WO2014169538A1 - 内嵌式触摸屏及显示装置 - Google Patents

内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2014169538A1
WO2014169538A1 PCT/CN2013/079134 CN2013079134W WO2014169538A1 WO 2014169538 A1 WO2014169538 A1 WO 2014169538A1 CN 2013079134 W CN2013079134 W CN 2013079134W WO 2014169538 A1 WO2014169538 A1 WO 2014169538A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sub
common electrode
electrodes
electrode
Prior art date
Application number
PCT/CN2013/079134
Other languages
English (en)
French (fr)
Inventor
王海生
董学
李成
丁小梁
刘红娟
杨盛际
赵卫杰
刘英明
任涛
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/344,843 priority Critical patent/US9423916B2/en
Publication of WO2014169538A1 publication Critical patent/WO2014169538A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • Embodiments of the present invention relate to an in-cell touch panel and display device. Background technique
  • the In Cell Touch Panel is a device that integrates the touch screen and display.
  • the touch drive electrodes and touch sense electrodes are integrated into the display to enable both touch and image display functions. Due to the single, light, thin and low cost of the embedded touch screen structure, it has gradually become the mainstream in the display field.
  • FIG. 1 illustrates a laterally disposed touch driving electrode 800 and a longitudinally disposed touch sensing electrode 900.
  • the coupling between the adjacent touch driving electrodes 800 and the touch sensing electrodes 900 generates a mutual capacitance C m (mutual capacitance ).
  • C m mutual capacitance
  • the touch detection device detects the position of the touched point of the finger by detecting a change in the current corresponding to the capacitance C m before and after the finger touches.
  • the area of the touch driving electrode and the touch sensing electrode is large, so that the touch signal may interfere with the image display signal, and at the same time, the image display signal also touches the touch signal. There is interference.
  • a larger touch drive electrode and a touch sensitive electrode reduce the aperture ratio of the touch screen.
  • the embodiment of the invention provides an in-cell touch panel and a display device for solving the problem of mutual interference between the touch signal and the image display signal, and improving the aperture ratio of the in-cell touch panel.
  • An in-cell touch panel provided by an aspect of the invention includes: a color filter substrate and an array substrate disposed on the array, wherein the array substrate is provided with a plurality of sub-pixel units arranged in a matrix.
  • the touch screen further includes: a plurality of strips distributed along the column direction of the sub-pixel unit on the color film substrate a touch sensing electrode, and a plurality of touch driving electrodes disposed on the array substrate along a row direction of the sub-pixel unit.
  • Each two rows of adjacent sub-pixel units is a sub-pixel unit group. Between the two rows of sub-pixel units, two gate lines respectively providing gate signals for the two rows of sub-pixel units are disposed.
  • the touch driving electrodes are located in a non-display area between the sub-pixel unit groups.
  • the touch driving electrode comprises a plurality of touch driving electrode sub-units which are parallel to each other and distributed in the row direction, and the touch driving electrode sub-units are connected in parallel with each other.
  • the touch drive electrode composed of a plurality of touch drive electrode sub-units has a longitudinal width of 2 mm to 6 mm.
  • the touch screen further includes a plurality of common electrode signal lines distributed along the row direction of the sub-pixel unit on the array substrate, the common electrode signal line including a first common electrode signal line and a second common electrode Signal line.
  • the first common electrode signal line is located between the adjacent touch drive electrodes and is located in a non-display area between any two adjacent sub-pixel unit groups.
  • the second common electrode signal line is the plurality of touch drive electrodes driven by time division.
  • the first common electrode signal line and the second common electrode signal line are spaced apart.
  • the touch screen further includes a common electrode on the array substrate and electrically connected to the common electrode signal line above the common electrode signal line, and the common electrode and the touch driving electrode are in a vertical direction. Overlapping faces.
  • the touch screen further includes a common electrode on the array substrate and electrically connected to the common electrode signal line above the common electrode signal line, and the common electrode is in an area corresponding to the touch driving electrode.
  • a plurality of slits are provided, and an overlapping surface of the common electrode and the touch driving electrode in a vertical direction is an area of the slit.
  • the touch sensing electrode is in a grid shape
  • the grid-shaped touch sensing electrode includes a first touch sensing sub-electrode distributed along a row direction and a second touch sensing sub-electrode distributed along a column direction, the first The touch sensing sub-electrode and the second touch sensing sub-electrode are electrically connected.
  • the touch screen further includes a column along the column substrate and is located in the non-alignment a plurality of data lines of the display area, the first touch sensing sub-electrode is located in an area corresponding to the gate line, and the second touch sensing sub-electrode is located in an area corresponding to the data line.
  • Embodiments of the present invention provide a display device including the above-described in-cell touch panel.
  • the gate lines and the touch driving electrodes are located in different regions on the array substrate, that is, the gate lines and the touch driving electrodes have no vertical overlapping surfaces, the touch driving signals of the touch driving electrodes are not The gate scan signal of the gate line is affected, thereby avoiding the influence of the touch drive signal on the image signal. Further, the touch driving electrodes are disposed in the non-display area, i.e., in the area corresponding to the black matrix on the color filter substrate, so as not to affect the aperture ratio of the touch screen.
  • FIG. 1 is a schematic diagram of a mutual capacitance of a conventional touch driving electrode and a touch sensing electrode
  • FIG. 2 is a schematic view showing a manner of setting a sub-pixel unit of an array substrate according to an embodiment of the present invention
  • FIG. 3 is a top plan view of an in-cell touch panel including a touch driving electrode of a first arrangement manner according to an embodiment of the present invention
  • FIG. 4 is a top plan view of an in-cell touch panel including a touch driving electrode of a second arrangement according to an embodiment of the present invention
  • FIG. 5 is a schematic top plan view of an in-cell touch panel including a common electrode signal line according to an embodiment of the present invention
  • FIG. 6 is a top plan view of an in-cell touch panel including a common electrode of a first arrangement according to an embodiment of the present invention
  • FIG. 7 is a diagram showing a common electrode including a second arrangement according to an embodiment of the present invention.
  • FIG. A schematic view of the embedded touch screen;
  • FIG. 8 is a schematic structural view of a common electrode in the in-cell touch panel shown in FIG. 7;
  • FIG. 9 is a schematic structural view of a common electrode in which the common electrode in the in-cell touch panel shown in FIG. 6 or FIG. 7 is slit;
  • FIG. 10 is a schematic structural diagram of a touch sensing electrode according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a touch driving electrode and a touch sensing electrode according to an embodiment of the present invention
  • FIG. 12 is a schematic view showing mutual capacitance formed between the touch driving electrode and the touch sensing electrode shown in FIG. 11;
  • FIG. 13 is a timing diagram of an in-cell touch panel for image display and touch functions according to an embodiment of the present invention.
  • Embodiments of the present invention provide an in-cell touch panel and a display device for solving the problem of mutual interference between a touch signal and an image display signal, and at the same time improving an aperture ratio of the in-cell touch panel.
  • One embodiment of the present invention provides an in-cell touch screen in which two sub-pixel units adjacent to each other are one sub-pixel unit group.
  • Two gate lines are disposed between the two adjacent sub-pixel units, and the two gate lines respectively provide gate signals for the two rows of sub-pixel units.
  • the touch drive electrodes are located between adjacent sub-pixel unit groups.
  • the gate lines and the touch driving electrodes are located in different regions on the array substrate and have no vertical overlapping surfaces, so the touch driving signals of the touch driving electrodes do not affect the gate scanning signals of the gate lines, thereby avoiding the influence of the touch driving signals on the image signals.
  • the touch driving electrodes are disposed in the non-display area, i.e., in the area corresponding to the black matrix on the color filter substrate, and thus do not affect the aperture ratio of the pixels.
  • the in-cell touch panel provided by one embodiment of the present invention may be a liquid crystal display screen with a touch function, or an organic light-emitting display screen with a touch function or the like.
  • the thin film transistor TFT array substrate includes: a first substrate 1; a plurality of sub-pixel units 20 arranged in a matrix on the first substrate 1, and two adjacent sub-pixel units 20 are a sub-pixel unit group. 2; two gate lines 21 are disposed between two adjacent sub-pixel units 20 in the sub-pixel unit group 2, and the two gate lines 21 respectively provide gate scan signals for the two rows of sub-pixel units 20.
  • the gate lines in different sub-pixel unit groups 2 shown in FIG. 2 can be identified as Gl, G2, respectively.
  • the touch driving electrodes of the in-cell touch panel provided by the embodiments of the present invention are disposed on the array substrate shown in FIG. 2, for example, a non-display area disposed between the sub-pixel unit groups 2.
  • the touch driving electrode 4 includes a touch driving sub-electrode 41.
  • the touch drive sub-electrode 41 (4) is disposed in a non-display area between adjacent two rows of sub-pixel unit groups 2.
  • the touch driving electrodes 4 may be disposed between any adjacent two sub-pixel unit groups 2 or between two adjacent sub-pixel unit groups 2. In a specific implementation process, the setting density of the touch driving electrodes on the array substrate needs to be set according to actual touch precision requirements.
  • the touch driving electrode 4 includes at least two (ie, a plurality of) touch driving sub-electrodes 41.
  • Each of the touch driving sub-electrodes 41 is disposed between two adjacent sub-pixel unit groups 2.
  • the plurality of touch driving sub-electrodes 41 are connected in parallel with each other, for example, by wires 42 around the periphery of the array substrate.
  • the touch driving electrode provided by the embodiment of the invention is disposed in the same layer as the gate line.
  • the longitudinal (i.e., column direction) width of the touch drive electrodes provided by the first mode is narrow, about the order of micrometers.
  • the second embodiment provides a touch drive electrode having a wide longitudinal width, on the order of millimeters.
  • the longitudinal width of the touch driving electrode provided by the second mode can be set within a range of 2 mm to 6 mm.
  • the longitudinal width of the touch drive electrode is the longest distance between the two touch drive sub-electrodes.
  • the longitudinal width of the touch drive electrode as shown in Figure 4 is a.
  • Fig. 5 is a view showing the structure of a common electrode signal line provided on the array substrate shown in Fig. 3.
  • the array substrate further includes: a plurality of common electrode signal lines distributed along the row direction of the sub-pixel unit 20.
  • the common electrode signal line includes a first common electrode signal line 51 and a second common electrode signal line 52.
  • the first common electrode signal line 51 is an electrode line located between adjacent touch driving electrodes 4 ( 41 ) and located in a non-display area between any adjacent two sub-pixel unit groups 2, and a second common electrode signal Line 52 is a plurality of touch drive electrodes 4 (41) (52) that are time-driven. That is, the plurality of touch driving electrodes 4 ( 41 ) ( 52 ) are driven by time. In the image display stage, it is driven to provide a voltage signal for the common electrode to realize image display; during the touch phase, it is driven to implement the touch function.
  • the touch drive electrode shown in FIG. 5 consists of only one touch drive sub-electrode.
  • the first common electrode signal line 51 and the second common electrode signal line 52 intervals.
  • the common electrode signal line is used to provide a voltage signal (ie, a V ⁇ m voltage signal) to the common electrode.
  • the common electrode signal line provided by the embodiment of the present invention is located in an image display area (ie, AA area) of the array substrate, and is located in a non-display area between sub-pixel units in the AA area, and the common electrode signal line is a common electrode located above the same Providing the V com voltage, the V ⁇ m voltage of the common electrode is more stable.
  • strip electrodes located in the same layer as the gate lines are disposed between any adjacent sub-pixel unit groups of the array substrate. All strip electrodes are used as common electrode signal lines in the image display stage, and some of the strip electrodes are used as touch drive electrodes in the touch phase, which improves the aperture ratio of the pixels and provides a more stable connection to the common electrodes. V ⁇ m voltage.
  • the touch screen provided by the embodiment of the present invention further includes a common electrode 6 on the color filter substrate.
  • the common electrode 6 is located above the gate line 21, the first common electrode signal line 51, and the second common electrode signal line 52, and is insulated from the gate line 21, the first common electrode signal line 51, and the second common electrode signal line 52. .
  • the common electrode 6 is electrically connected to the first common electrode signal line 51 and the second common electrode signal line 52 through via holes.
  • the first common electrode signal line 51 and the second common electrode signal line 52 are connected to respective chip ICs or driving circuits through leads of peripheral regions on the array substrate.
  • the first common electrode signal line 51 and the second common electrode signal line 52 provide a stable V ⁇ m voltage signal for the common electrode 6.
  • the common electrode 6 and the touch driving electrode 4 do not overlap in the vertical direction. This ensures signal exchange between the touch drive electrode 4 and the touch sensing electrode to achieve a highly sensitive touch function.
  • the common electrodes 6 shown in Fig. 6 are independent of each other, and the gap between the adjacent common electrodes 6 corresponds to the touch driving electrodes 4.
  • the common electrodes 6 shown in Fig. 6 are independent of each other. However, the resistance values of the respective common electrodes 6 are different depending on the area, and the V ⁇ m signals received by the respective common electrodes 6 are not uniform, which is disadvantageous for high-quality image display.
  • the overlapping faces of the common electrode 6 and the touch driving electrode 4 in the vertical direction It is smaller than the area of the touch drive electrode 4.
  • the common electrode 6 is an entire conductive film layer, and the conductive film layer is provided with a plurality of slits 61 in a region corresponding to the touch driving electrodes 4.
  • the slit 61 exposes a portion of the touch driving electrode 4, and the exposed portion of the touch driving electrode 4 exchanges signals with the touch sensing electrode to realize a touch function.
  • the slit 61 is realized by burring the common electrode 6 in the region corresponding to the touch driving electrode 4.
  • Fig. 8 is a schematic view of the common electrode 6 shown in Fig. 7.
  • the common electrode 6 covers the display area (A-A area) of the entire array substrate, and the common electrode 6 is provided with a slit 61.
  • Fig. 9 is a partially enlarged schematic view showing a common electrode 6 in which a slit is provided in a region corresponding to each sub-pixel unit 20.
  • touch sensing electrodes provided by the embodiments of the present invention are specifically described below.
  • the touch sensing electrodes provided by the embodiments of the present invention are disposed on a color film substrate.
  • the touch sensing electrode 7 is a grid dog.
  • the grid-like touch sensing electrode 7 includes a first touch sensing sub-electrode 71 distributed in the row direction and a second touch sensing sub-electrode 72 distributed in the column direction.
  • the first touch sensing sub-electrode 71 and the second touch sensing sub-electrode 72 are electrically connected.
  • the array substrate further includes a data line disposed in the same layer as the gate line, and the data line is located between the adjacent two columns of sub-pixel units.
  • the first touch sensing sub-electrode 71 is located in a region corresponding to the gate line 21, and the second touch sensing sub-electrode 72 is located in a region corresponding to the data line.
  • the data line is not shown in Figure 11.
  • the touch sensing electrode provided in the embodiment of the present invention is located in an area corresponding to the gate line and the data line, and does not occupy the pixel display area, thereby improving the aperture ratio of the touch screen.
  • the touch driving electrodes provided by the embodiments of the present invention are disposed in the same layer as the gate lines and the data lines, and may be formed by the same fabrication process.
  • the touch drive electrode can be made of metal or alloy material Extreme.
  • the common electrode provided by the embodiment of the present invention is a transparent conductive electrode, such as indium tin oxide ITO or indium oxide oxide IZO.
  • FIG. 12 shows the mutual capacitance C m formed between the adjacent touch driving electrodes 4 and the touch sensing electrodes 7. Specifically, a mutual capacitance C m is formed between each of the touch driving electrodes 4 and the first touch sensing sub-electrodes arranged in the row direction of the touch sensing electrodes 7, and a second touch sensor arranged in the column direction with the touch sensing electrodes 7 A mutual capacitance C m is formed between the electrodes.
  • the size of the touch drive electrode 7 can be adjusted to adjust the size of the touch sensing electrode to meet the demand.
  • the touch sensing electrode provided by the embodiment of the invention is completely disposed in a region corresponding to the gate line and the data line, that is, the touch sensing electrode is completely located directly above the gate line and the data line.
  • the touch driving electrode and the common electrode signal line Time-driven.
  • V-sync is a timing signal.
  • the figure shows the timing of n gate lines, where n gate lines are gate line 1 (Gl), gate line 2 (G2) gate line m (Gm), gate line m+1 (Gm+1), Gate line m+2 (Gm+2), gate line m+3 (Gm+3), gate line n-1 (Gn-1), and gate line n (Gn).
  • n gate lines are gate line 1 (Gl), gate line 2 (G2) gate line m (Gm), gate line m+1 (Gm+1), Gate line m+2 (Gm+2), gate line m+3 (Gm+3), gate line n-1 (Gn-1), and gate line n (Gn).
  • the gate scan signal voltage is sequentially applied for n gate lines, and the data signal voltage is applied to the data lines.
  • a certain constant voltage is applied to the common electrode signal line to realize image display.
  • the touch sensing electrode does not apply any voltage to avoid the effect on the image display.
  • a low-level signal is applied to the gate line and the data line in the 5ms touch display stage before the next frame image display, so that the TFT connected to the gate line is turned off, thereby avoiding the touch process. Effect; applying a touch drive voltage V 1 to the touch drive electrodes and simultaneously applying a constant voltage V to the touch sense electrodes. .
  • a voltage V is applied.
  • An electric field is formed between the touch sensing electrode and the touch driving electrode to which the voltage is applied, thereby implementing a touch function.
  • 11.7 ms of the above image display stage and 5 ms of the touch display stage are only for explaining an example shown in the present invention.
  • the image display phase is not limited to 11.7 ms
  • the touch display phase is not limited to 5 ms.
  • An embodiment of the present invention further provides a display device, including the above-mentioned in-cell touch panel, which may be a display device such as a liquid crystal display, a liquid crystal television, an organic electroluminescence display OLED panel, an OLED display, an OLED television, or an electronic paper. .
  • a display device such as a liquid crystal display, a liquid crystal television, an organic electroluminescence display OLED panel, an OLED display, an OLED television, or an electronic paper.
  • the embodiment of the present invention provides an in-cell touch panel, wherein each two rows of adjacent sub-pixel units are one sub-pixel unit group, and two rows of sub-pixel units are respectively disposed between The two rows of sub-pixel units provide gate lines of gate signals; the touch drive electrodes are located between adjacent sub-pixel unit groups. Since the gate line and the touch driving electrode are located in different regions on the array substrate, that is, the gate line and the touch driving electrode have no vertical overlapping surface, the touch driving signal of the touch driving electrode does not affect the gate scanning signal of the gate line, thereby avoiding The effect of the touch drive signal on the image signal. Further, the touch driving electrodes are disposed in the non-display area, i.e., in the area corresponding to the black matrix on the color filter substrate, and thus do not affect the aperture ratio of the pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种内嵌式触摸屏及显示装置,用以解决触控信号和图像显示信号之间相互干扰的问题,同时提高内嵌式触摸屏的开口率。所述内嵌式触摸屏包括对盒而置的彩膜基板和阵列基板,所述阵列基板上设有呈矩阵排列的多个亚像素单元,还包括:位于所述彩膜基板上的多条沿所述亚像素单元的列方向分布的触摸感应电极,以及位于所述阵列基板上的多条沿所述亚像素单元的行方向分布的触摸驱动电极,每两行相邻的亚像素单元为一个亚像素单元组,该两行亚像素单元之间设置有两条分别为该两行亚像素单元提供栅极信号的栅线;其中,所述触摸驱动电极位于所述亚像素单元组之间的非显示区域。

Description

内嵌式触摸屏及显示装置 技术领域
本发明的实施例涉及一种内嵌式触摸屏及显示装置。 背景技术
内嵌式触摸屏 ( In Cell Touch Panel )是触摸屏和显示屏集成为一体的装 置。 触摸驱动电极和触摸感应电极被集成在显示屏中, 以同时实现触控和图 像显示的功能。 由于内嵌式触摸屏结构筒单、 轻、 薄, 成本低等特点, 已经 逐渐成为显示领域的主流。
参见图 1 , 图 1示出了横向设置的触摸驱动电极 800和纵向设置的触摸 感应电极 900。 相邻的触摸驱动电极 800和触摸感应电极 900之间耦合产生 交互电容 Cm ( mutual capacitance )。 当手指触碰屏幕时, 手指的触碰会改变 所述交互电容 Cm的值。触摸检测装置通过检测手指触碰前后电容 Cm对应的 电流的改变, 从而检测出手指触摸点的位置。
在内嵌式触摸屏中, 为了提高触摸屏的触控效果, 触摸驱动电极和触摸 感应电极的面积较大, 因而触控信号对图像显示信号会有干扰, 同时, 图像 显示信号也会对触控信号有干扰。 此外, 面积较大的触摸驱动电极和触摸感 应电极会降低触摸屏的开口率。 发明内容
本发明实施例提供一种内嵌式触摸屏及显示装置, 用以解决触控信号和 图像显示信号之间相互干扰的问题, 同时提高内嵌式触摸屏的开口率。
本发明的一个方面提供的一种内嵌式触摸屏, 包括: 对盒而置的彩膜基 板和阵列基板, 所述阵列基板上设有呈矩阵排列的多个亚像素单元。 所述触 摸屏还包括: 位于所述彩膜基板上的沿所述亚像素单元的列方向分布的多条 触摸感应电极, 以及位于所述阵列基板上的沿所述亚像素单元的行方向分布 的多条触摸驱动电极。 每两行相邻的亚像素单元为一个亚像素单元组。 该两 行亚像素单元之间设置有两条分别为该两行亚像素单元提供栅极信号的栅 线。 其中, 所述触摸驱动电极位于所述亚像素单元组之间的非显示区域。
较佳地,所述触摸驱动电极包括多个相互平行且沿行方向分布的触摸驱 动电极子单元, 各触摸驱动电极子单元之间相互并联连接。
较佳地,所述由多条触摸驱动电极子单元组成的触摸驱动电极的纵向宽 度为 2 mm ~6mm。
较佳地,该触摸屏还包括位于所述阵列基板上沿所述亚像素单元的行方 向分布的多条公共电极信号线,所述公共电极信号线包括第一公共电极信号 线和第二公共电极信号线。
所述第一公共电极信号线位于所述相邻的触摸驱动电极之间,且位于任 意相邻的两个亚像素单元组之间的非显示区域。所述第二公共电极信号线为 分时间驱动的所述多条触摸驱动电极。
较佳地, 所述第一公共电极信号线和第二公共电极信号线间隔排列。 较佳地,该触摸屏还包括位于所述阵列基板上且位于所述公共电极信号 线上方与所述公共电极信号线电性相连的公共电极, 该公共电极与所述触摸 驱动电极在垂直方向无交叠面。
较佳地,该触摸屏还包括所述阵列基板上且位于所述公共电极信号线上 方与所述公共电极信号线电性相连的公共电极, 该公共电极在与所述触摸驱 动电极相对应的区域设置有多个狭缝, 该公共电极与所述触摸驱动电极在垂 直方向的交叠面为所述狭缝的面积。
较佳地, 所述触摸感应电极为网格状, 该网格状触摸感应电极包括沿行 方向分布的第一触摸感应子电极和沿列方向分布的第二触摸感应子电极,所 述第一触摸感应子电极和第二触摸感应子电极之间电性相连。
较佳地,该触摸屏还包括位于所述阵列基板上沿列方向分布的且位于非 显示区域的多条数据线, 所述第一触摸感应子电极位于与所述栅线相对应的 区域, 所述第二触摸感应子电极位于与所述数据线相对应的区域。
本发明实施例提供一种显示装置, 包括上述内嵌式触摸屏。
本发明实施例提供的内嵌式触摸屏中, 由于栅线和触摸驱动电极位于阵 列基板上的不同区域, 即栅线和触摸驱动电极无垂直交叠面, 因此触摸驱动 电极的触摸驱动信号不会影响栅线的栅极扫描信号,从而避免了触摸驱动信 号对图像信号的影响。 并且, 触摸驱动电极设置在非显示区域, 即设置在与 彩膜基板上的黑矩阵相对应的区域, 从而不会影响触摸屏的开口率。 附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图 作筒单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实施 例, 而非对本发明的限制。 图 1为现有触摸驱动电极和触摸感应电极形成互电容的原理图; 图 2为本发明的一个实施例提供的阵列基板亚像素单元设置方式的示意 图;
图 3为本发明的一个实施例提供的包括第一种设置方式的触摸驱动电极 的内嵌式触摸屏的俯视示意图;
图 4为本发明的一个实施例提供的包括第二种设置方式的触摸驱动电极 的内嵌式触摸屏的俯视示意图;
图 5为本发明的一个实施例提供的包括公共电极信号线的内嵌式触摸屏 的俯视示意图;
图 6为本发明的一个实施例提供的包括第一种设置方式的公共电极的内 嵌式触摸屏的俯视示意图;
图 7为本发明的一个实施例提供的包括第二种设置方式的公共电极的内 嵌式触摸屏的俯视示意图;
图 8为图 7所示的内嵌式触摸屏中的公共电极的结构示意图;
图 9为图 6或图 7所示的内嵌式触摸屏中的公共电极为狭缝状的公共电 极的结构示意图;
图 10为本发明的一个实施例提供的触摸感应电极的结构示意图; 图 11 为本发明的一个实施例提供的触摸驱动电极和触摸感应电极的俯 视示意图;
图 12为图 11所示的触摸驱动电极和触摸感应电极之间形成互电容的示 意图;
图 13为本发明的实施例提供的内嵌式触摸屏用于图像显示和触摸功能 的时序图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝 对位置改变后, 则该相对位置关系也可能相应地改变。 本发明的实施例提供了一种内嵌式触摸屏及显示装置,用以解决触控信 号和图像显示信号之间相互干扰的问题, 同时提高内嵌式触摸屏的开口率。
本发明的一个实施例提供了内嵌式触摸屏, 其中, 每两行相邻的亚像素 单元为一个亚像素单元组。 所述两行相邻的亚像素单元之间设置有两条栅 线, 所述两条栅线分别为该两行亚像素单元提供栅极信号。 触摸驱动电极位 于相邻的亚像素单元组之间。栅线和触摸驱动电极位于阵列基板上的不同区 域且无垂直交叠面, 因此触摸驱动电极的触摸驱动信号不会影响栅线的栅极 扫描信号, 从而避免了触摸驱动信号对图像信号的影响。 并且, 触摸驱动电 极设置在非显示区域, 即设置在与彩膜基板上的黑矩阵相对应的区域, 因而 不会影响像素的开口率。
本发明一个实施例提供的内嵌式触摸屏可以是具有触摸功能的液晶显 示屏, 或者是具有触摸功能的有机发光显示屏等。
下面以液晶显示屏为例通过附图具体说明本发明实施例提供的技术方 案。
首先说明本发明的实施例提供的薄膜晶体管 TFT阵列基板的设置方式。 参见图 2, 所述薄膜晶体管 TFT阵列基板包括: 第一基板 1; 位于第一 基板 1上呈矩阵分布的多个亚像素单元 20, 两行相邻的亚像素单元 20为一 个亚像素单元组 2;亚像素单元组 2中的两行相邻的亚像素单元 20之间设置 有两条栅线 21 , 两条栅线 21分别为两行亚像素单元 20提供栅极扫描信号。
图 2所示的位于不同亚像素单元组 2中的栅线可分别标识为 Gl、 G2、
G3 G9和 G10。
本发明实施例提供的内嵌式触摸屏的触摸驱动电极设置在图 2所示的阵 列基板上, 例如, 设置在亚像素单元组 2之间的非显示区域。 触摸驱动电极的设置方式至少包括两种:
方式一: 如图 3所示, 触摸驱动电极 4包括一条触摸驱动子电极 41。 触 摸驱动子电极 41 ( 4 )设置在相邻的两行亚像素单元组 2之间的非显示区域。
触摸驱动电极 4可以设置在任意相邻的两个亚像素单元组 2之间, 或者 设置在部分相邻的两个亚像素单元组 2之间。 在具体实施过程中, 需要根据 实际触控精度需求来设置触摸驱动电极在阵列基板上的设置密度。
方式二: 如图 4所示, 触摸驱动电极 4包括至少两条(即多条)触摸驱 动子电极 41。 每一条触摸驱动子电极 41设置在相邻的两个亚像素单元组 2 之间。 多条触摸驱动子电极 41之间相互并联连接, 例如, 可以通过阵列基 板周边的引线 42并联连接。
较佳地, 本发明实施例提供的所述触摸驱动电极与所述栅线同层设置。 所述方式一提供的触摸驱动电极的纵向(即列方向)宽度较窄, 约在微 米量级。 方式二提供的触摸驱动电极的纵向宽度较宽, 约在毫米量级。
较佳地, 方式二提供的触摸驱动电极的纵向宽度可以设置在 2mm~6mm 的范围内。 触摸驱动电极的纵向宽度为两条触摸驱动子电极之间的最长距 离。 如图 4所示的触摸驱动电极的纵向宽度为 a。
图 5是在图 3所示的阵列基板上设置有公共电极信号线的结构示意图。 阵列基板还包括: 沿亚像素单元 20的行方向分布的多条公共电极信号 线。公共电极信号线包括第一公共电极信号线 51和第二公共电极信号线 52。
第一公共电极信号线 51为位于相邻的触摸驱动电极 4 ( 41 )之间, 且位 于任意相邻的两个亚像素单元组 2之间的非显示区域的电极线, 第二公共电 极信号线 52为分时间驱动的多条触摸驱动电极 4 ( 41 ) ( 52 )。 即多条触摸驱 动电极 4 ( 41 ) ( 52 )分时间驱动。 在图像显示阶段, 驱动其为公共电极提供 电压信号实现图像显示; 在触控阶段, 驱动其实现触摸功能。
图 5所示的触摸驱动电极仅由一条触摸驱动子电极组成。
较佳地, 如图 5所示, 第一公共电极信号线 51和第二公共电极信号线 52间隔排列。
所述公共电极信号线用于为公共电极提供电压信号(即 V∞m电压信号)。 本发明实施例提供的公共电极信号线位于阵列基板的图像显示区域(即 A-A 区域), 且位于 A-A区域中亚像素单元之间的非显示区域, 该公共电极信号 线为位于其上方的公共电极提供 Vcom电压, 公共电极的 V∞m电压更稳定。
具体实施过程中,在阵列基板的任意相邻的亚像素单元组之间设置与栅 线位于同一层的条状电极。所有的条状电极在图像显示阶段用作公共电极信 号线, 部分所述条状电极在触控阶段用作触摸驱动电极, 这既提高了像素的 开口率, 还能够为公共电极提供更稳定的 V∞m电压。
参见图 6, 本发明实施例提供的触摸屏还包括位于彩膜基板上的公共电 极 6。 该公共电极 6位于栅线 21、 第一公共电极信号线 51和第二公共电极 信号线 52的上方,并且与栅线 21、第一公共电极信号线 51和第二公共电极 信号线 52相绝缘。公共电极 6与第一公共电极信号线 51和第二公共电极信 号线 52通过过孔电性相连。第一公共电极信号线 51和第二公共电极信号线 52通过阵列基板上的***区域的引线与相应的芯片 IC或者驱动电路相连。 第一公共电极信号线 51和第二公共电极信号线 52为公共电极 6提供稳定的 V∞m电压信号。
较佳地, 如图 6所示, 公共电极 6与触摸驱动电极 4在垂直方向无交叠 面。 这样可以保证触摸驱动电极 4和触摸感应电极之间进行信号交换, 以实 现灵敏度较高的触摸功能。
图 6所示的各公共电极 6之间相互独立,相邻公共电极 6之间的缝隙与 触摸驱动电极 4相对应。
图 6所示的各公共电极 6之间相互独立。 然而, 各公共电极 6的电阻值 因面积不同而不同, 并且各公共电极 6接收到的 V∞m信号不均一,这样不利 于高质量的图像显示。
较佳地, 参见图 7, 公共电极 6与触摸驱动电极 4在垂直方向的交叠面 小于触摸驱动电极 4的面积。 公共电极 6为一整层导电膜层, 该导电膜层在 与触摸驱动电极 4相对应的区域设置有多个狭缝 61。 该狭缝 61使得触摸驱 动电极 4的一部分露出, 露出部分的触摸驱动电极 4与触摸感应电极进行信 号交换, 以实现触摸功能。 在具体实施过程中, 通过对与触摸驱动电极 4相 对应的区域的公共电极 6进行挖洞来实现狭缝 61。
图 8为图 7所示的公共电极 6的示意图,公共电极 6覆盖整个阵列基板 的显示区域( A-A区域), 公共电极 6上设置有狭缝 61。
为了提高触摸屏光线的透过率,公共电极 6在与亚像素单元对应的区域 设置为狭缝状,参见图 9。 图 9给出了在与每一亚像素单元 20对应的区域设 置有狭缝的公共电极 6的局部放大示意图。
下面具体介绍本发明实施例提供的触摸感应电极。
本发明实施例提供的触摸感应电极设置在彩膜基板上。参见图 10,触摸 感应电极 7为网格 ^犬。
网格状触摸感应电极 7包括沿行方向分布的第一触摸感应子电极 71和 沿列方向分布的第二触摸感应子电极 72。 第一触摸感应子电极 71和第二触 摸感应子电极 72之间电性相连。
阵列基板上还包括与栅线同层设置的数据线,数据线位于相邻的两列亚 像素单元之间。
较佳地,参见图 11 , 第一触摸感应子电极 71位于与栅线 21相对应的区 域, 第二触摸感应子电极 72位于与数据线相对应的区域。 图 11中未体现数 据线。
由图 11 可以清楚地看出, 本发明实施例提供的触摸感应电极位于与栅 线和数据线相对应的区域, 并没有占用像素显示区域, 从而提高了触摸屏的 开口率。
本发明实施例提供的触摸驱动电极与栅线和数据线同层设置, 并且可以 由同一次制作工艺形成。 触摸驱动电极可以是金属或者合金材料制成的电 极。
本发明实施例提供的公共电极为透明导电电极,例如铟锡氧化物 ITO或 铟辞氧化物 IZO等。
下面筒单说明本发明实施例提供的触摸驱动电极和触摸感应电极实现 触摸的原理。
图 12示出了相邻的触摸驱动电极 4和触摸感应电极 7之间形成的互电 容 Cm。 具体地, 每一个触摸驱动电极 4与触摸感应电极 7的沿行方向排列 的第一触摸感应子电极之间形成互电容 Cm, 以及与触摸感应电极 7沿列方 向排列的第二触摸感应子电极之间形成互电容 Cm。 可以通过调整触摸驱动 电极 7的密度来调整 (^的大小, 从而设计满足需求的触摸感应电极。
本发明实施例提供的触摸感应电极完全设置在与栅线和数据线相对应 的区域, 即触摸感应电极完全位于栅线和数据线的正上方。 为了避免触摸感 应电极接收到的信号会受到来自液晶显示面板的显示图像信号的干扰, 并且 为了避免触摸驱动电极与公共电极信号线共用的情况下的信号的干扰,触摸 驱动电极与公共电极信号线分时间驱动。
下面结合图 13所示的实现图像显示和触摸功能的时序图, 具体说明本 发明实施例提供的内嵌式触摸屏的工作原理。
图 13中, V-sync为时序信号。 图中示出了 n条栅线的时序, 其中 n条 栅线分别为栅线 1 ( Gl )、 栅线 2 ( G2 ) 栅线 m ( Gm )、 栅线 m+1 ( Gm+1 )、 栅线 m+2 ( Gm+2 )、 栅线 m+3 ( Gm+3 )、 栅线 n-1 ( Gn-1 )、 栅 线 n ( Gn )。 图中还是除了数据线的时序, n条触摸驱动电极 的时序 (Tl、 Τ
2, , Τη), 以及 η条触摸感应电极的时序 (Rl、 R2, , Rn )。
如图 13所示, 在前 11.7ms的图像显示阶段中, 为 n条栅线依次施加栅 极扫描信号电压, 同时为数据线施加数据信号电压。 为公共电极信号线施加 一定的恒定电压, 实现图像显示。 触摸感应电极不施加任何电压, 以避免对 图像显示的影响。 当一帧图像显示完后, 在下一帧图像显示之前的 5ms 的触摸显示阶段 内, 为栅线、 数据线施加低电平信号, 使得与栅线相连的 TFT关断, 从而避 免对触控过程的影响; 为触摸驱动电极施加一个触摸驱动电压 V1 以及同时 为触摸感应电极施加恒定电压 V。。 施加有电压 V。的触摸感应电极和施加有 电压 的触摸驱动电极之间形成电场, 由此实现触摸功能。
上述图像显示阶段的 11.7ms以及触摸显示阶段的 5ms只是为了说明本 发明所示的一个示例,在具体实现过程中,图像显示阶段的不限于为 11.7ms, 触摸显示阶段不限于为 5ms。
本发明的一个实施例还提供一种显示装置, 包括上述内嵌式触摸屏, 该 显示装置可以为液晶显示器、 液晶电视、 有机电致发光显示 OLED 面板、 OLED显示器、 OLED电视或电子纸等显示装置。
综上所述, 本发明实施例提供了一种内嵌式触摸屏, 其中, 每两行相邻 的亚像素单元为一个亚像素单元组,该两行亚像素单元之间设置有两条分别 为该两行亚像素单元提供栅极信号的栅线; 触摸驱动电极位于相邻的亚像素 单元组之间。 由于栅线和触摸驱动电极位于阵列基板上的不同区域, 即栅线 和触摸驱动电极无垂直交叠面, 因而触摸驱动电极的触摸驱动信号不会影响 栅线的栅极扫描信号, 从而避免了触摸驱动信号对图像信号的影响。 并且, 触摸驱动电极设置在非显示区域, 即设置在与彩膜基板上的黑矩阵相对应的 区域, 因而不会影响像素的开口率。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种内嵌式触摸屏, 包括对盒而置的彩膜基板和阵列基板, 所述阵 列基板上设有呈矩阵排列的多个亚像素单元, 其中, 所述内嵌式触摸屏还包 括:
位于所述彩膜基板上的沿所述亚像素单元的列方向分布的多条触摸感 应电极, 以及位于所述阵列基板上的沿所述亚像素单元的行方向分布的多条 触摸驱动电极, 每两行相邻的亚像素单元作为一个亚像素单元组, 该两行亚 像素单元之间设置有两条分别为该两行亚像素单元提供栅极信号的栅线; 其中, 所述触摸驱动电极位于所述亚像素单元组之间的非显示区域。
2、 根据权利要求 1所述的内嵌式触摸屏, 其中, 所述触摸驱动电极包 括多个相互平行且沿行方向分布的触摸驱动电极子单元,各触摸驱动电极子 单元之间相互并联连接。
3、 根据权利要求 2所述的内嵌式触摸屏, 其中, 由多条触摸驱动电极 子单元组成的所述触摸驱动电极的纵向宽度为 2 mm ~6mm。
4、 根据权利要求 1-3 中任一项所述的内嵌式触摸屏, 其中, 还包括位 于所述阵列基板上沿所述亚像素单元的行方向分布的多条公共电极信号线, 所述公共电极信号线包括第一公共电极信号线和第二公共电极信号线; 所述第一公共电极信号线位于相邻的所述触摸驱动电极之间,且位于任 意相邻的两个亚像素单元组之间的非显示区域中,所述第二公共电极信号线 为分时间驱动的所述多条触摸驱动电极。
5、 根据权利要求 4所述的内嵌式触摸屏, 其中, 所述第一公共电极信 号线和第二公共电极信号线间隔排列。
6、 根据权利要求 4所述的内嵌式触摸屏, 其中, 还包括位于所述阵列 基板上且位于所述公共电极信号线上方与所述公共电极信号线电性相连的 公共电极, 该公共电极与所述触摸驱动电极在垂直方向无交叠面。
7、 根据权利要求 4所述的内嵌式触摸屏, 其中, 还包括所述阵列基板 上且位于所述公共电极信号线上方与所述公共电极信号线电性相连的公共 电极, 该公共电极在与所述触摸驱动电极相对应的区域设置有多个狭缝, 该 公共电极与所述触摸驱动电极在垂直方向的交叠面为所述狭缝的面积。
8、 根据权利要求 1-7 中任一所述的内嵌式触摸屏, 其中, 所述触摸感 应电极为网格状,该网格状触摸感应电极包括沿行方向分布的第一触摸感应 子电极和沿列方向分布的第二触摸感应子电极, 所述第一触摸感应子电极和 第二触摸感应子电极之间电性相连。
9、 根据权利要求 8所述的内嵌式触摸屏, 其中, 还包括位于所述阵列 基板上沿列方向分布的且位于非显示区域的多条数据线, 所述第一触摸感应 子电极位于与所述栅线相对应的区域,所述第二触摸感应子电极位于与所述 数据线相对应的区域。
10、 一种显示装置, 包括权利要求 1-9中任一所述的内嵌式触摸屏。
PCT/CN2013/079134 2013-04-19 2013-07-10 内嵌式触摸屏及显示装置 WO2014169538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/344,843 US9423916B2 (en) 2013-04-19 2013-07-10 In-cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101391192A CN103279217A (zh) 2013-04-19 2013-04-19 一种内嵌式触摸屏及显示装置
CN201310139119.2 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014169538A1 true WO2014169538A1 (zh) 2014-10-23

Family

ID=49061770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079134 WO2014169538A1 (zh) 2013-04-19 2013-07-10 内嵌式触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9423916B2 (zh)
CN (1) CN103279217A (zh)
WO (1) WO2014169538A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021369A (zh) 2012-12-21 2013-04-03 北京京东方光电科技有限公司 液晶显示器的驱动方法
TWM472204U (zh) * 2013-08-07 2014-02-11 Superc Touch Corp 內嵌顯示觸控結構
KR102174817B1 (ko) * 2013-12-02 2020-11-05 엘지디스플레이 주식회사 터치센서 일체형 표시장치
KR102170521B1 (ko) * 2013-12-02 2020-10-27 엘지디스플레이 주식회사 터치센서 일체형 표시장치
KR102177716B1 (ko) * 2013-12-30 2020-11-11 엘지디스플레이 주식회사 터치 센서 일체형 표시장치
CN103760708B (zh) * 2014-01-09 2017-08-11 北京京东方光电科技有限公司 一种阵列基板、电容式触摸屏和触控显示装置
EP2937767A1 (en) * 2014-03-27 2015-10-28 LG Display Co., Ltd. Touch panel, display device and method of driving the same
TWM509934U (zh) * 2014-10-17 2015-10-01 Raydium Semiconductor Corp 內嵌式互電容觸控面板
CN104360774B (zh) * 2014-11-25 2017-04-19 上海天马微电子有限公司 一种触控面板及进行触控检测的方法
CN104571756B (zh) * 2014-12-04 2017-11-10 上海天马微电子有限公司 一种触摸显示面板及其驱动方法、触摸装置
CN104765502B (zh) 2015-04-27 2018-09-11 京东方科技集团股份有限公司 一种触控显示面板及其制备方法、控制方法
CN106356014B (zh) * 2015-07-14 2019-09-20 冠捷投资有限公司 内嵌式触控显示面板电路架构
KR102485387B1 (ko) * 2016-01-20 2023-01-06 삼성디스플레이 주식회사 표시 장치
CN106095167B (zh) * 2016-06-01 2018-12-11 北京京东方光电科技有限公司 触控基板及其制作方法、显示器件
US20180323239A1 (en) * 2017-05-03 2018-11-08 Innolux Corporation Display device
CN107092398B (zh) * 2017-05-15 2020-04-10 厦门天马微电子有限公司 一种显示面板及显示装置
CN107132686A (zh) * 2017-07-03 2017-09-05 京东方科技集团股份有限公司 阵列基板及其制备方法、触控面板、触控显示装置
US11237679B2 (en) 2017-12-15 2022-02-01 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Touch panel, touch substrate, and touch control display apparatus
CN108254985B (zh) * 2018-02-01 2021-10-01 京东方科技集团股份有限公司 阵列基板及制备方法、显示面板及制备方法、显示装置
CN109658831B (zh) * 2018-12-20 2021-05-04 厦门天马微电子有限公司 一种显示面板及显示装置
JP2022064163A (ja) 2020-10-13 2022-04-25 エルジー ディスプレイ カンパニー リミテッド タッチ表示装置
CN114489360B (zh) * 2022-02-16 2023-12-12 厦门天马微电子有限公司 一种触控板的检测方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281315A (zh) * 2008-06-02 2008-10-08 友达光电股份有限公司 具有感应功能的显示装置与方法
CN102937853A (zh) * 2012-10-19 2013-02-20 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102937845A (zh) * 2012-10-26 2013-02-20 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070000893A (ko) * 2005-06-28 2007-01-03 엘지.필립스 엘시디 주식회사 수평 전계 인가형 액정 표시 장치 및 그 제조 방법
JP5366037B2 (ja) * 2007-12-21 2013-12-11 株式会社ジャパンディスプレイ 電気光学装置及び電子機器
TWI427520B (zh) * 2009-12-10 2014-02-21 Au Optronics Corp 觸控顯示面板以及觸控基板
CN203178980U (zh) * 2013-04-19 2013-09-04 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281315A (zh) * 2008-06-02 2008-10-08 友达光电股份有限公司 具有感应功能的显示装置与方法
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102937853A (zh) * 2012-10-19 2013-02-20 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102937845A (zh) * 2012-10-26 2013-02-20 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
CN103279217A (zh) 2013-09-04
US9423916B2 (en) 2016-08-23
US20150268762A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
WO2014169538A1 (zh) 内嵌式触摸屏及显示装置
US10409434B2 (en) Integrated touch screens
US10613664B2 (en) Display device with built-in touch screen and method of fabricating the same
US10303291B2 (en) Display device and touch detection method of display device
EP2698689B1 (en) In-cell touch panel
US10845902B2 (en) Touch sensor for display
US8982083B2 (en) Touch sensor integrated type display device and method of manufacturing the same
US9665222B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9535523B2 (en) Touch sensor integrated type display device
EP2869166B1 (en) Touch panel, touch display panel, and touch detection and display method
US20120169635A1 (en) Touchable sensing matrix unit, a co-constructed active array substrate having the touchable sensing matrix unit and a display having the co-constructed active array substrate
WO2015180347A1 (zh) 一种阵列基板及其制备方法、内嵌式触摸屏及显示装置
EP2330491A2 (en) Touch screen liquid crystal display
US10061432B2 (en) Display device having touch screen therein
KR20140087481A (ko) 인셀 타입 터치인식 액정표시장치
AU2013100573B4 (en) Integrated touch screens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14344843

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882515

Country of ref document: EP

Kind code of ref document: A1