WO2014178434A1 - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2014178434A1
WO2014178434A1 PCT/JP2014/062116 JP2014062116W WO2014178434A1 WO 2014178434 A1 WO2014178434 A1 WO 2014178434A1 JP 2014062116 W JP2014062116 W JP 2014062116W WO 2014178434 A1 WO2014178434 A1 WO 2014178434A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2014/062116
Other languages
English (en)
French (fr)
Inventor
河村 昌宏
西村 和樹
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/761,767 priority Critical patent/US20150364692A1/en
Priority to JP2015514877A priority patent/JP6232419B2/ja
Priority to CN201480005677.2A priority patent/CN104918915A/zh
Priority to KR1020157019637A priority patent/KR20160002675A/ko
Publication of WO2014178434A1 publication Critical patent/WO2014178434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence element containing the compound, an organic electroluminescence element using the compound, and an electronic apparatus including the organic electroluminescence element.
  • an organic electroluminescence (EL) element is composed of an anode, a cathode, and one or more organic thin film layers sandwiched between the anode and the cathode.
  • a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light emitting region, and the injected electrons and holes recombine in the light emitting region to generate an excited state, which is excited.
  • Light is emitted when the state returns to the ground state.
  • organic EL elements can be obtained in various light emitting colors by using various light emitting materials for the light emitting layer, and therefore, researches for practical application to displays and the like are active. In particular, research on light emitting materials of the three primary colors of red, green, and blue is the most active, and intensive research has been conducted with the aim of improving characteristics.
  • Patent Documents 1 and 2 disclose compounds having a fluoranthene ring in the examples of biscarbazole derivatives.
  • Patent Document 3 discloses a compound in which a fluoranthene ring is bonded to a carbazole ring via a nitrogen-containing heterocycle in an example of a fluoranthene derivative.
  • Patent Document 4 discloses a fluoranthene derivative having a fluoranthene ring and a carbazole ring.
  • development of new materials is required in order to further improve device performance.
  • an object of the present invention is to provide an organic electroluminescence element having high luminous efficiency and a long lifetime, and an electronic device including the organic electroluminescence element, and to provide a compound for realizing them. is there.
  • R 21 to R 30 each independently represents a hydrogen atom or a substituent. However, any one of R 21 to R 30 represents a direct bond with L 1 or Cz.
  • L 1 represents a direct bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 60 ring carbon atoms, a substituted or unsubstituted divalent oxygen-containing heterocyclic group having 5 to 60 ring atoms, or A substituted or unsubstituted divalent sulfur-containing heterocyclic group having 5 to 60 ring atoms.
  • Cz represents a structure represented by the following general formula (2).
  • a and b each independently represent an integer of 1 to 3. However, when at least one of a and b is 2 or 3, L 1 is not a direct bond.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent. Adjacent ones of R 1 to R 8 are bonded to each other to form a ring structure. Provided that at least one pair of adjacent R 1 to R 8 is bonded to form a ring structure represented by the following general formula (3) or (4).)
  • R 10 to R 17 each independently represents a hydrogen atom or a substituent. Adjacent ones of R 10 to R 13 are bonded to each other to form a ring structure.
  • Y 1 and R 10 may be bonded to each other to form a ring structure, and adjacent ones of R 14 to R 17 may be bonded to each other to form a ring structure.
  • Y 1 represents an oxygen atom, a sulfur atom, or —CR 31 R 32 — (R 31 and R 32 each independently represents a hydrogen atom or a substituent). However, any one of R 1 to R 17 , R 31 and R 32 represents a direct bond to L 1 or any one of R 21 to R 30 . ]] [2] A material for an organic electroluminescence device, containing the compound according to [1].
  • An organic electroluminescence device comprising a plurality of organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers includes the compound according to [1].
  • An electronic device including the organic electroluminescence element according to [3].
  • an organic electroluminescence element having high luminous efficiency and a long lifetime
  • an electronic device including the organic electroluminescence element and further, it is possible to provide a compound capable of realizing them.
  • organic electroluminescent element hereinafter abbreviated as "organic EL element" which concerns on embodiment of this invention.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted and substituted. In this case, the number of carbon atoms in the substituent is not included.
  • “atom number XX to YY” in the expression “ZZ group of substituted or unsubstituted atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In the case of substitution, the number of substituent atoms is not included.
  • the “hydrogen atom” includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • the “heteroaryl group”, “heteroarylene group” and “heterocyclic group” are groups containing at least one heteroatom as a ring-forming atom, and the heteroatom is a nitrogen atom , Oxygen atom, sulfur atom, silicon atom and selenium atom are preferable.
  • the term “unsubstituted” in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms refers to a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, or a heterocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a single ring, a condensed ring, or a ring assembly).
  • An atom that does not constitute a ring for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring
  • an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • an optional substituent when referred to as “substituted or unsubstituted” is an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18 and more preferably 1 to 8); 3 to 50 ring carbon atoms (preferably A cycloalkyl group having 3 to 10, more preferably 3 to 8, and further preferably 5 or 6; an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18); ring formation An aralkyl group having 7 to 51 (preferably 7 to 30, more preferably 7 to 20) carbon atoms having an aryl group having 6 to 50 carbon atoms (preferably 6 to 25, more preferably 6 to 18); an amino group; It is selected from an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8) and an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18).
  • R 21 to R 30 each independently represent a hydrogen atom or a substituent. However, any one of R 21 to R 30 represents a direct bond with L 1 or Cz.
  • L 1 represents a direct bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 60 ring carbon atoms, a substituted or unsubstituted divalent oxygen-containing heterocyclic group having 5 to 60 ring atoms, or A substituted or unsubstituted divalent sulfur-containing heterocyclic group having 5 to 60 ring atoms.
  • Cz represents a structure represented by the following general formula (2). a and b each independently represent an integer of 1 to 3.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent.
  • adjacent ones specifically, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 ) may be bonded to each other to form a ring structure.
  • at least one pair of R 1 to R 8 adjacent to each other is bonded to form a ring structure represented by the following general formula (3) or (4).
  • R 10 to R 17 each independently represents a hydrogen atom or a substituent.
  • adjacent ones specifically, R 10 And R 11 , R 11 and R 12 , R 12 and R 13
  • Y 1 and R 10 may be bonded to each other to form a ring structure
  • Adjacent ones of R 14 to R 17 may be bonded to each other to form a ring structure.
  • R 1 represents an oxygen atom, a sulfur atom, —CR 31 R 32 —
  • R 31 and R 32 each independently represents a hydrogen atom or a substituent, and preferably each represents an alkyl group having 1 to 8 carbon atoms or a ring-forming carbon.
  • any one of R 1 to R 17 , R 31 and R 32 represents a direct bond to L 1 or any one of R 21 to R 30 .
  • R 10 to R 13 adjacent to each other can form a ring structure
  • Y 1 and R 10 can form a bond to each other
  • the ring structure that can be formed by bonding to each other may be, for example, an aromatic ring such as a benzene ring or a naphthalene ring, or a ring in which the conjugated system is broken. Examples of such a ring structure include the following.
  • any one of R 21 to R 30 represents a direct bond with L 1 or Cz. More specifically, when L 1 represents a direct bond, any one of R 21 to R 30 represents a direct bond with Cz, and when L 1 represents a non-direct bond, R 1 Any one of 21 to R 30 represents a direct bond with L 1 .
  • “direct bond” may be generally referred to as “single bond” in other words.
  • any one of R 1 to R 17 , R 31 and R 32 represents a direct bond with L 1 or any one of R 21 to R 30 . More specifically, when L 1 represents a direct bond, any one of R 1 to R 17 , R 31 and R 32 represents a direct bond to any one of R 21 to R 30.
  • any one of R 1 to R 17 , R 31 and R 32 represents a direct bond with L 1 .
  • the description “any one of R 1 to R 17 , R 31 and R 32 ” is “ R 1 to R 13
  • any one of R 31 and R 32 ” means that when the general formula (2) has the structure of the general formula (4), the above“ R 1 to R 13
  • the description “any one of R 17 , R 31 and R 32 ” means “any one of R 1 to R 9 , R 14 to R 17 , R 31 and R 32 ”.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 60 ring carbon atoms represented by L 1 include a benzene ring, naphthalene ring, anthracene ring, benzoanthracene ring, phenanthrene ring, benzophenanthrene ring, fluorene ring, benzofluorene ring, Dibenzofluorene ring, picene ring, tetracene ring, pentacene ring, pyrene ring, chrysene ring, benzochrysene ring, s-indacene ring, as-indacene ring, fluoranthene ring, benzofluoranthene ring, triphenylene ring, benzotriphenylene ring, perylene ring And a divalent group formed by removing two hydrogen atoms from a coronene ring or dibenzoanthracene ring.
  • a divalent aromatic hydrocarbon group having 6 to 40 ring carbon atoms more preferred is a divalent aromatic hydrocarbon group having 6 to 20 ring carbon atoms, and more preferred is the number of ring carbon atoms.
  • Examples of the divalent oxygen-containing heterocyclic group having 5 to 60 ring-forming atoms represented by L 1 include a furan ring, a benzofuran ring, an isobenzofuran ring, a dibenzofuran ring, a dioxane ring, a morpholine ring, an oxazole ring, an oxadiazole ring, Examples thereof include a divalent group obtained by removing two hydrogen atoms from a benzoxazole ring, a pyran ring, a benzonaphthofuran ring, or a dinaphthofuran ring.
  • it is a divalent oxygen-containing heterocyclic group having 5 to 40 ring atoms, a divalent oxygen-containing heterocyclic group having 5 to 20 ring atoms, and a divalent oxygen group having 5 to 13 ring atoms.
  • An oxygen heterocyclic group more preferably a divalent group formed by removing two hydrogen atoms from a dibenzofuran ring.
  • Examples of the divalent sulfur-containing heterocyclic group having 5 to 60 ring atoms represented by L 1 include a benzothiophene ring, dibenzothiophene ring, thiophene ring, thiazole ring, thiadiazole ring, benzothiazole ring, benzonaphthothiophene ring or di
  • a divalent group obtained by removing two hydrogen atoms from a naphthothiophene ring is exemplified.
  • it is a divalent sulfur-containing heterocyclic group having 5 to 40 ring atoms, a divalent sulfur-containing heterocyclic group having 5 to 20 ring atoms, and a divalent group having 5 to 13 ring atoms.
  • L 1 is preferably a divalent aromatic hydrocarbon group having 6 to 60 ring carbon atoms.
  • the general formula (2) at least one pair of adjacent R 1 to R 8 is bonded to form a ring structure represented by the general formula (3) or (4).
  • the general formula (2) is represented by the following general formulas (5) to (14).
  • Cz is preferably a structure represented by any of the following general formulas (5) to (14).
  • R 41 to R 139 and R 150 to R 162 each independently represent a hydrogen atom or a substituent.
  • Y 2 to Y 7 each represents an oxygen atom, a sulfur atom, or —CR 140 R 141 —.
  • R 140 and R 141 each independently represent a hydrogen atom or a substituent.
  • R140 and R141 all are a methyl group. Any one of R 41 to R 51 , any one of R 52 to R 62 , any one of R 63 to R 73 , and any one of R 74 to R 84 Any one of R 85 to R 95 , any one of R 96 to R 106 , any one of R 107 to R 117 , and any of R 118 to R 128 Any one of R 129 to R 139 and any one of R 150 to R 162 represents a direct bond with L 1 or any one of R 21 to R 30. .
  • the ring structure that can be formed by bonding adjacent ones of R139 and R151 to R162 may be, for example, an aromatic ring such as a benzene ring or a naphthalene ring, or the conjugated system may be broken. It may be a ring.
  • R 42 to R 51 , R 53 to R 62 and R 64 to R 73 may be bonded to each other to form a ring structure.
  • Adjacent ones of R 75 to R 84 , R 86 to R 95 and R 98 to R 106 may be bonded to each other to form a ring structure.
  • the term “adjacent” refers to R 108 and R 109 , R 109 and R 110 , R 110 and R 111 , R 111 and R 112 , R 113 and R 114 , R 114 and R 115 , R 115 and R 116 , and R 116 and R 117 .
  • the “substituent” defined in the general formulas (1) to (14) is not particularly limited, and may be any conventionally known organic group, specifically, a substituted or unsubstituted carbon.
  • a sulfonyl group having a substituent selected from 50 aryl groups.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 to 50 aryl groups, substituted or unsubstituted aralkyl groups having 7 to 51 carbon atoms, amino groups, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, and substituted or unsubstituted aryl groups having 6 to 50 ring carbon atoms
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 to A mono- or di-substituted amino group having a substituent selected from a 50 aryl group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms and a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted Alternatively, it is an unsubstituted heteroaryl group having 5 to 50 ring atoms, a halogen atom, or a cyano group.
  • alkyl group having 1 to 50 carbon atoms examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, and n-butyl group.
  • Examples of the cycloalkyl group having 3 to 50 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclo A heptyl group, a cyclooctyl group, an adamantyl group etc. are mentioned, A cyclopentyl group and a cyclohexyl group are preferable.
  • Examples of the aryl group having 6 to 50 ring carbon atoms include, for example, a phenyl group, a naphthyl group, a naphthylphenyl group, and a biphenylyl group.
  • Terphenylyl group acenaphthylenyl group, anthryl group, benzoanthryl group, aceanthryl group, phenanthryl group, benzophenanthryl group, phenalenyl group, fluorenyl group, 9,9'-spirobifluorenyl group, benzofluorenyl Group, dibenzofluorenyl group, picenyl group, pentaphenyl group, pentacenyl group, pyrenyl group, chrycenyl group, benzocricenyl group, s-indacenyl group, as-indacenyl group, fluoranthenyl group, benzofluoranthenyl group, tetracenyl group , Triphenylenyl group, benzotriphenylenyl group Perylenyl group, coronyl group, dibenzoanthryl group and the like.
  • At least one, preferably 1 to 5 (more preferably 1 to 3, more preferably 1 to 5 heteroaryl groups having 5 to 50 ring atoms (preferably 5 to 24, more preferably 5 to 13 ring atoms) (Preferably 1 to 2) heteroatoms such as nitrogen, sulfur, oxygen and phosphorus atoms.
  • heteroaryl group include pyrrolyl group, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group.
  • a pyridyl group, a pyrimidinyl group, a triazinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group are preferable.
  • heteroaryl group having 5 to 50 ring atoms include a monovalent group obtained by removing one hydrogen atom from any compound represented by the following general formula.
  • A independently represents CR 100 or a nitrogen atom, and R 100 each independently represents a hydrogen atom or a substituent, Each Y independently represents a single bond, C (R 101 ) (R 102 ), an oxygen atom, a sulfur atom or N (R 103 ); R 101 , R 102 and R 103 each independently represent a hydrogen atom or a substituent, and m independently represents 0 or 1.
  • Examples of the substituent in the above formula include the same ones as described above.
  • Examples of the aralkyl group having 7 to 51 carbon atoms in total having an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18) include the above aralkyl groups having an aryl group.
  • the alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8) and the aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18) are selected.
  • Examples of the monosubstituted or disubstituted amino group having a substituent include a monosubstituted or disubstituted amino group having a substituent selected from the above alkyl group and the above aryl group.
  • Examples of the alkoxy group having an alkyl group having 1 to 50 carbon atoms include the above alkoxy groups having an alkyl group.
  • Examples of the aryloxy group having an aryl group having 6 to 50 ring carbon atoms include the above aryloxy groups having an aryl group.
  • alkyl group having 1 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8
  • an aryl group having 6 to 50 ring carbon atoms preferably 6 to 25, more preferably 6 to 18.
  • Examples of the monosubstituted, disubstituted or trisubstituted silyl group having a substituent include a monosubstituted, disubstituted or trisubstituted silyl group having a substituent selected from the above alkyl group and the above aryl group.
  • haloalkyl group having 1 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8
  • at least one hydrogen atom of the alkyl group is a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine). And those substituted by an atom).
  • alkyl group having 1 to 50 carbon atoms preferably 1 to 18, more preferably 1 to 8 and the aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18).
  • the sulfonyl group having a selected substituent include a sulfonyl group having a substituent selected from the above alkyl group and the above aryl group.
  • the disubstituted phosphoryl group having a selected substituent include a disubstituted phosphoryl group having a substituent selected from the above alkyl group and the above aryl group.
  • the compound of the present invention is not particularly limited, but it is preferable that R 9 in the general formula (2) shows a direct bond with L 1 or any one of R 21 to R 30 .
  • R 9 in the general formula (2) shows a direct bond with L 1 or any one of R 21 to R 30 .
  • those in which both a and b are 1 or 2 are preferred, and those in which both a and b are 1 are more preferred.
  • the compound of the present invention is preferably one represented by any of the following general formulas (1-5) to (1-14).
  • L 1 , R 21 to R 30 , R 42 to R 51 , R 53 to R 62 , R 64 to R 73 and R 151 to R 162 are as defined above, and preferred ones are also the same. That is, adjacent ones of R 42 to R 51 , R 53 to R 62 , R 64 to R 73 and R 151 to R 162 may be bonded to each other to form a ring structure.
  • the adjacent ones referred to here are R 42 and R 43 , R 43 and R 44 , R 44 and R 45 , R 45 and R 46 , R 46 and R 47 , R 48 and R 49 , R 49 and R 50 , R 50 and R 51 .
  • R53 and R54 , R54 and R55 , R55 and R56 , R56 and R57 , R57 and R58 , R58 and R59 , R59 and R 60 is a R 60 and R 61, R 61 and R 62.
  • L 1 , R 21 to R 30 , R 75 to R 84 , R 86 to R 95 , R 97 to R 106 and Y 2 to Y 4 are as defined above, and preferred ones are also the same. In other words, adjacent ones of R 75 to R 84 , R 86 to R 95 and R 98 to R 106 may be bonded to each other to form a ring structure.
  • R 75 and R 76 , R 76 and R 77 , R 77 and R 78 , R 78 and R 79 , R 79 and R 80 , R 80 and R 81 , R 81 and R 82 , R 82 and R 83 , R 83 and R 84 are as defined above, and preferred ones are also the same. In other words, adjacent ones of R 75 to R 84 , R 86 to R 95 and R 98 to R 106 may be bonded to each other to form a ring structure.
  • L 1 , R 21 to R 30 , R 108 to R 117 , R 119 to R 128 , R 130 to R 139 and Y 5 to Y 7 are as defined above, and preferred ones are also the same. That is, adjacent ones of R 108 to R 117 , R 119 to R 128 and R 130 to R 139 may be bonded to each other to form a ring structure.
  • a compound represented by the following general formula (1 ′) and a compound represented by the following general formula (1 ′′) are also preferable.
  • the definition of each group and a and b is the same as the thing in General formula (1), and a preferable thing is also the same.
  • the following general formulas (1′-5) to (1′-14) A compound represented by any one of formulas (1 ′′ -5) to (1 ′′ -14) is more preferable.
  • the definitions of the groups in the general formulas (1′-5) to (1′-14) are the same as those in the general formula (1 ′), and the preferable ones are also the same.
  • the definition of each group in the general formulas (1 ′′ -5) to (1 ′′ -14) is the same as that in the general formula (1 ′′), and the preferable ones are also the same.
  • a particularly preferable condensed ring mode is a bicyclic ring with respect to the carbazole skeleton.
  • the above condensed ring structure is a condensed ring structure.
  • the effect of lowering the voltage by improving the packing property of molecules is obtained, which is preferable. That is, two or more adjacent sets of R 1 to R 8 in the general formula (2) are condensed in the general formula (4), or one or more adjacent sets of the R 1 to R 8 are It is preferable that the ring is condensed by the general formula (3).
  • Cz is more preferably a structure represented by any one of the general formulas (8) to (14).
  • the fluoranthene-containing group is preferably substituted directly or via L 1 at the N-position of the carbazole skeleton from the viewpoint of luminous efficiency.
  • compounds in which R 21 to R 30 are all hydrogen atoms except for those showing a direct bond with L 1 or Cz are preferable. Specific examples of the compound of the present invention are shown below, but are not particularly limited thereto. Moreover, the following specific examples can be said to be preferable compounds.
  • the compound of the present invention is useful as a material for an organic EL device.
  • the compound of this invention may be used individually by 1 type as a material for organic EL elements, and may use 2 or more types together.
  • the compound of the present invention may be used by mixing with a known organic EL device material, that is, the present invention also provides an organic EL device material containing the compound of the present invention.
  • the content of the compound of the present invention in the organic EL device material is not particularly limited, but may be 1% by mass or more, preferably 10% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass. % Or more, particularly preferably 90% by mass or more.
  • the organic EL device of the present invention has a plurality of organic thin film layers including a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers is a compound of the present invention (hereinafter referred to as the organic of the present invention).
  • the organic EL element can be made highly efficient and have a long life.
  • the organic thin film layer containing the organic EL device material of the present invention include an anode-side organic thin film layer (that is, a hole transport layer) provided between the anode and the light emitting layer of the organic EL device, and an organic EL device.
  • Examples include a cathode-side organic thin film layer (that is, an electron transport layer) provided between the cathode and the light-emitting layer, a light-emitting layer, a space layer, and a barrier layer.
  • the organic EL device material of the present invention is preferably contained in the light emitting layer, and particularly preferably used as a host material of the light emitting layer.
  • the light emitting layer preferably contains a fluorescent light emitting material or a phosphorescent light emitting material, and particularly preferably contains a phosphorescent light emitting material.
  • the organic EL device material of the present invention is also suitably used as a barrier layer.
  • the organic EL device of the present invention may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent / phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. It may be a tandem type having a plurality of light emitting units. Among these, a phosphorescent light emitting type is preferable.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, excitation generated in the phosphorescent light emitting layer between the light emitting layers.
  • a space layer may be provided.
  • a typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
  • H Hole transport layer / light emitting layer / hole barrier layer (
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element of the present invention.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and an organic thin film layer 10 disposed between the anode 3 and the cathode 4.
  • the organic thin film layer 10 has a light emitting layer 5 including at least one phosphorescent light emitting layer including a phosphorescent host material and a phosphorescent dopant (phosphorescent light emitting material).
  • electron injection / transport layer (cathode-side organic thin film layer) 7 between the light-emitting layer 5 and the cathode 4 May be formed.
  • an electron barrier layer may be provided on the anode 3 side of the light emitting layer 5
  • a hole barrier layer may be provided on the cathode 4 side of the light emitting layer 5.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • An organic layer having a light emitting function includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the light emitting layer employs, for example, a double host (also referred to as host / cohost) that adjusts the carrier balance in the light emitting layer by combining an electron transporting host and a hole transporting host.
  • the light emitting layer preferably contains a first host material and a second host material, and the first host material is preferably the organic EL device material of the present invention.
  • you may employ adopt the double dopant from which each dopant light-emits by putting in 2 or more types of dopant materials with a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • a light emitting layer can be formed by well-known methods, such as a vapor deposition method, a spin coat method, LB method (Langmuir Blodgett method), for example.
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the dopant material is selected from known fluorescent dopants exhibiting fluorescent emission or phosphorescent dopants exhibiting phosphorescent emission.
  • the fluorescent dopant is selected from fluoranthene derivatives, pyrene derivatives, arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, chrysene derivatives, and the like.
  • a fluoranthene derivative, a pyrene derivative, and a boron complex are used.
  • the phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, An organometallic complex containing at least one metal selected from Re and Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • the organic EL device material of the present invention is suitable as a phosphorescent host.
  • the light emitting layer may contain 1 type of organic EL element material of this invention, and may contain 2 or more types of organic EL element material of this invention.
  • the emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited.
  • At least one of the phosphorescent dopant materials contained in the light emitting layer preferably has a peak emission wavelength of 490 nm to 700 nm, and more preferably 490 nm to 650 nm.
  • a luminescent color of a light emitting layer red, yellow, and green are preferable, for example.
  • a compound other than the material for the organic EL device of the present invention can be appropriately selected as the phosphorescent host according to the purpose.
  • the organic EL device material of the present invention and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer, and when there are a plurality of light emitting layers, the phosphorescent host of one of the light emitting layers.
  • the material for an organic EL device of the present invention may be used as a material, and a compound other than the material for an organic EL device of the present invention may be used as a phosphorescent host material for another light emitting layer.
  • the organic EL device material of the present invention can be used for organic layers other than the light emitting layer. In that case, a compound other than the organic EL device material of the present invention is used as the phosphorescent host of the light emitting layer. May be.
  • compounds other than the organic EL device material of the present invention and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidene derivatives And metal complexes of heterocycl
  • the organic EL element material of the present invention is used as the first host material
  • the organic EL element material other than the organic EL element material of the present invention is used as the second host material.
  • a compound may be used.
  • first host material and second host material in the present invention mean that a plurality of host materials contained in the light emitting layer have different structures from each other. It is not specified by the material content. It does not specifically limit as said 2nd host material, It is a compound other than the organic EL element material of this invention, and the same thing as the above-mentioned compound as a compound suitable as a phosphorescent host is mentioned.
  • the second host material a compound having no cyano group is preferable.
  • the second host is preferably a carbazole derivative, arylamine derivative, fluorenone derivative, or aromatic tertiary amine compound.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention preferably has an electron donating dopant in the interface region between the cathode and the light emitting unit. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. Examples thereof include at least one selected from metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals examples include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligand includes quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl oxadiazole, hydroxydiaryl thiadiazole, hydroxyphenyl pyridine, hydroxyphenyl benzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the electron donating dopant it is preferable to form a layered or island shape in the interface region.
  • a forming method while depositing an electron donating dopant by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant is dispersed in the organic compound.
  • the electron donating dopant is formed in a layered form
  • the reducing dopant is vapor-deposited by a resistance heating vapor deposition method. .1 nm to 15 nm.
  • the electron donating dopant is formed in an island shape
  • the electron donating dopant is deposited by resistance heating vapor deposition alone, preferably The island is formed with a thickness of 0.05 nm to 1 nm.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 202 to R 207 in formula (A) are each independently a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, or an alkoxy group having 1 to 40 carbon atoms. , An aryloxy group having 6 to 50 carbon atoms, an alkoxycarbonyl group, or an aromatic heterocyclic group having 5 to 50 ring atoms, which may be substituted.
  • Examples of the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the amino group which may be substituted include an alkylamino group, an arylamino group and an aralkylamino group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 .
  • Q 1 and Q 2 each independently represents an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 1 to 20 carbon atoms.
  • One of Q 1 and Q 2 may be a hydrogen atom or a deuterium atom.
  • the arylamino group is represented as —NAr 101 Ar 102, and Ar 101 and Ar 102 each independently represent a non-condensed aromatic hydrocarbon group or a condensed aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • Ar 101 and Ar 102 may be a hydrogen atom or a deuterium atom.
  • the hydrocarbon group having 1 to 40 carbon atoms includes an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • the alkoxycarbonyl group is represented as —COOY ′, and Y ′ represents an alkyl group having 1 to 20 carbon atoms.
  • M is aluminum (Al), gallium (Ga) or indium (In), and is preferably In.
  • L is a group represented by the following formula (A ′) or (A ′′).
  • R 208 to R 212 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and the groups adjacent to each other are cyclic structures May be formed.
  • R 213 to R 227 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and groups adjacent to each other are An annular structure may be formed.
  • the hydrocarbon groups having 1 to 40 carbon atoms represented by R 208 to R 212 and R 213 to R 227 in the formula (A ′) and the formula (A ′′) are represented by R 202 to R 207 in the formula (A).
  • the divalent groups in the case where the adjacent groups of R 208 to R 212 and R 213 to R 227 form a cyclic structure include tetramethylene, pentamethylene, hexa Examples include a methylene group, diphenylmethane-2,2′-diyl group, diphenylethane-3,3′-diyl group, and diphenylpropane-4,4′-diyl group.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is used.
  • 8-quinolinol or 8-hydroxyquinoline a metal chelate oxinoid compound containing a chelate of oxine
  • tris (8-quinolinol) aluminum is used.
  • an oxadiazole derivative the following can be mentioned.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22, and Ar 25 are each substituted or unsubstituted carbon atoms of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably).
  • the aromatic hydrocarbon group or the condensed aromatic hydrocarbon group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group. Examples of these substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • Ar 20 , Ar 23 and Ar 24 are each a substituted or unsubstituted divalent aromatic hydrocarbon having 6 to 50 carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). Represents a group or a condensed aromatic hydrocarbon group, and Ar 23 and Ar 24 may be the same or different.
  • the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group. Examples of these substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following formula, and includes a nitrogen-containing compound that is not a metal complex. Examples thereof include a 5-membered ring or 6-membered ring containing a skeleton represented by the following formula (B) and a structure represented by the following formula (C).
  • X represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B) and (C) or the above formula (B) and the following formula (D) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following formulae.
  • R is an aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 40 carbon atoms (preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12), ring formation Aromatic heterocyclic group or condensed aromatic heterocyclic group having 5 to 40 atomic carbon atoms (preferably 5 to 20, more preferably 5 to 12), 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 carbon atom) To 6) alkyl group or an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), n is an integer of 0 to 5, and n is an integer of 2 or more.
  • the plurality of R may be the same or different from each other.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula (D1). HAr-L 11 -Ar 1 -Ar 2 (D1)
  • HAr is a nitrogen-containing heterocyclic group having a substituted or unsubstituted ring-forming atom number of 5 to 40 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12).
  • L 11 is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) ring-forming carbon atoms or a condensed aromatic group.
  • HAr is selected from the following group, for example.
  • L 11 in the formula (D1) is selected from the following group, for example.
  • Ar 1 in the formula (D1) is selected from, for example, an anthracenediyl group represented by the following formula (D2) or the following formula (D3).
  • R 301 to R 314 each independently represent a hydrogen atom, a halogen atom, or a carbon number of 1 to 20 (preferably 1 to 10, more preferably 1 to 6).
  • R 301 to R 308 may be nitrogen-containing heterocyclic derivatives each of which is a hydrogen atom.
  • Ar 2 in the formula (D1) is selected from the following group, for example.
  • the following compounds are also preferably used as the nitrogen-containing aromatic polycyclic organic compound as the electron transporting compound.
  • R 321 to R 324 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon number of 3 to 20 (preferably Is an aliphatic cyclic group having 3 to 10, more preferably 5 to 8, a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 6).
  • X 1 And X 2 each independently represents an oxygen atom, a sulfur atom, or a dicyanomethylene group.
  • the following compounds are also preferably used as the electron transfer compound.
  • R 331 to R 334 are the same or different groups, and are an aromatic hydrocarbon group or a condensed aromatic hydrocarbon group represented by the following formula (D6).
  • R 335 to R 339 are the same or different from each other, and are a hydrogen atom, a deuterium atom, a saturated or unsaturated C 1-20 alkoxyl group, a saturated or unsaturated carbon number.
  • An alkyl group having 1 to 20 preferably 1 to 10, more preferably 1 to 6
  • an amino group, or an alkylamino group having 1 to 20 carbon atoms preferably 1 to 10 and more preferably 1 to 6).
  • At least one of R 335 to R 339 is a group other than a hydrogen atom or a deuterium atom.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the electron transport layer particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (E) to (G).
  • Z 11 , Z 12 and Z 13 are each independently a nitrogen atom or a carbon atom.
  • R a and R b are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), substituted or unsubstituted An unsubstituted heteroaryl group having 5 to 50 ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12), a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms (preferably 1 -10, more preferably 1-6) alkyl group, substituted or unsubstituted haloalkyl group of 1-20 (preferably 1-10, more preferably 1-6) or substituted or unsubstituted 1 carbon atom.
  • R b is preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), more preferably a methyl group or an ethyl group.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of Ra may be the same or different from each other.
  • R a may form a substituted or unsubstituted hydrocarbon ring.
  • Ar 11 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12), or a substituted or unsubstituted ring atom number. 5 to 50 heteroaryl groups.
  • Ar 12 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms (preferably 1 to 1 carbon atoms).
  • haloalkyl group substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 6), substituted or unsubstituted ring carbon atoms 6-50 (preferably 6-30, more preferably 6-20, more preferably 6-12) aryl groups or substituted or unsubstituted ring-forming atoms of 5-50 (preferably 5-30, more preferably 5-20, more preferably 5-12) heteroaryl groups.
  • Ar 12 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), more preferably a phenyl group. is there.
  • Ar 11 or Ar 12 is a substituted or unsubstituted condensed aromatic group having 10 to 50 ring carbon atoms (preferably 10 to 30, more preferably 10 to 20, more preferably 10 to 14).
  • the condensed aromatic hydrocarbon ring of the condensed aromatic hydrocarbon ring group is preferably an anthracene ring.
  • Ar 13 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 14), or a substituted or unsubstituted ring-forming atom number. 5 to 50 (preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 14) heteroarylene groups.
  • L 21 , L 22 and L 23 are each independently a single bond, a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • a divalent condensed aromatic heterocyclic group having 9 to 50 (preferably 9 to 30, more preferably 9 to 20, more preferably 9 to 14) ring-forming atoms that are substituted or unsubstituted.
  • L 21 , L 22 and L 23 are all preferably substituted or unsubstituted ring-forming carbon atoms of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • An arylene group more preferably a phenylene group.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, fluoranthenyl group, fluorenyl Group and the like.
  • heteroaryl group having 5 to 50 ring atoms examples include pyrrolyl, furyl, thienyl, silhirol, pyridyl, quinolyl, isoquinolyl, benzofuryl, imidazolyl, pyrimidyl, carbazolyl, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
  • the formula (G) is preferable.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the present invention is preferable even if it contains the above-mentioned electron donating dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 31 to Ar 34 are substituted or unsubstituted aromatic carbon atoms having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12).
  • L represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12).
  • a condensed aromatic hydrocarbon group, or an aromatic heterocyclic group having 5 to 50 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) substituted or unsubstituted ring-forming atoms or condensed presents an aromatic heterocyclic group.
  • An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
  • the hole transport layer of the organic EL device of the present invention preferably has a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (light emitting layer side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (K) is preferable.
  • R 401 to R 406 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 407 (R 407 is an alkyl group having 1 to 20 carbon atoms.) Or R 401 and R 402 , R 403 and R 404 , or R 405 and R 406 are bonded to each other to represent a group represented by —CO—O—CO—.
  • Examples of the alkyl group for R 407 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
  • n-doping is a method of doping a metal such as Li or Cs into an electron transport material
  • p-doping 2,3,5,6-tetrafluoro- Examples thereof include a method of doping an acceptor material such as 7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ).
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons.
  • the organic EL element material of the present invention can be used as a triplet barrier layer having a TTF element structure described in International Publication WO2010 / 134350A1.
  • the electron mobility of the material constituting the triplet barrier layer is preferably 10 ⁇ 6 cm 2 / Vs or more in the range of the electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • the organic EL device obtained using the compound of the present invention has further improved luminous efficiency and lifetime. Some achieve low voltage drive. For this reason, it can be used for electronic devices such as display components such as organic EL panel modules; display devices such as televisions, mobile phones, and personal computers;
  • Example 1 2.17 g of raw material compound (A) under an argon atmosphere, 3.10 g of 3-bromofluoranthene synthesized by a known method, 0.18 g of trisdibenzylideneacetone dipalladium (0), tri-t-butylphosphine tetrafluoro Hydroborate 0.23 g, sodium-t-butoxide 1.30 g, and dehydrated xylene 100 mL were charged into a flask, and the mixture was heated to reflux with stirring for 8 hours. After cooling to room temperature, the reaction solution was extracted with toluene and filtered through celite.
  • Example 4 In Example 1, it synthesize
  • combined by the known method instead of the raw material compound (A). As a result of mass spectrum analysis, this was the target product (Compound 4), and the molecular weight was 417.15, and m / e 417.
  • Example 7 In Example 1, it synthesize
  • combined by the known method instead of the raw material compound (A). As a result of mass spectrum analysis, this was m / e 417 with respect to the molecular weight of 417.15, and was the target compound (compound 7).
  • Example 10 In Example 1, it synthesize
  • combined by the known method instead of the raw material compound (A). As a result of mass spectrum analysis, this was m / e 483 with respect to a molecular weight of 483.20, and was the target compound (Compound 10).
  • Example 13 In Example 1, it synthesize
  • combined by the known method instead of the raw material compound (A). As a result of mass spectrum analysis, this was m / e 457 with respect to the molecular weight of 457.15, and was the target compound (Compound 13).
  • Example 17 Under an argon atmosphere, 2.95 g of 3-fluorantheneboronic acid, 3.72 g of 10-bromo-7-phenylbenzo [c] carbazole synthesized by a known method, 0.231 g of tetrakis (triphenylphosphine) palladium (0) , 1,2-dimethoxyethane 20 mL, toluene 20 mL, and 2 M aqueous sodium carbonate solution 20 mL were placed in a flask, and the mixture was heated and refluxed for 8 hours. After cooling to room temperature, the reaction solution was extracted with toluene, the aqueous layer was removed, and the organic layer was washed with saturated brine.
  • triphenylphosphine triphenylphosphine
  • Examples 21 to 35 and Comparative Example 1 A glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode line after cleaning is attached to the substrate holder of the vacuum deposition apparatus, and first, the following compound HT-1 is deposited on the surface where the transparent electrode line is formed so as to cover the transparent electrode. A first hole transport layer (anode-side organic thin film layer) having a film thickness of 45 nm was formed.
  • the following compound HT-2 was vapor-deposited to form a second hole transport layer (anode-side organic thin film layer) having a thickness of 10 nm. Further, on the second hole transport layer, the compound shown in Table 1 as a host material and the following compound RD-1 as a phosphorescent material were co-evaporated to form a phosphorescent layer having a thickness of 40 nm. The concentration of Compound RD-1 in the light emitting layer was 5.0% by mass. This co-deposited film functions as a light emitting layer. Following the formation of the light emitting layer, the following compound ET-1 was formed to a thickness of 40 nm.
  • This compound ET-1 film functions as an electron transport layer (cathode side organic thin film layer).
  • LiF was used as an electron injecting electrode (cathode) and the film thickness was set to 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • the structures of the compounds used in the examples and comparative examples are shown below.
  • the device life at the time of driving at a current density of 50 mA / cm 2 (the time until the luminance is reduced to 90% of the initial luminance by low current driving) is measured by a luminance meter (Minolta)
  • the spectral luminance radiometer “CS-1000” The spectral luminance radiometer “CS-1000”.
  • the luminous efficiency at room temperature and DC constant current drive (current density 10 mA / cm 2 ) was measured using a luminance meter (spectral luminance radiometer “CS-1000” manufactured by Minolta). The results are shown in Table 1.
  • Comparative Compound 1 (disclosed in International Publication No. 2012/030145) in which a fluoranthene ring and a benzocarbazole are bonded via a nitrogen-containing heterocyclic derivative. It can be seen that the luminous efficiency is improved and the lifetime of the device is greatly improved as compared with the organic EL device containing the compound) in the light emitting layer.
  • Examples 36-39 A glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after washing is mounted on the substrate holder of the vacuum deposition apparatus, and the following compound K-1 is deposited on the surface where the transparent electrode line is formed so as to cover the transparent electrode.
  • An acceptor layer having a thickness of 10 nm was formed.
  • the following compounds HT-3 and HT-4 were vapor-deposited in this order, and a first hole transport layer having a thickness of 20 nm and a second hole transport layer having a thickness of 10 nm (both of which are on the anode side) Organic thin film layer) was formed. Further, on the second hole transport layer, the compound shown in Table 2 as a host material and the following compound RD-1 as a phosphorescent material were co-evaporated to form a phosphorescent layer having a thickness of 40 nm. The concentration of Compound RD-1 in the light emitting layer was 5.0% by mass. This co-deposited film functions as a light emitting layer.
  • the following compound ET-2 was formed to a film thickness of 45 nm to form an electron transport layer (cathode side organic thin film layer).
  • LiF was used as an electron injecting electrode (cathode) and the film thickness was set to 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • the structures of the compounds used in the examples are shown below.
  • the organic EL device containing the compound 3, 13, 14 or 16 in the light emitting layer has a high external quantum efficiency (EQE) and a significantly improved device lifetime.
  • driving voltages at 10 mA / cm 2 of the organic EL elements of Examples 36 to 39 are shown below.
  • compound 3, which is a compound in which one ring is condensed with carbazole compounds 13, 14 and 16 having a condensed ring structure in which two or more rings are condensed have a stronger effect of driving at low voltage, and organic It can be seen that the reduction in power consumption of the EL element can further contribute greatly.
  • Examples 40 to 42 and Comparative Example 2 A glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode line after washing is mounted on the substrate holder of the vacuum deposition apparatus, and the following compound K-1 is deposited on the surface where the transparent electrode line is formed so as to cover the transparent electrode. An acceptor layer having a thickness of 10 nm was formed.
  • the following compounds HT-3 and HT-5 were vapor-deposited in this order, and a first hole transport layer having a thickness of 20 nm and a second hole transport layer having a thickness of 10 nm (both of which are on the anode side) Organic thin film layer) was formed. Further, on the second hole transport layer, the compound shown in Table 4 as a host material and the following compound RD-1 as a phosphorescent material were co-evaporated to form a phosphorescent layer having a thickness of 40 nm. The concentration of Compound RD-1 in the light emitting layer was 5.0% by mass. This co-deposited film functions as a light emitting layer.
  • the following compound ET-3 was formed to a thickness of 45 nm to form an electron transport layer (cathode side organic thin film layer).
  • LiF was used as an electron injecting electrode (cathode) and the film thickness was set to 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • the structures of the compounds used in the examples and comparative examples are shown below.
  • the organic EL elements obtained in each example, the organic EL devices manufactured obtains a driving voltage (V) at a current density of 10 mA / cm 2, was evaluated for external quantum efficiency (EQE).
  • V driving voltage
  • EQE external quantum efficiency
  • the time until the luminance reaches 80% of the initial luminance (LT80) is measured using a luminance meter (spectral luminance radiometer “CS-200” manufactured by Minolta). did.
  • the results are shown in Table 4.
  • the organic EL device containing any one of Compounds 15, 16, and 21 in the light emitting layer can be driven at a low voltage, has high external quantum efficiency (EQE), and has improved device lifetime. I understand. In particular, the effect of the organic EL device (Examples 40 and 41) containing the compound 15 or 16 in the light emitting layer was remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 発光効率が高く、長寿命である有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を備えた電子機器、並びにそれらを実現するための化合物を提供する。具体的には、特定構造を持つカルバゾール環とフルオランテン骨格とを有する化合物、該化合物を用いた有機エレクトロルミネッセンス素子、並びに該有機エレクトロルミネッセンス素子を備えた電子機器を提供する。

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
 本発明は、化合物、該化合物を含有する有機エレクトロルミネッセンス素子用材料、該化合物を用いた有機エレクトロルミネッセンス素子、及び該有機エレクトロルミネッセンス素子を備えた電子機器に関する。
 一般に有機エレクトロルミネッセンス(EL)素子は陽極、陰極、及び陽極と陰極に挟まれた1層以上の有機薄膜層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。
 また、有機EL素子は、発光層に種々の発光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。特に赤色、緑色、青色の三原色の発光材料の研究が最も活発であり、特性向上を目指して鋭意研究がなされている。
 このような有機EL素子用の材料として、特許文献1及び2には、ビスカルバゾール誘導体の例示中にフルオランテン環を有する化合物が開示されている。また、特許文献3には、フルオランテン誘導体の例示中に、フルオランテン環が含窒素複素環を介してカルバゾール環類と結合している化合物が開示されている。特許文献4には、フルオランテン環とカルバゾール環とを有するフルオランテン誘導体が開示されている。
 しかしながら、有機EL素子の分野においては、さらなる素子性能の向上を目指すため、新たな材料の開発が求められている。
国際公開第2012/108388号 国際公開第2012/108389号 国際公開第2012/030145号 国際公開第2013/032278号
 そこで、本発明の課題は、発光効率が高く、長寿命である有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を備えた電子機器を提供すること、並びにそれらを実現するための化合物を提供することにある。
 本発明者らは、鋭意研究を重ねた結果、特定構造を持つカルバゾール環とフルオランテン骨格とを有する化合物であれば前記課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 本発明の一態様によれば、下記[1]~[4]が提供される。
[1]下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000010
[一般式(1)において、R21~R30は、それぞれ独立に、水素原子又は置換基を示す。但し、R21~R30のうちのいずれか1つは、L1又はCzとの直接結合を示す。L1は直接結合、置換もしくは無置換の環形成炭素数6~60の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~60の2価の含酸素複素環基又は置換もしくは無置換の環形成原子数5~60の2価の含硫黄複素環基を示す。Czは、下記一般式(2)で表される構造を示す。a及びbは、それぞれ独立に、1~3の整数を示す。但し、a及びbの少なくとも一方が2又は3の場合、L1は直接結合ではない。
Figure JPOXMLDOC01-appb-C000011
(一般式(2)において、R1~R9は、それぞれ独立に、水素原子又は置換基を示す。R1~R8のうち隣接するもの同士は、互いに結合して環構造を形成してもよい。但し、R1~R8のうちの隣接する少なくとも1組は、結合して下記一般式(3)又は(4)で表される環構造を形成する。)
(一般式(3)及び(4)において、R10~R17は、それぞれ独立に、水素原子又は置換基を示す。R10~R13のうち隣接するもの同士は互いに結合して環構造を形成してもよく、Y1とR10とは互いに結合して環構造を形成してもよく、R14~R17のうち隣接するもの同士は互いに結合して環構造を形成してもよい。Y1は酸素原子、硫黄原子、-CR3132-(R31及びR32は、それぞれ独立に、水素原子又は置換基を示す。)を示す。
 但し、R1~R17、R31及びR32のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。)]
[2]前記[1]に記載の化合物を含有する、有機エレクトロルミネッセンス素子用材料。
[3]陰極と陽極との間に発光層を含む複数の有機薄膜層を有し、前記有機薄膜層のうち少なくとも1層が前記[1]に記載の化合物を含む、有機エレクトロルミネッセンス素子。
[4]前記[3]に記載の有機エレクトロルミネッセンス素子を備えた電子機器。
 本発明によれば、発光効率が高く、長寿命である有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を備えた電子機器を提供することができ、さらにそれらを実現し得る化合物を提供することができる。
本発明の実施形態に係る有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略記することがある。)の概略構成の一例を示す図である。
 本発明において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。また、本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 また、本発明において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)及び三重水素(tritium)を包含する。
 本明細書中において、「ヘテロアリール基」、「ヘテロアリーレン基」及び「複素環基」は、環形成原子として、少なくとも1つのヘテロ原子を含む基であり、該へテロ原子としては、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子から選ばれる1種以上であることが好ましい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 また、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 さらに、「置換もしくは無置換」というときの任意の置換基は、炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基;環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、さらに好ましくは5又は6)のシクロアルキル基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有する炭素数7~51(好ましくは7~30、より好ましくは7~20)のアラルキル基;アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基を有するアルコキシ基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有するアリールオキシ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のハロアルキル基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するスルホニル基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基;、アルキルスルホニルオキシ基;アリールスルホニルオキシ基;アルキルカルボニルオキシ基;アリールカルボニルオキシ基;ホウ素含有基;亜鉛含有基;スズ含有基;ケイ素含有基;マグネシウム含有基;リチウム含有基;ヒドロキシ基;アルキル置換又はアリール置換カルボニル基;カルボキシル基;ビニル基;(メタ)アクリロイル基;エポキシ基;並びにオキセタニル基からなる群より選ばれる少なくとも1つが好ましい。
 これらの置換基は、さらに上述の任意の置換基により置換されていてもよい。また、置換基同士が結合して環を形成していてもよい。
 本明細書中、好ましいとする規定は任意に選択することができ、また、好ましいとする規定の組み合わせはより好ましいと言える。
[化合物]
 有機エレクトロルミネッセンス素子用材料として有用な本発明の化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)において、R21~R30は、それぞれ独立に、水素原子又は置換基を示す。但し、R21~R30のうちのいずれか1つは、L1又はCzとの直接結合を示す。L1は直接結合、置換もしくは無置換の環形成炭素数6~60の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~60の2価の含酸素複素環基又は置換もしくは無置換の環形成原子数5~60の2価の含硫黄複素環基を示す。Czは、下記一般式(2)で表される構造を示す。a及びbは、それぞれ独立に、1~3の整数を示す。但し、a及びbの少なくとも一方が2又は3の場合、L1は直接結合ではない。
Figure JPOXMLDOC01-appb-C000014
(一般式(2)において、R1~R9は、それぞれ独立に、水素原子又は置換基を示す。R1~R8のうち隣接するもの同士(具体的には、R1とR2、R2とR3、R3とR4、R4とR5、R5とR6、R6とR7、R7とR8)は、互いに結合して環構造を形成してもよい。但し、R1~R8のうちの隣接する少なくとも1組は、結合して下記一般式(3)又は(4)で表される環構造を形成する。)
Figure JPOXMLDOC01-appb-C000015
(一般式(3)及び(4)において、R10~R17は、それぞれ独立に、水素原子又は置換基を示す。R10~R13のうち隣接するもの同士(具体的には、R10とR11、R11とR12、R12とR13)は互いに結合して環構造を形成してもよく、Y1とR10とは互いに結合して環構造を形成してもよく、R14~R17のうち隣接するもの同士(具体的には、R14とR15、R15とR16、R16とR17)は互いに結合して環構造を形成してもよい。Y1は酸素原子、硫黄原子、-CR3132-(R31及びR32は、それぞれ独立に、水素原子又は置換基を示し、いずれも好ましくは炭素数1~8のアルキル基又は環形成炭素数6~18のアリール基であり、より好ましくはメチル基又はフェニル基である。)を示す。
 但し、R1~R17、R31及びR32のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。)
 R10~R13のうち隣接するもの同士が互いに結合して形成し得る環構造、Y1とR10とが結合して形成し得る環構造、及びR14~R17のうち隣接するもの同士が互いに結合して形成し得る環構造としては、例えば、ベンゼン環、ナフタレン環等の芳香族環であってもよいし、共役系が切れている環であってもよい。このような環構造を形成したものとしては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017
 前記の通り、R21~R30のうちのいずれか1つは、L1又はCzとの直接結合を示す。より詳細には、L1が直接結合を示す場合には、R21~R30のうちのいずれか1つはCzとの直接結合を示し、L1が直接結合以外を示す場合には、R21~R30のうちのいずれか1つはL1との直接結合を示す。なお、「直接結合」は、他の文言では、一般的には「単結合」と言われることもある。
 また、R1~R17、R31及びR32のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。より詳細には、L1が直接結合を示す場合には、R1~R17、R31及びR32のうちのいずれか1つは、R21~R30のいずれか1つとの直接結合を示し、L1が直接結合以外を示す場合には、R1~R17、R31及びR32のうちのいずれか1つは、L1との直接結合を示す。但し、一般式(2)が一般式(3)の構造を有している場合には、上記「R1~R17、R31及びR32のうちのいずれか1つ」という記載は、「R1~R13、R31及びR32のうちのいずれか1つ」を意味し、一般式(2)が一般式(4)の構造を有している場合には、上記「R1~R17、R31及びR32のうちのいずれか1つ」という記載は、「R1~R9、R14~R17、R31及びR32のうちのいずれか1つ」を意味する。
 L1が示す環形成炭素数6~60の2価の芳香族炭化水素基としては、ベンゼン環、ナフタレン環、アントラセン環、ベンゾアントラセン環、フェナントレン環、ベンゾフェナントレン環、フルオレン環、ベンゾフルオレン環、ジベンゾフルオレン環、ピセン環、テトラセン環、ペンタセン環、ピレン環、クリセン環、ベンゾクリセン環、s-インダセン環、as-インダセン環、フルオランテン環、ベンゾフルオランテン環、トリフェニレン環、ベンゾトリフェニレン環、ペリレン環、コロネン環又はジベンゾアントラセン環から水素原子を2つ除いてなる2価の基が挙げられる。好ましくは環形成炭素数6~40の2価の芳香族炭化水素基であり、より好ましくは環形成炭素数6~20の2価の芳香族炭化水素基であり、より好ましくは環形成炭素数6~14の2価の芳香族炭化水素基であり、さらに好ましくは、ベンゼン環又はナフタレン環から水素原子を2つ除いてなる2価の基である。
 L1が示す環形成原子数5~60の2価の含酸素複素環基としては、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ジオキサン環、モルホリン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、ピラン環、ベンゾナフトフラン環、又はジナフトフラン環から水素原子を2つ除いてなる2価の基が挙げられる。好ましくは環形成原子数5~40の2価の含酸素複素環基、より環形成原子数5~20の2価の含酸素複素環基、より環形成原子数5~13の2価の含酸素複素環基、さらに好ましくはジベンゾフラン環から水素原子を2つ除いてなる2価の基である。
 L1が示す環形成原子数5~60の2価の含硫黄複素環基としては、ベンゾチオフェン環、ジベンゾチオフェン環、チオフェン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンゾナフトチオフェン環又はジナフトチオフェン環から水素原子を2つ除いてなる2価の基が挙げられる。好ましくは環形成原子数5~40の2価の含硫黄複素環基、より環形成原子数5~20の2価の含硫黄複素環基、より環形成原子数5~13の2価の含硫黄複素環基、さらに好ましくは、ジベンゾチオフェン環から水素原子を2つ除いてなる2価の基である。
 これらの中でも、L1としては、環形成炭素数6~60の2価の芳香族炭化水素基が好ましい。
 前記の通り、一般式(2)において、R1~R8のうちの隣接する少なくとも1組は、結合して一般式(3)又は(4)で表される環構造を形成する。この場合、より具体的には、例えば一般式(2)が下記一般式(5)~(14)で表される。Czが下記一般式(5)~(14)のいずれかで表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(5)~(14)において、R41~R139及びR150~R162は、それぞれ独立に、水素原子又は置換基を示す。R42~R51、R53~R62、R64~R73、R75~R84、R86~R95、R98~R106、R108~R117、R119~R128、R130~R139及びR151~R162のうち隣接するもの同士は互いに結合して環構造を形成してもよい。Y2~Y7は、酸素原子、硫黄原子、-CR140141-を示す。R140及びR141は、それぞれ独立に、水素原子又は置換基を示す。なお、R140及びR141としては、いずれもメチル基が好ましい。
 R41~R51のうちのいずれか1つ、R52~R62のうちのいずれか1つ、R63~R73のうちのいずれか1つ、R74~R84のうちのいずれか1つ、R85~R95のうちのいずれか1つ、R96~R106のうちのいずれか1つ、R107~R117のうちのいずれか1つ、R118~R128のうちのいずれか1つ、R129~R139のうちのいずれか1つ、及びR150~R162のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。
 R42~R51、R53~R62、R64~R73、R75~R84、R86~R95、R98~R106、R108~R117、R119~R128、R130~R139及びR151~R162のうち隣接するもの同士が互いに結合して形成し得る環構造としては、例えば、ベンゼン環、ナフタレン環等の芳香環であってもよいし、共役系が切れている環であってもよい。
 なお、R42~R51、R53~R62及びR64~R73のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、具体的には、一般式(5)においては、R42とR43、R43とR44、R44とR45、R45とR46、R46とR47、R48とR49、R49とR50、R50とR51である。一般式(6)においては、R53とR54、R54とR55、R55とR56、R56とR57、R57とR58、R58とR59、R59とR60、R60とR61、R61とR62である。一般式(7)においては、R64とR65、R65とR66、R66とR67、R67とR68、R68とR69、R69とR70、R70とR71、R71とR72、R72とR73である。
 R75~R84、R86~R95及びR98~R106のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、一般式(8)においては、R75とR76、R76とR77、R77とR78、R78とR79、R79とR80、R80とR81、R81とR82、R82とR83、R83とR84である。一般式(9)においては、R86とR87、R87とR88、R88とR89、R90とR91、R91とR92、R92とR93、R93とR94、R94とR95である。一般式(10)においては、R98とR99、R99とR100、R100とR101、R101とR102、R102とR103(但し、R101とR102、R102とR103は、両方の組み合わせが同時に環構造を形成することはない。)、R103とR104、R104とR105、R105とR106である。
 R108~R117、R119~R128、R130~R139及びR151~R162のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、一般式(11)においては、R108とR109、R109とR110、R110とR111、R111とR112、R113とR114、R114とR115、R115とR116、R116とR117である。一般式(12)においては、R119とR120、R120とR121、R121とR122、R122とR123、R123とR124、R125とR126、R126とR127、R127とR128である。一般式(13)においては、R130とR131、R132とR133、R133とR134、R134とR135、R136とR137、R137とR138、R138とR139である。一般式(14)においては、R151とR152、R152とR153、R153とR154、R154とR155、R155とR156、R156とR157、R157とR158、R159とR160、R160とR161、R161とR162である。
 一般式(1)~(14)中で規定される前記「置換基」は、いずれも、特に限定されず、従来公知の有機基であればよく、具体的には、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数7~51のアラルキル基、アミノ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のハロアルキル基、ハロゲン原子、シアノ基、ニトロ基、又は、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するスルホニル基が好ましく挙げられる。
 これらの中でも、より好ましくは、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数7~51のアラルキル基、アミノ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のハロアルキル基、ハロゲン原子、シアノ基、ニトロ基である。
 これらの中でも、さらに好ましくは、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、シアノ基である。
 前記炭素数1~50(好ましくは炭素数1~18、より好ましくは炭素数1~8)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、及びドデシル基(異性体を含む)、トリデシル基、テトラデシル基、オクタデシル基、テトラコサニル基、テトラコンタニル基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、ドデシル基(異性体を含む)、トリデシル基、テトラデシル基、及びオクタデシル基が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、及びオクチル基(異性体を含む)がより好ましい。
 前記環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、さらに好ましくは5又は6)のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基などが挙げられ、シクロペンチル基、シクロヘキシル基が好ましい。
 前記環形成炭素数6~50(好ましくは環形成炭素数6~25、より好ましくは環形成炭素数6~18)のアリール基としては、例えば、フェニル基、ナフチル基、ナフチルフェニル基、ビフェニリル基、ターフェニリル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ピセニル基、ペンタフェニル基、ペンタセニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、ベンゾフルオランテニル基、テトラセニル基、トリフェニレニル基、ベンゾトリフェニレニル基、ペリレニル基、コロニル基、ジベンゾアントリル基等が挙げられる。
 また、前記環形成炭素数6~50(好ましくは環形成炭素数6~25、より好ましくは環形成炭素数6~18)のアリーレン基としては、上記アリール基から水素原子を1つ除いてなるものが挙げられる。
 環形成原子数5~50(好ましくは5~24、より好ましくは環形成原子数5~13)のヘテロアリール基は少なくとも1個、好ましくは1~5個(より好ましくは1~3個、さらに好ましくは1~2個)のヘテロ原子、例えば、窒素原子、硫黄原子、酸素原子、リン原子を含む。該へテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、アザトリフェニレニル基、ジアザトリフェニレニル基、キサンテニル基、アザカルバゾリル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基、ベンゾフラノベンゾチオフェニル基、ベンゾチエノベンゾチオフェニル基、ジベンゾフラノナフチル基、ジベンゾチエノナフチル基、及びジナフトチエノチオフェニル基などが挙げられる。これらの中でも、ピリジル基、ピリミジニル基、トリアジニル基、ピラジニル基、キノリニル基、イソキノリニル基、キノキサリニル基及びキナゾリニル基が好ましい。
 また、上記環形成原子数5~50のヘテロアリール基の具体例としては、下記一般式で表されるいずれかの化合物から水素原子を1つ除いてなる1価の基も挙げられる。
Figure JPOXMLDOC01-appb-C000019


[式中、Aは、それぞれ独立に、CR100、又は窒素原子を表し、R100は、それぞれ独立に、水素原子又は置換基を表し、
 Yは、それぞれ独立に、単結合、C(R101)(R102)、酸素原子、硫黄原子又はN(R103)を表し、
 R101、R102及びR103は、それぞれ独立に、水素原子又は置換基を表わし、mは、それぞれ独立に、0または1を表す。]
 上記式中における置換基としては、上述のものと同様のものが挙げられる。
 前記環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有する総炭素数7~51のアラルキル基としては、上記アリール基を有するアラルキル基が挙げられる。
 前記炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50のアリール基(好ましくは6~25、より好ましくは6~18)から選ばれる置換基を有するモノ置換又はジ置換アミノ基としては、上記アルキル基及び上記アリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基が挙げられる。
 前記炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基を有するアルコキシ基としては、上記アルキル基を有するアルコキシ基が挙げられる。
 前記環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有するアリールオキシ基としては、上記アリール基を有するアリールオキシ基が挙げられる。
 炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基としては、上記アルキル基及び上記アリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基が挙げられる。
 前記炭素数1~50(好ましくは1~18、より好ましくは1~8)のハロアルキル基としては、上記アルキル基の水素原子の1以上が、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)により置換されたものが挙げられる。
 前記炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び前記環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するスルホニル基としては、上記アルキル基又は上記アリール基から選ばれる置換基を有するスルホニル基が挙げられる。
 前記炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び前記環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基としては、上記アルキル基及び上記アリール基から選ばれる置換基を有するジ置換ホスフォリル基が挙げられる。
 本発明の化合物は、特に制限されるものではないが、前記一般式(2)中のR9が、L1もしくはR21~R30のいずれか1つとの直接結合を示すものが好ましい。
 また、本発明の化合物は、a及びbがいずれも1又は2であるものが好ましく、a及びbがいずれも1であるものがより好ましい。
 以上より、本発明の化合物は、下記一般式(1-5)~(1-14)のうちのいずれかで表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 L1、R21~R30、R42~R51、R53~R62、R64~R73及びR151~R162は、前記定義の通りであり、好ましいものも同じである。
 つまり、R42~R51、R53~R62、R64~R73及びR151~R162のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、具体的には、一般式(1-5)においては、R42とR43、R43とR44、R44とR45、R45とR46、R46とR47、R48とR49、R49とR50、R50とR51である。一般式(1-6)においては、R53とR54、R54とR55、R55とR56、R56とR57、R57とR58、R58とR59、R59とR60、R60とR61、R61とR62である。一般式(1-7)においては、R64とR65、R65とR66、R66とR67、R67とR68、R68とR69、R69とR70、R70とR71、R71とR72、R72とR73である。一般式(1-14)においては、R151とR152、R152とR153、R153とR154、R154とR155、R155とR156、R156とR157、R157とR158、R159とR160、R160とR161、R161とR162である。
Figure JPOXMLDOC01-appb-C000021
 L1、R21~R30、R75~R84、R86~R95、R97~R106及びY2~Y4は、前記定義の通りであり、好ましいものも同じである。
 つまり、R75~R84、R86~R95及びR98~R106のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、一般式(1-8)においては、R75とR76、R76とR77、R77とR78、R78とR79、R79とR80、R80とR81、R81とR82、R82とR83、R83とR84である。一般式(1-9)においては、R86とR87、R87とR88、R88とR89、R90とR91、R91とR92、R92とR93、R93とR94、R94とR95である。一般式(1-10)においては、R98とR99、R99とR100、R100とR101、R101とR102、R102とR103(但し、R101とR102、R102とR103は、両方の組み合わせが同時に環構造を形成することはない。)、R103とR104、R104とR105、R105とR106である。
Figure JPOXMLDOC01-appb-C000022
 L1、R21~R30、R108~R117、R119~R128、R130~R139及びY5~Y7は、前記定義の通りであり、好ましいものも同じである。
 つまり、R108~R117、R119~R128及びR130~R139のうち隣接するもの同士は、互いに結合して環構造を形成してもよいことになるが、ここでいう隣接するもの同士とは、一般式(1-11)においては、R108とR109、R109とR110、R110とR111、R111とR112、R113とR114、R114とR115、R115とR116、R116とR117である。一般式(1-12)においては、R119とR120、R120とR121、R121とR122、R122とR123、R123とR124、R125とR126、R126とR127、R127とR128である。一般式(1-13)においては、R130とR131、R132とR133、R133とR134、R134とR135、R136とR137、R137とR138、R138とR139である。
 本発明の化合物としては、下記一般式(1’)で表される化合物や、下記一般式(1’’)で表される化合物も好ましい。なお、各基やa及びbの定義は一般式(1)中のものと同じであり、好ましいものも同じである。
Figure JPOXMLDOC01-appb-C000023


Figure JPOXMLDOC01-appb-C000024
 上記一般式(1’)で表される化合物や、上記一般式(1'')で表される化合物の中でも、下記一般式(1'-5)~(1'-14)や、下記一般式(1''-5)~(1''-14)のいずれかで表される化合物がより好ましい。
 なお、一般式(1'-5)~(1'-14)中の各基の定義は一般式(1')中のものと同じであり、好ましいものも同じである。また、一般式(1''-5)~(1''-14)中の各基の定義は一般式(1'')中のものと同じであり、好ましいものも同じである。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 本発明の化合物を有機EL素子で用いた際の駆動電圧を考慮すると、上記一般式(1)におけるのCzの縮環様式の中で、特に好ましい縮環様式は、カルバゾール骨格に対して2環以上の縮環構造が縮環されている構造である。この場合、分子のパッキング性向上による低電圧化効果が得られるため好ましい。すなわち、一般式(2)のR1~R8のうちの隣接する2組以上が一般式(4)で縮環されている、または、R1~R8のうちの隣接する1組以上が一般式(3)で縮環されていることが好ましい。更に、Czは、一般式(8)~(14)のいずれかで表される構造であることがより好ましい。
 また、一般式(5)~(14)で表される縮環カルバゾール骨格は、発光効率の観点でカルバゾール骨格のN位でフルオランテン含有基が直接またはL1を介して置換されていることが好ましい。
 また、本発明の化合物としては、R21~R30が、L1又はCzとの直接結合を示すもの以外がいずれも水素原子であるものが好ましい。
 以下に本発明の化合物の具体例を示すが、特にこれらに制限されるものではない。また、以下の具体例は、好ましい化合物であるといえる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 本発明の化合物は、有機EL素子用材料として有用である。また、本発明の化合物は、1種を単独で有機EL素子用材料として使用してもよいし、2種以上を併用してもよい。さらに、本発明の化合物を公知の有機EL素子用材料と混合して用いてもよく、つまり、本発明は、本発明の化合物を含有する有機EL素子用材料をも提供する。該有機EL素子用材料における本発明の化合物の含有量は、特に制限されないが、1質量%以上であればよく、好ましくは10質量%以上、より好ましくは50質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
[有機エレクトロルミネッセンス素子]
 次に、本発明の有機EL素子の実施の形態について説明する。
 本発明の有機EL素子は、陰極と陽極の間に発光層を含む複数の有機薄膜層を有し、該有機薄膜層のうちの少なくとも1層が、本発明の化合物(以下、本発明の有機EL素子用材料と称することがある。)を含むことにより、有機EL素子を高効率化及び長寿命化できる。
 本発明の有機EL素子用材料が含まれる有機薄膜層の例としては、有機EL素子の陽極と発光層との間に設けられる陽極側有機薄膜層(すなわち正孔輸送層)や、有機EL素子の陰極と発光層との間に設けられる陰極側有機薄膜層(すなわち電子輸送層)、さらには、発光層、スペース層及び障壁層等が挙げられる。
 特に限定されるものではないが、本発明の有機EL素子用材料は発光層に含まれることが好ましく、特に、発光層のホスト材料として用いられることが好ましい。また、該発光層は、蛍光発光材料や燐光発光材料を含有することが好ましく、特に燐光発光材料を含有することが好ましい。さらに、本発明の有機EL素子用材料は、障壁層としても好適に用いられる。
 本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であってもよいし、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であってもよいし、複数の発光ユニットを有するタンデム型であってもよい。中でも、燐光発光型であることが好ましい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐために、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)正孔輸送層/電子障壁層/発光層(/電子輸送層)
(h)正孔輸送層/発光層/正孔障壁層(/電子輸送層)
(i)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、寿命を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1に、本発明の有機EL素子の一例の概略構成を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された有機薄膜層10とを有する。該有機薄膜層10は、燐光ホスト材料と燐光ドーパント(燐光発光材料)とを含む少なくとも1つの燐光発光層を含む発光層5を有する。発光層5と陽極3との間に正孔注入・輸送層(陽極側有機薄膜層)6等、発光層5と陰極4との間に電子注入・輸送層(陰極側有機薄膜層)7等を形成してもよい。また、発光層5の陽極3側に電子障壁層を、発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率を高めることができる。
 なお、本明細書において、蛍光ドーパントと組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 ここで、上記発光層は、例えば、電子輸送性のホストと正孔輸送性のホストを組み合わせるなどして、発光層内のキャリアバランスを調整するダブルホスト(ホスト・コホストともいう)を採用してもよく、発光層が第1ホスト材料と第2ホスト材料とを含有し、前記第1ホスト材料が本発明の有機EL素子用材料であると好ましい。
 また、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパントが発光するダブルドーパントを採用してもよい。具体的には、ホスト、赤色ドーパント及び緑色ドーパントを共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
 発光層は、例えば蒸着法、スピンコート法、LB法(Langmuir Blodgett法)等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 ドーパント材料としては、公知の蛍光型発光を示す蛍光ドーパント又は燐光型発光を示す燐光ドーパントから選ばれる。
 蛍光ドーパントとしては、フルオランテン誘導体、ピレン誘導体、アリールアセチレン誘導体、フルオレン誘導体、硼素錯体、ペリレン誘導体、オキサジアゾール誘導体、アントラセン誘導体、クリセン誘導体等から選ばれる。好ましくは、フルオランテン誘導体、ピレン誘導体、硼素錯体が挙げられる。
 発光層を形成する燐光ドーパント(燐光発光材料)は三重項励状態から発光することのできる化合物であり、三重項励状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。
 燐光ドーパントとして好ましい有機金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。本発明の有機EL素子用材料は燐光ホストとして好適である。発光層は、本発明の有機EL素子用材料を1種含有していてもよく、本発明の有機EL素子用材料を2種以上含有していてもよい。
 本発明の有機EL素子用材料を発光層のホスト材料として用いる場合、発光層に含まれる燐光ドーパント材料の発光波長は特に限定されない。なかでも、発光層に含まれる前記燐光ドーパント材料のうち少なくとも1種は、発光波長のピークが490nm以上700nm以下であることが好ましく、490nm以上650nm以下であることがより好ましい。発光層の発光色としては、例えば、赤色、黄色、緑色が好ましい。ホスト材料として本発明の化合物を用い、このような発光波長の燐光ドーパント材料をドープして発光層を構成することにより、長寿命な有機EL素子とすることができる。
 本発明の有機EL素子において、本発明の有機EL素子用材料以外の化合物も、燐光ホストとして、上記目的に応じて適宜選択することができる。
 本発明の有機EL素子用材料とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料を用い、別の一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。また、本発明の有機EL素子用材料は発光層以外の有機層にも使用しうるものであり、その場合には発光層の燐光ホストとして、本発明の有機EL素子用材料以外の化合物を用いてもよい。
 本発明の有機EL素子用材料以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用しても良いし、2種以上を併用しても良い。具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000084
 発光層が、第1ホスト材料と第2ホスト材料とを含有する場合、第1ホスト材料として本発明の有機EL素子用材料を用い、第2ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。なお、本発明における「第1ホスト材料」及び「第2ホスト材料」という用語は、発光層に含有されている複数のホスト材料が、互いに構造が異なるという意味であり、発光層中の各ホスト材料の含有量で規定されるものではない。
 前記第2ホスト材料としては、特に限定されず、本発明の有機EL素子用材料以外の化合物であり、且つ燐光ホストとして好適な化合物として前記した化合物と同じものが挙げられる。第2ホスト材料としては、シアノ基を有さない化合物が好ましい。また、第2ホストとしては、カルバゾール誘導体、アリールアミン誘導体、フルオレノン誘導体、芳香族第三アミン化合物が好ましい。
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。
(電子供与性ドーパント)
 本発明の有機EL素子は、陰極と発光ユニットとの界面領域に電子供与性ドーパントを有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。ここで、電子供与性ドーパントとは、仕事関数3.8eV以下の金属を含有するものをいい、その具体例としては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 アルカリ金属化合物としては、Li2O、Cs2O、K2O等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、Li2O、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaxSr1-xO(0<x<1)、BaxCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF3、ScF3、ScO3、Y23、Ce23、GdF3、TbF3等が挙げられ、YbF3、ScF3、TbF3が好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 電子供与性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパントを蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパントを分散する方法が好ましい。分散濃度はモル比で有機化合物:電子供与性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 電子供与性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 本発明の有機EL素子における、主成分と電子供与性ドーパントの割合は、モル比で主成分:電子供与性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。 
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000085
 式(A)におけるR202~R207は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、炭素数1~40の炭化水素基、炭素数1~40のアルコキシ基、炭素数6~50のアリールオキシ基、アルコキシカルボニル基、又は、環形成原子数5~50の芳香族複素環基であり、これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルキルアミノ基及びアラルキルアミノ基は-NQ12と表される。Q1及びQ2は、それぞれ独立に、炭素数1~20のアルキル基又は炭素数1~20のアラルキル基を表す。Q1及びQ2の一方は水素原子又は重水素原子であってもよい。
 アリールアミノ基は-NAr101Ar102と表され、Ar101及びAr102は、それぞれ独立に、炭素数6~50の非縮合芳香族炭化水素基又は縮合芳香族炭化水素基を表す。Ar101及びAr102の一方は水素原子又は重水素原子であってもよい。
 炭素数1~40の炭化水素基はアルキル基、アルケニル基、シクロアルキル基、アリール基、及びアラルキル基を含む。
 アルコキシカルボニル基は-COOY’と表され、Y’は炭素数1~20のアルキル基を表す。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 Lは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000086
 式(A’)中、R208~R212は、それぞれ独立に、水素原子、重水素原子、又は置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、前記式(A”)中、R213~R227は、それぞれ独立に、水素原子、重水素原子又は置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。
 式(A’)及び式(A”)のR208~R212及びR213~R227が示す炭素数1~40の炭化水素基は、前記式(A)中のR202~R207が示す炭化水素基と同様である。また、R208~R212及びR213~R227の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000087
 前記式中、Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換もしくは無置換の炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar17とAr18、Ar19とAr21、Ar22とAr25は、たがいに同一でも異なっていてもよい。芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換もしくは無置換の炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、たがいに同一でも異なっていてもよい。2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000088
 電子伝達性化合物としての含窒素複素環誘導体は、以下の式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B)に示す骨格を含有する5員環もしくは6員環や、下記式(C)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000089
 前記式(C)中、Xは炭素原子もしくは窒素原子を表す。Z1ならびにZ2は、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B)と(C)もしくは上記式(B)と下記式(D)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000090
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000091
 前記各式中、Rは、炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基、環形成原子炭素数5~40(好ましくは5~20、より好ましくは5~12)の芳香族複素環基又は縮合芳香族複素環基、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、又は炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基であり、nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式(D1)で表される含窒素複素環誘導体が挙げられる。
    HAr-L11-Ar1-Ar2   (D1)
 前記式(D1)中、HArは、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の含窒素複素環基であり、L11は単結合、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の環形成原子数5~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar1は置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の2価の芳香族炭化水素基であり、Ar2は置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は縮合芳香族複素環基である。
 HArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000092
 前記式(D1)におけるL11は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000093
 前記式(D1)におけるAr1は、例えば、下記式(D2)又は下記式(D3)で表されるアントラセンジイル基から選択される。
Figure JPOXMLDOC01-appb-C000094
 前記式(D2)、式(D3)中、R301~R314は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基、環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリールオキシ基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar3は、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は縮合芳香族複素環基である。また、R301~R308は、いずれも水素原子である含窒素複素環誘導体であってもよい。
 前記式(D1)におけるAr2は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000095
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000096
 前記式(D4)中、R321~R324は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20の脂肪族基、置換もしくは無置換の環形成炭素数3~20(好ましくは3~10、より好ましくは5~8)の脂肪族式環基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族環基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の複素環基を表し、X1及びX2は、それぞれ独立に、酸素原子、硫黄原子、又はジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000097
 前記式(D5)中、R331~R334は互いに同一の又は異なる基であって、下記式(D6)で表される芳香族炭化水素基又は縮合芳香族炭化水素基である。
Figure JPOXMLDOC01-appb-C000098
 前記式(D6)中、R335~R339は互いに同一又は異なる基であって、水素原子、重水素原子、飽和もしくは不飽和の炭素数1~20のアルコキシル基、飽和もしくは不飽和の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、アミノ基、又は炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキルアミノ基である。R335~R339の少なくとも1つは水素原子、重水素原子以外の基である。
 さらに、電子伝達性化合物は、該含窒素複素環基又は含窒素複素環誘導体を含む高分子化合物であってもよい。
 本発明の一態様である有機EL素子では、電子輸送層が下記式(E)~(G)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000099
 式(E)~式(G)中、Z11、Z12及びZ13は、それぞれ独立に、窒素原子又は炭素原子である。
 Ra及びRbは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリール基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のハロアルキル基又は置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基である。特に、Rbとしては、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基が好ましく、メチル基、エチル基がより好ましい。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のRaは互いに同一でも異なっていてもよい。また、隣接する2つのRa同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Ar11は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 Ar12は、水素原子、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のハロアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~6)のアルコキシ基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリール基である。Ar12としては、好ましくは置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基、より好ましくはフェニル基である。
 但し、Ar11、Ar12のいずれか一方は、置換もしくは無置換の環形成炭素数10~50(好ましくは10~30、より好ましくは10~20、さらに好ましくは10~14)の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20、さらに好ましくは9~14)の縮合芳香族複素環基である。該縮合芳香族炭化水素環基の縮合芳香族炭化水素環としては、好ましくはアントラセン環である。
 Ar13は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~14)のアリーレン基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~14)のヘテロアリーレン基である。
 L21、L22及びL23は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20、さらに好ましくは9~14)の2価の縮合芳香族複素環基である。L21、L22及びL23としては、いずれも、好ましくは置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基であり、フェニレン基がより好ましい。
 環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、フルオランテニル基、フルオレニル基などが挙げられる。
 環形成原子数5~50のヘテロアリール基としては、ピロリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、べンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾリル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノキサリニル基、アクリジニル基、イミダゾ[1,2-a]ピリジニル基、イミダゾ[1,2-a]ピリミジニル基などが挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基などが挙げられる。
 炭素数1~20のハロアルキル基としては、前記アルキル基の1又は2以上の水素原子をフッ素、塩素、ヨウ素及び臭素から選ばれる少なくとも1のハロゲン原子で置換して得られる基が挙げられる。
 炭素数1~20のアルコキシ基としては、前記アルキル基をアルキル部位としては有する基が挙げられる。
 環形成炭素数6~50のアリーレン基としては、前記アリール基から水素原子1個を除去して得られる基が挙げられる。
 環形成原子数9~50の2価の縮合芳香族複素環基としては、前記ヘテロアリール基として記載した縮合芳香族複素環基から水素原子1個を除去して得られる基が挙げられる。
 式(E)~式(G)の中でも、式(G)が好ましい。
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の1種単独又は2種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の電子供与性ドーパントを含有していても好ましい。
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000100
 前記式(H)において、Ar31~Ar34は置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
 また、前記式(H)において、Lは置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(H)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000101
また、下記式(J)の芳香族アミンも正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000102
 前記式(J)において、Ar41~Ar43の定義は前記式(H)のAr31~Ar34の定義と同じであり、好ましい基も同じである。以下に式(J)で表される化合物の具体例を記すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000103
 本発明の有機EL素子の正孔輸送層は、第1正孔輸送層(陽極側)と第2正孔輸送層(発光層側)の2層構造も好ましい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
 本発明の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式(K)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000104
[前記式(K)中、R401~R406は、それぞれ独立に、シアノ基、-CONH2、カルボキシル基、もしくは-COOR407(R407は、炭素数1~20のアルキル基である。)を表すか、又は、R401及びR402、R403及びR404、もしくはR405及びR406は、互いに結合して-CO-O-CO-で示される基を表す。]
 R407のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
(n/pドーピング)
 上述の正孔輸送層や電子輸送層においては、特許第3695714号明細書に記載されているように、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCs等の金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料に2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)等のアクセプター材料をドーピングする方法が挙げられる。
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(障壁層)
 本発明の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをET d、トリプレット障壁層として用いる化合物の三重項エネルギーをET TBとすると、ET d<ET TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、ET d<ET TBの関係が成り立つ場合であってもこのエネルギー差ΔET=ET TB-ET dが小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔETを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔETは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。一方、蛍光素子においては、国際公開WO2010/134350A1に記載するTTF素子構成のトリプレット障壁層として、本発明の有機EL素子用材料を用いることもできる。
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
 本発明の化合物を用いて得られる有機EL素子は、発光効率及び寿命がさらに改善されている。中には、低電圧駆動が達成されるものもある。このため、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置、などの電子機器に使用できる。
 次に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容になんら制限されるものではない。
実施例1
Figure JPOXMLDOC01-appb-C000105


 アルゴン雰囲気下、原料化合物(A)2.17g、既知の方法で合成した3-ブロモフルオランテン3.10g、トリスジベンジリデンアセトンジパラジウム(0)0.18g、トリ-t-ブチルホスフィンテトラフルオロハイドロボレート0.23g、ナトリウム-t-ブトキシド1.30g、脱水キシレン100mLをフラスコに仕込み、8時間加熱還流撹拌した。
 室温まで冷却した後、反応溶液をトルエンで抽出し、セライトろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィで精製し、黄色個体2.71gを得た。このものは、マススペクトル分析の結果、分子量417.15に対し、m/e=417であり、目的化合物(化合物1)であった。
実施例2
Figure JPOXMLDOC01-appb-C000106

 実施例1において、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(4-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物2)であった。
実施例3
Figure JPOXMLDOC01-appb-C000107


 実施例1において、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物3)であった。
実施例4
Figure JPOXMLDOC01-appb-C000108


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(B)を用いて同様の方法で合成した。このものは、マススペクトル分析の結果、目的物(化合物4)であり、分子量417.15に対し、m/e=417であった。
実施例5
Figure JPOXMLDOC01-appb-C000109


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(B)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(4-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物5)であった。
実施例6
Figure JPOXMLDOC01-appb-C000110


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(B)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物6)であった。
実施例7
Figure JPOXMLDOC01-appb-C000111


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(C)を用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量417.15に対し、m/e=417であり、目的化合物(化合物7)であった。
実施例8
Figure JPOXMLDOC01-appb-C000112


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(C)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(4-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物8)であった。
実施例9
Figure JPOXMLDOC01-appb-C000113


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(C)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物9)であった。
実施例10
Figure JPOXMLDOC01-appb-C000114


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(D)を用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量483.20に対し、m/e=483であり、目的化合物(化合物10)であった。
実施例11
Figure JPOXMLDOC01-appb-C000115


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(D)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(4-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量559.23に対し、m/e=559であり、目的化合物(化合物11)であった。
実施例12
Figure JPOXMLDOC01-appb-C000116


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(D)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量559.23に対し、m/e=559であり、目的化合物(化合物12)であった。
実施例13
Figure JPOXMLDOC01-appb-C000117


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(E)を用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量457.15に対し、m/e=457であり、目的化合物(化合物13)であった。
実施例14
Figure JPOXMLDOC01-appb-C000118


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(E)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(4-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量559.23に対し、m/e=559であり、目的化合物(化合物14)であった。
実施例15
Figure JPOXMLDOC01-appb-C000119


 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(E)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量559.23に対し、m/e=559であり、目的化合物(化合物15)であった。
実施例16
Figure JPOXMLDOC01-appb-C000120
 実施例1において、原料化合物(A)の代わりに既知の方法で合成した原料化合物(F)を用い、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量543.20に対し、m/e=543であり、目的化合物(化合物16)であった。
実施例17
Figure JPOXMLDOC01-appb-C000121
 アルゴン雰囲気下、3-フルオランテンボロン酸2.95g、既知の方法で合成した10-ブロモ-7-フェニルベンゾ[c]カルバゾール3.72g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.231g、1,2-ジメトキシエタン20mL、トルエン20mL、及び2M炭酸ナトリウム水溶液20mLをフラスコに仕込み、8時間加熱還流攪拌した。
 室温まで冷却後、反応溶液をトルエンを用いて抽出し、水層を除去した後、有機層を飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、濃縮し、残渣をシリカゲルカラムクロマトグラフィで精製し3.2gの黄色個体を得た。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物17)であった。
実施例18
Figure JPOXMLDOC01-appb-C000122
 実施例17において、10-ブロモ-7-フェニルベンゾ[c]カルバゾールの代わりに8-ブロモ-11-フェニルベンゾ[a]カルバゾールを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量493.18に対し、m/e=493であり、目的化合物(化合物18)であった。
実施例19
Figure JPOXMLDOC01-appb-C000123
 実施例17において、10-ブロモ-7-フェニルベンゾ[c]カルバゾールの代わりに12-ブロモ-9-フェニルジベンゾ[a,c]カルバゾールを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量543.20に対し、m/e=543であり、目的化合物(化合物19)であった。
実施例20
Figure JPOXMLDOC01-appb-C000124
 実施例1において、3-ブロモフルオランテンの代わりに既知の方法で合成した3-(3-ブロモフェニル)フルオランテンを用い、中間体(A)の代わりに既知の方法で合成した中間体(G)を用いて同様の方法で合成した。このものは、マススペクトル分析の結果、分子量599.17に対し、m/e=599であり、目的化合物(化合物20)であった。
 以上の合成反応を参照し、必要に応じて公知の反応や原料を利用することによって、特許請求の範囲に含まれる化合物を合成することが可能である。
[有機EL素子の作製及び発光性能評価]
実施例21~35及び比較例1
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記化合物HT-1を蒸着し、膜厚45nmの第1正孔輸送層(陽極側有機薄膜層)を成膜した。第1正孔輸送層の成膜に続けて、下記化合物HT-2を蒸着し、膜厚10nmの第2正孔輸送層(陽極側有機薄膜層)を成膜した。
 さらに、この第2正孔輸送層上に、ホスト材料として表1に示した化合物と、燐光発光材料として下記化合物RD-1とを共蒸着し、膜厚40nmの燐光発光層を成膜した。発光層内における化合物RD-1の濃度は5.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物ET-1を膜厚40nmで成膜した。この化合物ET-1膜は、電子輸送層(陰極側有機薄膜層)として機能する。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストローム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
 以下に、実施例及び比較例で使用した化合物の構造を示す。
Figure JPOXMLDOC01-appb-C000125
(有機EL素子の評価)
 各例で得られた有機EL素子について、電流密度50mA/cm2における駆動時の素子寿命(低電流駆動で、輝度が初期輝度の90%まで低下するまでの時間)を輝度計(ミノルタ社製の分光輝度放射計「CS-1000」)を用いて測定した。さらに、室温及びDC定電流駆動(電流密度10mA/cm2)での発光効率を、輝度計(ミノルタ社製の分光輝度放射計「CS-1000」)を用いて測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000126
 表1より、化合物1~15を発光層に含有する有機EL素子では、フルオランテン環とベンゾカルバゾールとが含窒素複素環誘導体を介して結合した比較化合物1(国際公開第2012/030145号に開示された化合物)を発光層に含有する有機EL素子に比べ、発光効率が改善され、且つ素子寿命も大幅に改善されていることが分かる。
[有機EL素子の作製及び発光性能評価]
実施例36~39
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記化合物K-1を蒸着し、膜厚10nmのアクセプター層を成膜した。アクセプター層の成膜に続けて、下記化合物HT-3及びHT-4をこの順に蒸着し、膜厚20nmの第1正孔輸送層及び膜厚10nmの第2正孔輸送層(いずれも陽極側有機薄膜層)を成膜した。
 さらに、この第2正孔輸送層上に、ホスト材料として表2に示した化合物と、燐光発光材料として下記化合物RD-1とを共蒸着し、膜厚40nmの燐光発光層を成膜した。発光層内における化合物RD-1の濃度は5.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物ET-2を膜厚45nmで成膜し、電子輸送層(陰極側有機薄膜層)を形成した。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストローム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
 以下に、実施例で使用した化合物の構造を示す。
Figure JPOXMLDOC01-appb-C000127
(有機EL素子の評価)
 各例で得られた有機EL素子について、製造した有機EL素子について、電流密度が10mA/cm2となるように電圧を印加し、外部量子効率(EQE)の評価を行った。また、電流密度50mA/cm2において駆動した際に輝度が初期輝度の80%となるまでの時間(LT80)を輝度計(ミノルタ社製の分光輝度放射計「CS-1000」)を用いて測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000128
 表2より、化合物3、13、14又は16を発光層に含有する有機EL素子は、外部量子効率(EQE)が高く、且つ素子寿命も大幅に改善されていることが分かる。
 また、実施例36~39の有機EL素子の10mA/cm2における駆動電圧を以下に示す。カルバゾールに1環が縮環された化合物である化合物3よりも、2環以上が縮環された縮環構造を持つ化合物13、14及び16の方が、低電圧駆動の効果が一層強く、有機EL素子の消費電力の低減により一層大きく貢献できることがわかる。
Figure JPOXMLDOC01-appb-T000129
[有機EL素子の作製及び発光性能評価]
実施例40~42及び比較例2
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記化合物K-1を蒸着し、膜厚10nmのアクセプター層を成膜した。アクセプター層の成膜に続けて、下記化合物HT-3及びHT-5をこの順に蒸着し、膜厚20nmの第1正孔輸送層及び膜厚10nmの第2正孔輸送層(いずれも陽極側有機薄膜層)を成膜した。
 さらに、この第2正孔輸送層上に、ホスト材料として表4に示した化合物と、燐光発光材料として下記化合物RD-1とを共蒸着し、膜厚40nmの燐光発光層を成膜した。発光層内における化合物RD-1の濃度は5.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物ET-3を膜厚45nmで成膜し、電子輸送層(陰極側有機薄膜層)を形成した。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストローム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
 以下に、実施例及び比較例で使用した化合物の構造を示す。
Figure JPOXMLDOC01-appb-C000130
(有機EL素子の評価)
 各例で得られた有機EL素子について、製造した有機EL素子について、電流密度10mA/cm2における駆動電圧(V)を求め、外部量子効率(EQE)の評価を行った。また、電流密度50mA/cm2において駆動した際に輝度が初期輝度の80%となるまでの時間(LT80)を輝度計(ミノルタ社製の分光輝度放射計「CS-200」)を用いて測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000131
 表4より、化合物15、16及び21のいずれかを発光層に含有する有機EL素子は、低電圧駆動が可能であり、外部量子効率(EQE)が高く、且つ素子寿命も改善されていることが分かる。特に、化合物15又は16を発光層に含有する有機EL素子(実施例40及び41)はその効果が顕著となった。
  1 有機エレクトロルミネッセンス素子
  3 陽極
  4 陰極
  5 発光層
  6 陽極側有機薄膜層
  7 陰極側有機薄膜層
 10 有機薄膜層

Claims (20)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、R21~R30は、それぞれ独立に、水素原子又は置換基を示す。但し、R21~R30のうちのいずれか1つは、L1又はCzとの直接結合を示す。L1は直接結合、置換もしくは無置換の環形成炭素数6~60の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~60の2価の含酸素複素環基又は置換もしくは無置換の環形成原子数5~60の2価の含硫黄複素環基を示す。Czは、下記一般式(2)で表される構造を示す。a及びbは、それぞれ独立に、1~3の整数を示す。但し、a及びbの少なくとも一方が2又は3の場合、L1は直接結合ではない。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R1~R9は、それぞれ独立に、水素原子又は置換基を示す。R1~R8のうち隣接するもの同士は、互いに結合して環構造を形成してもよい。但し、R1~R8のうちの隣接する少なくとも1組は、結合して下記一般式(3)又は(4)で表される環構造を形成する。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)及び(4)において、R10~R17は、それぞれ独立に、水素原子又は置換基を示す。Y1は酸素原子、硫黄原子、-CR3132-(R31及びR32は、それぞれ独立に、水素原子又は置換基を示す。)を示す。R10~R13のうち隣接するもの同士は互いに結合して環構造を形成してもよく、Y1とR10とは互いに結合して環構造を形成してもよく、R14~R17のうち隣接するもの同士は互いに結合して環構造を形成してもよい。
     但し、R1~R17、R31及びR32のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。)]
  2.  Czが下記一般式(5)~(14)のいずれかで表される構造である、請求項1記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(5)~(14)において、R41~R139及びR150~R162は、それぞれ独立に、水素原子又は置換基を示す。R42~R51、R53~R62、R64~R73、R75~R84、R86~R95、R98~R106、R108~R117、R119~R128、R130~R139及びR151~R162のうち隣接するもの同士は互いに結合して環構造を形成してもよい。Y2~Y7は、酸素原子、硫黄原子、-CR140141-を示す。R140及びR141は、それぞれ独立に、水素原子又は置換基を示す。
     R41~R51のうちのいずれか1つ、R52~R62のうちのいずれか1つ、R63~R73のうちのいずれか1つ、R74~R84のうちのいずれか1つ、R85~R95のうちのいずれか1つ、R96~R106のうちのいずれか1つ、R107~R117のうちのいずれか1つ、R118~R128のうちのいずれか1つ、及びR129~R139のうちのいずれか1つは、L1もしくはR21~R30のいずれか1つとの直接結合を示す。)
  3.  一般式(2)において、R9が、L1もしくはR21~R30のいずれか1つとの直接結合を示す、請求項1に記載の化合物。
  4.  a及びbがいずれも1である、請求項1~3のいずれかに記載の化合物。
  5.  下記一般式(1-5)~(1-7)及び(1-14)のうちのいずれかで表される、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (L1及びR21~R30は、前記定義の通りである。R42~R51、R53~R62及びR64~R73は、それぞれ独立に、水素原子又は置換基を示す。R42~R51、R53~R62、R64~R73及びR151~R162のうち隣接するもの同士は、互いに結合して環構造を形成してもよい。)
  6.  下記一般式(1-8)~(1-10)のいずれかで表される、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006

    (L1及びR21~R30は、前記定義の通りである。R75~R84、R86~R95及びR97~R106は、それぞれ独立に、水素原子又は置換基を示す。R75~R84、R86~R95及びR98~R106のうち隣接するもの同士は、互いに結合して環構造を形成してもよい。Y2~Y4は、酸素原子、硫黄原子、-CR140141-(R140及びR141は、それぞれ独立に、水素原子又は置換基を示す。)を示す。)
  7.  下記一般式(1-11)~(1-13)のいずれかで表される、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (L1及びR21~R30は、前記定義の通りである。R108~R117、R119~R128及びR130~R139は、それぞれ独立に、水素原子又は置換基を示す。R108~R117、R119~R128及びR130~R139のうち隣接するもの同士は、互いに結合して環構造を形成してもよい。Y5~Y7は、酸素原子、硫黄原子、-CR140141-(R140及びR141は、それぞれ独立に、水素原子又は置換基を示す。)を示す。)
  8.  下記一般式(1’)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(1’)において、R21、R22、R24~R30、L1、Cz、a及びbは、前記定義の通りである。)
  9.  下記一般式(1’’)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(1’’)において、R21~R28、R30、L1、Cz、a及びbは、前記定義の通りである。)
  10.  前記置換基が、いずれも、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数7~51のアラルキル基、アミノ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のハロアルキル基、ハロゲン原子、シアノ基、ニトロ基、又は、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するスルホニル基である、請求項1~9のいずれかに記載の化合物。
  11.  前記置換基が、いずれも、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基及び置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、ハロゲン原子、又は、シアノ基である、請求項10に記載の化合物。
  12.  R21~R30が、L1又はCzとの直接結合を示すもの以外はいずれも水素原子である、請求項1~9のいずれかに記載の化合物。
  13.  請求項1~12のいずれかに記載の化合物を含有する、有機エレクトロルミネッセンス素子用材料。
  14.  陰極と陽極との間に発光層を含む複数の有機薄膜層を有し、前記有機薄膜層のうち少なくとも1層が請求項1~12のいずれかに記載の化合物を含む、有機エレクトロルミネッセンス素子。
  15.  前記発光層が、請求項1~12のいずれかに記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。
  16.  前記発光層が燐光発光材料を含有する、請求項14又は15に記載の有機エレクトロルミネッセンス素子。
  17.  前記燐光材料がイリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である、請求項16に記載の有機エレクトロルミネッセンス素子。
  18.  陰極と発光層との間に陰極側有機薄膜層を有し、該陰極側有機薄膜層が請求項1~12のいずれかに記載の化合物を含む、請求項14~17のいずれかに記載の有機エレクトロルミネッセンス素子。
  19.  陽極と発光層との間に陽極側有機薄膜層を有し、該陽極側有機薄膜層が請求項1~12のいずれかに記載の化合物を含む、請求項14~18のいずれかに記載の有機エレクトロルミネッセンス素子。
  20.  請求項14~19のいずれかに記載の有機エレクトロルミネッセンス素子を備えた電子機器。
PCT/JP2014/062116 2013-05-02 2014-05-01 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 WO2014178434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/761,767 US20150364692A1 (en) 2013-05-02 2014-05-01 Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP2015514877A JP6232419B2 (ja) 2013-05-02 2014-05-01 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN201480005677.2A CN104918915A (zh) 2013-05-02 2014-05-01 化合物、有机电致发光元件用材料、有机电致发光元件及电子设备
KR1020157019637A KR20160002675A (ko) 2013-05-02 2014-05-01 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-096851 2013-05-02
JP2013096851 2013-05-02
JP2013-269997 2013-12-26
JP2013269997 2013-12-26

Publications (1)

Publication Number Publication Date
WO2014178434A1 true WO2014178434A1 (ja) 2014-11-06

Family

ID=51843558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062116 WO2014178434A1 (ja) 2013-05-02 2014-05-01 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Country Status (5)

Country Link
US (1) US20150364692A1 (ja)
JP (1) JP6232419B2 (ja)
KR (1) KR20160002675A (ja)
CN (1) CN104918915A (ja)
WO (1) WO2014178434A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419226B2 (en) 2013-03-27 2016-08-16 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2016204151A1 (ja) * 2015-06-16 2016-12-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US9837615B2 (en) 2013-06-04 2017-12-05 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using same, and organic electroluminescence element and electronic device using same
EP2924020B1 (en) * 2012-11-21 2019-01-16 LG Chem, Ltd. Fluoranthene compound, and organic electronic device comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129896A1 (ja) 2014-02-28 2015-09-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US10464895B2 (en) * 2015-10-06 2019-11-05 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence elements, organic electroluminescence element, and electronic device
CN109553620A (zh) * 2017-09-25 2019-04-02 北京鼎材科技有限公司 通式化合物及有机电致发光器件
EP3498700A1 (en) * 2017-12-15 2019-06-19 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using the same, and organic electroluminescence element and electronic device using the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238534A (ja) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd 新規アントラセン化合物およびそれを用いた有機エレクトロルミネッセンス素子
US20080122344A1 (en) * 2006-11-24 2008-05-29 Samsung Electronics Co., Ltd. Organic light emitting compound and organic light emitting device comprising the same, and method of manufacturing the organic light emitting device
US20080124455A1 (en) * 2006-11-24 2008-05-29 Samsung Electronics Co., Ltd. Organic light emitting compound, organic light emitting device comprising the same, and method of manufacturing the organic light emitting device
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120065214A (ko) * 2010-12-10 2012-06-20 (주)씨에스엘쏠라 치환된 카발졸계 유기 광화합물 및 이를 이용한 유기 광소자
JP2012140365A (ja) * 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
KR20120120886A (ko) * 2011-04-25 2012-11-02 (주)씨에스엘쏠라 유기발광 화합물 및 이를 이용한 유기 광소자
WO2012165844A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20130029131A (ko) * 2011-05-19 2013-03-22 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
CN103187531A (zh) * 2011-12-30 2013-07-03 昆山维信诺显示技术有限公司 有机电致发光器件及双极性有机化合物的用途
CN103524399A (zh) * 2013-10-21 2014-01-22 北京绿人科技有限责任公司 一种有机化合物及其使用该有机化合物的电致发光器件
WO2014038867A1 (en) * 2012-09-07 2014-03-13 Rohm And Haas Electronic Materials Korea Ltd. A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
WO2014061961A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2014061963A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2014081168A1 (ko) * 2012-11-21 2014-05-30 주식회사 엘지화학 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120020818A (ko) 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
TWI591154B (zh) 2011-02-07 2017-07-11 Idemitsu Kosan Co Biscarbazole derivatives and organic electroluminescent devices using the same
WO2014012812A1 (en) * 2012-07-16 2014-01-23 Basf Se Pigment dispersions, their preparation, and dispersants
CN104768928B (zh) * 2013-03-27 2018-06-08 出光兴产株式会社 稠合荧蒽化合物、使用了其的有机电致发光元件用材料、以及使用了其的有机电致发光元件和电子设备
US9887367B2 (en) * 2013-03-29 2018-02-06 Idemitsu Kosan Co., Ltd. Heterocyclic compound, material for organic electroluminescent elements using same, organic electroluminescent element using same, and electronic device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238534A (ja) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd 新規アントラセン化合物およびそれを用いた有機エレクトロルミネッセンス素子
US20080122344A1 (en) * 2006-11-24 2008-05-29 Samsung Electronics Co., Ltd. Organic light emitting compound and organic light emitting device comprising the same, and method of manufacturing the organic light emitting device
US20080124455A1 (en) * 2006-11-24 2008-05-29 Samsung Electronics Co., Ltd. Organic light emitting compound, organic light emitting device comprising the same, and method of manufacturing the organic light emitting device
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120065214A (ko) * 2010-12-10 2012-06-20 (주)씨에스엘쏠라 치환된 카발졸계 유기 광화합물 및 이를 이용한 유기 광소자
JP2012140365A (ja) * 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
KR20120120886A (ko) * 2011-04-25 2012-11-02 (주)씨에스엘쏠라 유기발광 화합물 및 이를 이용한 유기 광소자
KR20130029131A (ko) * 2011-05-19 2013-03-22 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
WO2012165844A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013032278A1 (en) * 2011-09-01 2013-03-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN103187531A (zh) * 2011-12-30 2013-07-03 昆山维信诺显示技术有限公司 有机电致发光器件及双极性有机化合物的用途
WO2014038867A1 (en) * 2012-09-07 2014-03-13 Rohm And Haas Electronic Materials Korea Ltd. A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
WO2014061961A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2014061963A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2014081168A1 (ko) * 2012-11-21 2014-05-30 주식회사 엘지화학 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
CN103524399A (zh) * 2013-10-21 2014-01-22 北京绿人科技有限责任公司 一种有机化合物及其使用该有机化合物的电致发光器件

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924020B1 (en) * 2012-11-21 2019-01-16 LG Chem, Ltd. Fluoranthene compound, and organic electronic device comprising same
US9419226B2 (en) 2013-03-27 2016-08-16 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
US9741943B2 (en) 2013-03-27 2017-08-22 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
US9837615B2 (en) 2013-06-04 2017-12-05 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using same, and organic electroluminescence element and electronic device using same
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
US10629821B2 (en) 2015-04-08 2020-04-21 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements using same, and organic electroluminescent element and electronic device each using same
WO2016204151A1 (ja) * 2015-06-16 2016-12-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US20180145265A1 (en) 2015-06-16 2018-05-24 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US10170707B2 (en) 2015-06-16 2019-01-01 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device

Also Published As

Publication number Publication date
JP6232419B2 (ja) 2017-11-15
US20150364692A1 (en) 2015-12-17
KR20160002675A (ko) 2016-01-08
JPWO2014178434A1 (ja) 2017-02-23
CN104918915A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5802854B2 (ja) 縮合フルオランテン化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6157617B2 (ja) 有機エレクトロルミネッセンス素子用材料、これを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6199752B2 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子、並びに含窒素複素環化合物
JP5877273B2 (ja) 複素環化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP5827772B2 (ja) 含窒素複素環誘導体、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6167176B2 (ja) 縮合フルオランテン化合物、これを含む有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6114232B2 (ja) 複素環化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6232419B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP6370791B2 (ja) カルバゾール誘導体、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6270735B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
WO2012165256A1 (ja) 有機エレクトロルミネッセンス素子
JP6182217B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
JP6446364B2 (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2014051004A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2014054263A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP6088323B2 (ja) 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP6088324B2 (ja) 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP6111162B2 (ja) ベンゾトリアゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514877

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14761767

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157019637

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791055

Country of ref document: EP

Kind code of ref document: A1