WO2014167992A1 - 基地局装置、端末装置、無線通信システム及び集積回路 - Google Patents

基地局装置、端末装置、無線通信システム及び集積回路 Download PDF

Info

Publication number
WO2014167992A1
WO2014167992A1 PCT/JP2014/058117 JP2014058117W WO2014167992A1 WO 2014167992 A1 WO2014167992 A1 WO 2014167992A1 JP 2014058117 W JP2014058117 W JP 2014058117W WO 2014167992 A1 WO2014167992 A1 WO 2014167992A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
precoding
linear precoding
message
station apparatus
Prior art date
Application number
PCT/JP2014/058117
Other languages
English (en)
French (fr)
Inventor
毅 小野寺
宏道 留場
窪田 稔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/783,214 priority Critical patent/US9859961B2/en
Publication of WO2014167992A1 publication Critical patent/WO2014167992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to a base station device, a terminal device, a wireless communication system, and an integrated circuit.
  • MIMO Multiple-Input Multiple-Output
  • Single-User MIMO: SU-MIMO Single-User MIMO in which a plurality of different data sequences are spatially multiplexed and transmitted to a certain terminal device (receiving device, UE (User-Equipment)
  • UE User-Equipment
  • a plurality of data sequences in the terminal device are transmitted.
  • a base station apparatus transmission apparatus, eNodeB, access point.
  • cellular systems such as LTE (Long Term Evolution) and LTE-A (LTE-Advanced) standardized in 3GPP (Third Generation Partnership Project), The Institute of Electrical and Electronics Electronics, Engineers, Inc. :
  • a wireless LAN system such as IEEE802.11ac standardized by IEEE
  • Multi-user MIMO MU-MU-MU-MU
  • MU-MU-MU-MU performs MIMO multiplexing of data sequences addressed to a plurality of terminal devices (users) in order to further improve system throughput by effectively using a large number of transmission antennas of the base station device MIMO
  • a transmission signal addressed to another terminal device is received by the terminal device as inter-user-interference (IUI), so it is necessary to suppress IUI.
  • IUI inter-user-interference
  • the base station device knows the state of the propagation path (channel state) from each transmitting antenna of the base station device to each receiving antenna of each terminal device, it will occur during reception at the terminal device without imposing a heavy load on the terminal device.
  • Several methods have been proposed that can generate a transmission signal that can suppress the IUI (Non-Patent Document 1).
  • each terminal device selects one precoding matrix from the precoding matrix candidates (codebook) based on the propagation path state, and the index (Precoding Matrix Indicator: PMI) is transmitted to the base station device.
  • the base station apparatus employs beamforming (linear precoding) that suppresses IUI by multiplying the transmission signal by the base station apparatus in advance by a linear filter (transmission weight) calculated based on the PMI. (Non-Patent Document 2).
  • MU-MIMO nonlinear MU-MIMO
  • perturbation vectors can be added to the transmission signal, the elements of which are complex numbers (perturbation terms) obtained by multiplying an arbitrary Gaussian integer by a constant real number. It becomes.
  • Non-patent Document 3 the orthogonality of the propagation paths between the spatially multiplexed terminal apparatuses, for example, by generating a transmission signal by appropriately setting the perturbation vector Even if it is not high, it is possible to significantly reduce the required transmission power as compared with linear precoding without adding perturbation vectors, and transmission efficiency can be greatly improved.
  • a terminal device that receives a signal that has been subjected to interference suppression by non-linear precoding and performs a demodulation process after performing a modulo operation on the received signal, or by non-linear precoding It is necessary to perform demodulation processing (such as Non-Patent Document 4) in consideration of the fact that the perturbation vectors are added and transmitted from the base station apparatus (hereinafter, both demodulation processing are collectively referred to as modulo arithmetic-considered demodulation processing). .
  • the terminal apparatus takes into account the modulo arithmetic considering demodulation according to the precoding scheme used. It is necessary to appropriately switch whether or not to perform processing.
  • the present invention has been made in view of such circumstances, and it is possible to efficiently determine whether a MU-MIMO signal transmitted from a base station apparatus is linear precoding or non-linear precoding by using terminal equipment. It is an object of the present invention to provide a base station device, a terminal device, and a wireless communication system that can be notified.
  • the base station apparatus of the present invention is a base station apparatus that transmits data addressed to a plurality of terminal apparatuses by spatial multiplexing using multiuser MIMO transmission, and uses nonlinear precoding in multiuser MIMO transmission. Whether or not the nonlinear precoding setting information is included in a message of the radio resource control layer and notified to the terminal device.
  • a terminal device is a terminal device that communicates with a base station device including a plurality of antennas, and includes a nonlinear pre-notification that is included in a message of a radio resource control layer and notified from the base station device. If non-linear precoding setting information indicating whether to use coding is obtained and the non-linear precoding setting information indicates that non-linear precoding is used, the received signal is a signal based on linear precoding or non-linear precoding. Signal is blindly estimated, and based on the estimation result, one of demodulation processing not considering modulo arithmetic and demodulation processing considering modulo arithmetic is selected, and the selected demodulation processing is performed on the received signal It is characterized by that.
  • the terminal device of the present invention is a terminal device that communicates with a base station device including a plurality of antennas, and includes a nonlinear pre-notification that is included in a message of a radio resource control layer and notified from the base station device.
  • Non-linear precoding setting information indicating whether or not to use coding is acquired, and when the non-linear precoding setting information indicates that non-linear precoding is used, a demodulation process considering a modulo operation on the received signal It is characterized by performing.
  • wireless communications system of this invention is comprised from the several base station apparatus and the base station apparatus which spatially multiplexes and transmits the data addressed to the said several terminal apparatus using multiuser MIMO transmission.
  • the base station apparatus includes, in a radio resource control layer message, non-linear precoding setting information indicating whether or not to use non-linear precoding in multiuser MIMO transmission, and notifies the plurality of terminal apparatuses Then, the terminal apparatus receives the radio resource control layer message notified from the base station apparatus to acquire nonlinear precoding setting information, and the acquired nonlinear precoding setting information uses nonlinear precoding.
  • the received signal is linear precoding or non-linear Blind estimation of whether the signal is due to recoding, and based on the estimation result, one of demodulation processing not considering modulo operation and demodulation processing considering modulo operation is selected, and the selected demodulation is performed on the received signal It is characterized by performing processing.
  • wireless communications system of this invention is a radio
  • the base station apparatus includes, in a message of a radio resource control layer, non-linear precoding setting information indicating whether or not to use non-linear precoding in multiuser MIMO transmission, and notifies the plurality of terminal apparatuses.
  • the terminal apparatus receives the radio resource control layer message notified from the base station apparatus to acquire nonlinear precoding setting information, and the acquired nonlinear precoding setting information uses nonlinear precoding. Indicates that the received signal is demodulated in consideration of the modulo operation. It is characterized in.
  • the integrated circuit of the present invention is an integrated circuit that allows the base station apparatus to exhibit a plurality of functions by being mounted on the base station apparatus, and uses nonlinear precoding in multiuser MIMO transmission.
  • a function of generating non-linear precoding setting information on whether or not, and a function of notifying the non-linear precoding setting information to a terminal device as a message of a radio resource control layer, causing the base station device to exhibit a series of functions It is characterized by.
  • the integrated circuit of the present invention is an integrated circuit that causes the terminal device to perform a plurality of functions by being mounted on the terminal device, and is notified from the base station device as a message of a radio resource control layer.
  • a channel means a medium used for signal transmission
  • a physical channel means a physical medium used for signal transmission.
  • the structure or format format will be changed or added in the future in LTE, LTE-A and its successor standards, but even in this case, the description of each embodiment of the present invention is not affected.
  • the resource block includes a constant frequency region configured by a set of a plurality of subcarriers (for example, 12 subcarriers) in the frequency axis direction, and a time region configured by a constant transmission time interval (1 slot) in the time axis direction. Defined by an area delimited by.
  • the synchronization signal (Synchronization Signals) is composed of three types of primary synchronization signals and secondary synchronization signals composed of 31 types of codes that are alternately arranged in the frequency domain.
  • the combination of the primary synchronization signal and the secondary synchronization signal indicates 504 cell identifiers (physical cell ID (PCI)) for identifying the base station apparatus and frame timing for radio synchronization.
  • PCI physical cell ID
  • the terminal device specifies the cell ID of the synchronization signal received by the cell search.
  • the physical broadcast channel (Physical road Broadcast CHannel: PBCH) is transmitted from the base station apparatus for the purpose of notifying control parameters (broadcast information (system information): System information) that are commonly used by the terminal devices in the cell. Broadcast information that is not notified in the physical broadcast channel is a layer 3 message using a physical downlink shared channel (Physical Downlink Shared CHannel: PDSCH) in which radio resources are notified in the physical downlink control channel (Physical Downlink Control CHannel: PDCCH). Sent as (system information).
  • PDSCH Physical Downlink shared channel
  • PDCCH Physical Downlink Control CHannel
  • a cell global identifier (Cell Global Identifier: CGI) indicating a cell-specific identifier, a tracking area identifier (Tracking Area Identifier: TAI) for managing a standby area by paging, random access setting information (such as a transmission timing timer)
  • CGI Cell Global Identifier
  • TAI Tracking Area Identifier
  • the common radio resource setting information is notified.
  • the layer 3 message is a control-plane message exchanged in the radio resource control (Radio Resource Control: RRC) layer between the terminal device and the base station device, and has the same meaning as RRC signaling or RRC message. Used in.
  • RRC Radio Resource Control
  • Downlink reference signals are classified into multiple types according to their use.
  • a cell-specific reference signal (CRS) is a pilot signal transmitted at a predetermined power for each cell, and is downlinked periodically in the frequency domain and the time domain based on a predetermined rule.
  • Link reference signal The terminal apparatus receives the cell-specific reference signal and measures reception quality for each cell.
  • the terminal apparatus also uses the cell-specific reference signal as a signal to be referenced for demodulation of the physical downlink control channel and the physical downlink shared channel that are transmitted simultaneously with the cell-specific reference signal.
  • the sequence used for the cell-specific reference signal is a sequence that can be identified for each cell.
  • the downlink reference signal is also used for estimation of the downlink propagation path state.
  • cell-specific reference signals corresponding to a maximum of 4 antennas are used.
  • channel state information reference signals (Channel Information Reference Signals: CSI) corresponding to a maximum of 8 antennas are used.
  • CSI Channel Information Reference Signals: CSI
  • -RS RS
  • a terminal-specific reference signal (UE-specific reference signals or DeModulation Reference Signals: DM-RS).
  • the terminal-specific reference signal is used for demodulation of the physical downlink control channel or the physical downlink shared channel.
  • the physical downlink control channel is transmitted using several OFDM symbols from the beginning of each subframe, and the radio resource allocation information based on the scheduling result of the base station apparatus and the adjustment amount of increase / decrease in uplink transmission power are It is used for the purpose of notifying information that instructs the device.
  • the terminal device Prior to reception of downlink user data, reception of layer 3 messages (paging, handover command, etc.) that are downlink control data, or transmission of uplink user data, etc., the terminal device is addressed to its own terminal device. It is necessary to acquire radio resource allocation information called uplink grant for uplink transmission and downlink grant (downlink assignment) for downlink reception by monitoring and receiving the physical downlink control channel .
  • the physical downlink control channel is an area of a resource block that is allocated from the base station apparatus to the terminal apparatus in a dedicated manner other than being transmitted with several ODFM symbols from the top of each subframe described above. It can also be configured to be transmitted.
  • the physical uplink control channel (Physical-Uplink-Control-CHannel: PUCCH) is an acknowledgment (ACKnowledgement: ACK) and negative response (Negative-ACKnowledgement: NACK or NAK) of data transmitted on the physical downlink shared channel, and a downlink propagation path (Channel) State information (CSI), and scheduling request (Scheduling Request: SR) which is an uplink radio resource allocation request (radio resource request).
  • the CSI includes a channel quality indicator (Channel Quality Indicator: CQI), a precoding matrix indicator (Precoding Matrix Indicator: PMI), a precoding type indicator (Precoding Type Indicator: PTI), and a rank indicator (Rank Indicator: RI). Each indicator may be described as Indication, but its use and meaning are the same.
  • the physical downlink shared channel (Physical-Downlink-Shared-CHannel: PDSCH) not only transmits downlink data but also reports paging and broadcast information (system information) not notified through the physical broadcast channel to the terminal device as a layer 3 message. Also used. Radio resource allocation information of the physical downlink shared channel is indicated by a physical downlink control channel.
  • the Physical Uplink Shared Channel mainly transmits uplink data and uplink control data, and includes control data such as ACK / NACK for downlink CSI and downlink data. Is also possible. In addition to transmitting uplink data, it is also used to notify the base station apparatus of uplink control information as a layer 3 message. Also, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel, similarly to the radio resource allocation information of the physical downlink shared channel.
  • the uplink reference signal (also referred to as Uplink Reference Signal, uplink pilot signal, or uplink pilot channel) is a demodulation reference signal used by the base station apparatus to demodulate the physical uplink control channel and the physical uplink shared channel ( DeModulation Reference Signal: DM-RS) and Sounding Reference Signal (SRS) used mainly by the base station apparatus to estimate the uplink channel state.
  • Sounding reference signals include a periodic sounding reference signal (Periodic SRS) and an aperiodic sounding reference signal (Aperiodic SRS).
  • the physical random access channel (Physical Random Access CHannel: PRACH) is a channel used to notify a preamble sequence and has a guard time.
  • the preamble sequence is configured so as to express 6-bit information by preparing 64 types of sequences.
  • the physical random access channel is used as an access means from the terminal device to the base station device.
  • the terminal apparatus transmits a radio resource allocation request when the physical uplink control channel is not set, and transmission timing adjustment information (timing advance (TA)) required to match the uplink transmission timing with the reception timing window of the base station apparatus.
  • TA transmission timing adjustment information
  • the physical random access channel is used to request the base station apparatus.
  • a wireless communication system includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, eNodeB) and terminal device (mobile terminal, receiving point, receiving terminal, receiving device,
  • the base station apparatus transmits control information and information data through the downlink in order to perform data communication with the terminal apparatus.
  • the downlink control information is subjected to error detection coding processing and the like, and is mapped to the physical downlink control channel.
  • the physical downlink control channel is subjected to error correction coding processing and modulation processing, and second control different from the first control channel (first physical downlink control channel) region or the first control channel region. Transmission / reception is performed via a channel (second physical downlink control channel) region.
  • the control channel mapped to the first control channel region is also referred to as a first control channel
  • the control channel mapped to the second control channel region is also referred to as a second control channel.
  • the first control channel is also referred to as PDCCH
  • the second control channel is also referred to as ePDCCH (enhanced PDCCH: enhanced physical downlink control channel).
  • the first control channel is a physical downlink control channel that uses the same transmission port (antenna port) as the cell-specific reference signal.
  • the second control channel is a physical downlink control channel that uses the same transmission port as the terminal-specific reference signal.
  • the terminal apparatus demodulates the first control channel using the cell-specific reference signal, and demodulates the second control channel using the terminal-specific reference signal.
  • the cell-specific reference signal is a reference signal common to all terminal devices in the cell, and is inserted in almost all resource blocks, and thus is a reference signal that can be used by any terminal device. Therefore, any terminal device can demodulate the first control channel.
  • the terminal-specific reference signal is a reference signal inserted only in the allocated resource, and can be adaptively subjected to precoding processing and beamforming processing in the same manner as data.
  • the control channel arranged in the second control channel region can obtain adaptive precoding, beamforming gain, and frequency scheduling gain.
  • the terminal-specific reference signal can be shared by a plurality of terminal devices. For example, when the control channel arranged in the second control channel region is notified by being distributed to a plurality of resources (for example, resource blocks), the terminal-specific reference signal in the second control channel region is a plurality of Can be shared by terminal devices. In that case, the control channel arranged in the second control channel region can obtain frequency diversity gain.
  • the control channel (first control channel) mapped to the first control channel region is a physical downlink control channel on the OFDM symbol located in the front part of the physical subframe, These may be arranged in the entire system band (component carrier (CC)) on these OFDM symbols.
  • CC component carrier
  • control channel (second control channel) mapped to the second control channel region is a physical downlink control channel on the OFDM symbol located behind the first control channel on the physical subframe. These may be arranged in a part of the system bandwidth on the OFDM symbol.
  • the first control channel Since the first control channel is arranged on the OFDM symbol dedicated to the control channel located in the front of the physical subframe, it can be received and demodulated before the rear OFDM symbol for the physical data channel. A terminal device that monitors only the OFDM symbol dedicated to the control channel can also be received. Moreover, since it can be spread and arranged throughout the CC, inter-cell interference can be randomized.
  • the first control channel region is a region that is set unique to the base station device (cell), and is a region that is common to all terminal devices connected to the base station device.
  • the second control channel is arranged on the rear OFDM symbol for the physical downlink shared channel (physical data channel) that is normally received by the communicating (connected) terminal device.
  • the second control channels or the second control channel and the physical data channel can be orthogonally multiplexed (multiplexing without interference).
  • the second control channel region is a region set for each terminal device, and is a region set for each terminal device connected to the base station device.
  • the base station apparatus can be set so that the second control channel region is shared by a plurality of terminal apparatuses.
  • the first control channel region and the second control channel region are arranged in the same physical subframe.
  • the OFDM symbol is a unit in the time direction for mapping bits of each channel.
  • the first control channel is a cell-specific physical downlink control channel, and is a physical that can be acquired (detected) by both the idle terminal device and the connected (connected) terminal device. Is a channel.
  • the second control channel is a physical downlink control channel unique to the terminal, and is a physical channel that can be acquired only by the connected terminal apparatus.
  • the idle state is a state in which the base station device does not accumulate radio resource control (Radio Resource Control: RRC) information (RRC_IDLE state), a state in which the terminal device is performing intermittent reception (DRX), and the like. In this state, data is not immediately transmitted / received.
  • RRC Radio Resource Control
  • connection state means immediately transmitting and receiving data such as a state in which the terminal device holds network information (RRC_CONNECTED state, connection state) and a state in which the terminal device is not performing intermittent reception (DRX). It is in a state that can be.
  • the first control channel is a channel that can be received by the terminal apparatus without depending on terminal-specific RRC signaling.
  • the second control channel is a channel set by terminal-specific RRC signaling, and is a channel that can be received by the terminal apparatus by terminal-specific RRC signaling. That is, the first control channel is a channel that can be received by any of the terminal devices by setting limited in advance, and the second control channel is a channel that can easily change the setting unique to the terminal.
  • the base station apparatus selects a plurality of terminal apparatuses from terminal apparatuses connected to the base station apparatus, and spatially multiplexes transmission data addressed to the plurality of terminal apparatuses by MU-MIMO.
  • a wireless communication system that performs transmission in a manner that inter-user interference (IUI) generated between spatial streams transmitting transmission data addressed to each terminal apparatus is suppressed in advance by linear precoding or nonlinear precoding and transmitted. This will be described as an example.
  • IUI inter-user interference
  • FIG. 1 is a diagram illustrating a schematic configuration example of a wireless communication system according to the present embodiment.
  • a base station apparatus 200 in the radio communication system according to the present embodiment, a base station apparatus 200 and uplink transmissions with a plurality of terminal apparatuses 400 (for example, first to fourth terminal apparatuses 400-1 to 400-4).
  • base station apparatus 200 selects a plurality of terminal apparatuses 400 (for example, first terminal apparatus 400-1 and second terminal apparatus 400-2) from these terminal apparatuses 400.
  • the wireless communication system performs MU-MIMO transmission in which transmission data (codewords) addressed to the plurality of terminal devices 400 is spatially multiplexed and simultaneously communicated at the same time and in the same frequency band.
  • Each terminal apparatus 400-1 to 400-4 receives at least one of a cell-specific reference signal and a channel state information reference signal transmitted from the base station apparatus 200, and each transmitting antenna of the base station apparatus 200 and its own terminal apparatus 400 estimates the state of a downlink channel with each of the 400 receiving antennas, and reports channel state information (Channel State Information: CSI) to the base station apparatus 200 by uplink transmission based on the channel state.
  • CSI Channel State Information
  • Base station apparatus 200 selects a plurality of terminal apparatuses 400 based on CSI and the like reported from each terminal apparatus 400, spatially multiplexes transmission data addressed to the plurality of terminal apparatuses 400, and simultaneously transmits the MU- Performs MIMO transmission.
  • LTE and LTE-A use orthogonal frequency division multiple access (OFDMA) for downlink transmission, and single carrier frequency division multiple access (OFDMA) for uplink transmission ( Single-Carrier-Frequency-Division-Multiple-Access (SC-FDMA) is used, and in the present embodiment, a radio communication system using the above-described radio access method will be described as an example.
  • OFDM that does not perform multiple access of the same may be used, or OFDMA may be used for uplink and downlink transmission.
  • FIG. 2 is a functional block diagram showing a configuration example of the base station apparatus 200 according to the present embodiment.
  • the base station apparatus 200 includes an encoding unit 201, a scramble unit 202, a modulation unit 203, a layer mapping unit 204, a precoding unit 205, a resource element mapping unit 206, an OFDM signal generation unit 207, and a transmission antenna unit 208.
  • a physical layer unit 216 including a signal generation unit 209, a control information generation unit 210, and a control unit 211, and an upper layer unit 212 are configured.
  • the upper layer unit 212 includes a media access control unit 213, a radio link control unit 214, and a radio resource control unit 215.
  • the upper layer unit 212 includes the type and amount of transmission data addressed to each terminal device 400, QoS (Quality of Service) such as a required data rate, priority, and allowable delay time, and propagation notified from each terminal device 400.
  • Radio resource allocation (scheduling) for the physical downlink control channel and the physical downlink shared channel is determined based on the path state information and the like. In this scheduling, the upper layer section 212 allocates the same radio resource of the physical downlink shared channel to transmission data addressed to a plurality of terminal apparatuses determined to be spatially multiplexed and simultaneously transmitted using MU-MIMO. Further, upper layer section 212 may assign control information addressed to a plurality of terminal apparatuses to the same radio resource using the second physical downlink control channel (ePDCCH), and spatially multiplex using MU-MIMO.
  • ePDCCH second physical downlink control channel
  • codeword C1 which is transmission data addressed to first terminal apparatus 400-1 and codeword C2 which is transmission data addressed to second terminal apparatus 400-2 are spatially multiplexed by MU-MIMO.
  • MU-MIMO spatially multiplexed by MU-MIMO.
  • the control unit 211 controls each unit of the physical layer unit 216 based on a control signal input from the upper layer unit 212.
  • the encoding unit 201 performs error correction encoding and rate matching processing (puncturing processing) on each codeword input from the upper layer unit 212.
  • the scrambler 202 performs a scramble process that multiplies (superimposes) a scrambling code on the result of error correction encoding and rate matching process of each codeword output from the encoder 201.
  • the modulation unit 203 performs phase shift (Phase ⁇ ⁇ ⁇ Shift Keying: PSK) modulation, quadrature ⁇ Amplitude Modulation (QAM) modulation (quadrature amplitude modulation), or the like on each scramble result output from the scramble unit 202. Modulation processing is performed, and a modulation symbol sequence corresponding to each codeword is output.
  • phase shift Phase Shift Keying: PSK
  • QAM Quadrature ⁇ Amplitude Modulation
  • the layer mapping unit 204 refers to the port information input from the higher layer unit 212 or the control unit 211, and distributes the modulation symbol sequence output from the modulation unit 203 to each layer of MU-MIMO.
  • the reference signal generation unit 209 refers to the cell identifier (cell ID, Physical layer layer cell identity) and port information input from the upper layer unit 212 or the control unit 211, and further refers to the cell-specific reference signal and, if necessary, the channel.
  • a state information reference signal is generated, and a terminal-specific reference signal is generated by referring to a terminal identifier (terminal ID, UE-ID, Radio ⁇ network temporary identifier).
  • Reference signal generation section 209 inputs the generated terminal-specific reference signal for each antenna port (for each layer) to precoding section 205 together with the modulation symbol sequence of each layer output from layer mapping section 204. Also, the reference signal generation unit 209 inputs the generated cell-specific reference signal and channel state information reference signal to the resource element mapping unit 206.
  • the control information generation unit 210 generates broadcast information from the system information and the like input from the upper layer unit 212, the layer 3 message input from the upper layer unit 212 and the control unit 211, and the radio resource allocation result (resource allocation information) Then, downlink control information is generated from control information such as transmission mode information and port information.
  • the precoding unit 205 refers to the propagation path state information and the precoding scheme information input from the higher layer unit 212 or the control unit 211, and performs the modulation symbol sequence of each layer output from the layer mapping unit 204.
  • a linear precoding process for example, multiplication of a precoding matrix
  • a nonlinear precoding process for example, addition of a perturbation vector and multiplication of a precoding matrix
  • the same precoding processing is performed and output. Note that even when nonlinear precoding processing is performed on the modulation symbol sequence, it is preferable not to perform perturbation vector addition on the terminal-specific reference signal, and only multiply the same precoding matrix as the modulation symbol sequence, It is not limited to this.
  • the resource element mapping unit 206 is generated by the control information generation unit 210, the modulation symbol sequence precoded by the precoding unit 205, the cell-specific reference signal and channel state information reference signal generated by the reference signal generation unit 209, and the control information generation unit 210.
  • the broadcast information and control information thus mapped are mapped to a predetermined resource element or a resource element as a result of radio resource allocation in the upper layer unit 212, and a resource element group is output.
  • mapping the reference signal it is preferable to multiplex by frequency division multiplexing, time division multiplexing, code division multiplexing, or a combination thereof so that the reference signals for each port are orthogonal to each other.
  • the OFDM signal generation unit 207 converts the resource element group output from the resource element mapping unit 206 into an OFDM signal and transmits the OFDM signal as a downlink transmission signal from the transmission antenna unit 208.
  • FIG. 3 is a functional block diagram showing a configuration example of the precoding unit 205 according to the present embodiment.
  • the precoding unit 205 includes a linear precoding unit 301, a nonlinear precoding unit 302, and a selection unit 303.
  • the linear precoding unit 301 performs linear precoding on the modulation symbol sequence of each layer output from the layer mapping unit 204 based on the propagation path state information and outputs the result.
  • the nonlinear precoding unit 302 performs nonlinear precoding on the modulation symbol sequence of each layer output from the layer mapping unit 204 based on the propagation path state information, and outputs the result.
  • the selection unit 303 based on the precoding scheme information input from the higher layer unit 212 or the control unit 211, the linear precoding result output from the linear precoding unit 301 and the nonlinear output output from the nonlinear precoding unit 302. Select one of the precoding results and output.
  • the configuration of the precoding unit 205 is not limited to the above, and for example, based on precoding scheme information input from the higher layer unit 212 or the control unit 211, the linear precoding unit 301 or the nonlinear precoding unit 302 is used. It is good also as a structure which selects and operates only any one of these.
  • FIG. 4 is a functional block diagram illustrating a configuration example of the terminal device 400 according to the present embodiment.
  • the terminal device 400 includes a reception antenna unit 401, an OFDM signal demodulation unit 402, a resource element demapping unit 403, a reception filter unit 404, a layer demapping unit 405, a demodulation unit 406, a descrambling unit 407, a decoding unit 408, It includes a physical layer unit 416 including a control information acquisition unit 409, a propagation path estimation unit 410, and a control unit 411, and an upper layer unit 412.
  • the upper layer unit 412 includes a media access control unit 413, a radio link control unit 414, and a radio resource control unit 415.
  • the OFDM signal demodulation unit 402 performs OFDM demodulation processing on the downlink reception signal received by the reception antenna unit 401, and outputs a resource block group.
  • the resource element demapping unit 403 first acquires (demapped) broadcast information and downlink control information from a resource element at a predetermined position and outputs the broadcast information and downlink control information.
  • various methods can be used as a method for identifying control information for the own terminal apparatus.
  • a method using blind decoding will be described.
  • information identifying each terminal device is added to the control information for each terminal device as a cyclic redundancy check (Cyclic Redundancy Check: CRC) on the base station device 200 side.
  • CRC Cyclic Redundancy Check
  • the resource element demapping unit 403 refers to the port information acquired from the control information by the control information acquisition unit 409, acquires a reference signal from the resource element at a predetermined position, and outputs the reference signal to the propagation path estimation unit 410 To do.
  • the process corresponding to the process in the resource element mapping part 206 of the base station apparatus 200 is performed. More specifically, when frequency division multiplexing, time division multiplexing, code division multiplexing, or the like is applied in the resource element mapping unit 206 so that the reference signals for each port are orthogonal to each other, demapping or reverse processing taking these into account is performed. Perform diffusion.
  • the resource element demapping unit 403 acquires a received signal addressed to the own terminal device based on the resource allocation information output from the control information acquisition unit 409.
  • the control information acquisition unit 409 uses the broadcast information and downlink control information output from the resource element demapping unit 403, system information notified from the base station apparatus 200, layer 3 message, resource allocation information, transmission mode information, Get control information such as port information.
  • Propagation path estimation section 410 with respect to the reference signal for each port output from resource element demapping section 403, a sequence corresponding to the reference signal sequence for each port generated by reference signal generation section 209 of base station apparatus 200 (The channel (propagation channel, transmission channel) state for each port is estimated by multiplying the complex conjugate sequence of the reference signal sequence.
  • the reference signal since the reference signal is precoded in base station apparatus 200, an equivalent channel including precoding processing in addition to the channel between the transmission antenna of base station apparatus 200 and the reception antenna of terminal apparatus 400 Will be estimated.
  • the reception filter unit 404 uses the channel state estimation result output from the propagation path estimation unit 410 to perform filtering processing (channel equalization, reception synthesis, MIMO) on the reception signal output from the resource element demapping unit 403. Separation).
  • the filtering process in the reception filter unit 404 is performed for each layer (port) using a method such as ZeroZForcing (ZF), minimum mean square error (Minimum Mean Square Error: MMSE), or maximum likelihood detection (Maximum Likelihood Detection: MLD).
  • ZF ZeroZForcing
  • MMSE Minimum Mean Square Error
  • MLD Maximum Likelihood Detection
  • the layer demapping unit 405 performs a combination process corresponding to the process of the layer mapping unit 204 of the base station apparatus 200 on the received signal for each layer after the filtering process output from the reception filter unit 404, for each codeword. Is converted to a modulation symbol sequence and output.
  • Demodulation section 406 performs a demodulation process corresponding to the modulation process of modulation section 203 of base station apparatus 200 on the modulation symbol series for each codeword output from layer demapping section 405, and provides an encoded sequence (or a soft sequence). (Determination bit sequence) is output.
  • the demodulation unit 406 determines in advance the modulation symbol sequence corresponding to the modulation method when the precoding method information input from the higher layer unit 412 or the control unit 411 indicates nonlinear precoding. After performing a modulo operation based on the modulo width, a demodulation process by soft decision is performed to calculate a log likelihood ratio from the received signal point and the candidate signal point of the signal point arrangement in the modulation scheme.
  • the demodulation unit 406 considers that the perturbation vector is added in the precoding unit 205 of the base station apparatus 200 instead of performing the modulo operation, and the received signal point and the candidate signal point repeated with the modulo width. Demodulation processing by soft decision for calculating the log likelihood ratio from the above may be performed. In the following, these demodulation processes are collectively referred to as a modulo arithmetic considering demodulation process.
  • the descrambling unit 407 multiplies the encoded sequence output from the demodulation unit 406 by the complex conjugate of the scrambling code used in the scrambling unit 202 of the base station apparatus 200, or divides by the scrambling code, The encoded sequence after descrambling is output.
  • the decoding unit 408 performs rate matching processing (depuncturing processing) and error correction decoding processing on the encoded sequence after descrambling output from the descrambling unit 407, and outputs a received data sequence.
  • the control unit 411 controls each unit of the physical layer based on the control information output from the control information acquisition unit 409 and the instruction input from the upper layer unit 412.
  • the upper layer unit 412 controls the physical layer based on the system information and control information output from the control information acquisition unit 409, and performs error detection and retransmission requests on the received data sequence output from the decoding unit 408.
  • the upper layer unit 412 in the present embodiment generates and outputs precoding scheme information based on nonlinear precoding setting information included in the system information output from the control information acquisition unit 409.
  • FIG. 5 is a sequence chart showing an example of communication between the base station apparatus 200 and the terminal apparatus 400 according to the present embodiment.
  • step S501 it is assumed that the terminal device 400 is in an idle state (RRC_IDLE state) (step S501).
  • the base station apparatus 200 determines a nonlinear precoding setting for determining whether to use nonlinear precoding (on or off) in a cell (self cell) formed by the base station apparatus (step S502), and determines the determined nonlinear precoding.
  • Coding setting information (nonlinear precoding setting information) is included in the system information and broadcasted using a physical broadcast channel or the like (step S503).
  • a setting that uses (enables) non-linear precoding is expressed as non-linear precoding setting
  • a setting that does not use (disable) non-linear precoding is expressed as non-linear precoding setting.
  • the terminal device 400 performs cell search when starting communication, receives a physical broadcast channel broadcast from the base station device 200 that is a connection destination candidate, acquires system information, and nonlinear precoding setting information in the cell And precoding scheme information is set based on the acquired non-linear precoding setting information (step S504).
  • the random access preamble is used using a physical random access channel. Is transmitted (step S505).
  • the base station apparatus 200 When the base station apparatus 200 receives a random access preamble transmitted from the terminal apparatus 400 for an uplink resource allocation request, the base station apparatus 200 allocates an uplink resource to the terminal apparatus 400 (step S506), and the allocation is performed. A random access response including information is transmitted using the physical downlink shared channel (step S507).
  • the terminal device 400 receives the random access response transmitted from the base station device 200, and acquires uplink resource allocation information for the terminal device (step S508).
  • terminal apparatus 400 uses the allocated uplink resource (physical uplink shared channel resource), terminal apparatus 400 transmits an RRC connection request message for requesting connection to base station apparatus 200, including identification information of the terminal apparatus itself. (Step S509).
  • the base station apparatus 200 When the base station apparatus 200 receives the RRC connection request message transmitted from the terminal apparatus 400, the base station apparatus 200 sets a signaling radio bearer (Signaling Radio Bearer: SRB) for transmitting / receiving a communication control message to / from the terminal device 400. Then, an RRC connection setup message including the SRB information, physical channel configuration information, and various setting information for the terminal device 400 is transmitted using the physical downlink shared channel (step S510).
  • SRB Signaling Radio Bearer
  • the terminal device 400 When the terminal device 400 receives the RRC connection setup message transmitted from the base station device 200, the terminal device 400 transitions from the RRC_IDLE state to the state holding the network information (RRC_CONNECTED state, connection state) (step S511).
  • the terminal device 400 transmits an RRC connection setup complete message indicating that the connection procedure is completed using the physical uplink shared channel (step S512).
  • step S534 user data communication is performed between the base station apparatus 200 and the terminal apparatus 400 (step S513).
  • the terminal apparatus 400 performs demodulation processing based on the precoding scheme information set in step S504.
  • FIG. 6 is a flowchart illustrating an example of a demodulation process flow in the terminal device 400 according to the present embodiment.
  • FIG. 6 shows that user data addressed to the terminal device 400 is transmitted using the physical downlink shared channel based on the resource allocation information acquired by the terminal device 400 from the physical downlink control channel or the extended physical downlink control channel.
  • 8 is an example of a flow of demodulation processing when receiving the user data when it is detected that the user is present.
  • the terminal device 400 confirms transmission mode information related to user data addressed to the terminal device (step S601).
  • the transmission mode information related to user data addressed to the terminal device indicates a transmission mode (for example, transmission mode 5, 8, 9 or 10) that supports MU-MIMO (Yes in step S601), Furthermore, when the nonlinear precoding setting is ON (the precoding scheme information indicates nonlinear precoding) (Yes in step S602), the received signal is subjected to demodulation processing considering modulo arithmetic (step S603).
  • a transmission mode for example, transmission mode 5, 8, 9 or 10
  • the transmission mode information regarding the user data addressed to the terminal device 400 indicates a transmission mode that does not support MU-MIMO (No in step S601), or the non-linear precoding setting is off (step S400). No in S602), the received signal is demodulated without considering the modulo operation (step S604).
  • the terminal apparatus 400 when the terminal apparatus 400 notifies the base station apparatus 200 of CSI typified by a channel quality indicator (CQI) or a precoding matrix indicator (PMI), the terminal apparatus 400 is based on nonlinear precoding setting information. Calculate the information to be notified. For example, when the non-linear precoding setting is on, the terminal apparatus 400 calculates CQI and PMI on the premise that the received signal is subjected to demodulation processing in consideration of modulo arithmetic, and notifies the base station apparatus 200 of it. To do.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • the terminal apparatus 400 is directed toward the base station apparatus 200 based on a CQI table (table), a PMI table, or the like in which a plurality of CQI values and PMI values are shared in advance with the base station apparatus 200.
  • the CSI to be notified can be calculated.
  • the terminal apparatus 400 can share a plurality of CQI tables and PMI tables with the base station apparatus 200.
  • a CQI value can be described in one of a plurality of CQI tables on the assumption that modulo calculation-considered demodulation processing is performed, and it is assumed that another CQI table is not subjected to modulo calculation consideration demodulation processing.
  • the CQI value can be described.
  • the terminal apparatus 400 can determine a CQI table used for notification of CSI to the base station apparatus 200 among a plurality of CQI tables.
  • the base station apparatus 200 determines whether to use nonlinear precoding in its own cell, includes the determined nonlinear precoding setting information in the system information, and includes the physical broadcast channel.
  • the terminal device 400 acquires nonlinear precoding setting information from the notified system information, and performs demodulation processing of user data addressed to the terminal device based on the acquired nonlinear precoding setting information. .
  • the terminal apparatus 400 can appropriately determine whether the MU-MIMO signal transmitted from the base station apparatus 200 is linear precoding or non-linear precoding, and can receive and demodulate.
  • FIG. 1 A schematic configuration example of the wireless communication system in the present embodiment is represented in FIG. 1 as in the first embodiment. Further, the configuration of base station apparatus 200 is the same as in FIG. 2, the configuration of terminal apparatus 400 is the same as in FIG. 4, and the processing corresponding to the control information is different.
  • the wireless communication system according to the present embodiment will be described with respect to differences from the first embodiment, and description of the same points will be omitted.
  • FIG. 7 is a sequence chart showing an example of communication between the base station apparatus 200 and the terminal apparatus 400 according to the present embodiment.
  • step S701 it is assumed that the terminal device 400 is in an idle state (RRC_IDLE state) (step S701).
  • the base station apparatus 200 broadcasts system information related to its own cell using a physical broadcast channel or the like (step S702).
  • the terminal device 400 performs a cell search when starting communication, receives a physical broadcast channel broadcast from the base station device 200 that is a connection destination candidate, and acquires system information (step S703).
  • the random access preamble is used using a physical random access channel. Is transmitted (step S704).
  • the base station apparatus 200 When the base station apparatus 200 receives a random access preamble transmitted from the terminal apparatus 400 for an uplink resource allocation request, the base station apparatus 200 allocates an uplink resource to the terminal apparatus 400 (step S705), and the allocation is performed. A random access response including information is transmitted using the physical downlink shared channel (step S706).
  • the terminal device 400 receives the random access response transmitted from the base station device 200, and acquires uplink resource allocation information for the terminal device (step S707).
  • the terminal device 400 uses the allocated uplink resource (physical uplink shared channel resource) to transmit a physical uplink RRC connection request message including the identification information of the terminal device to request connection to the base station device 200. Transmission is performed using the link shared channel (step S708).
  • the base station apparatus 200 determines a non-linear precoding setting for whether to use non-linear precoding (on or off) for the terminal apparatus 400.
  • Step S709 a signaling radio bearer (SRB) for transmitting / receiving a communication control message to / from the terminal device 400 is set, and the determined nonlinear precoding setting information (nonlinear precoding setting information), SRB And RRC connection setup message, which is a connection setup message including various setup information for the terminal device 400, is transmitted using the physical downlink shared channel (step S710).
  • SRB signaling radio bearer
  • the terminal apparatus 400 When the terminal apparatus 400 receives the RRC connection setup message transmitted from the base station apparatus 200, the terminal apparatus 400 acquires nonlinear precoding setting information included in the RRC connection setup message, and a precoding scheme based on the acquired nonlinear precoding setting information Information is set (step S711), and a transition is made from the RRC_IDLE state to a state in which network information is held (RRC_CONNECTED state, connection state) (step S712).
  • the terminal device 400 transmits an RRC connection setup complete message indicating that the connection procedure is completed using the physical uplink shared channel (step S713).
  • step S714 user data communication is performed between the base station apparatus 200 and the terminal apparatus 400 (step S714).
  • the terminal device 400 performs demodulation processing based on the precoding scheme information set in step S711 when receiving user data in the downlink (reception of the physical downlink shared channel).
  • An example of the flow of demodulation processing in the terminal device 400 according to the present embodiment is the same as that in FIG. 6 in the first embodiment.
  • the base station apparatus 200 determines whether to use nonlinear precoding for each terminal apparatus 400 in the process of establishing a connection with the terminal apparatus 400, and performs RRC.
  • the terminal device 400 notifies the non-linear precoding setting information using the connection setup message, and each terminal device 400 acquires the non-linear precoding setting information from the notified RRC connection setup message, and based on the acquired non-linear precoding setting information.
  • the terminal apparatus 400 can appropriately determine whether the MU-MIMO signal transmitted from the base station apparatus 200 is linear precoding or non-linear precoding, and can receive and demodulate.
  • the base station apparatus 200 can also notify different nonlinear precoding setting information for each terminal apparatus 400.
  • FIG. 1 A schematic configuration example of the wireless communication system in the present embodiment is represented in FIG. 1 as in the first embodiment. Further, the configuration of base station apparatus 200 is the same as in FIG. 2, the configuration of terminal apparatus 400 is the same as in FIG. 4, and the processing corresponding to the control information is different.
  • the wireless communication system according to the present embodiment will be described with respect to differences from the first embodiment, and description of the same points will be omitted.
  • FIG. 8 is a sequence chart showing an example of communication between the base station apparatus 200 and the terminal apparatus 400 according to the present embodiment.
  • the terminal apparatus 400 is already in a connection state (RRC_CONNECTED state) with the base station apparatus 200 (step S801) and is communicating user data with the base station apparatus 200 (step S802).
  • the connection is established based on the flowchart of FIG. 5 of the first embodiment or the flowchart of FIG. 7 of the second embodiment, and the terminal device 400 is notified with the system information (as an initial state).
  • the non-linear precoding setting information or the non-linear precoding setting information notified by the RRC connection setup message is acquired and the precoding scheme information is set, and the demodulation process is performed based on the precoding scheme information It may be.
  • the nonlinear precoding setting information is not acquired, it is preferable to perform a demodulation process that does not consider modulo calculation.
  • the base station apparatus 200 sets a nonlinear precoding setting to determine whether or not to use nonlinear precoding as a precoding scheme for the terminal apparatus 400 based on the traffic state in the own cell, the channel state with the terminal apparatus 400, and the like. Determination or redetermination is performed (step S803), and the determined nonlinear precoding setting information is transmitted to the terminal device 400 as a layer 3 message using the physical downlink shared channel (step S804).
  • the terminal device 400 When the terminal device 400 receives the nonlinear precoding setting information as a layer 3 message from the base station device 200, the terminal device 400 sets or resets the precoding scheme information (step S805).
  • step S806 user data communication is performed again between the base station apparatus 200 and the terminal apparatus 400 (step S806).
  • the terminal device 400 performs demodulation processing based on the precoding scheme information set in step S805 when receiving user data in the downlink (reception of the physical downlink shared channel).
  • An example of the flow of demodulation processing in the terminal device 400 according to the present embodiment is the same as that in FIG. 6 in the first embodiment.
  • the base station apparatus 200 determines whether to use nonlinear precoding for each terminal apparatus 400 in the connected state, and uses the layer 3 message to configure nonlinear precoding.
  • Each terminal apparatus 400 acquires nonlinear precoding setting information from the notified layer 3 message, and performs demodulation processing of user data addressed to the terminal apparatus based on the acquired nonlinear precoding setting information. .
  • the terminal apparatus 400 can appropriately determine whether the MU-MIMO signal transmitted from the base station apparatus 200 is linear precoding or non-linear precoding, and can receive and demodulate.
  • the base station apparatus 200 can change the non-linear precoding setting according to the traffic state of the own cell, the channel state of each terminal apparatus 400, and the like, and different non-linear precoding setting information for each terminal apparatus 400. Can also be notified.
  • FIG. 1 A schematic configuration example of the wireless communication system in the present embodiment is represented in FIG. 1 as in the first embodiment. Further, the configuration of base station apparatus 200 is the same as in FIG. 2, the configuration of terminal apparatus 400 is the same as in FIG. 4, and the processing corresponding to the control information is different.
  • the wireless communication system according to the present embodiment will be described with respect to differences from the first embodiment, and description of the same points will be omitted.
  • FIG. 9 is a sequence chart showing an example of communication between the base station apparatus 200 and the terminal apparatus 400 according to the present embodiment.
  • the terminal apparatus 400 is already in a connection state (RRC_CONNECTED state) with the base station apparatus 200 (step S901) and is communicating user data with the base station apparatus 200 (step S902).
  • the connection is established based on the flowchart of FIG. 5 of the first embodiment or the flowchart of FIG. 7 of the second embodiment, and the terminal device 400 is notified with the system information (as an initial state).
  • the non-linear precoding setting information or the non-linear precoding setting information notified by the RRC connection setup message is acquired and the precoding scheme information is set, and the demodulation process is performed based on the precoding scheme information It may be.
  • the nonlinear precoding setting information is not acquired, it is preferable to perform a demodulation process that does not consider modulo calculation.
  • the base station apparatus 200 sets a nonlinear precoding setting to determine whether or not to use nonlinear precoding as a precoding scheme for the terminal apparatus 400 based on the traffic state in the own cell, the channel state with the terminal apparatus 400, and the like. Re-determine (step S903), and transmit the RRC connection reconfiguration message, which is a connection reconfiguration message for reconfiguring the network connection state setting, to the terminal device 400 including the determined non-linear precoding setting information (step). S904).
  • the terminal device 400 When the terminal device 400 receives the RRC connection reconfiguration message from the base station device 200, the terminal device 400 acquires the nonlinear precoding setting information included therein, and resets the precoding scheme information (step S905).
  • the terminal device 400 transmits an RRC connection reconfiguration complete message indicating that the reconfiguration of the connection state is completed using the physical uplink shared channel (step S906).
  • step S907 user data communication is performed again between the base station apparatus 200 and the terminal apparatus 400 (step S907).
  • the terminal device 400 performs demodulation processing based on the precoding scheme information set in step S905 when receiving user data in the downlink (reception of the physical downlink shared channel).
  • An example of the flow of demodulation processing in the terminal device 400 according to the present embodiment is the same as that in FIG. 6 in the first embodiment.
  • the base station apparatus 200 determines whether to use nonlinear precoding for each terminal apparatus 400 in the connected state, and reconfigures the network connection state.
  • the non-linear precoding setting information is notified using the reconfiguration message, and each terminal device 400 acquires the non-linear precoding setting information from the notified RRC connection reconfiguration message, and adds the acquired non-linear precoding setting information to the acquired non-linear precoding setting information.
  • the user data destined for the terminal device is demodulated.
  • the terminal apparatus 400 can appropriately determine whether the MU-MIMO signal transmitted from the base station apparatus 200 is linear precoding or non-linear precoding, and can receive and demodulate.
  • the base station apparatus 200 can change the non-linear precoding setting according to the traffic state of the own cell, the channel state of each terminal apparatus 400, and the like, and different non-linear precoding setting information for each terminal apparatus 400. Can also be notified.
  • the base station apparatus 200 when the non-linear precoding setting is turned on, the base station apparatus 200 always performs non-linear precoding in MU-MIMO transmission, and the terminal apparatus 400 is based on the acquired non-linear precoding setting information.
  • An example has been described in which the demodulation processing considering modulo arithmetic is always performed when the set precoding scheme information indicates nonlinear precoding.
  • the embodiment of the present invention is not limited to this.
  • the base station apparatus 200 when the nonlinear precoding setting is ON, the base station apparatus 200 performs nonlinear precoding in addition to linear precoding in MU-MIMO transmission. It may represent that selection is possible.
  • the terminal device 400 does not consider the modulo operation as a signal by linear precoding.
  • the precoding method information indicates nonlinear precoding
  • a blind estimation is made as to whether the received signal is a signal based on linear precoding or a signal based on nonlinear precoding. You may select and process the demodulation process in consideration of the modulo calculation.
  • the received signal is a signal based on linear precoding or a signal based on nonlinear precoding
  • the result of demodulating the received signal by a demodulation process not considering modulo operation and a demodulation process considering modulo operation or
  • there is a method for estimating that precoding corresponding to a demodulation processing method with high likelihood or few bit errors has been performed.
  • the power of the subcarrier of the received signal is measured, and when the power measurement result is larger than a preset threshold, the signal is estimated by nonlinear precoding, and is equal to or less than the preset threshold.
  • the amplitude of the signal point of the subcarrier of the received signal or the variance of the power is measured, and if the variance measurement result is larger than a preset threshold, the signal is estimated by nonlinear precoding.
  • a method of estimating a signal by linear precoding when it is equal to or less than a preset threshold value. Note that the method for blind estimation of whether a received signal is a signal based on linear precoding or a signal based on nonlinear precoding is not limited to the above.
  • the base station apparatus 200 switches a table of MCS (Modulation and Coding Scheme) by a combination of modulation schemes and coding rates in the physical downlink shared channel according to the nonlinear precoding setting. That is, different MCS tables may be prepared for linear precoding and non-linear precoding.
  • MCS Modulation and Coding Scheme
  • the present invention can also be expressed as follows.
  • the base station apparatus which concerns on 1 aspect of this invention is characterized by including the nonlinear precoding setting information of whether to use nonlinear precoding in multiuser MIMO transmission in a system information, and notifying to a terminal device.
  • the base station apparatus provides the radio resource control layer connection between the terminal apparatus and non-linear precoding setting information indicating whether or not to use non-linear precoding in multiuser MIMO transmission. It is characterized in that it is included in the connection setting message in the procedure for establishing the notification to the terminal device.
  • the base station apparatus notifies the terminal apparatus of nonlinear precoding setting information indicating whether or not to use nonlinear precoding in multiuser MIMO transmission as a message of a radio resource control layer. It is characterized by that.
  • the base station apparatus is configured to connect nonlinear precoding setting information on whether or not to use nonlinear precoding in multiuser MIMO transmission to a radio resource control layer between terminal apparatuses.
  • the terminal device is notified.
  • the terminal apparatus acquires nonlinear precoding setting information on whether or not to use nonlinear precoding, which is included in the system information and notified from the base station apparatus.
  • the coding setting information indicates that non-linear precoding is used, the received signal is demodulated in consideration of the modulo operation.
  • the terminal device includes a non-linearity notified from the base station device in a connection setting message in a procedure for establishing a radio resource control layer connection with the base station device.
  • demodulation processing considering modulo operation on the received signal It is characterized by performing.
  • the terminal apparatus acquires nonlinear precoding setting information, which is notified from the base station apparatus as a radio resource control layer message, whether to use nonlinear precoding, and When the non-linear precoding setting information indicates that non-linear precoding is used, the demodulating process is performed on the received signal in consideration of the modulo operation.
  • the terminal apparatus is notified from the base station apparatus in a connection reconfiguration message in a procedure for reconfiguring a radio resource control layer connection with the base station apparatus. If non-linear precoding is used, non-linear precoding setting information is obtained, and when the non-linear precoding setting information indicates that non-linear precoding is used, modulo operation is considered for the received signal. Demodulation processing is performed.
  • the terminal apparatus which concerns on 1 aspect of this invention is related to the propagation path state between the said base station apparatus and a self-terminal apparatus notified to the said base station apparatus based on the said nonlinear precoding setting information. Control information is determined.
  • the base station apparatus includes non-linear precoding setting information indicating whether or not the base station apparatus uses non-linear precoding in multiuser MIMO transmission in the system information.
  • the terminal apparatus receives the system information notified from the base station apparatus to acquire nonlinear precoding setting information, and the acquired nonlinear precoding setting information uses nonlinear precoding. In this case, the received signal is demodulated in consideration of the modulo operation.
  • the base station apparatus wirelessly transmits non-linear precoding setting information on whether to use non-linear precoding in multi-user MIMO transmission to / from a terminal apparatus. It is included in the connection setting message in the procedure for establishing the connection of the resource control layer and notified to the terminal device, and the terminal device is notified from the base station device in the connection setting message in the procedure of establishing the connection of the radio resource control layer. If the non-linear precoding setting information is acquired and the acquired non-linear precoding setting information indicates that the non-linear precoding is used, the received signal is demodulated in consideration of the modulo operation. And
  • the base station apparatus uses, as a radio resource control layer message, non-linear precoding setting information indicating whether or not the base station apparatus uses non-linear precoding in multiuser MIMO transmission.
  • the terminal apparatus notifies the terminal apparatus, the terminal apparatus acquires nonlinear precoding setting information notified from the base station apparatus as a message of a radio resource control layer, and the acquired nonlinear precoding setting information uses nonlinear precoding.
  • the received signal is demodulated in consideration of the modulo operation.
  • the base station apparatus wirelessly transmits non-linear precoding setting information indicating whether or not to use non-linear precoding in multi-user MIMO transmission to / from a terminal apparatus.
  • the base station notifies the terminal device by including it in the connection reconfiguration message in the procedure for reconfiguring the connection of the resource control layer, and the terminal device includes it in the connection reconfiguration message in the procedure for reconfiguring the connection of the radio resource control layer
  • a demodulation process considering a modulo operation is performed on the received signal. It is characterized by performing.
  • An integrated circuit is an integrated circuit that is mounted on a base station apparatus to cause the base station apparatus to perform a plurality of functions, and is configured to perform nonlinear pre-processing in multiuser MIMO transmission.
  • the base station apparatus has a series of functions of a function of generating non-linear precoding setting information on whether to use coding and a function of notifying the non-linear precoding setting information to a terminal apparatus as a message of a radio resource control layer. It is characterized by making it exhibit.
  • An integrated circuit is an integrated circuit that is mounted on a terminal device to cause the terminal device to perform a plurality of functions, and includes the base as a message of a radio resource control layer.
  • the terminal device is caused to exhibit a series of functions including a function of performing a demodulation process in consideration of modulo arithmetic.
  • the terminal device 400 of the present invention is not limited to application to a terminal device such as a cellular system or a wireless LAN system, but is a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device. Needless to say, it can be applied to kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the program that operates in the base station device 200 and the terminal device 400 related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU as necessary, and corrected and written.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • LSI which is typically an integrated circuit.
  • Each functional block of the base station apparatus 200 and the terminal apparatus 400 may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the present invention is suitable for use in base station apparatuses, terminal apparatuses, and wireless communication systems.
  • Base station apparatus 201 Encoding section 202 Scramble section 203 Modulation section 204 Layer mapping section 205 Precoding section 206 Resource element mapping section 207 OFDM signal generation section 208 Transmission antenna section 209 Reference signal generation section 210 Control information generation section 211 Control section 212 Upper layer unit 213 Media access control unit 214 Radio link control unit 215 Radio resource control unit 216 Physical layer unit 301 Linear precoding unit 302 Nonlinear precoding unit 303 Selection unit 400, 400-1 to 400-4 Terminal device 401 Reception antenna unit 402 OFDM signal demodulation unit 403 Resource element demapping unit 404 Reception filter unit 405 Layer demapping unit 406 Demodulation unit 407 Descramble unit 408 Decoding unit 409 Control information acquisition unit 10 channel estimation unit 411 control unit 412 higher layer 413 media access control unit 414 radio link control unit 415 radio resource control unit 416 the physical layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 基地局装置から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを、効率的なシグナリングで端末装置に通知することを可能とする。本発明において基地局装置は、自セルにおいて非線形プリコーディングを使用するかどうかを決定し、決定した非線形プリコーディング設定の情報をシステム情報あるいはレイヤ3メッセージに含めて、物理報知チャネルあるいは物理下りリンク共用チャネルなどを用いて通知する。端末装置は、通知されたシステム情報あるいはレイヤ3メッセージから取得した非線形プリコーディング設定情報に基づいて自端末装置宛のユーザデータの復調処理を行う。

Description

基地局装置、端末装置、無線通信システム及び集積回路
 本発明は、基地局装置、端末装置、無線通信システム及び集積回路に関する。
 送受信に複数のアンテナを使用し、同じ周波数帯域で複数の異なるデータ系列(データストリーム)を空間的に多重して同時通信するMIMO(Multiple-Input Multiple-Output:多入力多出力)伝送技術が、無線LANやセルラシステムなどで実用化されている。複数の異なるデータ系列を空間多重して、ある1つの端末装置(受信装置、UE(User Equipment))に伝送するシングルユーザMIMO(Single User MIMO:SU-MIMO)では、端末装置における複数のデータ系列の分離・検出の性能を向上させるために、基地局装置(送信装置、eNodeB、アクセスポイント)において送信信号にプリコーディングを施してから送信する方法がある。
 また、3GPP(Third Generation Partnership Project)において標準化されているLTE(Long Term Evolution)、LTE-A(LTE-Advanced)などのセルラシステムや、米国電気電子学会(The Institute of Electrical and Electronics Engineers, Inc.:IEEE)において標準化されているIEEE802.11acなどの無線LANシステム等において、基地局装置(アクセスポイント)の備える送信アンテナ数が端末装置の備える受信アンテナ数に比べて大幅に多くなるシステムが提案され、基地局装置の多数の送信アンテナを有効に活用してさらにシステムスループットを向上させるために、複数の端末装置(ユーザ)宛のデータ系列をMIMO多重するマルチユーザMIMO(Multi-User MIMO:MU-MIMO)が提案されている。
 MU-MIMOでは、他の端末装置宛の送信信号がユーザ間干渉(Inter-User-Interference:IUI)として端末装置に受信されてしまうため、IUIを抑圧する必要がある。基地局装置の各送信アンテナから各端末装置の各受信アンテナまでの伝搬路状態(チャネル状態)を基地局装置が知っていれば、端末装置に大きな負荷を掛けることなく、端末装置における受信時に発生するIUIを抑圧できる送信信号を生成することができる、幾つかの方法が提案されている(非特許文献1)。
 例えば、LTE-Aにおいては、各端末装置が伝搬路状態に基づいてプリコーディング行列の候補(codebook)から1つのプリコーディング行列を選択し、そのインデックス(Precoding Matrix Indicator:PMI)を基地局装置に通知し、基地局装置は、それらのPMIに基づいて算出した線形フィルタ(送信ウェイト)を、基地局装置にて送信信号に予め乗算することでIUIを抑圧するビームフォーミング(線形プリコーディング)が採用されている(非特許文献2)。
 しかし、空間多重される端末装置同士の伝搬路の直交性が高くない限り、IUIを効果的に抑圧することはできないため、線形プリコーディングに基づくMU-MIMO(線形MU-MIMO)では周波数利用効率の改善には限界がある。
 そこで近年、非線形処理を基地局装置側で行う非線形プリコーディングを用いるMU-MIMO(非線形MU-MIMO)技術が注目を集めている。端末装置において、モジュロ(Modulo、剰余)演算が可能である場合、送信信号に対して、任意のガウス整数に一定の実数が乗算された複素数(摂動項)を要素とする摂動ベクトルの加算が可能となる。そこで、基地局装置と複数の端末装置の間の伝搬路状態に応じて、摂動ベクトルを適切に設定して送信信号を生成することによって、例え空間多重される端末装置同士の伝搬路の直交性が高くなくとも、摂動ベクトルを加算しない線形プリコーディングと比較して、所要送信電力を大幅に削減することが可能となり、伝送効率を大きく向上できる(非特許文献3)。
Q. H. Spencer他、「An Introduction to the Multi-User MIMO Downlink」、IEEE Communication Magazine、Vol.42、Issue10、pp.60-67、2004年10月 3GPP、「E-UTRA; Physical Channels and Modulation(Release 10)」、TS36.211 V10.5.0、2012年6月 B. M. Hochwald他、「A vector-perturbation technique for near-capacity multiantenna multiuser communication-Part II:Perturbation」、IEEE Trans. Commun.、Vol. 53、No. 3、pp.537-544、2005年3月 K. Takeda他、「Single-Carrier HARQ Using Joint THP and FDE」、IEEE VTC-2007 Fall、pp.1188-1192、2007年9月 3GPP、「E-UTRA; Radio Resource Control (RRC); Protocol specification (Release 10)」、TS 36.331 V10.4.0、2011年12月
 線形プリコーディングの場合とは異なり、非線形プリコーディングによって干渉抑圧されて送信された信号を受信する端末装置では、受信信号に対してモジュロ演算を施してから復調処理を行うか、あるいは非線形プリコーディングによって摂動ベクトルが加算されて基地局装置から送信されたことを考慮した復調処理(非特許文献4など)を行う必要がある(以下、両者の復調処理を合わせて、モジュロ演算考慮復調処理と呼ぶ)。
 このため、無線通信システムにおいて、基地局装置が線形プリコーディングに加え、非線形プリコーディングを用いたMU-MIMOにも対応する場合、端末装置では、使用されたプリコーディング方式に応じてモジュロ演算考慮復調処理を行うか否かを適切に切り替える必要がある。
 本発明は、このような事情に鑑みてなされたものであり、基地局装置から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを、効率的なシグナリングで端末装置に通知することが可能となる基地局装置、端末装置及び無線通信システムを提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の基地局装置は、複数の端末装置宛のデータを、マルチユーザMIMO伝送を用いて空間多重して送信する基地局装置であって、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて端末装置に通知することを特徴とする。
 (2)また、本発明の端末装置は、複数のアンテナを備える基地局装置と通信を行う端末装置であって、無線リソース制御層のメッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいてモジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行うことを特徴とする。
 (3)また、本発明の端末装置は、複数のアンテナを備える基地局装置と通信を行う端末装置であって、無線リソース制御層のメッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (4)また、本発明の無線通信システムは、複数の端末装置と、前記複数の端末装置宛のデータを、マルチユーザMIMO伝送を用いて空間多重して送信する基地局装置とから構成される無線通信システムであって、前記基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて前記複数の端末装置に通知し、前記端末装置は、前記基地局装置から通知された前記無線リソース制御層のメッセージを受信して非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいて、モジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行うことを特徴とする。
 (5)また、本発明の無線通信システムは、複数の端末装置と、前記複数の端末装置宛のデータをマルチユーザMIMO伝送を用いて空間多重して送信する基地局装置とから構成される無線通信システムであって、前記基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて前記複数の端末装置に通知し、前記端末装置は、前記基地局装置から通知された前記無線リソース制御層のメッセージを受信して非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (6)また、本発明の集積回路は、基地局装置に実装されることにより、前記基地局装置に複数の機能を発揮させる集積回路であって、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を生成する機能と、前記非線形プリコーディング設定情報を無線リソース制御層のメッセージとして端末装置に通知する機能と、の一連の機能を、前記基地局装置に発揮させることを特徴とする。
 (7)また、本発明の集積回路は、端末装置に実装されることにより、前記端末装置に複数の機能を発揮させる集積回路であって、無線リソース制御層のメッセージとして前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得する機能と、前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいて、モジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行う機能と、の一連の機能を、前記端末装置に発揮させることを特徴とする。
 基地局装置から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを、効率的なシグナリングで端末装置に通知することが可能とする。
本発明の無線通信システムの構成例を示す概略構成図である。 本発明の第1の実施形態に係る基地局装置200の一構成例を示す機能ブロック図である。 本発明の第1の実施形態に係るプリコーディング部205の一構成例を示す機能ブロック図である。 本発明の第1の実施形態に係る端末装置400の一構成例を示す機能ブロック図である。 本発明の第1の実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。 本発明の第1の実施形態に係る端末装置400における復調処理のフローの一例を示すフローチャートである。 本発明の第2の実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。 本発明の第3の実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。 本発明の第4の実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。
 まず、LTE及びLTE-Aで使用される主な物理チャネル(又は物理信号)について説明する。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。物理チャネルは、LTE、LTE-A及びその後継規格において、今後、構造やフォーマット形式の変更又は追加が行われる可能性もあるが、その場合でも本発明の各実施形態の説明には影響しない。
 LTE及びLTE-Aでは、物理チャネルのスケジューリングは無線フレームを用いて管理している。1無線フレームは10msであり、1無線フレームは10サブフレームで構成される。さらに、1サブフレームは2スロットで構成される(すなわち、1スロットは0.5msである)。また、物理チャネルを配置するスケジューリングは、最小単位としてリソースブロック(Resource Block:RB)を用いて管理されている。リソースブロックは、周波数軸方向に複数のサブキャリア(例えば12サブキャリア)の集合で構成される一定の周波数領域と、時間軸方向に一定の送信時間間隔(1スロット)で構成される時間領域とで区切られる領域で定義される。
 同期信号(Synchronization Signals)は、3種類のプライマリ同期信号と、周波数領域で交互に配置される31種類の符号から構成されるセカンダリ同期信号とで構成される。プライマリ同期信号とセカンダリ同期信号の組み合わせによって、基地局装置を識別する504通りのセル識別子(物理セルID(Physical Cell Identity:PCI))と、無線同期のためのフレームタイミングが示される。端末装置は、セルサーチによって受信した同期信号のセルIDを特定する。
 物理報知チャネル(Physical Broadcast CHannel:PBCH)は、セル内の端末装置で共通に用いられる制御パラメータ(報知情報(システム情報):System information)を通知する目的で基地局装置から送信される。物理報知チャネルで通知されない報知情報は、物理下りリンク制御チャネル(Physical Downlink Control CHannel:PDCCH)において無線リソースが通知された物理下りリンク共有チャネル(Physical Downlink Shared CHannel:PDSCH)を用いて、レイヤ3メッセージ(システムインフォメーション)として送信される。報知情報としては、セル個別の識別子を示すセルグローバル識別子(Cell Global Identifier:CGI)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(Tracking Area Identifier:TAI)、ランダムアクセス設定情報(送信タイミングタイマーなど)、共通無線リソース設定情報などが通知される。なお、レイヤ3メッセージは、端末装置と基地局装置の無線リソース制御(Radio Resource Control:RRC)層でやり取りされる制御平面(Control-plane)のメッセージであり、RRCシグナリング又はRRCメッセージと同義の意味で使用される。
 下りリンク参照信号は、その用途によって複数のタイプに分類される。例えば、セル固有参照信号(Cell-specific Reference Signals:CRS)は、セル毎に所定の電力で送信されるパイロット信号であり、所定の規則に基づいて周波数領域及び時間領域で周期的に繰り返される下りリンク参照信号である。端末装置は、セル固有参照信号を受信し、セル毎の受信品質を測定する。また、端末装置は、セル固有参照信号と同時に送信される物理下りリンク制御チャネル及び物理下りリンク共有チャネルの復調のために参照する信号としても、セル固有参照信号を使用する。セル固有参照信号に使用される系列は、セル毎に識別可能な系列が用いられる。
 また、下りリンク参照信号は、下りリンクの伝搬路状態の推定にも用いられる。伝搬路状態の推定には、最大4アンテナに対応したセル固有参照信号が用いられ、これに加えてLTE-Aでは、最大8アンテナに対応したチャネル状態情報参照信号(Channel State Information Reference Signals:CSI-RS)が利用可能である。
 また、端末装置毎に個別に設定される下りリンク参照信号として、端末固有参照信号(UE-specific reference signals又はDeModulation Reference Signals:DM-RS)がある。端末固有参照信号は、物理下りリンク制御チャネル又は物理下りリンク共有チャネルの復調に用いられる。
 物理下りリンク制御チャネルは、各サブフレームの先頭から幾つかのOFDMシンボルを用いて送信され、基地局装置のスケジューリング結果に基づく無線リソース割り当て情報や、上りリンクの送信電力の増減の調整量を端末装置へ指示する情報などを通知する目的で使用される。端末装置は、下りリンクのユーザデータの受信や下りリンクの制御データであるレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)の受信、あるいは上りリンクのユーザデータなどの送信に先だって、自端末装置宛の物理下りリンク制御チャネルを監視(モニタ)し、受信することで、上りリンク送信に対する上りリンクグラント、下りリンク受信に対する下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を取得する必要がある。なお、物理下りリンク制御チャネルは、上述した各サブフレームの先頭から幾つかのODFMシンボルで送信される以外に、基地局装置から端末装置に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。
 物理上りリンク制御チャネル(Physical Uplink Control CHannel:PUCCH)は、物理下りリンク共有チャネルで送信されたデータの確認応答(ACKnowledgement:ACK)及び否定応答(Negative ACKnowledgement:NACK又はNAK)、下りリンクの伝搬路(チャネル)状態情報(Channel State Information:CSI)、上りリンクの無線リソース割り当て要求(無線リソース要求)であるスケジューリングリクエスト(Scheduling Request:SR)を通知するために使用される。CSIは、チャネル品質インジケータ(Channel Quality Indicator:CQI)、プリコーディング行列インジケータ(Precoding Matrix Indicator:PMI)、プリコーディングタイプインジケータ(Precoding Type Indicator:PTI)、ランクインジケータ(Rank Indicator:RI)を含む。各インジケータは、Indicationと表記される場合もあるが、その用途と意味は同じである。
 物理下りリンク共有チャネル(Physical Downlink Shared CHannel:PDSCH)は、下りリンクデータの伝送の他、ページングや、物理報知チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして端末装置に通知するためにも使用される。物理下りリンク共有チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
 物理上りリンク共有チャネル(Physical Uplink Shared CHannel:PUSCH)は、主に上りリンクデータと上りリンク制御データを伝送し、下りリンクのCSIや、下りリンクデータ等に対するACK/NACKなどの制御データを含めることも可能である。また、上りリンクデータの伝送の他、上りリンク制御情報をレイヤ3メッセージとして基地局装置に通知するためにも使用される。また、物理上りリンク共有チャネルの無線リソース割り当て情報は、物理下りリンク共有チャネルの無線リソース割り当て情報と同様に、物理下りリンク制御チャネルで示される。
 上りリンク参照信号(Uplink Reference Signal、上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、物理上りリンク制御チャネル及び物理上りリンク共有チャネルを復調するために基地局装置が使用する復調参照信号(DeModulation Reference Signal:DM-RS)と、主に上りリンクのチャネル状態を推定するために基地局装置が使用するサウンディング参照信号(Sounding Reference Signal:SRS)が含まれる。また、サウンディング参照信号には、周期的サウンディング参照信号(Periodic SRS)と非周期的サウンディング参照信号(Aperiodic SRS)とがある。
 物理ランダムアクセスチャネル(Physical Random Access CHannel:PRACH)は、プリアンブル系列を通知するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、64種類のシーケンスを用意して6ビットの情報を表現するように構成されている。物理ランダムアクセスチャネルは、端末装置から基地局装置へのアクセス手段として用いられる。端末装置は、物理上りリンク制御チャネル未設定時の無線リソース割り当て要求や、上りリンク送信タイミングを基地局装置の受信タイミングウィンドウに合わせるために必要な送信タイミング調整情報(タイミングアドバンス(Timing Advance:TA)とも呼ばれる)を基地局装置に要求するために物理ランダムアクセスチャネルを用いる。
 なお、上記以外の物理チャネルは、本発明の各実施形態に関わらないため詳細な説明は省略する。
 本発明の実施形態における無線通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、eNodeB)及び端末装置(移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備え、基地局装置は、端末装置とデータ通信を行うために、下りリンクを通じて制御情報及び情報データを送信する。
 下りリンクの制御情報は、誤り検出符号化処理等が施され、物理下りリンク制御チャネルにマッピングされる。物理下りリンク制御チャネルは、誤り訂正符号化処理や変調処理が施され、第1の制御チャネル(第1の物理下りリンク制御チャネル)領域、あるいは第1の制御チャネル領域とは異なる第2の制御チャネル(第2の物理下りリンク制御チャネル)領域を介して送受信される。以下では、第1の制御チャネル領域にマッピングされる制御チャネルは第1の制御チャネルとも呼称され、第2の制御チャネル領域にマッピングされる制御チャネルは第2の制御チャネルとも呼称される。また、第1の制御チャネルはPDCCHとも呼称され、第2の制御チャネルはePDCCH(enhanced PDCCH:拡張物理下りリンク制御チャネル)とも呼称される。
 1つの観点から見ると、第1の制御チャネルは、セル固有参照信号と同じ送信ポート(アンテナポート)を用いる物理下りリンク制御チャネルである。また、第2の制御チャネルは、端末固有参照信号と同じ送信ポートを用いる物理下りリンク制御チャネルである。端末装置は、第1の制御チャネルに対して、セル固有参照信号を用いて復調し、第2の制御チャネルに対して、端末固有参照信号を用いて復調する。
 セル固有参照信号は、セル内の全端末装置に共通の参照信号であって、ほぼすべてのリソースブロックに挿入されているため、いずれの端末装置も使用可能な参照信号である。このため、第1の制御チャネルは、いずれの端末装置も復調可能である。
 一方、端末固有参照信号は、割り当てられたリソースのみに挿入される参照信号であって、データと同じように適応的にプリコーディング処理やビームフォーミング処理を施されることができる。この場合、第2の制御チャネル領域に配置される制御チャネルは、適応的なプリコーディングやビームフォーミングの利得、周波数スケジューリング利得をうることができる。また、端末固有参照信号は、複数の端末装置によって共用されることもできる。例えば、第2の制御チャネル領域に配置される制御チャネルが、複数のリソース(例えば、リソースブロック)に分散されて通知される場合、その第2の制御チャネル領域の端末固有参照信号は、複数の端末装置によって共用されることができる。その場合、第2の制御チャネル領域に配置される制御チャネルは、周波数ダイバーシチ利得をうることができる。
 また、異なる観点から見ると、第1の制御チャネル領域にマッピングされる制御チャネル(第1の制御チャネル)は、物理サブフレームの前部に位置するOFDMシンボル上の物理下りリンク制御チャネルであり、これらのOFDMシンボル上のシステム帯域(コンポーネントキャリア(Component Carrier:CC))全域に配置されうる。
 また、第2の制御チャネル領域にマッピングされる制御チャネル(第2の制御チャネル)は、物理サブフレーム上で第1の制御チャネルよりも後方に位置するOFDMシンボル上の物理下りリンク制御チャネルであり、これらのOFDMシンボル上のシステム帯域幅内のうち、一部の帯域に配置されうる。
 第1の制御チャネルは、物理サブフレームの前部に位置する制御チャネル専用のOFDMシンボル上に配置されるため、物理データチャネル用の後部のOFDMシンボルよりも前に受信及び復調することができる。また、制御チャネル専用のOFDMシンボルのみをモニタする端末装置も受信することができる。また、CC全域に拡散されて配置されうるため、セル間干渉をランダム化することができる。また、第1の制御チャネル領域は、基地局装置(セル)固有に設定される領域であり、基地局装置に接続する全ての端末装置に共通の領域である。
 一方、第2の制御チャネルは、通信中(接続中)の端末装置が通常受信する物理下りリンク共有チャネル(物理データチャネル)用の後部のOFDMシンボル上に配置される。また、周波数分割多重することにより、第2の制御チャネル同士あるいは第2の制御チャネルと物理データチャネルとを直交多重(干渉無しの多重)することができる。また、第2の制御チャネル領域は、端末装置固有に設定される領域であり、基地局装置に接続する端末装置毎に設定される領域である。なお、基地局装置は、第2の制御チャネル領域を複数の端末装置で共用するように設定することができる。また、第1の制御チャネル領域と第2の制御チャネル領域は、同一の物理サブフレームに配置される。ここで、OFDMシンボルは、各チャネルのビットをマッピングする時間方向の単位である。
 また、異なる観点から見ると、第1の制御チャネルは、セル固有の物理下りリンク制御チャネルであり、アイドル状態の端末装置及び接続状態(コネクト状態)の端末装置の両方が取得(検出)できる物理チャネルである。また、第2の制御チャネルは、端末固有の物理下りリンク制御チャネルであり、接続状態の端末装置のみが取得できる物理チャネルである。ここで、アイドル状態とは、基地局装置が無線リソース制御(Radio Resource Control:RRC)の情報を蓄積してない状態(RRC_IDLE状態)や、端末装置が間欠受信(DRX)を行っている状態など、直ちにデータの送受信を行わない状態である。一方、接続状態とは、端末装置がネットワークの情報を保持している状態(RRC_CONNECTED状態、接続状態)や、端末装置が間欠受信(DRX)を行っていない状態など、直ちにデータの送受信を行うことができる状態である。第1の制御チャネルは、端末固有のRRCシグナリングに依存せず端末装置が受信可能なチャネルである。第2の制御チャネルは、端末固有のRRCシグナリングによって設定されるチャネルであり、端末固有のRRCシグナリングによって端末装置が受信可能となるチャネルである。すなわち、第1の制御チャネルは、予め限定された設定により、いずれの端末装置も受信可能なチャネルであり、第2の制御チャネルは端末固有の設定変更が容易なチャネルである。
 以下において、本発明の実施形態による通信技術について、図面を参照しながら説明を行う。
 (第1の実施形態)
 本発明の第1の実施形態による通信技術について以下に説明する。本実施形態では、基地局装置が、自基地局装置と接続状態にある端末装置の中から複数の端末装置を選択して、それら複数の端末装置宛の送信データをMU-MIMOによって空間多重して伝送を行う無線通信システムであって、各端末装置宛の送信データを伝送する空間ストリーム間で生じるユーザ間干渉(IUI)を、線形プリコーディング又は非線形プリコーディングによって予め抑圧して送信するシステムを例として説明する。
 図1は、本実施形態に係る無線通信システムの概略構成例を示す図である。図1に示すように、本実施形態における無線通信システムは、基地局装置200が複数の端末装置400(例えば、第1から第4までの端末装置400-1~400-4)と上りリンク伝送及び下りリンク伝送を用いて通信し、基地局装置200がこれらの端末装置400から複数の端末装置400(例えば、第1の端末装置400-1と第2の端末装置400-2)を選択し、その下りリンク伝送において、同じ時間、同じ周波数帯域で上記複数の端末装置400宛の送信データ(コードワード)を空間的に多重して同時通信するMU-MIMO伝送を行う無線通信システムである。
 各端末装置400-1~400-4は、基地局装置200から送信された、セル固有参照信号及びチャネル状態情報参照信号の少なくとも一方を受信し、基地局装置200の各送信アンテナと自端末装置400の各受信アンテナとの間の下りリンクの伝搬路状態を推定し、その伝搬路状態に基づいて伝搬路状態情報(Channel State Information:CSI)を上りリンク伝送によって基地局装置200にそれぞれ報告する。基地局装置200は、各端末装置400から報告されたCSI等に基づいて複数の端末装置400を選択し、それら複数の端末装置400宛の送信データを空間的に多重して同時伝送するMU-MIMO伝送を行う。
 なお、無線アクセス方式としては、例えばLTE及びLTE-Aでは、下りリンク伝送においては直交周波数分割多元接続(Orthogonal Frequency Division Multiple Access:OFDMA)を用い、上りリンク伝送においてはシングルキャリア周波数分割多元接続(Single Carrier Frequency Division Multiple Access:SC-FDMA)を用いており、本実施形態においても上記の無線アクセス方式が用いられる無線通信システムを例として説明するが、これに限られるものではなく、例えば周波数分割の多元接続を行わないOFDMを用いてもよいし、上り下りリンク伝送共にOFDMAを用いてもよい。
 図2は、本実施形態に係る基地局装置200の一構成例を示す機能ブロック図である。図2において基地局装置200は、符号化部201、スクランブル部202、変調部203、レイヤマッピング部204、プリコーディング部205、リソースエレメントマッピング部206、OFDM信号生成部207、送信アンテナ部208、参照信号生成部209、制御情報生成部210及び制御部211を含んで構成される物理層部216と、上位層部212を含んで構成される。また、上位層部212は、メディアアクセス制御部213、無線リンク制御部214及び無線リソース制御部215を含む。
 上位層部212は、各端末装置400宛の送信データの種類及びデータ量や、所要データレート、優先度、許容遅延時間などのQoS(Quality of Service)と、各端末装置400から通知された伝搬路状態情報などに基づいて、物理下りリンク制御チャネル及び物理下りリンク共有チャネルの無線リソース割り当て(スケジューリング)を決定する。このスケジューリングにおいて上位層部212は、MU-MIMOを用いて空間多重して同時伝送すると判断した複数の端末装置宛の送信データに対して、物理下りリンク共有チャネルの同じ無線リソースを割り当てる。また、上位層部212は、複数の端末装置宛の制御情報を第2の物理下りリンク制御チャネル(ePDCCH)で同じ無線リソースに割り当て、MU-MIMOを用いて空間多重してもよい。
 本実施形態では、第1の端末装置400-1宛の送信データであるコードワードC1と、第2の端末装置400-2宛の送信データであるコードワードC2をMU-MIMOにより空間多重するものとして、同じ無線リソースに割り当てられた場合を一例として説明する。
 制御部211は、上位層部212から入力される制御信号に基づいて、物理層部216の各部を制御する。
 符号化部201は、上位層部212から入力された各コードワードに対して、誤り訂正符号化及びレートマッチング処理(パンクチャリング処理)を行う。
 スクランブル部202は、符号化部201から出力された各コードワードの誤り訂正符号化及びレートマッチング処理の結果に対して、スクランブリング符号を乗算(重畳)するスクランブル処理を行う。
 変調部203は、スクランブル部202から出力された各スクランブル結果に対して、位相偏移(Phase Shift Keying:PSK)変調や直角位相振幅変調(Quadrature Amplitude Modulation:QAM)変調(直交振幅変調)などの変調処理を行い、各コードワードに対応する変調シンボル系列を出力する。
 レイヤマッピング部204は、上位層部212又は制御部211から入力されるポート情報を参照して、変調部203から出力された変調シンボル系列を、MU-MIMOの各レイヤに分配する。
 参照信号生成部209は、上位層部212又は制御部211から入力される、セル識別子(セルID、Physical layer cell identity)及びポート情報を参照して、セル固有参照信号、さらに必要に応じてチャネル状態情報参照信号を生成し、さらに端末識別子(端末ID、UE-ID、Radio network temporary identifier)も参照して、端末固有参照信号を生成する。参照信号生成部209は、生成したアンテナポート毎(レイヤ毎)の端末固有参照信号を、レイヤマッピング部204が出力した各レイヤの変調シンボル系列とともに、プリコーディング部205に入力する。また、参照信号生成部209は、生成したセル固有参照信号及びチャネル状態情報参照信号をリソースエレメントマッピング部206に入力する。
 制御情報生成部210は、上位層部212から入力されるシステム情報などから報知情報を生成し、上位層部212及び制御部211から入力されるレイヤ3メッセージ、無線リソース割り当て結果(リソース割り当て情報)、送信モード情報及びポート情報などの制御情報から下りリンク制御情報を生成する。
 プリコーディング部205は、上位層部212又は制御部211から入力される、伝搬路状態情報及びプリコーディング方式情報を参照して、レイヤマッピング部204から出力された各レイヤの変調シンボル系列に対して線形プリコーディング処理(例えば、プリコーディング行列の乗算)又は非線形プリコーディング処理(例えば、摂動ベクトルの加算及びプリコーディング行列の乗算)を行うとともに、参照信号生成部209で生成された端末固有参照信号に対しても、変調シンボル系列と同様のプリコーディング処理を行い、出力する。なお、変調シンボル系列に非線形プリコーディング処理が行われる場合でも、端末固有参照信号に対しては摂動ベクトルの加算は行わず、変調シンボル系列と同じプリコーディング行列の乗算のみを行うことが好ましいが、これに限られるものではない。
 リソースエレメントマッピング部206は、プリコーディング部205においてプリコーディングされた変調シンボル系列と、参照信号生成部209で生成されたセル固有参照信号及びチャネル状態情報参照信号と、制御情報生成部210で生成された報知情報及び制御情報を、所定のリソースエレメント又は上位層部212における無線リソース割り当て結果のリソースエレメントにマッピングし、リソースエレメント群を出力する。ここで、参照信号をマッピングする場合、ポート毎の参照信号が互いに直交するように、周波数分割多重、時間分割多重、符号分割多重又はそれらの組み合わせによって多重することが好ましい。
 OFDM信号生成部207は、リソースエレメントマッピング部206から出力されたリソースエレメント群をOFDM信号に変換し、下りリンク送信信号として送信アンテナ部208から送信する。
 図3は、本実施形態に係るプリコーディング部205の一構成例を示す機能ブロック図である。
 図3においてプリコーディング部205は、線形プリコーディング部301、非線形プリコーディング部302及び選択部303を含んで構成される。
 線形プリコーディング部301は、レイヤマッピング部204から出力された各レイヤの変調シンボル系列に対して、伝搬路状態情報に基づいて線形プリコーディングを施して出力する。
 非線形プリコーディング部302は、レイヤマッピング部204から出力された各レイヤの変調シンボル系列に対して、伝搬路状態情報に基づいて非線形プリコーディングを施して出力する。
 選択部303は、上位層部212又は制御部211から入力されるプリコーディング方式情報に基づいて、線形プリコーディング部301から出力された線形プリコーディング結果と、非線形プリコーディング部302から出力された非線形プリコーディング結果との一方を選択して出力する。なお、プリコーディング部205の構成は上記に限られるものではなく、例えば、上位層部212又は制御部211から入力されるプリコーディング方式情報に基づいて、線形プリコーディング部301又は非線形プリコーディング部302のいずれか一方のみを選択して動作させる構成としてもよい。
 図4は、本実施形態に係る端末装置400の一構成例を示す機能ブロック図である。図4において端末装置400は、受信アンテナ部401、OFDM信号復調部402、リソースエレメントデマッピング部403、受信フィルタ部404、レイヤデマッピング部405、復調部406、デスクランブル部407、復号部408、制御情報取得部409、伝搬路推定部410及び制御部411を含んで構成される物理層部416と、上位層部412とを含んで構成される。また、上位層部412は、メディアアクセス制御部413、無線リンク制御部414及び無線リソース制御部415を含む。
 OFDM信号復調部402は、受信アンテナ部401で受信した下りリンク受信信号をOFDM復調処理し、リソースブロック群を出力する。
 リソースエレメントデマッピング部403は、まず、所定の位置のリソースエレメントから報知情報及び下りリンク制御情報を取得(デマッピング)して出力する。ここで、自端末装置に対する制御情報を識別する方法として、様々な方法を用いることができるが、その一例として、ブラインドデコーディングを用いる方法を説明する。この方法では、例えば、各端末装置に対する制御情報に対して、それぞれの端末装置を識別する情報を巡回冗長検査(Cyclic Redundancy Check:CRC)として、基地局装置200側で付加しておき、可能性のある全ての制御情報を復調することで、自端末装置に対する制御情報を識別することができる。
 次に、リソースエレメントデマッピング部403は、制御情報取得部409で制御情報から取得されたポート情報を参照して、所定の位置のリソースエレメントから参照信号を取得して伝搬路推定部410へ出力する。ここで、参照信号を取得する際は、基地局装置200のリソースエレメントマッピング部206における処理に対応した処理を行う。より具体的には、リソースエレメントマッピング部206においてポート毎の参照信号が互いに直交するように周波数分割多重、時間分割多重、符号分割多重などが適用されていた場合、これらを考慮したデマッピングあるいは逆拡散を行う。
 さらに、リソースエレメントデマッピング部403は、制御情報取得部409から出力されたリソース割り当て情報に基づいて、自端末装置宛の受信信号を取得する。
 制御情報取得部409は、リソースエレメントデマッピング部403から出力された報知情報及び下りリンク制御情報から、基地局装置200から通知されたシステム情報、並びにレイヤ3メッセージ、リソース割り当て情報、送信モード情報及びポート情報などの制御情報を取得する。
 伝搬路推定部410は、リソースエレメントデマッピング部403から出力されたポート毎の参照信号に対して、基地局装置200の参照信号生成部209で生成したポート毎の参照信号系列に対応する系列(参照信号系列の複素共役の系列など)を乗算することにより、ポート毎のチャネル(伝搬路、伝送路)状態を推定する。ここで、参照信号は基地局装置200においてプリコーディングが施されているため、基地局装置200の送信アンテナと端末装置400の受信アンテナとの間のチャネルに加え、プリコーディング処理も含めた等価チャネルの状態を推定することになる。
 受信フィルタ部404は、伝搬路推定部410から出力されたチャネル状態の推定結果を用いて、リソースエレメントデマッピング部403から出力された受信信号に対してフィルタリング処理(チャネル等化、受信合成、MIMO分離など)を行う。受信フィルタ部404におけるフィルタリング処理は、例えばZero Forcing(ZF)や最小平均二乗誤差(Minimum Mean Square Error:MMSE)や最尤検出(Maximum Likelihood Detection:MLD)などの方法を用いてレイヤ(ポート)毎の信号を検出するMIMO分離が含まれてもよい。
 レイヤデマッピング部405は、受信フィルタ部404から出力されたフィルタリング処理後のレイヤ毎の受信信号に対して、基地局装置200のレイヤマッピング部204の処理に対応する結合処理を施してコードワード毎の変調シンボル系列に変換し、出力する。
 復調部406は、レイヤデマッピング部405から出力されたコードワード毎の変調シンボル系列に対して、基地局装置200の変調部203の変調処理に対応した復調処理を施し、符号化系列(又は軟判定ビット系列)を出力する。このとき、復調部406は、上位層部412又は制御部411から入力されるプリコーディング方式情報が非線形プリコーディングを示している場合、上記変調シンボル系列に対して変調方式に対応して予め定められたモジュロ幅によるモジュロ演算を施した後、受信信号点と当該変調方式における信号点配置の候補信号点とから対数尤度比を算出する軟判定による復調処理を行う。あるいは、復調部406は、モジュロ演算を行う代わりに、基地局装置200のプリコーディング部205において摂動ベクトルが加算されたことを考慮して、受信信号点と、モジュロ幅で繰り返された候補信号点とから対数尤度比を算出する軟判定による復調処理を行ってもよい。以下では、これらの復調処理をまとめてモジュロ演算考慮復調処理と記す。
 デスクランブル部407は、復調部406から出力された符号化系列に対して、基地局装置200のスクランブル部202で用いたスクランブリング符号の複素共役を乗算するか、若しくはスクランブリング符号で除算し、デスクランブル後の符号化系列を出力する。
 復号部408は、デスクランブル部407から出力されたデスクランブル後の符号化系列に対して、レートマッチング処理(デパンクチャリング処理)及び誤り訂正復号処理を行い、受信データ系列を出力する。
 制御部411は、制御情報取得部409から出力された制御情報や、上位層部412から入力される指示に基づいて、物理層の上記各部を制御する。
 上位層部412は、制御情報取得部409から出力されたシステム情報及び制御情報に基づいて、物理層を制御するとともに、復号部408から出力された受信データ系列に対して、誤り検出や再送要求などの処理を行う。特に、本実施形態における上位層部412は、制御情報取得部409から出力されたシステム情報に含まれる非線形プリコーディング設定情報に基づいて、プリコーディング方式情報を生成して出力する。
 図5は、本実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。
 まず、端末装置400は、アイドル状態(RRC_IDLE状態)にあるものとする(ステップS501)。
 基地局装置200は、自基地局装置が構成するセル(自セル)において非線形プリコーディングを使用するかどうか(オンかオフか)の非線形プリコーディング設定を決定し(ステップS502)、決定した非線形プリコーディング設定の情報(非線形プリコーディング設定情報)をシステム情報に含めて、物理報知チャネルなどを用いて報知する(ステップS503)。以下では、非線形プリコーディングを使用する(有効とする)設定を非線形プリコーディング設定がオン、非線形プリコーディングを使用しない(無効とする)設定を非線形プリコーディング設定がオフと表現する。
 端末装置400は、通信を開始するに当たってセルサーチを行い、接続先候補となる基地局装置200から報知されている物理報知チャネルを受信してシステム情報を取得し、当該セルにおける非線形プリコーディング設定情報を取得し、取得した非線形プリコーディング設定情報に基づいてプリコーディング方式情報を設定する(ステップS504)。
 端末装置400は、セルサーチにより検出した基地局装置200に対して接続を要求する場合、まず、上りリンクで送信するためのリソース割り当てを要求するために、物理ランダムアクセスチャネルを用いてランダムアクセスプリアンブルを送信する(ステップS505)。
 基地局装置200は、端末装置400から送信された、上りリンクのリソース割り当て要求のためのランダムアクセスプリアンブルを受信した場合、当該端末装置400に上りリンクのリソース割り当てを行い(ステップS506)、その割り当て情報を含むランダムアクセスレスポンスを物理下りリンク共有チャネルを用いて送信する(ステップS507)。
 端末装置400は、基地局装置200から送信されたランダムアクセスレスポンスを受信し、自端末装置に対する上りリンクのリソース割り当て情報を取得する(ステップS508)。
 端末装置400は、割り当てられた上りリンクのリソース(物理上りリンク共有チャネルのリソース)を用いて、自端末装置の識別情報を含んだ、基地局装置200へ接続要求するRRCコネクションリクエストメッセージを送信する(ステップS509)。
 基地局装置200は、端末装置400から送信されたRRCコネクションリクエストメッセージを受信すると、当該端末装置400との間で通信制御メッセージを送受信するためのシグナリング無線ベアラ(Signaling Radio Bearer:SRB)を設定し、そのSRBの情報や、物理チャネルの構成情報、さらには当該端末装置400に対する様々な設定情報を含むRRCコネクションセットアップメッセージを物理下りリンク共有チャネルを用いて送信する(ステップS510)。
 端末装置400は、基地局装置200から送信されたRRCコネクションセットアップメッセージを受信すると、RRC_IDLE状態からネットワークの情報を保持している状態(RRC_CONNECTED状態、接続状態)へ遷移する(ステップS511)。
 端末装置400は、接続手順が完了したことを示すRRCコネクションセットアップコンプリートメッセージを物理上りリンク共有チャネルを用いて送信する(ステップS512)。
 その後、基地局装置200と端末装置400との間でユーザデータ通信が行われる(ステップS513)。端末装置400は、下りリンクにおけるユーザデータの受信(物理下りリンク共有チャネルの受信)に際して、ステップS504で設定したプリコーディング方式情報に基づいて、復調処理を行う。
 図6は、本実施形態に係る端末装置400における復調処理のフローの一例を示すフローチャートである。図6は、端末装置400が、物理下りリンク制御チャネル又は拡張物理下りリンク制御チャネルから取得したリソース割り当て情報に基づいて、自端末装置宛のユーザデータが物理下りリンク共有チャネルを用いて送信されていることを検出した場合に、当該ユーザデータを受信する際の復調処理のフローの一例である。
 まず、端末装置400は、自端末装置宛のユーザデータに関する送信モード情報を確認する(ステップS601)。
 端末装置400は、自端末装置宛のユーザデータに関する送信モード情報が、MU-MIMOをサポートする送信モード(例えば、送信モード5、8、9又は10)を示しており(ステップS601でYes)、さらに非線形プリコーディング設定がオンである(プリコーディング方式情報が非線形プリコーディングを示している)場合(ステップS602でYes)、受信した信号に対してモジュロ演算考慮復調処理を行う(ステップS603)。
 端末装置400は、自端末装置宛のユーザデータに関する送信モード情報が、MU-MIMOをサポートしない送信モードを示している場合(ステップS601でNo)、若しくは非線形プリコーディング設定がオフである場合(ステップS602でNo)、受信した信号に対してモジュロ演算を考慮しない復調処理を行う(ステップS604)。
 なお、端末装置400がチャネル品質インジケータ(CQI)やプリコーディング行列インジケータ(PMI)に代表されるCSIを基地局装置200に向けて通知する場合、端末装置400は、非線形プリコーディング設定情報に基づいて通知する情報を算出する。例えば、非線形プリコーディング設定がオンである場合、端末装置400は、受信した信号に対してモジュロ演算考慮復調処理を行うことを前提としたCQIやPMIを算出し、基地局装置200に向けて通知する。
 また、端末装置400は、予め基地局装置200との間で共有された、複数のCQI値やPMI値が記載されたCQIテーブル(表)やPMIテーブル等に基づいて基地局装置200に向けて通知するCSIを算出することができる。さらに、端末装置400は、複数のCQIテーブルやPMIテーブルを基地局装置200との間で共有することができる。例えば、複数のCQIテーブルの1つには、モジュロ演算考慮復調処理を行うことを前提としたCQI値の記載が可能であり、別のCQIテーブルにはモジュロ演算考慮復調処理を行わないことを前提としたCQI値の記載が可能である。端末装置400は非線形プリコーディング設定情報に基づいて、複数のCQIテーブルのうち、基地局装置200へのCSIの通知に用いるCQIテーブルを決定することができる。
 以上説明したように、本実施形態では、基地局装置200は、自セルにおいて非線形プリコーディングを使用するかどうかを決定し、決定した非線形プリコーディング設定の情報をシステム情報に含めて、物理報知チャネルなどを用いて報知し、端末装置400は、報知されたシステム情報から非線形プリコーディング設定情報を取得して、取得した非線形プリコーディング設定情報に基づいて自端末装置宛のユーザデータの復調処理を行う。これにより、基地局装置200から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを端末装置400が適切に判定して、受信、復調することが可能となる。
 (第2の実施形態)
 本実施形態における無線通信システムの概略構成例は、第1の実施形態と同様に図1で表される。また、基地局装置200の構成は図2と同様であり、端末装置400の構成は図4と同じであり、制御情報と対応する処理が異なる。以下では、本実施形態における無線通信システムについて、第1の実施形態と異なる点について説明し、同じ点については説明を省略する。
 図7は、本実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。
 まず、端末装置400は、アイドル状態(RRC_IDLE状態)にあるものとする(ステップS701)。
 基地局装置200は、自セルに関するシステム情報を、物理報知チャネルなどを用いて報知する(ステップS702)。
 端末装置400は、通信を開始するに当たってセルサーチを行い、接続先候補となる基地局装置200から報知されている物理報知チャネルを受信してシステム情報を取得する(ステップS703)。
 端末装置400は、セルサーチにより検出した基地局装置200に対して接続を要求する場合、まず、上りリンクで送信するためのリソース割り当てを要求するために、物理ランダムアクセスチャネルを用いてランダムアクセスプリアンブルを送信する(ステップS704)。
 基地局装置200は、端末装置400から送信された、上りリンクのリソース割り当て要求のためのランダムアクセスプリアンブルを受信した場合、当該端末装置400に上りリンクのリソース割り当てを行い(ステップS705)、その割り当て情報を含むランダムアクセスレスポンスを物理下りリンク共有チャネルを用いて送信する(ステップS706)。
 端末装置400は、基地局装置200から送信されたランダムアクセスレスポンスを受信し、自端末装置に対する上りリンクのリソース割り当て情報を取得する(ステップS707)。
 端末装置400は、割り当てられた上りリンクのリソース(物理上りリンク共有チャネルのリソース)を用いて、自端末装置の識別情報を含んだ、基地局装置200へ接続要求するRRCコネクションリクエストメッセージを物理上りリンク共有チャネルを用いて送信する(ステップS708)。
 基地局装置200は、端末装置400から送信されたRRCコネクションリクエストメッセージを受信すると、当該端末装置400に対して非線形プリコーディングを使用するかどうか(オンかオフか)の非線形プリコーディング設定を決定し(ステップS709)、また、当該端末装置400との間で通信制御メッセージを送受信するためのシグナリング無線ベアラ(SRB)を設定し、決定した非線形プリコーディング設定の情報(非線形プリコーディング設定情報)、SRBの情報、物理チャネルの構成情報、さらには当該端末装置400に対する様々な設定情報を含む接続設定メッセージであるRRCコネクションセットアップメッセージを物理下りリンク共有チャネルを用いて送信する(ステップS710)。
 端末装置400は、基地局装置200から送信されたRRCコネクションセットアップメッセージを受信すると、RRCコネクションセットアップメッセージに含まれる非線形プリコーディング設定情報を取得し、取得した非線形プリコーディング設定情報に基づいてプリコーディング方式情報を設定し(ステップS711)、RRC_IDLE状態からネットワークの情報を保持している状態(RRC_CONNECTED状態、接続状態)へ遷移する(ステップS712)。
 端末装置400は、接続手順が完了したことを示すRRCコネクションセットアップコンプリートメッセージを物理上りリンク共有チャネルを用いて送信する(ステップS713)。
 その後、基地局装置200と端末装置400との間でユーザデータ通信が行われる(ステップS714)。端末装置400は、下りリンクにおけるユーザデータの受信(物理下りリンク共有チャネルの受信)に際して、ステップS711で設定したプリコーディング方式情報に基づいて、復調処理を行う。
 本実施形態に係る端末装置400における復調処理のフローの一例は、第1の実施形態における図6と同じである。
 以上説明したように、本実施形態では、基地局装置200は、端末装置400との間の接続確立の過程において、各端末装置400に対して非線形プリコーディングを使用するかどうかを決定し、RRCコネクションセットアップメッセージを用いて非線形プリコーディング設定情報を通知し、各端末装置400は、通知されたRRCコネクションセットアップメッセージから非線形プリコーディング設定情報を取得して、取得した非線形プリコーディング設定情報に基づいて自端末装置宛のユーザデータの復調処理を行う。これにより、基地局装置200から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを端末装置400が適切に判定して、受信、復調することが可能となる。さらに、基地局装置200は、端末装置400毎に異なる非線形プリコーディング設定情報を通知することも可能となる。
 (第3の実施形態)
 本実施形態における無線通信システムの概略構成例は、第1の実施形態と同様に図1で表される。また、基地局装置200の構成は図2と同様であり、端末装置400の構成は図4と同じであり、制御情報と対応する処理が異なる。以下では、本実施形態における無線通信システムについて、第1の実施形態と異なる点について説明し、同じ点については説明を省略する。
 図8は、本実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。
 図8では、端末装置400は既に基地局装置200との接続状態(RRC_CONNECTED状態)にあり(ステップS801)、基地局装置200とユーザデータを通信しているものとする(ステップS802)。この際、第1の実施形態の図5のフロー図、若しくは第2の実施形態の図7のフロー図に基づいて接続が確立され、端末装置400は、(初期状態として)システム情報で報知された非線形プリコーディング設定情報、若しくはRRCコネクションセットアップメッセージで通知された非線形プリコーディング設定情報を取得してプリコーディング方式情報を設定しており、そのプリコーディング方式情報に基づいて復調処理を行っている状態であってもよい。なお、非線形プリコーディング設定情報を取得していない状態の場合は、モジュロ演算を考慮しない復調処理を行うことが好ましい。
 基地局装置200は、自セル内のトラフィック状態や、端末装置400との間のチャネル状態などに基づいて、端末装置400に対するプリコーディング方式として非線形プリコーディングを使用するかどうかの非線形プリコーディング設定を決定あるいは再決定し(ステップS803)、決定した非線形プリコーディング設定情報を物理下りリンク共有チャネルを用いてレイヤ3メッセージとして端末装置400へ送信する(ステップS804)。
 端末装置400は、基地局装置200からレイヤ3メッセージとして非線形プリコーディング設定情報を受信した場合、プリコーディング方式情報を設定あるいは再設定する(ステップS805)。
 その後、基地局装置200と端末装置400との間でユーザデータ通信が再び行われる(ステップS806)。端末装置400は、下りリンクにおけるユーザデータの受信(物理下りリンク共有チャネルの受信)に際して、ステップS805で設定したプリコーディング方式情報に基づいて、復調処理を行う。
 本実施形態に係る端末装置400における復調処理のフローの一例は、第1の実施形態における図6と同じである。
 以上説明したように、本実施形態では、基地局装置200は、接続状態にある各端末装置400に対して非線形プリコーディングを使用するかどうかを決定し、レイヤ3メッセージを用いて非線形プリコーディング設定情報を通知し、各端末装置400は、通知されたレイヤ3メッセージから非線形プリコーディング設定情報を取得して、取得した非線形プリコーディング設定情報に基づいて自端末装置宛のユーザデータの復調処理を行う。これにより、基地局装置200から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを端末装置400が適切に判定して、受信、復調することが可能となる。さらに、基地局装置200は、自セルのトラフィック状態や各端末装置400のチャネル状態などに応じて非線形プリコーディング設定を変更することが可能となり、また、端末装置400毎に異なる非線形プリコーディング設定情報を通知することも可能となる。
 (第4の実施形態)
 本実施形態における無線通信システムの概略構成例は、第1の実施形態と同様に図1で表される。また、基地局装置200の構成は図2と同様であり、端末装置400の構成は図4と同じであり、制御情報と対応する処理が異なる。以下では、本実施形態における無線通信システムについて、第1の実施形態と異なる点について説明し、同じ点については説明を省略する。
 図9は、本実施形態に係る基地局装置200と端末装置400との間の通信の一例を示すシーケンスチャートである。
 図9では、端末装置400は既に基地局装置200との接続状態(RRC_CONNECTED状態)にあり(ステップS901)、基地局装置200とユーザデータを通信しているものとする(ステップS902)。この際、第1の実施形態の図5のフロー図、若しくは第2の実施形態の図7のフロー図に基づいて接続が確立され、端末装置400は、(初期状態として)システム情報で報知された非線形プリコーディング設定情報、若しくはRRCコネクションセットアップメッセージで通知された非線形プリコーディング設定情報を取得してプリコーディング方式情報を設定しており、そのプリコーディング方式情報に基づいて復調処理を行っている状態であってもよい。なお、非線形プリコーディング設定情報を取得していない状態の場合は、モジュロ演算を考慮しない復調処理を行うことが好ましい。
 基地局装置200は、自セル内のトラフィック状態や、端末装置400との間のチャネル状態などに基づいて、端末装置400に対するプリコーディング方式として非線形プリコーディングを使用するかどうかの非線形プリコーディング設定を再決定し(ステップS903)、ネットワークの接続状態の設定を再構成する接続再構成メッセージであるRRCコネクションリコンフィギュレーションメッセージに、決定した非線形プリコーディング設定情報を含めて端末装置400へ送信する(ステップS904)。
 端末装置400は、基地局装置200からRRCコネクションリコンフィギュレーションメッセージを受信した場合、それに含まれる非線形プリコーディング設定情報を取得し、プリコーディング方式情報を再設定する(ステップS905)。
 端末装置400は、接続状態の再構成が完了したことを示すRRCコネクションリコンフィギュレーションコンプリートメッセージを物理上りリンク共有チャネルを用いて送信する(ステップS906)。
 その後、基地局装置200と端末装置400との間でユーザデータ通信が再び行われる(ステップS907)。端末装置400は、下りリンクにおけるユーザデータの受信(物理下りリンク共有チャネルの受信)に際して、ステップS905で設定したプリコーディング方式情報に基づいて、復調処理を行う。
 本実施形態に係る端末装置400における復調処理のフローの一例は、第1の実施形態における図6と同じである。
 以上説明したように、本実施形態では、基地局装置200は、接続状態にある各端末装置400に対して非線形プリコーディングを使用するかどうかを決定し、ネットワークの接続状態を再構成するRRCコネクションリコンフィギュレーションメッセージを用いて非線形プリコーディング設定情報を通知し、各端末装置400は、通知されたRRCコネクションリコンフィギュレーションメッセージから非線形プリコーディング設定情報を取得して、取得した非線形プリコーディング設定情報に基づいて自端末装置宛のユーザデータの復調処理を行う。これにより、基地局装置200から送信されたMU-MIMO信号が線形プリコーディングであるか非線形プリコーディングであるのかを端末装置400が適切に判定して、受信、復調することが可能となる。さらに、基地局装置200は、自セルのトラフィック状態や各端末装置400のチャネル状態などに応じて非線形プリコーディング設定を変更することが可能となり、また、端末装置400毎に異なる非線形プリコーディング設定情報を通知することも可能となる。
 上記の各実施形態では、基地局装置200は、非線形プリコーディング設定をオンとした場合、MU-MIMO伝送において必ず非線形プリコーディングを行い、端末装置400は、取得した非線形プリコーディング設定情報に基づいて設定したプリコーディング方式情報が非線形プリコーディングを示している場合に、必ずモジュロ演算考慮復調処理を行う場合の例について説明してきた。
 しかし、本発明の実施の形態はこれに限られるものではなく、例えば、非線形プリコーディング設定がオンである場合、基地局装置200は、MU-MIMO伝送において線形プリコーディングに加えて非線形プリコーディングを選択可能であることを表すこととしてもよい。
 このとき、端末装置400は、取得した非線形プリコーディング設定情報に基づいて設定したプリコーディング方式情報が線形プリコーディングを示している場合は、受信した信号が線形プリコーディングによる信号としてモジュロ演算を考慮しない復調処理を行い、プリコーディング方式情報が非線形プリコーディングを示している場合は、受信した信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定して、モジュロ演算を考慮しない復調処理とモジュロ演算考慮復調処理とを選択して処理してもよい。
 なお、受信した信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定する方法としては、受信信号をモジュロ演算を考慮しない復調処理とモジュロ演算考慮復調処理とでそれぞれ復調した結果、またはそれらをさらに誤り訂正復号した結果、尤度が高い、あるいはビット誤りが少ない復調処理方法に対応するプリコーディングが行われたと推定する方法がある。別のブラインド推定方法としては、受信信号のサブキャリアの電力を測定し、その電力測定結果が、予め設定した閾値よりも大きい場合には非線形プリコーディングによる信号と推定し、予め設定した閾値以下の場合には線形プリコーディングによる信号と推定する方法がある。さらに別のブラインド推定方法としては、受信信号のサブキャリアの信号点の振幅または電力の分散を測定し、その分散測定結果が、予め設定した閾値よりも大きい場合には非線形プリコーディングによる信号と推定し、予め設定した閾値以下の場合には線形プリコーディングによる信号と推定する方法がある。なお、受信した信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定する方法は、上記に限られるものではない。
 また、上記の各実施形態において、基地局装置200は、非線形プリコーディング設定に応じて、物理下りリンク共有チャネルにおける変調方式や符号化率の組み合わせによるMCS(Modulation and Coding Scheme)のテーブルを切り替える、すなわち、線形プリコーディング用と非線形プリコーディング用とで異なるMCSテーブルを用意してもよい。
 (1)また、本発明は以下のように表現することもできる。本発明の一態様に係る基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、システム情報に含めて端末装置に通知することを特徴とする。
 (2)また、本発明の一態様に係る基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、端末装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージに含めて端末装置に通知することを特徴とする。
 (3)また、本発明の一態様に係る基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージとして端末装置に通知することを特徴とする。
 (4)また、本発明の一態様に係る基地局装置は、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、端末装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージに含めて端末装置に通知することを特徴とする。
 (5)また、本発明の一態様に係る端末装置は、システム情報に含めて基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (6)また、本発明の一態様に係る端末装置は、基地局装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (7)また、本発明の一態様に係る端末装置は、無線リソース制御層のメッセージとして基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (8)また、本発明の一態様に係る端末装置は、基地局装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、前記非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (9)また、本発明の一態様に係る端末装置は、前記非線形プリコーディング設定情報に基づいて、前記基地局装置に通知する、前記基地局装置と自端末装置との間の伝搬路状態に関する制御情報を決定することを特徴とする。
 (10)また、本発明の一態様に係る無線通信システムは、基地局装置が、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、システム情報に含めて前記複数の端末装置に通知し、端末装置が、前記基地局装置から通知されたシステム情報を受信して非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (11)また、本発明の一態様に係る無線通信システムは、基地局装置が、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、端末装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージに含めて端末装置に通知し、端末装置が、無線リソース制御層の接続を確立する手順における接続設定メッセージに含めて前記基地局装置から通知された非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (12)また、本発明の一態様に係る無線通信システムは、基地局装置が、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージとして前記端末装置に通知し、端末装置が、無線リソース制御層のメッセージとして前記基地局装置から通知された非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (13)また、本発明の一態様に係る無線通信システムは、基地局装置が、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、端末装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージに含めて端末装置に通知し、端末装置が、無線リソース制御層の接続を再構成する手順における接続再構成メッセージに含めて前記基地局装置から通知された非線形プリコーディング設定情報を取得し、前記取得した非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする。
 (14)また、本発明の一態様に係る集積回路は、基地局装置に実装されることにより、前記基地局装置に複数の機能を発揮させる集積回路であって、マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を生成する機能と、前記非線形プリコーディング設定情報を無線リソース制御層のメッセージとして端末装置に通知する機能と、の一連の機能を、前記基地局装置に発揮させることを特徴とする。
 (15)また、本発明の一態様に係る集積回路は、端末装置に実装されることにより、前記端末装置に複数の機能を発揮させる集積回路であって、無線リソース制御層のメッセージとして前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得する機能と、前記非線形プリコーディング設定情報が非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行う機能と、の一連の機能を、前記端末装置に発揮させることを特徴とする。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 なお、本発明は上述の実施形態に限定されるものではない。本発明の端末装置400は、セルラシステムや無線LANシステム等の端末装置への適用に限定されるものではなく、屋内外に設置される据え置き型、又は非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用できることは言うまでもない。
 本発明に関わる基地局装置200及び端末装置400で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における基地局装置200及び端末装置400の一部、又は全部を典型的には集積回路であるLSIとして実現してもよい。基地局装置200及び端末装置400の各機能ブロックは個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 本発明は、基地局装置、端末装置、無線通信システムに用いて好適である。
200 基地局装置
201 符号化部
202 スクランブル部
203 変調部
204 レイヤマッピング部
205 プリコーディング部
206 リソースエレメントマッピング部
207 OFDM信号生成部
208 送信アンテナ部
209 参照信号生成部
210 制御情報生成部
211 制御部
212 上位層部
213 メディアアクセス制御部
214 無線リンク制御部
215 無線リソース制御部
216 物理層部
301 線形プリコーディング部
302 非線形プリコーディング部
303 選択部
400、400-1~400-4 端末装置
401 受信アンテナ部
402 OFDM信号復調部
403 リソースエレメントデマッピング部
404 受信フィルタ部
405 レイヤデマッピング部
406 復調部
407 デスクランブル部
408 復号部
409 制御情報取得部
410 伝搬路推定部
411 制御部
412 上位層部
413 メディアアクセス制御部
414 無線リンク制御部
415 無線リソース制御部
416 物理層部

Claims (17)

  1.  複数の端末装置宛のデータを、マルチユーザMIMO伝送を用いて空間多重して送信する基地局装置であって、
     マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて端末装置に通知することを特徴とする基地局装置。
  2.  マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、前記無線リソース制御層のメッセージは、システム情報であることを特徴とする請求項1に記載の基地局装置。
  3.  マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、前記無線リソース制御層のメッセージは、端末装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージであることを特徴とする請求項1に記載の基地局装置。
  4.  マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、前記無線リソース制御層のメッセージは、端末装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージであることを特徴とする請求項1に記載の基地局装置。
  5.  複数のアンテナを備える基地局装置と通信を行う端末装置であって、
     無線リソース制御層のメッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、
     前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいてモジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行うことを特徴とする端末装置。
  6.  複数のアンテナを備える基地局装置と通信を行う端末装置であって、
     無線リソース制御層のメッセージに含めて前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得し、
     前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする端末装置。
  7.  前記無線リソース制御層のメッセージは、システム情報であることを特徴とする請求項5または6に記載の端末装置。
  8.  前記無線リソース制御層のメッセージは、前記基地局装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージであり、 前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うであることを特徴とする請求項5または6に記載の端末装置。
  9.  前記無線リソース制御層のメッセージは、前記基地局装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージであり、
     前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うであることを特徴とする請求項5または6に記載の端末装置。
  10.  前記非線形プリコーディング設定情報に基づいて、前記基地局装置に通知する、前記基地局装置と自端末装置との間の伝搬路状態に関する制御情報を決定することを特徴とする請求項5から請求項9のいずれかに記載の端末装置。
  11.  複数の端末装置と、前記複数の端末装置宛のデータを、マルチユーザMIMO伝送を用いて空間多重して送信する基地局装置とから構成される無線通信システムであって、
     前記基地局装置は、
     マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて前記複数の端末装置に通知し、
     前記端末装置は、
     前記基地局装置から通知された前記無線リソース制御層のメッセージを受信して非線形プリコーディング設定情報を取得し、
     前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいて、モジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行うことを特徴とする無線通信システム。
  12.  複数の端末装置と、前記複数の端末装置宛のデータをマルチユーザMIMO伝送を用いて空間多重して送信する基地局装置とから構成される無線通信システムであって、
     前記基地局装置は、
     マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を、無線リソース制御層のメッセージに含めて前記複数の端末装置に通知し、
     前記端末装置は、
     前記基地局装置から通知された前記無線リソース制御層のメッセージを受信して非線形プリコーディング設定情報を取得し、
     前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うことを特徴とする無線通信システム。
  13.  前記無線リソース制御層のメッセージは、システム情報であることを特徴とする請求項11または12に記載の無線通信システム。
  14.  前記無線リソース制御層のメッセージは、前記基地局装置と前記端末装置との間で無線リソース制御層の接続を確立する手順における接続設定メッセージであり、 前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うであることを特徴とする請求項11または12に記載の無線通信システム。
  15.  前記無線リソース制御層のメッセージは、前記基地局装置と前記端末装置との間で無線リソース制御層の接続を再構成する手順における接続再構成メッセージであり、
     前記取得した非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号に対してモジュロ演算を考慮した復調処理を行うであることを特徴とする請求項11または12に記載の無線通信システム。
  16.  基地局装置に実装されることにより、前記基地局装置に複数の機能を発揮させる集積回路であって、
     マルチユーザMIMO伝送において非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を生成する機能と、
     前記非線形プリコーディング設定情報を無線リソース制御層のメッセージとして端末装置に通知する機能と、の一連の機能を、前記基地局装置に発揮させることを特徴とする集積回路。
  17.  端末装置に実装されることにより、前記端末装置に複数の機能を発揮させる集積回路であって、
     無線リソース制御層のメッセージとして前記基地局装置から通知された、非線形プリコーディングを使用するかどうかの非線形プリコーディング設定情報を取得する機能と、
     前記非線形プリコーディング設定情報が、非線形プリコーディングを使用することを示している場合に、受信信号が線形プリコーディングによる信号か非線形プリコーディングによる信号かをブラインド推定し、その推定結果に基づいて、モジュロ演算を考慮しない復調処理とモジュロ演算を考慮した復調処理とから一方を選択して、前記受信信号に対して前記選択した復調処理を行う機能と、の一連の機能を、前記端末装置に発揮させることを特徴とする集積回路。
PCT/JP2014/058117 2013-04-10 2014-03-24 基地局装置、端末装置、無線通信システム及び集積回路 WO2014167992A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/783,214 US9859961B2 (en) 2013-04-10 2014-03-24 Method for spatially multiplexing a plurality of data designated for a plurality of user terminals using MU-MIMO

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013082096A JP2016119496A (ja) 2013-04-10 2013-04-10 基地局装置、端末装置、無線通信システム及び集積回路
JP2013-082096 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014167992A1 true WO2014167992A1 (ja) 2014-10-16

Family

ID=51689404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058117 WO2014167992A1 (ja) 2013-04-10 2014-03-24 基地局装置、端末装置、無線通信システム及び集積回路

Country Status (3)

Country Link
US (1) US9859961B2 (ja)
JP (1) JP2016119496A (ja)
WO (1) WO2014167992A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270514B2 (en) 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
US10524150B2 (en) * 2016-01-14 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system
US10862603B2 (en) * 2016-02-22 2020-12-08 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, control station, communication system, and transmission precoding method
SG11201900637RA (en) * 2016-07-26 2019-02-27 Sharp Kk Terminal apparatus, base station apparatus, and communication method
CN108667570A (zh) * 2017-03-27 2018-10-16 索尼公司 用于无线通信的网络控制端和网络节点的电子设备和方法
CA3066916C (en) * 2017-06-16 2022-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power control method for link and related product
CN109257822B (zh) * 2017-07-13 2023-04-18 财团法人资讯工业策进会 用户装置及基站
US10511357B2 (en) 2017-12-12 2019-12-17 At&T Intellectual Property I, L.P. Detection scheme utilizing transmitter-supplied non-linearity data in the presence of transmitter non-linearity
KR102587077B1 (ko) * 2017-12-28 2023-10-10 삼성전자 주식회사 비선형 프리코딩을 위한 기준신호 설정 방법 및 장치
KR20190119917A (ko) * 2018-04-13 2019-10-23 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치
US11184205B2 (en) * 2018-05-10 2021-11-23 Ntt Docomo, Inc. Reception apparatus and transmission apparatus
CN110557178A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种天线配置的指示方法、基站、终端及计算机存储介质
WO2020034100A1 (en) * 2018-08-14 2020-02-20 Qualcomm Incorporated Interference layer categorization and non zero power interference measurement resource for non linear precoding
WO2020056593A1 (zh) * 2018-09-18 2020-03-26 Oppo广东移动通信有限公司 一种信号处理方法、设备及存储介质
US10965786B2 (en) * 2018-10-31 2021-03-30 At&T Intellectual Property I, L.P. Adaptive fixed point mapping for uplink and downlink fronthaul
CN111224697A (zh) * 2018-11-27 2020-06-02 索尼公司 用于无线通信***的电子设备、方法和存储介质
WO2021245727A1 (ja) 2020-06-01 2021-12-09 富士通株式会社 無線局及び通信システム
KR20230039668A (ko) * 2020-07-17 2023-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
US11677609B2 (en) * 2021-04-29 2023-06-13 Qualcomm Incorporated Signaling of a non-linearity model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189236A1 (en) * 2006-02-10 2007-08-16 Nokia Corporation User equipment
WO2012053154A1 (ja) * 2010-10-21 2012-04-26 日本電気株式会社 無線通信システム、その制御方法、基地局、その制御方法及びコンピュータ可読媒体
JP2013031132A (ja) * 2011-07-29 2013-02-07 Sharp Corp 無線受信装置およびプログラム
JP2013042350A (ja) * 2011-08-15 2013-02-28 Sharp Corp 無線送信装置、無線受信装置、プログラム、集積回路および無線通信システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116267B2 (en) * 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
KR101366749B1 (ko) * 2009-04-20 2014-02-24 한국전자통신연구원 Mimo 시스템에서 다중사용자 스케줄링 방법 및 장치
US8750205B2 (en) * 2009-08-07 2014-06-10 Texas Instruments Incorporated Multiple rank CQI feedback for cellular networks
WO2012173326A1 (en) * 2011-06-15 2012-12-20 Lg Electronics Inc. Method for transmitting and receiving data unit based on uplink multiple user multiple input multiple output transmission and apparatus for the same
WO2013024838A1 (ja) 2011-08-15 2013-02-21 シャープ株式会社 無線送信装置、無線受信装置、プログラム、集積回路および無線通信システム
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9072116B2 (en) * 2013-03-06 2015-06-30 Futurewei Technologies, Inc. Systems and methods for reducing complexity in modulation coding scheme (MCS) adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189236A1 (en) * 2006-02-10 2007-08-16 Nokia Corporation User equipment
WO2012053154A1 (ja) * 2010-10-21 2012-04-26 日本電気株式会社 無線通信システム、その制御方法、基地局、その制御方法及びコンピュータ可読媒体
JP2013031132A (ja) * 2011-07-29 2013-02-07 Sharp Corp 無線受信装置およびプログラム
JP2013042350A (ja) * 2011-08-15 2013-02-28 Sharp Corp 無線送信装置、無線受信装置、プログラム、集積回路および無線通信システム

Also Published As

Publication number Publication date
US20160049997A1 (en) 2016-02-18
JP2016119496A (ja) 2016-06-30
US9859961B2 (en) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2014167992A1 (ja) 基地局装置、端末装置、無線通信システム及び集積回路
US20210168777A1 (en) Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
US10075265B2 (en) Enhanced node B and methods for network assisted interference cancellation with reduced signaling
US10098103B2 (en) Method and apparatus for multiuser superposition transmission
CN105379347B (zh) 消除相邻小区数据传输的方法及用户设备
US9497750B2 (en) Method and apparatus for transmitting control signaling
KR101652216B1 (ko) 간섭층들의 표시를 위한 다운링크 제어 시그널링
CN108352877B (zh) 解调和解码数据符号的接收机装置和发射机装置及其方法
EP3051741B1 (en) Enhanced link adaptation
JP5271373B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
US10356771B2 (en) Method and device for transmitting downlink information in wireless communication system
US10863512B2 (en) Power control signaling for multiuser superpostion transmission
KR20140111136A (ko) 무선 통신 시스템에서 간섭 제어 방법 및 장치
WO2013024742A1 (ja) 端末、基地局、通信システムおよび通信方法
JP2013516880A (ja) 専用基準信号(drs)プリコーディング粒度の通知
JP2011147069A (ja) 無線基地局装置、移動端末装置及び無線通信方法
WO2017007238A1 (ko) 무선 통신 시스템에서 must 전송을 위한 유효 채널 측정 방법 및 이를 위한 장치
JPWO2017051660A1 (ja) 基地局装置、端末装置および通信方法
US10080235B2 (en) Base station, mobile station and method for downlink scheduling
WO2011155360A1 (ja) 移動端末装置、基地局装置、通信システム、および通信方法
JP5725676B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
WO2011122160A1 (ja) 送信装置、受信装置、通信システム、通信方法および集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14783214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP