WO2014169717A1 - Dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux - Google Patents

Dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux Download PDF

Info

Publication number
WO2014169717A1
WO2014169717A1 PCT/CN2014/070718 CN2014070718W WO2014169717A1 WO 2014169717 A1 WO2014169717 A1 WO 2014169717A1 CN 2014070718 W CN2014070718 W CN 2014070718W WO 2014169717 A1 WO2014169717 A1 WO 2014169717A1
Authority
WO
WIPO (PCT)
Prior art keywords
xli
energy storage
sodium
storage device
positive electrode
Prior art date
Application number
PCT/CN2014/070718
Other languages
English (en)
Chinese (zh)
Inventor
方淳
袁超群
戴翔
Original Assignee
恩力能源科技(南通)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恩力能源科技(南通)有限公司 filed Critical 恩力能源科技(南通)有限公司
Publication of WO2014169717A1 publication Critical patent/WO2014169717A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an aqueous alkali metal ion electrochemical energy storage device. Background technique
  • electrochemical energy storage can adapt to different grid function needs, and it has advantages in integrated grid connection of wind power and photovoltaic.
  • the way for energy storage in large-scale power grids is based on traditional lead-acid batteries.
  • Lead-acid batteries have low cost, but short life, and major materials such as lead and concentrated sulfuric acid cause serious pollution to the environment and require recycling. Therefore, there is an urgent need to find a new technology that can replace lead-acid batteries.
  • the positive electrode material of the hybrid water-based lithium ion battery is LiMn 2 0 4 , LiCo0 2 , LiCo 1/3 M 1/3 Mn 1/3 0 2 , LiMgo.2Mm.8O4 can reversibly intercalate lithium ion-extracting materials, and the negative electrode uses activated carbon, mesoporous carbon or carbon nanotubes having a specific surface area of 1000 m 2 /g or more.
  • Chinese Patent Publication No. CN102027625A discloses an aqueous phase electrolyte electrochemical secondary energy storage device mainly composed of sodium ions, which comprises an anode electrode, a cathode electrode capable of reversibly intercalating sodium cations, a separator and water containing sodium cations.
  • a phase electrolyte wherein the initial active cathode electrode material comprises an alkali metal-containing active cathode electrode material that deintercalates alkali metal ions during initial charging of the device.
  • the active cathode electrode material may be aluminum-doped ⁇ - ⁇ 0 2 , NaMn0 2 (sodium manganite structure), Na 2 Mn 3 0 7 NaFeP0 4 F Na 0 . 44 MnO 2 .
  • the anode electrode comprises porous activated carbon and the electrolyte comprises sodium sulfate.
  • Cia Patent Publication No. CN1723578A discloses a sodium ion battery comprising a positive electrode, a negative electrode and an electrolyte.
  • the positive electrode includes an electrochemically active material capable of reversibly circulating sodium ions
  • the negative electrode includes a carbon capable of intercalating potassium and sodium ions.
  • the active material includes a potassium transition metal phosphate.
  • the transition metal includes a transition metal selected from the group consisting of vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), nickel (Ni), and titanium (Ti), and mixtures thereof.
  • Chinese Patent Publication No. CN101241802A discloses an asymmetric water-based sodium/potassium battery capacitor composed of a positive electrode, a negative electrode, a separator and an electrolyte.
  • the active materials of the positive electrode are NaMn0 2 , NaCo0 2 , NaV 3 0 8 , NaVP0 4 F, and Na 2 VOP0 4 .
  • the positive electrode active material is uniformly mixed with carbon black and a binder, coated on a nickel mesh current collector, dried and pressed into an electrode.
  • the activated carbon is mixed with a conductive agent and a binder, uniformly coated on a nickel mesh current collector, dried and pressed into an electrode.
  • a non-woven fabric was used as a separator, and sodium chloride or sodium sulfate was used as an electrolyte to assemble a battery.
  • the above-mentioned phosphate positive electrode material having a spinel structure and a menorite structure or a core-shell structure although having a theoretical specific capacity of more than 100 mAh/g, is contained in sodium/potassium ions.
  • Aqueous solution The effective recyclable specific capacity is below 100 mAh/g, which results in low energy density of the device, which becomes a bottleneck for the promotion of sodium/potassium ion storage technology. It is urgent to develop a new positive electrode material with high capacity to improve sodium/ The energy density of a potassium energy storage device. Summary of the invention
  • the present invention provides an aqueous alkali metal ion electrochemical energy storage device comprising a positive electrode, a negative electrode, a separator and an aqueous phase electrolysis containing an alkali metal ion.
  • the active material of the positive electrode is an alkali-rich manganese-based solid solution or composite having the general formula ⁇ 2 ⁇ 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one of Li, Na and lanthanum Or one or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ 1, the alkali-rich manganese-based solid solution of the active material of the positive electrode Or the crystal structure of the composite contains a layered structure or a spinel structure, and the structure is stable, the electrolyte is an aqueous solution containing sodium or potassium salt; the positive electrode material can perform a stable charge and discharge cycle in the electrolyte .
  • the active material of the positive electrode is an alkali-rich metal manganese-based composite having the general formula ⁇ 2 ⁇ 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 in transition metal elements and In the mixed layer of alkali metal elements, the alkali metal and the transition metal element form an ordered arrangement of the superlattice structure.
  • the material may be a stable alkali-rich metal-rich manganese-based layered solid solution of both the A 2 Mn0 3 component and the AM0 2 component, thereby improving the structural stability of the layered structure AM0 2 in the cycle.
  • the material may also be a composite of uniformly mixing two phases of the A 2 Mn0 3 component and the AM0 2 component on the nanometer scale, wherein the AM0 2 contains a spinel structure.
  • the active material of the negative electrode may be selected from one or more of activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous carbon, and these materials are all large. The surface area is subjected to an illegally drawn electric double layer electron adsorption process, and the positive electrode is composed of a hybrid capacitor battery.
  • materials capable of performing a reversible redox reaction containing a Faraday electron transfer process in an aqueous phase electrolyte include oxide, phosphate materials that are capable of reversible intercalation and deintercalation of alkali metal ions.
  • metal or alloy materials that can undergo reversible dissolution and deposition reactions in the aqueous phase.
  • the reversible redox reaction potential of the negative electrode material capable of performing the reversible redox reaction of the Faraday electron transfer process in the aqueous phase electrolyte solution cannot be lower than the hydrogen evolution potential of the aqueous phase electrolyte to avoid irreversible electrochemistry due to hydrogen evolution reaction. The decrease in coulombic efficiency of charge and discharge of the device due to the occurrence of the reaction.
  • the crystal structure of the alkali-rich metal manganese-based solid solution or composite of the positive electrode material contains a layered structure or a spinel structure.
  • the alkali-rich metal manganese-based solid solution or composite is selected from the group consisting of xLi 2 Mn0 3 '(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 -(lx)LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 .
  • a material in which an alkali-rich metal manganese-based solid solution or composite is coated with a metal oxide or a non-metal oxide includes A1 2 O 3 , TiO 2 , ZnO, CeO 2 , MgO, Zr0 2 and the like.
  • the alkali-rich manganese metal-based solid solution of the positive electrode material has a formula of ⁇ 2 ⁇ 0 3 ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one of Li, Na and K Or more than one; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the alkali-rich metal manganese-based solid solution material can be synthesized by a coprecipitation method, a sol-gel method, a solid phase method, a hydrothermal method or the like.
  • the alkali-rich manganese metal-based solid solution of the positive electrode material has the formula ⁇ 2 ⁇ 0 3 ⁇ ;) ⁇ 0 2 , wherein A is selected from one of Li, Na and K One or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the material structure can be characterized by an X-ray diffractometer, and the XRD spectrum can be assigned to a space group type a-NaFe02 type layer structure.
  • the diffraction peak with a diffraction angle between 20° and 28° is caused by the ordered arrangement of the superlattice of the alkali metal ions and the transition metal ions.
  • Alkali metal elements that do not enter the crystal lattice remain on the surface of the particles and are washed away by washing with water.
  • the ratio of alkali metal to transition metal in the alkali-rich manganese-based solid solution material can be measured after the water washing, and the alkali metal element has entered the interior of the crystal lattice.
  • the aqueous phase electrolyte solution includes, but is not limited to, sodium sulfate, sodium nitrate, sodium halide, sodium carbonate, sodium phosphate, sodium acetate, sodium hydroxide, sodium perchlorate. And a mixture of one or more of potassium sulfate, potassium nitrate, potassium halide, potassium carbonate, potassium phosphate, potassium acetate, potassium hydroxide, potassium perchlorate.
  • the electrolyte concentration is 0.5 - 10 mol and the pH is between 3 and 12.
  • the present invention provides an alkali-rich metal manganese-based solid solution or composite cathode material.
  • the alkali-rich metal manganese-based solid solution or composite of the present invention has the formula ⁇ 2 ⁇ 0 3 ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one or more of Li, Na and K; M is selected from transition metals Mn, Ni One or more of Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the alkali-rich manganese metal-based solid solution or composite of the positive electrode material is selected from the group consisting of xLi 2 Mn0 3 -(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 - ( 1 -x LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 .
  • the cathode material also needs to add 5% - 10% of conductive agent (graphite, carbon black, acetylene black, etc.) to improve the conductivity of the material, and also need to add 5% - 10% binder (polytetrafluoroethylene, Polyvinylidene fluoride or the like is used to form a uniform, viscous mixed material, and the mixed material is fixed to the collector by pressure or conductive paste.
  • the collector includes stainless steel, nickel, titanium, graphite plate, carbon paper, and the like.
  • the active material of the positive electrode is an alkali-rich metal manganese-based solid solution or composite having the general formula ⁇ 2 ⁇ 0 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 , wherein the alkali metal ruthenium contains lithium (Li), and the The active material of the lithium positive electrode undergoes chemical or electrochemical alkali metal ion exchange treatment before or after assembly of the aqueous electrochemical energy storage device.
  • the active material containing the lithium positive electrode can be chemically treated before the device is assembled, and the active material is placed in a dilute acid solution for soaking, thereby dissociating the lithium ions.
  • the active material of the lithium-containing positive electrode is subjected to electrochemical alkali metal ion exchange treatment, and the active material is placed in an electrochemical cell containing a sodium or potassium salt solution, and a long-term charge and discharge cycle is performed in a certain voltage range to cause lithium ions to pass from
  • the structure of the positive electrode material is removed, and sodium or potassium ions are introduced into the structure of the positive electrode material, thereby achieving exchange between sodium or potassium ions and lithium ions.
  • the electrochemical alkali metal ion exchange treatment can be carried out before the device is assembled, or can be achieved by charging and discharging activation after the device is assembled.
  • the invention can easily realize the application of the alkali metal ion positive electrode material in the aqueous alkali metal ion electrolyte, which can reduce the cost and improve the safety performance of the device.
  • FIG. 1 is a positive electrode material embodiment of the present invention is 0.16Li 2 MnO 3 '0.84LiM 0. 4 Co 0 .4Mn 2 O 2, activated carbon anode material is a configuration diagram of an energy storage device.
  • FIG 2 is an embodiment of the present invention as positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in aqueous lM Na 2 S0 4 in.
  • Figure 3 is an embodiment of the present invention is a positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in 0.5MK 2 S0 4 aqueous solution.
  • Example 4 is a charge and discharge curve of a hybrid capacitor battery composed of 0.4Li 2 Mn (V0.6LiM 2/3 Mn 1/3 O 2 ) and an activated carbon anode in 1M Na 2 S0 4 aqueous solution in Example 2 of the present invention. .
  • Fig. 5 is an X-ray powder diffraction (XRD) pattern of a positive electrode material of 0.4 Li 2 MnO 3 '0.6 LiM 2/3 Mn 1/3 O 2 in Example 2 of the present invention. detailed description
  • Example 1 Positive Electrode Active Material
  • a nickel-cobalt-manganese composite hydroxide precursor was synthesized by a coprecipitation method, and then mixed with Li 2 CO 3 and calcined at a high temperature.
  • the pH value was 10-11; the powder product prepared by the precipitation was washed by a vacuum suction filter, and dried at 110 ° C to obtain a precursor of M 1/3 C 0l / 3 Mn 1/3 (OH) 2 .
  • M 1/3 Co 1/3 Mn 1/3 (OH) 2 and Li 2 C0 3 according to the ratio of Li/(M+Mn+Co) 1.16:1 molar ratio, and then place the weighing material in The ball mill was ball milled at 150 rpm for 10 h.
  • the uniformly mixed material is placed in a box furnace, heated at 900 ° C for 2 h at 2 ° C / min, then naturally cooled to room temperature, and ground and pulverized to obtain 0.16Li 2 MnO 3 *0.84LiM 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 powder material.
  • the mixture was rolled or rolled onto a stainless steel mesh and then made into a 0.2 mm thick electrode sheet.
  • the mass ratio is uniformly mixed, and after drying, the mixture is rolled or rolled onto a stainless steel mesh, and then a 1 mm thick electrode sheet is formed. Then, the positive and negative electrodes are cut according to the specifications, and assembled into a CR2032 button battery.
  • the separator is a hydrophilically treated PP-based separator, and the electrolyte is 1 M Na 2 S0 4 or 0.5 MK 2 S0 4 aqueous solution. 1 is shown.
  • the reversible cycle charge and discharge curves are shown in Figures 2 and 3, respectively.
  • Example 2 The positive electrode active material was synthesized by a sol-gel method. According to the stoichiometric ratio of manganese acetate to nickel acetate of 3:2, manganese acetate and nickel acetate were respectively dissolved in an appropriate amount of deionized water, and the mixture was placed at 80°. Stir in a constant temperature water bath, and then slowly add a mixed solution of lithium acetate and citric acid.
  • the molar ratio of lithium acetate to manganese acetate and nickel acetate is 1.47:0.6:0.4, and the molar ratio of citric acid to manganese acetate and nickel acetate is 1. : 1 : 1.
  • the pH was adjusted to 7.0-8.0 with aqueous ammonia.
  • the solution was kept at a temperature of 80 ° C until the solution formed a gel state. After drying, it was calcined in an air atmosphere at 450 ° C for 10 h, and then calcined and then calcined at 900 ° C for 10 h in an air atmosphere, and rapidly cooled to room temperature to obtain 0.4 Li.
  • the separator was a hydrophilically treated PP-based separator, and the electrolyte was a 1 M Na 2 SO 4 aqueous solution.
  • the charge and discharge curves are shown in FIG. 4 . In the voltage range of 0.2V-1.8V, the charge and discharge current is 0.1C, and the specific capacity of the reversible cycle discharge in the Na 2 SO 4 aqueous solution is 90.7 mAh/g.
  • Figure 5 is an X-ray powder diffraction (XRD) pattern of 0.4Li 2 MnO 3 '0.6LiM 2/3 Mn 1/3 O 2 .
  • Table 1 compares the reversible cyclic discharge specific capacities of different alkali-rich manganese-based composites with transition metal oxides (LiMn 2 0 4 and Na 0 .44MnO 2 ) in aqueous solutions containing Na, K metal salts.
  • the active material of the negative electrode material is activated carbon.
  • the charge and discharge current (magnification) is 0.1C, and the charge and discharge voltage range is 0.2-1.8 V.
  • Table 1 Reversible cycle discharge positive electrode material electrolyte specific capacity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux, comprenant une électrode positive, une électrode négative, un séparateur et un électrolyte aqueux contenant des ions de métal alcalin, lequel dispositif est caractérisé en ce que la matière active de l'électrode positive est un complexe ou une solution solide à base de manganèse riche en métal alcalin ayant la formule générale xΑ2ΜnO3·(1-x)ΑΜO2, où Α est choisi parmi un ou plusieurs des éléments suivants : Li, Na et K ; M est choisi parmi un ou plusieurs des métaux de transition de Mn, M, Co, Cr, Al, Ru et Fe ; et 0 ≤ x ≤ 1. La structure cristalline de la matière active de l'électrode positive, à savoir le complexe ou la solution solide à base de manganèse riche en métal alcalin, contient une structure en couches ou une structure spinelle ; l'électrolyte est une solution aqueuse contenant un sol de sodium ou de potassium ; et la matière de l'électrode positive peut être soumise à un cycle de charge et de décharge stable dans l'électrolyte. Le dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux présente une capacité élevée, de faibles coûts, une sécurité et une protection de l'environnement, et peut être utilisé dans des dispositifs de stockage d'énergie de diverses dimensions.
PCT/CN2014/070718 2013-04-18 2014-01-16 Dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux WO2014169717A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310135859.9A CN103259009B (zh) 2013-04-18 2013-04-18 一种水系碱金属离子电化学储能器件
CN201310135859.9 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014169717A1 true WO2014169717A1 (fr) 2014-10-23

Family

ID=48962808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070718 WO2014169717A1 (fr) 2013-04-18 2014-01-16 Dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux

Country Status (2)

Country Link
CN (1) CN103259009B (fr)
WO (1) WO2014169717A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259009B (zh) * 2013-04-18 2019-06-14 恩力能源科技有限公司 一种水系碱金属离子电化学储能器件
CN103531778A (zh) * 2013-10-28 2014-01-22 北京理工大学 一种固溶体钠离子电池正极材料及其制备方法
CN103854877A (zh) * 2013-12-23 2014-06-11 燕山大学 自支撑石墨烯-氧化锰复合电极材料及其制备方法
CN105226264B (zh) * 2014-06-16 2018-12-14 北京理工大学 一种钠离子电池富钠正极材料及其制备方法和钠离子电池
CN106602054B (zh) * 2016-12-26 2019-08-16 东北大学 钾离子电池正极材料及其制备方法、应用
CN106800312B (zh) * 2017-03-08 2019-11-19 济南大学 一种用于钠离子电池正极材料亚锰酸钠的制备方法
CN107871861A (zh) * 2017-05-15 2018-04-03 中国科学院金属研究所 一种水系钠离子电化学储能装置
CN107403915B (zh) * 2017-07-13 2020-01-14 南京大学 钠离子电池的锰基正极材料
CN109546115A (zh) * 2018-11-19 2019-03-29 安徽安凯汽车股份有限公司 一种高镍富锂锰基固溶体正极材料的nca三元电池
CN115632117A (zh) * 2022-10-25 2023-01-20 湖北亿纬动力有限公司 一种锰基固溶体正极材料及制备方法与用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955211A (ja) * 1995-08-11 1997-02-25 Hitachi Maxell Ltd リチウム二次電池
CN101241802A (zh) * 2008-03-13 2008-08-13 复旦大学 一种非对称型水系钠/钾离子电池电容器
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material
CN102263280A (zh) * 2011-06-28 2011-11-30 中国科学院物理研究所 一种液流水系可充碱金属离子电池
CN103259009A (zh) * 2013-04-18 2013-08-21 恩力能源科技(南通)有限公司 一种水系碱金属离子电化学储能器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027625B (zh) * 2008-04-07 2017-05-03 卡内基美浓大学 钠离子为主的水相电解质电化学二次能源储存装置
JP5625390B2 (ja) * 2009-03-13 2014-11-19 住友化学株式会社 複合金属酸化物、電極およびナトリウム二次電池
CN103219551A (zh) * 2013-03-27 2013-07-24 恩力能源科技(南通)有限公司 一种水系碱金属离子储能器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955211A (ja) * 1995-08-11 1997-02-25 Hitachi Maxell Ltd リチウム二次電池
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material
CN101241802A (zh) * 2008-03-13 2008-08-13 复旦大学 一种非对称型水系钠/钾离子电池电容器
CN102263280A (zh) * 2011-06-28 2011-11-30 中国科学院物理研究所 一种液流水系可充碱金属离子电池
CN103259009A (zh) * 2013-04-18 2013-08-21 恩力能源科技(南通)有限公司 一种水系碱金属离子电化学储能器件

Also Published As

Publication number Publication date
CN103259009A (zh) 2013-08-21
CN103259009B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
Ding et al. A short review on layered LiNi0. 8Co0. 1Mn0. 1O2 positive electrode material for lithium-ion batteries
WO2014169717A1 (fr) Dispositif de stockage d'énergie électrochimique d'ions de métal alcalin aqueux
CN108987711B (zh) 一种球形钠离子电池正极四元材料及其制备方法
WO2014153957A1 (fr) Dispositif de stockage d'énergie à ions métalliques alcalins à base d'eau
CN102891299B (zh) 一种高倍率锂离子电池正极材料及其制备方法和用途
CN103441259B (zh) 一种高倍率水系碱金属电化学电池正极材料及其制备方法
CN103972499B (zh) 一种改性的镍钴铝酸锂正极材料及其制备方法
CN104795561B (zh) 一种层状o3相含镍氧化物正极材料及其制备方法和用途
CN112018341A (zh) 一种高容量高镍正极材料及其制备方法
CN109873140B (zh) 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN109088067B (zh) 一种低钴掺杂尖晶石-层状结构镍锰酸锂两相复合正极材料的制备方法
CN111162250A (zh) 纯阳离子变价的高钠含量p2相层状氧化物材料、制备方法和用途
CN103794779A (zh) 氧化铝包覆尖晶石锰酸锂正极材料及其制备方法
CN103094550A (zh) 一种富锂正极材料的制备方法
CN113078299B (zh) 钠锂铁锰基层状氧化物材料、制备方法和用途
CN103474646B (zh) 一种网状多孔富锂锰基锂离子电池正极材料及其制备方法
CN102856543B (zh) 锰酸锂材料及其制备方法
WO2015021788A1 (fr) Dispositif de stockage d'énergie électrochimique alcalin aqueux
CN116119730A (zh) 原位包覆硼酸盐的氧化物复合正极材料、制备方法和用途
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN103178252B (zh) 一种锂离子电池正极材料及其制备方法
CN112803023B (zh) 一种镧锆共掺杂的高镍三元正极材料及其制备方法和应用
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
Chen et al. Enhanced cycling stability of Mg–F co-modified LiNi0. 6Co0. 2Mn0. 2–yMgyO2–zFz for lithium-ion batteries
CN115207340A (zh) 一种钠离子电池层状氧化物正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785296

Country of ref document: EP

Kind code of ref document: A1