WO2011155360A1 - 移動端末装置、基地局装置、通信システム、および通信方法 - Google Patents

移動端末装置、基地局装置、通信システム、および通信方法 Download PDF

Info

Publication number
WO2011155360A1
WO2011155360A1 PCT/JP2011/062372 JP2011062372W WO2011155360A1 WO 2011155360 A1 WO2011155360 A1 WO 2011155360A1 JP 2011062372 W JP2011062372 W JP 2011062372W WO 2011155360 A1 WO2011155360 A1 WO 2011155360A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission path
precoding
mobile terminal
information
Prior art date
Application number
PCT/JP2011/062372
Other languages
English (en)
French (fr)
Inventor
寿之 示沢
智造 野上
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011155360A1 publication Critical patent/WO2011155360A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals
    • H04L2025/03796Location of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a communication system including a base station device and a mobile terminal device, a mobile terminal device, a base station device, and a communication method.
  • a base station transmitting station, transmitting device, eNodeB
  • eNodeB transmitting station, transmitting device
  • the communication area can be expanded.
  • mobile terminals receiving stations, mobile stations, receiving devices, UEs (User Equipment)
  • frequency utilization efficiency can be greatly improved by repeatedly using the same frequency in each cell (sector).
  • Non-Patent Document 1 discusses a CoMP (Cooperative Multipoint) transmission system as the system.
  • FIG. 19 is a diagram illustrating an example in which the mobile terminal 1603 located in the cell edge region communicates with the base station 1601 and the base station 1602.
  • mobile terminal 1603 is located in each cell edge region (boundary region) in base station 1601 and base station 1602.
  • Base station 1601 and base station 1602 communicate with mobile terminal 1603 in cooperation.
  • the mobile terminal 1603 receives a transmission path condition measurement reference signal 1604 from the base station 1601 and receives a transmission path condition measurement reference signal 1605 from the base station 1602.
  • the mobile terminal 1603 can estimate the transmission path condition between the base station 1601 and the base station 1602 and the mobile terminal 1603 by using the transmission path condition measurement reference signal 1604 and the transmission path condition measurement reference signal 1605.
  • the mobile terminal 1603 determines the modulation scheme and coding rate (MCS (Modulation and Coding Scheme)), spatial multiplexing number (layer, rank), precoding weight (precoding matrix), etc. By adaptively controlling, more efficient data transmission can be realized. For example, the mobile terminal 1603 can perform control using the method described in Non-Patent Document 2 below.
  • FIG. 20 is a block diagram illustrating an example for performing adaptive control when considering a downlink (downlink, downlink) in which data transmission from the base station 1700 to the mobile terminal 1710 is considered.
  • the base station 1700 uses the multiplexing unit 1702 to transmit a reference signal (RS (Reference Signal), pilot signal, known signal) specific to the base station to a data signal for the mobile terminal 1710 or other movement. It is multiplexed with the data signal for the terminal and transmitted from the transmission antenna 1703.
  • RS Reference Signal
  • pilot signal pilot signal
  • the mobile terminal 1710 separates the transmission path condition measurement reference signal from the signal received by the reception antenna 1711 in the separation unit 1712. Mobile terminal 1710 provides feedback for adaptively controlling the modulation scheme and coding rate, the number of spatial multiplexing, the precoding matrix, etc., based on the separated channel state measurement reference signal in feedback information generation section 1713. Generate information.
  • the feedback information generation unit 1713 further transmits the generated feedback information from the transmission antenna 1714 through the uplink (uplink, uplink).
  • the base station 1700 uses the feedback information processing unit 1705 to identify the feedback information transmitted from the mobile terminal 1710 from the signal received by the receiving antenna 1704 and process the identified feedback information.
  • the adaptive control unit 1701 performs adaptive control on the data signal for the mobile terminal 1710 based on the received feedback information.
  • FIG. 21 is a diagram showing data transmission by cooperative communication.
  • mobile terminal 1803 receives data signal 1804 by cooperative communication transmitted from base station 1801 and base station 1802.
  • the mobile terminal In a communication system that transmits a plurality of channel state measurement reference signals, such as a communication system capable of performing cooperative communication, the mobile terminal returns feedback information based on the plurality of channel state measurement reference signals. Generate.
  • the mobile terminal In the communication system, particularly when performing cooperative communication, the mobile terminal needs to efficiently generate appropriate feedback information.
  • a base station In particular, in a communication system that performs cooperative communication, a base station needs to efficiently perform appropriate precoding control based on feedback information from a mobile terminal.
  • the present invention has been made in view of such circumstances, and in a communication system that transmits a plurality of transmission path condition measurement reference signals, mainly relates to feedback control and precoding control, and performs adaptive control efficiently.
  • An object of the present invention is to provide a mobile terminal device, a base station device, a communication system, and a communication method.
  • the mobile terminal apparatus includes a first transmission path status measurement reference signal different from the first transmission path status measurement reference signal and the first transmission path status measurement reference signal. Based on the first transmission path situation and the second transmission path situation, and based on the first transmission path situation and the second transmission path situation, one or more precoding information is A generating unit that generates the feedback information to the station device.
  • the generation unit generates wideband precoding information and narrowband precoding information as the plurality of precoding information.
  • the generation unit generates long interval variable precoding information and short interval variable precoding information as the plurality of precoding information.
  • the generation unit generates one or a plurality of precoding information as feedback information based on a precoding matrix commonly used for the first transmission path condition and the second transmission path condition. To do.
  • the generation unit sets at least one of a plurality of precoding matrices for the first transmission path condition and the second transmission path condition as a precoding matrix defined in advance, and One or more precoding information is generated as the feedback information based on a precoding matrix other than the precoding matrix defined in advance.
  • the mobile terminal apparatus receives the first transmission path condition measurement reference signal from the first base station apparatus and performs cooperative communication with the first base station apparatus. Based on the receiving unit that receives the second transmission path condition measurement reference signal from the second base station apparatus, the first transmission path condition measurement reference signal, and the second transmission path condition measurement reference signal. A measurement unit that measures the transmission path status and the second transmission path status, and a generation unit that generates one or more precoding information as feedback information based on the first transmission path status and the second transmission path status And a transmission unit that transmits one or more precoding information generated as feedback information to the first base station apparatus.
  • the communication system includes: a first base station apparatus that transmits a first transmission path condition measurement reference signal; and a first transmission path condition measurement reference signal.
  • a second base station device that transmits a different second transmission path condition measurement reference signal, a first transmission based on the first transmission path condition measurement reference signal and the second transmission path condition measurement reference signal
  • a mobile terminal apparatus that measures a path condition and a second transmission path condition and generates one or a plurality of precoding information as feedback information based on the first transmission path condition and the second transmission path condition.
  • the first base station apparatus performs precoding processing based on a plurality of precoding information.
  • the communication system performs a precoding process based on a first base station apparatus that performs a precoding process based on a plurality of precoding matrices, and a plurality of precoding matrices.
  • the mobile terminal apparatus performs second transmission different from the first transmission path condition measurement reference signal and the first transmission path condition measurement reference signal.
  • the step of measuring the first transmission path situation and the second transmission path situation based on the reference signal for path situation measurement, and the mobile terminal apparatus based on the first transmission path situation and the second transmission path situation Generating one or a plurality of precoding information as feedback information to the base station apparatus.
  • the communication method includes a step in which the first base station apparatus transmits the first transmission path condition measurement reference signal, and the second base station apparatus A step of transmitting a second transmission path condition measurement reference signal different from the first transmission path condition measurement reference signal, and the mobile terminal device comprising: the first transmission path condition measurement reference signal and the second transmission path; A step of measuring the first transmission path situation and the second transmission path situation based on the situation measurement reference signal, and the mobile terminal device 1 based on the first transmission path situation and the second transmission path situation;
  • the method includes a step of generating a plurality of precoding information as feedback information to at least the first base station apparatus.
  • the communication method includes a step in which the first base station apparatus performs precoding processing based on a plurality of precoding matrices, and a plurality of second base station apparatuses. A precoding process based on the precoding matrix, and a step in which the first base station apparatus and the second base station apparatus perform cooperative communication with the mobile terminal.
  • adaptive control can be efficiently performed mainly in relation to feedback control and precoding control in a communication system that transmits a plurality of channel state measurement reference signals.
  • the communication system in the first embodiment includes a mobile terminal (terminal device, receiving point, receiving terminal, receiving device, third communication device, receiving antenna group, receiving antenna port group, UE), and base station (transmitting device).
  • a mobile terminal terminal device, receiving point, receiving terminal, receiving device, third communication device, receiving antenna group, receiving antenna port group, UE
  • base station transmitting device.
  • Cell transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB
  • anchor base station first base station apparatus, first communication apparatus, serving base station, primary base station, first Component carrier, first transmission path condition measurement reference signal
  • coordinated base station second base station device, coordinated base station group, coordinated base station set, second communication device, secondary base station, second component Carrier, second transmission path condition measurement reference signal).
  • FIG. 1 is a schematic block diagram showing a configuration of an anchor base station 100 according to the first embodiment of the present invention.
  • the anchor base station 100 is a base station that receives feedback information from a mobile terminal, a base station that transmits control information for the mobile terminal 500 (for example, information transmitted through a PDCCH (Physical Downlink Control Channel), or the like).
  • the anchor base station 100 is one of base stations that communicate with the mobile terminal 500 in cooperation with a cooperative base station 300 (see FIG. 3) described later.
  • communication with respect to the mobile terminal 500 by the anchor base station 100 and the coordinated base station 300 coordinated with the anchor base station 100 is referred to as “coordinated communication”.
  • anchor base station 100 includes coding section 101, scramble section 102, modulation section 103, layer mapping section 104, precoding section 105 (first precoding section), and resource elements.
  • Mapping section 106 OFDM signal generation section 107, transmission antenna 108 (transmission antenna port), data signal demodulation reference signal generation section 113, and transmission path condition measurement reference signal generation section 109 (first transmission path condition)
  • a measurement reference signal generation unit a reception antenna 110, a reception signal processing unit 111, and a feedback information processing unit 112.
  • the reception antenna 110 receives a data signal including feedback information transmitted from the mobile terminal 500 via an uplink (for example, PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), etc.).
  • an uplink for example, PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), etc.
  • the reception signal processing unit 111 receives reception of transmission processing performed by the mobile terminal 500 for transmission, such as OFDM (Orthogonal Frequency Division Multiplexing) demodulation processing, signal demodulation processing, and decoding processing, on the signal received by the reception antenna 110. Process.
  • the received signal processing unit 111 identifies feedback information from the received signals and outputs the feedback information to the feedback information processing unit 112.
  • SC-FDMA Single carrier-frequency division multiple access
  • Data signals of the mobile terminal 500 can be multiplexed using various multiple access schemes such as Clustered DFT-S-OFDM (Discrete Fourier Transform-Spread-OFDM), OFDMA, time division multiple access, code division multiple access.
  • the anchor base station 100 can use various methods as a method for identifying feedback information for each mobile terminal 500.
  • the anchor base station 100 designates resources (elements for signal transmission divided by time, frequency, code, spatial domain, etc.) to which each mobile terminal 500 transmits feedback information.
  • the mobile terminal 500 transmits feedback information using the specified resource.
  • the anchor base station 100 can identify feedback information for each mobile terminal 500.
  • identification of feedback information for each mobile terminal 500 can be realized by adding a unique identification number for each mobile terminal 500 to each feedback information.
  • the feedback information processing unit 112 generates adaptive control information for performing various adaptive controls on the data signal transmitted to the mobile terminal 500, based on the input feedback information.
  • the feedback information processing unit 112 When feedback information for the anchor base station 100 is included in the received signal, the feedback information processing unit 112 generates adaptive control information in the anchor base station 100.
  • Feedback information processing section 112 outputs the generated adaptive control information to coding section 101, modulation section 103, layer mapping section 104, precoding section 105, and resource element mapping section 106 in anchor base station 100. Further, the feedback information processing unit 112 may output the adaptive control information to an upper layer (not shown).
  • the feedback information processing unit 112 performs an encoding unit 601, a modulation unit 603, a layer mapping unit 604, and a resource element mapping unit 606 in the coordinated base station 300 described later. Adaptive control information for is generated.
  • the feedback information processing unit 112 outputs the generated adaptive control information to the coordinated base station 300 through a line such as an X2 interface (preferably a wired line such as an optical fiber or a unique wireless line using a relay technology).
  • the line connecting the base stations can be used for various purposes other than when the adaptive control information is communicated from the anchor base station 100 to the cooperative base station 300.
  • a line connecting base stations can communicate base station information and / or control information for performing cooperative communication from the cooperative base station 300 to the anchor base station 100.
  • the feedback information processing unit 112 may execute a predetermined process.
  • the recommended transmission format information for the base station is used as feedback information, it is assumed that a known transmission format is indexed in advance for both the base station and the mobile terminal. Also, the mobile terminal feeds back information using the transmission format, and the base station performs adaptive control using the information.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • RI Rank Indicator
  • the feedback information processing unit 112 can control the layer mapping unit and the upper layer that generates the codeword by the RI.
  • the feedback information processing unit 112 can also control the resource element mapping unit according to the feedback information.
  • the precoding information PMI can be divided into a plurality of types according to the data transmission method, purpose, and application. Details of the precoding information PMI will be described later.
  • the mobile terminal feeds back information on the transmission path condition with the base station using a reference signal for transmission path condition measurement from the base station.
  • the mobile terminal can also reduce the amount of information by using various methods such as eigenvalue decomposition and quantization.
  • the base station controls the terminal device using the information on the fed back transmission path condition. For example, the base station can determine the coding rate and modulation scheme, the number of layers, and the precoding matrix so that the mobile terminal can perform suitable reception based on the fed back information. Further, the base station can use various methods as the determination method.
  • the encoding unit 101 receives one or more codewords (transmission data signal, information data signal) to be transmitted to the mobile terminal from a processing device in an upper layer of the transmission device (not shown).
  • the encoding unit 101 encodes each code word with an error correction code such as a turbo code, a convolutional code, or an LDPC (Low Density Parity Check) code.
  • the encoding unit 101 outputs each encoded code word to the scramble unit 102.
  • the codeword may be a processing unit that performs retransmission control such as HARQ (Hybrid Automatic Repeat reQuest), a processing unit that performs error correction coding, or a combination of a plurality of these units.
  • HARQ Hybrid Automatic Repeat reQuest
  • the scramble unit 102 generates different scramble codes for each base station, each mobile terminal, and the like.
  • the scrambler 102 performs a scramble process on the signal encoded by the encoder 101 using the generated scramble code.
  • the modulation unit 103 performs modulation processing on the scrambled signal using a modulation method such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), or QAM (Quadrature Amplitude Modulation).
  • Modulation section 103 outputs the modulated signal to layer mapping section 104.
  • the data signal demodulation reference signal generation unit 113 uses a data signal demodulation reference signal (Dm-RS (Demodulation Reference Signal) that is orthogonal or quasi-orthogonal between layers as a reference signal for demodulating the information data signal in the mobile terminal 500. ), DRS (Dedicated Reference Signal), Precoded RS, user-specific reference signal, UE-specific RS).
  • Dm-RS Data Signal demodulation Reference Signal
  • DRS Dedicated Reference Signal
  • Precoded RS Precoded RS
  • user-specific reference signal user-specific reference signal
  • UE-specific RS Precoded RS
  • the data signal demodulation reference signal is precoded together with the information data signal for the mobile terminal 500.
  • the reference signal generation unit 113 for data signal demodulation uses either code division multiplexing (CDM; Code Division Multiplexing) or frequency division multiplexing (FDM) using orthogonal codes such as Walsh codes, or code division. Multiplexing and frequency division multiplexing are used together to orthogonalize the data signal demodulation reference signals of each layer.
  • the data signal demodulation reference signal generation unit 113 can change the data signal demodulation reference signal according to the number of layers for the mobile terminal 500. Specifically, when the number of layers is 1 or 2, the data signal demodulation reference signal generation unit 113 performs code division multiplexing using an orthogonal code having a code length of 2.
  • the data signal demodulation reference signal generation unit 113 uses both code division multiplexing using an orthogonal code having a code length of 2 and frequency division multiplexing.
  • the data signal demodulation reference signal generation unit 113 uses both code division multiplexing using an orthogonal code having a code length of 4 and frequency division multiplexing.
  • a group in which the reference signal for data signal demodulation is code division multiplexed is referred to as a “CDM group”.
  • the layer mapping unit 104 maps the data signal demodulation reference signal input from the data signal demodulation reference signal generation unit 113 to each layer that performs spatial multiplexing such as MIMO (Multi-Input Multi-Output). Further, the layer mapping unit 104 maps the signal output by each modulation unit 103 to the resource elements excluding the data signal demodulation reference signal for each layer. For example, assuming that the number of codewords is 2 and the number of layers is 8, the layer mapping unit 104 changes the number of layers to 8 by converting each codeword into four parallel signals. However, the present invention is not limited to this.
  • the precoding unit 105 converts the signal output from the layer mapping unit 104 into parallel signals of the number of antenna ports (transmission antennas, logical ports) by performing precoding processing.
  • the mobile terminal 500 can receive efficiently (for example, the reception power is maximized, the interference from the adjacent cell is reduced, or the interference to the adjacent cell is reduced). It is preferable to perform phase rotation or the like on the signal output from the layer mapping unit 104 so as to be small.
  • processing based on pre-determined precoding matrix CDD (Cyclic Delay Diversity), transmit diversity (SFBC (Spatial Frequency Block Code), STBC (Spatial Time Block Code), TSTD (Time Switched Transmission Diversity), FSTD (Frequency Switched) Transmission Diversity) etc.
  • CDD Cyclic Delay Diversity
  • SFBC Spatial Frequency Block Code
  • STBC Spatial Time Block Code
  • TSTD Time Switched Transmission Diversity
  • FSTD Frequency Switched
  • the present invention is not limited to this.
  • the precoding unit 105 can perform precoding processing based on the plurality of precoding information PMI. Details thereof will be described later.
  • the transmission path condition measurement reference signal generation unit 109 is used by the anchor base station 100 and the mobile terminal 500 to measure the transmission path condition (first transmission path condition) between the anchor base station 100 and the mobile terminal 500.
  • a first transmission path condition measurement reference signal (cell-specific reference signal, CRS (Common RS), Cell-specific RS, Non-precoded RS) known to each other is generated.
  • the transmission path condition measurement reference signal generation unit 109 outputs the generated first transmission path condition measurement reference signal to the resource element mapping unit 106.
  • an arbitrary signal can be used as the first transmission path condition measurement reference signal.
  • a random number or a pseudo-noise sequence based on parameters assigned in advance such as a number (cell ID) unique to the anchor base station 100 can be used.
  • a method of orthogonalizing between antenna ports a method of making resource elements that map the first reference signal for transmission path condition measurement mutually null (zero) between antenna ports, code division multiplexing using a pseudo-noise sequence A method, a method combining them, or the like can be used.
  • the resource element mapping unit 106 maps the transmission data signal output from the precoding unit 105 and the transmission path condition measurement reference signal output from the transmission path condition measurement reference signal 109 to the resource element of each antenna port. .
  • the mobile terminal 500 may further generate a reference signal for demodulating the control information signal, and the resource element mapping unit 106 may perform mapping.
  • FIG. 2 is a diagram illustrating an example of a data signal demodulation reference signal, a first transmission path condition measurement reference signal, an information data signal, or a control information signal mapped by the resource element mapping unit 106. Specifically, FIG. 2 shows a case where each signal is mapped when the number of antenna ports of the anchor base station 100 is 8 and the number of CDM groups of the reference signal for data signal demodulation is 2.
  • two resource blocks are included in one subframe.
  • One resource block includes 12 subcarriers in the frequency direction and 7 OFDM symbols in the time direction. Each subcarrier in one OFDM symbol is also called a resource element. Of each subframe, the seven OFDM symbols before and after in the time direction are also called slots.
  • the reference signals for data signal demodulation of CDM group numbers 1 and 2 are represented as D1 and D2, respectively, and the reference signals for channel state measurement of antenna ports 1 through 8 are represented as C1 and C8, respectively.
  • the resource element mapping unit 106 maps the information data signal or the control information signal to resource elements other than the resource element to which the reference signal in the figure is mapped.
  • the maximum number of layers of the information data signal or the control information signal can be eight.
  • the number of information data signal layers can be two, and the number of control information signal layers can be one.
  • the resource element mapping unit 106 can change the number of resource blocks according to the frequency bandwidth (system bandwidth) used by the communication system. For example, the resource element mapping unit 106 can use 6 to 110 resource blocks. Furthermore, the resource element mapping unit 106 can increase the total system bandwidth to 110 or more by frequency aggregation.
  • a component carrier is composed of 100 physical resource blocks. By using five component carriers with a guard band between component carriers, the total system bandwidth can be made 500 physical resource blocks. Expressing this in terms of bandwidth, for example, the total system bandwidth can be set to 100 MHz by configuring the component carrier at 20 MHz and using five component carriers with a guard band between the component carriers. .
  • OFDM signal generation section 107 performs frequency-time conversion processing on the frequency domain signal output by resource element mapping section by inverse fast Fourier transform (IFFT) or the like. Thus, the signal is converted into a time domain signal. Furthermore, the OFDM signal generation unit 107 adds a guard interval (cyclic prefix) by cyclically extending a part of each OFDM symbol.
  • the transmission antenna 108 performs a process of converting the signal (baseband signal) output from the OFDM signal generator 107 into a signal for a radio frequency band. The transmission antenna 108 transmits the signal after the conversion process.
  • FIG. 3 is a schematic block diagram showing the configuration of the coordinated base station 300.
  • the coordinated base station 300 is a base station that excludes the anchor base station 100 described with reference to FIG. 1 among the base stations that perform coordinated communication with the mobile terminal 500.
  • cooperative base station 300 includes coding section 301, scramble section 302, modulation section 303, layer mapping section 304, precoding section 305 (second precoding section), resource elements Mapping section 306, OFDM signal generation section 307, transmission antenna 308, transmission path condition measurement reference signal generation section 309, data signal demodulation reference signal generation section 313 (second transmission path condition measurement reference signal generation Part).
  • each unit for receiving feedback information from the mobile terminal 500 is omitted in the coordinated base station 300.
  • adaptive control information for adaptively controlling each of the encoding unit 301, the modulation unit 303, the layer mapping unit 304, the precoding unit 305, and the resource element mapping unit 306 is transmitted from the anchor base station 100 through a line such as an X2 interface. Input to the coordinated base station 300.
  • a cooperative communication scheme for example, Joint Transmission, Dynamic Cell Selection, etc.
  • an information data signal from the anchor base station 100 to the mobile terminal 500 is also an X2 interface, etc. Are input to the coordinated base station 300 through this line.
  • the precoding unit 305 can perform different operations depending on the cooperative communication scheme for the mobile terminal 500.
  • the precoding unit 305 includes the anchor base station 100. It is preferable to perform the precoding process so that the mobile terminal 500 can perform appropriate reception in cooperation with the above.
  • the precoding unit 305 reduces other interference from the coordinated base station 300 to the mobile terminal 500.
  • Precoding processing is preferably performed on the information data signal of the mobile terminal.
  • the reference signal generator 309 for transmission path condition measurement is used by the coordinated base station 300 and the mobile terminal 500 to measure the transmission path condition (second transmission path condition) between the coordinated base station 300 and the mobile terminal 500.
  • Second reference signals for measurement of transmission path conditions (cell-specific reference signal, CRS (Common RS), Cell-specific RS, Non-precoded RS) are generated.
  • the transmission path condition measurement reference signal generation unit 309 outputs the generated second transmission path condition measurement reference signal to the resource element mapping unit 306. At this time, if both the coordinated base station 300 and the mobile terminal 500 are known signals, an arbitrary signal (sequence) can be used as the second transmission path condition measurement reference signal.
  • a random number or a pseudo noise sequence based on a parameter assigned in advance such as a number (cell ID) unique to the coordinated base station 300 can be used.
  • a method of orthogonalizing between antenna ports a method of making resource elements that map the second transmission path condition measurement reference signal mutually null (zero) between antenna ports, code division multiplexing using a pseudo noise sequence A method or the like can be used.
  • FIG. 4 is a diagram illustrating an example of a data signal demodulation reference signal, a second transmission path condition measurement reference signal, an information data signal, or a control information signal mapped by the layer mapping unit 304 and the resource element mapping unit 306.
  • the precoding process described above is performed by the precoding unit 305 on the reference signal for data signal demodulation.
  • the second transmission path condition measurement reference signal is mapped so as to be frequency-division multiplexed with respect to the first transmission path condition measurement reference signal described in FIG. In the example of FIG. 2, the shift is in the frequency direction for one subcarrier.
  • the position where each transmission path condition measurement reference signal is mapped may be notified or notified to the mobile terminal 500 as control information (including RRC (Radio Resource Control) signaling).
  • RRC Radio Resource Control
  • each transmission path condition measurement reference signal may be identified by the mobile terminal 500 based on other control information such as a cell ID.
  • the position where the reference signal for channel condition measurement for one antenna port is mapped can be notified, broadcasted, or identified, and other antenna ports can be identified based on the position. It can also be done.
  • the resource element mapping unit 306 includes the second transmission path condition measurement reference signal and the first transmission path out of the information data signal or the control information signal mapped by the anchor base station 100 and the coordinated base station 300.
  • the resource elements to which the situation measurement reference signal is mapped may be muted (zero, null), respectively. That is, the resource element mapping unit 306 mutes the resource element of the second transmission path condition measurement reference signal mapped by the coordinated base station 300 among the information data signal or control information signal mapped by the anchor base station 100. May be. Also, the resource element mapping unit 306 mutes the resource element of the first transmission path condition measurement reference signal mapped by the anchor base station 100 among the information data signal or control information signal mapped by the coordinated base station 300. May be. Note that all or part of the resource elements to be muted may be used.
  • the mobile terminal 500 can efficiently estimate the transmission path status when performing cooperative communication.
  • a muting method for example, after mapping an information data signal or a control information signal, there is a method of thinning out a signal of a resource element to which a reference signal for transmission path condition measurement of another cooperating base station is mapped ( Puncturing).
  • Puncturing As another method, there is a method of mapping an information data signal or a control information signal so as to avoid a resource element to which a reference signal for transmission path condition measurement of another base station in cooperation is mapped (rate matching).
  • FIG. 5 is a schematic block diagram showing the configuration of the mobile terminal 500.
  • mobile terminal 500 includes reception antenna 501 (reception antenna port), OFDM signal demodulation section 502, resource element demapping section 503, and filter section 504 (propagation fluctuation compensation section, equalization section). , Interference removal unit, interference reduction unit), layer demapping unit 505, demodulation unit 506, descrambling unit 507, decoding unit 508, propagation path estimation unit 509, and feedback information generation unit 510 (transmission path status) A measurement unit), a transmission signal generation unit 511, and a transmission antenna 512.
  • the mobile terminal 500 includes at least one reception antenna 501 having the number of reception antennas (the number of reception antenna ports).
  • the receiving antenna 501 receives a signal transmitted by the anchor base station 100 and the coordinated base station 300 and passing through a transmission path (propagation path, channel).
  • the receiving antenna 501 performs a process of converting a received signal (a radio frequency band signal) into a baseband signal.
  • the OFDM signal demodulator 502 removes the guard interval added from the baseband signal.
  • the OFDM signal demodulator 502 converts the baseband signal from which the guard interval has been removed, into a frequency domain signal by performing a time-frequency conversion process using a Fast Fourier Transform (FFT) or the like.
  • FFT Fast Fourier Transform
  • the resource element demapping unit 503 demaps (separates) signals mapped by the anchor base station 100 and the coordinated base station 300.
  • the resource element demapping unit 503 outputs the information data signal to the filter unit 504 by demapping.
  • Resource element demapping section 503 outputs the first transmission path condition measurement reference signal and the second transmission path condition measurement reference signal to feedback information generation section 510.
  • the resource element demapping unit 503 outputs the data signal demodulation reference signal to the propagation path estimation unit 509.
  • the control information signal is shared by the entire mobile terminal 500 (including the upper layer). The control information signal is used for various controls in the mobile terminal 500 such as demodulation of the information data signal (not shown).
  • the propagation path estimation unit 509 Based on the input data signal demodulation reference signal, the propagation path estimation unit 509 varies the amplitude and phase (frequency response, transmission) in each resource element for each layer (rank, spatial multiplexing) of each reception antenna 501. A channel estimation value is obtained by estimating (propagation channel). Note that the propagation path estimation unit 509 interpolates, in the frequency direction and the time direction, for resource elements to which the data signal demodulation reference signal is not mapped, based on the resource elements to which the data signal demodulation reference signal is mapped. To estimate the propagation path.
  • interpolation method various methods such as linear interpolation, parabolic interpolation, polynomial interpolation, Lagrange interpolation, spline interpolation, FFT interpolation, and minimum mean square error (MMSE) can be used.
  • the filter unit 504 performs channel compensation using the channel estimation value output by the channel estimation unit 509 on the data signal for each reception antenna 501 output by the resource element demapping unit 503, thereby performing layer-by-layer compensation.
  • the information data signal is detected (restored).
  • ZF Zero Forcing
  • MMSE MMSE standard equalization, interference removal, and the like can be used.
  • a method based on MLD Maximum Likelihood Detection
  • QRM-MLD QR decomposition and M-algorithm MLD
  • SIC Successessive Interference Cancellation
  • Turbo SIC A method based on MMSE-SIC, ZF-SIC, BLAST (Bell laboratories layered space-time architecture, etc.)
  • PIC Parallel Interference Cancellation
  • the layer demapping unit 505 performs a demapping process on the signal for each layer with respect to each codeword. Thereafter, processing is performed for each codeword.
  • the demodulator 506 performs demodulation based on the modulation scheme used in the anchor base station 100 and / or the coordinated base station 300.
  • the descrambling unit 507 performs descrambling processing based on the scramble code used in the anchor base station 100 and / or the coordinated base station 300.
  • Decoding section 508 performs error correction decoding processing based on the encoding method performed by anchor base station 100 and / or cooperative base station 300, and outputs the processing result to a higher layer processing apparatus of mobile terminal 500.
  • the feedback information generation unit 510 generates feedback information based on the transmission path condition measurement reference signal from each base station output by the resource element demapping unit 503.
  • a method for generating feedback information is as follows.
  • Feedback information generation section 510 uses the received reference signal for transmission path status measurement to determine the transmission path status of receiving antenna 501 in mobile terminal 500 for each transmitting station in each base station (reference signal for transmission path status measurement). For each base station (each reference signal for transmission path condition measurement) to generate a transmission path condition measurement value.
  • feedback information generation section 510 generates feedback information based on the generated transmission path condition estimated value.
  • the frequency direction (for example, for each subcarrier, for each resource element, for each resource block, for each subband composed of a plurality of resource blocks), for the time direction (for example, for each OFDM symbol Sub-frames, slots, radio frames, etc.), spatial directions (for example, antenna ports, transmission antennas, reception antennas, etc.) can be used.
  • two or more of the frequency direction, the time direction, and the spatial direction can be combined.
  • feedback information generation section 510 obtains the maximum number of layers that can be spatially multiplexed by using eigenvalue decomposition or the like based on the generated transmission path condition estimated value.
  • the feedback information generation unit 510 generates an RI based on the determined maximum number of layers.
  • Feedback information generation section 510 estimates a precoding matrix or the like that allows suitable reception based on the generated RI and transmission path state estimated value.
  • Feedback information generating section 510 generates precoding information PMI based on the estimated precoding matrix.
  • the feedback information generation unit 510 uses, for example, a precoding matrix that is suitable for cooperative communication by multiplying the generated channel state estimation value by generating a precoding matrix that is a candidate and generating precoding information PMI. Also good. Further, feedback information generation section 510 may select a suitable precoding matrix using eigenvalue decomposition or the like.
  • feedback information generation section 510 selects a modulation scheme and coding rate for the information data signal based on the generated RI, precoding information PMI, and transmission path condition estimated value.
  • Feedback information generating section 510 generates CQI based on the selected modulation scheme and coding rate.
  • the feedback information generation unit 510 may, for example, (i) receive signal power to interference / noise power ratio (SINR (Signal to Interference plus Noise power Ratio)), receive signal power to interference power ratio (SIR (Signal to Interference power Ratio)).
  • SINR Signal to Noise power Ratio
  • the transmission signal generation unit 511 performs transmission processing by performing encoding processing, signal modulation processing, OFDM signal generation processing, and the like in order to transmit (feedback) the feedback information output from the feedback information generation unit 510 to the anchor base station 400. Is generated.
  • the transmission antenna 512 transmits a transmission signal including feedback information generated by the transmission signal generation unit 511 to the anchor base station 100 and / or the coordinated base station 300 via an uplink (PUCCH or PUSCH).
  • the mobile terminal 500 can also transmit all or part of the generated feedback information in one subframe through the PUSCH specified by the anchor base station 100. At that time, the mobile terminal 500 may transmit the generated feedback information together with the information data signal from the mobile terminal 500.
  • precoding information PMI for each base station includes wideband precoding information (wideband PMI, first partial precoding information) PMI1 indicating a wideband precoding matrix (weight, vector) W1, and narrowband precoding.
  • wideband PMI wideband precoding information
  • first partial precoding information PMI1 indicating a wideband precoding matrix (weight, vector) W1
  • narrowband precoding A case will be described in which two types of narrowband precoding information (narrowband PMI, second partial precoding information) PMI2 indicating the matrix W2 are divided.
  • FIG. 6 is a diagram illustrating an example of a wideband precoding matrix and a narrowband precoding matrix used in the present embodiment.
  • the wideband precoding matrix in anchor base station 100 (first transmission path condition measurement reference signal) is W1a
  • the narrow band in anchor base station 100 (first transmission path condition measurement reference signal).
  • the precoding matrix is W2a
  • the wideband precoding matrix at the coordinated base station 300 (second transmission path condition measurement reference signal) is W1b
  • the narrowband pattern at the coordinated base station 300 (second transmission path condition measurement reference signal). Let the recording matrix be W2b.
  • the precoding unit in each base station When the precoding matrix as shown in FIG. 6 is set in each base station, the precoding unit in each base station performs operations based on the wideband precoding matrix and the narrowband precoding matrix (multiplication, division, addition,
  • f (x, y) represents a function of x and y.
  • the obtained precoding matrices Wa and Wb are respectively used for operations such as multiplication on the information data signal.
  • FIG. 7 is a diagram showing an example of wideband precoding information and narrowband precoding information used in the present embodiment.
  • wideband precoding information PMI1 common to the anchor base station 100 and the cooperative base station 300 and narrowband precoding information PMI2 common to the anchor base station 100 and the cooperative base station 300 are shown.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, broadband precoding information PMI1 and narrowband precoding information PMI2 as shown in FIG. 7 are generated.
  • Feedback information generation section 510 selects, for example, a combination of a candidate wideband precoding matrix and narrowband precoding matrix.
  • Feedback information generation section 510 multiplies the channel state estimated value by a precoding matrix obtained by an operation based on the selected wideband precoding matrix and narrowband precoding matrix.
  • Feedback information generation section 510 selects a precoding matrix that is suitable when anchor base station 100 and cooperative base station 300 perform cooperative communication, from among the combinations of candidate matrices.
  • Feedback information generating section 510 generates wideband precoding information PMI1 and narrowband precoding information PMI2 corresponding to the selected precoding matrix. At this time, feedback information generation section 510 selects a combination of wideband precoding matrix and narrowband precoding matrix that is common to anchor base station 100 and cooperative base station 300, respectively.
  • the mobile terminal 500 can change the generation method of the wideband precoding information PMI1 and the narrowband precoding information PMI2 according to the cooperative communication scheme.
  • the mobile terminal 500 preferably selects the precoding matrix so that the mobile terminal 500 can perform suitable reception.
  • the mobile terminal 500 precodes information data signals of other mobile terminals so as to reduce interference from the cooperative base station 300 with respect to the mobile terminal 500. It is preferable to select a matrix (including transmission power control). At that time, the mobile terminal 500 may further consider the reception state of the information data signal for the mobile terminal 500 in the anchor base station 100.
  • FIG. 8 is a diagram illustrating an example of the system bandwidth and the bandwidth part.
  • the system bandwidth is composed of 16 resource blocks.
  • the system bandwidth is composed of four bandwidth parts (BW (Bandwidth) parts). Each of the four bandwidth parts is composed of four resource blocks.
  • BW Bandwidth
  • the wideband precoding information indicates one precoding information in the system bandwidth.
  • the narrowband precoding information indicates one precoding information with a BW part width.
  • the feedback information generation unit 510 of the mobile terminal 500 may divide the BW part width into subbands and the like, and use precoding information in which one subband is selected from one BW part as narrowband precoding information. Further, even when the narrowband precoding information is generated for each BW part, the feedback information generation unit 510 may feed back all of the information or may feed back a part thereof. For example, the feedback information generation unit 510 can select and feed back one or more BW parts with good reception characteristics.
  • feedback information generation section 510 does not need to feed back narrowband precoding information.
  • the feedback information generation unit 510 can select a communication method such as a transmission diversity method. Further, feedback information generation section 510 can also use narrowband precoding information PMI2 as wideband feedback information. In this case, the feedback information generation unit 510 can improve scheduling flexibility and reception performance by frequency selectivity of the transmission path condition.
  • F A (i) B (j)
  • the mobile terminal 500 anchors i as wideband precoding information PMI1 and j as narrowband precoding information PMI2. Report to base station 100.
  • F is a matrix having a size of the number of layers ⁇ the number of antenna ports.
  • a and B are matrices of a predetermined size.
  • the matrix here is a concept including a vector or a scalar. As A and B, for example, any matrix uniquely determined by designating i and j as follows can be used.
  • a (i) Wi
  • B (j) V1 + V2 ⁇ j.
  • V1 and V2 are predetermined matrices composed of elements of 0 and 1
  • Wi is a matrix specified by a predetermined codebook
  • ⁇ j is a scalar specified by a predetermined codebook.
  • Wi and ⁇ j are matrices specified by a predetermined code book.
  • a (i) [Wi Wi]
  • B (j) ⁇ j.
  • Wi and ⁇ j are matrices specified by a predetermined code book.
  • U is a predetermined matrix
  • I is a unit matrix
  • Wi and ⁇ j are matrices specified by a predetermined codebook.
  • K (X, Y) is a Kronecker product of the matrix X and the matrix Y
  • XT is an operator representing a transposed matrix of the matrix X.
  • the preferred precoders represented by using the wideband precoding information PMI1 and the narrowband precoding information PMI2 are the precoders represented by the wideband precoding information PMI1 and the precoders represented by the narrowband precoding information PMI2. It can be expressed as a combined precoder.
  • FIG. 16 is an example of a code book used in the present embodiment.
  • the size of this code book is 16.
  • an index i that can be represented by 4 bits is uniquely determined.
  • FIG. 17 is an example of a code book used in the present embodiment.
  • the mobile terminal 500 uniquely determines ⁇ j corresponding to i by designating an index j that can be represented by 4 bits as the narrowband precoding information PMI2.
  • FIG. 18 is a schematic diagram of the precoding process used in this embodiment.
  • the signal point at each antenna port of each layer is displaced (here, the phase is rotated in the range of 0 to 2 ⁇ ) by Wi, which is the precoder represented by the wideband precoding information PMI1.
  • the signal point at each antenna port of each layer is displaced (here, the phase is rotated in the range of 0 to 2 ⁇ ) by ⁇ j, which is the precoder represented by the narrowband precoding information PMI2.
  • the mobile terminal 500 When the mobile terminal 500 first reports the wideband precoding information PMI1 to the anchor base station 100, the mobile terminal 500 uses a suitable precoder (from a codebook including a precoder group that gives a specific displacement to signal points at each antenna port of each layer. The precoder that is suitable for the signal point after applying the precoder is determined.
  • mobile terminal 500 uses a code book as shown in FIG. 16 as a code book used for determination of wideband precoding information PMI1.
  • mobile terminal 500 When mobile terminal 500 next reports narrowband precoding information PMI2 to anchor base station 100, mobile terminal 500 further applies the precoder to the signal point after applying the precoder represented by the reported wideband precoding information PMI1. From the code book, the precoder for which the signal point is suitable is determined.
  • the mobile terminal 500 reports the determined precoder index as narrowband precoding information PMI2.
  • the mobile terminal 500 uses a code book as shown in FIG. 17 as a code book used to determine the narrowband precoding information PMI2.
  • the signal point displacement shown in FIG. 18 is an example, and the present invention is not limited to this.
  • FIG. 9 is a flowchart of communication among the anchor base station 100, the cooperative base station 300, and the mobile terminal 500 used in the present embodiment.
  • the anchor base station 100 notifies the mobile terminal 500 of one or more coordinated base stations 300 for performing coordinated communication (step S901).
  • the anchor base station 100 can use various methods as the notification method.
  • the anchor base station 100 provides the mobile terminal 500 with the cell ID of the coordinated base station 300, the coordinated component carrier, information identifying frequency bands (including a list indicating information), and the like (including combinations thereof). You may be notified.
  • the anchor base station 100 directly designates the cooperative base station 300, so that flexible cooperative communication can be performed.
  • the anchor base station 100 may notify in association with other control information.
  • the anchor base station 100 since the anchor base station 100 does not directly specify the coordinated base station 300, the overhead of control information can be reduced.
  • the anchor base station 100 notifies the mobile terminal 500 of base stations that are candidates for cooperative communication with the mobile terminal 500 in advance and performs cooperative communication, the mobile terminal 500 selects the cooperative base station from the candidates. It can also be designated as station 300.
  • the anchor base station 100 can dynamically perform these notifications as control information by PDCCH, or can perform semi-static (quasi-static) as RRC signaling.
  • the anchor base station 100 transmits the first transmission path condition measurement reference signal CSIRSa to the mobile terminal 500 (step S902).
  • the cooperative base station 300 transmits the second transmission path condition measurement reference signal CSIRSb (step S903).
  • the mobile terminal 500 receives CSISa and CSIRSb.
  • the mobile terminal 500 generates the wideband precoding information PMI1 and the narrowband precoding information PMI2 as described in FIG. 7 based on the received CSIRSa and CSIRSb.
  • the mobile terminal 500 feeds back the generated wideband precoding information PMI1 and narrowband precoding information PMI2 to the anchor base station 100 (step S904).
  • the anchor base station 100 uses the wideband precoding matrix W1a in the anchor base station 100 and the narrowband precoding matrix in the anchor base station 100.
  • W2a, a wideband precoding matrix W1b in cooperative base station 300, and a narrowband precoding matrix W2b in cooperative base station 300 are generated.
  • the anchor base station 100 notifies the cooperative base station 300 of the information data signal data, the wideband precoding matrix W1b, and the narrowband precoding matrix W2b for the mobile terminal 500 (step S905).
  • the anchor base station 100 may notify the wideband precoding information PMI1 and the narrowband precoding information PMI2, or the precoding matrix obtained by calculating the wideband precoding matrix W1b and the narrowband precoding matrix W2b. You may be notified.
  • the anchor base station 100 calculates a signal (for example, g (W1a, w2a, data) calculated based on the wideband precoding matrix W1a, the narrowband precoding matrix W2a, and data, where g (x, y , Z) transmits a function having x, y, z as parameters to the mobile terminal 500 (step S906).
  • anchor base station 100 transmits to mobile terminal 500 a signal obtained by multiplying data by a precoding matrix obtained by multiplying wideband precoding matrix W1a and narrowband precoding matrix W2a.
  • the coordinated base station 300 uses the signals (for example, g (W1b) obtained based on the wideband precoding matrix W1b, the narrowband precoding matrix W2b, and data. , W2b, data) is transmitted to the mobile terminal 500 (step S907).
  • signals for example, g (W1b) obtained based on the wideband precoding matrix W1b, the narrowband precoding matrix W2b, and data. , W2b, data
  • W2b, data is transmitted to the mobile terminal 500 (step S907).
  • cooperative base station 300 transmits to mobile terminal 500 a signal obtained by multiplying data by a precoding matrix obtained by multiplying wideband precoding matrix W1b and narrowband precoding matrix W2b.
  • the transmission quality is improved without increasing feedback information, compared with the case where the coordinated communication is not performed. Can be realized. Further, even when the anchor base station 100 and the cooperative base station 300 perform cooperative communication, the feedback method can be made the same as the feedback method when the cooperative communication is not performed. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information.
  • RI, wideband precoding information PMI1, narrowband precoding information PMI2, and CQI have been described as independent feedback information. However, all or part of them may be combined into one piece of information. For example, it can be realized by joint coding. Specifically, RI and wideband precoding information PMI1 may be combined into one piece of information by joint coding.
  • the reference signal for demodulating the data signal has been described using a combination of CDM and FDM using orthogonal codes.
  • the present invention is not limited to this.
  • any signal (sequence) can be used as the reference signal for data signal demodulation as long as both the base station and the mobile terminal are known signals.
  • a random number or pseudo-noise sequence for example, M
  • a pre-assigned parameter such as a number unique to the base station (cell ID) and a number unique to the mobile terminal (RNTI; Radio Network Temporary Identifier) (Maximum-length) sequences, Gold codes, orthogonal Gold codes, Walsh codes, OVSF (Orthogonal Variable Spreading Factor) codes, Hadamard codes, Barker codes, etc.
  • M random number or pseudo-noise sequence
  • a pre-assigned parameter such as a number unique to the base station (cell ID) and a number unique to the mobile terminal (RNTI; Radio Network Temporary Identifier) (Maximum-length) sequences, Gold codes, orthogonal Gold codes, Walsh codes, OVSF (Orthogonal Variable Spreading Factor) codes, Hadamard codes, Barker codes, etc.
  • a sequence that is cyclically shifted or a sequence that is cyclically expanded can also be used as a reference signal for data signal demodulation, or a search for a sequence with excellent autocorrelation characteristics or cross-correlation characteristics using a computer, etc. Can be used as a reference signal for data signal demodulation. That.
  • the data signal demodulation reference signal generation unit 113 sets the resource elements that map the data signal demodulation reference signal to null between layers as a method of orthogonalizing the data signal demodulation reference signal between layers.
  • a method for example, time division multiplexing or frequency division multiplexing
  • a code division multiplexing method using a pseudo noise sequence, or the like can be used.
  • the communication system in the present embodiment includes an anchor base station 100, a coordinated base station 300, and a mobile terminal 500 similar to those in the communication system in the first embodiment.
  • the processing in the precoding unit 305 and the feedback information generation unit 510 in the mobile terminal 500 is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • FIG. 10 is a diagram showing an example of wideband precoding information and narrowband precoding information used in the present embodiment.
  • FIG. 10 shows wideband precoding information PMI1 common to the anchor base station 100 and the coordinated base station 300 and narrowband precoding information PMI2 of the anchor base station 100. It is assumed that the narrowband precoding matrix W2b of the cooperative base station 300 is defined (fixed) in advance.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, broadband precoding information PMI1 and narrowband precoding information PMI2 as shown in FIG. 10 are generated.
  • the feedback information generation unit 510 selects, for example, a combination of a wideband precoding matrix and a narrowband precoding matrix that are candidates, and multiplies the channel state estimated value by a precoding matrix obtained by calculating them.
  • Feedback information generation section 510 selects a precoding matrix that is suitable for cooperative communication among candidate combinations.
  • Feedback information generating section 510 generates wideband precoding information PMI1 and narrowband precoding information PMI2 corresponding to the selected precoding matrix. In this case, feedback information generation section 510 selects the common wideband precoding matrix W1a and wideband precoding matrix W1b in anchor base station 100 and cooperative base station 300. Further, feedback information generation section 510 uses a precoding matrix defined in advance as narrowband precoding matrix W2b of cooperative base station 300.
  • the anchor base station 100 uses the wideband precoding matrix W1a in the anchor base station 100 and the narrowband precoding matrix in the anchor base station 100. W2a, a wideband precoding matrix W1b in the cooperative base station 300 is generated. The anchor base station 100 notifies the precoding information regarding the cooperative base station 300 to the cooperative base station 300 through the X2 interface or the like.
  • Precoding section 105 in anchor base station 100 determines a precoding matrix based on wideband precoding matrix W1a and narrowband precoding matrix W2a.
  • Precoding section 305 in cooperative base station 300 determines a precoding matrix based on wideband precoding matrix W1b and narrowband precoding matrix W2b.
  • Anchor base station 100 and cooperative base station 300 perform cooperative communication using the determined precoding matrix.
  • the transmission quality is improved without increasing feedback information, compared with the case where the coordinated communication is not performed. Can be realized.
  • the feedback method can be made the same as the feedback method when the cooperative communication is not performed. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information.
  • the mobile terminal 500 can make the precoding process in the anchor base station 100 different from the precoding process in the cooperative base station 300. Therefore, the anchor base station 100 and the cooperative base station 300 can realize flexible precoding processing. Therefore, the anchor base station 100 and the cooperative base station 300 can improve the reception performance in the mobile terminal 500.
  • the narrowband precoding matrix of the cooperative base station 300 is defined in advance.
  • the present invention is not limited to this.
  • Various methods can be used as a method for fixing the narrowband precoding matrix of the coordinated base station 300.
  • the precoding matrix to be fixed may be notified dynamically or semi-statically from the network side such as the anchor base station 100 to the mobile terminal 500.
  • a plurality of precoding matrices may be defined in advance, and the mobile terminal 500 may select from the plurality of precoding matrices. In this case, the mobile terminal 500 may select a precoding matrix in association with information identifying subframes, resource blocks, cell IDs, component carriers, and the like.
  • any of the precoding matrices that are candidates may be restricted, and the mobile terminal 500 may select from the restricted precoding matrices.
  • the mobile terminal 500 can operate a part of the precoding matrices semi-fixed.
  • the mobile terminal 500 can dynamically or quasi-statically switch whether or not to fix.
  • the switching method may be notified directly from the network side such as the anchor base station 100, or may be defined for each other parameter such as a feedback mode.
  • the narrowband precoding matrix of the cooperative base station 300 is defined in advance.
  • the narrowband precoding matrix of the anchor base station 100 may be defined in advance.
  • the wideband precoding matrix of anchor base station 100 or cooperative base station 300 may be defined in advance, in which case the wideband precoding information of anchor base station 100 and cooperative base station 300 is shared as narrowband precoding information PMI2. It may be.
  • the communication system in the present embodiment includes an anchor base station 100, a coordinated base station 300, and a mobile terminal 500 similar to those in the communication system in the first embodiment.
  • the processing in the precoding unit 305 and the feedback information generation unit 510 in the mobile terminal 500 is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • FIG. 11 is a diagram showing an example of wideband precoding information and narrowband precoding information used in the present embodiment.
  • FIG. 11 shows narrowband precoding information PMI2 that is common to the anchor base station 100 and the coordinated base station 300.
  • the wideband precoding matrix W1a and the wideband precoding matrix W1b of the anchor base station 100 and the coordinated base station 300 are respectively defined (fixed) in advance.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, narrowband precoding information PMI2 as shown in FIG. 11 is generated.
  • the feedback information generation unit 510 selects, for example, a combination of a wideband precoding matrix and a narrowband precoding matrix that are candidates, and multiplies the channel state estimated value by a precoding matrix obtained by calculating them.
  • Feedback information generation section 510 selects a precoding matrix that is suitable for cooperative communication among candidate combinations.
  • Feedback information generating section 510 generates wideband precoding information PMI1 and narrowband precoding information PMI2 corresponding to the selected precoding matrix.
  • feedback information generation section 510 selects a common narrowband precoding matrix W2a and narrowband precoding matrix W2b in anchor base station 100 and cooperative base station 300.
  • feedback information generation section 510 uses pre-defined precoding matrices as wideband precoding matrix W1a and wideband precoding matrix W1b in anchor base station 100 and cooperative base station 300, respectively.
  • the anchor base station 100 generates a narrowband precoding matrix W2a in the anchor base station 100 and a narrowband precoding matrix W2b in the coordinated base station 300 based on the narrowband precoding information PMI2 fed back from the mobile terminal 500.
  • the anchor base station 100 notifies the precoding information regarding the cooperative base station 300 to the cooperative base station 300 through the X2 interface or the like.
  • Precoding section 105 in anchor base station 100 determines a precoding matrix based on wideband precoding matrix W1a and narrowband precoding matrix W2a.
  • Precoding section 305 in cooperative base station 300 determines a precoding matrix based on wideband precoding matrix W1b and narrowband precoding matrix W2b.
  • Anchor base station 100 and cooperative base station 300 perform cooperative communication with mobile terminal 500 using the determined precoding matrix.
  • the mobile terminal 500 can make the feedback method the same as the feedback method of the system that feeds back only one type of information related to the precoding information PMI. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information. Also, the mobile terminal 500 can make the precoding process in the anchor base station 100 different from the precoding process in the cooperative base station 300. Therefore, the anchor base station 100 and the cooperative base station 300 can realize flexible precoding processing. Therefore, the anchor base station 100 and the cooperative base station 300 can improve the reception performance in the mobile terminal 500.
  • the present invention is not limited to this.
  • Various methods can be used to fix the wideband precoding matrix W1a and the wideband precoding matrix W1b.
  • the precoding matrix to be fixed may be notified dynamically or semi-statically from the network side such as the anchor base station 100 to the mobile terminal 500.
  • a plurality of precoding matrices may be defined in advance, and the mobile terminal 500 may select from the plurality of precoding matrices. In this case, the mobile terminal 500 may select a precoding matrix in association with information identifying subframes, resource blocks, cell IDs, component carriers, and the like.
  • any of the precoding matrices that are candidates may be restricted, and the mobile terminal 500 may select from the restricted precoding matrices.
  • the mobile terminal 500 can operate with some precoding matrices being semi-fixed.
  • the mobile terminal 500 can dynamically or quasi-statically switch whether or not to fix. The switching method may be notified directly from the network side such as the anchor base station 100, or may be defined for each other parameter such as a feedback mode.
  • the present invention is not limited to this.
  • the narrowband precoding matrix W2a and the narrowband precoding matrix W2b may be defined in advance, and in this case, the wideband precoding matrix W1a and the wideband precoding matrix W1b may be shared as the wideband precoding information PMI1. .
  • the fourth embodiment of the present invention will be described below.
  • the communication system in the present embodiment includes an anchor base station 100, a coordinated base station 300, and a mobile terminal 500 similar to those in the communication system in the first embodiment.
  • the processing in the precoding unit 305 and the feedback information generation unit 510 in the mobile terminal 500 is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • FIG. 12 is a diagram showing an example of wideband precoding information and narrowband precoding information used in the present embodiment.
  • FIG. 12 shows wideband precoding information PMI1 of the anchor base station 100 and narrowband precoding information PMI2 of the anchor base station 100. It is assumed that the wideband precoding matrix W1b and the narrowband precoding matrix W2b of the coordinated base station 300 are respectively defined (fixed) in advance.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, broadband precoding information PMI1 and narrowband precoding information PMI2 as shown in FIG. 12 are generated.
  • the feedback information generation unit 510 selects, for example, a combination of a wideband precoding matrix and a narrowband precoding matrix that are candidates, and multiplies the channel state estimated value by a precoding matrix obtained by calculating them.
  • Feedback information generation section 510 selects a precoding matrix that is suitable for cooperative communication among candidate combinations.
  • Feedback information generating section 510 generates wideband precoding information PMI1 and narrowband precoding information PMI2 corresponding to the selected precoding matrix. In this case, feedback information generating section 510 uses pre-defined precoding matrices as wideband precoding matrix W1b and narrowband precoding matrix W2b of cooperative base station 300.
  • the anchor base station 100 uses the wideband precoding matrix W1a in the anchor base station 100 and the narrowband precoding matrix in the anchor base station 100. W2a is generated.
  • the anchor base station 100 may not notify the coordinated base station 300 of the precoding regarding the coordinated base station 300, but may notify it. In this case, the reliability of cooperative communication can be improved.
  • Precoding section 105 in anchor base station 100 determines a precoding matrix based on wideband precoding matrix W1a and narrowband precoding matrix W2a.
  • Precoding section 305 in cooperative base station 300 determines a precoding matrix based on wideband precoding matrix W1b and narrowband precoding matrix W2b.
  • Anchor base station 100 and cooperative base station 300 perform cooperative communication with mobile terminal 500 using the determined precoding matrix.
  • the transmission quality is improved without increasing feedback information, compared with the case where the coordinated communication is not performed. Can be realized.
  • the feedback method can be made the same as the feedback method when the cooperative communication is not performed. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information.
  • the mobile terminal 500 can make the precoding process in the anchor base station 100 different from the precoding process in the cooperative base station 300. Therefore, the anchor base station 100 and the cooperative base station 300 can realize flexible precoding processing. Therefore, the anchor base station 100 and the cooperative base station 300 can improve the reception performance in the mobile terminal 500.
  • the mobile terminal 500 when transmission from the cooperative base station 300 is stopped (including power control such as lowering power), the mobile terminal 500 assumes that there is no signal from the cooperative base station 300. Feedback information (including RI and CQI) can be generated. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information. Further, when a base station adjacent to the anchor base station performs transmission diversity with respect to other mobile terminals, the mobile terminal 500 can also assume such a base station as the cooperative base station 300.
  • the present invention is not limited to this.
  • Various methods can be used to fix the wideband precoding matrix W1b and the narrowband precoding matrix W2b.
  • the precoding matrix to be fixed may be notified dynamically or semi-statically from the network side such as the anchor base station 100 to the mobile terminal 500.
  • a plurality of precoding matrices may be defined in advance, and the mobile terminal 500 may select from the plurality of precoding matrices.
  • the mobile terminal 500 may select a precoding matrix in association with information identifying subframes, resource blocks, cell IDs, component carriers, and the like. Also, any of the precoding matrices that are candidates may be restricted, and the mobile terminal 500 may select from the restricted precoding matrices. In this case, the mobile terminal 500 can operate with some precoding matrices being semi-fixed. Also, the mobile terminal 500 can dynamically or quasi-statically switch whether or not to fix. The switching method may be notified directly from the network side such as the anchor base station 100, or may be defined for each other parameter such as a feedback mode.
  • the wideband precoding matrix W1b and the narrowband precoding matrix W2b are defined in advance.
  • the present invention is not limited to this.
  • the wideband precoding matrix W1a and the narrowband precoding matrix W2a may be defined in advance.
  • the wideband precoding matrix W1b and the narrowband precoding matrix W2b of some of the base stations may be defined in advance.
  • the fifth embodiment of the present invention will be described below.
  • the communication system in the present embodiment includes an anchor base station 100, a coordinated base station 300, and a mobile terminal 500 similar to those in the communication system in the first embodiment.
  • the processing in the precoding unit 305 and the feedback information generation unit 510 in the mobile terminal 500 is different. Below, it demonstrates centering on a different part from 1st Embodiment.
  • FIG. 13 is a diagram showing an example of wideband precoding information and narrowband precoding information used in the present embodiment.
  • FIG. 13 shows narrowband precoding information PMI2a in the anchor base station 100 and narrowband precoding information PMI2b in the coordinated base station 300.
  • narrowband precoding matrix W1a in anchor base station 100 and wideband precoding matrix W1b in cooperative base station 300 are defined (fixed) in advance.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, narrowband precoding information PMI2a and narrowband precoding information PMI2b as shown in FIG. 13 are generated.
  • the feedback information generation unit 510 selects, for example, a combination of a wideband precoding matrix and a narrowband precoding matrix that are candidates, and multiplies the channel state estimated value by a precoding matrix obtained by calculating them.
  • Feedback information generation section 510 selects a precoding matrix that is suitable for cooperative communication among candidate combinations.
  • Feedback information generating section 510 generates narrowband precoding information PMI2a and narrowband precoding information PMI2b corresponding to the selected precoding matrix.
  • feedback information generation section 510 uses pre-defined precoding matrices as wideband precoding matrix W1a and wideband precoding matrix W1b in anchor base station 100 and cooperative base station 300.
  • Anchor base station 100 generates narrowband precoding matrix W2a and narrowband precoding matrix W2b based on narrowband precoding information PMI2a and narrowband precoding information PMI2b fed back from mobile terminal 500.
  • the anchor base station 100 notifies the precoding information regarding the cooperative base station 300 to the cooperative base station 300 through the X2 interface or the like.
  • Precoding section 105 in anchor base station 100 determines a precoding matrix based on wideband precoding matrix W1a and narrowband precoding matrix W2a.
  • Precoding section 305 in cooperative base station 300 determines a precoding matrix based on wideband precoding matrix W1b and narrowband precoding matrix W2b.
  • Anchor base station 100 and cooperative base station 300 perform cooperative communication with mobile terminal 500 using the determined precoding matrix.
  • the anchor base station 100 and the cooperative base station 300 perform cooperative communication, wideband precoding information and narrowband precoding information are compared with a case where cooperative communication is not performed. Can improve the transmission quality without increasing the feedback information. Further, even when the anchor base station 100 and the cooperative base station 300 perform cooperative communication, the feedback method can be made the same as the feedback method when the cooperative communication is not performed. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information. Also, the mobile terminal 500 can make the precoding process in the anchor base station 100 different from the precoding process in the cooperative base station 300. Therefore, the anchor base station 100 and the cooperative base station 300 can realize flexible precoding processing. Therefore, the anchor base station 100 and the cooperative base station 300 can improve the reception performance in the mobile terminal 500.
  • the present invention is not limited to this.
  • Various methods can be used to fix the wideband precoding matrix W1a and the wideband precoding matrix W1b.
  • the precoding matrix to be fixed may be notified dynamically or semi-statically from the network side such as the anchor base station 100 to the mobile terminal 500.
  • a plurality of precoding matrices may be defined in advance, and the mobile terminal 500 may select from the plurality of precoding matrices. In this case, the mobile terminal 500 may select a precoding matrix in association with information identifying subframes, resource blocks, cell IDs, component carriers, and the like.
  • any of the precoding matrices that are candidates may be restricted, and the mobile terminal 500 may select from the restricted precoding matrices.
  • the mobile terminal 500 can operate with some precoding matrices being semi-fixed.
  • the mobile terminal 500 can dynamically or quasi-statically switch whether or not to fix. The switching method may be notified directly from the network side such as the anchor base station 100, or may be defined for each other parameter such as a feedback mode.
  • the present invention is not limited to this.
  • the narrowband precoding matrix W2a and the narrowband precoding matrix W2b may be defined in advance, and in this case, the wideband precoding information of the anchor base station 100 and the cooperative base station 300 is narrowband precoding information PMI2a and narrowband precoding information PMI2a, respectively.
  • the band precoding information PMI2b may be used.
  • mobile terminal 500 may feed back wideband precoding matrix W1a and wideband precoding matrix W1b in addition to narrowband precoding matrix W2a and narrowband precoding matrix W2b.
  • the reception performance in the mobile terminal 500 can be further improved.
  • the precoding matrix (W1a and / or W2a) of the anchor base station 100 and the precoding matrix (W1b and / or W2b) of the coordinated base station 300 may be generated independently of each other.
  • the cooperative communication (dynamic cell selection etc.) of the structure which the anchor base station 100 or the cooperation base station 300 selects the data transmission with respect to the mobile terminal 500 is realizable.
  • the sixth embodiment of the present invention will be described below.
  • the communication system in the present embodiment includes an anchor base station 100, a coordinated base station 300, and a mobile terminal 500 similar to those in the communication system in the first embodiment, but the precoding unit 105 and the coordinated base station 300 in the anchor base station 100.
  • the processing in the precoding unit 305 and the feedback information generation unit 510 in the mobile terminal 500 is different.
  • the precoding information PMI to be fed back is long-interval precoding information instead of the wideband precoding information PMI1, and short-interval precoding information instead of the narrowband precoding information PMI2.
  • the long interval variation precoding information is referred to as “long interval variation precoding information PMI1 ′”
  • the short interval variation precoding information is referred to as “short interval variation precoding information PMI2 ′”.
  • both the long interval variable precoding information PMI1 'and the short interval variable precoding information PMI2' may be wideband precoding information or narrowband precoding information.
  • the long interval variation precoding information PMI1 ′ has a longer feedback period than the short interval variation precoding information PMI2 ′, and the long interval variation precoding information PMI1 ′ and the short interval variation precoding information PMI2 ′ A case where the information is also wideband precoding information will be described.
  • FIG. 14 is a diagram showing an example of the long interval variable precoding information PMI1 'and the short interval variable precoding information PMI2' used in the present embodiment. Further, FIG. 14 shows long-period variable precoding information PMI1 ′ common to the anchor base station 100 and the coordinated base station 300 and short-period variable precoding information PMI2 ′ common to the anchor base station 100 and the coordinated base station 300. Show.
  • the feedback information generation unit 510 in the mobile terminal 500 uses the first transmission path condition measurement reference signal from the anchor base station 100 and the second transmission path condition measurement reference signal from the coordinated base station 300. Based on this, long section variation precoding information PMI1 ′ and short section variation precoding information PMI2 ′ as shown in FIG. 14 are generated.
  • FIG. 15 is a flowchart of the anchor base station 100, the cooperative base station 300, and the mobile terminal 500 used in the present embodiment.
  • the anchor base station 100 notifies the mobile terminal 500 of one or more cooperative base stations 300 for performing cooperative communication with the mobile terminal 500 (step S1501).
  • the anchor base station 100 transmits the first first transmission path condition measurement reference signal CSIRSa (1) to the mobile terminal 500 (step S1502).
  • the coordinated base station 300 transmits the first second transmission path condition measurement reference signal CSIRSb (1) to the mobile terminal 500 (step S1503).
  • the mobile terminal 500 receives CSIRa (1) and CSIRSb (1).
  • the mobile terminal 500 generates first long interval variable precoding information PMI1 '(1) and first short interval variable precoding information PMI2' (1) as precoding information as described in FIG.
  • the mobile terminal 500 feeds back the generated first long interval variable precoding information PMI1 ′ (1) and first short interval variable precoding information PMI2 ′ (1) to the anchor base station 100 (step S1504 and step S1504). S1505).
  • the mobile terminal 500 may feed back the long interval variable precoding information PMI1 '(1) and the short interval variable precoding information PMI2' (1) simultaneously.
  • the anchor base station 100 determines the first wideband precoding information in the anchor base station 100 based on the long interval variable precoding information PMI1 ′ (1) and the short interval variable precoding information PMI2 ′ (1) fed back from the mobile terminal 500. Recording matrix W1a (1), first narrowband precoding matrix W2a (1) at anchor base station 100, first wideband precoding matrix W1b (1) at coordinated base station 300, first matrix at coordinated base station 300 A narrowband precoding matrix W2b (1) is generated. The anchor base station 100 notifies the cooperative base station 300 of the first information data signal data (1), the wideband precoding matrix W1b (1), and the narrowband precoding matrix W2b (1) for the mobile terminal 500. (Step S1506).
  • the anchor base station 100 may notify the coordinated base station 300 of the long interval variable precoding information PMI1 ′ (1) and the short interval variable precoding information PMI2 ′ (1), or wideband precoding.
  • the precoding matrix obtained by calculating the matrix W1b (1) and the narrowband precoding matrix W2b (1) may be notified to the coordinated base station 300.
  • the anchor base station 100 transmits signals obtained based on the wideband precoding matrix W1a (1), the narrowband precoding matrix W2a (1), and data (1) (for example, g (W1a (1), w2a (1), signal (1)), where g (x, y, z) is a function with x, y, z as parameters) is transmitted to the mobile terminal 500 (step S1507).
  • the anchor base station 100 transmits a signal obtained by multiplying data (1) by a precoding matrix obtained by multiplying a wideband precoding matrix W1a (1) and a narrowband precoding matrix W2a (1).
  • cooperative base station 300 is based on wideband precoding matrix W1b (1), narrowband precoding matrix W2b (1), and data (1).
  • the obtained signal (for example, a signal calculated by g (W1b (1), w2b (1), data (1))) is transmitted to the mobile terminal 500 (step S1508).
  • the coordinated base station 300 transmits, for example, a signal obtained by multiplying data (1) by a precoding matrix obtained by multiplying a wideband precoding matrix W1b (1) and a narrowband precoding matrix W2b (1) to the mobile terminal 500. To send.
  • the anchor base station 100 transmits the second first transmission path condition measurement reference signal CSIRSa (2) to the mobile terminal 500 (step S1509).
  • the coordinated base station 300 transmits the second second transmission path condition measurement reference signal CSIRSb (2) to the mobile terminal 500 (step S1510).
  • the mobile terminal 500 receives CSISa (2) and CSIRSb (2).
  • the mobile terminal 500 generates second short interval variation precoding information PMI2 '(2) based on CSIRa (2) and CSIRSb (2).
  • the mobile terminal 500 feeds back the generated second short interval variation precoding information PMI2 '(2) to the anchor base station 100 (step S1511).
  • the mobile terminal 500 sets the long-interval precoding matrix in the anchor base station 100 and the coordinated base station 300 as the wide-band precoding matrix W1a (1) and the wide-band precoding matrix W1b (1), respectively.
  • Information PMI2 ′ (2) is generated.
  • the anchor base station 100 determines the second narrowband precoding matrix W2a (2) in the anchor base station 100, the coordinated base station 300 based on the short interval variation precoding information PMI2 ′ (2) fed back from the mobile terminal 500. Generates the second narrowband precoding matrix W2b (2).
  • the anchor base station 100 notifies the cooperative base station 300 of the second information data signal data (2), the wideband precoding matrix W1b (1), and the narrowband precoding matrix W2b (2) for the mobile terminal 500. (Step S1512). Note that, when the wideband precoding matrix W1b (1) is known, the anchor base station 100 can omit the notification of the wideband precoding matrix W1b (1). If the mobile terminal 500 cannot correctly receive the data (1) transmitted in steps S1507 and S1508, the anchor base station 100 may retransmit data (1) as data (2).
  • the anchor base station 100 transmits a signal obtained based on the wideband precoding matrix W1a (1), the narrowband precoding matrix W2a (2), and data (2) to the mobile terminal 500 (step S1513). Also, using the same resource transmitted by anchor base station 100 in step S1513, coordinated base station 300 is based on wideband precoding matrix W1b (1), narrowband precoding matrix W2b (2), and data (2). The obtained signal is transmitted to mobile terminal 500 (step S1514).
  • the transmission quality is improved without increasing feedback information, compared with the case where the coordinated communication is not performed. Can be realized. Further, even when the anchor base station 100 and the cooperative base station 300 perform cooperative communication, the feedback method can be made the same as the feedback method when the cooperative communication is not performed. Therefore, the mobile terminal 500 can efficiently transmit data when transmitting feedback information. In addition, the mobile terminal 500 can perform flexible scheduling while suppressing feedback overhead and improve reception performance in the mobile terminal 500 by using a plurality of precoding information with different feedback periods.
  • the long interval variable precoding information PMI1 ′ and the short interval variable precoding information PMI2 ′ have been described as precoding information common to the anchor base station 100 and the coordinated base station 300.
  • the present invention can be applied even when some precoding matrices are defined in advance. In that case, the same effect as described in the second to fifth embodiments can be obtained.
  • the base station mentioned here may be a physical base station apparatus in a cellular system, but in addition to this, a set of transmitting apparatuses (including relay apparatuses) that cooperate while extending cells. (A first transmitter and a second transmitter), or a set of transmitters that cooperate while transmitting reference signals for transmission path status measurement using different antenna ports (a first port and a second port).
  • a first transmitter and a second transmitter or a set of transmitters that cooperate while transmitting reference signals for transmission path status measurement using different antenna ports (a first port and a second port).
  • an anchor base station and a coordinated base station can be used. In these cases, the same effects as those in the above embodiments can be obtained.
  • the anchor base station is a base station device in a cellular system
  • the cooperative base station is a transmission device controlled by the anchor base station (for example, RRU (Remote Radio Unit), RRE (Remote Radio Equipment), and Distributed antenna).
  • the cooperative base station may be a base station apparatus in a cellular system
  • the anchor base station may be a transmission apparatus controlled and operated by the cooperative base station.
  • both the anchor base station and the coordinated base station may be transmission devices that are controlled and operated by a physical base station device in the cellular system.
  • the cooperative communication between the anchor base station and the cooperative base station has been described mainly in the case where the cooperative base station is adjacent to the anchor base station, but the present invention is not limited to this.
  • the communication area of the anchor base station and the communication area of the cooperative base station overlap all or partly as in a heterogeneous network, the same effects described in the above embodiments can be obtained.
  • all or part of the component carriers (carrier frequencies) of the respective base stations may overlap.
  • the anchor base station is a macro cell
  • the cooperative base station is a pico cell or a femto cell (Home eNodeB)
  • the communication area of a pico cell or femto cell that is smaller than the macro cell communication area is a communication of the macro cell (anchor base station). Applicable even when overlapping in an area.
  • resource elements and resource blocks are used as mapping units for information data signals, control information signals, PDSCH, PDCCH, and reference signals, and subframes and radio frames are used as transmission units in the time direction.
  • mapping units for information data signals, control information signals, PDSCH, PDCCH, and reference signals
  • subframes and radio frames are used as transmission units in the time direction.
  • a port equivalent to the MIMO layer is used as a port corresponding to the precoding-processed reference signal RS.
  • the present invention is not limited to this.
  • the same effect can be obtained by applying the present invention to ports corresponding to different reference signals.
  • Unprecoded RS is used instead of Precoded RS, and a port equivalent to an output end after precoding processing or a port equivalent to a physical antenna (or a combination of physical antennas) can be used as a port.
  • a program that operates in the anchor base station 100, the cooperative base station 300, and the mobile terminal 500 according to the present invention is a program that controls a CPU or the like (a program that causes a computer to function so as to realize the functions of the above-described embodiments according to the present invention. ). Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs. The functions of the invention may be realized.
  • the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • Each functional block of the anchor base station 100, the cooperative base station 300, and the mobile terminal 500 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • 100 anchor base station 101, 301 coding section, 102, 302 scramble section, 103, 303 modulation section, 104, 304 layer mapping section, 105, 305 precoding section, 106, 306 resource element mapping section, 107, 307 OFDM signal Generator, 108, 308, 512, 1703, 1714, transmission antenna, 109, 309, transmission path condition measurement reference signal generator, 110, 501, 1704, 1711, reception antenna, 111, received signal processor, 112, 1705, feedback information processing , 113, 313, data signal demodulation reference signal generator, 300 cooperative base station, 500, 1603, 1710, 1803, mobile terminal, 502 OFDM signal demodulator, 503 resource element demapping Unit, 504 filter unit, 505 layer demapping unit, 506 demodulation unit, 507 descrambling unit, 508 decoding unit, 509 propagation path estimation unit, 510, 1713 feedback information generation unit, 511 transmission signal generation unit, 1601, 1602, 1700, 1801, 1802 base station, 17

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 複数の伝送路状況測定用参照信号を送信する通信システムにおいて、主にフィードバック制御やプレコーディング制御に関し、効率的に適応制御を行う。移動端末は、第1の伝送路状況測定用参照信号および第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定し、第1の伝送路状況および第2の伝送路状況に基づいて、複数のプレコーディング情報を基地局へのフィードバック情報として生成する。

Description

移動端末装置、基地局装置、通信システム、および通信方法
 本発明は、基地局装置および移動端末装置から構成される通信システム、移動端末装置、基地局装置、および通信方法に関する。
 例えば、LTE(Long Term Evolution)、LTE-Advanced、WiMAX(Worldwide Interoperability for Microwave Access)のような移動無線通信システムでは、基地局(送信局、送信装置、eNodeB)がカバーするエリアをセル状に複数配置するセルラー構成とすることにより、通信エリアを拡大することができる。また、隣接するセル(セクタ)間で異なる周波数を用いることによって、セルエッジ領域にいる移動端末(受信局、移動局、受信装置、UE(User Equipment))でも干渉を受けることなく通信を行うことができる。しかしながら、隣接するセル間で異なる周波数を用いる場合、周波数利用効率に関する課題があった。一方、それぞれのセル(セクタ)において同一周波数を繰返し利用することにより、周波数利用効率を大幅に向上させることができる。しかしながら、この場合、セルエッジ(セル端)領域にいる移動端末に対する干渉の対策が必要となる。
 このような状況において、隣接セル間で互いに協調するセル間協調通信を行うことにより、セルエッジ領域の移動端末に対する干渉を軽減または抑圧する方法が検討されている。例えば、以下の非特許文献1には当該方式として、CoMP(Cooperative Multipoint)伝送方式などが検討されている。
 図19は、セル端領域に位置する移動端末1603が基地局1601および基地局1602と通信を行っている一例を示す図である。図19を参照して、移動端末1603は、基地局1601と基地局1602とにおけるそれぞれのセル端領域(境界領域)に位置している。基地局1601と基地局1602とは協調して移動端末1603と通信を行っている。移動端末1603は、基地局1601から伝送路状況測定用参照信号1604を受信し、基地局1602から伝送路状況測定用参照信号1605を受信する。
 移動端末1603は、伝送路状況測定用参照信号1604および伝送路状況測定用参照信号1605を用いることによって、基地局1601および基地局1602と移動端末1603との間の伝送路状況を推定できる。移動端末1603は、当該伝送路状況の推定結果に基づいて、変調方式および符号化率(MCS(Modulation and Coding Scheme))、空間多重数(レイヤー、ランク)、プレコーディング重み(プレコーディング行列)などを適応的に制御することによって、より効率的なデータ伝送を実現することができる。例えば、移動端末1603は、以下の非特許文献2で記載された方法を用いた制御ができる。
 図20は、基地局1700から移動端末1710へのデータ伝送を行う下り回線(ダウンリンク、下りリンク)を考えた場合における、適応制御を行うための一例を示すブロック図である。基地局1700は、まず、多重部1702において、基地局固有の伝送路状況測定用参照信号(RS(Reference Signal)、パイロット信号、既知信号)を、移動端末1710のためのデータ信号または他の移動端末のためのデータ信号に多重して、送信アンテナ1703から送信する。
 移動端末1710は、分離部1712において、受信アンテナ1711で受信した信号から伝送路状況測定用参照信号を分離する。移動端末1710は、フィードバック情報生成部1713において、分離された伝送路状況測定用参照信号に基づいて、変調方式および符号化率、空間多重数、プレコーディング行列などを適応的に制御するためのフィードバック情報を生成する。フィードバック情報生成部1713は、さらに、送信アンテナ1714から上り回線(アップリンク、上りリンク)を通じて、生成したフィードバック情報を送信する。
 基地局1700は、フィードバック情報処理部1705において、受信アンテナ1704が受信した信号から移動端末1710が送信したフィードバック情報を識別し、当該識別したフィードバック情報を処理する。適応制御部1701は、受信したフィードバック情報に基づいて、移動端末1710に対するデータ信号に対して適応制御を行う。
 図21は、協調通信によるデータ伝送を示す図である。図21を参照して、移動端末1803は、基地局1801および基地局1802から送信された協調通信によるデータ信号1804を受信する。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9)、3GPP TR 36.814 V9.0.0(2010-03)、2010年3月 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access(E-UTRA);Physical layer procedures(Release 8)、3GPP TS 36.213 V8.8.0(2009-09)、2009年9月
 協調通信を行うことができる通信システムのように、複数の伝送路状況測定用参照信号を送信する通信システムにおいて、移動端末は、当該複数の伝送路状況測定用参照信号に基づいて、フィードバック情報を生成する。当該通信システムにおいて、特に協調通信する場合、移動端末は、適切なフィードバック情報を効率的に生成する必要がある。また、特に協調通信する通信システムにおいて、基地局は、移動端末からのフィードバック情報に基づいた適切なプレコーディング制御を効率的に行う必要がある。
 しかしながら、複数の伝送路状況測定用参照信号を送信する通信システムにおいて、上記のような適切なフィードバック情報の効率的な生成および適切なプレコーディング制御を効率的に行うことは明らかにされていない。このため、当該通信システムにおいては、フィードバック情報の生成およびプレコーディング制御が、伝送効率の向上を妨げる要因となる。
 本発明は、このような事情に鑑みてなされたものであり、複数の伝送路状況測定用参照信号を送信する通信システムにおいて、主にフィードバック制御やプレコーディング制御に関し、適応制御を効率的に行うことのできる移動端末装置、基地局装置、通信システム、および通信方法を提供することを目的とする。
 (1)本発明のある局面に従うと、移動端末装置は、第1の伝送路状況測定用参照信号および第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定する測定部と、第1の伝送路状況および第2の伝送路状況に基づいて、1または複数のプレコーディング情報を基地局装置へのフィードバック情報として生成する生成部とを備える。
 (2)好ましくは、生成部は、前記複数のプレコーディング情報として、広帯域プレコーディング情報および狭帯域プレコーディング情報を生成する。
 (3)好ましくは、生成部は、前記複数のプレコーディング情報として、長区間変動プレコーディング情報および短区間変動プレコーディング情報を生成する。
 (4)好ましくは、生成部は、第1の伝送路状況と第2の伝送路状況とに対して共通に用いられるプレコーディング行列に基づいて、1または複数のプレコーディング情報をフィードバック情報として生成する。
 (5)好ましくは、生成部は、第1の伝送路状況および記第2の伝送路状況に対する複数のプレコーディング行列の少なくとも1つを予め規定されたプレコーディング行列とし、複数のプレコーディング行列のうち予め規定されたプレコーディング行列以外のプレコーディング行列に基づいて、1つ以上のプレコーディング情報を前記フィードバック情報として生成する。
 (6)本発明の他の局面に従うと、移動端末装置は、第1の基地局装置から第1の伝送路状況測定用参照信号を受信し、第1の基地局装置と協調通信を行う第2の基地局装置から第2の伝送路状況測定用参照信号を受信する受信部と、第1の伝送路状況測定用参照信号および第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定する測定部と、第1の伝送路状況および第2の伝送路状況に基づいて、1または複数のプレコーディング情報をフィードバック情報として生成する生成部と、フィードバック情報として生成された1または複数のプレコーディング情報を、第1の基地局装置へ送信する送信部とを備える。
 (7)本発明のさらに他の局面に従うと、通信システムは、第1の伝送路状況測定用参照信号を送信する第1の基地局装置と、第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号を送信する第2の基地局装置と、第1の伝送路状況測定用参照信号および第2の伝送路状況測定用参照信号に基づいて第1の伝送路状況および第2の伝送路状況を測定し、第1の伝送路状況および第2の伝送路状況に基づいて1または複数のプレコーディング情報をフィードバック情報として生成する移動端末装置とを備える。
 (8)好ましくは、第1の基地局装置は、複数のプレコーディング情報に基づいて、プレコーディング処理を行う。
 (9)本発明のさらに他の局面に従うと、通信システムは、複数のプレコーディング行列に基づいてプレコーディング処理を行う第1の基地局装置と、複数のプレコーディング行列に基づいてプレコーディング処理を行う第2の基地局装置と、第1の基地局装置および第2の基地局装置によって協調通信が行われる移動端末装置とを備える。
 (10)本発明のさらに他の局面に従うと、通信方法は、移動端末装置が、第1の伝送路状況測定用参照信号および第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定するステップと、移動端末装置が、第1の伝送路状況および第2の伝送路状況に基づいて、1または複数のプレコーディング情報を基地局装置へのフィードバック情報として生成するステップとを備える。
 (11)本発明のさらに他の局面に従うと、通信方法は、第1の基地局装置が、第1の伝送路状況測定用参照信号を送信するステップと、第2の基地局装置が、第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号を送信するステップと、移動端末装置が、第1の伝送路状況測定用参照信号および前記第2の伝送路状況測定用参照信号に基づいて第1の伝送路状況および第2の伝送路状況を測定するステップと、移動端末装置が、第1の伝送路状況および第2の伝送路状況に基づいて、1または複数のプレコーディング情報を少なくとも第1の基地局装置へのフィードバック情報として生成するステップを備える。
 (12)本発明のさらに他の局面に従うと、通信方法は、第1の基地局装置が、複数のプレコーディング行列に基づいてプレコーディング処理を行うステップと、第2の基地局装置が、複数のプレコーディング行列に基づいてプレコーディング処理を行うステップと、第1の基地局装置および第2の基地局装置が移動体端末に対して協調通信を行うステップとを備える。
 本発明によれば、複数の伝送路状況測定用参照信号を送信する通信システムにおいて、主にフィードバック制御やプレコーディング制御に関し、適応制御を効率的に行うことができる。
本発明の第1の実施形態に係るアンカー基地局の構成を示す概略ブロック図である。 レイヤーマッピング部およびリソースエレメントマッピング部がマッピングするデータ信号復調用参照信号、第1の伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。 本発明の第1の実施形態に係る協調基地局の構成を示す概略ブロック図である。 レイヤーマッピング部およびリソースエレメントマッピング部がマッピングするデータ信号復調用参照信号、第2の伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。 本発明の第1の実施形態に係る移動端末の構成を示す概略ブロック図である。 本発明の第1の実施形態で用いる広帯域プレコーディング行列および狭帯域プレコーディング行列の一例を示す図である。 本発明の第1の実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。 システム帯域と帯域幅パートの一例を示す図である。 本発明の第1の実施形態で用いるアンカー基地局と、協調基地局と、移動端末との間の通信のフロー図である。 本発明の第2の実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。 本発明の第3の実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。 本発明の第4の実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。 本発明の第5の実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。 本発明の第6の実施形態で用いる長区間変動プレコーディング情報および短区間変動プレコーディング情報の一例を示す図である。 本発明の第6の実施形態で用いるアンカー基地局と、協調基地局と、移動端末との間の通信のフロー図である。 本発明の第1の実施形態で用いるコードブックの一例である。 本発明の第1の実施形態で用いるコードブックの一例である。 本発明の第1の実施形態で用いるプレコーディング処理の概略図である。 セル端領域に位置する移動端末が基地局および他の基地局と通信を行っている一例を示す図である。 基地局から移動端末へのデータ伝送を行う下り回線(ダウンリンク、下りリンク)を考えた場合の適応制御を行う一例を示すブロック図である。 協調通信によるデータ伝送を示す図である。
 以下、本発明の各実施形態について図面を参照して説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 [第1の実施形態]
 以下、本発明の第1の実施形態について説明する。本第1の実施形態における通信システムは、移動端末(端末装置,受信点,受信端末,受信装置,第3の通信装置,受信アンテナ群,受信アンテナポート群,UE)と、基地局(送信装置,セル,送信点,送信アンテナ群,送信アンテナポート群,コンポーネントキャリア,eNodeB)として、アンカー基地局(第1の基地局装置,第1の通信装置,サービング基地局,プライマリー基地局,第1のコンポーネントキャリア,第1の伝送路状況測定用参照信号)および協調基地局(第2の基地局装置,協調基地局群,協調基地局セット,第2の通信装置,セカンダリー基地局,第2のコンポーネントキャリア,第2の伝送路状況測定用参照信号)とを備える。
 図1は、本発明の第1の実施形態に係るアンカー基地局100の構成を示す概略ブロック図である。アンカー基地局100は、移動端末からのフィードバック情報を受信する基地局、移動端末500に対する制御情報(例えばPDCCH(Physical Downlink Control Channel)などで送信する情報)を送信する基地局などである。アンカー基地局100は、後述する協調基地局300(図3参照)と協調して、移動端末500と通信を行う基地局の1つである。以下、アンカー基地局100と当該アンカー基地局100に協調した協調基地局300とによる移動端末500に対する通信を、「協調通信」と称する。
 図1を参照して、アンカー基地局100は、符号部101と、スクランブル部102と、変調部103と、レイヤーマッピング部104と、プレコーディング部105(第1のプレコーディング部)と、リソースエレメントマッピング部106と、OFDM信号生成部107と、送信アンテナ108(送信アンテナポート)と、データ信号復調用参照信号生成部113と、伝送路状況測定用参照信号生成部109(第1の伝送路状況測定用参照信号生成部)と、受信アンテナ110と、受信信号処理部111と、フィードバック情報処理部112とを備えている。
 受信アンテナ110は、移動端末500から送信されたフィードバック情報を含むデータ信号を、上り回線(例えばPUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)など)を通して受信する。
 受信信号処理部111は、受信アンテナ110が受信した信号に対して、OFDM(Orthogonal Frequency Division Multiplexing)復調処理、信号復調処理、復号処理など、移動端末500が送信のために行った送信処理に対する受信処理を行う。また、受信信号処理部111は、受信した信号の中から、フィードバック情報を識別し、フィードバック情報処理部112に出力する。なお、当該アンカー基地局100と通信を行う移動端末500が複数存在する場合は、上り回線(すなわち移動端末500から基地局200への信号伝送)として、SC-FDMA(Single carrier-frequency division multiple access)、Clustered DFT-S-OFDM(Discrete Fourier Transform-Spread-OFDM)、OFDMA、時間分割多元接続、符号分割多元接続など様々な多元接続方式を用いて、移動端末500のデータ信号を多重できる。
 また、アンカー基地局100は、移動端末500毎のフィードバック情報を識別する方法として、様々な方法を用いることができる。例えば、アンカー基地局100は、各移動端末500がフィードバック情報を送信するリソース(時間、周波数、符号、空間領域などで分割された信号伝送するための要素)を指定する。移動端末500は、当該指定されたリソースでフィードバック情報を送信する。これにより、アンカー基地局100は、移動端末500毎のフィードバック情報を識別できる。また、それぞれのフィードバック情報に移動端末500毎に固有の識別番号などを付加することによっても、移動端末500毎のフィードバック情報の識別を実現できる。
 フィードバック情報処理部112は、入力されたフィードバック情報に基づいて、当該移動端末500へ送信するデータ信号に対して様々な適応制御を行うための適応制御情報を生成する。受信した信号にアンカー基地局100に対するフィードバック情報が含まれる場合、フィードバック情報処理部112は、アンカー基地局100における適応制御情報を生成する。フィードバック情報処理部112は、生成した適応制御情報を、アンカー基地局100における符号部101、変調部103、レイヤーマッピング部104、プレコーディング部105、リソースエレメントマッピング部106に出力する。また、フィードバック情報処理部112は、適応制御情報を図示しない上位層に出力してもよい。
 さらに、受信した信号に協調基地局300に対するフィードバック情報が含まれる場合、フィードバック情報処理部112は、後述する協調基地局300における符号部601、変調部603、レイヤーマッピング部604、リソースエレメントマッピング部606に対する適応制御情報を生成する。フィードバック情報処理部112は、生成した適応制御情報を、X2インターフェースなどの回線(好ましくは光ファイバなどの有線回線やリレー技術等を用いた固有の無線回線)を通じて、協調基地局300へ出力する。
 なお、基地局同士を接続する回線は、アンカー基地局100から協調基地局300への適応制御情報を通信する場合以外にも様々な用途で用いることができる。例えば、基地局同士を接続する回線は、協調基地局300からアンカー基地局100に対して、協調通信を行うための基地局情報および/または制御情報などを通信することもできる。また、受信した信号に各基地局に対するフィードバック情報が含まれない場合は、フィードバック情報処理部112は、予め規定された処理を実行してもよい。
 次に、フィードバック情報に基づいた適応制御の方法を説明する。フィードバック情報としては様々な情報を用いることができる。以下では、基地局に対する推奨送信フォーマット情報(インプリシット伝送路状況情報)と、伝送路状況(伝送路状態,伝送チャネル)を示す情報(エクスプリシット伝送路状況情報)とを用いる場合を説明する。
 まず、フィードバック情報として、基地局に対する推奨送信フォーマット情報を用いる場合、基地局および移動端末共に既知の送信フォーマットが予めインデックス化されているものとする。また、移動端末は、当該送信フォーマットを用いた情報をフィードバックし、基地局は当該情報を用いて適応制御する。
 具体的には、CQI(Channel Quality Indicator)は符号化率および変調方式を示す情報であるため、フィードバック情報処理部112は、CQIによって符号部および変調部を制御できる。PMI(Precoding Matrix Index)はプレコーディング行列を示す情報(以下、「プレコーディング情報PMI」とも称する)であるため、フィードバック情報処理部112は、プレコーディング情報PMIによってプレコーディング部を制御できる。RI(Rank Indicator)はレイヤー数を示す情報であるため、フィードバック情報処理部112は、RIによってレイヤーマッピング部およびコードワードを生成する上位層を制御できる。また、受信した信号にリソースへのマッピングに関するフィードバック情報も含まれる場合、フィードバック情報処理部112は、当該フィードバック情報によって、リソースエレメントマッピング部を制御することもできる。ここで、プレコーディング情報PMIはデータ伝送の方法、目的、用途などに応じて、複数種類に分けることもできる。プレコーディング情報PMIの詳細は後述する。
 次に、フィードバック情報として伝送路状況を示す情報を用いる場合、移動端末は、基地局からの伝送路状況測定用参照信号を用いて、基地局との伝送路状況の情報をフィードバックする。その際、移動端末は、固有値分解や量子化などの様々な方法を用いて、情報量を削減することもできる。基地局は、フィードバックされた伝送路状況の情報を用いて、端末装置に対する制御を行う。例えば、基地局は、フィードバックされた情報に基づいて、移動端末が好適な受信ができるように、符号化率および変調方式、レイヤー数、並びにプレコーディング行列を決定できる。また、基地局は、当該決定の方法として、様々な方法を用いることができる。
 符号部101には、図示しない送信装置の上位層の処理装置から、移動端末に送信する1以上のコードワード(送信データ信号、情報データ信号)が入力される。符号部101は、各コードワードを、ターボ符号、畳込み符号、LDPC(Low Density Parity Check)符号などの誤り訂正符号により符号化する。符号部101は、符号化した各コードワードを、スクランブル部102に出力する。コードワードは、HARQ(Hybrid Automatic Repeat reQuest)などの再送制御を行う処理単位、誤り訂正符号化を行う処理単位、あるいはそれらの単位を複数まとめたものなどとすることができる。
 スクランブル部102は、基地局毎、移動端末毎などに異なるスクランブル符号を生成する。スクランブル部102は、符号部101が符号化した信号に対して、生成したスクランブル符号を用いてスクランブル処理を行う。
 変調部103は、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)などの変調方式を用いて、スクランブル処理を行った信号に変調処理を行う。変調部103は、変調処理した信号を、レイヤーマッピング部104に出力する。
 データ信号復調用参照信号生成部113は、移動端末500で情報データ信号を復調するための参照信号として、各レイヤー間で直交または準直交するデータ信号復調用参照信号(Dm-RS(Demodulation Reference Signal),DRS (Dedicated Reference Signal),Precoded RS,ユーザ固有参照信号,UE-specific RS)を生成する。データ信号復調用参照信号生成部113は、生成したデータ信号復調用参照信号を、レイヤーマッピング部104に出力する。
 データ信号復調用参照信号は、移動端末500に対する情報データ信号と共にプレコーディング処理が行われる。また、データ信号復調用参照信号生成部113は、Walsh符号などの直交符号による符号分割多重(CDM;Code Division Multiplexing)および周波数分割多重(FDM;Frequency Division Multiplexing)のいずれか用いて、または符号分割多重と周波数分割多重とを併用して、各レイヤーのデータ信号復調用参照信号を直交させる。また、データ信号復調用参照信号生成部113は、データ信号復調用参照信号を、移動端末500に対するレイヤー数に応じて変えることができる。具体的には、データ信号復調用参照信号生成部113は、レイヤー数が1または2のときは、符号長が2の直交符号を用いて符号分割多重する。データ信号復調用参照信号生成部113は、レイヤー数が3または4のときは、符号長が2の直交符号を用いた符号分割多重と、周波数分割多重とを併用する。データ信号復調用参照信号生成部113は、レイヤー数が5~8のときは、符号長が4の直交符号を用いた符号分割多重と、周波数分割多重とを併用する。また以下では、データ信号復調用参照信号を符号分割多重するグループを、「CDMグループ」と呼ぶ。
 レイヤーマッピング部104は、データ信号復調用参照信号生成部113から入力されたデータ信号復調用参照信号を、MIMO(Multi-Input Multi-Output)などの空間多重を行うレイヤーの各々にマッピングする。さらに、レイヤーマッピング部104は、データ信号復調用参照信号を除いたリソースエレメントに、それぞれの変調部103が出力した信号を、レイヤー毎にマッピングする。例えば、コードワード数が2で、レイヤー数を8であるとすると、レイヤーマッピング部104は、各コードワードを4つの並列信号に変換することでレイヤー数を8にする。なお、これに限るものではない。
 プレコーディング部105は、レイヤーマッピング部104が出力した信号をプレコーディング処理することにより、アンテナポート(送信アンテナ、論理ポート)数の並列信号に変換する。ここで、プレコーディング処理においては、移動端末500が効率よく受信できるように(例えば、受信電力が最大になるように、または隣接セルからの干渉が小さくなるように、または隣接セルへの干渉が小さくなるように)、レイヤーマッピング部104が出力した信号に対して位相回転などを行うことが好ましい。また、予め決められたプレコーディング行列による処理、CDD(Cyclic Delay Diversity)、送信ダイバーシチ(SFBC(Spatial Frequency Block Code),STBC(Spatial Time Block Code),TSTD (Time Switched Transmission Diversity),FSTD(Frequency Switched Transmission Diversity)など)を用いることができる。なお、これに限るものではない。ここで、プレコーディング情報PMIが複数種類に分けられたものがフィードバックされた場合、プレコーディング部105は、当該複数のプレコーディング情報PMIに基づいて、プレコーディング処理を行うことができる。その詳細については後述する。
 伝送路状況測定用参照信号生成部109は、アンカー基地局100と移動端末500との間の伝送路状況(第1の伝送路状況)を測定するために、アンカー基地局100および移動端末500で互いに既知の第1の伝送路状況測定用参照信号(セル固有参照信号,CRS(Common RS),Cell-specific RS,Non-precoded RS)を生成する。伝送路状況測定用参照信号生成部109は、生成した第1の伝送路状況測定用参照信号を、リソースエレメントマッピング部106に出力する。このとき、アンカー基地局100および移動端末500が共に既知の信号であれば、第1の伝送路状況測定用参照信号としては、任意の信号(系列)を用いることができる。例えば、当該任意の信号(系列)として、アンカー基地局100に固有の番号(セルID)などの予め割り当てられているパラメータに基づいた乱数または疑似雑音系列を用いることができる。また、アンテナポート間で直交させる方法として、第1の伝送路状況測定用参照信号をマッピングするリソースエレメントをアンテナポート間で互いにヌル(ゼロ)とする方法、疑似雑音系列を用いた符号分割多重する方法、またはそれらを組み合わせた方法などを用いることができる。
 リソースエレメントマッピング部106は、プレコーディング部105が出力した送信データ信号、伝送路状況測定用参照信号生成部109が出力した伝送路状況測定用参照信号を、それぞれのアンテナポートのリソースエレメントにマッピングする。なお、移動端末500が制御情報信号を復調するための参照信号をさらに生成し、リソースエレメントマッピング部106がマッピングすることもできる。
 図2は、リソースエレメントマッピング部106がマッピングするデータ信号復調用参照信号、第1の伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。詳しくは、図2は、アンカー基地局100のアンテナポート数が8、データ信号復調用参照信号のCDMグループ数が2のときに、当該各信号をマッピングした場合を示している。図2を参照して、1つのサブフレーム内に2つのリソースブロックが含まれる。1つのリソースブロックは、周波数方向における12のサブキャリアと、時間方向における7のOFDMシンボルとで構成される。1つのOFDMシンボルのうち、各サブキャリアをリソースエレメントとも呼ぶ。各サブフレームのうち、時間方向に前後の7つのOFDMシンボルをそれぞれスロットとも呼ぶ。
 図中の色付けしたリソースエレメントのうち、CDMグループ番号1~2のデータ信号復調用参照信号をそれぞれD1~D2と、アンテナポート1~8の伝送路状況測定用参照信号をそれぞれC1~C8として表している。さらに、リソースエレメントマッピング部106は、図中の参照信号をマッピングしたリソースエレメント以外のリソースエレメントに、情報データ信号または制御情報信号をマッピングする。なお、この例では、情報データ信号または制御情報信号のレイヤー数は最大8とすることができる。例えば、情報データ信号のレイヤー数を2、制御情報信号のレイヤー数を1とすることができる。
 リソースエレメントマッピング部106は、通信システムが用いる周波数帯域幅(システム帯域幅)に応じて、リソースブロックの数を変えることができる。例えば、リソースエレメントマッピング部106は、6~110個のリソースブロックを用いることができる。さらに、リソースエレメントマッピング部106は、周波数アグリゲーションにより、全システム帯域幅を110個以上にすることも可能である。通常、コンポーネントキャリアは、100個の物理リソースブロックで構成される。コンポーネントキャリア間にガードバンドを挟んで、5個のコンポーネントキャリアを用いることにより、全システム帯域幅を500個の物理リソースブロックにすることができる。これを、帯域幅で表現すると、例えば、コンポーネントキャリアを20MHzで構成し、コンポーネントキャリア間にガードバンドを挟んで、5個のコンポーネントキャリアを用いることにより、全システム帯域幅を100MHzにすることができる。
 再び、図1を参照して、OFDM信号生成部107は、リソースエレメントマッピング部が出力した周波数領域の信号を、逆高速フーリエ変換(IFFT(Inverse Fast Fourier Transform))などにより周波数時間変換処理を行うことによって、時間領域の信号に変換する。さらに、OFDM信号生成部107は、各OFDMシンボルの一部を巡回的に拡張することでガードインターバル(サイクリックプレフィックス)を付加する。送信アンテナ108は、OFDM信号生成部107が出力した信号(ベースバンド帯域の信号)を無線周波数帯域への信号に変換する処理などを行う。送信アンテナ108は、当該変換処理後の信号を送信する。
 図3は、協調基地局300の構成を示す概略ブロック図である。協調基地局300は、移動端末500に対する協調通信を行う基地局のうち、図1で説明したアンカー基地局100を除いた基地局である。
 図3を参照して、協調基地局300は、符号部301と、スクランブル部302と、変調部303と、レイヤーマッピング部304と、プレコーディング部305(第2のプレコーディング部)と、リソースエレメントマッピング部306と、OFDM信号生成部307と、送信アンテナ308と、伝送路状況測定用参照信号生成部309と、データ信号復調用参照信号生成部313(第2の伝送路状況測定用参照信号生成部)とを備えている。
 協調基地局300と図1で説明したアンカー基地局100との違いは、協調基地局300では、移動端末500からのフィードバック情報を受信するための各部が省略されていることである。さらに、符号部301、変調部303、レイヤーマッピング部304、プレコーディング部305、およびリソースエレメントマッピング部306のそれぞれを適応制御するための適応制御情報が、アンカー基地局100からX2インターフェースなどの回線を通じて協調基地局300に入力される。また、協調基地局300からも移動端末500に対する情報データ信号を送信する協調通信方式(例えば、Joint Transmission、Dynamic Cell Selectionなど)では、アンカー基地局100から移動端末500に対する情報データ信号もX2インターフェースなどの回線を通じて協調基地局300に入力される。
 以下では、協調基地局300の動作に関して、図1で説明したアンカー基地局100と異なる部分を中心に説明する。
 プレコーディング部305は、移動端末500に対する協調通信方式によって、異なる動作をできる。まず、ジョイント送信(Joint Transmission)またはジョイントプロセッシング(Joint Processing)などのような協調基地局300からも移動端末500に対する情報データ信号を送信する協調通信方式では、プレコーディング部305は、アンカー基地局100と協調して移動端末500が好適な受信ができるようにプレコーディング処理を行うことが好ましい。また、協調スケジューリング(Coordinated Scheduling)または協調ビームフォーミング(Coordinated Beamforming)などのような協調通信方式では、プレコーディング部305は、移動端末500に対する協調基地局300からの干渉を低減させるように、他の移動端末の情報データ信号に対してプレコーディング処理(送信電力制御も含む)を行うことが好ましい。
 伝送路状況測定用参照信号生成部309は、協調基地局300と移動端末500との間の伝送路状況(第2の伝送路状況)を測定するために、協調基地局300および移動端末500で互いに既知の第2の伝送路状況測定用参照信号(セル固有参照信号、CRS(Common RS)、Cell-specific RS、Non-precoded RS)を生成する。伝送路状況測定用参照信号生成部309は、生成した第2の伝送路状況測定用参照信号を、リソースエレメントマッピング部306に出力する。このとき、協調基地局300および移動端末500が共に既知の信号であれば、第2の伝送路状況測定用参照信号としては、任意の信号(系列)を用いることができる。例えば、当該任意の信号(系列)として、協調基地局300に固有の番号(セルID)などの予め割り当てられているパラメータに基づいた乱数または疑似雑音系列を用いることができる。また、アンテナポート間で直交させる方法として、第2の伝送路状況測定用参照信号をマッピングするリソースエレメントをアンテナポート間で互いにヌル(ゼロ)とする方法、疑似雑音系列を用いた符号分割多重する方法などを用いることができる。
 図4は、レイヤーマッピング部304およびリソースエレメントマッピング部306がマッピングするデータ信号復調用参照信号、第2の伝送路状況測定用参照信号、情報データ信号または制御情報信号の一例を示す図である。ここで、データ信号復調用参照信号に対して、プレコーディング部305によって上述したプレコーディング処理が行われる。また、第2の伝送路状況測定用参照信号は、図2で説明した第1の伝送路状況測定用参照信号に対して周波数分割多重するようにマッピングされる。図2の例では、1サブキャリア分の周波数方向にシフトしている。各伝送路状況測定用参照信号をマッピングする位置は、制御情報(RRC(Radio Resource Control)シグナリングも含む)として、移動端末500に通知または報知してもよい。また、各伝送路状況測定用参照信号をマッピングする位置は、セルIDなどの他の制御情報に基づいて移動端末500が識別できるようにしてもよい。また、複数のアンテナポートのうち、1つのアンテナポートに対する伝送路状況測定用参照信号がマッピングする位置のみを通知または報知または識別できるようにし、当該位置に基づいて、他のアンテナポートに関しても識別できるようにすることもできる。
 なお、この場合、リソースエレメントマッピング部306は、アンカー基地局100および協調基地局300がマッピングする情報データ信号または制御情報信号のうち、第2の伝送路状況測定用参照信号および第1の伝送路状況測定用参照信号がマッピングされるリソースエレメントを、それぞれミューティング(ゼロ、ヌル)してもよい。すなわち、リソースエレメントマッピング部306は、アンカー基地局100がマッピングする情報データ信号または制御情報信号のうち、協調基地局300がマッピングする第2の伝送路状況測定用参照信号のリソースエレメントをミューティングしてもよい。また、リソースエレメントマッピング部306は、協調基地局300がマッピングする情報データ信号または制御情報信号のうち、アンカー基地局100がマッピングする第1の伝送路状況測定用参照信号のリソースエレメントをミューティングしてもよい。なお、ミューティングするリソースエレメントは全部またはその一部でもよい。
 リソースエレメントマッピング部306がミューティングすることにより、移動端末500は、協調通信をする場合の伝送路状況を効率よく推定することができる。ミューティングの方法としては、たとえば、情報データ信号または制御情報信号をマッピングした後、協調する他の基地局の伝送路状況測定用参照信号がマッピングされるリソースエレメントの信号を間引く方法が挙げられる(パンクチャリング)。また、他の方法として、協調する他の基地局の伝送路状況測定用参照信号がマッピングされるリソースエレメントを避けるように情報データ信号または制御情報信号をマッピングする方法が挙げられる(レートマッチング)。
 図5は、移動端末500の構成を示す概略ブロック図である。図5を参照して、移動端末500は、受信アンテナ501(受信アンテナポート)と、OFDM信号復調部502と、リソースエレメントデマッピング部503と、フィルタ部504(伝搬路変動補償部、等化部、干渉除去部、干渉低減部)と、レイヤーデマッピング部505と、復調部506と、デスクランブル部507と、復号部508と、伝搬路推定部509と、フィードバック情報生成部510(伝送路状況測定部)と、送信信号生成部511と、送信アンテナ512とを備えている。
 移動端末500は、少なくとも1つの受信アンテナ数(受信アンテナポート数)の受信アンテナ501を備えている。受信アンテナ501は、アンカー基地局100および協調基地局300により送信された、伝送路(伝搬路、チャネル)を通った信号を受信する。受信アンテナ501は、受信した信号(無線周波数帯域の信号)をベースバンド信号に変換する処理などを行う。
 OFDM信号復調部502は、ベースバンド信号から付加したガードインターバルを除去する。OFDM信号復調部502は、ガードインターバルが除去されたベースバンド信号を、高速フーリエ変換(FFT; Fast Fourier Transform)などにより時間周波数変換処理を行うことによって、周波数領域の信号に変換する。
 リソースエレメントデマッピング部503は、アンカー基地局100および協調基地局300でマッピングした信号をデマッピング(分離)する。リソースエレメントデマッピング部503は、デマッピングにより、情報データ信号をフィルタ部504に出力する。また、リソースエレメントデマッピング部503は、第1の伝送路状況測定用参照信号および第2の伝送路状況測定用参照信号をフィードバック情報生成部510に出力する。さらに、リソースエレメントデマッピング部503は、データ信号復調用参照信号を伝搬路推定部509に出力する。また、制御情報信号は、移動端末500全体(上位層も含む)で共有される。制御情報信号は、情報データ信号の復調など、移動端末500における様々な制御に用いられる(図示しない)。
 伝搬路推定部509は、入力されたデータ信号復調用参照信号に基づいて、各受信アンテナ501の各レイヤー(ランク、空間多重)に対する、それぞれのリソースエレメントにおける振幅および位相の変動(周波数応答、伝達関数)を推定(伝搬路推定)するこよによって、伝搬路推定値を求める。なお、伝搬路推定部509は、データ信号復調用参照信号がマッピングされていないリソースエレメントについては、データ信号復調用参照信号がマッピングされたリソースエレメントに基づいて、周波数方向および時間方向に補間することにより、伝搬路推定を行う。当該補間方法としては、線形補間、放物線補間、多項式補間、ラグランジュ補間、スプライン補間、FFT補間、最小平均二乗誤差(MMSE(Minimum Mean Square Error))補間などの様々な方法を用いることができる。
 フィルタ部504は、リソースエレメントデマッピング部503が出力した受信アンテナ501毎のデータ信号に対して、伝搬路推定部509が出力した伝搬路推定値を用いた伝搬路補償を行うことにより、レイヤー毎の情報データ信号を検出(復元)する。当該検出方法としては、ZF(Zero Forcing)基準またはMMSE基準の等化、干渉除去などを用いることができる。また、その他の検出方法として、MLD(Maximum Likelihood Detection)に基づく方法(例えば、QRM-MLD(QR decomposition and M-algorithm MLD)など)、SIC(Successive Interference Cancellation)に基づく方法(例えば、Turbo SIC、MMSE-SIC、ZF-SIC、BLAST(Bell laboratories layered space-time architecture)など)、PIC(Parallel Interference Cancellation)に基づく方法なども適用できる。
 レイヤーデマッピング部505は、レイヤー毎の信号を、それぞれのコードワードに対してデマッピング処理を行う。以降、コードワード毎に処理が行なわれる。復調部506は、アンカー基地局100および/または協調基地局300で用いた変調方式に基づいて復調を行う。デスクランブル部507は、アンカー基地局100および/または協調基地局300で用いたスクランブル符号に基づいて、デスクランブル処理を行う。復号部508は、アンカー基地局100および/または協調基地局300で施した符号化方法に基づいた誤り訂正復号処理を行い、当該処理結果を移動端末500の上位層の処理装置へ出力する。
 一方、フィードバック情報生成部510は、リソースエレメントデマッピング部503が出力した各基地局からの伝送路状況測定用参照信号に基づいて、フィードバック情報を生成する。フィードバック情報を生成する方法は、以下のとおりである。フィードバック情報生成部510は、受信した伝送路状況測定用参照信号を用いて、各基地局における送信アンテナの移動端末500における受信アンテナ501に対する伝送路状況を基地局毎(伝送路状況測定用参照信号毎)に測定することによって、基地局毎(伝送路状況測定用参照信号毎)の伝送路状況測定値を生成する。次に、フィードバック情報生成部510は、生成した伝送路状況推定値に基づいて、フィードバック情報を生成する。
 また、フィードバック情報を生成する単位として、周波数方向(例えば、サブキャリア毎、リソースエレメント毎、リソースブロック毎、複数のリソースブロックで構成されるサブバンド毎など)、時間方向(例えば、OFDMシンボル毎、サブフレーム毎、スロット毎、無線フレーム毎など)、空間方向(例えば、アンテナポート毎、送信アンテナ毎、受信アンテナ毎など)などを用いることができる。さらに、フィードバック情報を生成する単位として、当該周波数方向、当該時間方向、および当該空間方向の2つ以上の組み合わせることもできる。
 また、フィードバック情報生成部510は、フィードバック情報として、基地局に対する推奨送信フォーマット情報を生成する場合、当該推奨送信フォーマット情報の生成には様々な方法を用いることができる。例えば、まず、フィードバック情報生成部510は、生成した伝送路状況推定値に基づいて、固有値分解などを用いることによって、空間多重できる最大レイヤー数を求める。フィードバック情報生成部510は、求めた最大レイヤー数に基づき、RIを生成する。フィードバック情報生成部510は、生成したRIおよび伝送路状況推定値に基づいて、好適な受信ができるようなプレコーディング行列などを推定する。フィードバック情報生成部510は、推定したプレコーディング行列に基づき、プレコーディング情報PMIを生成する。フィードバック情報生成部510は、プレコーディング情報PMIの生成に、例えば、候補となるプレコーディング行列を生成した伝送路状況推定値に乗算し、協調通信をしたときに好適となるプレコーディング行列を用いてもよい。また、フィードバック情報生成部510は、固有値分解などを用いて、好適なプレコーディング行列を選択してもよい。
 次に、フィードバック情報生成部510は、生成したRI,プレコーディング情報PMIおよび伝送路状況推定値に基づいて、情報データ信号に対する変調方式および符号化率を選択する。フィードバック情報生成部510は、選択した変調方式および符号化率に基づいて、CQIを生成する。フィードバック情報生成部510は、例えば、(i)受信信号電力対干渉・雑音電力比(SINR(Signal to Interference plus Noise power Ratio))、受信信号電力対干渉電力比(SIR(Signal to Interference power Ratio))、受信信号電力対雑音電力比(SNR(Signal to Noise power Ratio))、パスロスなどを測定し、(ii)当該各測定値に対して所要品質を満たすCQIのルックアップテーブルを予め設定しておき、(iii)協調通信を行う時のSINRを求め、(iv)当該予め設定されたルックアップテーブルからCQIを生成してもよい。
 送信信号生成部511は、フィードバック情報生成部510が出力したフィードバック情報をアンカー基地局400に送信(フィードバック)するために、符号化処理、信号変調処理、OFDM信号生成処理などを行うことによって送信信号を生成する。送信アンテナ512は、送信信号生成部511が生成したフィードバック情報を含む送信信号を上り回線(PUCCHまたはPUSCH)を通じて、アンカー基地局100および/または協調基地局300に送信する。
 また、以上のような生成したフィードバック情報をアンカー基地局100および/または協調基地局300にフィードバックする方法としては、例えば、アンカー基地局100が指定したPUCCHを通じて、複数のサブフレームに分けて、送信することができる。また、移動端末500は、アンカー基地局100が指定したPUSCHを通じて、生成したフィードバック情報の全てまたはその一部を1つのサブフレームで送信することもできる。その際、移動端末500は、移動端末500からの情報データ信号と共に上記生成したフィードバック情報を送信してもよい。
 以下では、本実施形態で用いるプレコーディング処理およびプレコーディング情報PMIのフィードバックについて説明する。本実施形態では、各基地局に対するプレコーディング情報PMIを、広帯域プレコーディング行列(重み、ベクトル)W1を示す広帯域プレコーディング情報(広帯域PMI,第1の部分プレコーディング情報)PMI1と、狭帯域プレコーディング行列W2を示す狭帯域プレコーディング情報(狭帯域PMI,第2の部分プレコーディング情報)PMI2との2種類に分けた場合を説明する。
 図6は、本実施形態で用いる広帯域プレコーディング行列および狭帯域プレコーディング行列の一例を示す図である。図6を参照して、アンカー基地局100(第1の伝送路状況測定用参照信号)における広帯域プレコーディング行列をW1a、アンカー基地局100(第1の伝送路状況測定用参照信号)における狭帯域プレコーディング行列をW2a、協調基地局300(第2の伝送路状況測定用参照信号)における広帯域プレコーディング行列をW1b、協調基地局300(第2の伝送路状況測定用参照信号)における狭帯域プレコーディング行列をW2bとする。
 各基地局において、図6に示すようなプレコーディング行列が設定された場合、各基地局におけるプレコーディング部は、広帯域プレコーディング行列および狭帯域プレコーディング行列に基づいた演算(乗算、除算、加算、減算、クロネッカー演算、重み付け演算、選択など)を行うことによって、情報データ信号に対するプレコーディング行列Wを決定する。すなわち、各基地局におけるプレコーディング部は、W=f(W1,W2)により求める。ただし、f(x,y)はxおよびyの関数を示す。
 以下では、上記に演算の一例として、広帯域プレコーディング行列を狭帯域プレコーディング行列に乗算したものを、情報データ信号に対するプレコーディング行列とする場合を説明する。すなわち、W=W1*W2により求める場合を例に挙げて説明する。ただし、記号“*”は乗算を示す算術演算子である。当該演算を行うと、特に移動端末500がセル端に位置する時の特性が良くなる。
 具体的には、アンカー基地局100は、プレコーディング部105が行うプレコーディング処理のプレコーディング行列Waを、Wa=W1a*W2aにより求める。また、協調基地局300は、プレコーディング部305が行うプレコーディング処理のプレコーディング行列Wbを、Wb=W1b*W2bにより求める。求められたプレコーディング行列WaおよびWbは、それぞれ情報データ信号に対する乗算などの演算に用いられる。なお、狭帯域プレコーディング行列を広帯域プレコーディング行列に乗算したものを、情報データ信号に対するプレコーディング行列としてもよい。すなわち、アンカー基地局100および協調基地局300は、情報データ信号に対するプレコーディング行列を、W=W2*W1により求めてもよい。当該演算では、特にセルスループットが良くなる。
 次に、以上のようなプレコーディング処理を行うために、移動端末500におけるフィードバック情報生成部510が生成するプレコーディング情報PMIについて説明する。 
 図7は、本実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。図7では、アンカー基地局100および協調基地局300で共通の広帯域プレコーディング情報PMI1と、アンカー基地局100および協調基地局300で共通の狭帯域プレコーディング情報PMI2とを示している。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図7で示すような広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。
 広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2の生成について説明する。フィードバック情報生成部510は、例えば、候補となる広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせを選択する。フィードバック情報生成部510は、選択された広帯域プレコーディング行列と狭帯域プレコーディング行列とに基づく演算によって得られたプレコーディング行列を、伝送路状況推定値に乗算する。フィードバック情報生成部510は、候補となる行列の組み合わせのうち、アンカー基地局100および協調基地局300が協調通信をしたときに好適となるプレコーディング行列を選択する。フィードバック情報生成部510は、当該選択されたプレコーディング行列に対応する広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。このとき、フィードバック情報生成部510は、広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせとして、それぞれアンカー基地局100および協調基地局300で共通であるものを選択する。
 このとき、移動端末500は、協調通信方式によって、広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2の生成方法を変えることができる。まず、ジョイント送信やジョイントプロセッシングなどのような協調基地局300からも移動端末500に対する情報データ信号を送信する協調通信方式では、アンカー基地局100および協調基地局300がジョイントして送信した場合に、移動端末500は、移動端末500において好適な受信ができるようにプレコーディング行列を選択することが好ましい。また、協調スケジューリングや協調ビームフォーミングなどのような協調通信方式では、移動端末500は、移動端末500に対する協調基地局300からの干渉を低減させるような、他の移動端末の情報データ信号に対するプレコーディング行列(送信電力制御も含む)を選択することが好ましい。その際、移動端末500は、アンカー基地局100における移動端末500に対する情報データ信号の受信状態もさらに考慮してもよい。
 ここで、広帯域プレコーディング情報および狭帯域プレコーディング情報について説明する。図8は、システム帯域と帯域幅パートの一例を示す図である。図8を参照して、システム帯域幅は、16個のリソースブロックで構成される。また、システム帯域幅は、4個の帯域幅パート(BW(Bandwidth)パート)で構成される。4個の帯域幅パートの各々は、4個のリソースブロックで構成される。広帯域プレコーディング情報は、システム帯域幅で1つのプレコーディング情報を示す。狭帯域プレコーディング情報は、BWパート幅で1つのプレコーディング情報を示す。
 移動端末500のフィードバック情報生成部510は、BWパート幅をサブバンドなどに分割し、1つのBWパートから1つのサブバンドを選択したプレコーディング情報を、狭帯域プレコーディング情報としてもよい。また、フィードバック情報生成部510は、狭帯域プレコーディング情報をBWパート毎に生成した場合でも、その全てをフィードバックしてもよいし、その一部をフィードバックしてもよい。例えば、フィードバック情報生成部510は、受信特性が良好な1つ以上のBWパートを選択し、フィードバックすることができる。
 また、フィードバック情報生成部510は、受信特性が良好なBWパートがない場合は、狭帯域プレコーディング情報をフィードバックしなくてもよい。この場合、フィードバック情報生成部510は、送信ダイバーシチ方式などの通信方式を選択できる。また、フィードバック情報生成部510は、狭帯域プレコーディング情報PMI2を広帯域フィードバック情報とすることもできる。この場合、フィードバック情報生成部510は、伝送路状況の周波数選択性によって、スケジューリングの柔軟性や受信性能を向上させることができる。
 次に、プレコーディング情報およびプレコーディング情報に基づくプレコーディング処理について、より具体的に説明する。好適なプレコーダFをF=A(i)B(j)と表現するようにシステムで取り決めておき、移動端末500は、広帯域プレコーディング情報PMI1としてiを、狭帯域プレコーディング情報PMI2としてjをアンカー基地局100に報告する。ここで、Fは、レイヤー数×アンテナポート数のサイズの行列である。AおよびBは、所定のサイズの行列である。ただし、ここでいう行列とは、ベクトルあるいはスカラーを含む概念である。AおよびBとしては、例えば以下のようなi、jを指定することにより一意に決まる任意の行列を用いることができる。
  (1)A(i)=Wi、B(j)=V1+V2φjとする。ここで、V1とV2とは0と1との要素からなる所定の行列、Wiは所定のコードブックで指定される行列、φjは所定のコードブックで指定されるスカラーである。
  (2)A(i)=Wi、B(j)=Φjとする。WiおよびΦjは所定のコードブックで指定される行列である。
  (3)A(i)=[Wi Wi]、B(j)= Φjとする。WiおよびΦjは所定のコードブックで指定される行列である。
  (4)A(i)=K(U,Wi)、B(j)=[I ΦjT]Tとする。Uは所定の行列、Iは単位行列、WiおよびΦjは所定のコードブックで指定される行列である。また、K(X,Y)は行列Xと行列Yとのクロネッカー積、XTは行列Xの転置行列を表す演算子である。
 このように、広帯域プレコーディング情報PMI1と狭帯域プレコーディング情報PMI2とを用いて表現する好適なプレコーダとは、広帯域プレコーディング情報PMI1が表現するプレコーダと狭帯域プレコーディング情報PMI2が表現するプレコーダとを結合したプレコーダとして表現することができる。なお、ここではプレコーダの結合として、F=A(i)B(j)と表現するようにシステムで取り決めておく場合について説明するが、F=K(A(i),B(j))と表現するような場合など、その他のプレコーダの結合方法をシステムで取り決めておいても同様の効果を得ることができる。
 図16は、本実施形態で用いるコードブックの一例である。このコードブックのサイズは16である。広帯域プレコーディング情報PMI1として4ビットで表すことができるインデックスiを指定することにより、iに対応するWiが一意に決定する。
 図17は、本実施形態で用いるコードブックの一例である。図17に示すコードブックのサイズは16である。移動端末500は、狭帯域プレコーディング情報PMI2として4ビットで表すことができるインデックスjを指定することにより、iに対応するΦjが一意に決定する。
 図18は、本実施形態で用いるプレコーディング処理の概略図である。以下では、アンテナポート数が4、レイヤー数が2であり、F=WiΦjの場合について説明する。広帯域プレコーディング情報PMI1が表すプレコーダであるWiによって、各レイヤーの各アンテナポートにおける信号点は変位(ここでは0から2πの範囲で位相が回転)する。さらに、狭帯域プレコーディング情報PMI2が表すプレコーダであるΦjによって、各レイヤーの各アンテナポートにおける信号点は変位(ここでは0から2πの範囲で位相が回転)する。
 移動端末500は、まず広帯域プレコーディング情報PMI1をアンカー基地局100に報告するに際し、各レイヤーの各アンテナポートにおける信号点に対して固有の変位を与えるプレコーダ群からなるコードブックから、好適なプレコーダ(プレコーダをかけた後の信号点が好適であるプレコーダ)を決定する。ここで、移動端末500は、広帯域プレコーディング情報PMI1を決定に用いるコードブックとして、図16に示すようなコードブックを用いる。移動端末500は、次に狭帯域プレコーディング情報PMI2をアンカー基地局100に報告するに際し、報告した広帯域プレコーディング情報PMI1が表すプレコーダをかけた後の信号点に対して、さらにプレコーダをかけた後の信号点が好適であるプレコーダをコードブックから決定する。移動端末500は、当該決定したプレコーダのインデックスを狭帯域プレコーディング情報PMI2として報告する。ここで、移動端末500は、狭帯域プレコーディング情報PMI2を決定に用いるコードブックは図17に示すようなコードブックを用いる。なお、図18に示した信号点の変位は一例であって、これに限るものではない。
 図9は、本実施形態で用いるアンカー基地局100と、協調基地局300と、移動端末500との間の通信のフロー図である。まず、アンカー基地局100は、移動端末500に対して協調通信を行うための1つ以上の協調基地局300を通知する(ステップS901)。アンカー基地局100は、当該通知方法として、様々な方法を用いることができる。例えば、アンカー基地局100は、協調基地局300のセルID、協調するコンポーネントキャリア、周波数バンドを識別する情報(情報を示すリストも含む)など(それらの組み合わせも含む)を移動端末500に対して通知してもよい。これらの通知方法では、アンカー基地局100は協調基地局300を直接指定するため、柔軟な協調通信ができる。また、アンカー基地局100は、他の制御情報に関連させて通知してもよい。この場合、アンカー基地局100は協調基地局300を直接指定しないため、制御情報のオーバーヘッドを低減させることができる。また、アンカー基地局100が予め移動端末500に対する協調通信の候補となる基地局を移動端末500に対して通知しておき、協調通信する場合は、移動端末500は、当該候補の中から協調基地局300として指定することもできる。この場合、制御情報のオーバーヘッドを低減させつつ、柔軟な協調通信を実現できる。さらに、アンカー基地局100は、これらの通知をPDCCHによる制御情報としてダイナミック(動的)に行うこともでき、あるいはRRCシグナリングとしてセミスタティック(準静的)に行うこともできる。
 次に、アンカー基地局100は、第1の伝送路状況測定用参照信号CSIRSaを移動端末500に対して送信する(ステップS902)。協調基地局300は、第2の伝送路状況測定用参照信号CSIRSbを送信する(ステップS903)。移動端末500は、CSIRSaおよびCSIRSbを受信する。移動端末500は、受信したCSIRSaおよびCSIRSbに基づいて、図7で説明したような広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。移動端末500は、生成した広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を、アンカー基地局100にフィードバックする(ステップS904)。
 アンカー基地局100は、移動端末500からフィードバックされた広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2に基づいて、アンカー基地局100における広帯域プレコーディング行列W1a、アンカー基地局100における狭帯域プレコーディング行列W2a、協調基地局300における広帯域プレコーディング行列W1b、および協調基地局300における狭帯域プレコーディング行列W2bを生成する。アンカー基地局100は、協調基地局300に対して、移動端末500に対する情報データ信号data、広帯域プレコーディング行列W1b、狭帯域プレコーディング行列W2bを通知する(ステップS905)。このとき、アンカー基地局100は、広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を通知してもよいし、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bを演算により得られるプレコーディング行列を通知してもよい。
 アンカー基地局100は、広帯域プレコーディング行列W1a、狭帯域プレコーディング行列W2a、dataに基づいて得られる信号(例えば、g(W1a,w2a,data)で演算される信号。ただし、g(x,y,z)はx、y、zをパラメータとする関数。)を、移動端末500に対して送信する(ステップS906)。例えば、アンカー基地局100は、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aを乗算により得られるプレコーディング行列をdataに乗算した信号を移動端末500に対して送信する。また、ステップS906でアンカー基地局100が送信した同じリソースを用いて、協調基地局300は、広帯域プレコーディング行列W1b、狭帯域プレコーディング行列W2b、dataに基づいて得られる信号(例えば、g(W1b,w2b,data)で演算される信号)を、移動端末500に対して送信する(ステップS907)。例えば、協調基地局300は、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bを乗算により得られるプレコーディング行列をdataに乗算した信号を移動端末500に対して送信する。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、フィードバック方法を、協調通信を行わない場合のフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。
 なお、以上の説明では、RI、広帯域プレコーディング情報PMI1、狭帯域プレコーディング情報PMI2、CQIがそれぞれ独立のフィードバック情報として説明したが、それらの全部または一部を合わせて1つの情報としてもよい。例えば、ジョイントコーディングなどにより実現できる。具体的には、RIと広帯域プレコーディング情報PMI1をジョイントコーディングにより1つの情報としてもよい。
 なお、以上の説明では、データ信号復調用参照信号は、直交符号によるCDMとFDMとの併用した場合を説明したが、これに限定するものではない。このとき、データ信号復調用参照信号は、基地局および移動端末が共に既知の信号であれば、任意の信号(系列)を用いることができる。例えば、また、基地局に固有の番号(セルID)、当該移動端末に固有の番号(RNTI;Radio Network Temporary Identifier)などの予め割り当てられているパラメータに基づいた乱数または疑似雑音系列(例えば、M(Maximum-length)系列、Gold符号、直交Gold符号、Walsh符号、OVSF(Orthogonal Variable Spreading Factor)符号、Hadamard符号、Barker符号などを、データ信号復調用参照信号として用いることができる。さらにそれらの系列を巡回的にシフトした系列や巡回的に拡張した系列を、データ信号復調用参照信号として用いることもできる。また、計算機などを用いて自己相関特性または相互相関特性に優れた系列を探索したものを用いてもよい。)を、データ信号復調用参照信号として用いることができる。また、データ信号復調用参照信号生成部113は、データ信号復調用参照信号をレイヤー間で直交させる方法として、データ信号復調用参照信号をマッピングするリソースエレメントをレイヤー間で互いにヌル(ゼロ)とする方法(例えば、時間分割多重や周波数分割多重など)、疑似雑音系列を用いた符号分割多重する方法などを用いることができる。
 [第2の実施形態]
 以下、本発明の第2の実施形態について説明する。本実施形態における通信システムは、第1の実施形態における通信システムと同様のアンカー基地局100、協調基地局300および移動端末500を備えるが、アンカー基地局100におけるプレコーディング部105、協調基地局300におけるプレコーディング部305および移動端末500におけるフィードバック情報生成部510での処理が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 図10は、本実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。また、図10は、アンカー基地局100および協調基地局300で共通となる広帯域プレコーディング情報PMI1と、アンカー基地局100の狭帯域プレコーディング情報PMI2を示す。協調基地局300の狭帯域プレコーディング行列W2bは、予め規定(固定)されているものとする。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図10で示すような広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。
 広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2の生成について説明する。フィードバック情報生成部510は、例えば、候補となる広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせを選択し、それらを演算して得られたプレコーディング行列を、伝送路状況推定値に乗算する。フィードバック情報生成部510は、候補となる組み合わせのうち、協調通信をしたときに好適となるプレコーディング行列を選択する。フィードバック情報生成部510は、当該選択したプレコーディング行列に対応する広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。この場合、フィードバック情報生成部510は、アンカー基地局100および協調基地局300における広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bとして共通であるものを選択する。また、フィードバック情報生成部510は、協調基地局300の狭帯域プレコーディング行列W2bとして、予め規定されたプレコーディング行列を用いるものとする。
 アンカー基地局100は、移動端末500からフィードバックされた広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2に基づいて、アンカー基地局100における広帯域プレコーディング行列W1a、アンカー基地局100における狭帯域プレコーディング行列W2a、協調基地局300における広帯域プレコーディング行列W1bを生成する。アンカー基地局100は、協調基地局300に関するプレコーディング情報をX2インターフェースなどにより協調基地局300に通知する。アンカー基地局100におけるプレコーディング部105は、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aに基づいて、プレコーディング行列を決定する。協調基地局300におけるプレコーディング部305は、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bに基づいて、プレコーディング行列を決定する。アンカー基地局100および協調基地局300は、それぞれ決定したプレコーディング行列を用いて、協調通信を行う。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、フィードバック方法を、協調通信を行わない場合のフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、移動端末500は、アンカー基地局100でのプレコーディング処理と協調基地局300でのプレコーディング処理とを異ならせることができる。それゆえ、アンカー基地局100および協調基地局300は、柔軟なプレコーディング処理を実現できる。したがって、アンカー基地局100および協調基地局300は、移動端末500における受信性能を向上させることができる。
 なお、以上の説明では、協調基地局300の狭帯域プレコーディング行列が予め規定されている場合を説明したが、これに限定するものではない。協調基地局300の狭帯域プレコーディング行列を固定させる方法として様々な方法を用いることができる。例えば、固定させるプレコーディング行列をアンカー基地局100などのネットワーク側から移動端末500に対して動的にまたは準静的に通知してもよい。また、複数のプレコーディング行列を予め規定しておき、移動端末500が、当該複数のプレコーディング行列の中から選択してもよい。この場合、移動端末500は、サブフレーム、リソースブロック、セルID、コンポーネントキャリアなどを識別する情報に関連させてプレコーディング行列を選択してもよい。また、候補となるプレコーディング行列のいずれかを制限し、移動端末500が、当該制限されたプレコーディング行列の中から選択してもよい。その場合、移動端末500は、一部のプレコーディング行列を準固定で動作させることができる。また、移動端末500は、固定させるか否かを動的にまたは準静的に切り替えることができる。その切り替え方法は、アンカー基地局100などのネットワーク側から直接通知してもよいし、フィードバックモードなどの他のパラメータ毎に規定してもよい。
 なお、以上の説明では、協調基地局300の狭帯域プレコーディング行列が予め規定されている場合を説明したが、これに限定するものではない。例えば、アンカー基地局100の狭帯域プレコーディング行列を予め規定してもよい。また、アンカー基地局100または協調基地局300の広帯域プレコーディング行列を予め規定してもよく、その場合はアンカー基地局100および協調基地局300の広帯域プレコーディング情報を狭帯域プレコーディング情報PMI2として共通にしてもよい。
 [第3の実施形態]
 以下、本発明の第3の実施形態について説明する。本実施形態における通信システムは、第1の実施形態における通信システムと同様のアンカー基地局100、協調基地局300および移動端末500を備えるが、アンカー基地局100におけるプレコーディング部105、協調基地局300におけるプレコーディング部305および移動端末500におけるフィードバック情報生成部510での処理が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 図11は、本実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。また、図11は、アンカー基地局100および協調基地局300で共通となる狭帯域プレコーディング情報PMI2を示す。アンカー基地局100および協調基地局300の広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bは、それぞれ予め規定(固定)されているものとする。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図11で示すような狭帯域プレコーディング情報PMI2を生成する。
 狭帯域プレコーディング情報PMI2の生成について説明する。フィードバック情報生成部510は、例えば、候補となる広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせを選択し、それらを演算して得られたプレコーディング行列を、伝送路状況推定値に乗算する。フィードバック情報生成部510は、候補となる組み合わせのうち、協調通信をしたときに好適となるプレコーディング行列を選択する。フィードバック情報生成部510は、当該選択したプレコーディング行列に対応する広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。この場合、フィードバック情報生成部510は、アンカー基地局100および協調基地局300における狭帯域プレコーディング行列W2aおよび狭帯域プレコーディング行列W2bは、共通であるものを選択する。また、フィードバック情報生成部510は、アンカー基地局100および協調基地局300における広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bとして、それぞれ予め規定されたプレコーディング行列を用いるものとする。
 アンカー基地局100は、移動端末500からフィードバックされた狭帯域プレコーディング情報PMI2に基づいて、アンカー基地局100における狭帯域プレコーディング行列W2a、協調基地局300における狭帯域プレコーディング行列W2bを生成する。アンカー基地局100は、協調基地局300に関するプレコーディング情報をX2インターフェースなどにより協調基地局300に通知する。アンカー基地局100におけるプレコーディング部105は、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aに基づいて、プレコーディング行列を決定する。協調基地局300におけるプレコーディング部305は、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bに基づいて、プレコーディング行列を決定する。アンカー基地局100および協調基地局300は、それぞれ決定したプレコーディング行列を用いて、移動端末500に対する協調通信を行う。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、移動端末500は、フィードバック方法を、プレコーディング情報PMIに関する情報を1種類のみフィードバックするシステムのフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、移動端末500は、アンカー基地局100でのプレコーディング処理と協調基地局300でのプレコーディング処理とを異ならせることができる。それゆえ、アンカー基地局100および協調基地局300は、柔軟なプレコーディング処理を実現できる。したがって、アンカー基地局100および協調基地局300は、移動端末500における受信性能を向上させることができる。
 なお、以上の説明では、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bがそれぞれ予め規定されている場合を説明したが、これに限定するものではない。広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bを固定させる方法として、様々な方法を用いることができる。例えば、固定させるプレコーディング行列をアンカー基地局100などのネットワーク側から移動端末500に対して動的にまたは準静的に通知してもよい。また、複数のプレコーディング行列を予め規定しておき、移動端末500が、当該複数のプレコーディング行列の中から選択してもよい。この場合、移動端末500は、サブフレーム、リソースブロック、セルID、コンポーネントキャリアなどを識別する情報に関連させてプレコーディング行列を選択してもよい。また、候補となるプレコーディング行列のいずれかを制限し、移動端末500が、当該制限されたプレコーディング行列の中から選択してもよい。その場合、移動端末500は、一部のプレコーディング行列は準固定で動作させることができる。また、移動端末500は、固定させるか否かを動的にまたは準静的に切り替えることができる。その切り替え方法は、アンカー基地局100などのネットワーク側から直接通知してもよいし、フィードバックモードなどの他のパラメータ毎に規定してもよい。
 なお、以上の説明では、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bが予め規定されている場合を説明したが、これに限定するものではない。例えば、狭帯域プレコーディング行列W2aおよび狭帯域プレコーディング行列W2bを予め規定してもよく、その場合は、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bを広帯域プレコーディング情報PMI1として共通にしてもよい。
 [第4の実施形態]
 以下、本発明の第4の実施形態について説明する。本実施形態における通信システムは、第1の実施形態における通信システムと同様のアンカー基地局100、協調基地局300および移動端末500を備えるが、アンカー基地局100におけるプレコーディング部105、協調基地局300におけるプレコーディング部305および移動端末500におけるフィードバック情報生成部510での処理が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 図12は、本実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。また、図12は、アンカー基地局100の広帯域プレコーディング情報PMI1と、アンカー基地局100の狭帯域プレコーディング情報PMI2とを示す。協調基地局300の広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bは、それぞれ予め規定(固定)されているものとする。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図12で示すような広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。
 広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2の生成について説明する。フィードバック情報生成部510は、例えば、候補となる広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせを選択し、それらを演算して得られたプレコーディング行列を、伝送路状況推定値に乗算する。フィードバック情報生成部510は、候補となる組み合わせのうち、協調通信をしたときに好適となるプレコーディング行列を選択する。フィードバック情報生成部510は、当該選択したプレコーディング行列に対応する広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2を生成する。この場合、フィードバック情報生成部510は、協調基地局300の広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bとして、予め規定されたプレコーディング行列を用いるものとする。
 アンカー基地局100は、移動端末500からフィードバックされた広帯域プレコーディング情報PMI1および狭帯域プレコーディング情報PMI2に基づいて、アンカー基地局100における広帯域プレコーディング行列W1a、アンカー基地局100における狭帯域プレコーディング行列W2aを生成する。なお、協調基地局300に関するプレコーディングは既知であるため、アンカー基地局100は協調基地局300に対して協調基地局300に関するプレコーディングを通知しなくてもよいが、通知してもよい。この場合は、協調通信の信頼性を向上させることができる。また、通知する場合と通知しない場合との仕組みをそれぞれ規定する必要がなくなる。アンカー基地局100におけるプレコーディング部105は、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aに基づいて、プレコーディング行列を決定する。協調基地局300におけるプレコーディング部305は、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bに基づいて、プレコーディング行列を決定する。アンカー基地局100および協調基地局300は、それぞれ決定したプレコーディング行列を用いて、移動端末500に対する協調通信を行う。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、フィードバック方法を、協調通信を行わない場合のフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、移動端末500は、アンカー基地局100でのプレコーディング処理と協調基地局300でのプレコーディング処理とを異ならせることができる。それゆえ、アンカー基地局100および協調基地局300は、柔軟なプレコーディング処理を実現できる。したがって、アンカー基地局100および協調基地局300は、移動端末500における受信性能を向上させることができる。
 また、協調通信方式として、協調基地局300からの送信を停止する場合(電力を下げるなどの電力制御をする場合も含む)、移動端末500は、協調基地局300からの信号は無いものとして、フィードバック情報(RI、CQIも含む)を生成することができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、アンカー基地局に隣接する基地局が他の移動端末に対して送信ダイバーシチを行う場合、移動端末500はそのような基地局を協調基地局300として想定することもできる。
 なお、以上の説明では、協調基地局300における広帯域プレコーディング行列W1bおよび協調基地局300における狭帯域プレコーディング行列W2bが予め規定されている場合を説明したが、これに限定するものではない。広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bを固定させる方法として様々な方法を用いることができる。例えば、固定させるプレコーディング行列をアンカー基地局100などのネットワーク側から移動端末500に対して動的にまたは準静的に通知してもよい。また、複数のプレコーディング行列を予め規定しておき、移動端末500が、当該複数のプレコーディング行列の中から選択してもよい。この場合、移動端末500は、サブフレーム、リソースブロック、セルID、コンポーネントキャリアなどを識別する情報に関連させてプレコーディング行列を選択してもよい。また、候補となるプレコーディング行列のいずれかを制限し、移動端末500が、当該制限されたプレコーディング行列の中から選択してもよい。この場合、移動端末500は、一部のプレコーディング行列は準固定で動作させることができる。また、移動端末500は、固定させるか否かを動的にまたは準静的に切り替えることができる。その切り替え方法は、アンカー基地局100などのネットワーク側から直接通知してもよいし、フィードバックモードなどの他のパラメータ毎に規定してもよい。
 なお、以上の説明では、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bが予め規定されている場合を説明したが、これに限定するものではない。例えば、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aを予め規定してもよい。また、協調基地局300が複数の場合、その一部の基地局の広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bを予め規定してもよい。
 [第5の実施形態]
 以下、本発明の第5の実施形態について説明する。本実施形態における通信システムは、第1の実施形態における通信システムと同様のアンカー基地局100、協調基地局300および移動端末500を備えるが、アンカー基地局100におけるプレコーディング部105、協調基地局300におけるプレコーディング部305および移動端末500におけるフィードバック情報生成部510での処理が異なる。以下では、第1の実施形態と異なる部分を中心に説明する。
 図13は、本実施形態で用いる広帯域プレコーディング情報および狭帯域プレコーディング情報の一例を示す図である。また、図13は、アンカー基地局100における狭帯域プレコーディング情報PMI2aおよび協調基地局300における狭帯域プレコーディング情報PMI2bを示す。そのとき、アンカー基地局100における広帯域プレコーディング行列W1aおよび協調基地局300における広帯域プレコーディング行列W1bは予め規定(固定)されているものとする。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図13で示すような狭帯域プレコーディング情報PMI2aおよび狭帯域プレコーディング情報PMI2bを生成する。
 狭帯域プレコーディング情報PMI2aおよび狭帯域プレコーディング情報PMI2bの生成について説明する。フィードバック情報生成部510は、例えば、候補となる広帯域プレコーディング行列および狭帯域プレコーディング行列の組み合わせを選択し、それらを演算して得られたプレコーディング行列を、伝送路状況推定値に乗算する。フィードバック情報生成部510は、候補となる組み合わせのうち、協調通信をしたときに好適となるプレコーディング行列を選択する。フィードバック情報生成部510は、当該選択したプレコーディング行列に対応する狭帯域プレコーディング情報PMI2aおよび狭帯域プレコーディング情報PMI2bを生成する。この場合、フィードバック情報生成部510は、アンカー基地局100および協調基地局300における広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bとして、予め規定されたプレコーディング行列を用いるものとする。
 アンカー基地局100は、移動端末500からフィードバックされた狭帯域プレコーディング情報PMI2aおよび狭帯域プレコーディング情報PMI2bに基づいて、狭帯域プレコーディング行列W2aおよび狭帯域プレコーディング行列W2bを生成する。アンカー基地局100は、協調基地局300に関するプレコーディング情報をX2インターフェースなどにより協調基地局300に通知する。アンカー基地局100におけるプレコーディング部105は、広帯域プレコーディング行列W1aおよび狭帯域プレコーディング行列W2aに基づいて、プレコーディング行列を決定する。協調基地局300におけるプレコーディング部305は、広帯域プレコーディング行列W1bおよび狭帯域プレコーディング行列W2bに基づいて、プレコーディング行列を決定する。アンカー基地局100および協調基地局300は、それぞれ決定したプレコーディング行列を用いて、移動端末500に対する協調通信を行う。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、広帯域プレコーディング情報と狭帯域プレコーディング情報とが同じ情報量である場合、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、フィードバック方法を、協調通信を行わない場合のフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、移動端末500は、アンカー基地局100でのプレコーディング処理と協調基地局300でのプレコーディング処理とを異ならせることができる。それゆえ、アンカー基地局100および協調基地局300は、柔軟なプレコーディング処理を実現できる。したがって、アンカー基地局100および協調基地局300は、移動端末500における受信性能を向上させることができる。
 なお、以上の説明では、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bが予め規定されている場合を説明したが、これに限定するものではない。広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bを固定させる方法として様々な方法を用いることができる。例えば、固定させるプレコーディング行列をアンカー基地局100などのネットワーク側から移動端末500に対して動的にまたは準静的に通知してもよい。また、複数のプレコーディング行列を予め規定しておき、移動端末500が、当該複数のプレコーディング行列の中から選択してもよい。この場合、移動端末500は、サブフレーム、リソースブロック、セルID、コンポーネントキャリアなどを識別する情報に関連させてプレコーディング行列を選択してもよい。また、候補となるプレコーディング行列のいずれかを制限し、移動端末500が、当該制限されたプレコーディング行列の中から選択してもよい。その場合、移動端末500は、一部のプレコーディング行列は準固定で動作させることができる。また、移動端末500は、固定させるか否かを動的にまたは準静的に切り替えることができる。その切り替え方法は、アンカー基地局100などのネットワーク側から直接通知してもよいし、フィードバックモードなどの他のパラメータ毎に規定してもよい。
 なお、以上の説明では、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bが予め規定されている場合を説明したが、これに限定するものではない。例えば、狭帯域プレコーディング行列W2aおよび狭帯域プレコーディング行列W2bを予め規定してもよく、その場合はアンカー基地局100および協調基地局300の広帯域プレコーディング情報をそれぞれ狭帯域プレコーディング情報PMI2aおよび狭帯域プレコーディング情報PMI2bとしてもよい。また、移動端末500は、狭帯域プレコーディング行列W2aおよび狭帯域プレコーディング行列W2bに加えて、広帯域プレコーディング行列W1aおよび広帯域プレコーディング行列W1bをフィードバックしてもよい。この場合、アンカー基地局100のプレコーディング行列と協調基地局300のプレコーディング行列とを互いに協調することで、移動端末500における受信性能を更に向上させることができる。また、アンカー基地局100のプレコーディング行列(W1aおよび/またはW2a)と協調基地局300のプレコーディング行列(W1bおよび/またはW2b)とをそれぞれ独立させて生成してもよい。それにより、移動端末500に対するデータ伝送をアンカー基地局100または協調基地局300が選択する構成の協調通信(ダイナミックセル選択など)を実現できる。
 [第6の実施形態]
 以下、本発明の第6の実施形態について説明する。本実施形態における通信システムは、第1の実施形態における通信システムと同様のアンカー基地局100、協調基地局300および移動端末500を備えるが、アンカー基地局100におけるプレコーディング部105、協調基地局300におけるプレコーディング部305および移動端末500におけるフィードバック情報生成部510での処理が異なる。また、フィードバックするプレコーディング情報PMIを、広帯域プレコーディング情報PMI1の代わりに長区間変動プレコーディング情報とし、狭帯域プレコーディング情報PMI2の代わりに短区間変動プレコーディング情報とする。以下では、第1の実施形態と異なる部分を中心に説明する。また、以下では、説明の便宜上、長区間変動プレコーディング情報を「長区間変動プレコーディング情報PMI1’」と称し、短区間変動プレコーディング情報を「短区間変動プレコーディング情報PMI2’」と称する。
 ここで、長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報について説明する。長区間変動プレコーディング情報PMI1’と短区間変動プレコーディング情報とでは、移動端末500がアンカー基地局100にフィードバックする頻度が異なる。すなわち、フィードバックする周期が異なる。また、長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報PMI2’はいずれも、広帯域プレコーディング情報でもよいし、狭帯域プレコーディング情報でもよい。以下では、その一例として、長区間変動プレコーディング情報PMI1’が短区間変動プレコーディング情報PMI2’よりもフィードバック周期が長く、長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報PMI2’がいずれも広帯域プレコーディング情報である場合を説明する。
 図14は、本実施形態で用いる長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報PMI2’の一例を示す図である。また、図14は、アンカー基地局100および協調基地局300で共通の長区間変動プレコーディング情報PMI1’と、アンカー基地局100および協調基地局300で共通の短区間変動プレコーディング情報PMI2’とを示す。
 本実施形態では、移動端末500におけるフィードバック情報生成部510は、アンカー基地局100からの第1の伝送路状況測定用参照信号および協調基地局300からの第2の伝送路状況測定用参照信号に基づいて、図14で示すような長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報PMI2’を生成する。
 図15は、本実施形態で用いるアンカー基地局100、協調基地局300、移動端末500のフロー図である。まず、アンカー基地局100は、移動端末500に対する協調通信を行うための1つ以上の協調基地局300を、移動端末500に通知する(ステップS1501)。アンカー基地局100は、1番目の第1の伝送路状況測定用参照信号CSIRSa(1)を、移動端末500に送信する(ステップS1502)。協調基地局300は、1番目の第2の伝送路状況測定用参照信号CSIRSb(1)を、移動端末500に送信する(ステップS1503)。
 移動端末500は、CSIRSa(1)およびCSIRSb(1)を受信する。移動端末500は、図14で説明したようなプレコーディング情報として、1番目の長区間変動プレコーディング情報PMI1’(1)および1番目の短区間変動プレコーディング情報PMI2’(1)を生成する。移動端末500は、生成した1番目の長区間変動プレコーディング情報PMI1’(1)および1番目の短区間変動プレコーディング情報PMI2’(1)を、アンカー基地局100にフィードバックする(ステップS1504およびステップS1505)。なお、移動端末500は、長区間変動プレコーディング情報PMI1’(1)および短区間変動プレコーディング情報PMI2’(1)は同時にフィードバックしてもよい。
 アンカー基地局100は、移動端末500からフィードバックされた長区間変動プレコーディング情報PMI1’(1)および短区間変動プレコーディング情報PMI2’(1)に基づいて、アンカー基地局100における1番目の広帯域プレコーディング行列W1a(1)、アンカー基地局100における1番目の狭帯域プレコーディング行列W2a(1)、協調基地局300における1番目の広帯域プレコーディング行列W1b(1)、協調基地局300における1番目の狭帯域プレコーディング行列W2b(1)を生成する。アンカー基地局100は、協調基地局300に対して、移動端末500に対する1番目の情報データ信号data(1)、広帯域プレコーディング行列W1b(1)、狭帯域プレコーディング行列W2b(1)を通知する(ステップS1506)。このとき、アンカー基地局100は、長区間変動プレコーディング情報PMI1’(1)および短区間変動プレコーディング情報PMI2’(1)を協調基地局300に対して通知してもよいし、広帯域プレコーディング行列W1b(1)および狭帯域プレコーディング行列W2b(1)を演算により得られるプレコーディング行列を協調基地局300に対して通知してもよい。
 アンカー基地局100は、広帯域プレコーディング行列W1a(1)、狭帯域プレコーディング行列W2a(1)、data(1)に基づいて得られる信号(例えば、g(W1a(1),w2a(1),data(1))で演算される信号。ただし、g(x,y,z)はx、y、zをパラメータとする関数。)を、移動端末500に対して送信する(ステップS1507)。アンカー基地局100は、例えば、広帯域プレコーディング行列W1a(1)および狭帯域プレコーディング行列W2a(1)を乗算により得られるプレコーディング行列をdata(1)に乗算した信号を送信する。また、ステップS1507でアンカー基地局100が送信した同じリソースを用いて、協調基地局300は、広帯域プレコーディング行列W1b(1)、狭帯域プレコーディング行列W2b(1)、data(1)に基づいて得られる信号(例えば、g(W1b(1),w2b(1),data(1))で演算される信号)を、移動端末500に対して送信する(ステップS1508)。協調基地局300は、例えば、広帯域プレコーディング行列W1b(1)および狭帯域プレコーディング行列W2b(1)を乗算により得られるプレコーディング行列をdata(1)に乗算した信号を、移動端末500に対して送信する。
 次に、アンカー基地局100は、2番目の第1の伝送路状況測定用参照信号CSIRSa(2)を、移動端末500に対して送信する(ステップS1509)。協調基地局300は、2番目の第2の伝送路状況測定用参照信号CSIRSb(2)を、移動端末500に対して送信する(ステップS1510)。移動端末500は、CSIRSa(2)およびCSIRSb(2)を受信する。移動端末500は、CSIRSa(2)およびCSIRSb(2)に基づき、2番目の短区間変動プレコーディング情報PMI2’(2)を生成する。移動端末500は、生成した2番目の短区間変動プレコーディング情報PMI2’(2)を、アンカー基地局100にフィードバックする(ステップS1511)。この場合、移動端末500は、アンカー基地局100および協調基地局300における長区間変動プレコーディング行列をそれぞれ広帯域プレコーディング行列W1a(1)および広帯域プレコーディング行列W1b(1)として、短区間変動プレコーディング情報PMI2’(2)を生成する。
 アンカー基地局100は、移動端末500からフィードバックされた短区間変動プレコーディング情報PMI2’(2)に基づいて、アンカー基地局100における2番目の狭帯域プレコーディング行列W2a(2)、協調基地局300における2番目の狭帯域プレコーディング行列W2b(2)を生成する。アンカー基地局100は、協調基地局300に対して、移動端末500に対する2番目の情報データ信号data(2)、広帯域プレコーディング行列W1b(1)、狭帯域プレコーディング行列W2b(2)を通知する(ステップS1512)。なお、広帯域プレコーディング行列W1b(1)は既知である場合は、アンカー基地局100は、広帯域プレコーディング行列W1b(1)の通知を省略できる。なお、移動端末500がステップS1507およびステップS1508で送信されたdata(1)を正しく受信できなかった場合、アンカー基地局100は、data(1)をdata(2)として再送信してもよい。
 アンカー基地局100は、広帯域プレコーディング行列W1a(1)、狭帯域プレコーディング行列W2a(2)、data(2)に基づいて得られる信号を、移動端末500に対して送信する(ステップS1513)。また、ステップS1513でアンカー基地局100が送信した同じリソースを用いて、協調基地局300は、広帯域プレコーディング行列W1b(1)、狭帯域プレコーディング行列W2b(2)、data(2)に基づいて得られる信号を、移動端末500に対して送信する(ステップS1514)。
 本実施形態で説明した方法を用いることにより、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、協調通信を行わない場合と比べて、フィードバック情報を増やすことなく伝送品質の向上を実現できる。また、アンカー基地局100と協調基地局300とが協調通信を行う場合でも、フィードバック方法を、協調通信を行わない場合のフィードバック方法と同一にすることができる。それゆえ、移動端末500は、フィードバック情報の送信に際し、効率よくデータ伝送をすることができる。また、移動端末500は、フィードバックの周期が異なる複数のプレコーディング情報を用いることにより、フィードバックのオーバーヘッドを抑えつつ、柔軟なスケジューリングができると共に、移動端末500における受信性能を向上させることができる。
 なお、以上の説明では、長区間変動プレコーディング情報PMI1’および短区間変動プレコーディング情報PMI2’は、アンカー基地局100および協調基地局300で共通のプレコーディング情報として説明したが、第2の実施形態から第5の実施形態で説明したように、一部のプレコーディング行列を予め規定した場合でも適用できる。その場合、第2の実施形態から第5の実施形態で説明した同様の効果を得ることができる。
 なお、上記各実施形態では、アンカー基地局と協調基地局とが協調して通信を行う場合について説明した。ここで言う基地局は、セルラーシステムにおける物理的な基地局装置であってもよいのは勿論であるが、この他にもそれぞれにセルを張りながら協調する送信装置(中継装置を含む)の組(第1の送信装置と第2の送信装置)、あるいは互いに異なるアンテナポート(第1のポートと第2のポート)で伝送路状況測定用参照信号を送信しながら協調する送信装置の組であれば、アンカー基地局と協調基地局とすることができる。これらの場合も、上記各実施形態と同様の効果を得ることができる。
 例えば、アンカー基地局はセルラーシステムにおける基地局装置であり、協調基地局はアンカー基地局により制御され動作する送信装置(例えば、RRU(Remote Radio Unit)、RRE(Remote Radio Equipment)、Distributed antenna)とすることもできるし、逆に協調基地局がセルラーシステムにおける基地局装置であり、アンカー基地局は協調基地局により制御され動作する送信装置とすることもできる。または、アンカー基地局と協調基地局ともに、セルラーシステムにおける物理的な基地局装置により制御され動作する送信装置であってもよい。
 なお、上記各実施形態では、アンカー基地局と協調基地局との協調通信について、主に協調基地局がアンカー基地局に隣接する場合を説明したが、これに限るものではない。例えば、ヘテロジニアスネットワークのようにアンカー基地局の通信エリアと協調基地局の通信エリアとが全部または一部がオーバーラップしている場合でも、上記各実施形態で説明した同様の効果が得られる。その際、それぞれの基地局のコンポーネントキャリア(キャリア周波数)は全部または一部がオーバーラップしてもよい。具体的には、アンカー基地局をマクロセルとし、協調基地局をピコセルやフェムトセル(Home eNodeB)とし、マクロセルの通信エリアよりも狭いピコセルやフェムトセルの通信エリアが、マクロセル(アンカー基地局)の通信エリア内にオーバーラップする場合でも適用できる。
 なお、上記各実施形態では、情報データ信号、制御情報信号、PDSCH、PDCCHおよび参照信号のマッピング単位としてリソースエレメントやリソースブロックを用い、時間方向の送信単位としてサブフレームや無線フレームを用いて説明したが、これに限るものではない。任意の周波数と任意の時間とで構成される領域および時間単位をこれらに代えて用いても、同様の効果を得ることができる。
 なお、上記各実施形態では、プレコーディング処理された参照信号RSを用いて復調する場合について説明し、プレコーディング処理された参照信号RSに対応するポートとして、MIMOのレイヤーと等価であるポートを用いて説明したが、これに限るものではない。この他にも、互いに異なる参照信号に対応するポートに対して、本発明を適用することにより、同様の効果を得ることができる。例えば、Precoded RSではなくUnprecoded RSを用い、ポートとしては、プリコーディング処理後の出力端と等価であるポートあるいは物理アンテナ(あるいは物理アンテナの組み合わせ)と等価であるポートを用いることができる。
 本発明に関わるアンカー基地局100、協調基地局300および移動端末500で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態におけるアンカー基地局100、協調基地局300および移動端末500の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。アンカー基地局100、協調基地局300および移動端末500の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 100 アンカー基地局、101,301 符号部、102,302 スクランブル部、103,303 変調部、104、304 レイヤーマッピング部、105,305 プレコーディング部、106,306 リソースエレメントマッピング部、107,307 OFDM信号生成部、108,308,512,1703,1714 送信アンテナ、109,309 伝送路状況測定用参照信号生成部、110,501,1704,1711 受信アンテナ、111 受信信号処理部、112,1705 フィードバック情報処理部、113,313 データ信号復調用参照信号生成部、300 協調基地局、500,1603,1710,1803 移動端末、502 OFDM信号復調部、503 リソースエレメントデマッピング部、504 フィルタ部、505 レイヤーデマッピング部、506 復調部、507 デスクランブル部、508 復号部、509 伝搬路推定部、510,1713 フィードバック情報生成部、511 送信信号生成部、1601,1602,1700,1801,1802 基地局、1701 適応制御部、1702 多重部、1712 分離部。

Claims (12)

  1.  第1の伝送路状況測定用参照信号および前記第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定する測定部と、
     前記第1の伝送路状況および前記第2の伝送路状況に基づいて、1または複数のプレコーディング情報を基地局装置(100)へのフィードバック情報として生成する生成部とを備える、移動端末装置(500)。
  2.  前記生成部は、前記複数のプレコーディング情報として、広帯域プレコーディング情報および狭帯域プレコーディング情報を生成する、請求項1に記載の移動端末装置。
  3.  前記生成部は、前記複数のプレコーディング情報として、長区間変動プレコーディング情報および短区間変動プレコーディング情報を生成する、請求項1に記載の移動端末装置。
  4.  前記生成部は、前記第1の伝送路状況と前記第2の伝送路状況とに対して共通に用いられるプレコーディング行列に基づいて、前記1または複数のプレコーディング情報を前記フィードバック情報として生成する、請求項1に記載の移動端末装置。
  5.  前記生成部は、
     前記第1の伝送路状況および記第2の伝送路状況に対する複数のプレコーディング行列の少なくとも1つを予め規定されたプレコーディング行列とし、
     前記複数のプレコーディング行列のうち前記予め規定されたプレコーディング行列以外のプレコーディング行列に基づいて、前記1つ以上のプレコーディング情報を前記フィードバック情報として生成する、請求項1に記載の移動端末装置。
  6.  第1の基地局装置(100)から第1の伝送路状況測定用参照信号を受信し、前記第1の基地局装置と協調通信を行う第2の基地局装置(300)から第2の伝送路状況測定用参照信号を受信する受信部と、
     第1の伝送路状況測定用参照信号および前記第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定する測定部と、
     前記第1の伝送路状況および前記第2の伝送路状況に基づいて、1または複数のプレコーディング情報をフィードバック情報として生成する生成部と、
     前記フィードバック情報として生成された前記1または複数のプレコーディング情報を、前記第1の基地局装置へ送信する送信部とを備える、移動端末装置(500)。
  7.  第1の伝送路状況測定用参照信号を送信する第1の基地局装置(100)と、
     第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号を送信する第2の基地局装置(300)と、
     前記第1の伝送路状況測定用参照信号および前記第2の伝送路状況測定用参照信号に基づいて第1の伝送路状況および第2の伝送路状況を測定し、前記第1の伝送路状況および前記第2の伝送路状況に基づいて1または複数のプレコーディング情報をフィードバック情報として生成する移動端末装置(500)とを備える、通信システム。
  8.  前記第1の基地局装置は、前記複数のプレコーディング情報に基づいて、プレコーディング処理を行う、請求項7に記載の通信システム。
  9.  複数のプレコーディング行列に基づいてプレコーディング処理を行う第1の基地局装置(100)と、
     複数のプレコーディング行列に基づいてプレコーディング処理を行う第2の基地局装置(300)と、
     前記第1の基地局装置および前記第2の基地局装置によって協調通信が行われる移動端末装置(500)とを備える、通信システム。
  10.  移動端末装置(500)が、第1の伝送路状況測定用参照信号および前記第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号に基づいて、第1の伝送路状況および第2の伝送路状況を測定するステップと、
     前記移動端末装置(500)が、前記第1の伝送路状況および前記第2の伝送路状況に基づいて、1または複数のプレコーディング情報を基地局装置へのフィードバック情報として生成するステップとを備える、通信方法。
  11.  第1の基地局装置(100)が、第1の伝送路状況測定用参照信号を送信するステップと、
     第2の基地局装置(300)が、前記第1の伝送路状況測定用参照信号とは異なる第2の伝送路状況測定用参照信号を送信するステップと、
     移動端末装置(500)が、
      前記第1の伝送路状況測定用参照信号および前記第2の伝送路状況測定用参照信号に基づいて第1の伝送路状況および第2の伝送路状況を測定するステップと、
      前記第1の伝送路状況および前記第2の伝送路状況に基づいて、1または複数のプレコーディング情報を少なくとも前記第1の基地局装置へのフィードバック情報として生成するステップを備える、通信方法。
  12.  第1の基地局装置が、複数のプレコーディング行列に基づいてプレコーディング処理を行うステップと、
     第2の基地局装置が、複数のプレコーディング行列に基づいてプレコーディング処理を行うステップと、
     前記第1の基地局装置および前記第2の基地局装置が移動体端末に対して協調通信を行うステップとを備える、通信方法。
PCT/JP2011/062372 2010-06-10 2011-05-30 移動端末装置、基地局装置、通信システム、および通信方法 WO2011155360A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132629A JP2011259257A (ja) 2010-06-10 2010-06-10 基地局装置、端末装置、通信システム、および、通信方法
JP2010-132629 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155360A1 true WO2011155360A1 (ja) 2011-12-15

Family

ID=45097968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062372 WO2011155360A1 (ja) 2010-06-10 2011-05-30 移動端末装置、基地局装置、通信システム、および通信方法

Country Status (2)

Country Link
JP (1) JP2011259257A (ja)
WO (1) WO2011155360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498468B2 (en) 2016-03-18 2019-12-03 Fujitsu Limited Base station, wireless communication system, and calibration method of wireless communication system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863565B1 (en) * 2012-06-18 2020-08-05 Fujitsu Connected Technologies Limited Method, user equipment, and system for feeding channel state information back
JP2017069688A (ja) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 送信装置及び受信装置およびこれらを用いた通信方法
JP2017063465A (ja) * 2016-11-09 2017-03-30 富士通株式会社 チャネル状態情報をフィードバックする方法、ユーザ装置及びシステム
EP3641153A4 (en) * 2017-06-15 2021-01-06 NTT DoCoMo, Inc. USER TERMINAL AND CHANNEL ESTIMATE PROCESS
CN108111444A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信号加扰、解扰方法及装置
JP6853284B2 (ja) * 2019-02-13 2021-03-31 富士通コネクテッドテクノロジーズ株式会社 チャネル状態情報をフィードバックする方法、ユーザ装置及びシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016607A1 (ja) * 2008-08-08 2010-02-11 シャープ株式会社 基地局間の協調通信方法
WO2010061724A1 (ja) * 2008-11-03 2010-06-03 シャープ株式会社 無線通信システム及びプリコーディング方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016607A1 (ja) * 2008-08-08 2010-02-11 シャープ株式会社 基地局間の協調通信方法
WO2010061724A1 (ja) * 2008-11-03 2010-06-03 シャープ株式会社 無線通信システム及びプリコーディング方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTOROLA: "Study of Possible Extensions to Rel-8 PMI Feedback for Better MU-MIMO Support", 3GPP TSG RAN1 #59 R1-094847, 13 November 2009 (2009-11-13) *
ZTE: "Discussion on unified framework for multi- granular feedback", 3GPP TSG RAN WG1 MEETING #60BIS R1-101838, 16 April 2010 (2010-04-16) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498468B2 (en) 2016-03-18 2019-12-03 Fujitsu Limited Base station, wireless communication system, and calibration method of wireless communication system

Also Published As

Publication number Publication date
JP2011259257A (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
US9350478B2 (en) Wireless communication system, wireless communication device, and wireless communication method
JP5265657B2 (ja) 基地局装置、端末装置、通信システムおよび通信方法
KR102615658B1 (ko) 다중 사용자 중첩 전송 방법 및 장치
JP5149257B2 (ja) 無線通信システム、通信装置および無線通信方法
KR101416783B1 (ko) 협력형 멀티포인트 전송을 위한 개선들
JP5271373B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
WO2010146975A1 (ja) 通信システム、通信装置および通信方法
CN105379347B (zh) 消除相邻小区数据传输的方法及用户设备
WO2014167992A1 (ja) 基地局装置、端末装置、無線通信システム及び集積回路
JP6026082B2 (ja) 端末、基地局、通信方法および集積回路
WO2013024742A1 (ja) 端末、基地局、通信システムおよび通信方法
JP5291664B2 (ja) データ送信方法、基地局装置及び移動局装置
WO2011158726A1 (ja) 基地局装置、端末装置、通信システムおよび通信方法
WO2011155360A1 (ja) 移動端末装置、基地局装置、通信システム、および通信方法
WO2010122749A1 (ja) 通信システム、通信装置および通信方法
JP5725676B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
JP5701332B2 (ja) 基地局装置、端末装置、通信システムおよび通信方法
JP2015111929A (ja) 基地局装置、端末装置、通信システムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792317

Country of ref document: EP

Kind code of ref document: A1