WO2020056593A1 - 一种信号处理方法、设备及存储介质 - Google Patents

一种信号处理方法、设备及存储介质 Download PDF

Info

Publication number
WO2020056593A1
WO2020056593A1 PCT/CN2018/106281 CN2018106281W WO2020056593A1 WO 2020056593 A1 WO2020056593 A1 WO 2020056593A1 CN 2018106281 W CN2018106281 W CN 2018106281W WO 2020056593 A1 WO2020056593 A1 WO 2020056593A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
disturbance
value
terminal device
precoding
Prior art date
Application number
PCT/CN2018/106281
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/106281 priority Critical patent/WO2020056593A1/zh
Priority to CN201880030474.7A priority patent/CN111201731B/zh
Priority to EP18919398.0A priority patent/EP3654558B1/en
Priority to US16/709,327 priority patent/US10979111B2/en
Publication of WO2020056593A1 publication Critical patent/WO2020056593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal processing method, device, and storage medium.
  • Linear precoding technology is commonly used in existing NR communication systems. Although the linear precoding technology has low complexity, the precoding gain is relatively limited, especially in the scenario of Multi-User Multiple-Input Multiple-Output (MU-MIMO). Therefore, non-linear precoding is widely studied as an effective means to improve the precoding gain.
  • the Vector Perturbation (VP) precoding technology is one of the non-linear precoding technologies, which can provide better downlink transmission performance and is suitable for the downlink of single-user systems and multi-user systems.
  • the current new radio (New Radio, NR) system does not support a scheme for precoding data signals based on VP.
  • embodiments of the present invention provide a signal processing method, device, and storage medium, which can implement precoding of a data signal based on a VP in an NR system.
  • an embodiment of the present invention provides a signal processing method, including: a terminal device receiving first precoding instruction information, where the first precoding instruction information is used to indicate related information for precoding a data signal;
  • the terminal device processes the received data signal based on the first precoding indication information; wherein the first precoding indication information includes at least one of the following:
  • an embodiment of the present invention provides a signal processing method, including: a network device determining a target disturbance vector based on channel information;
  • Pre-coding the data signal after the disturbance is added and sending the pre-coded data signal.
  • an embodiment of the present invention provides a terminal device, including:
  • a receiving unit configured to receive first precoding instruction information, where the first precoding instruction information is used to indicate related information for precoding a data signal;
  • a first processing unit configured to process a received data signal based on the first precoding indication information; wherein the first precoding indication information includes at least one of the following:
  • an embodiment of the present invention provides a network device, where the network device includes:
  • a second processing unit configured to determine a target perturbation vector based on the channel information; obtain a perturbed data signal based on the target perturbation vector and a perturbation coefficient value, and precode the perturbed data signal;
  • the sending unit is configured to send a precoded data signal.
  • an embodiment of the present invention provides a terminal device, including: a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the foregoing when the computer program is run. Steps of an information processing method performed by a terminal device.
  • an embodiment of the present invention provides a storage medium that stores an executable program.
  • the executable program is executed by a processor, the information processing method performed by the terminal device is implemented.
  • an embodiment of the present invention provides a storage medium that stores an executable program.
  • the executable program is executed by a processor, the information processing method performed by the network device is implemented.
  • a network device determines a target disturbance vector based on channel information; and obtains a data signal after the disturbance is added based on the target disturbance vector and a disturbance coefficient value, and the data signal after the disturbance is added Precoding. It implements the precoding of data signals based on VP in NR system.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an optional processing flow of a signal processing method applied to a terminal device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an optional processing flow of a signal processing method applied to a network device according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a process for determining a target disturbance vector based on channel information by a network device according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a structure of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a hardware composition structure of an electronic device according to an embodiment of the present invention.
  • the VP precoding technology can obtain better performance than the traditional zero-forcing precoding technology, and is suitable for downlink of single-user system and multi-user system at the same time.
  • the transmitting end selects a VP to shape the transmitted symbols, and the receiving end uses a simple modulo operation to eliminate the VP and directly make a decision.
  • the real and imaginary parts are mainly 0 and ⁇ 1, and the statistical probability for the real part values is shown in Table 1 below.
  • the probability of the value of the imaginary part is opposite to that of the real part.
  • an embodiment of the present invention provides a signal processing method. Based on the sparseness of the perturbation vector distribution and the concentration of specific values, the search codebook size is limited by finite lattice points, and the threshold of the Euclidean distance is set The value further reduces the search range; at the same time, the search is traversed to find an optimal combination of terminal equipment to add disturbance.
  • the present invention provides a signal processing method.
  • the signal processing method in the embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE frequency division duplex (Frequency Frequency Division Duplex (FDD)) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunications System (UMTS), Global Interoperability for Microwave Access (WiMAX) communication system Or 5G systems.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE frequency division duplex Frequency Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be mobile Switching centers, relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or public land mobile networks (PLMN) in future evolution Network equipment, etc.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as an NR system or an NR network.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • An optional processing flow of a signal processing method applied to a terminal device according to an embodiment of the present invention, as shown in FIG. 2, includes the following steps:
  • Step S201 The terminal device receives the first precoding instruction information.
  • the first precoding instruction information is sent by a network device to a terminal device; the first precoding instruction information is used to indicate related information for precoding a data signal.
  • the first precoding indication information includes at least one of the following:
  • the indication information of whether the terminal device performs a modulo operation on the data signal may also be referred to as indication information of whether to add a disturbance vector; when the indication information of whether to add a disturbance vector indicates to add a disturbance to the data signal, the terminal device The data signal needs to be subjected to a modulo operation; when the indication information of whether a disturbance vector is added indicates that no data is added with a disturbance, the terminal device does not need to perform a modulo operation on the data signal.
  • the indication information of whether the terminal device performs a modulus operation on the data signal may be notified to the terminal device by the network device through high-level signaling or through DCI signaling.
  • the high-level signaling may be RRC signaling.
  • the first precoding indication information when the first precoding indication information includes a disturbance coefficient value corresponding to different modulation modes of the data signal, the first precoding indication information is carried in RRC signaling sent by the network device to the terminal device.
  • the modulation method is BPSK
  • the modulation order M is 2
  • the modulation order M is 4.
  • the corresponding disturbance coefficient value is obtained according to the following calculation formula (1) of the disturbance coefficient value.
  • the first precoding indication information when the first precoding indication information includes a perturbation coefficient value corresponding to a modulation mode used by a currently transmitted data signal, the first precoding indication information is carried in a DCI sent by a network device to a terminal device.
  • the information of the disturbance vector value is based on a predefined vector codebook indication, and the information of the disturbance vector value indicates an index of a target disturbance vector in the vector codebook.
  • the predefined vector codebook refers to a predefined vector codebook of a network device and a terminal device.
  • the network device may use a quasi-static disturbance vector value, and the network device notifies the terminal device of the quasi-static disturbance vector value through RRC signaling.
  • the network device may also use a dynamic disturbance vector value, and the network device notifies the terminal of the dynamic disturbance vector value through DCI signaling.
  • a disturbance is added to two of the K transmitting antennas as an example.
  • the predefined vector codebook is shown in Table 2 below:
  • S represents a codebook number, when S is 01, it represents the first codebook, when S is 02, it represents the second codebook, and so on.
  • m 1 and m 2 represent perturbation vectors.
  • Step S202 The terminal device processes the received data signal based on the first precoding instruction information.
  • the terminal device processes the received data signal based on the first precoding indication information, including the following steps:
  • step S2a the terminal device determines the modulation mode of the current data signal according to the modulation and coding scheme (MCS) indication information carried in the DCI scheduling the data signal.
  • MCS modulation and coding scheme
  • the terminal device receives the DCI that schedules the data channel sent by the network device, and the MCS indication information carried in the DCI is used to indicate a modulation mode of the current data signal.
  • Step S2b The terminal device determines a disturbance coefficient value corresponding to the modulation mode based on the determined modulation mode and the disturbance coefficient value corresponding to the different modulation modes.
  • the terminal device searches for the disturbance coefficient value corresponding to the modulation mode of the current data signal determined in step S2a among the disturbance coefficient values corresponding to different modulation modes of the data signal included in the first precoding indication information. .
  • Step S2c Process the received data signal based on the disturbance coefficient value.
  • processing the received data signal based on the disturbance coefficient value includes the terminal device detecting the received data signal based on the disturbance coefficient value.
  • processing the received data signal based on the disturbance coefficient value further includes: The terminal device performs a modulo operation on the data signal.
  • the received data signal is processed based on the disturbance coefficient value, and include:
  • the data signal is transmitted on a symbol corresponding to the symbol index.
  • processing the received data signal based on the disturbance coefficient value further includes:
  • the terminal device determines a target disturbance vector on a symbol corresponding to the symbol index based on the information of the disturbance vector value, and restores the data signal based on the target disturbance vector and a disturbance coefficient value.
  • the data signal is restored based on the target disturbance vector and the disturbance coefficient value, as shown in the following formula (2):
  • F i is the target perturbation vector and ⁇ is the perturbation coefficient value
  • I is the received data signal
  • si is the restored data signal.
  • Another optional processing flow of the signal processing method applied to the terminal device provided by the embodiment of the present invention is similar to the processing flow shown in FIG. 2 except that before step S202, the method further includes:
  • step S200 the terminal device performs normalization processing on the received data signal, and performs linear detection on the normalized data signal.
  • the normalized data signal is shown in the following formula (3):
  • G i is an equalization matrix for linear detection.
  • Data signal after linear detection is an equalization matrix for linear detection.
  • An embodiment of the present invention provides a signal processing method applied to a network device.
  • the processing flow of the signal processing method includes:
  • Step S301 The network device determines a target disturbance vector based on the channel information.
  • the network device determines the processing flow of the target disturbance vector, as shown in FIG. 4, and includes the following steps:
  • Step S3a The network device obtains a precoding matrix based on the channel information.
  • the inverse matrix of the channel matrix is calculated, and the inverse matrix is determined to be a precoding matrix, as shown in the following formula (5):
  • H is to arrange the channel matrix of each terminal device in order as N is the number of terminal devices, each terminal device has X antennas, and the network device has K antennas.
  • step S3b a disturbance is added to any two of the K symbols based on a preset number of codebooks to obtain a preset number of disturbance vectors.
  • a limited number of codebooks can be selected from the predefined vector codebooks according to the actual situation; when adding a disturbance vector to P symbols, there are different signs based on the addition of the disturbance vector.
  • Step S3c Obtain a corresponding preset number of Euclidean distance values based on the preset number of perturbation vectors and the precoding matrix.
  • the Euclidean distance is calculated based on the following formula (6):
  • the s codebook is selected to add the perturbed Euclidean distance value to the first symbol and the second symbol.
  • Step S3d Determine a target disturbance vector based on the preset number of Euclidean distance values.
  • a disturbance vector corresponding to one Euclidean distance value that is less than or equal to the first threshold among the calculated Euclidean distance values is determined as the target disturbance vector.
  • the calculation of the Euclidean distance value is stopped, and the disturbance vector corresponding to the obtained Euclidean distance value less than or equal to the first threshold value is determined as the target disturbance vector .
  • the calculation when traversing When the Euclidean distance calculated in each case is greater than the first threshold, the calculation The minimum Euclidean distance value in each case in this case; the disturbance vector corresponding to the minimum value of the minimum Euclidean distance value in each case is determined as the target disturbance vector.
  • the first threshold value according to the embodiment of the present invention may be flexibly set according to an actual situation, and the target disturbance vector is represented by l near-opt .
  • Step S302 The network device obtains a data signal after adding the disturbance based on the target disturbance vector and the disturbance coefficient value.
  • the network device first determines a disturbance coefficient value based on a modulation mode of the data signal.
  • the network device determines the data signal after the disturbance is added according to the following formula (7).
  • is a disturbance coefficient value
  • l near-opt is a target disturbance vector
  • s is a data signal
  • s ′ is a data signal after the disturbance is added.
  • Step S303 The network device precodes the data signal after the disturbance is added and sends the precoded data signal.
  • the network device may further perform normalization processing on the pre-coded data signal, and send the normalized data signal to the terminal device.
  • the data signal after the disturbance is added is precoded based on the following formula (8).
  • x is a pre-encoded data signal.
  • a normalization process is performed on the pre-encoded data signal based on the following formula (9).
  • the network device before the network device sends the precoded data signal to the terminal device, the network device further sends the first precoding instruction information to the terminal device; the first precoding instruction information is used to indicate Information about precoding the data signal;
  • the first precoding indication information includes at least one of the following:
  • the number of transmitting antennas of network equipment is 8
  • the number of terminal equipment is 2
  • each terminal equipment is configured with 4 receiving antennas
  • the data signal modulation method is 4QAM. Instructions.
  • Another optional processing flow of the signal processing method includes the following steps:
  • Step S401 The network device calculates the inverse matrix of the channel matrix based on the ZF quasi-side as the precoding matrix.
  • the precoding matrix is The channel matrix is
  • Step S402 The network device determines a disturbance coefficient value and a target disturbance vector.
  • the value of the disturbance coefficient obtained according to the foregoing formula (1) is 4.
  • two symbols are selected from the eight symbols corresponding to the eight antennas of the network device to add a disturbance vector.
  • Possible scenarios. for In the first case, i 1, a disturbance vector is added to symbols 1 and 2, and a disturbance vector is not added to symbols 3 to 8.
  • Step S403 The network device obtains a data signal after the disturbance is added based on the target disturbance vector and the disturbance coefficient value.
  • Step S404 Perform precoding processing, normalization processing on the data signal after the disturbance is added, and send the data signal obtained by the normalization processing.
  • precoding processing is performed on the data signal after the disturbance is added based on the foregoing formula (8), and normalization processing is performed on the precoded data signal based on the above formula (9).
  • the network device also sends precoding instruction information to the terminal device before sending the data signal to the terminal device.
  • Step S405 After receiving the data signal and the precoding instruction information, the terminal device performs normalization processing on the received data signal by using the foregoing formula (3).
  • Step S406 The terminal device performs linear detection on the normalized data signal by using the foregoing formula (4) to obtain the linearly detected data signal.
  • Step S407 The terminal device determines a modulation mode of the current data signal according to the MCS indication information carried in the DCI that schedules the data signal.
  • step S2a the process of determining the modulation mode of the current data signal is the same as step S2a, and is not repeated here.
  • Step S408 The terminal device restores the data signal based on the first precoding instruction information.
  • the terminal device uses the following formula (10) Perform a modulo operation on the data signal.
  • s i is a data signal finally obtained by the terminal device.
  • the terminal device can be based on the disturbance
  • the embodiment of the present invention can reduce the complexity of searching for a disturbance vector.
  • the feedforward information sent by the network device to the terminal device can greatly improve the performance of the terminal device.
  • a simplified method for implementing joint grouping of linear ZF and nonlinear VP is implemented.
  • an optimal terminal device combination is selected to add the perturbation vector.
  • Terminal devices without the perturbation vector are subjected to linear precoding processing.
  • the interference processing is first performed between the terminal device groups, and then the corresponding non-linear processing is performed in the terminal device group, the implementation is simpler and the precoding gain is improved.
  • this application only needs a small amount of downlink signaling overhead to notify the terminal device of the required information for detection, and to ensure that the terminal can perform correct data signal demodulation.
  • An embodiment of the present invention further provides a terminal device.
  • the structure of the terminal device includes:
  • the receiving unit 501 is configured to receive first precoding instruction information, where the first precoding instruction information is used to indicate related information for precoding a data signal;
  • the first processing unit 502 is configured to process the received data signal based on the first precoding indication information; wherein the first precoding indication information includes at least one of the following:
  • the first precoding indication information when the first precoding indication information includes a disturbance coefficient value corresponding to different modulation modes of a data signal, the first precoding indication information is carried in RRC signaling.
  • the first precoding indication information when the first precoding indication information includes a disturbance coefficient value corresponding to a modulation mode used for a currently transmitted data signal, the first precoding indication information is carried in the DCI.
  • the information of the disturbance vector value is based on a predefined vector codebook indication; the information of the disturbance vector value indicates an index of a target disturbance vector in the vector codebook.
  • the first processing unit 502 is further configured to perform normalization processing on the received data signal and perform linear detection on the normalized data signal.
  • the first processing unit 502 when the first precoding indication information includes a disturbance coefficient value corresponding to different modulation modes of a data signal, the first processing unit 502 is configured to perform the MCS carried in the DCI scheduling the data signal. Instruction information to determine the modulation mode of the current data signal;
  • the received data signal is processed based on the disturbance coefficient value.
  • the first processing unit 502 when the first precoding indication information includes indication information of whether the terminal device performs a modulus operation on a data signal, the first processing unit 502 is configured as the first precoding indication information When instructing the terminal device not to perform a modulo operation on the data signal, the terminal device does not perform a modulo operation to the data signal;
  • the terminal device when the first precoding instruction information instructs the terminal device to perform a modulo operation on the data signal, the terminal device performs a modulo operation on the data signal.
  • the first processing unit 502 when the first precoding indication information includes information of a disturbance vector value and a symbol index corresponding to the disturbance vector value, the first processing unit 502 is configured to be based on the information of the disturbance vector value A symbol index corresponding to the disturbance vector value, and determining a target disturbance vector on a symbol corresponding to the symbol index;
  • the symbol corresponding to the symbol index is restored to transmit the data signal.
  • the first processing unit 502 when the first precoding indication information includes information of a disturbance vector value, the first processing unit 502 is configured to determine a symbol corresponding to the symbol index based on the information of the disturbance vector value.
  • Target disturbance vector
  • the data signal is restored based on the target disturbance vector and a disturbance coefficient value.
  • An embodiment of the present invention also provides a network device.
  • the composition structure of the network device as shown in FIG. 6, includes:
  • a second processing unit 601 configured to determine a target perturbation vector based on the channel information; obtain a perturbed data signal based on the target perturbation vector and a perturbation coefficient value, and precode the perturbed data signal;
  • the sending unit 602 is configured to send a pre-coded data signal.
  • the second processing unit 601 is further configured to perform normalization processing on the pre-encoded data signal.
  • the sending unit 602 is further configured to send first precoding instruction information; the first precoding instruction information is used to indicate related information for precoding a data signal;
  • the first precoding indication information includes at least one of the following:
  • the second processing unit 601 is configured to obtain a precoding matrix based on the channel information
  • perturbation is added to any P of the K symbols to obtain a preset number of perturbation vectors; P is a positive integer less than or equal to K.
  • a target disturbance vector is determined based on the preset number of Euclidean distance values.
  • the value of K is equal to the number of antennas of the network device.
  • the second processing unit 601 is configured to determine, as the target disturbance vector, a disturbance vector corresponding to one Euclidean distance value that is less than or equal to a first threshold among the preset number of Euclidean distance values. .
  • the second processing unit 601 is configured to traverse the different positions of the P symbols with the disturbance added to the K symbols when the preset number of Euclidean distance values are greater than the first threshold. In this case, until the Euclidean distance value less than or equal to the first threshold is obtained;
  • the perturbation vector corresponding to the Euclidean distance value less than or equal to the first threshold is determined as the target perturbation vector.
  • the second processing unit is configured to traverse the different positions of the P symbols with the added disturbance in the K symbols. In this case, when the obtained Euclidean distance values are all greater than the first threshold, The minimum Euclidean distance in each case;
  • the disturbance vector corresponding to the minimum value of the minimum Euclidean distance value in each case is determined as the target disturbance vector.
  • An embodiment of the present invention further provides a terminal device including a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the computer program executed by the terminal device when the computer program is run. Determine the steps of the signal processing method.
  • An embodiment of the present invention further provides a network device, including a processor and a memory for storing a computer program capable of running on the processor, wherein the processor is configured to execute the computer program executed by the network device when the computer program is run. Steps of the signal processing method.
  • FIG. 7 is a schematic diagram of a hardware composition structure of an electronic device (network device or terminal device) according to an embodiment of the present invention.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together via a bus system 705. It can be understood that the bus system 705 is configured to implement connection and communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 7.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memories.
  • the non-volatile memory may be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), electrically erasable and programmable memory Programmable read-only memory (EEPROM, Electrically Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash memory), magnetic surface memory, optical disc, or read-only disc (CD) -ROM, Compact Disc-Read-Only Memory); magnetic surface storage can be magnetic disk storage or magnetic tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Static Random Access, Memory), Dynamic Random Access DRAM (Dynamic Random Access Memory), Synchronous Dynamic Random Access Memory (SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (DDRSDRAM, Double Data Rate Synchronous Dynamic Random Access Memory), enhanced Type Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Random Dynamic Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory) ).
  • the memory 702 described in embodiments of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present invention is configured to store various types of data to support the operation of the electronic device 700. Examples of such data include: any computer program for operating on the electronic device 700, such as the application program 7022. A program for implementing the method of the embodiment of the present invention may be included in an application program 7022.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 701, or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using hardware integrated logic circuits or instructions in the form of software in the processor 701.
  • the above-mentioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor 701 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present invention.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logic Devices (CPLDs).
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal processors
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Devices
  • Complex, Programmable (Logic, Device) FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing methods.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种信号处理方法,包括:终端设备接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理。以及另一种信号处理方法、终端设备、网络设备及存储介质。

Description

一种信号处理方法、设备及存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信号处理方法、设备及存储介质。
背景技术
现有的NR通信***中普遍采用线性预编码技术。线性预编码技术虽然复杂度较低,但是预编码增益比较有限,特别是在多用户-多输入-多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)的场景下。因此,非线性预编码作为一种提高预编码增益的有效手段被广泛研究。其中,扰动矢量(Vector Perturbation,VP)预编码技术即为其中一种非线性预编码技术,能够提供更好的下行传输性能,同时适用于单用户***和多用户***的下行链路。但是,目前的新无线(New Radio,NR)***中并不支持基于VP对数据信号进行预编码的方案。
发明内容
为解决上述技术问题,本发明实施例提供一种信号处理方法、设备及存储介质,能够实现在NR***中,基于VP对数据信号进行预编码。
第一方面,本发明实施例提供一种信号处理方法,包括:终端设备接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;
所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理;其中,所述第一预编码指示信息包括下述至少一项:
数据信号的不同调制方式对应的扰动系数值;
当前传输的数据信号采用的调制方式对应的扰动系数值;
所述终端设备是否对数据信号进行取模操作的指示信息;
扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
第二方面,本发明实施例提供一种信号处理方法,包括:网络设备基于信道信息,确定目标扰动矢量;
基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号;
对所述添加扰动后的数据信号进行预编码并发送预编码后的数据信号。
第三方面,本发明实施例提供一种终端设备,包括:
接收单元,配置为接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;
第一处理单元,配置为基于所述第一预编码指示信息对接收的数据信号进行处理;其中,所述第一预编码指示信息包括下述至少一项:
数据信号的不同调制方式对应的扰动系数值;
当前传输的数据信号采用的调制方式对应的扰动系数值;
所述终端设备是否对数据信号进行取模操作的指示信息;
扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
第四方面,本发明实施例提供一种网络设备,所述网络设备包括:
第二处理单元,配置为基于信道信息,确定目标扰动矢量;基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号,并对所述添加扰动后的数据信号进行预编码;
发送单元,配置为发送预编码后的数据信号。
第五方面,本发明实施例提供一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的信息处理方法的步骤。
第七方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的信息处理方法。
第八方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的信息处理方法。
本发明实施例提供的信息处理方法,网络设备基于信道信息,确定目标扰动矢量;并基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号,对所述添加扰动后的数据信号进行预编码。实现了在NR***中,基于VP对数据信号进行预编码。
附图说明
图1为本发明实施例通信***的组成结构示意图;
图2为本发明实施例应用于终端设备的信号处理方法的可选处理流程示意图;
图3为本发明实施例应用于网络设备的信号处理方法的可选处理流程示意图;
图4为本发明实施例网络设备基于信道信息确定目标扰动矢量的处理流程示意图;
图5为本发明实施例终端设备的组成结构示意图;
图6为本发明实施例网络设备的组成结构示意图;
图7为本发明实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例进行详细描述之前,首先对VP预编码技术进行简要说明。
VP预编码技术由于能够获得比传统的迫零预编码技术更好的性能、以及同时适用于单用户***和多用户***的下行链路。在VP预编码技术中,发送端选择一个VP对发送的符号进行整形,接收端使用简单的取模运算消除VP后直接进行判决。
本申请人在基于VR预编码技术对数据信号进行预编码时,发现VR预编码技术搜索最优扰扰动矢量的复杂度高;具体地,最优扰动矢量通过在空间
Figure PCTCN2018106281-appb-000001
中进行完全搜索获得,即ML解。但由于
Figure PCTCN2018106281-appb-000002
没有边界,在空间
Figure PCTCN2018106281-appb-000003
中进行完全搜索不能实现。
为解决不能在空间
Figure PCTCN2018106281-appb-000004
中进行完全搜索的问题,本申请人提出进行部分空间搜索,如基于球形编码的矢量扰动预编码(Sphere Encoding Vector Perturbation,SE-VP)。但是,球形编码算法的复杂度非常高,限制了VP预编码方案的实际应用。或者基于减格辅助的矢量扰动预编码(Lattice Reduction Aided Vector Perturbation,LRA-VP),该预编码技术虽然复杂度相比于SE-VP有所降低;但是,在实际信道中,利用多个PRB做预编码时相对于相关技术中的线性预编码技术,并没有产生更大的性能增益。
由于VP预编码中所添加的扰动矢量都是实整数,因此,矢量扰动预编码中对数据信号所加的扰动矢量的两个统计特征:
对于一个扰动矢量l=[l 1,…,l k,…,l K] T,令n表示l中非零元素的个数,P(n)表示l中非零元素个数为n的概率,u k表示第k个调制符号实部或虚部的取值。
第一统计特征:扰动矢量的非零元素个数n集中在1和2,大于2的概率很小,其中P(n=0),P(n=1)>P(n=2),P(n>2)<0.1。即对于一个发送数据s,大部分情况是不需要添加扰动,或者在一个或两个位置上添加扰动;因此,l很大概率是[0,…,0] T,[0,…,0,l k,0,…,0] T,[0,…,l k,…,l l,…,0] T这三种情况。
第二统计特征:对于非零元素的实部和虚部值,主要为0和±1,对于实部取值的统计概率如下表1所示。虚部的取值的概率与实部相反。距离来说,对于调制符号1-j,u k=1,如果要在1-j上添加扰动l k,则l k的实部为0的概率是0.7941,为-1的概率是0.1859,为1的概率是0.02。
Figure PCTCN2018106281-appb-000005
基于上述分析,本发明实施例提供一种信号处理方法,基于扰动矢量分布的稀疏性和具体取值的集中性,通过有限格点来限制搜索码本大小,并通过设定欧式距离的门限值进一步减小搜索范围;同时,遍历搜索找到一个最优终端设备组合来添加扰动。
本发明提供一种信号处理方法,本申请实施例的信号处理方法可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是新无线***中的基站(gNB)或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视 网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为NR***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本发明实施例提供的应用于终端设备的信号处理方法的一个可选处理流程,如图2所示,包括以下步骤:
步骤S201,终端设备接收第一预编码指示信息。
本发明实施例中,所述第一预编码指示信息由网络设备发送至终端设备;所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息。
其中,所述第一预编码指示信息包括下述至少一项:
1)数据信号的不同调制方式对应的扰动系数值;
2)当前传输的数据信号采用的调制方式对应的扰动系数值;
3)所述终端设备是否对数据信号进行取模操作的指示信息;
4)扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
这里,所述终端设备是否对数据信号进行取模操作的指示信息,也可以称为是否添加扰动矢量的指示信息;在是否添加扰动矢量的指示信息指示对数据信号添加扰动时,所述终端设备需要对数据信号进行取模操作;在是否添加扰动矢量的指示信息指示未对数据添加扰动时,所述终端设备不需要对数据信号进行取模操作。所述终端设备是否对数据信号进行取模操作的指示信息可以由网络设备通过高层信令或通过DCI信令通知给终端设备。可选地,所述高层信令可以是RRC信令。
可选地,当所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,所述第一预编码指示信息在网络设备发送给终端设备的RRC信令中携带。举例来说,当调制方式为BPSK时,调制阶数M为2;当调制方式为QPSK时,调制阶数M为4。根据下述扰动系数值的计算公式(1)得到对应的扰动系数值。
Figure PCTCN2018106281-appb-000006
可选地,当所述第一预编码指示信息包括当前传输的数据信号采用的调制方式对应的扰动系数值时,所述第一预编码指示信息在网络设备发送给终端设备的DCI中携带。
可选地,所述扰动矢量值的信息基于预先定义的矢量码本指示,所述扰动矢量值的信息指示目标扰动矢量在所述矢量码本中的索引。这里,所述预先定义的矢量码本,是指网络设备和终端设备预先定义的矢量码本。所述网络设备可以采用准静态的扰动矢量值,网络设备通过RRC信令将准静态的扰动矢量值通知给终端设备。所述网络设备也可以采用动态的扰动矢量值,网络设备通过DCI信令将动态的扰动矢量值通知给终端。
本发明实施例中,以在K根发射天线的其中两根天线上添加扰动为例,预先定义的矢量码本如下表2所示:
Figure PCTCN2018106281-appb-000007
表2
上述表2中,S表示码本编号,当S为01时,表示第1个码本,当S为02时,表示第2个码本,以此类推。m 1和m 2表示扰动矢量。
步骤S202,终端设备基于所述第一预编码指示信息对接收的数据信号进行处理。
在一些实施例中,当第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,终端设备基于所述第一预编码指示信息对接收的数据信号进行处理,包括以下步骤:
步骤S2a,终端设备根据调度所述数据信号的DCI中携带的调制编码方式(Modulation and Coding Scheme,MCS)指示信息,确定当前数据信号的调制方式。
在一些实施例中,终端设备接收网络设备发送的调度所述数据信道的DCI,所述DCI中携带的MCS指示信息,所述MCS指示信息用于指示当前数据信号的调制方式。
步骤S2b,终端设备基于所确定的调制方式和所述不同调制方式对应的扰动系数值,确定所述调制方式对应的扰动系数值。
在一些实施例中,终端设备在第一预编码指示信息所包括的数据信号的不同调制方式对应的扰动系数值中,查找与步骤S2a中所确定的当前数据信号的调制方式对应的扰动系数值。
步骤S2c,基于所述扰动系数值对接收的数据信号进行处理。
这里,基于所述扰动系数值对接收的数据信号进行处理,包括终端设备基于所述扰动系数值,对接受的数据信号进行检测。
在一些实施例中,当第一预编码指示信息还包括:所述终端设备对数据信号进行取模操作的指示信息时,基于所述扰动系数值对接收到的数据信号进行处理,还包括:终端设备对数据信号进行取模操作。
在另一些实施例中,当第一预编码指示信息还包括扰动矢量值的信息,和所述扰动矢量值对应的符号索引时,基于所述扰动系数值对接收到的数据信号进行处理,还包括:
所述终端设备基于所述扰动矢量值的信息和所述扰动矢量值对应的符号索引,确定所述符号索引对应的符号上的目标扰动矢量;基于所述目标扰动矢量和扰动系数值,还原所述符号索引对应的符号上传输所述数据信号。
在又一些实施例中,当第一预编码指示信息还包括扰动矢量值的信息,时,基于所述扰动系数值对接收到的数据信号进行处理,还包括:
所述终端设备基于所述扰动矢量值的信息,确定所述符号索引对应的符号上的目标扰动矢量;基于所述目标扰动矢量和扰动系数值,还原所述数据信号。
本发明实施例中,基于所述目标扰动矢量和扰动系数值,还原所述数据信号,如下述公式(2)所示:
Figure PCTCN2018106281-appb-000008
其中,F i为目标扰动矢量,τ为扰动系数值,
Figure PCTCN2018106281-appb-000009
为接收到的数据信号,s i为还原后的数据信号。
本发明实施例提供的应用于终端设备的信号处理方法的另一个可选处理流程,与图2所示的处理流程相似,不同之处在于,在步骤S202之前,所述方法还包括:
步骤S200,所述终端设备对接收的数据信号进行归一化处理,并对归一化处理后的数据信号进行线性检测。
在具体实施时,接收到的数据信号为y i时,归一化处理后的数据信号,如下述公式(3)所示:
Figure PCTCN2018106281-appb-000010
其中,y i为接收到的数据信号,
Figure PCTCN2018106281-appb-000011
为归一化处理后的数据信号,
Figure PCTCN2018106281-appb-000012
为归一化系数。
对归一化处理后的数据信号进行线性检测时,若线性检测的均衡矩阵为G i,则对归一化处理后的数据信号进行线性检测以后的数据信号,如下述公式(4)所示:
Figure PCTCN2018106281-appb-000013
其中,
Figure PCTCN2018106281-appb-000014
为归一化处理后的数据信号,G i为线性检测的均衡矩阵,
Figure PCTCN2018106281-appb-000015
为线性检测后的数据信号。
本发明实施例提供一种应用于网络设备的信号处理方法,所述信号处理方法的处理流程,如图3所示,包括:
步骤S301,网络设备基于信道信息,确定目标扰动矢量。
在一些实施例中,网络设备基于信道信息,确定目标扰动矢量的处理流程,如图4所示,包括如下步骤:
步骤S3a,网络设备基于所述信道信息,获得预编码矩阵。
以所述信道信息为信道矩阵为例,计算所述信道矩阵的逆矩阵,确定所述逆矩阵为预编码矩阵;如下述公式(5)所示:
Figure PCTCN2018106281-appb-000016
其中,H是将各终端设备的信道矩阵按顺序排列为
Figure PCTCN2018106281-appb-000017
N为终端设备数量,每个终端设备具有X根天线,网络设备具有K根天线数。
步骤S3b,基于预设数量的码本,在K个符号中的任意两个符号上添 加扰动,得到预设数量的扰动矢量。
在一些实施例中,可根据实际情况,在预先定义的矢量码本中选择有限个码本;在P个符号上添加扰动矢量时,基于添加扰动矢量的符号不同,存在
Figure PCTCN2018106281-appb-000018
种情况,P为小于或等于K的正整数。以P=2为例,在第一符号和第二符号上添加扰动m 1和m 2,以上述表1所示的矢量码本为例,在表1所述的矢量码本中选择前n个码本,1﹤n﹤25;则前n个码本为S(1)=[0 0] T,S(2)=[0 1] T,...,S(10)=[0 j] T,...,S(s)=[m 1 m 2] T,分别在第一符号和第二符号上添加扰动。举例来说,在k个符号中的2个符号上添加扰动矢量时,基于添加扰动矢量的符号不同,存在
Figure PCTCN2018106281-appb-000019
种情况;在
Figure PCTCN2018106281-appb-000020
种情况中的一种情况下可以得到的扰动矢量有s种可能,分别为
Figure PCTCN2018106281-appb-000021
Figure PCTCN2018106281-appb-000022
步骤S3c,基于所述预设数量的扰动矢量和所述预编码矩阵,得到对应的预设数量的欧式距离值。
在一些实施例中,基于下述公式(6)计算欧式距离:
Figure PCTCN2018106281-appb-000023
其中,d(i,s)为
Figure PCTCN2018106281-appb-000024
种情况中第i种情况下,选择s个码本在第一符号和第二符号上添加扰动得到的欧式距离值。
这里,在有s个扰动矢量的情况下,能够得到s个欧式距离值。
步骤S3d,基于所述预设数量的欧式距离值,确定目标扰动矢量。
在一些实施例中,对于
Figure PCTCN2018106281-appb-000025
种情况中的任意一种情况,将计算得到的欧式距离值中,小于或等于第一阈值的一个欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
在具体实施时,可以是计算得到的欧式距离值小于或等于第一阈值时,便停止计算欧式距离值,将得到的小于或等于第一阈值的欧式距离值对应的扰动矢量确定为目标扰动矢量。
在另一些实施例中,对于
Figure PCTCN2018106281-appb-000026
种情况中的一种情况,当计算得到的s个欧式距离值均大于第一阈值时,遍历
Figure PCTCN2018106281-appb-000027
种情况,直至获得欧式距离值小于或等于第一阈值的欧式距离值;将获得的欧式距离值小于或等于第一阈值的欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
在又一些实施例中,当遍历
Figure PCTCN2018106281-appb-000028
种情况计算得到的欧式距离值均大于第一阈值时,计算
Figure PCTCN2018106281-appb-000029
种情况中每种情况下的最小欧式距离值;将所述每种情况下的最小欧式距离值中的最小值所对应的扰动矢量,确定为目标扰动矢 量。
本发明实施例所述的第一阈值,可根据实际情况灵活设定,所述目标扰动矢量用l near-opt表示。
步骤S302,网络设备基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号。
这里,所述网络设备首先基于数据信号的调制方式,确定扰动系数值。
所述调制方式与扰动系数值之间的对应关系,如上述公式(1)所示,这里不再进行赘述。
本发明实施例中,所述网络设备根据下述公式(7)确定添加扰动后的数据信号。
s′=s+τl near-opt      (7)
其中,τ为扰动系数值,l near-opt为目标扰动矢量,s为数据信号,s'为添加扰动后的数据信号。
步骤S303,网络设备对所述添加扰动后的数据信号进行预编码并发送预编码后的数据信号。
这里,所述网络设备在发送预编码后的数据信号之前,还可以对预编码后的数据信号进行归一化处理,将归一化处理后的数据信号发送至终端设备。
本发明实施例中,基于下述公式(8)对添加扰动后的数据信号进行预编码。
Figure PCTCN2018106281-appb-000030
其中,x为预编码后的数据信号。
本发明实施例中,基于下述公式(9)对预编码后的数据信号进行归一化处理。
Figure PCTCN2018106281-appb-000031
其中,
Figure PCTCN2018106281-appb-000032
为归一化系数,
Figure PCTCN2018106281-appb-000033
本发明实施例中,所述网络设备在向终端设备发送预编码后的数据信号之前,所述网络设备还向终端设备发送第一预编码指示信息;所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;、
其中,所述第一预编码指示信息包括下述至少一项:
1)数据信号的不同调制方式对应的扰动系数值;
2)当前传输的数据信号采用的调制方式对应的扰动系数值;
3)所述终端设备是否对数据信号进行取模操作的指示信息;
4)扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
下面以网络设备的发射天线数为8,终端设备数目为2,每个终端设备 配置有4根接收天线,数据信号的调制方式为4QAM为例,对本发明实施例的信号处理方法的处理流程进行说明。所述信号处理方法的又一可选处理流程,包括以下步骤:
步骤S401,网络设备基于ZF准侧计算信道矩阵的逆矩阵,作为预编码矩阵。
此时,预编码矩阵为
Figure PCTCN2018106281-appb-000034
信道矩阵为
Figure PCTCN2018106281-appb-000035
步骤S402,网络设备确定扰动系数值和目标扰动矢量。
本发明实施例中,由于调制阶数为4,所以根据上述公式(1)得到的扰动系数值为4。
本发明实施例中,在网络设备的8根天线对应的8个符号上选择2个符号添加扰动矢量,那么,共有
Figure PCTCN2018106281-appb-000036
种可能的情况。对于
Figure PCTCN2018106281-appb-000037
的第一种情况,即i=1的情况,此时在符号1和符号2上添加扰动矢量,符号3至符号8上不添加扰动矢量。若选择的码本数量s=3,依次从码本中选择S(1,1)=[0 0] T,S(1,2)=[0 1] T,S(1,3)=[0 -1] T,得到对应的扰动矢量为l(1,1)=[0,0,0,0,0,0,0,0] T,l(1,2)=[0,1,0,0,0,0,0,0] T,l(1,3)=[0,-1,0,0,0,0,0,0] T。计算
Figure PCTCN2018106281-appb-000038
Figure PCTCN2018106281-appb-000039
则以d(i,s)对应的
Figure PCTCN2018106281-appb-000040
作为目标扰动矢量l near-opt。否则,继续遍历剩下的组合l(i,s),直到d(i,s)≤V th。否则,从计算得到的d(i,s)中选择最小值对应的l near-opt作为目标扰动矢量。
步骤S403,网络设备基于目标扰动矢量和扰动系数值获得添加扰动后的数据信号。
步骤S404,对添加扰动后的数据信号进行预编码处理、归一化处理,并发送归一化处理得到的数据信号。
本发明实施例中,基于上述公式(8)对添加扰动后的数据信号进行预编码处理,基于上述公式(9)对预编码后的数据信号进行归一化处理。
这里,网络设备在向终端设备发送数据信号之前,还向终端设备发送预编码指示信息。
步骤S405,终端设备接收到数据信号和预编码指示信息后,对接收的数据信号利用上述公式(3)进行归一化处理。
步骤S406,终端设备利用上述公式(4)对归一化处理后的数据信号进行线性检测,得到线性检测后的数据信号。
步骤S407,终端设备根据调度所述数据信号的DCI中携带的MCS指示信息,确定当前数据信号的调制方式。
需要说明的是,这里确定当前数据信号的调制方式的处理过程,与步骤S2a相同,这里不再赘述。
步骤S408,终端设备基于第一预编码指示信息,还原数据信号。
在一些实施例中,当第一预编码指示信息包括:数据信号的不同调制方式对应的扰动系数值时和所述终端设备对数据信号进行取模操作的指示信息时,终端设备利用下述公式(10)对数据信号进行取模操作。
Figure PCTCN2018106281-appb-000041
其中,s i为终端设备最终获得的数据信号。
当终端设备不需要进行取模操作时,
Figure PCTCN2018106281-appb-000042
为终端设备最终获得的数据信号。
在另一些实施例中,当第一预编码指示信息包括:数据信号的不同调制方式对应的扰动系数值、扰动矢量值的信息和所述扰动矢量值对应的符号索引时,终端设备能够基于扰动矢量值的信息和所述扰动矢量值对应的符号索引获知在哪个符号上添加了扰动矢量,以及扰动矢量是什么。举例来说,在终端设备的第2个符号上添加了扰动+j;确定目标矢量为F i=[0 +j 0 0] T。再基于数据信号的不同调制方式对应的扰动系数值,利用上述公式(2)还原数据信号。
本发明上述实施例中具有以下技术效果:
1)通过限定扰动矢量的搜索码本大小,同时遍历所有的发射符号,在所有的发射符号中选择两个最优的发送符号来添加扰动矢量,以实现对数据信号的非线性预编码;对于未添加扰动的符号对应的终端设备的数据信号,仍进行线性预编码处理。相比于传统的VP预编码,本发明实施例能够降低搜索扰动矢量的复杂度。
2)网络设备对终端设备发送的前馈信息,能够极大地提升终端设备的性能。
3)本发明实施例时一种简化的线性ZF和非线性VP进行联合分组的实现方法。通过遍历所有终端设备组合选择一个最优的终端设备组合来添加扰动矢量,未添加扰动矢量的终端设备进行线性预编码处理。与传统VP预编码中先在终端设备组间做一次干扰处理,再在终端设备组内在进行相应的非线性处理相比,实现更简单,提高预编码增益。
4)在网络设备对数据信号进行非线性预编码时,本申请只需要少量的下行信令开销,就可以通知终端设备检测需要的信息,并且保证终端能够进行正确的数据信号解调。
本发明实施例还提供一种终端设备,所述终端设备的组成结构,如图5所示,包括:
接收单元501,配置为接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;
第一处理单元502,配置为基于所述第一预编码指示信息对接收的数据信号进行处理;其中,所述第一预编码指示信息包括下述至少一项:
数据信号的不同调制方式对应的扰动系数值;
当前传输的数据信号采用的调制方式对应的扰动系数值;
所述终端设备是否对数据信号进行取模操作的指示信息;
扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
本发明实施例中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,所述第一预编码指示信息携带于RRC信令中。
本发明实施例中,所述第一预编码指示信息包括当前传输的数据信号采用的调制方式对应的扰动系数值时,所述第一预编码指示信息携带于DCI中。
本发明实施例中,所述扰动矢量值的信息基于预先定义的矢量码本指示;所述扰动矢量值的信息指示目标扰动矢量在所述矢量码本中的索引。
本发明实施例中,所述第一处理单元502,还配置为对接收的数据信号进行归一化处理,并对归一化处理后的数据信号进行线性检测。
本发明实施例中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,所述第一处理单元502,配置为根据调度所述数据信号的DCI中携带的MCS指示信息,确定当前数据信号的调制方式;
基于所确定的调制方式和所述不同调制方式对应的扰动系数值,确定所述调制方式对应的扰动系数值;
基于所述扰动系数值对接收的数据信号进行处理。
本发明实施例中,所述第一预编码指示信息包括所述终端设备是否对数据信号进行取模操作的指示信息时,所述第一处理单元502,配置为所述第一预编码指示信息指示终端设备不对数据信号进行取模操作时,所述终端设备不对数据信号进行取模操作;
或,所述第一预编码指示信息指示终端设备对数据信号进行取模操作时,所述终端设备对数据信号进行取模操作。
本发明实施例中,所述第一预编码指示信息包括扰动矢量值的信息和所述扰动矢量值对应的符号索引时,所述第一处理单元502,配置为基于所述扰动矢量值的信息和所述扰动矢量值对应的符号索引,确定所述符号索引对应的符号上的目标扰动矢量;
基于所述目标扰动矢量和扰动系数值,还原所述符号索引对应的符号上传输所述数据信号。
本发明实施例中,所述第一预编码指示信息包括扰动矢量值的信息时,所述第一处理单元502,配置为基于所述扰动矢量值的信息,确定所述符号索引对应的符号上的目标扰动矢量;
基于所述目标扰动矢量和扰动系数值,还原所述数据信号。
本发明实施例还提供一种网络设备,所述网络设备的组成结构,如图6所示,包括:
第二处理单元601,配置为基于信道信息,确定目标扰动矢量;基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号,并对所述添 加扰动后的数据信号进行预编码;
发送单元602,配置为发送预编码后的数据信号。
本发明实施例中,所述第二处理单元601,还配置为对预编码后的数据信号进行归一化处理。
本发明实施例中,所述发送单元602,还配置为发送第一预编码指示信息;所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;、
其中,所述第一预编码指示信息包括下述至少一项:
数据信号的不同调制方式对应的扰动系数值;
当前传输的数据信号采用的调制方式对应的扰动系数值;
所述终端设备是否对数据信号进行取模操作的指示信息;
扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
本发明实施例中,所述第二处理单元601,配置为基于所述信道信息,获得预编码矩阵;
基于预设数量的码本,在K个符号中的任意P个符号上添加扰动,得到预设数量的扰动矢量;P为小于或等于K的正整数。
基于所述预设数量的扰动矢量和所述预编码矩阵,得到对应的预设数量的欧式距离值;
基于所述预设数量的欧式距离值,确定目标扰动矢量。
本发明实施例中,所述K的值与所述网络设备的天线数目相等。
本发明实施例中,所述第二处理单元601,配置为将所述预设数量的欧式距离值中,小于或等于第一阈值的一个欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
本发明实施例中,所述第二处理单元601,配置为在所述预设数量的欧式距离值均大于第一阈值时,遍历添加扰动的P个符号在K个符号中不同位置的
Figure PCTCN2018106281-appb-000043
种情况,直至获得欧式距离值小于或等于第一阈值的欧式距离值;
将欧式距离值小于或等于第一阈值的欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
本发明实施例中,所述第二处理单元,配置为遍历添加扰动的P个符号在K个符号中不同位置的
Figure PCTCN2018106281-appb-000044
种情况,得到的欧式距离值均大于第一阈值时,计算
Figure PCTCN2018106281-appb-000045
种情况中每种情况下的最小欧式距离值;
将所述每种情况下的最小欧式距离值中的最小值所对应的扰动矢量,确定为目标扰动矢量。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的确定信号处理方法的步骤。
本发明实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算 机程序时,执行上述网络设备执行的信号处理方法的步骤。
图7是本发明实施例的电子设备(网络设备或终端设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线***705耦合在一起。可理解,总线***705用于实现这些组件之间的连接通信。总线***705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线***705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本发明实施例方法的程序可以包含在应用程序7022中。
上述本发明实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保 护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (40)

  1. 一种信号处理方法,所述方法包括:
    终端设备接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;
    所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理;其中,所述第一预编码指示信息包括下述至少一项:
    数据信号的不同调制方式对应的扰动系数值;
    当前传输的数据信号采用的调制方式对应的扰动系数值;
    所述终端设备是否对数据信号进行取模操作的指示信息;
    扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
  2. 根据权利要求1所述的方法,其中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,
    所述第一预编码指示信息携带于无线资源控制RRC信令中。
  3. 根据权利要求1所述的方法,其中,所述第一预编码指示信息包括当前传输的数据信号采用的调制方式对应的扰动系数值时,
    所述第一预编码指示信息携带于下行控制信息DCI中。
  4. 根据权利要求1所述的方法,其中,所述扰动矢量值的信息基于预先定义的矢量码本指示;
    所述扰动矢量值的信息指示目标扰动矢量在所述矢量码本中的索引。
  5. 根据权利要求1至4任一项所述的方法,其中,在所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理之前,所述方法还包括:
    所述终端设备对接收的数据信号进行归一化处理;
    对归一化处理后的数据信号进行线性检测。
  6. 根据权利要求1至5任一项所述的方法,其中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,所述终端设备基于所述第一预编码指示信息,对接收的数据信号进行处理,包括:
    所述终端设备根据调度所述数据信号的DCI中携带的调制编码方式MCS指示信息,确定当前数据信号的调制方式;
    基于所确定的调制方式和所述不同调制方式对应的扰动系数值,确定所述调制方式对应的扰动系数值;
    基于所述扰动系数值对接收的数据信号进行处理。
  7. 根据权利要求1至6任一项所述的方法,其中,所述第一预编码指示信息包括所述终端设备是否对数据信号进行取模操作的指示信息时,所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理,包括:
    所述第一预编码指示信息指示终端设备不对数据信号进行取模操作时,所述终端设备不对数据信号进行取模操作;
    或,所述第一预编码指示信息指示终端设备对数据信号进行取模操作时,所述终端设备对数据信号进行取模操作。
  8. 根据权利要求1至6任一项所述的方法,其中,所述第一预编码指示信息包括扰动矢量值的信息和所述扰动矢量值对应的符号索引时,所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理,包括:
    所述终端设备基于所述扰动矢量值的信息和所述扰动矢量值对应的符号索引,确定所述符号索引对应的符号上的目标扰动矢量;
    基于所述目标扰动矢量和扰动系数值,还原所述符号索引对应的符号上传输所述数据信号。
  9. 根据权利要求1至6所述的方法,其中,所述第一预编码指示信息包括扰动矢量值的信息时,所述终端设备基于所述第一预编码指示信息对接收的数据信号进行处理,包括:
    所述终端设备基于所述扰动矢量值的信息,确定所述符号索引对应的符号上的目标扰动矢量;
    基于所述目标扰动矢量和扰动系数值,还原所述数据信号。
  10. 一种信号处理方法,所述方法包括:
    网络设备基于信道信息,确定目标扰动矢量;
    基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号;
    对所述添加扰动后的数据信号进行预编码并发送预编码后的数据信号。
  11. 根据权利要求10所述的方法,其中,所述获得添加扰动后的数据信号之前,所述方法还包括:
    所述网络设备基于数据信号的调制方式,确定扰动系数值。
  12. 根据权利要求10或11所述的方法,其中,所述网络设备发送预编码后的数据信号至终端设备之前,所述方法还包括:
    所述网络设备对预编码后的数据信号进行归一化处理。
  13. 根据权利要求10至12任一项所述的方法,其中,所述网络设备发送预编码后的数据信号至终端设备之前,所述方法还包括:
    发送第一预编码指示信息;所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;、
    其中,所述第一预编码指示信息包括下述至少一项:
    数据信号的不同调制方式对应的扰动系数值;
    当前传输的数据信号采用的调制方式对应的扰动系数值;
    所述终端设备是否对数据信号进行取模操作的指示信息;
    扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
  14. 根据权利要求10至13任一项所述的方法,其中,所述网络设备 基于信道信息,确定目标扰动矢量,包括:
    所述网络设备基于所述信道信息,获得预编码矩阵;
    基于预设数量的码本,在K个符号中的任意两个符号上添加扰动,得到预设数量的扰动矢量;
    基于所述预设数量的扰动矢量和所述预编码矩阵,得到对应的预设数量的欧式距离值;
    基于所述预设数量的欧式距离值,确定目标扰动矢量。
  15. 根据权利要求14所述的方法,其中,K的值与所述网络设备的天线数目相等。
  16. 根据权利要求14或15所述的方法,其中,所述基于所述预设数量的欧式距离值,确定目标扰动矢量,包括:
    将所述预设数量的欧式距离值中,小于或等于第一阈值的一个欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
  17. 根据权利要求14或15所述的方法,其中,所述基于所述预设数量的欧式距离,确定目标扰动矢量,包括:
    在所述预设数量的欧式距离值均大于第一阈值时,遍历添加扰动的P个符号在K个符号中不同位置的
    Figure PCTCN2018106281-appb-100001
    种情况,直至获得欧式距离值小于或等于第一阈值的欧式距离值;
    将欧式距离值小于或等于第一阈值的欧式距离值所对应的扰动矢量,确定为目标扰动矢量;P为小于或等于K的正整数。
  18. 根据权利要求17所述的方法,其中,所述基于所述预设数量的欧式距离,确定目标扰动矢量,包括:
    遍历添加扰动的两个符号在K个符号中不同位置的
    Figure PCTCN2018106281-appb-100002
    种情况,得到的欧式距离值均大于第一阈值时,计算
    Figure PCTCN2018106281-appb-100003
    种情况中每种情况下的最小欧式距离值;
    将所述每种情况下的最小欧式距离值中的最小值所对应的扰动矢量,确定为目标扰动矢量。
  19. 一种终端设备,所述终端设备包括:
    接收单元,配置为接收第一预编码指示信息,所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;
    第一处理单元,配置为基于所述第一预编码指示信息对接收的数据信号进行处理;其中,所述第一预编码指示信息包括下述至少一项:
    数据信号的不同调制方式对应的扰动系数值;
    当前传输的数据信号采用的调制方式对应的扰动系数值;
    所述终端设备是否对数据信号进行取模操作的指示信息;
    扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
  20. 根据权利要求19所述的终端设备,其中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,
    所述第一预编码指示信息携带于无线资源控制RRC信令中。
  21. 根据权利要求19所述的终端设备,其中,所述第一预编码指示信息包括当前传输的数据信号采用的调制方式对应的扰动系数值时,
    所述第一预编码指示信息携带于下行控制信息DCI中。
  22. 根据权利要求19所述的终端设备,其中,所述扰动矢量值的信息基于预先定义的矢量码本指示;
    所述扰动矢量值的信息指示目标扰动矢量在所述矢量码本中的索引。
  23. 根据权利要求19至22任一项所述的终端设备,其中,
    所述第一处理单元,还配置为对接收的数据信号进行归一化处理,并对归一化处理后的数据信号进行线性检测。
  24. 根据权利要求19至23任一项所述的终端设备,其中,所述第一预编码指示信息包括数据信号的不同调制方式对应的扰动系数值时,所述第一处理单元,配置为根据调度所述数据信号的DCI中携带的调制编码方式MCS指示信息,确定当前数据信号的调制方式;
    基于所确定的调制方式和所述不同调制方式对应的扰动系数值,确定所述调制方式对应的扰动系数值;
    基于所述扰动系数值对接收的数据信号进行处理。
  25. 根据权利要求19至24任一项所述的终端设备,其中,所述第一预编码指示信息包括所述终端设备是否对数据信号进行取模操作的指示信息时,所述第一处理单元,配置为所述第一预编码指示信息指示终端设备不对数据信号进行取模操作时,所述终端设备不对数据信号进行取模操作;
    或,所述第一预编码指示信息指示终端设备对数据信号进行取模操作时,所述终端设备对数据信号进行取模操作。
  26. 根据权利要求19至24任一项所述的终端设备,其中,所述第一预编码指示信息包括扰动矢量值的信息和所述扰动矢量值对应的符号索引时,所述第一处理单元,配置为基于所述扰动矢量值的信息和所述扰动矢量值对应的符号索引,确定所述符号索引对应的符号上的目标扰动矢量;
    基于所述目标扰动矢量和扰动系数值,还原所述符号索引对应的符号上传输所述数据信号。
  27. 根据权利要求19至24任一项所述的终端设备,其中,所述第一预编码指示信息包括扰动矢量值的信息时,所述第一处理单元,配置为基于所述扰动矢量值的信息,确定所述符号索引对应的符号上的目标扰动矢量;
    基于所述目标扰动矢量和扰动系数值,还原所述数据信号。
  28. 一种网络设备,所述网络设备包括:
    第二处理单元,配置为基于信道信息,确定目标扰动矢量;基于所述目标扰动矢量和扰动系数值,获得添加扰动后的数据信号,并对所述添加扰动后的数据信号进行预编码;
    发送单元,配置为发送预编码后的数据信号。
  29. 根据权利要求28所述的网络设备,其中,所述第二处理单元,还配置为基于数据信号的调制方式,确定扰动系数值。
  30. 根据权利要求28或29所述的网络设备,其中,所述第二处理单元,还配置为对预编码后的数据信号进行归一化处理。
  31. 根据权利要求28至30任一项所述的网络设备,其中,所述发送单元,还配置为发送第一预编码指示信息;所述第一预编码指示信息用于指示对数据信号进行预编码的相关信息;、
    其中,所述第一预编码指示信息包括下述至少一项:
    数据信号的不同调制方式对应的扰动系数值;
    当前传输的数据信号采用的调制方式对应的扰动系数值;
    所述终端设备是否对数据信号进行取模操作的指示信息;
    扰动矢量值的信息,和/或所述扰动矢量值对应的符号索引。
  32. 根据权利要求28至31任一项所述的网络设备,其中,所述第二处理单元,配置为基于所述信道信息,获得预编码矩阵;
    基于预设数量的码本,在K个符号中的任意两个符号上添加扰动,得到预设数量的扰动矢量;
    基于所述预设数量的扰动矢量和所述预编码矩阵,得到对应的预设数量的欧式距离值;
    基于所述预设数量的欧式距离值,确定目标扰动矢量。
  33. 根据权利要求32所述的网络设备,其中,所述K的值与所述网络设备的天线数目相等。
  34. 根据权利要求32或33所述的网络设备,其中,所述第二处理单元,配置为将所述预设数量的欧式距离值中,小于或等于第一阈值的一个欧式距离值所对应的扰动矢量,确定为目标扰动矢量。
  35. 根据权利要求32或33所述的网络设备,其中,所述第二处理单元,配置为在所述预设数量的欧式距离值均大于第一阈值时,遍历添加扰动的P个符号在K个符号中不同位置的
    Figure PCTCN2018106281-appb-100004
    种情况,直至获得欧式距离值小于或等于第一阈值的欧式距离值;
    将欧式距离值小于或等于第一阈值的欧式距离值所对应的扰动矢量,确定为目标扰动矢量;P为小于或等于K的正整数。
  36. 根据权利要求35所述的网络设备,其中,所述第二处理单元,配置为遍历添加扰动的两个符号在K个符号中不同位置的
    Figure PCTCN2018106281-appb-100005
    种情况,得到的欧式距离值均大于第一阈值时,计算
    Figure PCTCN2018106281-appb-100006
    种情况中每种情况下的最小欧式距离值;
    将所述每种情况下的最小欧式距离值中的最小值所对应的扰动矢量,确定为目标扰动矢量。
  37. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计 算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至9任一项所述的下行信号处理方法的步骤。
  38. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求10至18任一项所述的下行信号处理方法的步骤。
  39. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至9任一项所述的下行信号处理方法。
  40. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求10至18任一项所述的下行信号处理方法。
PCT/CN2018/106281 2018-09-18 2018-09-18 一种信号处理方法、设备及存储介质 WO2020056593A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/106281 WO2020056593A1 (zh) 2018-09-18 2018-09-18 一种信号处理方法、设备及存储介质
CN201880030474.7A CN111201731B (zh) 2018-09-18 2018-09-18 一种信号处理方法、设备及存储介质
EP18919398.0A EP3654558B1 (en) 2018-09-18 2018-09-18 Signal processing method and device and storage medium
US16/709,327 US10979111B2 (en) 2018-09-18 2019-12-10 Signal processing method, device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106281 WO2020056593A1 (zh) 2018-09-18 2018-09-18 一种信号处理方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/709,327 Continuation US10979111B2 (en) 2018-09-18 2019-12-10 Signal processing method, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2020056593A1 true WO2020056593A1 (zh) 2020-03-26

Family

ID=69888082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106281 WO2020056593A1 (zh) 2018-09-18 2018-09-18 一种信号处理方法、设备及存储介质

Country Status (4)

Country Link
US (1) US10979111B2 (zh)
EP (1) EP3654558B1 (zh)
CN (1) CN111201731B (zh)
WO (1) WO2020056593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188000A1 (zh) * 2021-03-08 2022-09-15 华为技术有限公司 通信方法和通信装置
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332573B (zh) * 2017-07-25 2021-04-13 Oppo广东移动通信有限公司 一种射频电路、天线装置及电子设备
CN112616133B (zh) * 2020-12-18 2023-04-18 中国联合网络通信集团有限公司 安全通信方法、装置、设备和存储介质
CN114696879B (zh) * 2020-12-31 2023-08-04 大唐移动通信设备有限公司 信号传输方法及装置、终端、接入网设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175375A1 (en) * 2005-11-23 2009-07-09 Nokia Corporation Joint Optimization of Linear Pre-Filtering and Nonlinear Vector Perturbation for MIMO Multiuser Precoding
CN105515625A (zh) * 2015-12-06 2016-04-20 西安电子科技大学 基于接收端空间调制的多用户下行传输方法
CN106452662A (zh) * 2015-08-11 2017-02-22 华为技术有限公司 一种预编码方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8204142B2 (en) * 2007-01-29 2012-06-19 Samsung Electronics Co., Ltd Precoder and precoding method in a multi-antenna system
US20100239032A1 (en) * 2009-03-20 2010-09-23 Industrial Technology Research Institute System and method for precoding and data exchange in wireless communication
EP2237445B8 (en) * 2009-04-02 2014-11-12 Samsung Electronics Co., Ltd. Apparatus and method for determining optimum integer perturbation vector of low complexity in multiple antenna system
JP5473131B2 (ja) * 2010-01-15 2014-04-16 シャープ株式会社 通信システム、通信装置、通信方法およびそのプロセッサ
CN101964695B (zh) * 2010-10-08 2013-06-05 北京星河亮点技术股份有限公司 多用户多输入多输出下行链路预编码方法及***
JP2013030940A (ja) * 2011-07-27 2013-02-07 Sharp Corp 送信装置、受信装置、および通信システム
WO2014069262A1 (ja) * 2012-10-29 2014-05-08 シャープ株式会社 基地局装置、端末装置および無線通信システム
US9979516B2 (en) * 2012-12-28 2018-05-22 Sharp Kabushiki Kaisha Transmission device that performs multi-user MIMO transmission for performing spatial multiplexing and transmitting of a plurality of packets addressed to a plurality of reception devices
JP2016119496A (ja) * 2013-04-10 2016-06-30 シャープ株式会社 基地局装置、端末装置、無線通信システム及び集積回路
JP6405155B2 (ja) * 2014-08-27 2018-10-17 三星電子株式会社Samsung Electronics Co.,Ltd. 信号処理装置、信号処理方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175375A1 (en) * 2005-11-23 2009-07-09 Nokia Corporation Joint Optimization of Linear Pre-Filtering and Nonlinear Vector Perturbation for MIMO Multiuser Precoding
CN106452662A (zh) * 2015-08-11 2017-02-22 华为技术有限公司 一种预编码方法及装置
CN105515625A (zh) * 2015-12-06 2016-04-20 西安电子科技大学 基于接收端空间调制的多用户下行传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3654558A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188000A1 (zh) * 2021-03-08 2022-09-15 华为技术有限公司 通信方法和通信装置
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置

Also Published As

Publication number Publication date
CN111201731B (zh) 2021-09-21
EP3654558A1 (en) 2020-05-20
EP3654558A4 (en) 2020-08-26
EP3654558B1 (en) 2021-10-06
US20200153485A1 (en) 2020-05-14
US10979111B2 (en) 2021-04-13
CN111201731A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2020056593A1 (zh) 一种信号处理方法、设备及存储介质
WO2020037447A1 (zh) 一种功率控制方法及装置、终端
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2019191932A1 (zh) 上行天线的选择方法和装置
WO2019238117A1 (zh) 重复传输方法和通信装置
US20200083966A1 (en) Method and device for determining qcl relationship between anntena ports
WO2021016827A1 (zh) 一种信息配置方法及装置、终端
WO2021007810A1 (zh) 预编码的方法和通信设备
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
WO2020107188A1 (zh) 一种数据处理方法、设备及存储介质
TW202013917A (zh) 一種通道狀態訊息上報方法、終端設備及網路設備
CN115395971B (zh) 干扰噪声功率的确定方法、装置、电子设备及存储介质
JP2018516004A (ja) 電力制御方法、端末、および基地局
WO2020056644A1 (zh) 一种信息传输方法、设备及存储介质
WO2019061494A1 (zh) 计算信道质量指示cqi的方法、终端设备和网络设备
WO2020147135A1 (zh) 一种码本处理方法及装置、终端、网络设备
WO2020237538A1 (zh) 信号处理的方法、终端设备和网络设备
WO2020227873A1 (zh) 一种信道状态信息传输方法、设备及存储介质
US20220286324A1 (en) Channel prediction framework for radio communication
WO2020061942A1 (zh) 功率分配的方法、终端设备和网络设备
WO2022133709A1 (en) Method and apparatus for physical uplink shared channel (pusch) transmission
WO2024067158A1 (zh) 信息确定方法、装置、终端及网络设备
WO2024032699A1 (zh) Dmrs端口的确定方法、设备、装置及存储介质
CN111587543A (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2023125240A1 (zh) 信道数据处理或反处理方法与装置、终端和网络设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018919398

Country of ref document: EP

Effective date: 20191127

NENP Non-entry into the national phase

Ref country code: DE