WO2014169717A1 - Electrochemical energy storage device of aqueous alkali metal ions - Google Patents

Electrochemical energy storage device of aqueous alkali metal ions Download PDF

Info

Publication number
WO2014169717A1
WO2014169717A1 PCT/CN2014/070718 CN2014070718W WO2014169717A1 WO 2014169717 A1 WO2014169717 A1 WO 2014169717A1 CN 2014070718 W CN2014070718 W CN 2014070718W WO 2014169717 A1 WO2014169717 A1 WO 2014169717A1
Authority
WO
WIPO (PCT)
Prior art keywords
xli
energy storage
sodium
storage device
positive electrode
Prior art date
Application number
PCT/CN2014/070718
Other languages
French (fr)
Chinese (zh)
Inventor
方淳
袁超群
戴翔
Original Assignee
恩力能源科技(南通)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恩力能源科技(南通)有限公司 filed Critical 恩力能源科技(南通)有限公司
Publication of WO2014169717A1 publication Critical patent/WO2014169717A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an aqueous alkali metal ion electrochemical energy storage device. Background technique
  • electrochemical energy storage can adapt to different grid function needs, and it has advantages in integrated grid connection of wind power and photovoltaic.
  • the way for energy storage in large-scale power grids is based on traditional lead-acid batteries.
  • Lead-acid batteries have low cost, but short life, and major materials such as lead and concentrated sulfuric acid cause serious pollution to the environment and require recycling. Therefore, there is an urgent need to find a new technology that can replace lead-acid batteries.
  • the positive electrode material of the hybrid water-based lithium ion battery is LiMn 2 0 4 , LiCo0 2 , LiCo 1/3 M 1/3 Mn 1/3 0 2 , LiMgo.2Mm.8O4 can reversibly intercalate lithium ion-extracting materials, and the negative electrode uses activated carbon, mesoporous carbon or carbon nanotubes having a specific surface area of 1000 m 2 /g or more.
  • Chinese Patent Publication No. CN102027625A discloses an aqueous phase electrolyte electrochemical secondary energy storage device mainly composed of sodium ions, which comprises an anode electrode, a cathode electrode capable of reversibly intercalating sodium cations, a separator and water containing sodium cations.
  • a phase electrolyte wherein the initial active cathode electrode material comprises an alkali metal-containing active cathode electrode material that deintercalates alkali metal ions during initial charging of the device.
  • the active cathode electrode material may be aluminum-doped ⁇ - ⁇ 0 2 , NaMn0 2 (sodium manganite structure), Na 2 Mn 3 0 7 NaFeP0 4 F Na 0 . 44 MnO 2 .
  • the anode electrode comprises porous activated carbon and the electrolyte comprises sodium sulfate.
  • Cia Patent Publication No. CN1723578A discloses a sodium ion battery comprising a positive electrode, a negative electrode and an electrolyte.
  • the positive electrode includes an electrochemically active material capable of reversibly circulating sodium ions
  • the negative electrode includes a carbon capable of intercalating potassium and sodium ions.
  • the active material includes a potassium transition metal phosphate.
  • the transition metal includes a transition metal selected from the group consisting of vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), nickel (Ni), and titanium (Ti), and mixtures thereof.
  • Chinese Patent Publication No. CN101241802A discloses an asymmetric water-based sodium/potassium battery capacitor composed of a positive electrode, a negative electrode, a separator and an electrolyte.
  • the active materials of the positive electrode are NaMn0 2 , NaCo0 2 , NaV 3 0 8 , NaVP0 4 F, and Na 2 VOP0 4 .
  • the positive electrode active material is uniformly mixed with carbon black and a binder, coated on a nickel mesh current collector, dried and pressed into an electrode.
  • the activated carbon is mixed with a conductive agent and a binder, uniformly coated on a nickel mesh current collector, dried and pressed into an electrode.
  • a non-woven fabric was used as a separator, and sodium chloride or sodium sulfate was used as an electrolyte to assemble a battery.
  • the above-mentioned phosphate positive electrode material having a spinel structure and a menorite structure or a core-shell structure although having a theoretical specific capacity of more than 100 mAh/g, is contained in sodium/potassium ions.
  • Aqueous solution The effective recyclable specific capacity is below 100 mAh/g, which results in low energy density of the device, which becomes a bottleneck for the promotion of sodium/potassium ion storage technology. It is urgent to develop a new positive electrode material with high capacity to improve sodium/ The energy density of a potassium energy storage device. Summary of the invention
  • the present invention provides an aqueous alkali metal ion electrochemical energy storage device comprising a positive electrode, a negative electrode, a separator and an aqueous phase electrolysis containing an alkali metal ion.
  • the active material of the positive electrode is an alkali-rich manganese-based solid solution or composite having the general formula ⁇ 2 ⁇ 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one of Li, Na and lanthanum Or one or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ 1, the alkali-rich manganese-based solid solution of the active material of the positive electrode Or the crystal structure of the composite contains a layered structure or a spinel structure, and the structure is stable, the electrolyte is an aqueous solution containing sodium or potassium salt; the positive electrode material can perform a stable charge and discharge cycle in the electrolyte .
  • the active material of the positive electrode is an alkali-rich metal manganese-based composite having the general formula ⁇ 2 ⁇ 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 in transition metal elements and In the mixed layer of alkali metal elements, the alkali metal and the transition metal element form an ordered arrangement of the superlattice structure.
  • the material may be a stable alkali-rich metal-rich manganese-based layered solid solution of both the A 2 Mn0 3 component and the AM0 2 component, thereby improving the structural stability of the layered structure AM0 2 in the cycle.
  • the material may also be a composite of uniformly mixing two phases of the A 2 Mn0 3 component and the AM0 2 component on the nanometer scale, wherein the AM0 2 contains a spinel structure.
  • the active material of the negative electrode may be selected from one or more of activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous carbon, and these materials are all large. The surface area is subjected to an illegally drawn electric double layer electron adsorption process, and the positive electrode is composed of a hybrid capacitor battery.
  • materials capable of performing a reversible redox reaction containing a Faraday electron transfer process in an aqueous phase electrolyte include oxide, phosphate materials that are capable of reversible intercalation and deintercalation of alkali metal ions.
  • metal or alloy materials that can undergo reversible dissolution and deposition reactions in the aqueous phase.
  • the reversible redox reaction potential of the negative electrode material capable of performing the reversible redox reaction of the Faraday electron transfer process in the aqueous phase electrolyte solution cannot be lower than the hydrogen evolution potential of the aqueous phase electrolyte to avoid irreversible electrochemistry due to hydrogen evolution reaction. The decrease in coulombic efficiency of charge and discharge of the device due to the occurrence of the reaction.
  • the crystal structure of the alkali-rich metal manganese-based solid solution or composite of the positive electrode material contains a layered structure or a spinel structure.
  • the alkali-rich metal manganese-based solid solution or composite is selected from the group consisting of xLi 2 Mn0 3 '(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 -(lx)LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 .
  • a material in which an alkali-rich metal manganese-based solid solution or composite is coated with a metal oxide or a non-metal oxide includes A1 2 O 3 , TiO 2 , ZnO, CeO 2 , MgO, Zr0 2 and the like.
  • the alkali-rich manganese metal-based solid solution of the positive electrode material has a formula of ⁇ 2 ⁇ 0 3 ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one of Li, Na and K Or more than one; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the alkali-rich metal manganese-based solid solution material can be synthesized by a coprecipitation method, a sol-gel method, a solid phase method, a hydrothermal method or the like.
  • the alkali-rich manganese metal-based solid solution of the positive electrode material has the formula ⁇ 2 ⁇ 0 3 ⁇ ;) ⁇ 0 2 , wherein A is selected from one of Li, Na and K One or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the material structure can be characterized by an X-ray diffractometer, and the XRD spectrum can be assigned to a space group type a-NaFe02 type layer structure.
  • the diffraction peak with a diffraction angle between 20° and 28° is caused by the ordered arrangement of the superlattice of the alkali metal ions and the transition metal ions.
  • Alkali metal elements that do not enter the crystal lattice remain on the surface of the particles and are washed away by washing with water.
  • the ratio of alkali metal to transition metal in the alkali-rich manganese-based solid solution material can be measured after the water washing, and the alkali metal element has entered the interior of the crystal lattice.
  • the aqueous phase electrolyte solution includes, but is not limited to, sodium sulfate, sodium nitrate, sodium halide, sodium carbonate, sodium phosphate, sodium acetate, sodium hydroxide, sodium perchlorate. And a mixture of one or more of potassium sulfate, potassium nitrate, potassium halide, potassium carbonate, potassium phosphate, potassium acetate, potassium hydroxide, potassium perchlorate.
  • the electrolyte concentration is 0.5 - 10 mol and the pH is between 3 and 12.
  • the present invention provides an alkali-rich metal manganese-based solid solution or composite cathode material.
  • the alkali-rich metal manganese-based solid solution or composite of the present invention has the formula ⁇ 2 ⁇ 0 3 ⁇ ) ⁇ 0 2 , wherein lanthanum is selected from one or more of Li, Na and K; M is selected from transition metals Mn, Ni One or more of Co, Cr, Al, Ru, and Fe; 0 ⁇ x ⁇ l.
  • the alkali-rich manganese metal-based solid solution or composite of the positive electrode material is selected from the group consisting of xLi 2 Mn0 3 -(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 - ( 1 -x LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 .
  • the cathode material also needs to add 5% - 10% of conductive agent (graphite, carbon black, acetylene black, etc.) to improve the conductivity of the material, and also need to add 5% - 10% binder (polytetrafluoroethylene, Polyvinylidene fluoride or the like is used to form a uniform, viscous mixed material, and the mixed material is fixed to the collector by pressure or conductive paste.
  • the collector includes stainless steel, nickel, titanium, graphite plate, carbon paper, and the like.
  • the active material of the positive electrode is an alkali-rich metal manganese-based solid solution or composite having the general formula ⁇ 2 ⁇ 0 0 3 ⁇ (1- ⁇ ) ⁇ 0 2 , wherein the alkali metal ruthenium contains lithium (Li), and the The active material of the lithium positive electrode undergoes chemical or electrochemical alkali metal ion exchange treatment before or after assembly of the aqueous electrochemical energy storage device.
  • the active material containing the lithium positive electrode can be chemically treated before the device is assembled, and the active material is placed in a dilute acid solution for soaking, thereby dissociating the lithium ions.
  • the active material of the lithium-containing positive electrode is subjected to electrochemical alkali metal ion exchange treatment, and the active material is placed in an electrochemical cell containing a sodium or potassium salt solution, and a long-term charge and discharge cycle is performed in a certain voltage range to cause lithium ions to pass from
  • the structure of the positive electrode material is removed, and sodium or potassium ions are introduced into the structure of the positive electrode material, thereby achieving exchange between sodium or potassium ions and lithium ions.
  • the electrochemical alkali metal ion exchange treatment can be carried out before the device is assembled, or can be achieved by charging and discharging activation after the device is assembled.
  • the invention can easily realize the application of the alkali metal ion positive electrode material in the aqueous alkali metal ion electrolyte, which can reduce the cost and improve the safety performance of the device.
  • FIG. 1 is a positive electrode material embodiment of the present invention is 0.16Li 2 MnO 3 '0.84LiM 0. 4 Co 0 .4Mn 2 O 2, activated carbon anode material is a configuration diagram of an energy storage device.
  • FIG 2 is an embodiment of the present invention as positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in aqueous lM Na 2 S0 4 in.
  • Figure 3 is an embodiment of the present invention is a positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in 0.5MK 2 S0 4 aqueous solution.
  • Example 4 is a charge and discharge curve of a hybrid capacitor battery composed of 0.4Li 2 Mn (V0.6LiM 2/3 Mn 1/3 O 2 ) and an activated carbon anode in 1M Na 2 S0 4 aqueous solution in Example 2 of the present invention. .
  • Fig. 5 is an X-ray powder diffraction (XRD) pattern of a positive electrode material of 0.4 Li 2 MnO 3 '0.6 LiM 2/3 Mn 1/3 O 2 in Example 2 of the present invention. detailed description
  • Example 1 Positive Electrode Active Material
  • a nickel-cobalt-manganese composite hydroxide precursor was synthesized by a coprecipitation method, and then mixed with Li 2 CO 3 and calcined at a high temperature.
  • the pH value was 10-11; the powder product prepared by the precipitation was washed by a vacuum suction filter, and dried at 110 ° C to obtain a precursor of M 1/3 C 0l / 3 Mn 1/3 (OH) 2 .
  • M 1/3 Co 1/3 Mn 1/3 (OH) 2 and Li 2 C0 3 according to the ratio of Li/(M+Mn+Co) 1.16:1 molar ratio, and then place the weighing material in The ball mill was ball milled at 150 rpm for 10 h.
  • the uniformly mixed material is placed in a box furnace, heated at 900 ° C for 2 h at 2 ° C / min, then naturally cooled to room temperature, and ground and pulverized to obtain 0.16Li 2 MnO 3 *0.84LiM 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 powder material.
  • the mixture was rolled or rolled onto a stainless steel mesh and then made into a 0.2 mm thick electrode sheet.
  • the mass ratio is uniformly mixed, and after drying, the mixture is rolled or rolled onto a stainless steel mesh, and then a 1 mm thick electrode sheet is formed. Then, the positive and negative electrodes are cut according to the specifications, and assembled into a CR2032 button battery.
  • the separator is a hydrophilically treated PP-based separator, and the electrolyte is 1 M Na 2 S0 4 or 0.5 MK 2 S0 4 aqueous solution. 1 is shown.
  • the reversible cycle charge and discharge curves are shown in Figures 2 and 3, respectively.
  • Example 2 The positive electrode active material was synthesized by a sol-gel method. According to the stoichiometric ratio of manganese acetate to nickel acetate of 3:2, manganese acetate and nickel acetate were respectively dissolved in an appropriate amount of deionized water, and the mixture was placed at 80°. Stir in a constant temperature water bath, and then slowly add a mixed solution of lithium acetate and citric acid.
  • the molar ratio of lithium acetate to manganese acetate and nickel acetate is 1.47:0.6:0.4, and the molar ratio of citric acid to manganese acetate and nickel acetate is 1. : 1 : 1.
  • the pH was adjusted to 7.0-8.0 with aqueous ammonia.
  • the solution was kept at a temperature of 80 ° C until the solution formed a gel state. After drying, it was calcined in an air atmosphere at 450 ° C for 10 h, and then calcined and then calcined at 900 ° C for 10 h in an air atmosphere, and rapidly cooled to room temperature to obtain 0.4 Li.
  • the separator was a hydrophilically treated PP-based separator, and the electrolyte was a 1 M Na 2 SO 4 aqueous solution.
  • the charge and discharge curves are shown in FIG. 4 . In the voltage range of 0.2V-1.8V, the charge and discharge current is 0.1C, and the specific capacity of the reversible cycle discharge in the Na 2 SO 4 aqueous solution is 90.7 mAh/g.
  • Figure 5 is an X-ray powder diffraction (XRD) pattern of 0.4Li 2 MnO 3 '0.6LiM 2/3 Mn 1/3 O 2 .
  • Table 1 compares the reversible cyclic discharge specific capacities of different alkali-rich manganese-based composites with transition metal oxides (LiMn 2 0 4 and Na 0 .44MnO 2 ) in aqueous solutions containing Na, K metal salts.
  • the active material of the negative electrode material is activated carbon.
  • the charge and discharge current (magnification) is 0.1C, and the charge and discharge voltage range is 0.2-1.8 V.
  • Table 1 Reversible cycle discharge positive electrode material electrolyte specific capacity

Abstract

Disclosed is an electrochemical energy storage device of aqueous alkali metal ions, comprising a positive electrode, a negative electrode, a separator and an aqueous electrolyte containing alkali metal ions, characterized in that the active material of the positive electrode is an alkali metal-rich manganese-based solid solution or complex with the general formula of xΑ2ΜnO3·(1-x)ΑΜO2, wherein Α is selected from one or more of Li, Na and K; M is selected from one or more of the transition metals of Mn, M, Co, Cr, Al, Ru and Fe; and 0 ≤ x ≤ 1. The crystal structure of the active material of the positive electrode, i.e. the alkali metal-rich manganese-based solid solution or complex, contains a layered structure or a spinel structure; the electrolyte is an aqueous solution containing a sodium or potassium salt; and the material of the positive electrode can be subjected to a stable charge and discharge cycle in the electrolyte. The electrochemical energy storage device of aqueous alkali metal ions has a high capacity, low costs, security and environmental protection, and can be used in energy storage devices of various scales.

Description

一种水系碱金属离子电化学储能器件 技术领域  Water-based alkali metal ion electrochemical energy storage device
本发明涉及一种水系碱金属离子电化学储能器件。 背景技术  The invention relates to an aqueous alkali metal ion electrochemical energy storage device. Background technique
随着科技、 经济和社会的发展, 能源和环境问题越来越受到关注, 能源方面需 求持续暴涨,化石能源的短缺和对环境造成的破坏使关注点转向了风能、太阳能这些 可再生资源, 然而这些可再生能源受天气及时间段的影响较大, 具有明显的不稳定、 不连续和不可控等特点, 需要开发和建设配套的电能储存 (储能) 装置来保证发电、 供电的连续性和稳定性。 因此, 大规模储能技术是大力发展太阳能、风能等可再生能 源利用和智能电网的关键。在所有的储能技术中, 电池可以实现化学能与电能之间的 高效转换, 是一种最佳的能量储存技术。二次可充电池是目前使用最广泛的一种储能 方式。 与其它储能方式相比, 电化学储能能够适应不同的电网功能需要, 在风电、 光 电等的集成并网方面尤其具有优势。对于可充电池储能技术的推广方面来说,存在这 两大挑战。 第一是开发具有高电压和高能量的电池***, 第二是使用成本低、 稳定、 对环境完全友好、长寿命的电池体系, 以保证源源不断的电能从可再生清洁能源中整 合到电网中。 目前, 用于大型电网储能的方式, 在实际布建的案例中, 还是以传统的铅酸电 池为主。铅酸电池成本低、但是寿命短、铅和浓硫酸等主要材料对环境造成严重污染, 需要回收。 因此, 迫切需要找到一种可以替代铅酸电池的新技术。 近二十年来, 锂离子电池技术的发展日益成熟, 由于其能量密度大, 输出电压 高, 使得锂离子电池在不同领域的应用也得到了迅猛发展。但是由于锂离子电池使用 有机溶剂作为电解液, 由此造成了制造成本偏高以及在使用中有易燃易爆的安全隐 患。中国专利授权公告号 CN1328818C公开了一种混合型水系锂离子电池。其工作原 理是: 对装成的电池, 首先必须进行充电。 充电过程中, 锂离子从正极脱出, 通过电 解液, 锂离子吸附在活性碳等材料做成的负极。 放电过程中, 锂离子从负极上脱附, 通过电解液, 锂离子嵌入正极。 充放电过程仅涉及锂离子在两电极间的转移。 该混合 型水系锂离子电池的正极材料采用 LiMn204、 LiCo02、 LiCo1/3M1/3Mn1/302、 LiMgo.2Mm.8O4等能够可逆的嵌入脱出锂离子的材料, 负极则采用比表面积在 1000m2/g以上的活性炭、 介孔碳或碳纳米管等。 另外, 随着锂离子电池的大规模应用, 锂的需求量会越来越大, 由于地壳中有 限的储量, 导致锂材料的价格会越来越高。近年来人们开始关注用更为廉价的碱金属 如钠, 钾甚至是碱土金属镁来取代锂用于储能器件。钠在地壳中的储量非常丰富, 约 占 2.74 %, 为第六丰富元素, 分布广泛, 含钠的原料价格较低; 以及和锂相似的电化 学性质, 钠基的电池渐渐成为了锂离子电池的替代选择。 With the development of science, technology, economy and society, energy and environmental issues have received more and more attention. The demand for energy continues to skyrocket. The shortage of fossil energy and environmental damage have turned the focus to renewable resources such as wind and solar. These renewable energy sources are greatly affected by weather and time periods, and are characterized by obvious instability, discontinuity and uncontrollability. It is necessary to develop and construct supporting electrical energy storage (storage energy) devices to ensure the continuity of power generation and power supply. stability. Therefore, large-scale energy storage technology is the key to vigorously develop renewable energy utilization and smart grids such as solar energy and wind energy. Among all the energy storage technologies, the battery can achieve efficient conversion between chemical energy and electrical energy, and is an optimal energy storage technology. Secondary rechargeable batteries are currently the most widely used energy storage method. Compared with other energy storage methods, electrochemical energy storage can adapt to different grid function needs, and it has advantages in integrated grid connection of wind power and photovoltaic. There are two major challenges to the promotion of rechargeable battery energy storage technology. The first is to develop battery systems with high voltage and high energy, and the second is to use low-cost, stable, environmentally friendly, long-life battery systems to ensure continuous supply of electrical energy from renewable and clean energy sources into the grid. . At present, the way for energy storage in large-scale power grids is based on traditional lead-acid batteries. Lead-acid batteries have low cost, but short life, and major materials such as lead and concentrated sulfuric acid cause serious pollution to the environment and require recycling. Therefore, there is an urgent need to find a new technology that can replace lead-acid batteries. In the past two decades, the development of lithium-ion battery technology has become more and more mature. Due to its high energy density and high output voltage, the application of lithium-ion batteries in different fields has also developed rapidly. However, since the lithium ion battery uses an organic solvent as the electrolyte, the manufacturing cost is high and there is a safety hazard that is flammable and explosive during use. Chinese Patent Licensing Publication No. CN1328818C discloses a hybrid water-based lithium ion battery. The working principle is: For the assembled battery, it must first be charged. During the charging process, lithium ions are removed from the positive electrode, and lithium ions are adsorbed to the negative electrode made of a material such as activated carbon through the electrolyte. During the discharge process, lithium ions are desorbed from the negative electrode, and lithium ions are inserted into the positive electrode through the electrolyte. The charge and discharge process involves only the transfer of lithium ions between the two electrodes. The positive electrode material of the hybrid water-based lithium ion battery is LiMn 2 0 4 , LiCo0 2 , LiCo 1/3 M 1/3 Mn 1/3 0 2 , LiMgo.2Mm.8O4 can reversibly intercalate lithium ion-extracting materials, and the negative electrode uses activated carbon, mesoporous carbon or carbon nanotubes having a specific surface area of 1000 m 2 /g or more. In addition, with the large-scale application of lithium-ion batteries, the demand for lithium will become larger and larger, and the price of lithium materials will become higher and higher due to the limited reserves in the earth's crust. In recent years, attention has been paid to replacing lithium with energy storage devices with cheaper alkali metals such as sodium, potassium or even alkaline earth metal magnesium. Sodium is abundant in the earth's crust, accounting for 2.74%. It is the sixth abundant element, widely distributed, and the price of raw materials containing sodium is low. And similar to the electrochemical properties of lithium, sodium-based batteries have gradually become lithium-ion batteries. Alternative option.
早期研究的基于钠金属的钠硫和 Na/ C12电池,虽然具有较为理想的能量密度, 但是要用到熔融态的钠作为负极, 运行温度在 300〜350°C之间, 因此需要配套使用 高额的热管理体系和特殊的陶瓷固体电解质。另外如果陶瓷固体电解质一旦破损形成 短路, 高温的液态钾和硫就会直接接触, 发生剧烈的放热反应, 产生 2000°C的高温, 有较大的安全隐患。 基于这些背景和原因, 室温钠离子电池又成为人们的研究热点。  In the early studies, sodium-based sodium-sulfur and Na/C12 batteries, although having a relatively good energy density, used molten sodium as the negative electrode, and the operating temperature was between 300 and 350 ° C, so it was necessary to use high A thermal management system and a special ceramic solid electrolyte. In addition, if the ceramic solid electrolyte is broken and short-circuited, the high-temperature liquid potassium and sulfur will be in direct contact, and a severe exothermic reaction will occur, resulting in a high temperature of 2000 ° C, which has a great safety hazard. Based on these backgrounds and reasons, room temperature sodium ion batteries have become a research hotspot.
中国专利公开号 CN102027625A公开了一种以钠离子为主的水相电解质电化学 二次能源储存装置, 其包括阳极电极、 能够使钠阳离子可逆性嵌入的阴极电极、 隔板 和含有钠阳离子的水相电解质,其中初始活性阴极电极材料包含在该装置的初始充电 期间使碱金属离子脱嵌的含碱金属的活性阴极电极材料。该活性阴极电极材料可以是 掺铝的 λ-Μη02、 NaMn02(水钠锰矿结构)、 Na2Mn307 NaFeP04F Na0.44MnO2。 该 阳极电极包含多孔活性炭, 且电解质包含硫酸钠。 Chinese Patent Publication No. CN102027625A discloses an aqueous phase electrolyte electrochemical secondary energy storage device mainly composed of sodium ions, which comprises an anode electrode, a cathode electrode capable of reversibly intercalating sodium cations, a separator and water containing sodium cations. A phase electrolyte, wherein the initial active cathode electrode material comprises an alkali metal-containing active cathode electrode material that deintercalates alkali metal ions during initial charging of the device. The active cathode electrode material may be aluminum-doped λ-Μη0 2 , NaMn0 2 (sodium manganite structure), Na 2 Mn 3 0 7 NaFeP0 4 F Na 0 . 44 MnO 2 . The anode electrode comprises porous activated carbon and the electrolyte comprises sodium sulfate.
中国专利公开号 CN1723578A公开了一种钠离子电池, 包括正电极、 负电极和 电解质。正电极包括一种能够可逆性循环钠离子的电化学活性材料, 负电极包括一种 能够嵌入钾钠离子的碳。 该活性材料包括钾过渡金属磷酸盐。 过渡金属包括选自钒 (V)、 锰 (Mn)、 铁 (Fe)、 钴 (Co)、 铜 (Cu)、 镍 (Ni)、 钛 (Ti) 中的一种过渡 金属及其混合物。  Chinese Patent Publication No. CN1723578A discloses a sodium ion battery comprising a positive electrode, a negative electrode and an electrolyte. The positive electrode includes an electrochemically active material capable of reversibly circulating sodium ions, and the negative electrode includes a carbon capable of intercalating potassium and sodium ions. The active material includes a potassium transition metal phosphate. The transition metal includes a transition metal selected from the group consisting of vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), nickel (Ni), and titanium (Ti), and mixtures thereof.
中国专利公开号 CN101241802A 公开了一种非对称型水系钠 /钾离子电池电容 器,由正极、负极、隔膜和电解质组成。正极的活性材料为 NaMn02、NaCo02、NaV308、 NaVP04F和 Na2VOP04。将正极活性材料与炭黑、粘结剂混合均匀, 涂布在镍网集流 体上,烘干后压成电极。将活性炭与导电剂和粘结剂混合,均匀涂布在镍网集流体上, 烘干后压成电极。采用无纺布作为隔膜,用氯化钠或硫酸钠作为电解液,组装成电池。 Chinese Patent Publication No. CN101241802A discloses an asymmetric water-based sodium/potassium battery capacitor composed of a positive electrode, a negative electrode, a separator and an electrolyte. The active materials of the positive electrode are NaMn0 2 , NaCo0 2 , NaV 3 0 8 , NaVP0 4 F, and Na 2 VOP0 4 . The positive electrode active material is uniformly mixed with carbon black and a binder, coated on a nickel mesh current collector, dried and pressed into an electrode. The activated carbon is mixed with a conductive agent and a binder, uniformly coated on a nickel mesh current collector, dried and pressed into an electrode. A non-woven fabric was used as a separator, and sodium chloride or sodium sulfate was used as an electrolyte to assemble a battery.
但是, 以上被研究的具有尖晶石结构和水钠锰矿结构锰酸盐或具有核壳结构的 磷酸盐正极材料,尽管其理论比容量多在 100mAh/g以上,但在含钠 /钾离子的水溶液 中的有效可循环比容量均在 100mAh/g以下,致使器件的能量密度偏低,成为钠 /钾离 子储能技术推广的一个瓶颈, 亟需开发具有高容量的新型正极材料, 从而提高钠 /钾 储能器件的能量密度。 发明内容 However, the above-mentioned phosphate positive electrode material having a spinel structure and a menorite structure or a core-shell structure, although having a theoretical specific capacity of more than 100 mAh/g, is contained in sodium/potassium ions. Aqueous solution The effective recyclable specific capacity is below 100 mAh/g, which results in low energy density of the device, which becomes a bottleneck for the promotion of sodium/potassium ion storage technology. It is urgent to develop a new positive electrode material with high capacity to improve sodium/ The energy density of a potassium energy storage device. Summary of the invention
为了开发一种高容量、 低成本、 安全、 环保型水系储能器件, 本发明提供了一 种水系碱金属离子电化学储能器件, 包括正极、 负极、 隔膜和含碱金属离子的水相电 解液, 其特征在于, 该正极的活性材料为具有通式 χΑ2Μη03·(1-Χ)ΑΜ02的富碱金属 锰基固溶体或复合物, 其中 Α选自 Li、 Na和 Κ中的一种或多种; M选自过渡金属 Mn、 Ni Co、 Cr、 Al、 Ru和 Fe中的一种或多种; 0≤x≤l, 所述正极的活性材料之 富碱金属的锰基固溶体或复合物的晶体结构含有层状结构或尖晶石结构, 且结构稳 定,所述电解液为含钠或钾盐的水溶液; 所述正极材料在所述电解液中可进行稳定的 充放电循环。 In order to develop a high-capacity, low-cost, safe and environmentally-friendly water-based energy storage device, the present invention provides an aqueous alkali metal ion electrochemical energy storage device comprising a positive electrode, a negative electrode, a separator and an aqueous phase electrolysis containing an alkali metal ion. a liquid, characterized in that the active material of the positive electrode is an alkali-rich manganese-based solid solution or composite having the general formula χΑ 2 Μη 0 3 ·(1- Χ ) ΑΜ 0 2 , wherein lanthanum is selected from one of Li, Na and lanthanum Or one or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ≤ x ≤ 1, the alkali-rich manganese-based solid solution of the active material of the positive electrode Or the crystal structure of the composite contains a layered structure or a spinel structure, and the structure is stable, the electrolyte is an aqueous solution containing sodium or potassium salt; the positive electrode material can perform a stable charge and discharge cycle in the electrolyte .
在本发明的水系碱金属离子储能器件中, 所述正极的活性材料为具有通式 χΑ2Μη03·(1-χ)ΑΜ02的富碱金属锰基复合物中,在过渡金属元素与碱金属元素的混合 层内, 碱金属和过渡金属元素形成超晶格结构的有序排列。 该材料可以是 A2Mn03 组分与 AM02组分二者形成稳定的富碱金属的锰基层状固溶体, 从而改善层状结构 AM02在循环中的结构稳定性。 另外, 该材料也可以是 A2Mn03组分与 AM02组分在 纳米尺度上的两相均匀混合而成的复合物, 其中 AM02含有尖晶石结构。 在本发明的水系碱金属离子储能器件中,所述负极的活性材料可以选自活性炭、 石墨烯、碳纳米管、碳纤维和介孔碳中的一种或多种, 这些材料均是靠大的表面积进 行非法拉第双电层电子吸附过程, 与正极组成混合电容电池。也可以选自能够在水相 电解液中进行含有法拉第电子转移过程的可逆氧化还原反应的材料。此类材料包括碱 金属离子能够可逆嵌入和脱嵌的氧化物、 磷酸盐材料。 也包括在水相中可以进行可 逆的溶解和沉积反应的金属或合金材料。 上述在水相电解液中可进行含有法拉第电 子转移过程的可逆氧化还原反应的负极材料的可逆氧化还原反应电位不能低于该水 相电解液的析氢电位,以避免由于析氢反应这一不可逆电化学反应的发生所导致的器 件充放电库仑效率的下降。 In the aqueous alkali metal ion energy storage device of the present invention, the active material of the positive electrode is an alkali-rich metal manganese-based composite having the general formula χΑ 2 Μη 0 3 ·(1-χ)ΑΜ0 2 in transition metal elements and In the mixed layer of alkali metal elements, the alkali metal and the transition metal element form an ordered arrangement of the superlattice structure. The material may be a stable alkali-rich metal-rich manganese-based layered solid solution of both the A 2 Mn0 3 component and the AM0 2 component, thereby improving the structural stability of the layered structure AM0 2 in the cycle. In addition, the material may also be a composite of uniformly mixing two phases of the A 2 Mn0 3 component and the AM0 2 component on the nanometer scale, wherein the AM0 2 contains a spinel structure. In the aqueous alkali metal ion energy storage device of the present invention, the active material of the negative electrode may be selected from one or more of activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous carbon, and these materials are all large. The surface area is subjected to an illegally drawn electric double layer electron adsorption process, and the positive electrode is composed of a hybrid capacitor battery. It may also be selected from materials capable of performing a reversible redox reaction containing a Faraday electron transfer process in an aqueous phase electrolyte. Such materials include oxide, phosphate materials that are capable of reversible intercalation and deintercalation of alkali metal ions. Also included are metal or alloy materials that can undergo reversible dissolution and deposition reactions in the aqueous phase. The reversible redox reaction potential of the negative electrode material capable of performing the reversible redox reaction of the Faraday electron transfer process in the aqueous phase electrolyte solution cannot be lower than the hydrogen evolution potential of the aqueous phase electrolyte to avoid irreversible electrochemistry due to hydrogen evolution reaction. The decrease in coulombic efficiency of charge and discharge of the device due to the occurrence of the reaction.
在本发明的水系碱金属离子储能器件中, 所述正极材料之富碱金属锰基固溶体 或复合物的晶体结构含有层状结构或尖晶石结构。该富碱金属锰基固溶体或复合物选 自 xLi2Mn03'(l-x)LiCr02 、 xLi2Mn03-(l-x)LiFe02 、 xLi2Mn03-(l-x)LiMn204 、 xLi2MnO3-(l-x)LiNi0.5Mn0.5O2 、 xLi2Mn03 - ( 1 -x)LiNi2 3Mni 302 、 xLi2Mn03-(l-x)LiFeo.5Nio.502, xLi2Mn03- (l-x)LiNi0.33Co0.33Mn0.33O2 、 xLi2MnO3-(l-x)LiNi0.4Co0.4Mn0.2O2 、 xLi2MnO3-(l-x)LiNi0.5Co0.2Mn0.3O2 、 xLi2Mn03 - ( 1 -x)NaCr02、 xLi2Mn03 - ( 1 -x)NaFe02、 xLi2MnO3-(l-x)NaNi0.5Mn0.5O2、 xLi2Mn03-(l-x)NaNio.33Coo.33Mno.3302 、 xLi2Mn03-(l-x)NaNio.4Coo.4Mno.202 、 xLi2Mn03-(l-x)NaNio.5Coo.2Mno.302 、 xLi2MnO3-(l-x)NaFe0.5Mn0.5O2 、 xNa2Mn03 - ( 1 -x)NaFe02 、 xNa2MnO3-(l-x)NaFe0.5Mn0.5O2 、 xLi2MnO3'(l-x)KNi0.33Co0.33Mn0.33O2 、 xLi2MnO3'(l-x)KNi0.5Co0.2Mn0.3O2 、 xLi2MnO3'(l-x)KNi0.4Co0.4Mn0.2O2、 xLi2MnO3'(l-x)KNi0.5Mn0.5O2 ( 0 <x≤l ) 中的一种 或多种, 或上述富碱金属锰基固溶体或复合物被金属氧化物、非金属氧化物包覆的材 料。其中用来包覆的金属或非金属氧化物包括 A1203、 Ti02、 ZnO、 Ce02、 MgO、 Zr02 等。 在本发明的水系碱金属离子储能器件中, 所述正极材料之富碱金属锰基固溶体 具有通式 χΑ2Μη03·Οχ)ΑΜ02, 其中 Α选自 Li、 Na和 K中的一种或多种; M选 自过渡金属 Mn、 Ni Co、 Cr、 Al、 Ru和 Fe中的一种或多种; 0≤x≤l。 该富碱金属 锰基固溶体材料可以通过共沉淀法、 溶胶凝胶法、 固相法、 水热法等方法合成得到。 其中固相法和共沉淀法的最大特点是便于产业化,适用于成本被视为普及应用瓶颈的 储能材料领域。 在本发明的水系碱金属离子储能器件中, 所述正极材料之富碱金属锰基固溶体 具有通式 χΑ2Μη03·Οχ;)ΑΜ02, 其中 A选自 Li、 Na和 K中的一种或多种; M选 自过渡金属 Mn、 Ni Co、 Cr、 Al、 Ru和 Fe中的一种或多种; 0≤x≤l。 该材料结构 可以用 X射线衍射仪进行表征,其 XRD谱可归属为空间群为 型的 a-NaFe02型 层状结构。其中, 衍射角在 20° - 28°之间的衍射峰是碱金属离子与过渡金属离子的超 晶格有序排列引起的。没有进入晶格的碱金属元素残留在颗粒表面,经水洗即可洗掉。 富碱金属锰基固溶体材料中碱金属与过渡金属的比例可以在水洗后测其中的碱金属 与过渡金属元素含量, 即可证明碱金属元素已经进入晶格内部。 在本发明的水系碱金属离子储能器件中, 所述水相电解液包含但不局限于硫酸 钠、 硝酸钠、 卤化钠、 碳酸钠、 磷酸钠、 醋酸钠、 氢氧化钠、 高氯酸钠、 硫酸钾、 硝 酸钾、 卤化钾、 碳酸钾、 磷酸钾、 醋酸钾、 氢氧化钾、 高氯酸钾中的一种或多种混合 液。 电解液浓度为 0.5 - lO mol丄 pH值在 3- 12之间。 为了解决现有的室温水系碱金属离子电池正极材料能量密度低, 性能表现不佳 的问题,本发明提供了一种富碱金属锰基固溶体或复合物正极材料。本发明的富碱金 属锰基固溶体或复合物具有通式 χΑ2Μη03·Οχ)ΑΜ02, 其中 Α选自 Li、 Na和 K中 的一种或多种; M选自过渡金属 Mn、 Ni、 Co、 Cr、 Al、 Ru和 Fe中的一种或多种; 0 ≤x≤l。 具体地, 所述正极材料之富碱金属锰基固溶体或复合物选自 xLi2Mn03-(l-x)LiCr02 、 xLi2Mn03-(l-x)LiFe02 、 xLi2Mn03 - ( 1 -x)LiMn204 、 xLi2MnO3-(l-x)LiNi0.5Mn0.5O2 、 xLi2Mn03 - ( 1 -x)LiNi2 3Mni 302 、 xLi2Mn03-(l-x)LiFeo.5Nio.502, xLi2Mn03- (l-x)LiNi0.33Co0.33Mn0.33O2 、 xLi2MnO3-(l-x)LiNi0.4Co0.4Mn0.2O2 、 xLi2MnO3-(l-x)LiNi0.5Co0.2Mn0.3O2 、 xLi2Mn03 - ( 1 -x)NaCr02、 xLi2Mn03 - ( 1 -x)NaFe02、 xLi2MnO3-(l-x)NaNi0.5Mn0.5O2、 xLi2Mn03-(l-x)NaNio.33Coo.33Mno.3302 、 xLi2Mn03-(l-x)NaNio.4Coo.4Mno.202 、 xLi2Mn03-(l-x)NaNio.5Coo.2Mno.302 、 xLi2MnO3-(l-x)NaFe0.5Mn0.5O2 、 xNa2Mn03 - ( 1 -x)NaFe02 、 xNa2MnO3-(l-x)NaFe0.5Mn0.5O2 、 xLi2MnO3'(l-x)KNi0.33Co0.33Mn0.33O2 、 xLi2MnO3'(l-x)KNi0.5Co0.2Mn0.3O2 、 xLi2MnO3'(l-x)KNi0.4Co0.4Mn0.2O2、 xLi2MnO3'(l-x)KNi0.5Mn0.5O2 (0 <x≤l ) 中的一种 或多种。 所述正极材料还需加入 5% - 10%的导电剂 (石墨、 炭黑、 乙炔黑等) 来提 高材料导电性, 同时还需加入 5% - 10%的粘结剂 (聚四氟乙烯、 聚偏氟乙烯等) 来 制成均匀、具有粘性的混合材料,再将该混合材料通过压力或导电胶固定在集电极上。 集电极包含有不锈钢、 镍、 钛、 石墨板、 碳纸等。 In the aqueous alkali metal ion energy storage device of the present invention, the crystal structure of the alkali-rich metal manganese-based solid solution or composite of the positive electrode material contains a layered structure or a spinel structure. The alkali-rich metal manganese-based solid solution or composite is selected from the group consisting of xLi 2 Mn0 3 '(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 -(lx)LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 . 5 O 2 , xLi 2 Mn0 3 - ( 1 -x)LiNi 2 3Mni 3 02 , xLi2Mn0 3 -(lx)LiFeo.5Nio.502, xLi 2 Mn0 3 - (lx) LiNi 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 , xLi 2 MnO 3 -(lx)LiNi 0 .4Co 0 .4Mn 0 . 2 O2 , xLi 2 MnO 3 -(lx)LiNi 0 . 5Co 0 .2Mn 0 . 3 O2 , xLi 2 Mn0 3 - ( 1 -x)NaCr0 2 , xLi 2 Mn0 3 - ( 1 -x)NaFe0 2 , xLi 2 MnO 3 -(lx)NaNi 0 . 5 Mn 0 . 5 O 2 , xLi 2 Mn03-(lx)NaNio.33Coo.33Mno.330 2 , xLi 2 Mn03-(lx)NaNio.4Coo.4Mno.20 2 , xLi 2 Mn03-(lx)NaNio.5Coo.2Mno.30 2 , xLi 2 MnO 3 -(lx)NaFe 0 .5Mn 0 . 5 O 2 , xNa 2 Mn0 3 - ( 1 -x)NaFe0 2 , xNa 2 MnO 3 -(lx)NaFe 0 . 5 Mn 0 . 5 O2 xLi2MnO 3 '(lx)KNi 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 , xLi 2 MnO 3 '(lx)KNi 0 .5Co 0 .2Mn 0 . 3 O2 , xLi 2 MnO 3 '(lx) KNi 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 , xLi 2 MnO 3 '(lx)KNi 0 . 5 Mn 0 . 5 O 2 ( 0 <x≤l ) one or more, or the above A material in which an alkali-rich metal manganese-based solid solution or composite is coated with a metal oxide or a non-metal oxide. The metal or non-metal oxide used for coating includes A1 2 O 3 , TiO 2 , ZnO, CeO 2 , MgO, Zr0 2 and the like. In the aqueous alkali metal ion energy storage device of the present invention, the alkali-rich manganese metal-based solid solution of the positive electrode material has a formula of χΑ 2 Μη 0 3 ·Οχ)ΑΜ0 2 , wherein lanthanum is selected from one of Li, Na and K Or more than one; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ≤ x ≤ l. The alkali-rich metal manganese-based solid solution material can be synthesized by a coprecipitation method, a sol-gel method, a solid phase method, a hydrothermal method or the like. Among them, the most important feature of the solid phase method and the coprecipitation method is that it is easy to industrialize and is suitable for the field of energy storage materials where cost is regarded as a bottleneck for popularization. In the aqueous alkali metal ion energy storage device of the present invention, the alkali-rich manganese metal-based solid solution of the positive electrode material has the formula χΑ 2 Μη0 3 ·Οχ;) ΑΜ0 2 , wherein A is selected from one of Li, Na and K One or more; M is selected from one or more of transition metals Mn, Ni Co, Cr, Al, Ru, and Fe; 0 ≤ x ≤ l. The material structure can be characterized by an X-ray diffractometer, and the XRD spectrum can be assigned to a space group type a-NaFe02 type layer structure. Among them, the diffraction peak with a diffraction angle between 20° and 28° is caused by the ordered arrangement of the superlattice of the alkali metal ions and the transition metal ions. Alkali metal elements that do not enter the crystal lattice remain on the surface of the particles and are washed away by washing with water. The ratio of alkali metal to transition metal in the alkali-rich manganese-based solid solution material can be measured after the water washing, and the alkali metal element has entered the interior of the crystal lattice. In the aqueous alkali metal ion energy storage device of the present invention, the aqueous phase electrolyte solution includes, but is not limited to, sodium sulfate, sodium nitrate, sodium halide, sodium carbonate, sodium phosphate, sodium acetate, sodium hydroxide, sodium perchlorate. And a mixture of one or more of potassium sulfate, potassium nitrate, potassium halide, potassium carbonate, potassium phosphate, potassium acetate, potassium hydroxide, potassium perchlorate. The electrolyte concentration is 0.5 - 10 mol and the pH is between 3 and 12. In order to solve the problem that the current room temperature water-based alkali metal ion battery cathode material has low energy density and poor performance, the present invention provides an alkali-rich metal manganese-based solid solution or composite cathode material. The alkali-rich metal manganese-based solid solution or composite of the present invention has the formula χΑ 2 Μη 0 3 ·Οχ)ΑΜ0 2 , wherein lanthanum is selected from one or more of Li, Na and K; M is selected from transition metals Mn, Ni One or more of Co, Cr, Al, Ru, and Fe; 0 ≤ x ≤ l. Specifically, the alkali-rich manganese metal-based solid solution or composite of the positive electrode material is selected from the group consisting of xLi 2 Mn0 3 -(lx)LiCr0 2 , xLi 2 Mn0 3 -(lx)LiFe0 2 , xLi 2 Mn0 3 - ( 1 -x LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 . 5 O 2 , xLi 2 Mn0 3 - ( 1 -x)LiNi 2 3Mni 3 02 , xLi2Mn0 3 -(lx)LiFeo.5Nio. 502, xLi 2 Mn0 3 - (lx)LiNi 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 , xLi 2 MnO 3 -(lx)LiNi 0 .4Co 0 .4Mn 0 . 2 O2 , xLi 2 MnO 3 - (lx) LiNi 0 .5Co 0 .2Mn 0 . 3 O2 , xLi 2 Mn0 3 - ( 1 -x)NaCr0 2 , xLi 2 Mn0 3 - ( 1 -x)NaFe0 2 , xLi 2 MnO 3 -(lx)NaNi 0 . 5 Mn 0 . 5 O 2 , xLi 2 Mn03-(lx)NaNio.33Coo.33Mno.330 2 , xLi 2 Mn03-(lx)NaNio.4Coo.4Mno.20 2 , xLi 2 Mn03-(lx)NaNio .5Coo.2Mno.30 2 , xLi 2 MnO 3 -(lx)NaFe 0 .5Mn 0 . 5 O 2 , xNa 2 Mn0 3 - ( 1 -x)NaFe0 2 , xNa 2 MnO 3 -(lx)NaFe 0 . 5 Mn 0 . 5 O2 , xLi2MnO 3 '(lx)KNi 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 , xLi 2 MnO 3 '(lx)KNi 0 .5Co 0 .2Mn 0 . 3 O2 , xLi 2 MnO 3 '(lx) KNi 0 . 4 Co 0. 4 Mn 0. 2 O 2, xLi 2 MnO 3' (lx) KNi 0. 5 Mn 0. 5 O 2 (0 <x One or more l) is. The cathode material also needs to add 5% - 10% of conductive agent (graphite, carbon black, acetylene black, etc.) to improve the conductivity of the material, and also need to add 5% - 10% binder (polytetrafluoroethylene, Polyvinylidene fluoride or the like is used to form a uniform, viscous mixed material, and the mixed material is fixed to the collector by pressure or conductive paste. The collector includes stainless steel, nickel, titanium, graphite plate, carbon paper, and the like.
所述正极的活性材料为具有通式 ΧΑ2Μη03·(1-Χ)ΑΜ02的富碱金属锰基固溶体或 复合物, 其中所述碱金属 Α含有锂(Li), 并且所述含锂正极的活性材料在所述水系 电化学储能器件组装前或组装后经过了化学或电化学的碱金属离子交换处理。含锂正 极的活性材料可以在器件组装前进行化学处理,是将活性材料放置于稀酸溶液中进行 浸泡, 从而使锂离子脱离。 将含锂正极的活性材料进行电化学碱金属离子交换处理, 是将活性材料置于含钠或钾盐溶液的电化学电池中,在一定电压范围内进行长时间充 放电循环, 使锂离子从正极材料的结构中脱出来, 并使钠或钾离子进入到正极材料的 结构中去, 从而实现钠或钾离子与锂离子之间的交换。 电化学碱金属离子交换处理可 以在器件组装前进行, 也可以在器件组装后再通过进行充放电活化来实现。 The active material of the positive electrode is an alkali-rich metal manganese-based solid solution or composite having the general formula Χ 2 Μ 0 0 3 · (1- Χ ) ΑΜ 0 2 , wherein the alkali metal ruthenium contains lithium (Li), and the The active material of the lithium positive electrode undergoes chemical or electrochemical alkali metal ion exchange treatment before or after assembly of the aqueous electrochemical energy storage device. The active material containing the lithium positive electrode can be chemically treated before the device is assembled, and the active material is placed in a dilute acid solution for soaking, thereby dissociating the lithium ions. The active material of the lithium-containing positive electrode is subjected to electrochemical alkali metal ion exchange treatment, and the active material is placed in an electrochemical cell containing a sodium or potassium salt solution, and a long-term charge and discharge cycle is performed in a certain voltage range to cause lithium ions to pass from The structure of the positive electrode material is removed, and sodium or potassium ions are introduced into the structure of the positive electrode material, thereby achieving exchange between sodium or potassium ions and lithium ions. The electrochemical alkali metal ion exchange treatment can be carried out before the device is assembled, or can be achieved by charging and discharging activation after the device is assembled.
本发明将轻易实现碱金属离子正极材料在水相碱金属离子电解液里的应用, 可 以降低成本和提高器件安全性能。 附图说明 The invention can easily realize the application of the alkali metal ion positive electrode material in the aqueous alkali metal ion electrolyte, which can reduce the cost and improve the safety performance of the device. DRAWINGS
图 1是本发明实施例 1 中正极材料为 0.16Li2MnO3'0.84LiM0.4Co0.4Mn 2O2, 负 极材料为活性炭的储能器件的结构图。 Example 1 FIG. 1 is a positive electrode material embodiment of the present invention is 0.16Li 2 MnO 3 '0.84LiM 0. 4 Co 0 .4Mn 2 O 2, activated carbon anode material is a configuration diagram of an energy storage device.
图 2是本发明实施例 1中正极材料为 0.16Li2MnO3'0.84LiM 4Co0.4Mn 2O2,与活 性炭负极组成的混合电容电池在 lM Na2S04水溶液中的充放电曲线。 图 3是本发明实施例 1中正极材料为 0.16Li2MnO3'0.84LiM 4Co0.4Mn 2O2,与活 性炭负极组成的混合电容电池在 0.5M K2S04水溶液中的充放电曲线。 FIG 2 is an embodiment of the present invention as positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in aqueous lM Na 2 S0 4 in. Figure 3 is an embodiment of the present invention is a positive electrode material 0.16Li 2 MnO 3 '0.84LiM 4Co 0 .4Mn 2 O 2, and the negative electrode mixed activated carbon composed of capacitor battery charge and discharge curves in 0.5MK 2 S0 4 aqueous solution.
图 4是本发明实施例 2中正极材料为 0.4Li2Mn(V0.6LiM2/3Mn1/3O2,与活性炭负 极组成的混合电容电池在 1M Na2S04水溶液中的充放电曲线。 4 is a charge and discharge curve of a hybrid capacitor battery composed of 0.4Li 2 Mn (V0.6LiM 2/3 Mn 1/3 O 2 ) and an activated carbon anode in 1M Na 2 S0 4 aqueous solution in Example 2 of the present invention. .
图 5是本发明实施例 2中正极材料为 0.4Li2MnO3'0.6LiM2/3Mn1/3O2的 X射线粉 末衍射 (XRD) 图。 具体实施方式 Fig. 5 is an X-ray powder diffraction (XRD) pattern of a positive electrode material of 0.4 Li 2 MnO 3 '0.6 LiM 2/3 Mn 1/3 O 2 in Example 2 of the present invention. detailed description
本发明将通过具体实施例进行更加详细的描述, 但本发明的保护范围并不受限 于这些实施例。  The invention will be described in more detail by way of specific examples, but the scope of the invention is not limited thereto.
实施例 1 正极活性材料采用共沉淀法合成镍钴锰复合氢氧化物前驱体, 然后与 Li2C03混 合后在高温煅烧得到。 将硫酸镍、 氯化锰、 氯化钴配制镍钴锰总浓度为 2mol/L的金 属混合溶液, 其中 Mn:Ni:Co摩尔比为 1 : 1 : 1 ; 采用固体片碱配置 5mol/L氢氧化钠溶 液; 采用氨水配置 100g/L溶液; 上述三种溶液同时并流通入到反应釜中, 反应釜温 度控制在 65°C, 金属溶液和氨水的流量恒定, 氢氧化钠溶液流量控制体系的 PH值 10-11;采用真空抽滤机洗涤沉淀制备的粉体产品, 110°C烘干得到 M1/3C0l/3Mn1/3(OH)2 前驱体。 将 M1/3Co1/3Mn1/3(OH)2和 Li2C03按照 Li/(M+Mn+Co) =1.16: 1摩尔比配比称 量, 然后将称量物料放置在球磨机中以 150rpm球磨 10h。 获得混合均匀的物料置于 箱式炉中, 以 2°C/min升温至 900°C保温 10h, 然后自然冷却到室温, 并经粉碎研磨, 制 得 0.16Li2MnO3*0.84LiM0.4Co0.4Mn0.2O2 粉 末 材 料 。 正 极 材 料 按 照 0.16Li2MnO3- 0.84LiNi0.4Co0.4Mn0.2O2 : 乙炔黑: PTFE粘结齐 [J = 80: 10: 10的质量比均 匀混合, 烘干后将混合物辊压或碾压到不锈钢网上, 然后制成 0.2mm厚的电极片。 负极材料采用商业化的活性炭, 按照活性炭: 导电炭黑: PTFE粘结剂 = 80: 10: 10 的 质量比均匀混合, 烘干后将混合物辊压或碾压到不锈钢网上, 然后制成 l mm厚的电 极片。 然后将正负极电极按照规格裁切, 配对组装成 CR2032纽扣电池, 隔膜采用亲 水处理过的 PP基隔膜, 电解液为 1M的 Na2S04或 0.5M K2S04水溶液, 电池结构如 图 1所示。 可逆循环充放电曲线分别如图 2、 3所示。 在 0.2V-1.8V的电压区间, 充 放电电流为 0.1C,在 Na2S04和 K2S04水溶液中可逆循环的放电的比容量分别是 123.5 mAh/g、 133.5 mAh/g。 实施例 2 正极活性材料采用溶胶凝胶法进行合成, 按照醋酸锰与醋酸镍的化学计量比为 3:2分别称取醋酸锰、 醋酸镍溶于适量去离子水中, 将混合物置于在 80°C恒温水浴中 搅拌, 然后缓慢滴加醋酸锂和柠檬酸的混合溶液, 醋酸锂与醋酸锰、 醋酸镍的摩尔比 为 1.47:0.6:0.4,柠檬酸与醋酸锰、醋酸镍的摩尔比为 1 : 1 : 1。滴完后用氨水调节 pH 为 7.0-8.0。 保温 80°C直至溶液形成凝胶态, 将其干燥后于 450°C空气气氛中预烧 10h, 研磨压片后再在空气气氛中 900°C下煅烧 10h, 快速冷却至室温, 得到 0.4Li2MnO3'0.6LiNi2/3Mn1/3O2粉末材料。正极材料按照 0.4Li2MnO3'0.6LiNi2/3Mn1/3O2 : 乙炔黑: PTFE粘结剂 = 80: 10: 10的质量比均匀混合, 烘干后将混合物辊压或碾压到 不锈钢网上, 然后制成 0.2mm厚的电极片。 负极材料采用商业化的活性炭, 按照活 性炭: 导电炭黑: PTFE粘结剂 = 80: 10: 10 的质量比均匀混合, 烘干后将混合物辊压 或碾压到不锈钢网上,然后制成 1 mm厚的电极片。然后将正负极电极按照规格裁切, 配对组装成 CR2032纽扣电池, 隔膜采用亲水处理过的 PP基隔膜, 电解液为 1M的 Na2S04水溶液, 充放电曲线如图 4所示。 在 0.2V-1.8V的电压区间, 充放电电流为 0.1C , 在 Na2S04水溶液中可逆循环的放电的比容量是 90.7 mAh/g。 图 5 是 0.4Li2MnO3'0.6LiM2/3Mn1/3O2的 X射线粉末衍射 (XRD) 图。 以下的表 1 是不同的富碱金属锰基复合物与过渡金属氧化物 (LiMn204 和 Na0.44MnO2) 在含 Na、 K金属盐的水溶液中的可逆循环放电比容量的比较。 其中负 极材料的活性材料为活性炭。充放电电流(倍率)为 0.1C, 充放电电压区间为 0.2-1.8 V。 表 1 可逆循环放电 正极材料 电解液 比容量 Example 1 Positive Electrode Active Material A nickel-cobalt-manganese composite hydroxide precursor was synthesized by a coprecipitation method, and then mixed with Li 2 CO 3 and calcined at a high temperature. Preparing a metal mixed solution with a total concentration of nickel, cobalt and manganese of 2 mol/L with nickel sulfate, manganese chloride and cobalt chloride, wherein the molar ratio of Mn:Ni:Co is 1:1:1; using a solid sheet base to configure 5 mol/L hydrogen Sodium oxide solution; 100g/L solution is arranged with ammonia water; the above three solutions are simultaneously circulated into the reaction vessel, the temperature of the reaction kettle is controlled at 65 ° C, the flow rate of the metal solution and the ammonia water is constant, and the flow rate control system of the sodium hydroxide solution is controlled. The pH value was 10-11; the powder product prepared by the precipitation was washed by a vacuum suction filter, and dried at 110 ° C to obtain a precursor of M 1/3 C 0l / 3 Mn 1/3 (OH) 2 . Weigh M 1/3 Co 1/3 Mn 1/3 (OH) 2 and Li 2 C0 3 according to the ratio of Li/(M+Mn+Co)=1.16:1 molar ratio, and then place the weighing material in The ball mill was ball milled at 150 rpm for 10 h. The uniformly mixed material is placed in a box furnace, heated at 900 ° C for 2 h at 2 ° C / min, then naturally cooled to room temperature, and ground and pulverized to obtain 0.16Li 2 MnO 3 *0.84LiM 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 powder material. Ratio were uniformly mixed, after drying of 10 mass: acetylene black:: bonding together the PTFE [J = 80: 10 0.84LiNi 0 4 Co 0 4 Mn 0 2 O 2 - positive electrode material according 0.16Li 2 MnO 3... The mixture was rolled or rolled onto a stainless steel mesh and then made into a 0.2 mm thick electrode sheet. The anode material is made of commercial activated carbon, according to activated carbon: Conductive carbon black: PTFE binder = 80: 10: 10 The mass ratio is uniformly mixed, and after drying, the mixture is rolled or rolled onto a stainless steel mesh, and then a 1 mm thick electrode sheet is formed. Then, the positive and negative electrodes are cut according to the specifications, and assembled into a CR2032 button battery. The separator is a hydrophilically treated PP-based separator, and the electrolyte is 1 M Na 2 S0 4 or 0.5 MK 2 S0 4 aqueous solution. 1 is shown. The reversible cycle charge and discharge curves are shown in Figures 2 and 3, respectively. In the voltage range of 0.2V-1.8V, the charge and discharge current is 0.1C, and the specific capacities of the reversible cycles in the Na 2 S0 4 and K 2 S0 4 aqueous solutions are 123.5 mAh/g and 133.5 mAh/g, respectively. Example 2 The positive electrode active material was synthesized by a sol-gel method. According to the stoichiometric ratio of manganese acetate to nickel acetate of 3:2, manganese acetate and nickel acetate were respectively dissolved in an appropriate amount of deionized water, and the mixture was placed at 80°. Stir in a constant temperature water bath, and then slowly add a mixed solution of lithium acetate and citric acid. The molar ratio of lithium acetate to manganese acetate and nickel acetate is 1.47:0.6:0.4, and the molar ratio of citric acid to manganese acetate and nickel acetate is 1. : 1 : 1. After the completion of the dropwise addition, the pH was adjusted to 7.0-8.0 with aqueous ammonia. The solution was kept at a temperature of 80 ° C until the solution formed a gel state. After drying, it was calcined in an air atmosphere at 450 ° C for 10 h, and then calcined and then calcined at 900 ° C for 10 h in an air atmosphere, and rapidly cooled to room temperature to obtain 0.4 Li. 2 MnO 3 '0.6LiNi 2/3 Mn 1/3 O2 powder material. The positive electrode material is uniformly mixed according to a mass ratio of 0.4Li 2 MnO 3 '0.6LiNi2 /3 Mn 1/3 O 2 : acetylene black: PTFE binder = 80: 10:10, and after drying, the mixture is rolled or rolled to The stainless steel mesh was then made into a 0.2 mm thick electrode sheet. The negative electrode material is made of commercial activated carbon, and is uniformly mixed according to the mass ratio of activated carbon: conductive carbon black: PTFE binder = 80: 10: 10, after drying, the mixture is rolled or rolled onto a stainless steel mesh, and then made into 1 mm. Thick electrode pads. Then, the positive and negative electrodes were cut according to the specifications, and assembled into a CR2032 button battery. The separator was a hydrophilically treated PP-based separator, and the electrolyte was a 1 M Na 2 SO 4 aqueous solution. The charge and discharge curves are shown in FIG. 4 . In the voltage range of 0.2V-1.8V, the charge and discharge current is 0.1C, and the specific capacity of the reversible cycle discharge in the Na 2 SO 4 aqueous solution is 90.7 mAh/g. Figure 5 is an X-ray powder diffraction (XRD) pattern of 0.4Li 2 MnO 3 '0.6LiM 2/3 Mn 1/3 O 2 . Table 1 below compares the reversible cyclic discharge specific capacities of different alkali-rich manganese-based composites with transition metal oxides (LiMn 2 0 4 and Na 0 .44MnO 2 ) in aqueous solutions containing Na, K metal salts. The active material of the negative electrode material is activated carbon. The charge and discharge current (magnification) is 0.1C, and the charge and discharge voltage range is 0.2-1.8 V. Table 1 Reversible cycle discharge positive electrode material electrolyte specific capacity
(mAh/g)  (mAh/g)
0.16Li2Mn03 · 0.84LiNi0.4Co0.4Mn0.2O2 1 M Na2S04 123.5 0.16Li 2 Mn0 3 · 0.84LiNi 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 1 M Na 2 S0 4 123.5
0.16Li2Mn03 · 0.84LiNi0.4Co0.4Mn0.2O2 1 M K2S04 133.5 0.16Li 2 Mn0 3 · 0.84LiNi 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 1 MK 2 S0 4 133.5
0.4Li2MnO3O.6LiNi2/3Mn1/3O2 1M Na2S04 90.7 0.4Li 2 MnO 3 O.6LiNi 2/3 Mn 1/3 O 2 1M Na 2 S0 4 90.7
LiMn204 1M Na2S04 76.3 LiMn 2 0 4 1M Na 2 S0 4 76.3
Na0.44MnO2 1M Na2S04 44.1 Na 0 .44MnO2 1M Na 2 S0 4 44.1
虽然已经以实施例的方式描述了本发明, 但是对于本领域技术人员来说明显的 是,在不脱离所附权利要求书所限定的本发明的精神和范围的情况下,可以对本发明 进行各种变化和修改, 这些变化和修改同样包括在本发明的范围内。 While the invention has been described by way of illustrative embodiments, the embodiments of the invention may Such changes and modifications are also included in the scope of the present invention.

Claims

权 利 要 求 Rights request
1. 一种水系电化学储能器件, 包括正极、 负极、 隔膜和含碱金属离子的水 相电解液, 其特征在于, 该正极的活性材料为具有通式 χΑ2Μη03·(1-χ)ΑΜ02的 富碱金属锰基固溶体或复合物, 其中 Α选自 Li、 Na和 K中的一种或多种; M选 自过渡金属 Mn、 Ni Co、 Cr、 Al、 Ru和 Fe中的一种或多种; 0≤x≤l, 所述正 极的活性材料之富碱金属的锰基固溶体或复合物的晶体结构含有层状结构或尖 晶石结构; 所述电解液为含钠或钾盐的水溶液; 所述正极材料在所述电解液中可 进行稳定的充放电循环。 A water-based electrochemical energy storage device comprising a positive electrode, a negative electrode, a separator and an aqueous phase electrolyte containing an alkali metal ion, wherein the active material of the positive electrode has the formula χΑ 2 Μη0 3 ·(1-χ An alkali-rich metal manganese-based solid solution or composite of ΑΜ0 2 , wherein lanthanum is selected from one or more of Li, Na and K; M is selected from the group consisting of transition metals Mn, Ni Co, Cr, Al, Ru and Fe One or more; 0≤x≤1, the crystal structure of the alkali-rich manganese-based solid solution or composite of the active material of the positive electrode contains a layered structure or a spinel structure; the electrolyte is sodium or An aqueous solution of a potassium salt; the positive electrode material can perform a stable charge and discharge cycle in the electrolyte.
2. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述正极的 活性材料为具有通式 χΑ2Μη03·(1-Χ)ΑΜ02的富碱金属锰基固溶体, 其晶体结构 含有层状结构。 2 . The aqueous electrochemical energy storage device according to claim 1 , wherein the active material of the positive electrode is an alkali-rich manganese metal-based solid solution having the formula χΑ 2 Μη 0 3 ·(1- Χ )ΑΜ0 2 , Its crystal structure contains a layered structure.
3. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述正极的 活性材料为具有通式 χΑ2Μη03·(1-Χ)ΑΜ02的富碱金属锰基复合物, 其晶体结构 含有尖晶石结构。 3. The aqueous electrochemical energy storage device according to claim 1, wherein the active material of the positive electrode is an alkali-rich manganese-based composite having the formula χΑ 2 Μη0 3 ·(1- Χ )ΑΜ0 2 , its crystal structure contains a spinel structure.
4. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述正极的 活性材料为具有通式 ΧΑ2Μη03·(1-Χ)ΑΜ02的富碱金属锰基固溶体或复合物, 其 中所述碱金属 Α含有锂, 并且所述含锂正极的活性材料在所述水系电化学储能 器件组装前或组装后经过了化学或电化学的碱金属离子交换处理。 The aqueous electrochemical energy storage device according to claim 1, wherein the active material of the positive electrode is an alkali-rich manganese metal-based solid solution having a general formula of Χ Μ 2 Μη 0 3 ·(1- Χ )ΑΜ0 2 Or a composite, wherein the alkali metal ruthenium contains lithium, and the active material of the lithium-containing positive electrode undergoes chemical or electrochemical alkali metal ion exchange treatment before or after assembly of the aqueous electrochemical energy storage device.
5. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述负极材 料至少包含一种能够在水相电解液中与钠离子或 /和钾离子进行可逆电化学反应 的材料。 5. The aqueous electrochemical energy storage device according to claim 1, wherein the anode material comprises at least one material capable of reversible electrochemical reaction with sodium ions and/or potassium ions in an aqueous phase electrolyte. .
6. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述负极材 料至少包含一种能够在水相电解液中进行钠离子或 /和钾离子嵌入和脱嵌的材 料。 6. The aqueous electrochemical energy storage device according to claim 1, wherein the negative electrode material comprises at least one material capable of intercalating and deintercalating sodium ions or/and potassium ions in an aqueous phase electrolyte.
7. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述负极的 活性材料选自活性炭、石墨烯、碳纳米管、碳纤维和介孔碳中的一种或多种材料。 7. The aqueous electrochemical energy storage device according to claim 1, wherein the negative electrode The active material is selected from one or more of the group consisting of activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous carbon.
8. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述水相电 解液包含有钠盐、 钾盐电解质中的一种或多种。 8. The aqueous electrochemical energy storage device according to claim 1, wherein the aqueous phase electrolyte solution comprises one or more of a sodium salt and a potassium salt electrolyte.
9. 根据权利要求 1 所述的水系电化学储能器件, 其特征在于, 所述水相电 解液选自硫酸钠、 硝酸钠、 卤化钠、 碳酸钠、 磷酸钠、 醋酸钠、 氢氧化钠、 高氯 酸钠、 硫酸钾、 硝酸钾、 卤化钾、 碳酸钾、 磷酸钾、 醋酸钾、 氢氧化钾、 高氯酸 钾中的一种或多种。 9. The aqueous electrochemical energy storage device according to claim 1, wherein the aqueous phase electrolyte is selected from the group consisting of sodium sulfate, sodium nitrate, sodium halide, sodium carbonate, sodium phosphate, sodium acetate, sodium hydroxide, One or more of sodium perchlorate, potassium sulfate, potassium nitrate, potassium halide, potassium carbonate, potassium phosphate, potassium acetate, potassium hydroxide, potassium perchlorate.
10. 根据权利要求 1所述的水系电化学储能器件, 其特征在于, 所述富碱金 属锰基固溶体或复合物选自 xLi2Mn03 l-x)LiCr02、 xLi2Mn03-(l-x)LiFe02 xLi2Mn03 - ( 1 -x)LiMn204 、 xLi2MnO3-(l-x)LiNi0.5Mn0.5O2 、 xLi2Mn03 · ( 1 -χ) Μ2/3Μη1/302 xLi2MnO3-(l-x)LiFe0.5Ni0.5O2: xLi2Mn03- (l-x)LiNi。.33Co。.33Mn 3302 、 xLi2MnO3-(l-x)LiNi0.4Co0.4Mn0.2O2 、 xLi2Mn03-(l-x)LiNio.5Coo.2Mno.302 、 xLi2Mn03-(l-x)NaCr02 、 xLi2Mn03 - ( 1 -x)NaFe02 、 xLi2Mn03-(l-x)NaNio.5Mno.502 、 xLi2Mn03-(l-x)NaNio.33Coo.33Mno.3302 、 xLi2Mn03-(l-x)NaNio.4Coo.4Mno.202 、 xLi2Mn03-(l-x)NaNio.5Coo.2Mno.302 、 xLi2MnO3'(l-x)NaFe0.5Mn0.5O2 、 xNa2Mn03-(l-x)NaFe02 、 xNa2Mn03-(l-x)NaFeo.5Mno.502 、 xLi2MnO3-(l-x)KNi0.33Co0.33Mn0.33O2 、 xLi2MnO3-(l-x)KNi0.5Co0.2Mn0.3O2 、 xLi2MnO3'(l-x)KNi0.4Co0.4Mn0.2O2、 xLi2MnO3'(l-x)KNi0.5Mn0.5O2 (0 <x≤l ) 中的 一种或多种, 或上述富碱金属锰基固溶体或复合物被金属氧化物、非金属氧化物 包覆的材料。 The aqueous electrochemical energy storage device according to claim 1, wherein the alkali-rich metal manganese-based solid solution or composite is selected from the group consisting of xLi 2 Mn0 3 lx)LiCr0 2 , xLi 2 Mn0 3 -(lx) LiFe0 2 xLi 2 Mn0 3 - ( 1 -x)LiMn 2 0 4 , xLi 2 MnO 3 -(lx)LiNi 0 .5Mn 0 . 5 O 2 , xLi 2 Mn0 3 · ( 1 -χ) Μ 2 / 3 Μη 1/3 0 2 xLi 2 MnO 3 -(lx)LiFe 0 . 5 Ni 0 . 5 O 2: xLi 2 Mn0 3 - (lx)LiNi. . 33 Co. 33 Mn 33 0 2 , xLi 2 MnO 3 -(lx)LiNi 0 .4Co 0 .4Mn 0 .2O 2 , xLi2Mn03-(lx)LiNio.5Coo.2Mno.30 2 , xLi 2 Mn0 3 -(lx)NaCr0 2 , xLi 2 Mn0 3 - ( 1 -x)NaFe0 2 , xLi2Mn03-(lx)NaNio.5Mno. 5 0 2 , xLi 2 Mn03-(lx)NaNio.33Coo.33Mno.330 2 , xLi 2 Mn03-(lx NaNio.4Coo.4Mno.20 2 , xLi 2 Mn03-(lx)NaNio.5Coo.2Mno.30 2 , xLi 2 MnO 3 '(lx)NaFe 0 .5Mn 0 . 5 O2 , xNa 2 Mn0 3 -(lx NaFe0 2 , xNa 2 Mn03-(lx)NaFeo.5Mno.50 2 , xLi 2 MnO 3 -(lx)KNi 0 . 33 Co 0 . 33 Mn 0 . 33 O 2 , xLi 2 MnO 3 -(lx)KNi 0 .5Co 0 .2Mn 0 . 3 O2 , xLi 2 MnO 3 '(lx)KNi 0 . 4 Co 0 . 4 Mn 0 . 2 O 2 , xLi 2 MnO 3 '(lx)KNi 0 . 5 Mn 0 . 5 One or more of O 2 (0 < x ≤ l), or a material in which the above alkali-rich metal manganese-based solid solution or composite is coated with a metal oxide or a non-metal oxide.
PCT/CN2014/070718 2013-04-18 2014-01-16 Electrochemical energy storage device of aqueous alkali metal ions WO2014169717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310135859.9A CN103259009B (en) 2013-04-18 2013-04-18 A kind of water-system alkali metal ion electrochemical energy storing device
CN201310135859.9 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014169717A1 true WO2014169717A1 (en) 2014-10-23

Family

ID=48962808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070718 WO2014169717A1 (en) 2013-04-18 2014-01-16 Electrochemical energy storage device of aqueous alkali metal ions

Country Status (2)

Country Link
CN (1) CN103259009B (en)
WO (1) WO2014169717A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259009B (en) * 2013-04-18 2019-06-14 恩力能源科技有限公司 A kind of water-system alkali metal ion electrochemical energy storing device
CN103531778A (en) * 2013-10-28 2014-01-22 北京理工大学 Solid solution sodium-ion battery positive material and preparation method therefor
CN103854877A (en) * 2013-12-23 2014-06-11 燕山大学 Self-supporting grapheme-manganese oxide combined electrode material and manufacturing method thereof
CN105226264B (en) * 2014-06-16 2018-12-14 北京理工大学 A kind of sodium-ion battery richness sodium positive electrode and preparation method thereof and sodium-ion battery
CN106602054B (en) * 2016-12-26 2019-08-16 东北大学 Kalium ion battery positive electrode and preparation method thereof, application
CN106800312B (en) * 2017-03-08 2019-11-19 济南大学 A kind of preparation method for sodium-ion battery positive material manganous acid sodium
CN107871861A (en) * 2017-05-15 2018-04-03 中国科学院金属研究所 A kind of water system sodium ion electrochemical energy storage device
CN107403915B (en) * 2017-07-13 2020-01-14 南京大学 Manganese-based positive electrode material of sodium ion battery
CN109546115A (en) * 2018-11-19 2019-03-29 安徽安凯汽车股份有限公司 A kind of NCA ternary battery of nickelic rich lithium manganese base solid solution positive electrode
CN115632117A (en) * 2022-10-25 2023-01-20 湖北亿纬动力有限公司 Manganese-based solid solution cathode material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955211A (en) * 1995-08-11 1997-02-25 Hitachi Maxell Ltd Lithium secondary battery
CN101241802A (en) * 2008-03-13 2008-08-13 复旦大学 A non symmetric water natrium/kalium ion battery capacitor
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material
CN102263280A (en) * 2011-06-28 2011-11-30 中国科学院物理研究所 Flow aqueous chargeable alkali metal ion battery
CN103259009A (en) * 2013-04-18 2013-08-21 恩力能源科技(南通)有限公司 Water system alkaline metal ion electrochemical energy-storing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431452B2 (en) * 2008-04-07 2014-03-05 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions
JP5625390B2 (en) * 2009-03-13 2014-11-19 住友化学株式会社 Composite metal oxide, electrode and sodium secondary battery
CN103219551A (en) * 2013-03-27 2013-07-24 恩力能源科技(南通)有限公司 Water-system alkali metal ion power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955211A (en) * 1995-08-11 1997-02-25 Hitachi Maxell Ltd Lithium secondary battery
US20100248033A1 (en) * 2007-01-10 2010-09-30 Sujeet Kumar Lithium batteries with nano-composite positive electrode material
CN101241802A (en) * 2008-03-13 2008-08-13 复旦大学 A non symmetric water natrium/kalium ion battery capacitor
CN102263280A (en) * 2011-06-28 2011-11-30 中国科学院物理研究所 Flow aqueous chargeable alkali metal ion battery
CN103259009A (en) * 2013-04-18 2013-08-21 恩力能源科技(南通)有限公司 Water system alkaline metal ion electrochemical energy-storing device

Also Published As

Publication number Publication date
CN103259009B (en) 2019-06-14
CN103259009A (en) 2013-08-21

Similar Documents

Publication Publication Date Title
Ding et al. A short review on layered LiNi0. 8Co0. 1Mn0. 1O2 positive electrode material for lithium-ion batteries
WO2014169717A1 (en) Electrochemical energy storage device of aqueous alkali metal ions
CN108987711B (en) Spherical quaternary material for positive electrode of sodium-ion battery and preparation method thereof
WO2014153957A1 (en) Water-based alkali metal ion energy storage device
CN102891299B (en) High-rate lithium ion battery cathode material and preparation method and application thereof
CN103441259B (en) A kind of high magnification aquo-base metal electrochemical cells positive electrode and preparation method thereof
CN103972499B (en) A kind of nickel cobalt lithium aluminate cathode material of modification and preparation method thereof
CN104795561B (en) A kind of nickeliferous oxide anode material of stratiform O3 phase and its preparation method and application
CN112018341A (en) High-capacity high-nickel cathode material and preparation method thereof
CN109873140B (en) Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material
CN109088067B (en) Preparation method of low-cobalt-doped spinel-layered-structure lithium nickel manganese oxide two-phase composite positive electrode material
CN113078299B (en) Sodium lithium iron manganese-based layered oxide material, preparation method and application
CN103794779A (en) Aluminum oxide coated lithium manganese oxide spinel positive electrode material as well as preparation method thereof
CN103094550A (en) Preparation method of lithium-rich anode material
CN103474646B (en) A kind of mesh structural porous lithium-rich manganese-based anode material for lithium-ion batteries and preparation method thereof
CN111162250A (en) Pure cation valence-change high-sodium-content P2 phase layered oxide material, preparation method and application
CN102856543B (en) Lithium manganate material and preparation method thereof
WO2015021788A1 (en) Aqueous alkaline electrochemical energy-storage device
CN110459764B (en) Lithium ion battery positive electrode material and preparation method and application thereof
CN103178252B (en) A kind of anode material for lithium-ion batteries and preparation method thereof
CN112803023B (en) Lanthanum-zirconium-codoped high-nickel ternary cathode material and preparation method and application thereof
CN116119730A (en) Oxide composite positive electrode material coated with borate in situ, preparation method and application
CN103078099A (en) Anode material for lithium ion cell and preparation method thereof
Chen et al. Enhanced cycling stability of Mg–F co-modified LiNi0. 6Co0. 2Mn0. 2–yMgyO2–zFz for lithium-ion batteries
CN115207340A (en) Sodium ion battery layered oxide positive electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785296

Country of ref document: EP

Kind code of ref document: A1