WO2014174557A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2014174557A1
WO2014174557A1 PCT/JP2013/007596 JP2013007596W WO2014174557A1 WO 2014174557 A1 WO2014174557 A1 WO 2014174557A1 JP 2013007596 W JP2013007596 W JP 2013007596W WO 2014174557 A1 WO2014174557 A1 WO 2014174557A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
current
unit
designation signal
coil
Prior art date
Application number
PCT/JP2013/007596
Other languages
English (en)
French (fr)
Inventor
正巳 相浦
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to KR1020157025010A priority Critical patent/KR101725702B1/ko
Priority to JP2015513364A priority patent/JP6096889B2/ja
Publication of WO2014174557A1 publication Critical patent/WO2014174557A1/ja
Priority to US14/919,952 priority patent/US9577551B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/12Control or stabilisation of current

Definitions

  • the present invention relates to a motor drive device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-72876
  • a motor drive device that controls a current flowing through a coil of a motor, wherein a comparison unit that compares a current flowing through the coil and an input control current is compared with a comparison between the comparison unit According to the result, an operation selection unit that selects any one of a driving state, a regenerative state, and a braking state, an energization mode for passing a current to the coil, and a stop mode for stopping a current flowing to the coil
  • the coil is driven in the operation state selected by the operation selection unit, and the designation signal designating the stop mode is received.
  • a drive unit that drives the coil in the braking state, and a start of a designation signal that designates the stop mode or a start of a period in which the control current is zero.
  • FIG. 1 is a diagram illustrating an overall configuration of a motor drive device 10.
  • FIG. 3 is a diagram illustrating a configuration of a control unit 26.
  • FIG. 3 is a diagram illustrating a configuration of a setting unit 14.
  • FIG. It is a figure which shows the relationship between the designation
  • FIG. 2 is a diagram illustrating an overall configuration of a motor driving device 60.
  • 6 is a diagram illustrating a configuration of a setting unit 62.
  • FIG. It is a timing diagram in a stop mode. It is a figure which shows the relationship between an electric current mode and the electric current which flows into the coil. It is a figure explaining the whole structure of the motor drive device. It is a figure which shows the relationship between an electric current mode and the electric current which flows into the coil.
  • FIG. 1 is a diagram illustrating the overall configuration of the motor drive device 10.
  • the motor driving device 10 controls a current flowing through a driving coil 90 such as a stepping motor.
  • a driving coil 90 such as a stepping motor.
  • the motor drive device 10 receives the designation signal MSO for designating a current mode including an energization mode for causing a current to flow through the coil 90 and a stop mode for stopping the current flowing to the coil 90, and controls the current of the coil 90. .
  • the motor drive device 10 designates the stop mode by delaying the designation signal MS that designates the stop mode, and continues the energization mode for a while after receiving the designation of the stop mode.
  • the time from when the designated signal MS is output until the current is stopped is shortened.
  • the motor driving device 10 includes a clock output unit 12, a setting unit 14, a D / A converter 16, a comparison unit 18, a setting unit 14, an H bridge circuit 22, a sense resistor 24, and a control unit 26. Prepare.
  • the clock output unit 12 is connected to the control unit 26.
  • the clock output unit 12 outputs a clock CLK for controlling the motor driving device 10 to the control unit 26.
  • the setting unit 14 is connected to the D / A converter 16.
  • the setting unit 14 outputs the control current value DIN to the D / A converter 16.
  • the control current value DIN is a digital value of the current passed through the coil 90, and is a value for determining which operating state to use.
  • the D / A converter 16 is connected to the comparison unit 18.
  • the D / A converter 16 converts the control voltage CV corresponding to the control current value DIN output from the setting unit 14 from analog to analog, and outputs it to the non-inverting input of the comparison unit 18.
  • the control voltage CV corresponding to the analog-converted control current value DIN is rotated at a constant speed, the control voltage CV changes with time along a sine wave or a cosine wave.
  • the setting unit 14 is connected to the control unit 26.
  • the setting unit 14 outputs a designation signal MSO that designates the current mode.
  • the current mode includes an energization mode having a forward direction mode and a reverse direction mode, and a stop mode.
  • the energization mode is a mode in which a current is passed through the coil 90.
  • the stop mode is a mode in which the current flowing through the coil 90 is stopped.
  • the inverting input of the comparison unit 18 is connected to the sense resistor 24.
  • the comparison unit 18 compares the control voltage CV corresponding to the control current value DIN analog-converted by the D / A converter 16 and input to the non-inverting input, and the sense voltage SV corresponding to the sense current flowing through the sense resistor 24. To do. In other words, the comparison unit 18 compares the magnitude of the control current with the magnitude of the sense current.
  • the sense current is the same current that flows through the coil 90.
  • the output side of the comparison unit 18 is connected to the control unit 26.
  • the comparison unit 18 outputs a comparison result CR between the control current and the sense current to the control unit 26.
  • the comparison result CR becomes a high level when the sense current is larger than the control current, and becomes a low level when the sense current is smaller than the control current.
  • the H bridge circuit 22 includes four transistors Tr1, Tr2, Tr3, and Tr4 that function as switches.
  • the on-resistances of the transistors Tr1, Tr2, Tr3, and Tr4 are, for example, several hundred m ⁇ .
  • the resistance of the coil 90 is several hundred m ⁇ to several ⁇ .
  • the drain of the transistor Tr1 is connected to the power source. Therefore, the power supply voltage VDD is applied to the drain of the transistor Tr1Tr2.
  • the source of the transistor Tr1 is connected to one end of the coil 90.
  • the drain of the transistor Tr2 is connected to the power source. Accordingly, the power supply voltage VDD is applied to the drain of the transistor Tr2.
  • the source of the transistor Tr2 is connected to the other end of the coil 90.
  • the drain of the transistor Tr3 is connected to one end of the coil 90 and the drain of the transistor Tr1.
  • the source of the transistor Tr3 is connected to one end of the sense resistor 24.
  • the drain of the transistor Tr4 is connected to the other end of the coil 90 and the source of the transistor Tr2.
  • the source of the transistor Tr4 is connected to one end of the sense resistor 24. Note that the diodes Di1, Di2, Di3, and Di4 connected in parallel to the transistors Tr1, Tr2, Tr3, and Tr4 are parasitic diodes formed in structure.
  • the other end of the sense resistor 24 is grounded to the reference potential.
  • One end of the sense resistor 24 is connected to the sources of the transistors Tr3 and Tr4 of the H bridge circuit 22 and the inverting input of the comparison unit 18. Therefore, the sense voltage SV corresponding to the same sense current as the current flowing through the coil 90 is input to the inverting input of the comparison unit 18.
  • the control unit 26 turns on the transistors Tr1, Tr2, Tr3, and Tr4 based on the clock CLK output from the clock output unit 12, the comparison result CR input from the comparison unit 18, and the current mode designation signal. Control signals SC1, SC2, SC3 and SC4 for switching off / off are output. Thereby, the control unit 26 controls the value and direction of the current flowing through the coil 90.
  • FIG. 2 is a diagram illustrating the configuration of the control unit 26. As shown in FIG. 2, the control unit 26 includes an operation selection unit 30 and a drive unit 34.
  • the input side of the operation selection unit 30 is connected to the output side of the comparison unit 18 and the output side of the clock output unit 12. Further, the output side of the operation selection unit 30 is connected to the input side of the drive unit 34.
  • the operation selection unit 30 is in any one of a driving state (Charge Drive state), a regenerative state (Fast Decay state), and a braking state (Slow Decay state or Break state) according to the comparison result CR of the comparison unit 18.
  • the operation state is selected and the selection result is output to the drive unit 34.
  • a current is supplied from the power source to the coil 90.
  • the regenerative state current is regenerated from the coil 90 to the power source to charge the power source.
  • the capacitor may be charged instead of the power source.
  • current is circulated through a current path including the coil 90.
  • the operation selection unit 30 includes a one-shot unit 40, an SR latch unit 42, a NOT circuit 44, a D-FF unit 46, and an AND circuit 48.
  • the one-shot unit 40 acquires the clock CLK.
  • the one-shot unit 40 outputs a blanking pulse BP including a rising pulse shorter than the rising pulse of the acquired clock CLK to the SR latch unit 42 and the NOT circuit 44.
  • the Set port of the SR latch unit 42 is connected to the comparison unit 18.
  • the Set port of the SR latch unit 42 acquires the comparison result CR from the comparison unit 18.
  • the Reset port of the SR latch unit 42 is connected to the one-shot unit 40.
  • the Reset port of the SR latch unit 42 acquires the blanking pulse BP from the one-shot unit 40.
  • the SR latch unit 42 has reset priority. Accordingly, when the blanking pulse BP is at a high level, the SR latch unit 42 outputs a latch output LO at a low level. On the other hand, when the comparison result CR is at a high level and the blanking pulse BP is at a low level, the SR latch unit 42 outputs a high level latch output LO.
  • the SR latch unit 42 holds the level of the latch output LO output to the drive unit 34 when both the comparison result CR and the blanking pulse BP are at the low level.
  • the NOT circuit 44 is connected to the one-shot unit 40.
  • the NOT circuit 44 acquires the blanking pulse BP from the one-shot unit 40.
  • the NOT circuit 44 outputs an inverted blanking pulse ABP obtained by inverting the acquired blanking pulse BP to the D-FF unit 46 and the AND circuit 48.
  • the data port of the D-FF unit 46 acquires the comparison result CR from the comparison unit 18.
  • the clock port of the D-FF unit 46 acquires the inverted blanking pulse ABP from the NOT circuit 44.
  • the D-FF unit 46 outputs the comparison result CR at the rising edge of the inverted blanking pulse ABP, that is, the falling edge of the blanking pulse BP, as the FF output FF, and holds it until the next rising edge of the inverted blanking pulse ABP.
  • the AND circuit 48 is connected to the D-FF unit 46 and the NOT circuit 44.
  • the AND circuit 48 acquires the FF output FF from the D-FF unit 46 and the inverted blanking pulse ABP from the NOT circuit 44, and outputs a logical product. That is, the AND circuit 48 outputs a high level Fast output FO to the drive unit 34 when both the FF output FF and the inverted blanking pulse ABP are at a high level.
  • the AND circuit 48 outputs a low-level Fast output FO to the drive unit 34 when either the FF output FF or the inverted blanking pulse ABP is at a low level.
  • the operation selection unit 30 outputs four combinations of the high level and low level of the latch output LO and the high level and low level of the Fast output FO to the drive unit 34 as the selection result of the operation state.
  • the output of the operation selection unit 30 means a driving state.
  • the output of the operation selection unit 30 means a regenerative state.
  • the output of the operation selection unit 30 means a braking state.
  • the drive unit 34 receives a designation signal MSO that designates a current mode including an energization mode in which a current is passed through the coil 90 and a stop mode in which the current passed through the coil 90 is stopped.
  • a designation signal MSO that designates a current mode including an energization mode in which a current is passed through the coil 90 and a stop mode in which the current passed through the coil 90 is stopped.
  • the drive unit 34 drives the coil 90 in the operation state selected by the operation selection unit 30.
  • the drive unit 34 drives the coil 90 in the braking state.
  • FIG. 3 is a diagram illustrating the configuration of the setting unit 14.
  • the setting unit 14 includes an instruction unit 36 and a delay control unit 32.
  • the instruction unit 36 When the control current becomes 0, the instruction unit 36 outputs a stop signal SS that delays the stop mode separately from the designation signal MS.
  • the instruction unit 36 When the control current becomes zero, the instruction unit 36 outputs a high level stop signal SS.
  • the delay control unit 32 is connected to the instruction unit 36.
  • the delay control unit 32 outputs the designation signal MS to the drive unit 34 without delay while receiving the designation signal MS designating the energization mode in the current mode.
  • the delay control unit 32 delays the designation signal MS for designating the stop mode for the drive unit 34.
  • the delay control unit 32 includes a D-FF unit 50, a delay unit 52, a NOT circuit 54, an AND circuit 56, and a switch 58.
  • the data port of the D-FF unit 50 acquires the designation signal MS from the instruction unit 36.
  • the clock port of the D-FF unit 50 acquires the stop signal SS from the instruction unit 36.
  • the output port of the D-FF unit 50 is connected to the switch 58.
  • the output port of the D-FF unit 50 holds the data port input at the rising edge of the stop signal SS input to the clock port, and outputs the data port to the switch 58.
  • the stop signal SS rises when the control current becomes zero, the D-FF unit 50 always outputs the designation signal MS for designating the energization mode to the switch 58.
  • the delay unit 52 is connected to the instruction unit 36.
  • the delay unit 52 acquires the stop signal SS from the instruction unit 36.
  • the delay unit 52 outputs a delay signal DS obtained by delaying the stop signal SS for a predetermined delay time ⁇ t to the NOT circuit 54.
  • the delay time ⁇ t is shorter than the time when the control current should be 0, that is, the time when the stop signal SS is at the low level.
  • the delay time ⁇ t is a time during which the current flowing through the coil 90 can be reduced to 0 by the regenerative state. It should be noted that the delay time ⁇ t is preferably longer than shorter than the time during which the current flowing through the coil 90 can be made zero by the regenerative state.
  • the NOT circuit 54 is connected to the delay unit 52.
  • the NOT circuit 54 acquires the delay signal DS delayed by the delay unit 52.
  • the NOT circuit 54 outputs an inverted delay signal ADS obtained by inverting the delay signal DS.
  • the AND circuit 56 is connected to the instruction unit 36 and the NOT circuit 54.
  • the AND circuit 56 acquires the stop signal SS from the setting unit 14, acquires the inverted delay signal ADS from the NOT circuit 54, and outputs a logical product of these signals.
  • the AND circuit 56 outputs a high-level switching signal CS when both the stop signal SS and the inverted delay signal ADS are at a high level. Therefore, the AND circuit 56 outputs the high-level switching signal CS during the delay time ⁇ t after obtaining the stop signal SS, and outputs the low-level switching signal CS during other times.
  • the switch 58 is connected to the AND circuit 56.
  • the switch 58 acquires the switching signal CS from the AND circuit 56.
  • the switch 58 switches the connection destination of the drive unit 34 between the instruction unit 36 and the D-FF unit 50 in accordance with the switching signal CS.
  • the switch 58 acquires the high-level switching signal CS
  • the switch 58 connects the output port of the D-FF unit 50 and the drive unit 34.
  • the switch 58 acquires the low-level switching signal CS
  • the switch 58 connects the instruction unit 36 and the drive unit 34. Accordingly, the switch 58 connects the drive unit 34 to the D-FF unit 50 during the delay time ⁇ t after the stop signal SS is input, and connects the drive unit 34 to the instruction unit 36 during other times. .
  • the delay control unit 32 outputs the energization mode designation signal held by the D-FF unit 50 to the drive unit 34 for the delay time ⁇ t after the stop signal SS is input, and the stop signal After the delay time ⁇ t has elapsed since the SS was input, a stop mode designation signal is output to the drive unit 34.
  • the delay control unit 32 delays the designation signal MS designating the stop mode for the delay time ⁇ t, and then outputs it to the drive unit 34.
  • FIG. 4 is a diagram illustrating a relationship between the designation signal MS output from the setting unit 14 and the control current.
  • the horizontal axis in FIG. 4 is time.
  • the upper part of FIG. 4 shows the designation signal MS that the setting unit 14 outputs.
  • the lower part of FIG. 4 shows the control current output by the setting unit 14.
  • the setting unit 14 when the control current is not 0, the setting unit 14 outputs a designation signal MS that designates the energization mode.
  • the setting unit 14 outputs a designation signal MS that designates the stop mode while the control current is zero.
  • FIG. 5 is a diagram for explaining a current path in the positive direction mode of the energization mode.
  • the forward direction mode of the energization mode includes a driving state, a regeneration state, and a braking state.
  • the drive unit 34 turns on the transistors Tr1 and Tr4 and turns off the transistors Tr2 and Tr3.
  • current flows through the current path CP11 from the power source in the order of the transistor Tr1, the coil 90, the transistor Tr4, and the sense resistor 24.
  • the current flowing through the coil 90 can be measured from the voltage of the sense resistor 24.
  • the drive unit 34 turns on the transistors Tr3 and Tr2, and turns off the transistors Tr1 and Tr4.
  • current flows through the current path CP12a in the order of the sense resistor 24, the transistor Tr3, the coil 90, and the transistor Tr2.
  • the drive unit 34 may turn on the transistor Tr3 and turn off the transistor Tr2.
  • current flows through the current path CP12b in the order of the sense resistor 24, the transistor Tr3, the coil 90, and the parasitic diode Di2 of the transistor Tr2.
  • the current is preferably passed through the current path CP12a including the transistor Tr2 having a low resistance from the viewpoint of suppressing heating of the motor or the like.
  • the drive unit 34 turns on the transistors Tr3 and Tr4 and turns off the transistors Tr1 and Tr2.
  • the current flows through the current path CP13 in the order of the transistor Tr3, the coil 90, and the transistor Tr4.
  • the current flowing through the coil 90 slowly decreases due to the loss associated with the circulation.
  • FIG. 6 is a diagram illustrating a current path in the stop mode after the forward direction mode.
  • the stop mode includes a braking state.
  • the transistors Tr3 and Tr4 are turned on. Thereby, the current flows through the current path CP13 in the order of the transistor Tr3, the coil 90, and the transistor Tr4. Thereby, in the braking state, the current flowing through the coil 90 gradually decreases to zero.
  • FIG. 7 is a diagram for explaining a current path in the reverse mode of the energization mode.
  • the reverse mode when a current is passed in the forward direction in the forward direction mode, the motor rotation direction is maintained, and when the motor is rotated in the same direction as the forward direction mode, the current flowing in the coil 90 is the forward direction. This is the mode opposite to the mode.
  • the reverse mode of the energization mode includes a drive state, a regeneration state, and a braking state.
  • the driving unit 34 turns on the transistors Tr2 and Tr3. Thereby, in the driving state, the current flows through the current path CP21 from the power source in the order of the transistor Tr2, the coil 90, the transistor Tr3, and the sense resistor 24.
  • the drive unit 34 turns on the transistors Tr1 and Tr4. In this regenerative state, the current flows through the current path CP22a in the order of the sense resistor 24, the transistor Tr4, the coil 90, and the transistor Tr1. In the regenerative state, the drive unit 34 may turn on the transistor Tr4 and turn off the transistor Tr1. In this regenerative state, current flows through the current path CP22b in the order of the sense resistor 24, the transistor Tr4, the coil 90, and the parasitic diode Di1 of the transistor Tr1. In the braking state, the drive unit 34 turns on the transistors Tr3 and Tr4. Thereby, in the braking state, the current flows through the current path CP23 in the order of the transistor Tr4, the coil 90, and the transistor Tr3.
  • FIG. 8 is a diagram for explaining a current path in the stop mode after the reverse mode.
  • the stop mode includes a braking state.
  • the transistors Tr3 and Tr4 are turned on. Thereby, the current flows through the current path CP23 in the order of the transistor Tr4, the coil 90, and the transistor Tr3.
  • FIG. 9 is a timing chart in the energization mode. Note that the energization mode shown in FIG. 9 is the forward direction mode. The uppermost part of FIG. 9 shows an operation state among a drive state, a regenerative state, and a brake state among the operation states.
  • the second stage from the top shows the clock CLK output from the clock output unit 12.
  • the third row from the top shows the blanking pulse BP output from the one-shot unit 40.
  • the fourth row from the top shows a sense current (solid line) flowing through the sense resistor 24 indicated by a solid line, and a control current (bold dotted line) corresponding to the control current value output by the setting unit 14.
  • the fourth row from the top shows the regenerative current (one-dot chain line) flowing through the coil 90 in the regenerative state and the braking current (two-dot chain line) flowing through the coil 90 in the braking state.
  • the fifth row from the top shows the comparison result CR output from the comparison unit 18.
  • the sixth stage from the top shows the latch output LO output from the SR latch unit 42.
  • the seventh row from the top shows the Fast output FO output from the AND circuit 48.
  • the one-shot unit 40 outputs a blanking pulse BP having a high level shorter than the high level of the clock CLK in synchronization with the rising of the clock CLK. To do.
  • the SR latch unit 42 outputs the latch output LO at the low level.
  • the drive unit 34 drives the transistors Tr1 to Tr4 in the drive state.
  • the current flows along the current path CP ⁇ b> 11 including the coil 90.
  • the current flowing through the coil 90 can be measured by the voltage of the sense resistor 24.
  • the latch output LO is maintained at the low level. Even if the current is made to flow in the driving state while the blanking pulse BP is at the high level, It shows that the sense current was smaller than the control current. In this case, even after the high level of the blanking pulse BP ends, the driving unit 34 controls the transistors Tr1 to Tr4 to be in a driving state and causes a current to flow through the coil 90.
  • the sense current increased according to the driving state becomes equal to or higher than the control current, and the comparison result CR acquired by the Set port of the SR latch unit 42 becomes high level.
  • the SR latch unit 42 outputs a high level latch output LO.
  • the drive unit 34 drives the transistors Tr1 to Tr4 in a braking state.
  • the drive unit 34 switches from the drive state to the braking state asynchronously with the clock CLK.
  • the current flows along the current path CP ⁇ b> 13 including the coil 90.
  • the sense current that is greater than or equal to the control current gradually decreases.
  • the latch output LO is maintained at a high level and the Fast output FO is maintained at a low level. Maintain state. Since the sense current cannot be measured in the braking state, the sense current is zero.
  • the drive unit 34 drives the transistors Tr1 to Tr4 in the drive state.
  • the D-FF unit 46 uses the high-level comparison result CR input to the data port as an FF output FF and an AND circuit Output to 48.
  • the comparison result CR maintains a high level for a minute time from the time t5.
  • the AND circuit 48 outputs a fast output FO at a high level.
  • the drive unit 34 controls the transistors Tr1 to Tr4 to be in a regenerative state. As a result, as shown in FIG. 5, a current flows along the current path CP12a including the coil 90. Note that the drive unit 34 may control the current to flow along the current path CP12b.
  • the drive unit 34 can control the current in the regenerative state to increase the decrease in the coil current. Thereby, the drive part 34 can make the electric current of a coil below control current rapidly.
  • the decrease in the coil current is small. The time to become longer.
  • the driving unit 34 controls the driving state by resetting the latch output LO to the low level as the blanking pulse BP rises.
  • the comparison result CR is at the low level, so the latch output LO is maintained at the low level.
  • the drive unit 34 maintains the drive state even after the blanking pulse BP becomes low level. As a result, the coil current gradually increases.
  • FIG. 10 is a timing chart in the stop mode. The uppermost part of FIG. 10 shows the control current.
  • the second row from the top shows the designation signal MS output from the instruction unit 36.
  • the third row from the top shows the stop signal SS output from the instruction unit 36.
  • the fourth row from the top shows the delay signal DS output from the delay unit 52.
  • the fifth stage from the top shows the inverted delay signal ADS output from the NOT circuit 54.
  • the sixth stage from the top shows the switching signal CS output from the AND circuit 56.
  • the seventh row from the top shows the designation signal MSO output from the setting unit 14.
  • the AND circuit 56 Since the stop signal SS is low level until the control current becomes 0, the AND circuit 56 outputs a low level switching signal CS. Thereby, the switch 58 directly connects the instruction unit 36 and the drive unit 34. Therefore, the instruction unit 36 outputs the designation signal MS directly to the drive unit 34 until the control current becomes zero.
  • the instruction unit 36 When the control current becomes zero, the instruction unit 36 outputs a designation signal MS for designating the stop mode, and also outputs a high level stop signal SS as shown in the third row from the top in FIG. Output to the clock port.
  • the stop signal SS rises, since the designation signal MS for designating the energization mode is still input to the data port of the D-FF unit 50, the D-FF unit 50 holds it after the rise of the stop signal SS.
  • the designation signal MS for designating the current conduction mode is output.
  • the delay unit 52 When the delay unit 52 acquires the stop signal SS from the instruction unit 36, the delay unit 52 outputs a delay signal DS obtained by delaying the stop signal SS by the delay time ⁇ t to the NOT circuit 54 as shown in the fourth stage from the top in FIG. .
  • the NOT circuit 54 obtains the delay signal DS from the delay unit 52
  • the inverted delay signal ADS obtained by inverting the delay signal DS is input to one input of the AND circuit 56 as shown in the fifth stage from the top in FIG. To do.
  • the other input of the AND circuit 56 acquires the stop signal SS directly from the instruction unit 36. Accordingly, both inputs of the AND circuit 56 become high level for the delay time ⁇ t after the stop signal SS becomes high level. Accordingly, the output of the AND circuit 56 becomes high level during the delay time ⁇ t after the stop signal SS becomes high level.
  • the switch 58 connects the drive unit 34 and the D-FF unit 50 during the delay time ⁇ t.
  • the drive unit 34 retains and outputs the designation signal MS that is held by the D-FF unit 50.
  • the acquisition of the designation signal MS that designates the energization mode before the designation of the stop mode is continued for the delay time ⁇ t. Therefore, since the drive unit 34 continues the energization mode specified before the stop mode is specified and drives the coil 90, the coil 34 can be driven by any one of the driving state, the regenerative state, and the braking state shown in FIG. 90 currents are controlled.
  • the control current is 0, the drive unit 34 performs control in the regenerative state until the delay time ⁇ t has elapsed. As a result, the drive unit 34 can rapidly bring the current flowing through the coil 90 close to zero.
  • the delay unit 52 When the delay time ⁇ t elapses, the delay unit 52 outputs the high level delay signal DS, so that the NOT circuit 54 outputs the low level inverted delay signal ADS. As a result, one input of the AND circuit 56 becomes low level, and the AND circuit 56 outputs a low level switching signal CS. Accordingly, since the switch 58 directly connects the instruction unit 36 and the drive unit 34, the drive unit 34 acquires the designation signal MS that designates the stop mode output by the instruction unit 36. Thus, the drive unit 34 switches from the energization mode to the stop mode, and thus controls the current of the coil 90 according to the braking state shown in FIG.
  • the drive unit 34 acquires the designation signal MS output from the instruction unit 36 without delay, the drive unit 34 also acquires the end of the designation signal MS designating the stop mode without delay. Thereby, the drive part 34 will complete
  • FIG. 11 is a diagram showing the relationship between the current mode and the current flowing through the coil 90.
  • the uppermost part of FIG. 11 shows the control current output by the instruction unit 36.
  • the second row from the top shows the designation signal MS output from the instruction unit 36.
  • the third row from the top shows the designation signal MS acquired by the drive unit 34.
  • the fourth row from the top shows the current flowing through the coil 90 when the designation signal MS for designating the stop mode according to the present embodiment is delayed.
  • the fifth row from the top shows the current flowing in the coil 90 when the designation signal MS designating the stop mode is not delayed for comparison with the present embodiment.
  • the instruction unit 36 when the control current becomes 0, the instruction unit 36 outputs a designation signal MS for designating the stop mode, but the drive unit 34 designates designating the stop mode after the delay time ⁇ t has elapsed. A signal MS is acquired. Accordingly, the drive unit 34 causes a current to flow through the coil 90 in the regenerative state in the energization mode until the delay time ⁇ t has elapsed after the control current becomes zero. As a result, as shown in the fourth row from the top in FIG. 11, the drive unit 34 can quickly reduce the coil current to zero.
  • the drive unit 34 acquires the designation signal MS designating the stop mode output from the instruction unit 36 without delay
  • the control current becomes 0 and at the same time, the energization mode is switched to the stop mode. Therefore, in the stop mode, a current is passed through the coil 90 in the braking state, so that the time until the current flowing through the coil 90 is delayed is delayed compared to the case where the stop mode is delayed as in the present embodiment.
  • the time T is longer than the case.
  • the drive unit 34 turns off the transistors other than the regenerative current path in the regenerative state selected within the delay time ⁇ t, and turns off the transistors on the power source side of the regenerative current path.
  • the off state may be set to a regenerative state in which a part of the regenerative current path is formed with a parasitic diode connected in parallel to the transistor on the power source side of the regenerative current path.
  • the transistors Tr1 and Tr4 other than the regenerative current path are turned off, the transistor Tr3 is turned on, and the power supply for the regenerative current path
  • the side transistor Tr2 is turned off, and the regenerative state that forms part of the path of the regenerative current may be performed by the parasitic diode Di2 connected in parallel to the power supply side transistor Tr2 of the path of the regenerative current.
  • the drive unit 34 turns on all the transistors in the regenerative current path and turns off the transistors other than the regenerative current path.
  • the drive unit 34 turns on all the transistors in the regenerative current path and turns off the transistors other than the regenerative current path.
  • the drive unit 34 turns on all the transistors in the regenerative current path and turns off the transistors other than the regenerative current path.
  • the drive unit 34 when the drive unit 34 receives the designation signal designating the stop mode, the drive unit 34 turns off the transistor on the opposite side to the power supply of the regenerative current path flowing in the regenerative state selected within the delay time ⁇ t.
  • the transistor on the opposite side to the power source may be turned on to enter a regenerative state.
  • the transistor on the opposite side to the power source is, for example, a transistor on the opposite side of the power source with the coil 90 interposed therebetween.
  • the drive unit 34 turns on the transistor Tr2 and generates the regenerative current that flows in the regenerative state selected within the delay time ⁇ t. It is only necessary to turn off the transistor Tr3 on the opposite side to the power source of the path and to bring the parasitic diode Di3 connected in parallel to the power source of the regenerative current path and the transistor Tr3 on the opposite side into a regenerative state that forms part of the path of the regenerative current.
  • the drive unit 34 turns on the transistor Tr3 and the transistor Tr2 on the opposite side to the power source of the regenerative current path to enter the regenerative state. Good.
  • the paths of the regenerative current are CP12b and CP22b, respectively, so that the current can be regenerated through the parasitic diodes Di1 and Di2 of the transistors Tr1 and Tr2.
  • the motor drive device 10 can prevent backflow.
  • the current path in the regenerative state is CP12b and CP22b, and other than the delay time ⁇ t, for example, the current path in the regenerative state in the energization mode is CP12a and CP22a. Backflow can be prevented, and power loss during regeneration in a period other than the delay time ⁇ t can be minimized.
  • the transistor here is an example of a switch.
  • FIG. 12 is a diagram illustrating the overall configuration of the motor driving device 60.
  • the motor driving device 60 controls a current flowing through a driving coil 90 such as a stepping motor.
  • a driving coil 90 such as a stepping motor.
  • the motor drive device 60 receives the designation signal MS for designating the current mode including the energization mode for flowing current to the coil 90 and the stop mode for stopping the current flowing to the coil 90, and controls the current of the coil 90.
  • the motor drive device 60 shortens the time until the current is stopped by setting the control current to 0 before receiving the designation of the stop mode by advancing the control current value DIN by a predetermined time.
  • the setting unit 62 is connected to the D / A converter 16.
  • the setting unit 62 outputs the control current value DINO to the D / A converter 16.
  • the control current value DINO is a digital value of a current flowing through the coil 90, and is a value for determining which operation state to use.
  • the setting unit 62 is connected to the control unit 26.
  • the setting unit 62 outputs a designation signal MS that designates the current mode.
  • the current mode includes an energization mode having a forward direction mode and a reverse direction mode, and a stop mode.
  • the energization mode is a mode in which a current is passed through the coil 90.
  • the stop mode is a mode in which the current flowing through the coil 90 is stopped.
  • FIG. 13 is a diagram illustrating the configuration of the setting unit 62.
  • the setting unit 62 includes an instruction unit 36 and a shift unit 64.
  • the instruction unit 36 outputs a shift signal FS that advances the control current value DIN separately from the control current value DIN before the control current becomes zero.
  • the instruction unit 36 outputs a high level shift signal FS before the control current becomes zero.
  • the shift unit 64 is connected to the instruction unit 36. While receiving the non-zero control current value DIN, the shift unit 64 outputs the control current value DIN to the D / A converter 16 without advancing the control current value DIN.
  • the shift unit 64 advances the control current value DIN immediately before receiving the control current of 0.
  • the shift unit 64 is connected to the instruction unit 36.
  • the shift unit 64 acquires the shift signal FS from the instruction unit 36.
  • the shift unit 64 outputs to the D / A converter 16 a control current value DINO in which a section in which the control current value DIN is 0 becomes 0 earlier by a predetermined early time ⁇ t.
  • the shift unit 64 accelerates the start of the period in which the control current is zero.
  • the shift unit 64 does not advance the end of the period in which the control current is zero.
  • the early time ⁇ t is shorter than the time when the control current should be zero.
  • the early time ⁇ t is a time during which the current flowing through the coil 90 can be reduced to 0 by the regenerative state.
  • the early time ⁇ t is preferably longer than a short time with respect to a time during which the current flowing through the coil 90 can be reduced to 0 by the regenerative state.
  • the shift unit 64 may change the early time ⁇ t that accelerates the start of the period in which the control current is zero.
  • the setting unit 62 outputs to the D / A converter 16 a control current value DINO with the control current set to 0 before the earlier time ⁇ t than the designation signal MS designating the stop mode.
  • FIG. 14 is a timing chart in the stop mode.
  • the uppermost part of FIG. 14 shows the control current.
  • the second row from the top shows the designation signal MS output from the instruction unit 36.
  • the third row from the top shows the shift signal FS output from the instruction unit 36.
  • the fourth stage from the top shows the control current output from the shift unit 64.
  • the shift signal FS is low level until just before the control current becomes zero. Accordingly, the shift unit 64 outputs the control current value DIN directly to the D / A converter 16 as shown in the fourth stage from the top in FIG.
  • the shift unit 64 If the control current becomes 0 before an early time ⁇ t, the shift signal FS becomes high level. The time when the drive unit side control current becomes 0 is shifted by the earlier time ⁇ t than the control current shown in the first stage from the top of FIG. Therefore, as shown in the fourth stage from the top in FIG. 14, the shift unit 64 outputs a drive unit side control current of 0 to the D / A converter 16. When the control current becomes zero, the instruction unit 36 outputs a designation signal MS that designates the stop mode. Accordingly, the shift unit 64 outputs the control current directly to the D / A converter 16 as the drive unit side control current, as shown in the fourth stage from the top in FIG.
  • the control current value DIN becomes 0, and the control unit DIN converts the control current value DINO at which the control current becomes 0 earlier than the output of the designation signal MS for designating the stop mode by the early time ⁇ t. 16 is output. Therefore, since the drive unit 34 drives the coil 90 with the control current set to 0 before the stop mode is designated, for example, the current of the coil 90 is controlled by any one of the drive state, the regenerative state, and the braking state shown in FIG. To do. In particular, since the control current is 0, the drive unit 34 controls in the regenerative state during the early time ⁇ t. As a result, the drive unit 34 can rapidly bring the current flowing through the coil 90 close to zero.
  • the drive unit 34 acquires the designation signal MS that designates the stop mode output from the instruction unit 36.
  • the drive unit 34 switches from the energization mode to the stop mode, and thus controls the current of the coil 90 according to the braking state shown in FIG.
  • the drive unit 34 also acquires the end of the designation signal MS that designates the stop mode.
  • the drive part 34 will complete
  • FIG. 15 is a diagram showing the relationship between the current mode and the current flowing through the coil 90.
  • the uppermost part of FIG. 15 shows the control current output from the instruction unit 36.
  • the second row from the top shows the control current on the drive unit side output from the shift unit 64.
  • the third row from the top shows the designation signal MS output from the instruction unit 36.
  • the fourth row from the top shows the current flowing through the coil 90 when the section in which the control current according to the present embodiment is 0 is shifted.
  • the fifth row from the top shows the current flowing through the coil 90 when the section where the control current is 0 is not shifted for comparison with the present embodiment.
  • the instruction unit 36 when the control current becomes zero, the instruction unit 36 outputs a designation signal MS designating the stop mode, but the shift unit 64 is earlier than outputting the designation signal MS designating the stop mode.
  • a control current that becomes 0 is acquired before time ⁇ t. Therefore, the drive unit 34 has a control current of 0 before the time ⁇ t before the output of the designation signal MS designating the stop mode, and causes a current to flow through the coil 90 in the regenerative state of the energization mode.
  • the drive unit 34 can quickly reduce the coil current to zero.
  • the drive unit 34 acquires the control current output from the instruction unit 36 without shifting, the control current becomes 0 and at the same time, the energization mode is switched to the stop mode. Therefore, in the stop mode, since a current flows through the coil 90 in the braking state, the time until the current flowing through the coil 90 becomes zero is delayed as compared with the case where the control current is shifted as in the present embodiment. The time T is longer than the case.
  • FIG. 16 is a diagram illustrating the overall configuration of the motor driving device 70.
  • the current flowing in the driving coil 90 such as the motor driving device 70 and the stepping motor is controlled.
  • the motor has a plurality of coils 90, only one coil 90 is shown as a representative in FIG. 16 for convenience of explanation.
  • the motor drive device 70 receives the designation signal MS for designating a current mode including an energization mode in which a current is passed through the coil 90 and a stop mode in which the current passed through the coil 90 is stopped, and controls the current in the coil 90. .
  • the motor drive device 70 After receiving the designation signal designating the energization mode, the motor drive device 70 receives the designation signal designating the reverse energization mode before receiving the designation signal MS designating the stop mode. In the meantime, the time until the current is stopped is shortened by continuing the energization mode.
  • Receiving the designation signal designating the reverse energization mode means that after receiving the designation signal designating the energization mode in the forward direction mode and before receiving the designation signal MS designating the stop mode, the energization mode in the reverse mode A designation signal that designates the energization mode in the forward direction mode after receiving the designation signal that designates the stop mode or the designation signal MS that designates the stop mode after receiving the designation signal that designates the energization mode in the reverse direction mode. Including receiving.
  • a microcomputer 72 is connected to the D / A converter 16.
  • the microcomputer 72 outputs the control current value DIN to the D / A converter 16.
  • the control current value DIN is a digital value of the current passed through the coil 90, and is a value for determining which operating state to use.
  • the microcomputer 72 is connected to the control unit 26.
  • the microcomputer 72 outputs a designation signal MS that designates the current mode.
  • the current mode includes an energization mode having a forward direction mode and a reverse direction mode, and a stop mode.
  • the energization mode is a mode in which a current is passed through the coil 90.
  • the stop mode is a mode in which the current flowing through the coil 90 is stopped.
  • the microcomputer 72 sets the designation signal for designating the reverse energization mode after receiving the designation signal for designating the stop mode after receiving the designation signal for designating the energization mode based on the preset set time. To do. For example, after receiving the designation signal designating the energization mode in the forward direction mode, the microcomputer 72 sets the designation signal designating the energization mode in the reverse direction mode before receiving the designation signal MS designating the stop mode. Alternatively, the microcomputer 72 sets a designation signal for designating the energization mode in the forward direction mode after receiving the designation signal designating the energization mode in the reverse mode and before receiving the designation signal MS designating the stop mode. The microcomputer 72 may change the set time for setting the designation signal for designating the reverse energization mode before receiving the designation signal MS for designating the stop mode after receiving the designation signal designating the energization mode. Good.
  • FIG. 17 is a diagram showing the relationship between the current mode and the current flowing through the coil 90.
  • the top row in FIG. 17 shows the control current output from the microcomputer 72.
  • Signal MS is shown.
  • the third row from the top shows the designation signal MS acquired by the drive unit 34.
  • the fourth row from the top shows the current flowing in the coil 90 when the designation signal designating the reverse energization mode is received before the designation signal MS designating the stop mode according to the present embodiment.
  • the current flowing through the coil 90 when the designation signal designating the reverse energization mode is not received before the designation signal MS designating the stop mode is received. Show.
  • the microcomputer 72 sets a designation signal for designating the reverse energization mode before outputting the designation signal MS for designating the stop mode.
  • the drive unit 34 acquires the designation signal designating the reverse energization mode before receiving the designation signal MS designating the stop mode. Therefore, the drive unit 34 causes a current to flow through the coil 90 in the regenerative state or the drive state in the energization mode until the set time ⁇ t elapses after the control current becomes zero. Thereby, as shown in the fourth row from the top in FIG. 17, the drive unit 34 can quickly reduce the coil current to zero.
  • the drive unit 34 acquires the designation signal MS for designating the stop mode output from the microcomputer 72 without additionally setting the reverse energization mode
  • the control current becomes 0 and at the same time, the energization mode is switched to the stop mode. Therefore, in the stop mode, a current is passed through the coil 90 in the braking state, so that the time until the current flowing through the coil 90 is delayed is delayed compared to the case where the stop mode is delayed as in the present embodiment.
  • the time T is longer than the case.
  • the delay control unit 32 may change the delay time ⁇ t.
  • the delay control unit 32 may set the delay time ⁇ t based on the current flowing through the coil 90 when the designation signal MS designating the stop mode is received, that is, the current flowing through the sense resistor 24.
  • the delay control unit 32 may increase the delay time ⁇ t as the current flowing through the coil 90 increases.
  • the delay control unit 32 may end the delay time ⁇ t when the current flowing through the coil 90, that is, the current flowing through the sense resistor 24 becomes equal to or lower than the reference current during the delay time ⁇ t.
  • control for setting the current flowing through the coil 90 to 0 has been described.
  • the above-described embodiment may be applied to the control when the rotation of the motor is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

 コイルに流れる電流を0にするまでの時間が長い。 モータ駆動装置は、モータのコイルに流れる電流を制御するモータ駆動装置であって、モータのコイルに流れる電流を制御するモータ駆動装置であって、前記コイルを流れる電流と入力される制御電流とを比較する比較部と、前記比較部の比較結果に応じて、駆動状態、回生状態、および、制動状態のいずれかの動作状態を選択する動作選択部と、前記コイルに電流を流す通電モード、および、前記コイルに流す電流を停止させる停止モードを含む電流モードを指定する指定信号を受け取り、前記通電モードを指定する指定信号を受け取ると、前記動作選択部が選択した動作状態で前記コイルを駆動し、前記停止モードを指定する指定信号を受け取ると、前記制動状態で前記コイルを駆動する駆動部と、前記停止モードを指定する指定信号の開始または前記制御電流が0の期間の開始を制御する設定部とを備える。

Description

モータ駆動装置
 本発明は、モータ駆動装置に関する。
 ステッピングモータ等のコイルに流れる電流を制御するモータ駆動装置であって、電流の流れを切り替える間に電流をコイルで循環させて、コイルに流す電流を停止させる技術が知られている(例えば、特許文献1参照)。
 特許文献1 特開2008-72876号公報
 しかしながら、上述の装置では、コイルの電流を停止させる場合、コイルと電源とを遮断してコイルで電流を循環させることによって、コイルに流れる電流を減衰させるので、コイルに流れる電流を0にするまでの時間が長いといった課題がある。
 本発明の第1の態様においては、モータのコイルに流れる電流を制御するモータ駆動装置であって、前記コイルを流れる電流と入力される制御電流とを比較する比較部と、前記比較部の比較結果に応じて、駆動状態、回生状態、および、制動状態のいずれかの動作状態を選択する動作選択部と、前記コイルに電流を流す通電モード、および、前記コイルに流す電流を停止させる停止モードを含む電流モードを指定する指定信号を受け取り、前記通電モードを指定する指定信号を受け取ると、前記動作選択部が選択した動作状態で前記コイルを駆動し、前記停止モードを指定する指定信号を受け取ると、前記制動状態で前記コイルを駆動する駆動部と、前記停止モードを指定する指定信号の開始または前記制御電流が0の期間の開始を制御する設定部と、を備えるモータ駆動装置を提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
モータ駆動装置10の全体構成を説明する図である。 制御部26の構成を説明する図である。 設定部14の構成を説明する図である。 設定部14が出力する指定信号MSと、制御電流との関係を示す図である。 通電モードの正方向モードにおける電流経路を説明する図である。 正方向モードの後の停止モードにおける電流経路を説明する図である。 通電モードの逆方向モードにおける電流経路を説明する図である。 逆方向モードの後の停止モードにおける電流経路を説明する図である。 通電モードにおけるタイミング図である。 停止モードにおけるタイミング図である。 電流モードと、コイル90に流れる電流との関係を示す図である。 モータ駆動装置60の全体構成を説明する図である。 設定部62の構成を説明する図である。 停止モードにおけるタイミング図である。 電流モードと、コイル90に流れる電流との関係を示す図である。 モータ駆動装置70の全体構成を説明する図である。 電流モードと、コイル90に流れる電流との関係を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<実施形態1>
 図1は、モータ駆動装置10の全体構成を説明する図である。モータ駆動装置10は、ステッピングモータ等の駆動用のコイル90に流れる電流を制御する。ここでモータは、複数のコイル90を有するが、図1においては、説明の便宜上、代表として1個のコイル90のみを記載する。モータ駆動装置10は、コイル90に電流を流す通電モード、及び、コイル90へ流す電流を停止させる停止モードを含む電流モードを指定する指定信号MSOを受けて取って、コイル90の電流を制御する。ここで、モータ駆動装置10は、停止モードを指定する指定信号MSを遅延させることによって、停止モードの指定を受けた後も、しばらくの間、通電モードを継続させることにより、停止モードを指定する指定信号MSを出力してから電流を停止させるまでの時間を短縮させる。
 モータ駆動装置10は、クロック出力部12と、設定部14と、D/Aコンバータ16と、比較部18と、設定部14と、Hブリッジ回路22と、センス抵抗24と、制御部26とを備える。
 クロック出力部12は、制御部26と接続されている。クロック出力部12は、制御部26に対してモータ駆動装置10を制御するクロックCLKを出力する。
 設定部14は、D/Aコンバータ16と接続されている。設定部14は、制御電流値DINをD/Aコンバータ16に出力する。制御電流値DINは、コイル90に流す電流のデジタル値であって、いずれの動作状態にするかを判断するための値である。
 D/Aコンバータ16は、比較部18と接続されている。D/Aコンバータ16は、設定部14から出力された制御電流値DINに対応する制御電圧CVをアナログ変換して、比較部18の非反転入力へと出力する。アナログ変換された制御電流値DINに対応する制御電圧CVは、一例として、一定速度で回転させる場合、sin波、または、cos波に沿って時間変化する。
 設定部14は、制御部26と接続されている。設定部14は、電流モードを指定する指定信号MSOを出力する。電流モードは、正方向モード及び逆方向モードを有する通電モードと、停止モードとを含む。通電モードは、コイル90に電流を流すモードである。停止モードは、コイル90に流れる電流を停止するモードである。
 比較部18の反転入力は、センス抵抗24に接続されている。比較部18は、D/Aコンバータ16によってアナログ変換されて非反転入力に入力された制御電流値DINに対応する制御電圧CV、及び、センス抵抗24に流れるセンス電流に対応するセンス電圧SVを比較する。換言すれば、比較部18は、制御電流の大きさと、センス電流の大きさとを比較する。尚、センス電流は、コイル90に流れる電流と同じ電流である。比較部18の出力側は、制御部26に接続されている。比較部18は、制御電流と、センス電流との比較結果CRを制御部26へと出力する。比較結果CRは、制御電流よりセンス電流が大きい場合、ハイレベルとなり、制御電流よりセンス電流が小さい場合、ローレベルとなる。
 Hブリッジ回路22は、スイッチとして機能する4つのトランジスタTr1、Tr2、Tr3、及び、Tr4を有する。トランジスタTr1、Tr2、Tr3、及び、Tr4のオン抵抗は、一例として、数百mΩである。一方、コイル90の抵抗は、数百mΩから数Ωである。トランジスタTr1のドレインは、電源に接続されている。従って、トランジスタTr1Tr2のドレインには、電源電圧VDDが印加される。トランジスタTr1のソースは、コイル90の一端に接続されている。トランジスタTr2のドレインは、電源に接続されている。従って、トランジスタTr2のドレインには、電源電圧VDDが印加される。トランジスタTr2のソースは、コイル90の他端に接続されている。トランジスタTr3のドレインは、コイル90の一端及びトランジスタTr1のドレインに接続されている。トランジスタTr3のソースは、センス抵抗24の一端に接続されている。トランジスタTr4のドレインは、コイル90の他端及びトランジスタTr2のソースに接続されている。トランジスタTr4のソースは、センス抵抗24の一端に接続されている。尚、トランジスタTr1、Tr2、Tr3、及び、Tr4に並列接続されているダイオードDi1、Di2、Di3、Di4は、構造上形成される寄生ダイオードである。
 センス抵抗24の他端は、基準電位に接地されている。センス抵抗24の一端は、Hブリッジ回路22のトランジスタTr3、Tr4のソース、及び、比較部18の反転入力に接続されている。従って、比較部18の反転入力には、コイル90に流れる電流と同じセンス電流に対応するセンス電圧SVが入力される。
 制御部26は、クロック出力部12から出力されたクロックCLK、比較部18から入力された比較結果CR、及び、電流モードの指定信号に基づいて、トランジスタTr1、Tr2、Tr3、及び、Tr4のオン/オフを切り替える制御信号SC1、SC2、SC3、SC4を出力する。これにより、制御部26は、コイル90に流れる電流の値及び方向を制御する。
 図2は、制御部26の構成を説明する図である。図2に示すように、制御部26は、動作選択部30と、駆動部34とを有する。
 動作選択部30の入力側は、比較部18の出力側及びクロック出力部12の出力側に接続されている。また、動作選択部30の出力側は、駆動部34の入力側と接続されている。動作選択部30は、比較部18の比較結果CRに応じて、駆動状態(Charge Drive状態)、回生状態(Fast Decay状態)、及び、制動状態(Slow Decay状態、または、Brake状態)のいずれかの動作状態を選択して、選択結果を駆動部34に出力する。駆動状態は、電源からコイル90へと電流を供給する。回生状態は、コイル90から電源へと電流を回生して、電源を充電する。尚、回生状態は、電源に代えて、キャパシタに充電してもよい。制動状態は、電流をコイル90を含む電流経路で循環させる。
 動作選択部30は、ワンショット部40と、SRラッチ部42と、NOT回路44と、D-FF部46と、AND回路48とを有する。
 ワンショット部40は、クロックCLKを取得する。ワンショット部40は、取得したクロックCLKの立ち上がりパルスよりも短い立ち上がりパルスを含むブランキングパルスBPを、SRラッチ部42及びNOT回路44に出力する。
 SRラッチ部42のSetポートは、比較部18に接続されている。SRラッチ部42のSetポートは、比較部18から比較結果CRを取得する。SRラッチ部42のResetポートは、ワンショット部40に接続されている。SRラッチ部42のResetポートは、ワンショット部40からブランキングパルスBPを取得する。SRラッチ部42は、リセット優先である。従って、SRラッチ部42は、ブランキングパルスBPがハイレベルの場合、ローレベルのラッチ出力LOを出力する。一方、SRラッチ部42は、比較結果CRがハイレベルであって、ブランキングパルスBPがローレベルの場合、ハイレベルのラッチ出力LOを出力する。SRラッチ部42は、比較結果CR及びブランキングパルスBPがともにローレベルの場合、駆動部34に出力しているラッチ出力LOのレベルを保持する。
 NOT回路44は、ワンショット部40に接続されている。NOT回路44は、ワンショット部40からのブランキングパルスBPを取得する。NOT回路44は、取得したブランキングパルスBPを反転した反転ブランキングパルスABPをD-FF部46及びAND回路48に出力する。
 D-FF部46のデータポート(=Dポート)は、比較部18に接続されている。D-FF部46のデータポートは、比較部18から比較結果CRを取得する。D-FF部46のクロックポート(=CKポート)は、NOT回路44に接続されている。D-FF部46のクロックポートは、NOT回路44から反転ブランキングパルスABPを取得する。D-FF部46は、反転ブランキングパルスABPの立ち上り、即ち、ブランキングパルスBPの立ち下がりにおける比較結果CRをFF出力FFとして出力して、次の反転ブランキングパルスABPの立ち上りまで保持する。
 AND回路48は、D-FF部46、及び、NOT回路44に接続されている。AND回路48は、D-FF部46からFF出力FF、及び、NOT回路44から反転ブランキングパルスABPを取得して、論理積を出力する。即ち、AND回路48は、FF出力FF及び反転ブランキングパルスABPの両方がハイレベルの場合、ハイレベルのFast出力FOを駆動部34に出力する。AND回路48は、FF出力FF及び反転ブランキングパルスABPのいずれか一方がローレベルの場合、ローレベルのFast出力FOを駆動部34に出力する。
 動作選択部30は、ラッチ出力LOのハイレベル及びローレベルと、Fast出力FOのハイレベル及びローレベルとの4つの組み合わせを動作状態の選択結果として駆動部34に出力する。ここで、ラッチ出力LOがローベルの場合、動作選択部30の出力は、駆動状態を意味している。ラッチ出力LOがハイレベルであって、Fast出力FOがハイレベルの場合、動作選択部30の出力は、回生状態を意味している。ラッチ出力LOがハイレベルであって、Fast出力FOがローレベルの場合、動作選択部30の出力は、制動状態を意味している。
 駆動部34は、コイル90に電流を流す通電モード、および、コイル90に流す電流を停止させる停止モードを含む電流モードを指定する指定信号MSOを受け取る。駆動部34は、通電モードを指定する指定信号MSOを受け取ると、動作選択部30が選択した動作状態でコイル90を駆動する。駆動部34は、停止モードを指定する指定信号MSOを受け取ると、制動状態でコイル90を駆動する。
 図3は、設定部14の構成を説明する図である。図3に示すように、設定部14は、指示部36と、遅延制御部32とを有する。
 指示部36は、制御電流が0になった場合、指定信号MSとは別に停止モードを遅延させる停止信号SSを出力する。指示部36は、制御電流が0になると、ハイレベルの停止信号SSを出力する。
 遅延制御部32は、指示部36と接続されている。遅延制御部32は、電流モードのうち通電モードを指定する指定信号MSを受け取っている間、指定信号MSを遅延させることなく、駆動部34に出力する。遅延制御部32は、電流モードのうち停止モードを指定する指定信号MSを受け取った場合、駆動部34に対する停止モードを指定する指定信号MSを遅延させる。
 遅延制御部32は、D-FF部50と、遅延部52と、NOT回路54と、AND回路56と、スイッチ58とを有する。
 D-FF部50のデータポート(=Dポート)は、指示部36に接続されている。D-FF部50のデータポートは、指示部36から指定信号MSを取得する。D-FF部50のクロックポート(=CLKポート)は、指示部36に接続されている。D-FF部50のクロックポートは、指示部36から停止信号SSを取得する。D-FF部50の出力ポートは、スイッチ58に接続されている。D-FF部50の出力ポートは、クロックポートに入力する停止信号SSの立ち上がりにおけるデータポートの入力を保持して、スイッチ58に出力する。ここで、停止信号SSは、制御電流が0になった場合、立ち上がるので、D-FF部50は、常に、通電モードを指定する指定信号MSをスイッチ58に出力する。
 遅延部52は、指示部36と接続されている。遅延部52は、指示部36から停止信号SSを取得する。遅延部52は、停止信号SSを予め定められた遅延時間Δtの間遅延させた遅延信号DSを、NOT回路54に出力する。遅延時間Δtは、制御電流を0とすべき時間、即ち、停止信号SSがローレベルの時間よりも短い。遅延時間Δtは、一例として、コイル90に流れる電流を回生状態により0にできる時間である。尚、遅延時間Δtは、コイル90に流れる電流を回生状態により0にできる時間に対して短いよりも長い方が好ましい。
 NOT回路54は、遅延部52に接続されている。NOT回路54は、遅延部52が遅延させた遅延信号DSを取得する。NOT回路54は、遅延信号DSを反転させた反転遅延信号ADSを出力する。
 AND回路56は、指示部36及びNOT回路54と接続されている。AND回路56は、設定部14から停止信号SSを取得して、NOT回路54から反転遅延信号ADSを取得して、これらの論理積を出力する。AND回路56は、停止信号SS及び反転遅延信号ADSがともにハイレベルの場合、ハイレベルの切替信号CSを出力する。従って、AND回路56は、停止信号SSを取得してから、遅延時間Δtの間、ハイレベルの切替信号CSを出力して、それ以外の時間はローレベルの切替信号CSを出力する。
 スイッチ58は、AND回路56と接続されている。スイッチ58は、AND回路56から切替信号CSを取得する。スイッチ58は、切替信号CSに応じて、駆動部34の接続先を、指示部36と、D-FF部50との間で切り替える。スイッチ58は、ハイレベルの切替信号CSを取得すると、D-FF部50の出力ポートと駆動部34とを接続する。スイッチ58は、ローレベルの切替信号CSを取得すると、指示部36と駆動部34とを接続する。従って、スイッチ58は、停止信号SSが入力されてから、遅延時間Δtの間、駆動部34をD-FF部50に接続して、それ以外の時間は駆動部34を指示部36に接続する。これにより、遅延制御部32は、停止信号SSが入力されてから遅延時間Δtの間、D-FF部50が保持している通電モードの指定信号を駆動部34へと出力して、停止信号SSが入力されてから遅延時間Δtの経過後、停止モードの指定信号を駆動部34へと出力する。この結果、遅延制御部32は、停止モードを指定する指定信号MSを遅延時間Δtの間遅延させてから、駆動部34へと出力する。
 図4は、設定部14が出力する指定信号MSと、制御電流との関係を示す図である。図4の横軸は、時間である。図4の上段は、設定部14が、出力する指定信号MSを示す。図4の下段は、設定部14が、出力する制御電流を示す。図4に示すように、設定部14は、制御電流が0でない場合、通電モードを指定する指定信号MSを出力する。設定部14は、制御電流が0の間、停止モードを指定する指定信号MSを出力する。
 図5は、通電モードの正方向モードにおける電流経路を説明する図である。通電モードの正方向モードは、駆動状態と、回生状態と、制動状態と含む。駆動状態では、駆動部34は、トランジスタTr1、及び、Tr4をオン状態にして、トランジスタTr2、及び、Tr3をオフ状態する。これにより、駆動状態では、電流は、電源からトランジスタTr1、コイル90、トランジスタTr4、センス抵抗24の順で電流経路CP11を流れる。駆動状態では、コイル90を流れる電流が、センス抵抗24を流れるので、コイル90を流れる電流をセンス抵抗24の電圧から測定できる。回生状態では、駆動部34は、トランジスタTr3、及び、Tr2をオン状態にして、トランジスタTr1、及び、Tr4をオフ状態にする。この回生状態では、電流は、センス抵抗24、トランジスタTr3、コイル90、トランジスタTr2の順で電流経路CP12aを流れる。尚、回生状態では、駆動部34が、トランジスタTr3をオン状態にして、トランジスタTr2をオフ状態としてもよい。この回生状態では、電流は、センス抵抗24、トランジスタTr3、コイル90、トランジスタTr2の寄生ダイオードDi2の順で電流経路CP12bを流れる。これにより、回生状態では、コイル90に流れる電流が急速に減少する。尚、回生状態において、電流は、モータ等の加熱を抑制する観点から、抵抗の小さいトランジスタTr2を含む電流経路CP12aで流すことが好ましい。制動状態では、駆動部34は、トランジスタTr3、及び、Tr4をオン状態にして、トランジスタTr1、及び、Tr2をオフ状態にする。これにより、制動状態では、電流は、トランジスタTr3、コイル90、トランジスタTr4の順で、電流経路CP13を流れる。これにより、制動状態では、コイル90に流れる電流が循環に伴う損失によりゆっくりと減少する。
 図6は、正方向モードの後の停止モードにおける電流経路を説明する図である。停止モードは、制動状態を含む。制動状態では、トランジスタTr3、Tr4がオン状態となる。これにより、電流は、トランジスタTr3、コイル90、トランジスタTr4の順で、電流経路CP13を流れる。これにより、制動状態では、コイル90に流れる電流が徐々に減少して0になる。
 図7は、通電モードの逆方向モードにおける電流経路を説明する図である。尚、逆方向モードは、正方向モードにて正方向に電流を流した後、モータ回転方向を維持し、正方向モードと同じ方向にモータを回転させる場合において、コイル90に流れる電流が正方向モードと逆方向になるモードである。通電モードの逆方向モードは、駆動状態と、回生状態と、制動状態と含む。駆動状態では、駆動部34は、トランジスタTr2、Tr3をオン状態にする。これにより、駆動状態では、電流は、電源からトランジスタTr2、コイル90、トランジスタTr3、センス抵抗24の順で電流経路CP21を流れる。回生状態では、駆動部34は、トランジスタTr1、Tr4をオン状態にする。この回生状態では、電流は、センス抵抗24、トランジスタTr4、コイル90、トランジスタTr1の順で電流経路CP22aを流れる。尚、回生状態では、駆動部34が、トランジスタTr4をオン状態にして、トランジスタTr1をオフ状態としてもよい。この回生状態では、電流は、センス抵抗24、トランジスタTr4、コイル90、トランジスタTr1の寄生ダイオードDi1の順で電流経路CP22bを流れる。制動状態では、駆動部34は、トランジスタTr3、Tr4をオン状態にする。これにより、制動状態では、電流は、トランジスタTr4、コイル90、トランジスタTr3の順で、電流経路CP23を流れる。
 図8は、逆方向モードの後の停止モードにおける電流経路を説明する図である。図8に示すように、停止モードは、制動状態を含む。制動状態では、トランジスタTr3、Tr4がオン状態となる。これにより、電流は、トランジスタTr4、コイル90、トランジスタTr3の順で、電流経路CP23を流れる。
 図9は、通電モードにおけるタイミング図である。尚、図9に示す通電モードは、正方向モードである。図9の最上段は、動作状態のうち、駆動状態、回生状態、制動状態のいずれかの動作状態を示す。上から2段目は、クロック出力部12が出力するクロックCLKを示す。上から3段目は、ワンショット部40が出力するブランキングパルスBPを示す。上から4段目は、実線で示すセンス抵抗24に流れるセンス電流(実線)、設定部14が出力する制御電流値に対応する制御電流(太点線)を示す。また、上から4段目は、回生状態でコイル90に流れる回生電流(一点鎖線)、制動状態でコイル90に流れる制動電流(二点鎖線)を示す。上から5段目は、比較部18が出力する比較結果CRを示す。上から6段目は、SRラッチ部42が出力するラッチ出力LOを示す。上から7段目は、AND回路48が出力するFast出力FOを示す。
 図9に示すように、クロック出力部12がクロックCLKを出力すると、クロックCLKの立ち上がりに合わせて、ワンショット部40が、クロックCLKのハイレベルよりも短いハイレベルを有するブランキングパルスBPを出力する。
 ブランキングパルスBPがハイレベルの状態である時刻t1からt2の間は、SRラッチ部42は、ローレベルのラッチ出力LOを出力する。これにより、駆動部34は、トランジスタTr1からTr4を駆動状態で駆動する。この結果、図5に示すように、電流が、コイル90を含む電流経路CP11に沿って流れる。これにより、センス抵抗24の電圧によりコイル90を流れる電流を測定することができる。
 ここで、ブランキングパルスBPがハイレベルを終了した時刻t2以後も、ラッチ出力LOがローレベルを維持することは、ブランキングパルスBPがハイレベルの間、駆動状態にして電流を流しても、センス電流が制御電流よりも小さい状態であったことを示す。この場合、駆動部34は、ブランキングパルスBPのハイレベル終了後も、トランジスタTr1からTr4を駆動状態に制御して、コイル90に電流を流す。
 この後、時刻t3では、駆動状態によって増加したセンス電流が制御電流以上となり、SRラッチ部42のSetポートが取得する比較結果CRがハイレベルとなる。時刻t3では、SRラッチ部42のResetポートが取得するブランキングパルスBPがローレベルなので、SRラッチ部42は、ハイレベルのラッチ出力LOを出力する。また、時刻t3では、AND回路48は、ローベルのFast出力FOを出力しているので、駆動部34は、トランジスタTr1からTr4を制動状態で駆動する。このように、駆動部34は、クロックCLKとは非同期で駆動状態から制動状態へ切り替える。この結果、図5に示すように、電流が、コイル90を含む電流経路CP13に沿って流れる。これにより、制御電流以上となったセンス電流が、徐々に減少する。この後、次のブランキングパルスBPがSRラッチ部42に入力される時刻t4まで、ラッチ出力LOがハイレベルに維持され、Fast出力FOがローレベルに維持されるので、駆動部34は、制動状態を維持する。尚、制動状態ではセンス電流を計測できないので、センス電流は0となる。
 時刻t4において、SRラッチ部42のResetポートがブランキングパルスBPを取得すると、ラッチ出力LOがリセットされてローレベルとなる。これにより、駆動部34は、トランジスタTr1からTr4を駆動状態で駆動する。
 時刻t5において、反転ブランキングパルスABPが立ち上がると、即ち、ブランキングパルスBPが立ち下がると、D-FF部46がデータポートに入力されているハイレベルの比較結果CRをFF出力FFとしてAND回路48に出力する。尚、比較結果CRは、時刻t5から微小時間の間、ハイレベルを保持する。また、時刻t5では、反転ブランキングパルスABPはハイレベルなので、AND回路48はハイレベルのFast出力FOを出力する。これにより、駆動部34は、トランジスタTr1からTr4を回生状態に制御する。この結果、図5に示すように、電流が、コイル90を含む電流経路CP12aに沿って流れる。尚、駆動部34は、電流を電流経路CP12bに沿って流すように制御してもよい。
 ここで、一点鎖線で示すように、センス電流が制御電流よりも大きい時刻t5以降、駆動部34が、回生状態で制御することによって、コイルの電流の減少を大きくすることができる。これにより、駆動部34は、迅速にコイルの電流を制御電流以下にすることができる。一方、二点鎖線で示すように、センス電流が制御電流よりも大きい時刻t5以降、駆動部34が、制動状態で制御した場合、コイルの電流の減少が小さいので、コイルの電流を制御電流以下になるまでの時間が長くなる。
 この後、時刻t7において、駆動部34は、ブランキングパルスBPの立ち上がりとともに、ラッチ出力LOがローレベルにリセットされて、駆動状態に制御する。次に、反転ブランキングパルスABPの立ち下がる時刻t8において、比較結果CRがローレベルなので、ラッチ出力LOがローレベルに維持される。これにより、駆動部34は、ブランキングパルスBPがローレベルになった後も、駆動状態を維持する。この結果、コイルの電流が徐々に増加する。
 時刻t9において、センス電流が制御電流以上になると、比較結果CRがハイレベルになり、ラッチ出力LOがハイレベルにセットされるので、駆動部34は、トランジスタTr1からTr4を制動状態に制御する。
 この後、通電モードでは、上述の制御が繰り返される。
 図10は、停止モードにおけるタイミング図である。図10の最上段は、制御電流を示す。上から2段目は、指示部36が出力する指定信号MSを示す。上から3段目は、指示部36が出力する停止信号SSを示す。上から4段目は、遅延部52が出力する遅延信号DSを示す。上から5段目は、NOT回路54が出力する反転遅延信号ADSを示す。上から6段目は、AND回路56が出力する切替信号CSを示す。上から7段目は、設定部14が出力する指定信号MSOを示す。
 制御電流が0になるまで、停止信号SSはローレベルなので、AND回路56は、ローレベルの切替信号CSを出力する。これにより、スイッチ58は、指示部36と、駆動部34とを直接接続する。従って、制御電流が0になるまで、指示部36は、駆動部34へ直接指定信号MSを出力する。
 指示部36は、制御電流が0になると、停止モードを指定する指定信号MSを出力するとともに、図10の上から3段目に示すように、ハイレベルの停止信号SSをD-FF部50のクロックポートに出力する。停止信号SSが立ち上がるときは、まだ、D-FF部50のデータポートに通電モードを指定する指定信号MSが入力されているので、D-FF部50は、停止信号SSの立ち上がり以後、保持している通電モードを指定する指定信号MSを出力する。
 遅延部52は、指示部36から停止信号SSを取得すると、図10の上から4段目に示すように、当該停止信号SSを遅延時間Δt遅延させた遅延信号DSをNOT回路54に出力する。NOT回路54は、遅延部52から遅延信号DSを取得すると、図10の上から5段目に示すように、遅延信号DSを反転させた反転遅延信号ADSをAND回路56の一方の入力に入力する。AND回路56の他方の入力は、指示部36から直接、停止信号SSを取得する。従って、AND回路56の両入力は、停止信号SSがハイレベルになってから遅延時間Δtの間ハイレベルになる。従って、AND回路56の出力が、停止信号SSがハイレベルになってから遅延時間Δtの間、ハイレベルになる。これにより、スイッチ58が、遅延時間Δtの間、駆動部34とD-FF部50とを接続する。
 これにより、制御電流が0になり、指示部36が、停止モードを指定する指定信号MSを出力しても、駆動部34は、D-FF部50が保持して出力している指定信号MSであって、停止モードの指定前の通電モードを指定する指定信号MSの取得を遅延時間Δtの間、継続する。従って、駆動部34は、停止モードの指定前に指定されている通電モードを継続してコイル90を駆動するので、例えば、図5に示す駆動状態、回生状態、制動状態のいずれかによって、コイル90の電流を制御する。特に、制御電流が0なので、駆動部34は、遅延時間Δtが経過するまで、回生状態で制御する。これにより、駆動部34は、コイル90に流れる電流を急速に0に近づけることができる。
 遅延時間Δtが経過すると、遅延部52が、ハイレベルの遅延信号DSを出力するので、NOT回路54は、ローレベルの反転遅延信号ADSを出力する。これにより、AND回路56の一方の入力が、ローレベルとなるので、AND回路56は、ローレベルの切替信号CSを出力する。従って、スイッチ58が、指示部36と駆動部34とを直接接続するので、駆動部34は、指示部36が出力する停止モードを指定する指定信号MSを取得する。これにより、駆動部34は、通電モードから停止モードに切り換えるので、図6に示す制動状態によってコイル90の電流を制御する。この後、駆動部34は、指示部36が出力する指定信号MSを遅延することなく取得するので、停止モードを指定する指定信号MSの終了も遅延することなく取得する。これにより、駆動部34は、指示部36が停止モードを指定する指定信号MSを終了すると、停止モードを遅延することなく終了する。
 図11は、電流モードと、コイル90に流れる電流との関係を示す図である。図11の最上段は、指示部36が出力する制御電流を示す。上から2段目は、指示部36が出力する指定信号MSを示す。上から3段目は、駆動部34が取得する指定信号MSを示す。上から4段目は、本実施形態による停止モードを指定する指定信号MSを遅延させた場合のコイル90に流れる電流を示す。上から5段目は、本実施形態と比較するために、停止モードを指定する指定信号MSを遅延させなかった場合のコイル90に流れる電流を示す。
 図11に示すように、制御電流が0になると、指示部36は、停止モードを指定する指定信号MSを出力するが、駆動部34は、遅延時間Δt経過してから停止モードを指定する指定信号MSを取得する。従って、駆動部34は、制御電流が0になってから遅延時間Δtが経過するまで、通電モードの回生状態でコイル90に電流を流す。これにより、図11の上から4段目に示すように、駆動部34は、迅速にコイルの電流を0にすることができる。
 一方、駆動部34が、指示部36が出力した停止モードを指定する指定信号MSを遅延することなく取得すると、制御電流が0になると同時に、通電モードから停止モードに切り換える。従って、停止モードでは、制動状態でコイル90に電流を流すので、本実施形態のように停止モードを遅延させた場合に比べて、コイル90に流れる電流を0にするまでの時間が、遅延させる場合に比べて時間T長くなる。
 また、遅延時間Δtが長い場合、遅延時間Δt内における回生状態で流れる回生電流の経路を図5のCP12a、または、図7のCP22aとすると、コイル電流が逆流して、マイナスになる場合がある。そこで、駆動部34は、停止モードを指定する指定信号を受け取ると、遅延時間Δt内に選択される回生状態において回生電流の経路以外のトランジスタをオフとして、回生電流の経路の電源側のトランジスタをオフとして、回生電流の経路の電源側のトランジスタに並列接続された寄生ダイオードをもって回生電流の経路の一部をなす回生状態とすればよい。例えば、正方向モードで停止モードを指定する指定信号を受け取った後の回生状態では、回生電流の経路以外のトランジスタTr1、Tr4をオフとして、トランジスタTr3をオンとするとともに、回生電流の経路の電源側のトランジスタTr2をオフとして、回生電流の経路の電源側のトランジスタTr2に並列接続された寄生ダイオードDi2をもって回生電流の経路の一部をなす回生状態とすればよい。
 一方、駆動部34は、通電モードを指定する指定信号を受け取った場合に選択される回生状態において、回生電流の経路の全てのトランジスタをオンとして、回生電流の経路以外のトランジスタをオフとする回生状態とすればよい。例えば、正方向モードで通電モードを指定する指定信号を受け取った場合に選択される回生状態では、回生電流の経路の全てのトランジスタTr2、Tr3をオンとして、回生電流の経路以外のトランジスタTr1、Tr4をオフとする回生状態とすればよい。
 また、駆動部34は、停止モードを指定する指定信号を受け取った場合、遅延時間Δt内に選択される回生状態において流れる回生電流の経路の電源と逆側のトランジスタをオフとして、回生電流の経路の電源と逆側のトランジスタに並列接続されたダイオードをもって回生電流の経路の一部をなす回生状態として、通電モードを指定する指定信号を受け取った場合に選択される回生状態において、回生電流の経路の電源と逆側のトランジスタをオンとして回生状態としてもよい。尚、電源と逆側のトランジスタは、一例として、コイル90を挟み電源と反対側のトランジスタのことである。例えば、駆動部34は、正方向モードで停止モードを指定する指定信号を受け取った後の回生状態では、トランジスタTr2をオンとするとともに、遅延時間Δt内に選択される回生状態において流れる回生電流の経路の電源と逆側のトランジスタTr3をオフとして、回生電流の経路の電源と逆側のトランジスタTr3に並列接続された寄生ダイオードDi3をもって回生電流の経路の一部をなす回生状態とすればよい。また、駆動部34は、通電モードを指定する指定信号を受け取った場合に選択される回生状態において、回生電流の経路の電源と逆側のトランジスタTr3、及び、トランジスタTr2をオンとして回生状態としてもよい。
 これにより、遅延時間Δt内に選択される回生状態において、例えば、回生電流の経路がそれぞれCP12b、CP22bとなるので、トランジスタTr1、Tr2の寄生ダイオードDi1、Di2を通じて電流を回生させることができる。この結果、モータ駆動装置10は、逆流を防止することができる。さらに、遅延時間Δtの期間は回生状態の電流経路をCP12b、CP22bとして、遅延時間Δt以外、例えば、通電モードでの回生状態の電流経路をCP12a、CP22aとすることにより、遅延時間Δtの期間の逆流を防止し、また遅延時間Δt以外の期間の回生時の電力ロスを最小化できる。尚、ここでいうトランジスタは、スイッチの一例である。
<実施形態2>
 図12は、モータ駆動装置60の全体構成を説明する図である。モータ駆動装置60は、ステッピングモータ等の駆動用のコイル90に流れる電流を制御する。ここでモータは、複数のコイル90を有するが、図12においては、説明の便宜上、代表として1個のコイル90のみを記載する。モータ駆動装置60は、コイル90に電流を流す通電モード、及び、コイル90へ流す電流を停止させる停止モードを含む電流モードを指定する指定信号MSを受けて取って、コイル90の電流を制御する。ここで、モータ駆動装置60は、制御電流値DINを所定時間早めることによって、停止モードの指定を受ける前に、制御電流を0にすることにより、電流を停止させるまでの時間を短縮させる。
 設定部62は、D/Aコンバータ16と接続されている。設定部62は、制御電流値DINOをD/Aコンバータ16に出力する。制御電流値DINOは、コイル90に流す電流のデジタル値であって、いずれの動作状態にするかを判断するための値である。
 また、設定部62は、制御部26と接続されている。設定部62は、電流モードを指定する指定信号MSを出力する。電流モードは、正方向モード及び逆方向モードを有する通電モードと、停止モードとを含む。通電モードは、コイル90に電流を流すモードである。停止モードは、コイル90に流れる電流を停止するモードである。
 図13は、設定部62の構成を説明する図である。図13に示すように、設定部62は、指示部36と、シフト部64とを有する。
 指示部36は、制御電流が0になる前に、制御電流値DINとは別に制御電流値DINを早めるシフト信号FSを出力する。指示部36は、制御電流が0になる前に、ハイレベルのシフト信号FSを出力する。
 シフト部64は、指示部36と接続されている。シフト部64は、0でない制御電流値DINを受け取っている間、制御電流値DINを早めることなく、D/Aコンバータ16に出力する。シフト部64は、0の制御電流を受け取る直前に、制御電流値DINを早める。
 シフト部64は、指示部36と接続されている。シフト部64は、指示部36からシフト信号FSを取得する。シフト部64は、制御電流値DINの0となる区間が予め定められた早期時間Δtだけ早く0となる制御電流値DINOを、D/Aコンバータ16に出力する。換言すれば、シフト部64は、制御電流が0の期間の開始を早める。尚、シフト部64は、制御電流が0である期間の終了を早めない。早期時間Δtは、制御電流を0とすべき時間よりも短い。早期時間Δtは、一例として、コイル90に流れる電流を回生状態により0にできる時間である。尚、早期時間Δtは、コイル90に流れる電流を回生状態により0にできる時間に対して短いよりも長い方が好ましい。シフト部64は、制御電流が0の期間の開始を早める早期時間Δtを変化させてもよい。
 この結果、設定部62は、停止モードを指定する指定信号MSよりも早期時間Δtの前に制御電流を0とした制御電流値DINOをD/Aコンバータ16へと出力する。
 図14は、停止モードにおけるタイミング図である。図14の最上段は、制御電流を示す。上から2段目は、指示部36が出力する指定信号MSを示す。上から3段目は、指示部36が出力するシフト信号FSを示す。上から4段目は、シフト部64が出力する制御電流を示す。
 制御電流が0になる直前まで、シフト信号FSはローレベルである。従って、シフト部64は、図14の上から4段目に示すように、D/Aコンバータ16へ直接制御電流値DINを出力する。
 制御電流が0になるより早期時間Δt前になると、シフト信号FSはハイレベルとなる。駆動部側制御電流が0になる時間は、図14の上から1段目に示す制御電流よりも早期時間Δtだけシフトされる。従って、図14の上から4段目に示すように、シフト部64は、D/Aコンバータ16へ0の駆動部側制御電流を出力する。
 指示部36は、制御電流が0になると、停止モードを指定する指定信号MSを出力する。従って、シフト部64は、図14の上から4段目に示すように、D/Aコンバータ16へ制御電流を直接駆動部側制御電流として出力する。
 これにより、制御電流値DINが0になり、指示部36が、停止モードを指定する指定信号MSを出力するよりも早期時間Δtだけ早く制御電流が0になる制御電流値DINOをD/Aコンバータ16へ出力する。従って、駆動部34は、停止モードの指定前に制御電流を0としてコイル90を駆動するので、例えば、図5に示す駆動状態、回生状態、制動状態のいずれかによって、コイル90の電流を制御する。特に、制御電流が0なので、駆動部34は、早期時間Δtの間は、回生状態で制御する。これにより、駆動部34は、コイル90に流れる電流を急速に0に近づけることができる。
 早期時間Δtが経過すると、駆動部34は、指示部36が出力する停止モードを指定する指定信号MSを取得する。これにより、駆動部34は、通電モードから停止モードに切り換えるので、図6に示す制動状態によってコイル90の電流を制御する。この後、駆動部34は、指示部36が出力する指定信号MSを取得するので、停止モードを指定する指定信号MSの終了も取得する。これにより、駆動部34は、指示部36が停止モードを指定する指定信号MSを終了すると、停止モードを終了する。
 図15は、電流モードと、コイル90に流れる電流との関係を示す図である。図15の最上段は、指示部36が出力する制御電流を示す。上から2段目は、シフト部64が出力する駆動部側の制御電流を示す。上から3段目は、指示部36が出力する指定信号MSを示す。上から4段目は、本実施形態による制御電流が0となる区間をシフトさせた場合のコイル90に流れる電流を示す。上から5段目は、本実施形態と比較するために、制御電流が0となる区間をシフトさせなかった場合のコイル90に流れる電流を示す。
 図15に示すように、制御電流が0になると、指示部36は、停止モードを指定する指定信号MSを出力するが、シフト部64は、停止モードを指定する指定信号MSを出力するより早期時間Δt前に、0となるような制御電流を取得する。従って、駆動部34は、停止モードを指定する指定信号MSを出力するより早期時間Δt前に、制御電流が0になり、通電モードの回生状態でコイル90に電流を流す。これにより、図15の上から4段目に示すように、駆動部34は、迅速にコイルの電流を0にすることができる。
 一方、駆動部34が、指示部36が出力した制御電流をシフトすることなく取得すると、制御電流が0になると同時に、通電モードから停止モードに切り換える。従って、停止モードでは、制動状態でコイル90に電流を流すので、本実施形態のように制御電流をシフトさせた場合に比べて、コイル90に流れる電流を0にするまでの時間が、遅延させる場合に比べて時間T長くなる。
<実施形態3>
 図16は、モータ駆動装置70の全体構成を説明する図である。モータ駆動装置70、ステッピングモータ等の駆動用のコイル90に流れる電流を制御する。ここでモータは、複数のコイル90を有するが、図16においては、説明の便宜上、代表として1個のコイル90のみを記載する。モータ駆動装置70は、コイル90に電流を流す通電モード、及び、コイル90へ流す電流を停止させる停止モードを含む電流モードを指定する指定信号MSを受けて取って、コイル90の電流を制御する。ここで、モータ駆動装置70は、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を受けることによって、しばらくの間、通電モードを継続させることにより、電流を停止させるまでの時間を短縮させる。逆の通電モードを指定する指定信号を受けることとは、正方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆方向モードの通電モードを指定する指定信号を受ける、あるいは、逆方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、正方向モードの通電モードを指定する指定信号を受けることを含む。
 マイコン(マイクロコンピュータ)72は、D/Aコンバータ16と接続されている。マイコン72は、制御電流値DINをD/Aコンバータ16に出力する。制御電流値DINは、コイル90に流す電流のデジタル値であって、いずれの動作状態にするかを判断するための値である。
 また、マイコン72は、制御部26と接続されている。マイコン72は、電流モードを指定する指定信号MSを出力する。電流モードは、正方向モード及び逆方向モードを有する通電モードと、停止モードとを含む。通電モードは、コイル90に電流を流すモードである。停止モードは、コイル90に流れる電流を停止するモードである。
 マイコン72は、予め設定された設定時間に基づいて、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を設定する。例えば、マイコン72は、正方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆方向モードの通電モードを指定する指定信号を設定する。または、マイコン72は、逆方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、正方向モードの通電モードを指定する指定信号を設定する。尚、マイコン72は、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を設定する設定時間を変化させてもよい。
 図17は、電流モードと、コイル90に流れる電流との関係を示す図である。図17の最上段は、マイコン72が出力する制御電流を示す。上から2段目は、本実施形態と比較するために、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を受けなかった場合のマイコン72が出力する指定信号MSを示す。上から3段目は、駆動部34が取得する指定信号MSを示す。上から4段目は、本実施形態による停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を受けた場合のコイル90に流れる電流を示す。上から5段目は、本実施形態と比較するために、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を受けなかった場合のコイル90に流れる電流を示す。
 図17に示すように、制御電流が0になると、マイコン72は、停止モードを指定する指定信号MSを出力する前に、逆の通電モードを指定する指定信号を設定する。これにより、駆動部34は、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を取得する。従って、駆動部34は、制御電流が0になってから設定時間Δtが経過するまで、通電モードの回生状態または駆動状態でコイル90に電流を流す。これにより、図17の上から4段目に示すように、駆動部34は、迅速にコイルの電流を0にすることができる。
 一方、駆動部34が、マイコン72が出力した停止モードを指定する指定信号MSを逆の通電モードを追加設定することなく取得すると、制御電流が0になると同時に、通電モードから停止モードに切り換える。従って、停止モードでは、制動状態でコイル90に電流を流すので、本実施形態のように停止モードを遅延させた場合に比べて、コイル90に流れる電流を0にするまでの時間が、遅延させる場合に比べて時間T長くなる。
 上述の実施形態の各構成の機能、接続関係、個数等の数値は、適宜変更してよい。
 例えば、上述の実施形態では、予め定められた遅延時間Δtによって、停止モードを指定する指定信号MSの開始を遅延させたが、遅延制御部32は遅延時間Δtを変化させてもよい。例えば、遅延制御部32は、停止モードを指定する指定信号MSを受け付けたときのコイル90に流れる電流、即ち、センス抵抗24に流れる電流に基づいて、遅延時間Δtを設定してもよい。具体的には、遅延制御部32は、コイル90に流れる電流が大きいほど、遅延時間Δtを長くすればよい。また、遅延制御部32は、遅延時間Δtの間に、コイル90に流れる電流、即ち、センス抵抗24に流れる電流が基準電流以下となったら、遅延時間Δtを終了させてもよい。
 上述した実施形態では、コイル90に流れる電流を0にする制御を対象として説明したが、モータの回転を停止する場合の制御に対して上述の実施形態を適用してもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 10、60、70 モータ駆動装置
 12 クロック出力部
 14、62 設定部
 16 D/Aコンバータ
 18 比較部
 22 Hブリッジ回路
 24 センス抵抗
 26 制御部
 30 動作選択部
 32 遅延制御部
 34 駆動部
 36 指示部
 40 ワンショット部
 42 SRラッチ部
 44 NOT回路
 46 D-FF部
 48 AND回路
 50 D-FF部
 52 遅延部
 54 NOT回路
 56 AND回路
 58 スイッチ
 64 シフト部
 72 マイコン
 90 コイル

Claims (22)

  1.  モータのコイルに流れる電流を制御するモータ駆動装置であって、
     前記コイルを流れる電流と入力される制御電流とを比較する比較部と、
     前記比較部の比較結果に応じて、駆動状態、回生状態、および、制動状態のいずれかの動作状態を選択する動作選択部と、
     前記コイルに電流を流す通電モード、および、前記コイルに流す電流を停止させる停止モードを含む電流モードを指定する指定信号を受け取り、前記通電モードを指定する指定信号を受け取ると、前記動作選択部が選択した動作状態で前記コイルを駆動し、前記停止モードを指定する指定信号を受け取ると、前記制動状態で前記コイルを駆動する駆動部と、
     前記停止モードを指定する指定信号の開始または前記制御電流が0の期間の開始を制御する設定部と、
     を備えるモータ駆動装置。
  2.  前記設定部は、前記電流モードのうち前記停止モードを指定する指定信号を受け取った場合、前記駆動部に対する前記停止モードを指定する指定信号の開始を遅延させる遅延制御部と、
     を備える
    請求項1に記載のモータ駆動装置。
  3.  前記通電モードは、前記コイルに正方向の電流を流す正方向モード、及び、前記コイルに前記正方向と逆方向の電流を流す逆方向モードを含む
    請求項2に記載のモータ駆動装置。
  4.  前記遅延制御部が、前記停止モードを指定する指定信号を受け付けて前記停止モードの指定する指定信号を遅延させている間、前記駆動部は、前記停止モードの指定前に指定されている前記電流モードで前記コイルを駆動する
    請求項3に記載のモータ駆動装置。
  5.  前記遅延制御部は、前記停止モードの終了を遅延させない
    請求項2から4のいずれか1項に記載のモータ駆動装置。
  6.  前記遅延制御部は、予め定められた遅延時間に基づいて、前記停止モードを指定する指定信号の開始を遅延させる
    請求項2から5のいずれか1項に記載のモータ駆動装置。
  7.  前記遅延制御部は、前記停止モードを指定する指定信号の開始を遅延させる遅延時間を変化させる
    請求項2から5のいずれか1項に記載のモータ駆動装置。
  8.  前記遅延制御部は、前記停止モードを指定する指定信号を受け付けたときの前記コイルに流れる電流に基づいて、前記遅延時間を設定する
    請求項7に記載のモータ駆動装置。
  9.  前記駆動部は、
     前記停止モードを指定する指定信号を受け取った場合、前記遅延時間内に選択される前記回生状態において流れる回生電流の経路の電源側のスイッチをオフとして、前記回生電流の経路の電源側の前記スイッチに並列接続されたダイオードをもって前記回生電流の経路の一部をなす回生状態として、
     前記通電モードを指定する指定信号を受け取った場合に選択される前記回生状態において、前記回生電流の経路の前記電源側の前記スイッチをオンとして前記回生状態とする
    請求項2から8のいずれか1項に記載のモータ駆動装置。
  10.  前記駆動部は、
     前記停止モードを指定する指定信号を受け取った場合、前記遅延時間内に選択される前記回生状態において流れる回生電流の経路の電源と逆側のスイッチをオフとして、前記回生電流の経路の電源と逆側の前記スイッチに並列接続されたダイオードをもって前記回生電流の経路の一部をなす回生状態として、
     前記通電モードを指定する指定信号を受け取った場合に選択される前記回生状態において、前記回生電流の経路の前記電源と逆側の前記スイッチをオンとして前記回生状態とする
    請求項2から8のいずれか1項に記載のモータ駆動装置。
  11.  前記設定部は、前記制御電流が0の期間の開始を早めるシフト部と、
     を備える
    請求項1に記載のモータ駆動装置。
  12.  前記通電モードは、前記コイルに正方向の電流を流す正方向モード、及び、前記コイルに前記正方向と逆方向の電流を流す逆方向モードを含む
    請求項11に記載のモータ駆動装置。
  13.  前記シフト部が、前記制御電流が0の期間の開始を早めた期間、前記駆動部は、前記停止モードの指定前に指定されている前記電流モードで前記コイルを駆動する
    請求項12に記載のモータ駆動装置。
  14.  前記シフト部は、前記制御電流が0の期間の終了を早めない
    請求項11から13のいずれか1項に記載のモータ駆動装置。
  15.  前記シフト部は、予め定められた早期時間に基づいて、前記制御電流が0の期間の開始を早める
    請求項11から14のいずれか1項に記載のモータ駆動装置。
  16.  前記シフト部は、前記制御電流が0の期間の開始を早める早期時間を変化させる
    請求項11から14のいずれか1項に記載のモータ駆動装置。
  17.  前記設定部は、マイクロコンピュータであって、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を設定する
    請求項1に記載のモータ駆動装置。
  18.  前記通電モードは、前記コイルに正方向の電流を流す正方向モード、及び、前記コイルに前記正方向と逆方向の電流を流す逆方向モードを含む
    請求項17に記載のモータ駆動装置。
  19.  前記設定部は、正方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆方向モードの通電モードを指定する指定信号を設定する
    請求項18に記載のモータ駆動装置。
  20.  前記設定部は、逆方向モードの通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、正方向モードの通電モードを指定する指定信号を設定する
    請求項18に記載のモータ駆動装置。
  21.  前記設定部は、予め定められた設定時間に基づいて、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を設定する
    請求項17から20のいずれか1項に記載のモータ駆動装置。
  22.  前記設定部は、通電モードを指定する指定信号を受けた後に、停止モードを指定する指定信号MSを受ける前に、逆の通電モードを指定する指定信号を設定する設定時間を変化させる
    請求項17から21のいずれか1項に記載のモータ駆動装置。
PCT/JP2013/007596 2013-04-26 2013-12-25 モータ駆動装置 WO2014174557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157025010A KR101725702B1 (ko) 2013-04-26 2013-12-25 모터 구동 장치
JP2015513364A JP6096889B2 (ja) 2013-04-26 2013-12-25 モータ駆動装置
US14/919,952 US9577551B2 (en) 2013-04-26 2015-10-22 Motor drive apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-093799 2013-04-26
JP2013093799 2013-04-26
JP2013-127576 2013-06-18
JP2013127576 2013-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/919,952 Continuation US9577551B2 (en) 2013-04-26 2015-10-22 Motor drive apparatus

Publications (1)

Publication Number Publication Date
WO2014174557A1 true WO2014174557A1 (ja) 2014-10-30

Family

ID=51791168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007596 WO2014174557A1 (ja) 2013-04-26 2013-12-25 モータ駆動装置

Country Status (4)

Country Link
US (1) US9577551B2 (ja)
JP (1) JP6096889B2 (ja)
KR (1) KR101725702B1 (ja)
WO (1) WO2014174557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185051A (ja) * 2015-03-27 2016-10-20 旭化成エレクトロニクス株式会社 制御装置及び駆動装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905954B1 (ko) * 2016-05-24 2018-10-08 현대자동차주식회사 리플 전류 센싱형 모터 제어 장치 및 방법
US9998038B1 (en) * 2017-01-15 2018-06-12 Asia Vital Components Co., Ltd. Fan motor power-off automatic braking circuit
JP7206975B2 (ja) * 2019-02-05 2023-01-18 セイコーエプソン株式会社 電子時計、ムーブメントおよび時計用モーター制御回路
US11646684B2 (en) 2019-08-15 2023-05-09 Texas Instruments Incorporated Average current control in stepper motor
US10931216B1 (en) * 2019-08-15 2021-02-23 Texas Instruments Incorporated Motor stepper driver having a sine digital-to-analog converter
US11296622B2 (en) * 2020-06-23 2022-04-05 Asia Vital Components (Shen Zhen) Co., Ltd. Active brake circuit for fan with backup power
US11973450B2 (en) * 2021-04-13 2024-04-30 Jiangmen Jinlong High Technology Industrial Co., Ltd. Current detection circuit and garbage can

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184268A (ja) * 1997-07-05 1999-03-26 Lumonics Ltd シャッター作動方法及び装置
JP2003230293A (ja) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd 誘導機駆動用インバータ装置
JP2009005460A (ja) * 2007-06-20 2009-01-08 Tokai Rika Co Ltd 負荷駆動制御回路
JP2010283951A (ja) * 2009-06-03 2010-12-16 Mitsuba Corp モータ制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013994A (en) * 1996-10-01 2000-01-11 Nsk Ltd. Controller of electric power-steering system
JP3899071B2 (ja) 2003-12-19 2007-03-28 松下電器産業株式会社 ステッピングモータ駆動装置、及びステッピングモータ駆動方法
JP2008072876A (ja) 2006-09-15 2008-03-27 Asahi Kasei Electronics Co Ltd ステッピングモータ駆動装置及び駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184268A (ja) * 1997-07-05 1999-03-26 Lumonics Ltd シャッター作動方法及び装置
JP2003230293A (ja) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd 誘導機駆動用インバータ装置
JP2009005460A (ja) * 2007-06-20 2009-01-08 Tokai Rika Co Ltd 負荷駆動制御回路
JP2010283951A (ja) * 2009-06-03 2010-12-16 Mitsuba Corp モータ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185051A (ja) * 2015-03-27 2016-10-20 旭化成エレクトロニクス株式会社 制御装置及び駆動装置

Also Published As

Publication number Publication date
JPWO2014174557A1 (ja) 2017-02-23
US9577551B2 (en) 2017-02-21
JP6096889B2 (ja) 2017-03-15
KR101725702B1 (ko) 2017-04-10
KR20150119242A (ko) 2015-10-23
US20160043667A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP6096889B2 (ja) モータ駆動装置
JP5016674B2 (ja) モータ制御回路、モータシステム、モータ制御方法
JP2013162568A (ja) モータ駆動制御システム
JP2008283835A (ja) 負荷駆動装置
JP6251844B2 (ja) 単一のパルス幅変調器(pwm)を備えた双方向型低電圧電源(lvps)、低温冷却器システム、及び方法
JP5333098B2 (ja) デッドタイム生成回路及びモータ制御装置
US9729088B2 (en) Method, computer program product and controller for starting-up a switched reluctance motor, and electrical apparatus implementing same
US9935623B2 (en) Method and apparatus for providing an adjustable high resolution dead time
JP2010284015A (ja) ステッピングモータ駆動装置及びコントローラ
US20150236629A1 (en) Brushless motor driving circuit and brushless motor driving system
JP6665742B2 (ja) 負荷駆動装置
JP4467297B2 (ja) ステッピングモータの駆動制御装置、集積回路および駆動制御方法
JP2007068400A (ja) モータ駆動装置及びモータ駆動方法
US9762174B2 (en) Increasing PWM resolution for digitally controlled motor control applications
JP2007104839A (ja) モータ駆動装置および方法
JP6456211B2 (ja) 制御装置及び駆動装置
JP2016158443A (ja) モータ制御装置
JP6456210B2 (ja) 制御装置及び駆動装置
JP6456212B2 (ja) 制御装置及び駆動装置
JP2005229683A (ja) ステッピングモータの駆動制御装置
JPS60190197A (ja) パルスモ−タ制御回路
JP2017041951A (ja) モータ駆動制御装置
JP2008278617A (ja) モータ駆動制御装置
KR101649114B1 (ko) H-브리지 제어 시스템 및 그 방법
JP5354897B2 (ja) ステッピングモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025010

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015513364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883080

Country of ref document: EP

Kind code of ref document: A1