WO2014178227A1 - 回転電機および回転電機の回転子 - Google Patents

回転電機および回転電機の回転子 Download PDF

Info

Publication number
WO2014178227A1
WO2014178227A1 PCT/JP2014/055902 JP2014055902W WO2014178227A1 WO 2014178227 A1 WO2014178227 A1 WO 2014178227A1 JP 2014055902 W JP2014055902 W JP 2014055902W WO 2014178227 A1 WO2014178227 A1 WO 2014178227A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electrical machine
rotating electrical
permanent magnet
magnet
Prior art date
Application number
PCT/JP2014/055902
Other languages
English (en)
French (fr)
Inventor
祐二 狩野
宏 濱野
泰行 齋藤
良司 小林
洋介 梅崎
学 押田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP14791950.0A priority Critical patent/EP2993761B1/en
Priority to CN201480036532.9A priority patent/CN105340155B/zh
Priority to JP2015514771A priority patent/JP6111327B2/ja
Priority to US14/888,659 priority patent/US10511198B2/en
Publication of WO2014178227A1 publication Critical patent/WO2014178227A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotor of a rotating electric machine.
  • Patent Document 1 discloses a permanent magnet type rotating electrical machine capable of achieving both high output and high mechanical rotation. The structure of is described.
  • Patent Document 1 Although the structure of the rotating electrical machine described in Patent Document 1 achieves both high output and high mechanical rotation, it is necessary to improve the mechanical strength against the centrifugal force of the rotor for higher speed rotation. is there.
  • the rotor of the rotating electrical machine has a stator, a magnet insertion hole formed in the rotor core, and a permanent magnet inserted in the magnet insertion hole.
  • a relief portion having a facing surface and a bending portion is provided at a portion of a magnet insertion hole located at a corner portion of the permanent magnet, and two facing portions that are continuous with the bending portion.
  • the angle between the surfaces is an obtuse angle.
  • a rotor of a rotating electrical machine that relieves stress concentration generated in a relief portion of a magnet insertion hole of a rotor core and thereby improves mechanical strength against centrifugal force of the rotor. it can.
  • FIG. 1 is a schematic configuration diagram of a hybrid electric vehicle equipped with a rotating electrical machine according to an embodiment of the present invention. It is a circuit diagram of power converter device 600 in an embodiment of the present invention. It is sectional drawing of the rotary electric machine of embodiment of this invention.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3 showing cross sections of the stator 230 and the rotor 250 of the embodiment of the present invention. It is explanatory drawing of the reluctance torque in the rotor of a rotary electric machine. It is an expanded sectional view for 1 magnetic pole of the stator 230 and the rotor 250 in Example 1 of this invention.
  • FIG. 7 is an enlarged view of a portion B in FIG.
  • the stress generated in the escape portion of the magnet insertion hole of the rotor core can be reduced and the rotation speed can be increased. Therefore, for example, it is suitable as a driving motor for an electric vehicle.
  • the rotating electrical machine according to the present invention can be applied to a pure electric vehicle that runs only by the rotating electrical machine and a hybrid type electric vehicle that is driven by both the engine and the rotating electrical machine.
  • a hybrid type electric vehicle is taken as an example. explain.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electrical machine according to an embodiment of the present invention.
  • the vehicle 100 is mounted with an engine 120, a first rotating electrical machine 200, a second rotating electrical machine 202, and a battery 180.
  • the battery 180 supplies DC power to the rotating electrical machines 200 and 202, and receives DC power from the rotating electrical machines 200 and 202 during regenerative travel. Transfer of direct-current power between the battery 180 and the rotating electrical machines 200 and 202 is performed via the power converter 600.
  • the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt system power) and supplies DC power to a control circuit described below.
  • low-voltage power for example, 14 volt system power
  • Rotational torque generated by the engine 120 and the rotating electrical machines 200 and 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 160.
  • the transmission 130 is controlled by a transmission control device 134
  • the engine 120 is controlled by an engine control device 124.
  • the battery 180 is controlled by the battery control device 184.
  • the transmission control device 134, the engine control device 124, the power conversion device 600, the battery control device 184, and the integrated control device 170 are connected by a communication line 174.
  • the integrated control device 170 is a higher-level control device than the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184.
  • And information representing each state of the battery control device 184 is received from each of them via the communication line 174.
  • the integrated control device 170 calculates a control command for each control device based on the acquired information. The calculated control command is transmitted to each control device via the communication line 174.
  • the high voltage battery 180 is composed of a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs a high voltage DC power of 250 to 600 volts or more.
  • the battery control device 184 outputs the charge / discharge status of the battery 180 and the state of each unit cell battery constituting the battery 180 to the integrated control device 170 via the communication line 174.
  • the integrated control device 170 determines that the battery 180 needs to be charged based on the information from the battery control device 184, the integrated control device 170 instructs the power conversion device 600 to perform a power generation operation.
  • the integrated control device 170 mainly manages the output torque of the engine 120 and the rotating electrical machines 200 and 202, and calculates the integrated torque and torque distribution ratio between the output torque of the engine 120 and the output torque of the rotating electrical machines 200 and 202. And a control command based on the calculation processing result is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600.
  • the power conversion device 600 controls the rotating electrical machines 200 and 202 so that torque output or generated power is generated according to the command.
  • the power converter 600 is provided with a power semiconductor that constitutes an inverter for operating the rotating electrical machines 200 and 202.
  • the power conversion device 600 controls the switching operation of the power semiconductor based on a command from the integrated control device 170. By the switching operation of the power semiconductor, the rotary electric machines 200 and 202 are operated as an electric motor or a generator.
  • DC power from the high voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600.
  • the power conversion device 600 converts the DC power supplied by controlling the switching operation of the power semiconductor into three-phase AC power, and supplies it to the rotating electrical machines 200 and 202.
  • the rotary electric machines 200 and 202 are operated as a generator, the rotors of the rotary electric machines 200 and 202 are rotationally driven by a rotational torque applied from the outside, and the stator windings of the rotary electric machines 200 and 202 are 3 Phase AC power is generated.
  • the generated three-phase AC power is converted into DC power by the power converter 600, and the DC power is supplied to the high-voltage battery 180, whereby the battery 180 is charged.
  • FIG. 2 shows a circuit diagram of the power conversion device 600 of FIG.
  • the power conversion device 600 is provided with a first inverter device for the rotating electrical machine 200 and a second inverter device for the rotating electrical machine 202.
  • the first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotating electrical machine 200.
  • the drive circuit 652 is provided on the drive circuit board 650.
  • the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotating electrical machine 202.
  • the drive circuit 656 is provided on the drive circuit board 654.
  • the control circuit 648 provided on the control circuit board 646, the capacitor module 630, and the transmission / reception circuit 644 mounted on the connector board 642 are used in common by the first inverter device and the second inverter device.
  • the power modules 610 and 620 are operated by drive signals output from the corresponding drive circuits 652 and 656, respectively. Each of the power modules 610 and 620 converts DC power supplied from the battery 180 into three-phase AC power and supplies the power to stator windings that are armature windings of the corresponding rotating electric machines 200 and 202. Further, the power modules 610 and 620 convert AC power induced in the stator windings of the rotating electrical machines 200 and 202 into DC and supply it to the high voltage battery 180.
  • the power modules 610 and 620 are each provided with a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 180, respectively. ing.
  • Each series circuit includes a power semiconductor 21 constituting an upper arm and a power semiconductor 21 constituting a lower arm, and these power semiconductors 21 are connected in series.
  • the power module 610 and the power module 620 have substantially the same circuit configuration as shown in FIG. 2, and here, the power module 610 will be described as a representative.
  • an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element.
  • the IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode.
  • a diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21.
  • the diode 38 includes two electrodes, a cathode electrode and an anode electrode.
  • the cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction.
  • Each is electrically connected to the emitter electrode.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode.
  • a parasitic diode whose forward direction is from the drain electrode to the source electrode is provided between the source electrode and the drain electrode, so there is no need to provide the diode 38 of FIG.
  • the arm of each phase is configured such that the emitter electrode of the IGBT 21 and the collector electrode of the IGBT 21 are electrically connected in series.
  • the emitter electrode of the IGBT 21 and the collector electrode of the IGBT 21 are electrically connected in series.
  • only one IGBT of each upper and lower arm of each phase is illustrated, but since the current capacity to be controlled is large, a plurality of IGBTs are actually connected in parallel. Has been. Below, in order to simplify description, it demonstrates as one power semiconductor.
  • each upper and lower arm of each phase is composed of three IGBTs.
  • the collector electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the emitter electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180.
  • the middle point of each arm of each phase (the connection portion between the emitter electrode of the upper arm side IGBT and the collector electrode of the IGBT on the lower arm side) is the armature winding (fixed) of the corresponding phase of the corresponding rotating electric machine 200, 202. Is electrically connected to the secondary winding.
  • the drive circuits 652 and 656 constitute a drive unit for controlling the corresponding inverter device (power modules 610 and 620), and drive the IGBT 21 based on the control signal output from the control circuit 648. Generate a drive signal.
  • the drive signals generated by the drive circuits 652 and 656 are output to the gates of the power semiconductor elements of the corresponding power modules 610 and 620, respectively.
  • the driving circuits 652 and 656 are each provided with six integrated circuits that generate driving signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits are configured as one block.
  • the control circuit 648 constitutes a control unit of each inverter device (power modules 610 and 620), and is a micro that calculates a control signal (control value) for operating (turning on / off) a plurality of switching power semiconductor elements. Consists of a computer.
  • the control circuit 648 receives a torque command signal (torque command value) from the host controller, sensor outputs of the current sensors 660 and 662, and sensor outputs of rotation sensors (resolver 224 described later) mounted on the rotating electrical machines 200 and 202. Entered.
  • the control circuit 648 calculates a control value based on these input signals, and outputs a control signal for controlling the switching timing to the drive circuits 652 and 656.
  • the transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates information with other apparatuses via the communication line 174 in FIG. Send and receive.
  • Capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in the DC voltage caused by the switching operation of IGBT 21, and is electrically connected to the DC side terminal of first power module 610 or second power module 620. Connected in parallel.
  • FIG. 3 shows a cross-sectional view of the rotating electrical machine of FIG.
  • the rotating electrical machine 200 and the rotating electrical machine 202 have substantially the same structure, and the structure of the rotating electrical machine 200 will be described below as a representative example. However, the structure shown below does not need to be employed in both the rotating electrical machines 200 and 202, and may be employed in only one of them.
  • a stator 230 is held inside the housing 212, and the stator 230 includes a stator core 232 and a stator winding 238. On the inner peripheral side of the stator core 232, a rotor 250 is rotatably held through a gap.
  • the rotor 250 includes a rotor core 252 fixed to the shaft 218, a permanent magnet 254, and a non-magnetic contact plate 226.
  • the housing 212 has a pair of end brackets 214 provided with bearings 216, and the shaft 218 is rotatably held by these bearings 216.
  • the shaft 218 is provided with a resolver 224 that detects the pole position and rotation speed of the rotor 250.
  • the output from the resolver 224 is taken into the control circuit 648 shown in FIG.
  • the control circuit 648 outputs a control signal to the drive circuit 652 based on the fetched output.
  • the drive circuit 652 outputs a drive signal based on the control signal to the power module 610.
  • the power module 610 performs a switching operation based on the control signal, and converts DC power supplied from the battery 180 into three-phase AC power. This three-phase AC power is supplied to the stator winding 238 shown in FIG. 3 and a rotating magnetic field is generated in the stator 230.
  • the frequency of the three-phase alternating current is controlled based on the output value of the resolver 224, and the phase of the three-phase alternating current with respect to the rotor 250 is also controlled based on the output value of the resolver 224.
  • FIG. 4 is a cross-sectional view of the stator 230 and the rotor 250, and shows a cross-sectional view taken along the line AA in FIG.
  • the housing 212, the shaft 218, and the stator winding 238 are not shown.
  • a large number of slots 237 and teeth 236 are arranged uniformly over the entire circumference.
  • all the slots and teeth are not labeled, and only some of the teeth and slots are represented by symbols.
  • a slot insulating material (not shown) is provided in the slot 237, and a plurality of U-phase, V-phase, and W-phase windings constituting the stator winding 238 shown in FIG.
  • 72 slots 237 are formed at equal intervals.
  • a plurality of magnet insertion holes 253 for inserting rectangular magnets are arranged along the circumferential direction.
  • Each magnet insertion hole 253 is formed along the axial direction of the rotor core 252, and permanent magnets 254 (254 a, 254 b) are respectively embedded in the magnet insertion holes 253 and fixed with an adhesive or the like.
  • the circumferential width of the magnet insertion hole 253 is set larger than the circumferential width of the permanent magnet 254, and the hole space provided on the outer side of the magnetic pole of the permanent magnet 254 (the end in the circumferential direction) is It functions as a magnetic gap 257.
  • the magnetic gap 257 may be embedded with an adhesive, or may be solidified integrally with the permanent magnet 254 with a molding resin.
  • the permanent magnet 254 acts as a field pole of the rotor 250, and has a 12-pole configuration in this embodiment.
  • the magnetization direction of the permanent magnet 254 is in the radial direction, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N-pole and the shaft side surface is S pole, the stator side surface of the permanent magnet 254b is S pole and the shaft side surface is N pole. These permanent magnets 254a and 254b are alternately arranged in the circumferential direction.
  • the permanent magnet 254 may be inserted into the magnet insertion hole 253 after being magnetized, or may be magnetized by applying a strong magnetic field after being inserted into the magnet insertion hole 253 of the rotor core 252.
  • the magnetized permanent magnet 254 is a strong magnet, if the magnet is magnetized before the permanent magnet 254 is fixed to the rotor 250, a strong attractive force between the rotor core 252 and the permanent magnet 254 is fixed. Occurs and hinders assembly work. Further, due to the strong attractive force of the permanent magnet 254, dust such as iron powder may adhere to the permanent magnet 254. Therefore, when the productivity of the rotating electrical machine is taken into consideration, it is preferable that the permanent magnet 254 is magnetized after being inserted into the rotor core 252.
  • the permanent magnet 254 may be a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bonded magnet, or the like.
  • the residual magnetic flux density of the permanent magnet 254 is approximately 0.4 to 1.3 T.
  • the product of the fundamental wave components becomes a torque ripple that is a harmonic component of the torque. That is, in order to reduce the torque ripple, the harmonic component of the flux linkage may be reduced.
  • the harmonic component of the interlinkage magnetic flux since the product of the interlinkage magnetic flux and the angular acceleration that the rotor rotates is the induced voltage, reducing the harmonic component of the interlinkage magnetic flux is substantially equivalent to reducing the harmonic component of the induced voltage.
  • FIG. 5 is a diagram for explaining the reluctance torque.
  • the axis through which the magnetic flux passes through the center of the magnet is called the d axis
  • the axis through which the magnetic flux flows from one pole to another between the poles is called the q axis.
  • the iron core portion at the center between the magnets is called an auxiliary salient pole portion 259. Since the magnetic permeability of the permanent magnet 254 provided on the rotor 250 is substantially the same as that of air, the d-axis portion is magnetically concave and the q-axis portion is magnetically convex when viewed from the stator side. It has become. Therefore, the core part of the q-axis part is called a salient pole.
  • the reluctance torque is generated by the difference in the ease of passage of the magnetic flux between the d-axis and the q-axis, that is, the salient pole ratio.
  • FIG. 6 and 7 show the configuration of the first embodiment of the present invention.
  • 6 is an enlarged view of one magnetic pole in the cross-sectional view of FIG. 4, and
  • FIG. 7 is an enlarged view of a portion B of FIG.
  • the rotor core 252 is formed with a magnetic gap 257 outside the magnetic pole of the permanent magnet 254 (the side perpendicular to the magnetization direction), which reduces cogging torque and torque pulsation during energization. It is provided for this purpose.
  • the radial thickness of the magnetic gap 257 is smaller than the radial thickness of the permanent magnet 254, and the rotor core on the inner peripheral side of the magnetic gap 257 restricts the movement of the permanent magnet 254 in the circumferential direction. is doing.
  • the width W1 of the magnetic pole end bridge portion 258 is set to be the smallest in the radial dimension. ing.
  • escape portions 263 shown in FIG. 7 are provided so that the corners of the magnet 254 do not hit the circumferential inner ends of the permanent magnet 254 and the inner peripheral side of the rotor core 252. .
  • the shape of the escape portion 263 is symmetrical with respect to the d-axis 300 in FIG. 6 where the magnetic flux passes through the center of the magnet.
  • the escape portion 263 includes a facing surface 266 that is formed through a gap so as to face the surface of the permanent magnet 254 inserted into the magnet insertion hole 253 on the axial center side of the rotor core 252.
  • the facing surface 266 is formed continuously from the magnet insertion hole 253 by processing the rotor core 252.
  • the facing surface 266 of the escape portion 263 has a plurality of, in this embodiment, four inflection portions, and the angle between the two facing surfaces that are continuous with the inflection portions is an obtuse angle.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 3, that is, a cross-sectional view taken along a plane surrounded by a circumferential line and a radial line of the rotor core 252.
  • the inflection part is represented as four inflection points 264a to 264d in FIG.
  • the inflection portion is expressed as an inflection point
  • the opposed surface connecting adjacent inflection portions among the opposed surfaces 266 is represented as a straight line.
  • the angle formed by the straight lines connecting the four inflection points 264a to 264d is an obtuse angle. That is, an angle 267a formed by a straight line connecting the inflection points 264a and 264b and a straight line connecting the inflection points 264b and 264c is an obtuse angle. An angle 267b formed by a straight line connecting the inflection points 264b and 264c and a straight line connecting the inflection points 264c and 264d is also formed as an obtuse angle.
  • the boundary line 265 of the permanent magnet 254 with the magnet insertion hole 253 that regulates the side along the circumferential direction of the rotor core 252 is located at the lower bottom, and the side near the rotor core inner peripheral side of the escape portion 263 If the upper side is 266a (a straight line connecting the inflection points 264b and 264c), it is set to be a trapezoid. Accordingly, the side 266a is formed in parallel with the surface of the permanent magnet 254 facing the side 266a.
  • the inflection points 264a to 264d cannot be corners because of the manufacture of the rotor core, and the corner R is equal to or less than R1. This angle R is also included as an inflection point.
  • a straight line connecting the inflection points of the escape portion 263 is used, but a boundary line having a large curvature radius may be used.
  • the stress is dispersed at each corner of the inflection points 264a to 264d of the relief portion 263, and the stress of the relief portion 263 can be reduced without stress concentration at one corner. High speed rotation is possible.
  • the stress concentration can be suppressed by providing the relief portion 263 having an inflection point and an obtuse angle formed between two straight lines continuous with the inflection point.
  • an angle between two straight lines continuous to the inflection point is formed as an obtuse angle, and a straight line (opposite surface of the relief portion 263) parallel to the surface of the permanent magnet 254 is provided as in the side 266a of FIG.
  • the relief portion 263 has a shape parallel to the direction of the stress vector, so that the stress concentration suppressing effect is further improved.
  • the number of inflection points is four or more, it is easy to form an obtuse angle between two straight lines continuous to the inflection point. Therefore, the greater the number of inflection points, the greater the stress concentration. The suppression effect is improved.
  • the stress concentration suppressing effect is slightly inferior to that in the case of four or more inflection points.
  • the angle between two straight lines continuous to the inflection point is formed as an obtuse angle, the stress concentration suppression is performed. The effect can be expected.
  • the inside of the escape portion 263 that disperses the stress concentration is an air layer, the magnetic flux generated by the permanent magnet 254 is less likely to pass than in the rotor core 252. For this reason, if many escape parts 263 are provided in the magnetization direction, for example, the effect of effectively utilizing the magnetic force of the magnet may be slightly inferior.
  • the corner portion on the outer peripheral side of the rotor core 252 is not provided with a relief portion. Also, a relief portion may be provided.
  • the inside of the escape portion 263 is not an air layer, but is filled with a non-magnetic material such as an adhesive or a resin that does not easily pass magnetic flux or a magnetic material that easily passes magnetic flux, as long as the material has a lower Young's modulus than the rotor core 252. Even if it is an air layer, the same stress reduction effect can be acquired.
  • FIG. 8 shows an enlarged view of a cross section (a cross section taken along line AA in FIG. 3) of the rotating electrical machine according to the second embodiment of the present invention.
  • the permanent magnet 254 in order to increase the mechanical strength of the rotor core 252 against the centrifugal force at the time of rotation, the permanent magnet 254 (and the magnet insertion hole) for one magnetic pole is divided in the circumferential direction to form a pair.
  • the permanent magnets 254aa and 254ab are provided, and an inter-magnet bridge portion 260 is provided between them so as to mechanically connect the rotor core on the outer peripheral side of the permanent magnet and the rotor core on the inner peripheral side. .
  • the relief portions of the present invention are also provided at four corner portions of the pair of permanent magnets 254aa and 254ab arranged via the inter-magnet bridge portion 260 so as to face each other.
  • the stress concentration generated in 260 is also reduced.
  • the relief portion 263 on the magnet-to-magnet bridge portion 260 side is provided on either the radial side (263b, 263e, 263g, 263j) or the circumferential side (263c, 263d, 263h, 263i).
  • the radial direction side or the circumferential direction side may be provided.
  • the pair of permanent magnets 254aa and 254ab for one magnetic pole are arranged linearly, the effect of the present invention can be obtained even when they are not arranged linearly.
  • the stress concentration at each corner of the permanent magnet is suppressed and the stress at the escape portion is reduced. This can be reduced, and the rotor can be rotated at a high speed. Further, since the inter-magnet bridge portion 260 is provided between the pair of divided permanent magnets, high strength can be obtained.
  • FIG. 9 shows an enlarged view of a cross section (a cross section taken along line AA in FIG. 3) of the rotating electrical machine according to the third embodiment of the present invention.
  • three (or three or more) divided permanent magnets 254 (and magnet insertion holes) are provided per magnetic pole, and an inter-magnet bridge portion 260 is provided between the permanent magnets.
  • the escape portions 263 described in FIG. 7 are provided at the corners of the permanent magnet 254 facing each other with the inter-magnet bridge portion 260 interposed therebetween.
  • the stress concentration at each corner of the permanent magnet is suppressed to reduce the stress at the escape portion. Therefore, the rotor can be rotated at a high speed. Further, since the inter-magnet bridge portion 260 is provided between the plurality of divided permanent magnets, high strength can be obtained.
  • FIG. 10 shows an enlarged view of a cross section (a cross section taken along line AA of FIG. 3) of the rotating electrical machine according to the fourth embodiment of the present invention.
  • a pair of permanent magnets 254 (and magnet insertion holes) divided into two per magnetic pole are not arranged linearly as shown in FIG.
  • the escape portions 263 are provided at each corner of the permanent magnet.
  • the stress concentration at each corner of the permanent magnet is suppressed, and the relief portion Stress can be reduced, and the rotor can be rotated at a high speed.
  • the inter-magnet bridge portion 260 is provided between the pair of divided permanent magnets, high strength can be obtained.
  • the pair of divided permanent magnets are arranged in a V-shaped cross section, the magnetic flux is good and the reluctance torque is large.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 回転子の遠心力に対する機械的な強度を向上させた回転電機の回転子を提供する。 固定子と、固定子に空隙を介して配置された回転子鉄心252を有した回転子とを備え、前記回転子には、磁石挿入孔および該磁石挿入孔に挿入された永久磁石254を備えた回転電機において、永久磁石254の角部に位置する磁石挿入孔の部位に、永久磁石254の面に対向して空隙を介して形成された対向面266を有した逃げ部263を設け、逃げ部263の対向面266は変曲点264a~264dを有し、該変曲点264b、264cに各々連続する2つの対向面を挟む角度267a,267bは各々鈍角に形成されている。

Description

回転電機および回転電機の回転子
 本発明は回転電機の回転子に関する。
 車両駆動用として用いられる回転電機においては、通常の回転電機に比べ、高速回転化が要求されている。高速回転化にあたって、回転子の遠心力に対する機械的な強度を向上させる必要があるが、例えば、特許文献1には高出力化と機械的な高回転化の両立が可能な永久磁石式回転電機の構造が記載されている。
特開2011-101504号公報
 特許文献1に記載された回転電機の構造は高出力化と機械的高回転化を両立させているが、さらに高速回転化するため、回転子の遠心力に対する機械的な強度を向上させる必要がある。
 本発明に係る回転電機の回転子は、固定子と、前記固定子に空隙を介して配置され、回転子鉄心に形成された磁石挿入孔および該磁石挿入孔に挿入された永久磁石を有した回転子とを備えた回転電機において、前記永久磁石の角部に位置する磁石挿入孔の部位に、対向面および変曲部を有した逃げ部を設け、該変曲部と連続する2つの対向面を挟む角度は鈍角に形成されていることを特徴とする。
 本発明によれば、回転子鉄心の磁石挿入孔の逃げ部に発生する応力集中を緩和し、これによって回転子の遠心力に対する機械的な強度を向上した回転電機の回転子を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成図である。 本発明の実施形態における電力変換装置600の回路図である。 本発明の実施形態の回転電機の断面図である。 本発明の実施形態の固定子230および回転子250の断面を示す、図3のA-A断面矢視図である。 回転電機の回転子におけるリラクタンストルクの説明図である。 本発明の実施例1における固定子230および回転子250の1磁極分の拡大断面図である。 本発明の実施例1における逃げ部263の構成を表し、図6のB部分の拡大図である。 本発明の実施例2における固定子230および回転子250の1磁極分の拡大断面図である。 本発明の実施例3における固定子230および回転子250の1磁極分の拡大断面図である。 本発明の実施例4における230および回転子250の1磁極分の拡大断面図である。
 以下、図面を参照して本発明を実施するための形態について説明する。
 本実施例では、以下に説明するように回転子鉄心の磁石挿入孔の逃げ部に発生する応力を低減し高回転化が可能である。そのため、例えば、電気自動車の走行用モータとして好適である。本発明による回転電機は、回転電機のみによって走行する純粋な電気自動車や、エンジンと回転電機の双方によって駆動されるハイブリッド型の電気自動車にも適用できるが、以下ではハイブリッド型の電気自動車を例に説明する。
 図1は、本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。車両100には、エンジン120と第1の回転電機200と第2の回転電機202とバッテリ180とが搭載されている。バッテリ180は、回転電機200、202に直流電力を供給し、回生走行時には回転電機200、202から直流電力を受ける。バッテリ180と回転電機200、202との間の直流電力の授受は、電力変換装置600を介して行われる。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に直流電力を供給する。
 エンジン120および回転電機200、202による回転トルクは、変速機130とデファレンシャルギア160を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134、エンジン制御装置124、電力変換装置600、バッテリ制御装置184および統合制御装置170は、通信回線174によって接続されている。
 統合制御装置170は、変速機制御装置134、エンジン制御装置124、電力変換装置600およびバッテリ制御装置184よりも上位の制御装置であり、変速機制御装置134、エンジン制御装置124、電力変換装置600およびバッテリ制御装置184の各状態を表す情報を通信回線174を介してそれらからそれぞれ受け取る。統合制御装置170は、取得したそれらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線174を介してそれぞれの制御装置へ送信される。
 高電圧のバッテリ180はリチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。バッテリ制御装置184は、バッテリ180の充放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。
 統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。また、統合制御装置170は、主に、エンジン120および回転電機200、202の出力トルクの管理、エンジン120の出力トルクと回転電機200、202の出力トルクとの統合トルクやトルク分配比の演算処理を行い、その演算処理結果に基づく制御指令を、変速機制御装置134、エンジン制御装置124および電力変換装置600へ送信する。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機200、202を制御する。
 電力変換装置600には、回転電機200、202を運転するためのインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このパワー半導体のスイッチング動作により、回転電機200、202は電動機としてあるいは発電機として運転される。
 回転電機200、202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御して供給された直流電力を3相交流電力に変換し、回転電機200、202に供給する。一方、回転電機200、202を発電機として運転される場合には、回転電機200、202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機200、202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより、バッテリ180が充電される。
 図2は、図1の電力変換装置600の回路図を示す。電力変換装置600には、回転電機200のための第1のインバータ装置と、回転電機202のための第2のインバータ装置とが設けられている。第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。
 一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662とを備えている。駆動回路656は駆動回路基板654に設けられている。制御回路基板646に設けられた制御回路648、コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通して使用される。
 パワーモジュール610、620は、それぞれ対応する駆動回路652、656から出力された駆動信号によって動作する。パワーモジュール610、620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200、202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610、620は、回転電機200、202の固定子巻線に誘起された交流電力を直流に変換し、高電圧バッテリ180に供給する。
 パワーモジュール610、620は図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示す如く回路構成はほぼ同じであり、ここではパワーモジュール610を代表して説明する。
 本実施の形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極、エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。
 なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極、ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。
 各相のアームは、IGBT21のエミッタ電極とIGBT21のコレクタ電極とが電気的に直列に接続されて構成されている。なお、本実施の形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。
 図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のコレクタ電極はバッテリ180の正極側に、各相の各下アームのIGBT21のエミッタ電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのエミッタ電極と下アーム側のIGBTのコレクタ電極との接続部分)は、対応する回転電機200、202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。
 駆動回路652、656は、対応するインバータ装置(パワーモジュール610、620)を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの駆動回路652、656で発生した駆動信号は、対応するパワーモジュール610、620の各パワー半導体素子のゲートにそれぞれ出力される。駆動回路652、656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。
 制御回路648は各インバータ装置(パワーモジュール610、620)の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660、662のセンサ出力、回転電機200、202に搭載された回転センサ(後述するレゾルバ224)のセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652、656にスイッチングタイミングを制御するための制御信号を出力する。
 コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、第1のパワーモジュール610や第2のパワーモジュール620における直流側の端子に電気的に並列に接続されている。
 図3は、図1の回転電機の断面図を示す。なお、回転電機200と回転電機202とはほぼ同じ構造を有しており、以下では回転電機200の構造を代表例として説明する。ただし、以下に示す構造は回転電機200、202の双方に採用されている必要はなく、一方だけに採用されても良い。
 ハウジング212の内部には固定子230が保持されており、固定子230は固定子鉄心232と固定子巻線238とを備えている。固定子鉄心232の内周側には、回転子250が空隙を介して回転可能に保持されている。回転子250は、シャフト218に固定された回転子鉄心252と、永久磁石254と、非磁性体のあて板226とを備えている。ハウジング212は軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。
 シャフト218には、回転子250の極の位置や回転速度を検出するレゾルバ224が設けられている。このレゾルバ224からの出力は、図2に示した制御回路648に取り込まれる。制御回路648は、取り込まれた出力に基づいて制御信号を駆動回路652に出力する。駆動回路652は、その制御信号に基づく駆動信号をパワーモジュール610に出力する。パワーモジュール610は、制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は図3に示した固定子巻線238に供給され、回転磁界が固定子230に発生する。3相交流電流の周波数はレゾルバ224の出力値に基づいて制御され、3相交流電流の回転子250に対する位相も同じくレゾルバ224の出力値に基づいて制御される。
 図4は固定子230及び回転子250の断面を示す図であり、図3のA-A断面図を示したものである。なお、図4ではハウジング212、シャフト218及び固定子巻線238の記載を省略した。固定子鉄心232の内周側には、多数のスロット237とティース236とが全周に渡って均等に配置されている。図4では、スロット及びティースの全てに符号を付すことはせず、代表として一部のティースとスロットにのみに符号を付した。スロット237内にはスロット絶縁材(図示省略)が設けられ、図3の固定子巻線238を構成するU相、V相、W相の複数の相巻線が装着されている。本実施の形態では、スロット237は等間隔に72個形成されている。
 また、回転子鉄心252の外周近傍には、矩形の磁石を挿入するための複数の磁石挿入孔253が周方向に沿って12個配設されている。各磁石挿入孔253は回転子鉄心252の軸方向に沿って形成されており、その磁石挿入孔253には永久磁石254(254a、254b)がそれぞれ埋め込まれ、接着剤などで固定されている。磁石挿入孔253の円周方向の幅は、永久磁石254の円周方向の幅よりも大きく設定されており、永久磁石254の磁極外側(円周方向の端部)に設けられた穴空間は磁気的空隙257として機能する。この磁気的空隙257は接着剤で埋め込んでも良いし、成型用樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用し、本実施の形態では12極構成となっている。
 永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、それらの永久磁石254a、254bが円周方向に交互に配置されている。
 永久磁石254は、磁化した後に磁石挿入孔253に挿入しても良いし、回転子鉄心252の磁石挿入孔253に挿入した後に強力な磁界を与えて磁化するようにしても良い。ただし、磁化後の永久磁石254は強力な磁石なので、回転子250に永久磁石254を固定する前に磁石を着磁すると、永久磁石254の固定時に回転子鉄心252との間に強力な吸引力が生じて組み付け作業の妨げとなる。また、永久磁石254の強力な吸引力により、永久磁石254に鉄粉などのごみが付着する恐れがある。そのため、回転電機の生産性を考慮した場合、永久磁石254を回転子鉄心252に挿入した後に磁化するのが好ましい。
なお、永久磁石254には、ネオジウム系、サマリウム系の焼結磁石やフェライト磁石、ネオジウム系のボンド磁石などを用いることができる。永久磁石254の残留磁束密度はほぼ0.4~1.3T程度である。
 三相交流電流を固定子巻線238に流すことで回転磁界が固定子230に発生すると、この回転磁界が回転子250の永久磁石254a、254bに作用してトルクが生じる。このトルクは、永久磁石254から出される磁束のうち各相巻線に鎖交する成分と、各相巻線に流れる交流電流の鎖交磁束に直交する成分の積で表される。ここで、交流電流波形が正弦波形状であると考えれば、鎖交磁束の基本波成分と交流電流の基本波成分の積がトルクの時間平均成分となり、鎖交磁束の高調波成分と交流電流の基本波成分の積がトルクの高調波成分であるトルクリプルとなる。つまりトルクリプルを低減するには、鎖交磁束の高調波成分を低減すれば良い。言い換えれば、鎖交磁束と回転子の回転する角加速度の積が誘起電圧であるから、鎖交磁束の高調波成分を低減することは、誘起電圧の高調波成分を低減することに略等しい。
 図5はリラクタンストルクを説明する図である。一般に、磁束が磁石中心を通る軸をd軸、磁束が磁石の極間から極間へ流れる軸をq軸と呼ぶ。このとき、磁石の極間中心にある鉄心部分を補助突極部259と呼ぶ。回転子250に設けられた永久磁石254の透磁率は空気とほぼ同じであるため、固定子側から見た場合、d軸部は磁気的に凹んでおり、q軸部は磁気的に凸になっている。そのため、q軸部の鉄心部分は突極と呼ばれる。リラクタンストルクは、このd軸とq軸の磁束の通りやすさの差、すなわち、突極比によって生じる。
 図6、図7に本発明の実施例1の構成を示す。図6は図4の断面図の1磁極分を拡大して示したものであり、図7は図6の部位Bを拡大して示したものである。図6において、回転子鉄心252には、永久磁石254の磁極外側(着磁方向に直交する側)に磁気的空隙257が形成されており、これはコギングトルクや通電時のトルク脈動を低減するために設けられたものである。さらには、磁気的空隙257の径方向の厚さは永久磁石254の径方向の厚さよりも小さく、磁気的空隙257の内周側の回転子鉄心は永久磁石254の周方向への動きを規制している。また、永久磁石254が挿入される磁石挿入孔253と回転子鉄心252の外周との間に存在する鉄心256では、径方向寸法において磁極端ブリッジ部258の幅W1が最も薄くなるように設定されている。
 磁石挿入孔253には、永久磁石254の周方向両端であって回転子鉄心252の内周側の部位に、磁石254の角が当たらないように図7に示す逃げ部263が設けられている。この逃げ部263の形状は磁束が磁石中心を通る図6のd軸300に対して対称形状となっている。
 逃げ部263は、磁石挿入孔253に挿入された永久磁石254の、回転子鉄心252の軸心側の面に対向して空隙部を介して形成された対向面266を備えている。この対向面266は、回転子鉄心252を加工して、磁石挿入孔253に連続して形成される。
 逃げ部263の対向面266は、複数の、本実施例では4つの変曲部を有し、該変曲部と連続する2つの対向面を挟む角度は鈍角に形成されている。
 尚、図7は、図3のA-A断面矢視図、すなわち回転子鉄心252の周方向線と径方向線で囲まれる平面に沿って切断したときの断面図であるため、前記4つの変曲部は図7上では4つの変曲点264a~264dとして表記される。そして以下の説明では、変曲部は変曲点として表現し、対向面266のうち、隣接する変曲部どうしを結ぶ対向面を直線として表現する。
 4つの変曲点264a~264dを結ぶ直線のなす角は鈍角に構成されている。すなわち、変曲点264aおよび264bを結ぶ直線と変曲点264bおよび264cを結ぶ直線とのなす角267aは鈍角に形成されている。また、変曲点264bおよび264cを結ぶ直線と変曲点264cおよび264dを結ぶ直線とのなす角267bも鈍角に形成されている。
 そして本実施例では、永久磁石254の、回転子鉄心252の周方向に沿う辺を規制する磁石挿入孔253との境界線265を下底、逃げ部263の回転子鉄心内周側に近い辺266a(変曲点264bおよび264cを結ぶ直線)を上辺とすると台形となるように設定されている。したがって辺266aは、これに対向する永久磁石254の面と平行に形成されている。
 変曲点264a~264dは、回転子鉄心の製造の関係上、角とすることはできず、R1以下の角Rを設ける。この角Rも変曲点として含める。本実施例では、逃げ部263の変曲点同士を結んだ直線としているが、曲率半径の大きい境界線でも良い。
 このような構成をとることで、逃げ部263の変曲点264a~264dそれぞれの角に応力が分散し、一つの角に応力集中することなく逃げ部263の応力を低減でき、回転子250の高速回転化が可能となる。
 すなわち、変曲点を有し、それに連続する2つの直線を挟む角度を鈍角に形成した逃げ部263を設けたことにより、応力集中を抑制することができる。
 また、変曲点に連続する2つの直線を挟む角度を鈍角に形成し、且つ図7の辺266aのように永久磁石254の面と平行となる直線(逃げ部263の対向面)を設けることにより、逃げ部263が、応力ベクトルの向きに対して平行な形状となるため応力集中抑制効果はさらに向上する。
 前記変曲点(変曲部)の個数は4つ以上であれば、前記変曲点に連続する2つの直線を挟む角度を鈍角に形成しやすいので、変曲点の個数は多いほど応力集中抑制効果は向上する。
 変曲点が3つの場合は、4つ以上の場合よりも前記応力集中抑制効果は少し劣るが、変曲点に連続する2つの直線を挟む角度を鈍角に形成するならば、前記応力集中抑制効果が期待できる。
 尚、本実施例では応力集中を分散させる逃げ部263の内部は空気の層であるため、永久磁石254で生じる磁束は、回転子鉄心252中よりも通りにくい。このため逃げ部263を例えば着磁方向に多数設けると、磁石の磁力を有効に活用するという効果が若干劣る可能性がある。
 したがって図6の実施例では、永久磁石254の4つの角部のうち、回転子鉄心252の外周側の角部には逃げ部を設けていないが、これに限らずこの外周側の角部にも逃げ部を設けるように構成してもよい。
 尚、逃げ部263の内部は空気の層でなくとも、回転子鉄心252よりヤング率の低い材料であれば接着剤や樹脂等の磁束の通りにくい非磁性体や磁束の通りやすい磁性体で充填しても空気層である場合と同様の応力低減効果を得ることができる。
 図8は本発明の実施例2における回転電機の断面(図3のA-A線断面)の拡大図を示している。本実施例2では、回転時の遠心力に対し、回転子鉄心252の機械的強度を高めるために、1磁極分の永久磁石254(および磁石挿入孔)を円周方向に分割して一対の永久磁石254aa,254abとし、それらの間に、永久磁石の外周側にある回転子鉄心と、内周側にある回転子鉄心とを機械的に接続するように磁石間ブリッジ部260を設けている。
 そして本実施例2では、この磁石間ブリッジ部260を介して配置された一対の永久磁石254aa,254abの、互いに対向する4つの角部にも本発明の逃げ部を設けて、磁石間ブリッジ部260に発生する応力集中も低減するように構成した。
 すなわち、一対の永久磁石254aa,254abに対し、図7で述べた逃げ部263と同様の10個の逃げ部263a~263jを設けた。
 ここで、磁石間ブリッジ部260側の逃げ部263は、径方向側(263b,263e,263g,263j)、円周側(263c,263d,263h,263i)のいずれにも設けた構造となっているが、径方向側のみや円周方向側のみ設けても良い。また1磁極分の一対の永久磁石254aa,254abを直線状に並べているが、直線状に並べない場合でも、本発明の効果を得ることができる。
 以上のように、本実施例2によれば1磁極分の永久磁石が一対の永久磁石に分割されている回転子において、永久磁石の各角部の応力集中を抑制して逃げ部の応力を低減することができ、回転子の高速回転化が可能となる。また分割された一対の永久磁石間には磁石間ブリッジ部260が設けられているため、高い強度が得られる。
 図9は本発明の実施例3における回転電機の断面(図3のA-A線断面)の拡大図を示している。本実施例3では、1磁極当たり3個(3個以上の複数個でもよい)の分割した永久磁石254(および磁石挿入孔)を設け、それら永久磁石の間に各々磁石間ブリッジ部260を設け、磁石間ブリッジ部260を挟んで対向する永久磁石254の角部に各々図7で述べた逃げ部263を設けるように構成した。
 この実施例3によれば、1磁極分の永久磁石が3個以上の複数個に分割されている回転子において、永久磁石の各角部の応力集中を抑制して逃げ部の応力を低減することができ、回転子の高速回転化が可能となる。また分割された複数の永久磁石間には磁石間ブリッジ部260が設けられているため、高い強度が得られる。
 図10は本発明の実施例4における回転電機の断面(図3のA-A線断面)の拡大図を示している。本実施例4では、1磁極当たり2つに分割した一対の永久磁石254(および磁石挿入孔)を図8のように直線状に並べず、磁石間ブリッジ部260を挟んで断面V字形状に配置し、図8の逃げ部263a~263jと同様に永久磁石の各角部に逃げ部263を設けるように構成した。
 この実施例4によれば、1磁極分の永久磁石を2つに分割し、それらを断面V字形状に配置した回転子において、永久磁石の各角部の応力集中を抑制して逃げ部の応力を低減することができ、回転子の高速回転化が可能となる。また分割された一対の永久磁石間には磁石間ブリッジ部260が設けられているため、高い強度が得られる。また分割された一対の永久磁石は断面V字形状に配置されているため、磁束の通りが良好であり、リラクタンストルクが大となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 100…車両
 230…固定子
 250…回転子
 252…回転子鉄心
 254,254a,254b,254aa,254ab…永久磁石
 257…磁気的空隙
 258…磁極端ブリッジ部
 260…磁石間ブリッジ部
 263,263a~263j…逃げ部
 264a~264d…変曲点
 265…境界線
 266…対向面
 266a…辺

Claims (7)

  1.  固定子と、前記固定子に空隙を介して配置され、複数個の磁極が形成された回転子鉄心を有した回転子とを備え、前記回転子の各磁極は、前記回転子鉄心に形成された磁石挿入孔および該磁石挿入孔に挿入された永久磁石を備えた回転電機において、
     前記挿入された永久磁石の角部に位置する磁石挿入孔の部位に、永久磁石の面に対向して空隙を介して形成された対向面を有した逃げ部を設け、
     前記逃げ部の対向面は変曲部を有し、該変曲部と連続する2つの対向面を挟む角度は鈍角に形成されていることを特徴とする回転電機の回転子。
  2.  請求項1に記載の回転電機の回転子において、
     前記逃げ部は4つ以上の変曲部を有することを特徴とする回転電機の回転子。
  3.  請求項1又は2に記載の回転電機の回転子において、
     前記逃げ部の対向面は、該逃げ部の対向面に対向する永久磁石の面と平行な対向面を有することを特徴とする回転電機の回転子。
  4.  請求項1ないし3のいずれか1項に記載の回転電機の回転子において、
     前記逃げ部の変曲部を有した対向面と、該逃げ部の対向面に対向する永久磁石の面とを囲む領域を、回転子鉄心の周方向線と径方向線で囲まれる平面に沿って切断したときの断面形状が、台形又は台形に近い形状に形成されていることを特徴とする回転電機の回転子。
  5.  請求項1ないし4のいずれか1項に記載の回転電機の回転子において、
     前記回転子は、1磁極につき分割された複数の永久磁石と、それら永久磁石を各々挿入する複数の磁石挿入孔とを備え、
     前記逃げ部は、前記分割された複数の永久磁石の角部に各々位置する磁石挿入孔の部位に設けられていることを特徴とする回転電機の回転子。
  6.  請求項5に記載の回転電機の回転子において、
     前記分割された複数の永久磁石は一対の永久磁石で構成され、該一対の永久磁石を、回転子鉄心の周方向線と径方向線で囲まれる平面に沿って切断したときの断面形状が、V字型になるように構成されていることを特徴とする回転電機の回転子。
  7.  請求項1ないし6のいずれか1項に記載の回転子を備える回転電機。
PCT/JP2014/055902 2013-05-01 2014-03-07 回転電機および回転電機の回転子 WO2014178227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14791950.0A EP2993761B1 (en) 2013-05-01 2014-03-07 Rotary electrical machine, and rotor for rotary electrical machine
CN201480036532.9A CN105340155B (zh) 2013-05-01 2014-03-07 旋转电机及旋转电机的转子
JP2015514771A JP6111327B2 (ja) 2013-05-01 2014-03-07 回転電機および回転電機の回転子
US14/888,659 US10511198B2 (en) 2013-05-01 2014-03-07 Rotary electrical machine, and rotor for rotary electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-096159 2013-05-01
JP2013096159 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178227A1 true WO2014178227A1 (ja) 2014-11-06

Family

ID=51843363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055902 WO2014178227A1 (ja) 2013-05-01 2014-03-07 回転電機および回転電機の回転子

Country Status (5)

Country Link
US (1) US10511198B2 (ja)
EP (1) EP2993761B1 (ja)
JP (1) JP6111327B2 (ja)
CN (1) CN105340155B (ja)
WO (1) WO2014178227A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061244A1 (ja) * 2015-10-06 2017-04-13 三菱電機株式会社 回転電機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147945A1 (ja) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 回転電機のロータ
DE112016004207T5 (de) * 2015-09-16 2018-06-14 Mitsubishi Electric Corporation Rotor für elektrische rotationsmaschine sowie elektrische rotationsmaschine
CN105774512B (zh) * 2016-03-01 2018-09-14 至玥腾风科技投资集团有限公司 一种发动机前置的增程式电动乘用车
JP6702550B2 (ja) * 2016-08-31 2020-06-03 株式会社東芝 回転子およびリラクタンスモータ
CN110690775B (zh) * 2018-07-05 2021-11-19 爱信艾达株式会社 转子以及旋转电机
DE102019104072A1 (de) * 2019-02-19 2020-08-20 Bayerische Motoren Werke Aktiengesellschaft Kavitätenstruktur für permanenterregte elektrische Maschinen mit eingebetteten Magneten
JP2021122163A (ja) * 2020-01-31 2021-08-26 日立金属株式会社 回転電機
US11916435B2 (en) * 2020-05-22 2024-02-27 Duxion Motors, Inc. Split electric machine for retrofit hybrid propulsion systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016809A (ja) * 1999-06-28 2001-01-19 Toyota Motor Corp 永久磁石式回転機の回転子
JP2008211934A (ja) * 2007-02-27 2008-09-11 Toyota Industries Corp 回転電機の回転子及び回転電機
JP2010178535A (ja) * 2009-01-30 2010-08-12 Toshiba Industrial Products Manufacturing Corp 永久磁石式回転電機の回転子及びその回転電機
JP2011101504A (ja) 2009-11-06 2011-05-19 Hitachi Automotive Systems Ltd 回転電機及び電気自動車
JP2012186889A (ja) * 2011-03-03 2012-09-27 Nippon Soken Inc 回転電機
WO2013051617A1 (ja) * 2011-10-04 2013-04-11 日立オートモティブシステムズ株式会社 永久磁石式回転電機および永久磁石式回転電機を備えた車両

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339874A (en) * 1978-12-26 1982-07-20 The Garrett Corporation Method of making a wedge-shaped permanent magnet rotor assembly
JP4867194B2 (ja) * 2005-04-28 2012-02-01 トヨタ自動車株式会社 ロータ
JP5349732B2 (ja) * 2005-12-06 2013-11-20 パナソニック株式会社 モータ
DE102009026524A1 (de) * 2009-05-28 2010-12-02 Robert Bosch Gmbh Elektrische Maschine
DE102010043575A1 (de) 2009-12-18 2011-06-22 Robert Bosch GmbH, 70469 Rotor für eine Elektromaschine
JP2011182552A (ja) 2010-03-01 2011-09-15 Toyota Motor Corp ロータコアおよび回転電機用コア
JP5418467B2 (ja) * 2010-11-02 2014-02-19 株式会社安川電機 回転電機
JP5643127B2 (ja) * 2011-02-03 2014-12-17 トヨタ自動車株式会社 回転電機用回転子
CN202221930U (zh) * 2011-08-11 2012-05-16 中山大洋电机制造有限公司 一种电机永磁转子结构
EP2568578A3 (en) * 2011-09-07 2017-12-06 Samsung Electronics Co., Ltd. Motor and washing machine having the same
EP2592718A2 (en) * 2011-11-08 2013-05-15 Kabushiki Kaisha Yaskawa Denki Rotor core, rotor, and rotating electric machine
JP5858232B2 (ja) * 2012-02-17 2016-02-10 日本電産株式会社 ロータコア、モータ、およびモータの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016809A (ja) * 1999-06-28 2001-01-19 Toyota Motor Corp 永久磁石式回転機の回転子
JP2008211934A (ja) * 2007-02-27 2008-09-11 Toyota Industries Corp 回転電機の回転子及び回転電機
JP2010178535A (ja) * 2009-01-30 2010-08-12 Toshiba Industrial Products Manufacturing Corp 永久磁石式回転電機の回転子及びその回転電機
JP2011101504A (ja) 2009-11-06 2011-05-19 Hitachi Automotive Systems Ltd 回転電機及び電気自動車
JP2012186889A (ja) * 2011-03-03 2012-09-27 Nippon Soken Inc 回転電機
WO2013051617A1 (ja) * 2011-10-04 2013-04-11 日立オートモティブシステムズ株式会社 永久磁石式回転電機および永久磁石式回転電機を備えた車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061244A1 (ja) * 2015-10-06 2017-04-13 三菱電機株式会社 回転電機
JPWO2017061244A1 (ja) * 2015-10-06 2017-10-05 三菱電機株式会社 回転電機
CN108141077A (zh) * 2015-10-06 2018-06-08 三菱电机株式会社 旋转电机
US10447099B2 (en) 2015-10-06 2019-10-15 Mitsubishi Electric Corporation Rotary electric machine
CN108141077B (zh) * 2015-10-06 2019-10-18 三菱电机株式会社 旋转电机

Also Published As

Publication number Publication date
CN105340155B (zh) 2018-07-06
EP2993761A4 (en) 2016-12-28
JP6111327B2 (ja) 2017-04-05
US20160141926A1 (en) 2016-05-19
JPWO2014178227A1 (ja) 2017-02-23
US10511198B2 (en) 2019-12-17
CN105340155A (zh) 2016-02-17
EP2993761B1 (en) 2018-06-06
EP2993761A1 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5730736B2 (ja) 永久磁石式回転電機および永久磁石式回転電機を備えた車両
JP6111327B2 (ja) 回転電機および回転電機の回転子
US8847454B2 (en) Rotating electric machine and automobile
JP6263551B2 (ja) 回転電機、およびその回転電機を備えた電動車両
US20170353071A1 (en) Rotary Electric Machine and Vehicle Provided with the Same
JP7113003B2 (ja) 回転電機の回転子及びこれを備えた回転電機
JP2020174529A (ja) 回転電機の回転子、回転電機、及び車両
JP5914618B2 (ja) 回転電機及び電気自動車
JP6670767B2 (ja) 回転電機
US20220069651A1 (en) Rotary Electric Machine and Vehicle Provided with the Same
JP5650276B2 (ja) 回転子及びこれを備えた回転電機
CN111264018B (zh) 旋转电机的转子以及使用该转子的旋转电机
JP2016158401A (ja) 回転電機の回転子、及びこれを備えた回転電機
JP2017189020A (ja) 回転電機の固定子、及びこれを備えた回転電機
WO2023238312A1 (ja) 回転電機の回転子、回転電機及びこの回転電機を備えた電動車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036532.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014791950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14888659

Country of ref document: US