波によって形成されるビームの方向と、ビーム特性決定部104により決定されたビーム方向とを一致させるべく、第2の位相差を決定してよい。
 送信制御装置100がビーム方向及び偏波特性の少なくともいずれかが異なる複数のビームのそれぞれが送信される複数のレイヤを形成する場合、第1位相差決定部111は、複数のレイヤのうちの第1のレイヤにおける第1の位相差を決定してよく、第2位相差決定部112は、第1のレイヤにおける第2の位相差を決定してよい。
 第3位相差決定部113は、複数のレイヤのうちの第2のレイヤにおける第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ30が出力する電波と第4アンテナ40が出力する電波との間の位相差を、第1の位相差により形成される偏波面と直交する偏波面を形成する第3の位相差に決定してよい。
 第4位相差決定部114は、第2のレイヤにおける第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を、第2の位相差と同一の位相差である第4の位相差に決定してよい。
 送信制御部120は、第1位相差決定部111によって決定された第1の位相差及び第2位相差決定部112によって決定された第2の位相差に従って、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40が出力する電波の位相を制御してよい。送信制御部120は、決定された第1の位相差及び第2の位相差に基づいてコードブックを生成し、生成したコードブックに基づいて、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40を出力する電波の位相を制御してもよい。
 また、送信制御部120は、第1位相差決定部111によって決定された第1の位相差、第2位相差決定部112によって決定された第2の位相差、第3位相差決定部113によって決定された第3の位相差及び第4位相差決定部114によって決定された第4の位相差に従って、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40が出力する電波の位相を制御してよい。送信制御部120は、決定された第1の位相差、第2の位相差、第3の位相差及び第4の位相差に基づいてコードブックを生成し、生成したコードブックに基づいて、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40を出力する電波の位相を制御してもよい。
 コードブック取得部130は、3GPP(3rd Generation Partnership Project)によって規定されたLTE(Long Term Evolution)の送信モードであるTransmission Mode 4におけるプリコーディング用のコードブックを取得する。コードブック取得部130は、送信制御装置100が有する記憶媒体に予め記憶されたコードブックを読み出してよい。また、コードブック取得部130は、他の装置からコードブックを受信してもよい。
 コードブック編集部140は、第1位相差決定部111によって決定された第1の位相差、第2位相差決定部112によって決定された第2の位相差、第3位相差決定部113によって決定された第3の位相差及び第4位相差決定部114によって決定された第4の位相差に基づいて、コードブック取得部130が取得したコードブックを編集する。送信制御部120は、コードブック編集部140によって編集されたコードブックを用いて、第1アンテナ10、第2アンテナ20、第3アンテナ30及び第4アンテナ40が出力する電波の位相を制御してもよい。
 図3は、コードブック取得部130が取得したコードブック1及び編集を加えずにコードブック1を用いた場合に形成されるビームの一例を概略的に示す。図3は、第1アンテナ10及び第2アンテナ20と、第3アンテナ30及び第4アンテナ40との間の距離が0.6λである場合においてコードブック1を用いた場合に形成されるビームの一例を示している。
 コードブック1によれば、図3に示すように、0度の方向に円偏波のレイヤ1(L-1と表記する場合がある)及びレイヤ3(L-3と表記する場合がある)が形成され、±56度の方向に円偏波のレイヤ0(L-0と表記する場合がある)及びレイヤ2(L-2と表記する場合がある)が形成される。
 図4は、コードブック0、コードブック2、コードブック3を用いた場合に形成されるビームの一例を概略的に示す。コードブック0によれば、図4に示すように、0度の方向に直線偏波のL-0及びL-2が形成され、±56度の方向に直線偏波のL-1及びL-3が形成される。また、コードブック2によれば、図4に示すように、0度の方向に直線偏波のL-0及びL-2が形成され、±56度の方向に直線偏波のL-1及びL-3が形成される。また、コードブック3によれば、図4に示すように、0度の方向に円偏波のL-1及びL-3が形成され、±56度の方向に円偏波のL-0及びL-2が形成される。
 図5は、送信制御装置100により形成するビーム及び送信制御装置100が使用するコードブック150の一例を概略的に示す。図5は、4アンテナによって2レイヤを構成する場合を例示する。ここでは、ビーム特性決定部104により決定されたビーム方向がθであり、L-0の偏波面が垂直偏波であり、L-1の偏波面が水平偏波である場合について説明する。
 第1位相差決定部111は、L-0の偏波面が垂直偏波であることから、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を0に決定する。
 第2位相差決定部112は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 第3位相差決定部113は、L-1の偏波面が水平偏波であることから、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を180度に決定する。
 第4位相差決定部114は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 送信制御部120は、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114が決定した位相差を用いて、コードブック150を生成してよい。送信制御部120は、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114が決定した位相差を用いて編集されたコードブックをコードブック編集部140から受信してもよい。例えば、コードブック編集部140は、送信制御部120から受信した、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114により決定された位相差を用いて、コードブック取得部130から受信したコードブックを編集して、編集したコードブックを送信制御部120に送信する。
 図6は、第2位相差決定部112及び第4位相差決定部114が決定する位相差δの算出手法を説明するための図である。位相差δの等価遅延距離はδλ/2πとなるので、θとδとの関係は下記数式1に示す通りとなる。
Figure JPOXMLDOC01-appb-M000001
 したがってδは、下記数式2により算出できる。
Figure JPOXMLDOC01-appb-M000002
 図7は、送信制御装置100により形成するビーム及び使用するコードブック150の他の一例を概略的に示す。ここでは、ビーム特性決定部104により決定されたビーム方向がθであり、L-0の偏波面が第1アンテナ10及び第3アンテナ30と平行であり、L-1の偏波面が第2アンテナ20及び第4アンテナ40と平行である場合について説明する。
 第1位相差決定部111は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を180度に決定する。
 第2位相差決定部112は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 第3位相差決定部113は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を180度に決定する。
 第4位相差決定部114は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 送信制御部120は、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114が決定した位相差を用いて、図7に示すコードブック150を生成してよい。
 図8は、送信制御装置により形成するビーム及び使用するコードブックの他の一例を概略的に示す。ここでは、ビーム特性決定部104により決定されたビーム方向がθであり、L-0の偏波面が左旋円偏波であり、L-1の偏波面が右旋円偏波である場合について説明する。
 第1位相差決定部111は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を90度に決定する。第1位相差決定部111は、左旋円偏波を構成するべく、第1アンテナ10の位相を-1、第2アンテナ20の位相をjとしている。
 第2位相差決定部112は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 第3位相差決定部113は、第1アンテナ10が出力する電波と第2アンテナ20が出力する電波との間の位相差及び第3アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差を90度に決定する。第3位相差決定部113は、右旋円偏波を構成するべく、第1アンテナ10の位相をj、第2アンテナ20の位相を-1としている。
 第4位相差決定部114は、ビーム特性決定部104によって決定されたビーム方向θに基づいて、第1アンテナ10が出力する電波と第3アンテナ30が出力する電波との間の位相差及び第2アンテナ20が出力する電波と第4アンテナ40が出力する電波との間の位相差をδに決定する。
 送信制御部120は、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114が決定した位相差を用いて、図8に示すコードブック150を生成してよい。
 このように、本実施形態に係る送信制御装置100によれば、第1位相差決定部111、第2位相差決定部112、第3位相差決定部113及び第4位相差決定部114が決定した位相差に従って、任意の方向に、任意の直交する2つの偏波面を形成することができる。特に、本実施形態に係る送信制御装置100によれば、任意の直交する2つの直線偏波を形成でき、かつ、任意の直交する2つの円偏波を形成することができる。送信制御装置100はTM8に準拠してよく、送信制御装置100によれば、通信環境に応じて送信する電波の偏波特性を直線偏波及び円偏波の間で切り替えることができ、任意の方向にビームを形成できる4アンテナ2レイヤのビームフォーミングを実現することができる。
 従来のTM8における基地局では、直交する直線偏波を実現するべく、複数のアンテナのそれぞれの向きを±45度とする配置が採用されていた。しかし、例えば携帯電話等のように、端末の方向が適宜変動する端末と通信する場合、直交する2つの直線偏波を形成しても、十分な受信感度が得られない場合がある。これに対して、本実施形態に係る送信制御装置100によれば、任意の直交する2つの円偏波を形成することができるので、端末のアンテナがどのような配置であっても、また、端末の向きがどのような配置であっても、受信感度を一定のレベル以上に保つことができる。
 図9及び図10は、送信制御装置100の機能構成の他の一例を概略的に示す。図9に示す送信制御装置100は、第5アンテナ50、第6アンテナ60、第7アンテナ70及び第8アンテナ80と、第5位相差決定部115、第6位相差決定部116、第7位相差決定部117及び第8位相差決定部118とをさらに備える点で、図1及び図2に示す送信制御装置100と相違する。その他の機能構成は図1及び図2に示す送信制御装置100と同様であってよい。図9に示す送信制御装置100は、8アンテナによって2レイヤを構成してよい。
 図11及び図12は、図9及び図10に示す送信制御装置100により形成するビームの一例を概略的に示す。図11は、ビーム特性決定部104により決定された偏波特性が直線偏波である場合を例示しており、図12は、ビーム特性決定部104により決定された偏波特性が円偏波である場合を例示している。
 図11に示す例では、送信制御装置100は、L-0の偏波面90として、第1アンテナ10及び第2アンテナ20、第3アンテナ30及び第4アンテナ40、第5アンテナ50及び第6アンテナ60、第7アンテナ70及び第8アンテナ80のそれぞれに、水平偏波を形成させ、L-1の偏波面91として、第1アンテナ10及び第2アンテナ20、第3アンテナ30及び第4アンテナ40、第5アンテナ50及び第6アンテナ60、第7アンテナ70及び第8アンテナ80のそれぞれに、垂直偏波を形成させる。
 図12に示す例では、送信制御装置100は、偏波面90として、第1アンテナ10及び第2アンテナ20、第3アンテナ30及び第4アンテナ40、第5アンテナ50及び第6アンテナ60、第7アンテナ70及び第8アンテナ80のそれぞれに、左旋円偏波を形成させ、偏波面91として、第1アンテナ10及び第2アンテナ20、第3アンテナ30及び第4アンテナ40、第5アンテナ50及び第6アンテナ60、第7アンテナ70及び第8アンテナ80のそれぞれに、右旋円偏波を形成させる。
 また、送信制御装置100は、ビーム特性決定部104により決定されたビーム方向に基づいて、第1アンテナ10及び第2アンテナ20により形成される電波の位相、第3アンテナ30及び第4アンテナ40により形成される電波の位相、第5アンテナ50及び第6アンテナ60により形成される電波の位相、第7アンテナ70及び第8アンテナ80により形成される電波の位相の位相差を制御する。
 これにより、本実施形態に係る送信制御装置100は、通信環境に応じて送信する電波の偏波特性を直線偏波及び円偏波の間で切り替えることができ、任意の方向にビームを形成できる、8アンテナ2レイヤのビームフォーミングを実現することができる。
 以上の説明において、送信制御装置100の各部は、ハードウエアにより実現されてもよく、ソフトウエアにより実現されてもよい。また、ハードウエアとソフトウエアとの組み合わせにより実現されてもよい。また、プログラムが実行されることにより、コンピュータが、送信制御装置100として機能してもよい。プログラムは、コンピュータ読み取り可能な媒体又はネットワークに接続された記憶装置から、送信制御装置100の少なくとも一部を構成するコンピュータにインストールされてよい。
 コンピュータにインストールされ、コンピュータを本実施形態に係る送信制御装置100として機能させるプログラムは、CPU等に働きかけて、コンピュータを、送信制御装置100の各部としてそれぞれ機能させる。これらのプログラムに記述された情報処理は、コンピュータに読込まれることにより、ソフトウエアと送信制御装置100のハードウエア資源とが協働した具体的手段として機能する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 第1アンテナ、20 第2アンテナ、30 第3アンテナ、40 第4アンテナ、50 第5アンテナ、60 第6アンテナ、70 第7アンテナ、80 第8アンテナ、90 偏波面、91 偏波面、100 送信制御装置、101 試験信号送信部、102 フィードバック信号受信部、104 ビーム特性決定部、111 第1位相差決定部、112 第2位相差決定部、113 第3位相差決定部、114 第4位相差決定部、115 第5位相差決定部、116 第6位相差決定部、117 第7位相差決定部、118 第8位相差決定部、120 送信制御部、130 コードブック取得部、140 コードブック編集部、150 コードブック、200 移動端末

Claims (6)

  1.  第1アンテナと、
     前記第1アンテナと直交し、かつ、移動端末との間のパスが前記第1アンテナと同一の第2アンテナと、
     前記第1アンテナと平行に配置された第3アンテナと、
     前記第3アンテナと直交し、かつ、移動端末との間のパスが前記第3アンテナと同一の第4アンテナと、
     移動端末から受信したフィードバック信号に基づいて、ビーム方向及び偏波特性を決定するビーム特性決定部と、
     前記ビーム特性決定部が決定した前記偏波特性に基づいて、前記第1アンテナが出力する電波と前記第2アンテナが出力する電波との間の位相差及び前記第3アンテナが出力する電波と前記第4アンテナが出力する電波との間の位相差を第1の位相差に決定する第1位相差決定部と、
     前記ビーム特性決定部が決定した前記ビーム方向に基づいて、前記第1アンテナが出力する電波と前記第3アンテナが出力する電波との間の位相差及び前記第2アンテナが出力する電波と前記第4アンテナが出力する電波との間の位相差を第2の位相差に決定する第2位相差決定部と、
     前記第1の位相差及び前記第2の位相差に従って、前記第1アンテナ、前記第2アンテナ、前記第3アンテナ及び前記第4アンテナが出力する電波の位相を制御する送信制御部と
     を備える送信制御装置。
  2.  前記第1位相差決定部は、ビーム方向及び偏波特性の少なくともいずれかが異なる複数のビームのそれぞれが送信される複数のレイヤのうちの第1のレイヤにおける前記第1の位相差を決定し、
     前記第2位相差決定部は、前記第1のレイヤにおける前記第2の位相差を決定し、
     前記送信制御装置は、
     前記複数のレイヤのうちの第2のレイヤにおける前記第1アンテナが出力する電波と前記第2アンテナが出力する電波との間の位相差及び前記第3アンテナが出力する電波と前記第4アンテナが出力する電波との間の位相差を、前記第1の位相差により形成される偏波面と直交する偏波面を形成する第3の位相差に決定する第3位相差決定部と、
     前記第2のレイヤにおける前記第1アンテナが出力する電波と前記第3アンテナが出力する電波との間の位相差及び前記第2アンテナが出力する電波と前記第4アンテナが出力する電波との間の位相差を、前記第2の位相差と同一の位相差である第4の位相差に決定する第4位相差決定部と
     をさらに備え、
     前記送信制御部は、前記第1の位相差、前記第2の位相差、前記第3の位相差及び前記第4の位相差に基づいて、前記第1アンテナ、前記第2アンテナ、前記第3アンテナ及び前記第4アンテナが出力する電波の位相を制御する、請求項1に記載の送信制御装置。
  3.  3GPP(3rd Generation Partnership Project)によって規定されたLTE(Long Term Evolution)の送信モードであるTransmission Mode 4におけるプリコーディング用のコードブックを取得するコードブック取得部と、
     前記第1の位相差、前記第2の位相差、前記第3の位相差及び前記第4の位相差に基づいて、前記コードブック取得部が取得したコードブックを編集するコードブック編集部と、
     をさらに備え、
     前記送信制御部は、前記コードブック編集部によって編集された前記コードブックを用いて、前記第1アンテナ、前記第2アンテナ、前記第3アンテナ及び前記第4アンテナが出力する電波の位相を制御する、請求項1又は2に記載の送信制御装置。
  4.  前記第1アンテナ及び前記第2アンテナと、前記第3アンテナ及び前記第4アンテナとのそれぞれは、クロスダイポールアンテナである、請求項1から3のいずれか一項に記載の送信制御装置。
  5.  前記送信制御装置は、3GPPによって規定されたLTEの送信モードであるTransmissio Mode 8に準拠する、請求項1から4のいずれか一項に記載の送信制御装置。
  6.  コンピュータを、請求項1から5のいずれか一項に記載の送信制御装置として機能させるためのプログラム。
PCT/JP2014/003539 2014-07-02 2014-07-02 送信制御装置及びプログラム WO2016001951A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/003539 WO2016001951A1 (ja) 2014-07-02 2014-07-02 送信制御装置及びプログラム
US14/879,104 US9780852B2 (en) 2014-07-02 2015-10-09 Transmission control apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003539 WO2016001951A1 (ja) 2014-07-02 2014-07-02 送信制御装置及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/879,104 Continuation US9780852B2 (en) 2014-07-02 2015-10-09 Transmission control apparatus and program

Publications (1)

Publication Number Publication Date
WO2016001951A1 true WO2016001951A1 (ja) 2016-01-07

Family

ID=55018554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003539 WO2016001951A1 (ja) 2014-07-02 2014-07-02 送信制御装置及びプログラム

Country Status (2)

Country Link
US (1) US9780852B2 (ja)
WO (1) WO2016001951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416778B2 (ja) 2019-05-29 2024-01-17 京セラ株式会社 無線測定収集方法及びユーザ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160149634A1 (en) * 2014-11-24 2016-05-26 Vivint, Inc. Quad-polarized sector and dimensional antenna for high throughput
JP7353355B2 (ja) 2018-08-10 2023-09-29 ソニーグループ株式会社 通信デバイスにおける複数のビーム受信
US11303327B2 (en) * 2019-05-03 2022-04-12 Qualcomm Incorporated Power density exposure control
CN115176386A (zh) * 2020-02-20 2022-10-11 艾锐势有限责任公司 使用任意可选择极化的通信
EP4138211B1 (en) * 2021-08-19 2023-09-13 Turck Holding GmbH Antenna arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142940A (ja) * 2001-11-01 2003-05-16 Anten Corp アンテナ偏波切替システム
JP2004517549A (ja) * 2000-12-28 2004-06-10 ノーテル・ネットワークス・リミテッド Mimo無線通信システム
JP2006101080A (ja) * 2004-09-29 2006-04-13 Brother Ind Ltd 無線タグ通信装置
US20070099578A1 (en) * 2005-10-28 2007-05-03 Kathryn Adeney Pre-coded diversity forward channel transmission system for wireless communications systems supporting multiple MIMO transmission modes
JP2009512272A (ja) * 2005-10-06 2009-03-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) サブセット・リストおよびサブセット・マスクを用いたアンテナ選択のための信号サポート
JP2010520691A (ja) * 2007-03-21 2010-06-10 アルカテル−ルーセント Mimo伝送技術、基地局、および移動端末を決定する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715495B2 (en) * 2004-01-14 2010-05-11 National Institute Of Information And Communications Technology Communication system, transmitter, receiver, transmitting method, receiving method, and program
GB0622435D0 (en) * 2006-11-10 2006-12-20 Quintel Technology Ltd Electrically tilted antenna system with polarisation diversity
US7817688B2 (en) * 2008-02-19 2010-10-19 Lockheed Martin Coherent Technologies, Inc. Phase and polarization controlled beam combining devices and methods
US8660060B2 (en) * 2009-03-26 2014-02-25 Futurewei Technologies, Inc. System and method for communications using spatial multiplexing with incomplete channel information
WO2011134107A1 (en) 2010-04-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Control signaling design for lte-a downlink transmission mode
BR112013010505A2 (pt) * 2010-12-17 2016-08-02 Ericsson Telefon Ab L M método de formação de feixe, aparelho para conjunto de antenas polarizadas e dispositivo de comunicação de rádio e sistema para o mesmo
CN103891152B (zh) * 2011-08-19 2016-04-27 昆特尔科技有限公司 用于提供垂直平面空间波束成形的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517549A (ja) * 2000-12-28 2004-06-10 ノーテル・ネットワークス・リミテッド Mimo無線通信システム
JP2003142940A (ja) * 2001-11-01 2003-05-16 Anten Corp アンテナ偏波切替システム
JP2006101080A (ja) * 2004-09-29 2006-04-13 Brother Ind Ltd 無線タグ通信装置
JP2009512272A (ja) * 2005-10-06 2009-03-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) サブセット・リストおよびサブセット・マスクを用いたアンテナ選択のための信号サポート
US20070099578A1 (en) * 2005-10-28 2007-05-03 Kathryn Adeney Pre-coded diversity forward channel transmission system for wireless communications systems supporting multiple MIMO transmission modes
JP2010520691A (ja) * 2007-03-21 2010-06-10 アルカテル−ルーセント Mimo伝送技術、基地局、および移動端末を決定する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416778B2 (ja) 2019-05-29 2024-01-17 京セラ株式会社 無線測定収集方法及びユーザ装置

Also Published As

Publication number Publication date
US20160036506A1 (en) 2016-02-04
US9780852B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
US20200187206A1 (en) Method for Efficient Channel Estimation and Beamforming IN FDD System by Exploiting Uplink-Downlink Correspondence
US11108444B2 (en) Transmitter, receiver, wireless communication network and methods for operating the same
US11770174B2 (en) Millimeter wave beam tracking and beam sweeping
CN111510189B (zh) 信息反馈方法及装置
WO2016001951A1 (ja) 送信制御装置及びプログラム
JP6594443B2 (ja) 基地局及びプリコーディングマトリックス決定方法
TWI580210B (zh) Method, system and equipment for channel status information measurement
US9819516B2 (en) Channel estimation in wireless communications
JP2019017093A (ja) 電子デバイス及び方法
CN106160952B (zh) 一种信道信息反馈方法及装置
CN106716896B (zh) 一种预编码信息的获取装置、方法和***
US20170244467A1 (en) Method of allocating resources in pattern/polarization beam division multiple access-based transmitting apparatus, method of transmitting channel information by receiving apparatus and receiving apparatus based on pattern/polarization beam division multiple access
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2017167216A1 (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
US10560163B2 (en) Beamforming configuration with adaptive port-to-antenna mapping for a multi-antenna system
EP3198740B1 (en) Codebook for full-dimension multiple input multiple output communications
US20200322933A1 (en) Method and apparatus for obtaining downlink channel information
WO2016119655A1 (zh) 一种确定码本的方法及装置
US9356669B2 (en) Method, system and device for transmitting pre-coded indication information and determining pre-coding matrix
EP3288189B1 (en) Channel information feedback method and apparatus for array antenna
JP2018514994A (ja) ビーム情報取得方法、装置及び通信システム
WO2017075839A1 (zh) 一种测量和反馈信道状态信息csi的方法及装置
CN110912600B (zh) 一种通信方法、装置、设备及存储介质
WO2023206556A1 (en) Method and apparatus for csi feedback
CN111656715B (zh) 一种码本处理方法、***、网络设备、用户设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP