WO2014167788A1 - 単結晶シリコン引き上げ用シリカ容器及びその製造方法 - Google Patents

単結晶シリコン引き上げ用シリカ容器及びその製造方法 Download PDF

Info

Publication number
WO2014167788A1
WO2014167788A1 PCT/JP2014/001681 JP2014001681W WO2014167788A1 WO 2014167788 A1 WO2014167788 A1 WO 2014167788A1 JP 2014001681 W JP2014001681 W JP 2014001681W WO 2014167788 A1 WO2014167788 A1 WO 2014167788A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
container
powder
raw material
layer
Prior art date
Application number
PCT/JP2014/001681
Other languages
English (en)
French (fr)
Inventor
茂 山形
Original Assignee
信越石英株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013080812A external-priority patent/JP5608257B1/ja
Priority claimed from JP2013085130A external-priority patent/JP5608258B1/ja
Application filed by 信越石英株式会社 filed Critical 信越石英株式会社
Priority to CN201480001704.9A priority Critical patent/CN104395509A/zh
Priority to KR1020147031698A priority patent/KR101645663B1/ko
Priority to US14/398,880 priority patent/US20150114284A1/en
Priority to EP14782930.3A priority patent/EP2835452A4/en
Publication of WO2014167788A1 publication Critical patent/WO2014167788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Definitions

  • the present invention relates to a silica container for pulling up single crystal silicon and a method for manufacturing the same.
  • Patent Document 1 As a method for producing a silica crucible for pulling single crystal silicon, production methods as described in Patent Document 1 and Patent Document 2 have been used. In these methods, high-purity treated quartz powder is put into a rotating mold, and after molding, an electrode is pushed in from the top and an electric discharge is applied to the electrode to cause arc discharge. This is a method in which the quartz powder is melted and sintered by raising the temperature to the melting temperature range (estimated to be about 1800 to 2100 ° C.).
  • molten surface vibration a phenomenon that the molten silicon melt surface vibrates
  • silica crucible manufactured in Patent Documents 1 and 2
  • a large container having a diameter of 30 inches (75 cm) to 54 inches (135 cm) for pulling large-diameter single crystal silicon having a diameter of 12 inches (30 cm) to 18 inches (45 cm).
  • silica crucible and quartz crucible are synonymous.
  • Silica glass and quartz glass are synonymous.
  • Patent Document 3 discloses that the IR (infrared) transmittance of the crucible wall is set to 3 to 30% as a quartz glass crucible that does not cause molten silicon surface vibration. However, even when a large quartz glass crucible having such a wide transmittance range of properties is used, the molten metal surface vibration during pulling up of the large-diameter single crystal silicon cannot be suppressed.
  • Patent Document 4 as a method for producing a quartz glass crucible in which no molten silicon surface vibration occurs, it is shown that water vapor is introduced into the atmosphere inside the crucible during crucible production, and the OH group concentration in the entire surface layer inside the crucible is shown. It is said that it is preferable to increase the hot water surface vibration.
  • the effect of suppressing the molten metal surface vibration when pulling up the large-diameter single crystal silicon is insufficient.
  • the crucible inner surface was severely eroded (etched) by the silicon melt, and the life of the crucible was short.
  • Patent Document 5 shows that in a quartz glass crucible when pulling up single crystal silicon, molten metal surface vibration can be prevented by using only natural belt-like portions on the inner surface of the quartz glass crucible near the molten silicon surface. .
  • this crucible is such that the molten metal surface vibration is relatively less than that of the fully synthetic quartz glass crucible, and the effect of suppressing the molten metal surface vibration when pulling up the large-diameter single crystal silicon is insufficient.
  • Patent Document 6 shows that the molten metal surface vibration can be prevented by distributing a portion having a large bubble content on the inner surface of the quartz glass crucible in the vicinity of the molten silicon molten metal surface in a strip shape.
  • this crucible shows a certain level of molten metal surface vibration suppression effect, the amount of erosion (etching) by the molten silicon in the band-shaped portion having a high bubble content is large, and the life of the crucible has become short.
  • Patent Document 7 shows that molten metal surface vibration of molten silicon can be prevented by homogenizing the bubble content, thickness, and transmittance of a quartz glass crucible having rotational axis symmetry over the circumference. It is considered that it is fundamentally important to make various physical properties of the crucible symmetrically about the axis of rotation with high precision from the viewpoint of preventing the molten metal surface vibration. However, it has been required to prevent the molten metal surface vibration even if some physical property fluctuation occurs.
  • Patent Document 8 shows that by providing a plurality of minute recesses on the inner surface of the quartz glass crucible near the molten silicon melt surface, and by providing a plurality of bubbles below it, it is possible to prevent melt surface vibration.
  • this crucible can suppress the initial molten metal surface vibration in the production of single crystal silicon, there is a problem that vibration occurs again after the minute recess is dissolved.
  • a plurality of single crystal silicons are pulled up (multiple pulling), there is a case where the molten metal surface vibration during the second and subsequent manufacturing becomes intense.
  • Patent Document 9 it is shown that a rough surface region can be produced in a band shape by performing sand blasting treatment using quartz powder on the inner surface of the quartz glass crucible, and the molten metal surface vibration can be prevented.
  • a crucible can suppress the initial surface vibration during the production of single crystal silicon, the effect does not last long. In addition, it was difficult to perform multiple pulling with one crucible.
  • Patent Document 10 shows that melting of the molten metal surface can be prevented by melting silica powder on the inner surface of the quartz crucible with an oxyhydrogen flame and depositing a silica glass layer containing 500 to 1500 ppm of OH groups. Yes.
  • this manufacturing method not only makes the process complicated and expensive, but also causes the disadvantage that the etching with the silicon melt near the molten metal surface is large, so that the molten metal surface vibration gradually increases and the crucible life is shortened. It was.
  • Japanese Patent Publication No.4-222861 Japanese Patent Publication No. 7-29871 JP 2000-219593 A JP 2001-348240 A Japanese Patent No. 4338990 Japanese Patent No. 4390461 JP 2010-30884 A JP 2011-105552 A International Publication No. WO2011 / 158712 Pamphlet JP 2012-17240 A
  • the present invention has been made in view of the above-described problems, and provides a silica container for pulling up a single crystal silicon capable of suppressing the melt surface vibration of a silicon melt in a silica container at a high temperature. It aims at providing the manufacturing method of a silica container.
  • the present invention can suppress the surface vibration of the silicon melt in the silica container at a high temperature in all steps of pulling up the single crystal silicon, and can prevent void defects called voids and pinholes in the single crystal silicon. It aims at providing the silica container for single crystal silicon pulling which can suppress generation
  • the present invention has been made in order to solve the above problems, and is a method for producing a silica container for pulling a single crystal silicon having a straight body portion, a curved portion, and a bottom portion.
  • the first raw material powder is put into the inside of a mold having rotational symmetry, and the mold is rotated into a predetermined shape according to the inner wall of the mold
  • the second temporary molded body having a portion and a portion made of the second raw material powder is shaped according to the shape of the silica container to be manufactured, and at least on the inner surface layer portion of the straight body portion of the silica container to be manufactured At a corresponding position, by forming the second raw material powder as a part, and by heating from the inside of the second temporary molded body by a discharge heating melting method while rotating the mold
  • the portion made of the second raw material powder is a mixed silica layer in which the phase in which the crystalline silica powder is melted and the phase in which the amorphous silica powder is melted are mixed in a granular form
  • a method for producing a silica container for pulling single crystal silicon comprising: a step in which the outer side of the container is made of opaque silica glass containing bubbles, and the inner side of the container is made of transparent silica glass.
  • a mixed silica layer in which a phase in which the crystalline silica powder is melted and a phase in which the amorphous silica powder is melted are mixed in a granular form at least on the inner surface layer portion of the straight body portion.
  • a silica container for pulling up single crystal silicon can be produced.
  • the portion where the mixed silica layer exists is subjected to etching (erosion) by the silicon melt when the raw silicon melt is held inside the silica container. In this etching, the phase in which the amorphous silica powder is melted is faster and the etching amount is larger than the phase in which the crystalline silica powder is melted.
  • minute irregularities are formed on the surface of the mixed silica layer (interface with the raw material silicon melt). Due to the presence of the minute irregularities, it is possible to suppress the surface vibration of the silicon melt in the silica container at a high temperature. In addition, even if etching of the mixed silica layer proceeds due to the use at high temperature for a long time, the minute irregularities continue to exist without disappearing, so that the molten metal surface vibration of the silicon melt is suppressed for a long time. be able to.
  • the mixed silica layer includes a position on the inner surface corresponding to the initial melt surface when the silica container holds the raw material silicon melt among the inner surfaces of the manufactured silica container. Preferably formed.
  • the second temporary molded body is formed as having a portion made of the second raw material powder at a position corresponding to the straight body portion and the inner surface layer portion of the curved portion of the silica container to be manufactured. It is preferable.
  • a mixed silica layer can be formed on the inner surface layer portion of the straight body portion and the curved portion of the silica container.
  • the mixed silica layer is formed so that the thickness in the thickness direction of the silica container is 2 mm or more and the width is 100 mm or more.
  • the mixed silica layer having such a thickness and width, it is possible to more reliably suppress the molten metal surface vibration of the raw material silicon melt in the manufactured silica container and maintain the effect.
  • the mixed silica layer is further formed on the inner surface of the silica container.
  • At least a part of the inner surface has an impurity element concentration of 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, It is preferable to have a step of forming a high-purity silica glass layer having a thickness of 200 to 2000 ⁇ m for each of W and Pb, which is 10 massppb or less.
  • the second raw material powder is introduced into the first temporary molded body.
  • the second temporary molded body is formed as having a portion made of the second raw material powder at a position corresponding to the straight body portion, the curved portion, and the inner surface portion of the bottom portion of the silica container to be manufactured.
  • a third raw material powder including a step of producing a crystalline silica powder having a particle size of 10 to 1000 ⁇ m, and after manufacturing the silica container by heating by the discharge heating melting method, Further, the third raw material powder is melted by a discharge heating melting method while spraying the third raw material powder from the upper part of the silica container, and the molten third raw material powder is adhered to the inner surface portion of the bottom part. It can include the step of forming a.
  • a mixed silica in which a phase in which a crystalline silica powder is melted and a phase in which an amorphous silica powder is melted are mixed in a granular form in a straight body portion, a curved portion, and an inner surface layer portion of a bottom portion.
  • a single-crystal silicon pulling silica container having a bottom silica glass layer on the inner surface of the bottom mixed silica layer can be produced.
  • the portion where the mixed silica layer is exposed that is not covered by the bottom silica glass layer is subjected to etching (erosion) by the silicon melt when the raw silicon melt is held inside the silica container.
  • the phase in which the amorphous silica powder is melted is faster and the etching amount is larger than the phase in which the crystalline silica powder is melted. Due to this difference in etching effect, minute irregularities are formed on the surface of the mixed silica layer (interface with the raw material silicon melt). Due to the presence of the minute irregularities, it is possible to suppress the surface vibration of the silicon melt in the silica container at a high temperature. In addition, even if etching of the mixed silica layer proceeds due to the use at high temperature for a long time, the minute irregularities continue to exist without disappearing, so that the molten metal surface vibration of the silicon melt is suppressed for a long time. be able to.
  • this silica container is an initial stage of the method of pulling up the single crystal silicon (seeding, necking, shoulder ring, etc. ) And subsequent stages (pulling, tailing) of the melt surface of the silicon melt can be effectively suppressed.
  • the bottom of the silica container is covered with the bottom silica glass layer, the bottom does not have irregularities due to the mixed silica layer, and there is no growth of gas bubbles. Therefore, generation
  • the mixed silica layer is formed so that the thickness of the silica container in the thickness direction is 2 mm or more.
  • the mixed silica layer having such a thickness, it is possible to more reliably suppress the molten metal surface vibration of the raw material silicon melt in the manufactured silica container and maintain the effect.
  • the second temporary molded body is heated by a discharge heating melting method while reducing the pressure from the outside of the second temporary molded body.
  • the opaque silica glass on the outside of the container and the transparent silica glass on the inside of the container can be efficiently produced by heating performed while reducing the pressure in this way.
  • the crystalline silica powder has an OH group concentration of 50 mass ppm or less and the amorphous silica powder has an OH group concentration of 200 to 2000 ppm.
  • the phase of the mixed silica layer to be produced is a phase in which the crystalline silica powder is melted and a phase in which the amorphous silica powder is melted.
  • the etching rate difference with respect to the silicon melt can be made more prominent, and irregularities on the inner surface of the silica container can be more reliably formed.
  • the concentration of the impurity element of the second raw material powder is 100 massppb or less for each of Li, Na, and K, 50 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo , W and Pb are preferably 20 massppb or less.
  • the impurity element concentration of the second raw material powder is set in this way, the impurity element taken into the raw material silicon melt when the mixed silica layer to be produced is etched can be reduced.
  • the present invention is a single crystal silicon pulling silica container having a straight body part, a curved part, and a bottom part, the container outer side is made of opaque silica glass containing bubbles, and the container inner side is made of transparent silica glass, Silica for pulling up single crystal silicon having a mixed silica layer in which a phase in which crystalline silica powder is melted and a phase in which amorphous silica powder is melted are mixed in a granular form at least in the inner surface layer portion of the straight body portion Provide a container.
  • the mixed silica layer is formed so as to include a position on the inner surface corresponding to an initial melt surface when the silica container holds the raw material silicon melt among the inner surfaces of the silica container.
  • a position on the inner surface corresponding to an initial melt surface when the silica container holds the raw material silicon melt among the inner surfaces of the silica container is.
  • the mixed silica layer By forming the mixed silica layer at such a position, it is possible to effectively suppress the melt level vibration of the silicon melt particularly in the initial stage of the method of pulling up the single crystal silicon.
  • the mixed silica layer is provided in the inner surface layer portion of the straight body portion and the curved portion.
  • the silica container has a mixed silica layer on the inner surface layer portion of the straight body portion and the curved portion, in addition to the initial stage of single crystal silicon pulling (seeding, necking, shoulder ring, etc.) It is also possible to effectively suppress the melt level vibration of the silicon melt at a later stage (pulling, tailing).
  • the mixed silica layer preferably has a thickness in the thickness direction of the silica container of 2 mm or more and a width of 100 mm or more.
  • the mixed silica layer having such a thickness and width, it is possible to more reliably suppress and maintain the molten metal surface vibration of the raw material silicon melt.
  • the impurity element concentration is 50 massppb or less for each of Li, Na, and K, and 25 massppb for each of Ca and Mg.
  • each of Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, and Pb is preferably 10 massppb or less, and preferably has a high-purity silica glass layer having a thickness of 200 to 2000 ⁇ m.
  • the silica container for pulling up single crystal silicon of the present invention has the mixed silica layer in the straight body portion, the curved portion, and the inner surface layer portion of the bottom portion, and the bottom silica on the inner surface of the mixed silica layer in the bottom portion. It can have a glass layer.
  • the silica container having such a configuration of the mixed silica layer and the bottom silica glass layer has minute irregularities formed on the surface of the mixed silica layer by etching with the silicon melt when the raw material silicon melt is held inside.
  • the Due to the presence of the minute irregularities it is possible to suppress the surface vibration of the silicon melt in the silica container at a high temperature.
  • the mixed silica layer is exposed on the inner surface of the silica container in the straight body part and the curved part, the silicon fusion in the initial stage of the method of pulling up the single crystal silicon and the stage after that. Liquid surface vibration of the liquid can be effectively suppressed.
  • by covering the bottom of the silica container with the bottom silica glass layer it is possible to suppress the occurrence of void defects called voids or pinholes in the single crystal silicon caused by gas bubbles in the silicon melt.
  • the mixed silica layer is made from a mixed powder of crystalline silica powder having an OH group concentration of 50 massppm or less and amorphous silica powder having an OH group concentration of 200 to 2000 ppm. It is preferable that it is formed.
  • the mixed silica layer is formed by using a mixed powder of two types of silica powder having a difference in OH group concentration as a raw material, so that the crystalline silica powder of the mixed silica layer is melted and amorphous
  • the difference in etching rate with respect to the silicon melt of the phase in which the silica powder is melted can be made more prominent, and irregularities on the inner surface of the silica container can be more reliably formed.
  • the concentration of the impurity element in the mixed silica layer is 100 massppb or less for each of Li, Na, and K, 50 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, It is preferable that it is 20 massppb or less for each of Pb.
  • the impurity element taken into the raw material silicon melt when the mixed silica layer is etched can be reduced.
  • a mixed silica in which a phase in which crystalline silica powder is melted and a phase in which amorphous silica powder is melted are mixed in a granular form at least on the inner surface layer portion of the straight body portion
  • a single-crystal silicon pulling silica container as a layer can be produced.
  • the silica container for pulling up single crystal silicon according to the present invention having such a mixed silica layer has a crystal and a phase in which the amorphous silica powder constituting the mixed silica layer is melted when the raw material silicon melt is held inside. Due to the difference in etching effect of the phase in which the porous silica powder is melted, minute irregularities are formed on the surface of the mixed silica layer. Due to the presence of the minute irregularities, it is possible to suppress the surface vibration of the silicon melt in the silica container at a high temperature.
  • a silica container for pulling up single crystal silicon according to the present invention, the phase in which the crystalline silica powder is melted and the amorphous silica powder are melted in the straight body portion, the curved portion, and the inner surface layer portion of the bottom portion.
  • a silica container for pulling single crystal silicon having a mixed silica layer in which phases are mixed in a granular form and having a bottom silica glass layer on the inner surface of the mixed silica layer at the bottom can also be manufactured.
  • the mixed silica layer is exposed on the inner surface of the silica container in the straight body portion and the curved portion.
  • by covering the bottom of the silica container with the bottom silica glass layer it is possible to suppress the occurrence of void defects called voids or pinholes in the single crystal silicon caused by gas bubbles in the silicon melt.
  • FIG. 1 It is a schematic sectional drawing which shows typically a part of example of the process of heating the 2nd temporary molded object (during discharge heating melting) in the manufacturing method of the silica container which concerns on the 2nd Embodiment of this invention. It is a schematic sectional drawing which shows typically an example of the process of forming the bottom part silica glass layer in the manufacturing method of the silica container which concerns on the 2nd Embodiment of this invention. It is a schematic sectional drawing which shows typically the structure of the silica container of the comparative example 3. It is a schematic sectional drawing which shows the structure of the silica container of the comparative example 4 typically. It is a schematic sectional drawing which shows the structure of the silica container of the comparative example 5 typically. 22 is a schematic sectional view schematically showing the structure of a silica container of Example 21.
  • FIG. 1 It is a schematic sectional drawing which shows typically a part of example of the process of heating the 2nd temporary molded object (during discharge heating melting)
  • the silica container for pulling single crystal silicon contains therein polycrystalline silicon or the like as a raw material for single crystal silicon, and melts the polycrystalline silicon or the like to form a raw material silicon melt. It is for pulling up crystalline silicon.
  • the silica container of the present invention can be used as a silica container for pulling up single crystal silicon used for large-scale integrated circuits (LSIs) or photovoltaic power generation (solar cells, PV).
  • the silica container for pulling single crystal silicon according to the present invention and the manufacturing method thereof will be described in detail with reference to the drawings, but the present invention is not limited thereto.
  • a crucible of a large-diameter silica container for producing single crystal silicon will be described as an example.
  • the silica container of this invention shows a silica crucible.
  • the silica container 71 according to the first embodiment of the present invention has a crucible shape having rotational axis symmetry, and includes a straight body portion 61, a curved portion 62, and a bottom portion 63. At this time, 1/3 of the outer diameter (D 1 ) of the silica container 71 is defined as the diameter (D 2 ) of the bottom 63 for convenience.
  • the bottom 63 is a circular portion.
  • the straight body portion 61 is a cylindrical portion between the upper edge of the silica container 71 and a height portion that is 1/3 of the height (H 1 ) (height H 1 -H 2 ). Further, a portion other than the bottom portion 63 is defined as a curved portion 62 from a height portion of 1/3 of the height (H 1 ) of the silica container 71 to the bottom portion 63 (height H 2 ).
  • the silica container 71 has a mixed silica layer 53 at least in the inner surface layer portion of the straight body portion 61.
  • the mixed silica layer 53 is formed by mixing a phase in which crystalline silica powder is melted and a phase in which amorphous silica powder is melted in a granular form.
  • the mixed silica layer 53 is not uniform and has a fine granular structure in units of several hundred ⁇ m to several thousand ⁇ m. More specifically, the phase in which the crystalline silica powder constituting the mixed silica layer 53 is melted is made of crystalline silica powder such as quartz powder, quartz powder, cristobalite powder, etc., and the amorphous constituting the mixed silica layer 53.
  • the phase in which the porous silica powder is melted is made of an amorphous silica powder such as a synthetic silica glass powder by a flame hydrolysis method or a fused silica glass powder by a Bernoulli oxyhydrogen method. That is, the mixed silica layer 53 is a silica layer obtained by melting and mixing these mixed powders.
  • the silica container 71 is made of opaque silica glass containing bubbles on the outer side of the container, and transparent silica glass on the inner side of the container. By adopting such a two-layer structure in the silica container 71, it is possible to ensure the thermal uniformity inside the silica container 71 when using the silica container at a high temperature.
  • This opaque silica glass is usually white opaque.
  • Transparent silica glass is transparent because it contains substantially no bubbles, and is usually colorless and transparent.
  • the bulk density of the opaque silica glass 51 is about 1.90 to 2.15 (g / cm 3 ), and the bulk density of the transparent silica glass 52 is approximately 2.20 (g / cm 3 ).
  • the opaque silica glass 51 and the transparent silica glass 52 are shown in the drawing for portions other than the mixed silica layer 53.
  • the mixed silica layer 53 is also made of opaque silica glass in the portion located in the outer region of the container, and made of transparent silica glass in the region located in the inner region of the container.
  • the silicon melt When the silicon melt is held in the silica container 71 as a raw material for pulling up the single crystal silicon, a reaction (melting reaction) between the silica component constituting the inner surface of the silica container 71 and the silicon melt causes a silica container
  • the inner surface of 71 is subjected to etching (erosion) by silicon melt.
  • the phase in which the crystalline silica powder is melted has a smaller etching amount (erosion amount) than the phase in which the amorphous silica powder is melted (that is, the etching rate is slower).
  • the part of the granular structure of the phase in which the crystalline silica powder is melted becomes a convex part, and the phase in which the amorphous silica powder is melted becomes a concave part. Due to the difference in the etching effect, minute irregularities are formed on the surface of the mixed silica layer 53 (interface with the raw material silicon melt), which changes to a rough surface. Due to the generation of this rough surface, it is difficult for fine vibrations to occur on the molten silicon surface in the silica container at high temperatures, and even if it occurs, the surface vibrations generated like waves are suppressed by the rough surface. It will be possible. This is similar to the phenomenon that the wave of the sea surface can be stopped by placing a tetrapod wave block on the coast. Thus, the mixed silica layer 53 functions as a molten metal surface vibration suppression layer.
  • the mixed silica layer 53 has a certain thickness. Fine irregularities (rough surfaces) continue to exist without disappearing, and the molten metal surface vibration of the silicon melt can be suppressed for a long time. Since the effect of preventing molten metal surface vibration continues for a long time, it is particularly effective for multi-pulling of single crystal silicon.
  • the mixed silica layer 53 is typically formed as a band-shaped inner peripheral layer positioned in a band shape on the inner surface layer portion of the crucible-shaped silica container 71, but is not necessarily limited thereto.
  • the mixed silica layer 53 includes a position on the inner surface corresponding to the initial melt surface (initial molten metal surface) when the silica container 71 holds the raw material silicon melt among the inner surface of the silica container 71. It is preferable that it is formed. By setting the position where the mixed silica layer 53 is formed in this way, the surface vibration of the raw material silicon melt in the initial stage (seeding, necking, shoulder ring, etc.) of the method of pulling up the single crystal silicon is effectively reduced.
  • the molten metal surface vibration can be suppressed in pulling up single crystal silicon. In pulling up single crystal silicon, it is particularly important to suppress melt surface vibration in these initial pulling steps. If the molten metal surface vibration can be suppressed in the initial process, it can be stably pulled in the subsequent single crystal silicon pulling process.
  • the mixed silica layer 53 preferably has a thickness in the thickness direction of the silica container 71 of 2 mm or more and a width of 100 mm or more.
  • the “width” of the mixed silica layer 53 here means the length in the height direction of the silica container 71 in the region of the mixed silica layer 53 exposed on the inner surface of the silica container 71.
  • the mixed silica layer 53 is gradually etched and thinned during use of the silica container at a high temperature while holding the raw material silicon melt. By making the thickness of the mixed silica layer 53 2 mm or more, It is possible to more reliably suppress the molten metal surface vibration of the raw material silicon melt for a long time.
  • the mixed silica layer 53 can more reliably correspond to the molten metal surface height at the initial stage of pulling up the single crystal silicon. Moreover, even if the melt surface height of the raw material silicon melt decreases during the pulling of the single crystal silicon, the effect of suppressing melt surface vibration can be maintained for a certain period.
  • the mixed silica layer 53 may be formed on at least a part of the inner surface layer portion of the straight body portion, and may include other regions.
  • the mixed silica layer 53 may be formed so as to penetrate the side wall of the straight body portion 61 of the silica container 71.
  • the mixed silica layer 53 may be formed up to the upper end of the silica container 71. In this case, all the portions of the side wall of the straight body portion 61 having a certain height or more may be the mixed silica layer 53.
  • the mixed silica layer 53 may be provided on the inner surface layer portion of the straight body portion 61 and the curved portion 62 of the silica container 71.
  • the mixed silica layer 53 is set on the bottom 63 of the silica container 71 for the following reasons.
  • the surface of the mixed silica layer 53 is present at the bottom 63 of the silica container 71, irregularities are also generated on the inner surface of the bottom 63 during the production of the single crystal, and the surface changes to a rough surface.
  • silicon oxide (SiO) gas is generated, gas bubbles grow on the uneven surface of the bottom 63, and then the gas bubbles rise into the silicon melt. Therefore, it is taken into the growing single crystal silicon, and void defects called voids and pinholes are likely to occur.
  • the diameter of the bottom 63 of the silica container 71 approximates the diameter of the single crystal silicon to be manufactured, at least the inner surface of the bottom 63 of the silica container 71 is not provided with the mixed silica layer 53 and is made of only crystalline silica powder. It is preferable to make it the layer (transparent silica glass 52) which consists of transparent silica glass which does not contain the bubble which fuse
  • the mixed silica layer 53 is preferably formed using a mixed powder of crystalline silica powder having an OH group concentration of 50 massppm or less and amorphous silica powder having an OH group concentration of 200 to 2000 ppm as a raw material.
  • the mixed silica layer 53 is formed by using a mixed powder of two types of silica powder having a difference in OH group concentration as a raw material, so that the crystalline silica powder of the mixed silica layer 53 is melted and non-phased.
  • the etching rate difference with respect to the silicon melt of the phase in which the crystalline silica powder is melted can be made more prominent, and irregularities on the inner surface of the silica container 71 can be more reliably formed.
  • the OH group concentration of the phase in which the crystalline silica powder is melted corresponds to the OH group concentration of the crystalline silica powder
  • the OH group concentration of the phase in which the amorphous silica powder is melted corresponds to the OH group concentration of the amorphous silica powder.
  • the silica container 71 is manufactured through a high-temperature process such as about 1800 ° C. or more, it is estimated that there is some variation.
  • the OH group concentration of the entire mixed silica layer 53 is measured by infrared spectrophotometry, the average value of the OH group concentrations of both raw material powders is obtained.
  • the mixed silica layer 53 is etched from the interface when the raw silicon melt is held. Therefore, it is preferable to reduce the amount of impurity elements taken into the raw silicon melt from the mixed silica layer 53 by making the mixed silica layer 53 highly pure.
  • the concentration of the impurity element in the mixed silica layer 53 is 100 massppb or less for each of Li, Na, and K, 50 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo , W and Pb are each preferably 20 massppb or less.
  • FIG. 2 shows an outline of another example of the silica container according to the first embodiment of the present invention. Elements corresponding to those of the silica container shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the silica container 72 shown in FIG. 2 has a high purity silica glass layer 59 on at least a part of the inner surface of the inner surface where the mixed silica layer 53 is not formed. As shown in FIG. 2, a high purity silica glass layer 59 is preferably formed on the inner surface of the bottom 63.
  • the present invention is not limited to this, and it may be formed over the curved portion 62 and the bottom portion 63, and may be formed on all portions of the inner surface of the silica container 72 other than the mixed silica layer 53. If there is a portion where the mixed silica layer 53 is exposed on the inner surface of the silica container 72, a part of the mixed silica layer 53 may be covered with the high purity silica glass layer 59.
  • the high-purity silica glass layer 59 has an impurity element concentration of 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Each of Zr, Mo, W, and Pb is preferably 10 massppb or less, and preferably has a thickness of 200 to 2000 ⁇ m. Since the silica container 72 additionally includes the high-purity silica glass layer 59, the impurity element taken into the raw material silicon melt from the inner wall of the silica container 72 when used at a high temperature can be further reduced. This embodiment is particularly preferable in applications where high purity is required.
  • the purity of portions other than the mixed silica layer 53 (and the high-purity silica glass layer 59) in the silica containers 71 and 72 in FIGS. 1 to 5 depends on the use.
  • the silica (SiO 2 ) purity is preferably 99.99 mass% or more for pulling a single crystal for solar and 99.999 mass% or more for pulling a single crystal for LSI.
  • the silica raw material powder containing about 10 mass ppm of each of the alkali metal elements Li, Na, and K is used as the raw material powder for producing the normal silica portion, for example, the OH group concentration of the normal silica portion
  • the OH group concentration of the normal silica portion By setting Al to 10-50 massppm and simultaneously setting Al to 5-30 massppm, it is possible to adsorb and confine elements with a large diffusion coefficient such as alkali metal elements in the thickness of the silica container. It becomes.
  • As an effect of containing OH groups there is a good effect of adsorbing and fixing metal impurity elements, but there is also a negative effect of reducing the viscosity at high temperature and deforming the silica container, so the above range is set. It is preferable.
  • Al has the effect of adsorbing and fixing metal impurity elements and the effect of improving the viscosity of silica glass at high temperatures, but also has the negative effect of contaminating the silicon melt of the object to be treated with Al. . Therefore, even when Al is contained, it is preferable to set it in the range of 5 to 30 massppm (more preferably 10 to 20 massppm) as described above.
  • the first raw material powder 11 and the second raw material powder 12 are prepared and prepared (step (1-a), step (1- b)).
  • the first raw material powder 11 may be prepared before the manufacturing process of the first temporary molded body 41 described later, and the second raw material powder 12 is prepared before the manufacturing process of the second temporary molded body 43 described later. do it.
  • the first raw material powder 11 is a material constituting a portion (usually a silica portion) other than the mixed silica layer 53 (and the high-purity silica glass layer 59) in the silica containers 71 and 72.
  • a crystalline silica powder having a particle size of 10 to 1000 ⁇ m is prepared and prepared (step (1-a)).
  • the 1st raw material powder 11 can be produced by grind
  • a natural quartzite block (naturally produced crystal, quartz, quartzite, siliceous rock, opal stone, etc.) with a diameter of about 5 to 50 mm is heated in a temperature range of 600 to 1000 ° C. for about 1 to 10 hours. To do.
  • the natural silica mass is put into water, taken out after rapid cooling, and dried. This process facilitates the subsequent crushing and sizing process using a crusher or the like, but the process may proceed to the crushing process without performing the heating and quenching process.
  • the natural silica mass is pulverized and sized by a crusher or the like, and the particle size is adjusted to 10 to 1000 ⁇ m, preferably 50 to 500 ⁇ m, to obtain natural silica powder.
  • this natural silica powder is put into a rotary kiln composed of a silica glass tube having an inclination angle, and the inside of the kiln is made into an atmosphere containing hydrogen chloride (HCl) or chlorine (Cl 2 ) gas, and is heated to 800 to 1100 ° C.
  • the high-purity treatment is performed by heating for about 1 to 100 hours.
  • the process may proceed to the next process without performing the purification process.
  • the first raw material powder 11 obtained after the above steps is crystalline silica.
  • the particle diameter of the first raw material powder 11 is 10 to 1000 ⁇ m as described above.
  • the particle size is preferably 50 to 500 ⁇ m.
  • the silica purity (SiO 2 ) of the first raw material powder 11 is preferably 99.99 mass% or more, and more preferably 99.999 mass% or more.
  • a predetermined amount of Al and OH groups can be contained in one raw material powder 11.
  • Al can be obtained, for example, by putting nitrate, acetate, carbonate, chloride or the like into water or an alcohol solution, putting silica powder in these solutions, immersing them, and then drying them.
  • the OH group can be adjusted depending on the gas atmosphere, treatment temperature, and time in the subsequent drying step, which is included in the natural silica from the beginning, or moisture mixed in the intermediate step.
  • the Al content of the first raw material powder 11 for constituting the silica portion is preferably 5 to 30 mass ppm as described above.
  • the OH group concentration of the first raw material powder 11 can be 10 to 50 mass ppm, the OH group concentration can be adjusted in the subsequent steps as described above.
  • the second raw material powder 12 is a material for constituting the mixed silica layer 53.
  • a mixed powder of crystalline silica powder 13 having a particle size of 50 to 2000 ⁇ m and amorphous silica powder 14 having a particle size of 50 to 2000 ⁇ m is prepared (step (1-b) )). Crystalline silica powder 13 and amorphous silica powder 14 are separately prepared, and the second raw material powder 12 can be prepared and prepared by mixing them.
  • the production of the crystalline silica powder 13 can be basically performed in the same manner as the production of the first raw material powder 11, but the particle diameter is 50 to 2000 ⁇ m. Such a relatively rough one is preferable because it is difficult to be etched by the silicon melt when the crystalline silica powder of the mixed silica layer 53 is melted.
  • the particle size is more preferably 300 to 1000 ⁇ m.
  • the OH group concentration of the crystalline silica powder 13 is preferably 50 mass ppm or less as described later.
  • the crystalline silica powder 13 becomes a raw material constituting the mixed silica layer 53 intended to be etched.
  • the crystalline silica powder 13 should not contain an Al element in consideration of contamination of the silicon melt by Al itself. However, in some cases, the crystalline silica powder 13 may contain Al.
  • amorphous silica powder 14 As the material of the amorphous silica powder 14, a highly purified natural quartz powder, natural quartz powder, or cristobalite powder is fused with an oxyhydrogen flame to form a silica glass lump, and then crushed and sized, Examples thereof include silica glass powder obtained by pulverizing and sizing a synthetic silica glass lump by an oxyhydrogen flame hydrolysis method of a silicon compound such as silicon tetrachloride (SiCl 4 ).
  • the particle diameter of the second raw material powder 12 is 50 to 2000 ⁇ m, preferably 300 to 1000 ⁇ m.
  • the purity is 99.999 mass% or more of silica component (SiO 2 ), more specifically, the impurity element concentration is 100 massppb or less for each of Li, Na, and K, 50 massppb or less for each of Ca and Mg, Ti, Cr, Fe , Ni, Cu, Zn, Zr, Mo, W, and Pb are preferably 20 massppb or less.
  • the second raw material powder 12 can be produced and prepared by mixing the crystalline silica powder 13 and the amorphous silica powder 14 produced as described above.
  • the mixing ratio of the two types of silica powder is preferably 90 to 20 mass% of the crystalline silica powder 13. 80 to 50 mass% is more preferable. The remaining ratio is amorphous silica powder 14.
  • the crystalline silica powder 13 has an OH group concentration of 50 mass ppm or less and the amorphous silica powder 14 has an OH group concentration of 200 to 2000 ppm.
  • the OH group concentration of the crystalline silica powder 13 can be adjusted as described above.
  • the amount of water vapor released from the crystalline silica powder 13 is preferably 2 ⁇ 10 17 (H 2 O molecule / g) or less.
  • Various known methods can be used to adjust the OH group concentration of the amorphous silica powder 14.
  • the amorphous silica powder is adjusted by adjusting the oxygen and hydrogen flow rates of the oxyhydrogen flame.
  • the OH group concentration in 14 can be adjusted.
  • the flow rate of oxygen and hydrogen in the amorphous silica powder 14 is increased by increasing the flow rate of oxygen and hydrogen compared to the flow rate of silicon tetrachloride as a raw material. OH group concentration can be increased.
  • first temporary molded body After producing at least the first raw material powder 11, as shown in FIG. 6 (1-c), the first raw material powder 11 is put inside the mold having rotational symmetry, and the mold is The first temporary molded body 41 made of the first raw material powder 11 is formed in the mold by temporarily forming into a predetermined shape corresponding to the inner wall of the mold while rotating (step (1-c)). ). 7 and 8 are sectional views showing an outline of a mold for temporarily forming the first raw material powder 11.
  • the molds 101 and 101 ′ used in the first embodiment of the present invention are made of a heat-resistant ceramic such as graphite or alumina or a heat-resistant metal having a cooling system, and have rotational symmetry.
  • decompression holes 103 may be distributed and formed in the inner wall 102 of the mold 101.
  • the decompression hole 103 is continuous with the decompression passage 104.
  • a pressure reducing passage 105 is also passed through a rotating shaft 106 for rotating the mold 101, and vacuuming can be performed from here.
  • the mold 101 shown in FIG. 7 is used will be described as an example.
  • the mold 101 ′ shown in FIG. 8 can be used in the same manner except that no decompression is performed.
  • the first raw material powder 11 is introduced into the inner wall 102 of the mold 101 shown in FIG. 7, and the first raw material powder 11 has a predetermined shape corresponding to the inner wall 102 of the mold 101.
  • a first temporary molded body 41 see FIG. 9. Specifically, while rotating the mold 101, the first raw material powder 11 is gradually put into the inner wall 102 of the mold 101, and is formed into a container shape having a predetermined thickness using centrifugal force. Further, the thickness of the first temporary molded body 41 may be adjusted to a predetermined amount by bringing a plate-shaped inner mold (not shown) from the inside into contact with the rotating powder. At this time, in the next step, adjustment is performed leaving a portion for introducing the second raw material powder 12.
  • FIG. 9 illustrates the case where the recess 42 is formed in the first temporary molded body 41.
  • the method for supplying the first raw material powder 11 to the mold 101 is not particularly limited.
  • a hopper provided with a stirring screw and a measuring feeder can be used.
  • the 1st raw material powder 11 with which the hopper was filled is stirred with the screw for stirring, and it supplies, adjusting a supply amount with a measurement feeder.
  • the second raw material powder 12 is put into the recess 42 of the first temporary molded body 41 formed in the mold 101 (step (1-d). )).
  • a second temporary molded body 43 having a portion made of the first raw material powder 11 and a portion made of the second raw material powder 12 is formed.
  • the shape of the second temporary molded body 43 corresponds to the shape of the silica containers 71 and 72 to be manufactured, and corresponds to at least a part of the inner surface layer portion of the straight body portion of the silica containers 71 and 72 to be manufactured.
  • the portion is formed of the second raw material powder 12.
  • the second raw material powder 12 is introduced after the first temporary molded body 41 is formed by at least a part of the first raw material powder 11, but also after the second raw material powder 12 is introduced as necessary. A part of the first raw material powder 11 can be introduced to form the entire second temporary molded body 43.
  • the example shown in FIG. 10 corresponds to the shape of the silica container 71 shown in FIG. 1 or the silica container 72 shown in FIG.
  • the second raw material powder 12 is charged into the first temporary molded body 41 (recess 42).
  • the shape of the second temporary molded body 43 is adjusted so as to have a shape corresponding to each silica container 71.
  • the silica container 71 shown in FIG. 3 is manufactured, the first raw material powder 11 is introduced into the mold, the second raw material powder 12 is introduced into the upper portion of the side wall, and the first raw material powder 12 is further introduced into the upper portion of the side wall.
  • the raw material powder 11 may be introduced.
  • a concave portion is formed on the inner side and the upper portion of the first temporary molded body 41 so as to correspond to the shape of the mixed silica layer 53 of FIG.
  • the raw material powder 12 is introduced.
  • the region occupied by the second raw material powder 12 in the second temporary molded body 43 (that is, the region to be the mixed silica layer 53) is the silica container 71 of the inner surface of the silica container 71 to be manufactured. It is preferable to include a position on the inner surface corresponding to the initial melt surface at the time of holding. Thereby, the molten metal surface vibration of the silicon melt in the initial stage of the method of pulling up the single crystal silicon by the silica container 71 can be effectively suppressed.
  • the mixed silica layer 53 is formed in the thickness direction of the silica container 71 in order to more reliably suppress the molten metal surface vibration of the raw material silicon melt and maintain the effect. It is preferable to form it as having a thickness of 2 mm or more and a width of 100 mm or more. This can be achieved by adjusting the region occupied by the second raw material powder 12 in the second temporary molded body 43.
  • the formation of the second temporary molded body 43 has a portion made of the second raw material powder 12 at a position corresponding to the inner surface layer portion of the straight body portion 61 and the curved portion 62 of the silica container 71 to be manufactured. It is preferable to form.
  • the mixed silica layer 53 can be formed on the inner surface layer portion of the straight body portion 61 and the curved portion 62 of the silica container 71. Thereby, in addition to the initial stage of pulling up the single crystal silicon, it is possible to effectively suppress the melt surface vibration of the silicon melt at a later stage.
  • the second temporary molding is performed by heating from the inside of the second temporary molded body 43 by the discharge heating melting method while rotating the mold 101.
  • the portion of the body 43 made of the second raw material powder 12 is a mixed silica layer 53 in which a phase in which the crystalline silica powder is melted and a phase in which the amorphous silica powder is melted are mixed in a granular form, and the outside of the container has bubbles. It is made of the opaque silica glass 51 contained, and the inside of the container is made of transparent silica glass 52 (step (1-e)).
  • the heating of the second temporary molded body 43 by the discharge heating melting method is preferably performed while reducing the pressure from the outside of the second temporary molded body 43.
  • the opaque silica glass on the outside of the container and the transparent silica glass on the inside of the container can be efficiently produced.
  • the apparatus for producing the silica container 71 includes a rotary mold 101 having the rotational axis symmetry described above, a rotary motor (not shown), and discharge heating melting (also referred to as arc melting or arc discharge melting). It includes a carbon electrode (carbon electrode) 212 serving as a heat source, an electric wire 212a, a high-voltage power supply unit 211, a lid 213, and the like. Two or three carbon electrodes 212 are generally used. Two types of power sources can be used: alternating current or direct current.
  • components for adjusting the atmospheric gas supplied from the inside of the second temporary molded body 43 for example, a hydrogen gas supply cylinder 411, an inert gas supply cylinder 412, a mixed gas supply pipe 420, a gas mixer And a flow controller 421 and the like.
  • a degassing vacuum pump (not shown) is rotated while the mold 101 containing the second temporary molded body 43 is rotated at a constant speed while the supply of the mixed gas is continued as described above. Then, the pressure is reduced from the outside of the second temporary molded body 43 through the pressure reducing hole 103 and the pressure reducing passages 104 and 105, and charging is started between the carbon electrodes 212.
  • the inner surface portion of the second temporary molded body 43 becomes a melting temperature range of silica powder (estimated to be about 1800 to 2000 ° C.).
  • the melting starts from the outermost layer.
  • the degree of vacuum reduction by the degassing vacuum pump increases (the pressure suddenly decreases), and water, oxygen, etc. contained in the first raw material powder 11 and the second raw material powder 12 While the dissolved gas is degassed, the change to the fused silica glass layer proceeds from the inside to the outside.
  • the atmospheric gas inside the container thick layer at the time of discharge heating melting may contain an inert gas such as nitrogen (N 2 ), argon (Ar), helium (He) as a main component for the purpose of reducing the consumption of the electrode.
  • an inert gas such as nitrogen (N 2 ), argon (Ar), helium (He)
  • the atmosphere gas be a hydrogen-containing gas in this step as described above.
  • This hydrogen-containing gas can be, for example, a mixed gas composed of hydrogen gas and an inert gas such as nitrogen gas (N 2 ), argon (Ar), and helium (He).
  • the content ratio of hydrogen gas (H 2 ) is 1 vol. % Or more, preferably 1 to 10 vol. % Is more preferable.
  • oxygen gas which is difficult to degas, reacts with hydrogen to produce water (H 2 O), and the water molecules have a larger diffusion coefficient than oxygen molecules, and are released to the outside of the outer layer. It is thought that it becomes easy to be done. Further, since hydrogen gas (H 2 ) has a small molecular radius and a large diffusion coefficient, even if it is contained in the atmospheric gas, it is easily released to the outside of the outer layer.
  • the silica container 71 of the first embodiment of the present invention having the mixed silica layer 53, the outside of the container made of opaque silica glass containing bubbles, and the inside of the container made of transparent silica glass is manufactured. (See FIG. 12).
  • a high-purity silica glass layer 59 can be formed at least partially (step (1-f) in FIG. 6).
  • the high-purity silica glass layer 59 has an impurity element concentration of 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W , Pb is preferably 10 massppb or less and a thickness of 200 to 2000 ⁇ m.
  • a high-purity silica glass layer is formed in the space inside the silica container 71 produced in steps (1-a) to (1-e).
  • the raw material powder 21 is melted by a discharge heating melting method while being dispersed, and the melted high-purity silica glass layer forming raw material powder 21 is adhered to the inner surface portion of the bottom of the silica container 71, thereby A high-purity silica glass layer 59 is formed on the inner surface portion.
  • the silica container 72 shown in FIG. 2 can be manufactured.
  • the basic method for forming the high-purity silica glass layer 59 by this process is similar to, for example, the contents shown in Patent Document 1 and Patent Document 2, but in the first embodiment of the present invention, the silica container 71 is used. Is formed on at least a part of the inner surface where the mixed silica layer 53 is not formed (in the case of FIGS. 2 and 13, the bottom surface of the container).
  • the apparatus for forming the high purity silica glass layer 59 on the inner surface portion of the bottom of the silica container 71 shown in FIG. 13 is substantially the same as in the step (1-e), and a silica container having rotational axis symmetry is installed.
  • step (1-e) when adjusting the atmospheric gas, as in the step (1-e), the hydrogen gas supply cylinder 411, the inert gas supply cylinder 412, the mixed gas supply pipe 420, the gas mixer, and the flow rate adjustment are performed.
  • a container 421 or the like may be provided.
  • the mold 101 is set to a predetermined rotational speed, and a high voltage is gradually applied from the high-voltage power supply unit 211, and at the same time, the high-purity silica glass layer 59 is gradually purified from the raw material hopper 303.
  • the silica glass layer forming raw material powder 21 is sprayed from the upper part of the silica container 71. At this time, the discharge is started between the carbon electrodes 212, and the silica container 71 is in the silica powder melting temperature range (estimated to be about 1800 to 2000 ° C.). 21 becomes fused particles of silica and adheres to the inner surface of the silica container 71.
  • the carbon electrode 212, the raw material powder inlet, and the lid 213 installed in the upper opening of the silica container 71 have a mechanism in which the position can be changed to some extent with respect to the silica container 71. By changing these positions, The high-purity silica glass layer 59 can be formed at a predetermined thickness at a predetermined location on the bottom of the silica container 71.
  • the atmospheric gas inside the silica container 71 during arc discharge melting is mainly composed of an inert gas such as nitrogen gas (N 2 ), argon (Ar), helium (He) in order to reduce the consumption of the carbon electrode.
  • Hydrogen gas (H 2 ) 1-10 vol. %, A high-purity silica glass layer 59 with few contained bubbles can be obtained.
  • the silica container 74 according to the second embodiment of the present invention has a crucible shape having rotational axis symmetry, and includes a straight body portion 61, a curved portion 62, and a bottom portion 63. At this time, 1/3 of the outer diameter (D 1 ) of the silica container 74 is defined as the diameter (D 2 ) of the bottom 63 for convenience.
  • the bottom 63 is a circular portion.
  • the straight body portion 61 is a cylindrical portion between the upper edge of the silica container 74 and a height portion that is 1/3 of the height (H 1 ) (height H 1 -H 2 ). Further, the portion other than the bottom portion 63 is defined as the curved portion 62 from the height portion of 1/3 of the height (H 1 ) of the silica container 74 to the bottom portion 63 (height H 2 ).
  • the silica container 74 has a mixed silica layer 53 in the inner surface layer portion of the straight body portion 61, the curved portion 62, and the bottom portion 63, and has a bottom silica glass layer 55 on the inner surface of the mixed silica layer 53 in the bottom portion 63.
  • the mixed silica layer 53 is formed by mixing a phase in which crystalline silica powder is melted and a phase in which amorphous silica powder is melted in a granular form.
  • the silica container 74 is made of opaque silica glass containing bubbles on the outer side of the container, and transparent silica glass on the inner side of the container.
  • the silica container When a silicon melt is held as a raw material for pulling up single crystal silicon in the silica container 74, the silica container is caused by a reaction (melting reaction) between the silica component constituting the inner surface of the silica container 74 and the silicon melt.
  • the inner surface of 74 is subjected to etching (erosion) by silicon melt.
  • the etching amount of the phase in which the crystalline silica powder is melted is more than the phase in which the amorphous silica powder is melted ( Since the erosion amount is small (that is, the etching rate is low), the part of the granular structure of the phase in which the crystalline silica powder is melted becomes a convex part, and the phase in which the amorphous silica powder is melted becomes a concave part. Due to the difference in the etching effect, minute irregularities are formed on the surface of the mixed silica layer 53 (interface with the raw material silicon melt), which changes to a rough surface.
  • the mixed silica layer 53 functions as a molten metal surface vibration suppression layer.
  • the mixed silica layer 53 has a certain thickness. Fine irregularities (rough surfaces) continue to exist without disappearing, and the molten metal surface vibration of the silicon melt can be suppressed for a long time. Since the effect of preventing molten metal surface vibration continues for a long time, it is particularly effective for multi-pulling of single crystal silicon.
  • the mixed silica layer 53 is formed so as to be located on the straight body part, the curved part, and the inner surface layer part of the bottom part of the silica container 74. As shown in FIG. 14, the mixed silica layer 53 may not be formed in a certain range from the upper end of the straight body portion that does not contact the silicon melt, but the silica container 74 holds the raw silicon melt. It includes a position on the inner surface corresponding to the initial melt surface (initial hot water surface). Further, as shown in FIG. 15, all of the straight body portion, the curved portion, and the inner surface layer portion of the bottom portion of the silica container 74 may be a mixed silica layer 53. In FIG. 15, transparent silica glass (“transparent silica glass 52” in FIG. 14) is not shown for the sake of convenience, but in reality, the portion of the mixed silica layer 53 located in the region inside the container is transparent silica. There is a part made of glass.
  • the silica container 74 since the mixed silica layer 53 is exposed on the inner surface in the straight body portion 61 and the curved portion 62, the initial stage of the method for pulling up the single crystal silicon (seeding, necking, shoulder ring, etc.) and the It is possible to effectively suppress the melt level vibration of the silicon melt at a later stage (pulling, tailing). Since the molten metal surface vibration in all steps of single crystal silicon pulling can be suppressed, it is particularly suitable for multi-pulling of three or more single crystal silicon.
  • the reason why the bottom silica glass layer 55 is formed on the inner surface of the bottom 63 of the silica container 74 is that the diameter of the bottom 63 of the silica container 74 approximates the diameter of single crystal silicon to be manufactured.
  • the surface of the mixed silica layer 53 is present at the bottom 63 of the silica container 74, irregularities are also generated on the inner surface of the bottom 63 during the production of the single crystal, and the surface changes to a rough surface.
  • silicon oxide (SiO) gas is generated, gas bubbles grow on the uneven surface of the bottom 63, and then the gas bubbles rise into the silicon melt.
  • the bottom 63 of the silica container 74 according to the second embodiment of the present invention is covered with the bottom silica glass layer 55, the inner surface of the bottom 63 does not have irregularities due to the mixed silica layer 55, and the gas bubbles generated thereby. There is no growth. Therefore, generation
  • a diameter of 30 inches (75 cm) to a diameter of 54 for pulling large diameter single crystal silicon having a diameter of 12 inches (30 cm) to a diameter of 18 inches (45 cm). Even in an inch (135 cm) large-diameter silica container, it is possible to suppress melt level vibration throughout the entire process of pulling single crystal silicon.
  • the thickness of the mixed silica layer 53 in the thickness direction of the silica container 74 is preferably 2 mm or more.
  • the mixed silica layer 53 is gradually etched and thinned during use of the silica container at a high temperature while holding the raw material silicon melt.
  • the mixed silica layer 53 is preferably formed using a mixed powder of crystalline silica powder having an OH group concentration of 50 massppm or less and amorphous silica powder having an OH group concentration of 200 to 2000 ppm as a raw material.
  • the mixed silica layer 53 is formed by using a mixed powder of two types of silica powder having a difference in OH group concentration as a raw material, so that the crystalline silica powder of the mixed silica layer 53 is melted and non-phased.
  • the etching rate difference with respect to the silicon melt of the phase in which the crystalline silica powder is melted can be made more remarkable, and the irregularities on the inner surface of the silica container 74 can be more reliably formed.
  • the OH group concentration of the phase in which the crystalline silica powder is melted corresponds to the OH group concentration of the crystalline silica powder
  • the OH group concentration of the phase in which the amorphous silica powder is melted corresponds to the OH group concentration of the amorphous silica powder.
  • the silica container 74 is manufactured through a high-temperature process such as about 1800 ° C. or more, it is estimated that there is some variation.
  • the OH group concentration of the entire mixed silica layer 53 is measured, the average value of the OH group concentrations of both raw material powders is obtained.
  • the mixed silica layer 53 is etched from the interface when the raw silicon melt is held. Therefore, it is preferable to reduce the amount of impurity elements taken into the raw silicon melt from the mixed silica layer 53 by making the mixed silica layer 53 highly pure.
  • the concentration of the impurity element in the mixed silica layer 53 is 100 massppb or less for each of Li, Na, and K, 50 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo , W and Pb are each preferably 20 massppb or less.
  • the bottom silica glass layer 55 is also preferably highly pure.
  • the impurity element concentration is 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe,
  • Each of Ni, Cu, Zn, Zr, Mo, W, and Pb is preferably 10 massppb or less, and preferably has a thickness of 200 to 2000 ⁇ m.
  • the purity of portions other than the mixed silica layer 53 and the bottom silica glass layer 55 (hereinafter, also referred to as “normal silica portion”) in the silica container 74 of FIGS. 14 and 15 depends on the application, but silica (SiO 2 )
  • the purity is preferably 99.99 mass% or more for pulling a solar single crystal and 99.999 mass% or more for pulling a single crystal for LSI.
  • the OH group concentration and Al concentration of the silica portion can be the same as those in the first embodiment.
  • the first raw material powder 11, the second raw material powder 12 and the third raw material powder 22 are prepared and prepared. (Step (2-a), Step (2-b) and Step (2-c)).
  • the first raw material powder 11 may be prepared before the step of forming a first temporary molded body 41 described later
  • the second raw material powder 12 is prepared before the step of forming a second temporary molded body 43 described later. do it. What is necessary is just to prepare the 3rd raw material powder 22 before the formation process of the bottom part silica glass layer 55 mentioned later.
  • the first raw material powder 11 is a material constituting a portion (usually a silica portion) of the silica container 74 other than the mixed silica layer 53 and the bottom silica glass layer 55.
  • a crystalline silica powder having a particle size of 10 to 1000 ⁇ m is prepared and prepared (step (2-a)).
  • the 1st raw material powder 11 can be produced by grind
  • various crystalline silica powders such as high-purity synthetic cristobalite powder can also be used.
  • the particle diameter of the first raw material powder 11 is 10 to 1000 ⁇ m as described above.
  • the particle size is preferably 50 to 500 ⁇ m.
  • the silica purity (SiO 2 ) of the first raw material powder 11 is preferably 99.99 mass% or more, and more preferably 99.999 mass% or more.
  • the first raw material powder 11 When the purity of the first raw material powder 11 is low (bad), the first raw material powder 11 is used to prevent the migration and diffusion of the impurity metal element from the manufactured silica container 74 to the inner surface and further to the silicon melt to be accommodated.
  • the first raw material powder 11 can contain a predetermined amount of Al and OH groups.
  • the second raw material powder 12 is a material for constituting the mixed silica layer 53.
  • the crystalline silica powder 13 having a particle size of 50 to 2000 ⁇ m and the amorphous silica powder 14 having a particle size of 50 to 2000 ⁇ m A mixed powder is prepared (step (2-b)).
  • the production of the crystalline silica powder 13, the production of the amorphous silica powder 14, and the mixing adjustment of the second raw material powder 12 can be performed in the same manner as in the first embodiment.
  • the third raw material powder 22 is a raw material for the bottom silica glass layer 55.
  • crystalline silica powder having a particle size of 10 to 1000 ⁇ m is prepared (step (2-c)).
  • the third raw material powder 22 can be prepared and prepared by the same method as the first raw material powder 11.
  • the third raw material powder 22 is preferably highly pure.
  • the purity is 99.999 mass% or more of silica component (SiO 2 ), more specifically, the impurity element concentration is 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe , Ni, Cu, Zn, Zr, Mo, W, and Pb are each preferably 10 massppb or less.
  • first temporary molded body After producing at least the first raw material powder 11, as shown in FIG. 16 (2-d), the first raw material powder 11 is put inside the mold having rotational symmetry, and the mold is The first temporary molded body 41 made of the first raw material powder 11 is formed in the mold by temporarily forming into a predetermined shape corresponding to the inner wall of the mold while rotating (step (2-d)). ). 7 and 8 are sectional views showing an outline of a mold for temporarily forming the first raw material powder 11.
  • the molds 101 and 101 ′ used in the second embodiment of the present invention are made of, for example, a heat-resistant ceramic such as graphite or alumina or a heat-resistant metal having a cooling system, and have rotational symmetry.
  • decompression holes 103 may be distributed and formed in the inner wall 102 of the mold 101.
  • the decompression hole 103 is continuous with the decompression passage 104.
  • a pressure reducing passage 105 is also passed through a rotating shaft 106 for rotating the mold 101, and vacuuming can be performed from here.
  • the mold 101 shown in FIG. 7 is used will be described as an example.
  • the mold 101 ′ shown in FIG. 8 can be used in the same manner except that no decompression is performed.
  • the first raw material powder 11 is introduced into the inner wall 102 of the mold 101 shown in FIG. 7, and the first raw material powder 11 has a predetermined shape corresponding to the inner wall 102 of the mold 101.
  • a first temporary molded body 41 see FIG. 17. Specifically, while rotating the mold 101, the first raw material powder 11 is gradually put into the inner wall 102 of the mold 101, and is formed into a container shape having a predetermined thickness using centrifugal force. Further, the thickness of the first temporary molded body 41 may be adjusted to a predetermined amount by bringing a plate-shaped inner mold (not shown) from the inside into contact with the rotating powder. At this time, in the next step, adjustment is performed leaving a portion for introducing the second raw material powder 12.
  • FIG. 17 illustrates a case where the concave portion 42 is formed in the first temporary molded body 41.
  • the method for supplying the first raw material powder 11 to the mold 101 is not particularly limited.
  • a hopper provided with a stirring screw and a measuring feeder can be used.
  • the 1st raw material powder 11 with which the hopper was filled is stirred with the screw for stirring, and it supplies, adjusting a supply amount with a measurement feeder.
  • the second raw material powder 12 is charged into the recess 42 of the first temporary molded body 41 formed in the mold 101 (step (2-e). )).
  • a second temporary molded body 43 having a portion made of the first raw material powder 11 and a portion made of the second raw material powder 12 is formed.
  • the shape of the second temporary molded body 43 is a shape corresponding to the shape of the silica container 74 to be manufactured, and a portion corresponding to the straight body portion, the curved portion, and the inner surface layer portion of the bottom portion of the silica container 74 to be manufactured.
  • the second raw material powder 12 is formed.
  • the second raw material powder 12 is introduced after the first temporary molded body 41 is formed by at least a part of the first raw material powder 11, but also after the second raw material powder 12 is introduced as necessary. A part of the first raw material powder 11 can be introduced to form the entire second temporary molded body 43.
  • the example shown in FIG. 18 corresponds to the shape of the silica container 74 shown in FIG.
  • the second raw material powder 12 is charged into the first temporary molded body 41 (recess 42).
  • the shape of the second temporary molded body 43 is adjusted so as to have a shape corresponding to the silica container 74 of FIG.
  • the second temporary molding is performed by heating from the inside of the second temporary molded body 43 by the discharge heating melting method while rotating the mold 101.
  • the portion of the body 43 made of the second raw material powder 12 is a mixed silica layer 53 in which a phase in which the crystalline silica powder is melted and a phase in which the amorphous silica powder is melted are mixed in a granular form, and the outside of the container has bubbles.
  • a silica container 73 made of the opaque silica glass 51 and containing the transparent silica glass 52 inside the container is formed (step (2-f)).
  • the heating of the second temporary molded body 43 by the discharge heating melting method is preferably performed while reducing the pressure from the outside of the second temporary molded body 43.
  • the opaque silica glass on the outside of the container and the transparent silica glass on the inside of the container can be efficiently produced.
  • the apparatus for producing the silica container 73 includes a rotatable mold 101 having the rotational axis symmetry described above, a rotary motor (not shown), and discharge heating melting (also called arc melting or arc discharge melting). It includes a carbon electrode (carbon electrode) 212 serving as a heat source, an electric wire 212a, a high-voltage power supply unit 211, a lid 213, and the like. Two or three carbon electrodes 212 are generally used. Two types of power sources can be used: alternating current or direct current.
  • components for adjusting the atmospheric gas supplied from the inside of the second temporary molded body 43 for example, a hydrogen gas supply cylinder 411, an inert gas supply cylinder 412, a mixed gas supply pipe 420, a gas mixer And a flow controller 421 and the like.
  • a degassing vacuum pump (not shown) is rotated while the mold 101 containing the second temporary molded body 43 is rotated at a constant speed while the supply of the mixed gas is continued as described above. Then, the pressure is reduced from the outside of the second temporary molded body 43 through the pressure reducing hole 103 and the pressure reducing passages 104 and 105, and charging is started between the carbon electrodes 212.
  • the inner surface portion of the second temporary molded body 43 becomes a melting temperature range of silica powder (estimated to be about 1800 to 2000 ° C.).
  • the melting starts from the outermost layer.
  • the degree of vacuum reduction by the degassing vacuum pump increases (the pressure suddenly decreases), and water, oxygen, etc. contained in the first raw material powder 11 and the second raw material powder 12 While the dissolved gas is degassed, the change to the fused silica glass layer proceeds from the inside to the outside.
  • the atmospheric gas inside the container thick layer at the time of discharge heating melting may contain an inert gas such as nitrogen (N 2 ), argon (Ar), helium (He) as a main component for the purpose of reducing the consumption of the electrode.
  • an inert gas such as nitrogen (N 2 ), argon (Ar), helium (He)
  • the atmosphere gas be a hydrogen-containing gas in this step as described above.
  • This hydrogen-containing gas can be, for example, a mixed gas composed of hydrogen gas and an inert gas such as nitrogen gas (N 2 ), argon (Ar), and helium (He).
  • the content ratio of hydrogen gas (H 2 ) is 1 vol. % Or more, preferably 1 to 10 vol. % Is more preferable.
  • oxygen gas which is difficult to degas, reacts with hydrogen to produce water (H 2 O), and the water molecules have a larger diffusion coefficient than oxygen molecules, and are released to the outside of the outer layer. It is thought that it becomes easy to be done. Further, since hydrogen gas (H 2 ) has a small molecular radius and a large diffusion coefficient, even if it is contained in the atmospheric gas, it is easily released to the outside of the outer layer.
  • a silica container 73 having the mixed silica layer 53, the outer side of the container made of opaque silica glass containing bubbles, and the inner side of the container made of transparent silica glass is manufactured (see FIG. 20).
  • the bottom silica glass layer 55 is formed on the bottom of the silica container 73 to manufacture the silica container 74 of the second embodiment of the present invention (process) (2-g)).
  • This process melt
  • the bottom silica glass layer 55 is formed by adhering to the inner surface portion of the bottom of the glass.
  • the bottom silica glass layer 55 has an impurity element concentration of 50 massppb or less for each of Li, Na, and K, 25 massppb or less for each of Ca and Mg, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, Each Pb is preferably formed to have a thickness of 10 massppb or less and a thickness of 200 to 2000 ⁇ m.
  • the silica container 74 shown in FIG. 14 can be manufactured.
  • the basic method of forming the bottom silica glass layer 55 by this process is similar to the contents shown in, for example, Patent Document 1 and Patent Document 2, but in the second embodiment of the present invention, the silica container 73 is formed. It is formed only on the bottom of the inner surface.
  • the apparatus for forming the bottom silica glass layer 55 on the inner surface of the bottom of the silica container 73 shown in FIG. 21 is substantially the same as in the step (2-f), and a silica container having rotational axis symmetry is installed.
  • step (2-f) When adjusting the atmospheric gas, as in the step (2-f), the hydrogen gas supply cylinder 411, the inert gas supply cylinder 412, the mixed gas supply pipe 420, the gas mixer, and the flow rate adjustment are performed.
  • a container 421 or the like may be provided. These devices can be used continuously from step (2-f).
  • the mold 101 is set to a predetermined rotation speed, and a high voltage is gradually applied from the high-voltage power supply unit 211.
  • the raw material powder 22 is sprayed from the upper part of the silica container 73.
  • the discharge is started between the carbon electrodes 212, and the silica container 73 is in the melting temperature range of silica powder (estimated to be about 1800 to 2000 ° C.). It becomes molten particles and adheres to the inner surface of the silica container 73.
  • the carbon electrode 212, the raw material powder inlet, and the lid 213 installed in the upper opening of the silica container 73 have a mechanism that allows the position of the silica container 73 to be changed to some extent. By changing these positions, The bottom silica glass layer 55 can be formed at a predetermined thickness at a predetermined location on the bottom of the silica container 73.
  • the atmospheric gas inside the silica container 73 during arc discharge melting is mainly composed of an inert gas such as nitrogen gas (N 2 ), argon (Ar), helium (He) in order to reduce the consumption of the carbon electrode. , Hydrogen gas (H 2 ), 1 to 10 vol. %, The bottom silica glass layer 55 containing few bubbles is obtained.
  • an inert gas such as nitrogen gas (N 2 ), argon (Ar), helium (He) in order to reduce the consumption of the carbon electrode.
  • Hydrogen gas (H 2 ) Hydrogen gas
  • H 2 Hydrogen gas
  • the bottom silica glass layer 55 containing few bubbles is obtained.
  • Example 1 According to the steps (1-a) to (1-e) shown in FIG. 6, the single crystal silicon pulling silica container 71 shown in FIG. 1 was manufactured.
  • natural quartz powder (A) having a particle size of 50 to 500 ⁇ m and a purity of 99.999 mass% was prepared.
  • the impurity concentration, OH group concentration, and H 2 O molecule release amount of this natural quartz powder (A) are shown in Table 9.
  • the second raw material powder 12 a mixed powder of crystalline silica powder 13 which is natural quartz powder (B) and amorphous silica powder 14 which is synthetic silica glass powder (A) was prepared.
  • the amorphous silica powder 14 is a synthetic silica glass powder produced by an oxyhydrogen flame hydrolysis method of silicon tetrachloride SiCl 4 .
  • the impurity element concentration, OH group concentration, and H 2 O molecule release amount of the natural quartz powder (B) and synthetic silica glass powder (A) are shown in Table 10.
  • the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 was 50:50 (mass% ratio).
  • the first raw material powder 11 and the second raw material powder 12 were charged while rotating the graphite mold 101 shown in FIGS.
  • the internal atmosphere of the second temporary molded body 43 is a mixed gas of dried N 2 95 vol% and H 2 5 vol%, and while reducing the intake air from the outer periphery,
  • the silica container 71 was manufactured by performing discharge heating and melting inside the temporary molding body 2 of No. 2.
  • Example 2 The silica container 71 shown in FIG. 1 is produced by the same method as in Example 1 except that the amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (B) shown in Table 10. did.
  • Example 3 The silica container 71 shown in FIG. 1 is manufactured by the same method as in Example 1 except that the amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (C) shown in Table 10. did.
  • Example 4 Although the silica container 71 shown in FIG. 1 was manufactured basically in the same manner as in Example 3, the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 was set to 30:70 (mass% ratio).
  • Example 5 A silica container 72 shown in FIG. 2 was manufactured by forming a high-purity silica glass layer 59 (step (1-f) in FIG. 6) on the bottom of the silica container 71 manufactured by the same method as in Example 3.
  • the raw material powder for the high purity silica glass layer 59 at this time was a synthetic cristobalite powder (A) having the impurity concentration and OH group concentration shown in Table 11.
  • a silica container 71 was produced by the same method as in Example 2 except that the molten atmosphere gas at the time of discharge heating melting was a mixed gas of N 2 50 vol%, H 2 10 vol%, and He 40 vol%.
  • a high-purity silica glass layer 59 (step (1-f) in FIG. 6) is formed on the bottom of the silica container 71, and the molten atmosphere gas is formed as N 2 50 vol%, H 2 10 vol%, and He 40 vol%.
  • the silica container 72 shown was manufactured.
  • the raw material powder (high-purity silica glass layer forming raw material powder 21) for the high-purity silica glass layer 59 at this time was the synthetic cristobalite powder (A) having the impurity concentration and OH group concentration shown in Table 11.
  • Example 7 Although the silica container 71 was manufactured basically in the same manner as in Example 3, the thickness of the mixed silica layer 53 was set to 2 mm.
  • Example 8 A silica container 71 having the form shown in FIG. 3 was produced. Other conditions were the same as in Example 3.
  • Example 9 The silica container 71 shown in FIG. 1 is manufactured by the same method as in Example 1 except that the amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (D) shown in Table 10. did.
  • Example 10 The silica container 72 shown in FIG. 2 is manufactured by the same method as in Example 6 except that the amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (D) shown in Table 10. did.
  • Example 11 According to the steps (1-a) to (1-e) shown in FIG. 6, the single crystal silicon pulling silica container 71 shown in FIG. 5, that is, the mixed silica layer 53 is formed on the inner surface layer of the straight body portion 61 and the curved portion 62. What was in the part was manufactured.
  • natural quartz powder (A) having a particle size of 50 to 500 ⁇ m and a purity of 99.999 mass% was prepared.
  • the impurity concentration of this natural quartz powder (A) is shown in Table 9.
  • the second raw material powder 12 a mixed powder of crystalline silica powder 13 which is natural quartz powder (C) and amorphous silica powder 14 which is synthetic silica glass powder (E) was prepared.
  • the natural silica powder (C) of the crystalline silica powder 13 is obtained by purifying the natural quartz powder (B), and the amorphous silica powder 14 is obtained by oxyhydrogen flame hydrolysis of silicon tetrachloride SiCl 4. It is the produced synthetic silica glass powder.
  • the impurity element concentration, OH group concentration, and H 2 O molecule release amount of the natural quartz powder (C) and synthetic silica glass powder (E) are shown in Tables 12 and 13.
  • the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 was 60:40 (mass% ratio).
  • Example 12 The amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (F) shown in Table 13, and the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 is 60:40 ( A silica container 71 shown in FIG. 5 was manufactured in the same manner as in Example 11 except that the mass% ratio was changed.
  • Example 13 The amorphous silica powder 14 constituting the second raw material powder 12 is the synthetic silica glass powder (G) shown in Table 13, and the mixed atmosphere gas at the time of discharge heating melting is a mixture of N 2 93 vol% and H 2 7 vol%.
  • a silica container 71 shown in FIG. 5 was produced in the same manner as in Example 12 except that the gas was used.
  • Example 14 A silica container 71 shown in FIG. 5 was manufactured in the same manner as in Example 13 except that the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 was set to 30:70 (mass% ratio).
  • a silica container was manufactured by a reduced pressure arc melting method using natural quartz powder as a raw material powder. This silica container does not have a portion corresponding to the mixed silica layer 53 of the present invention, the outside of the container is made of opaque silica glass containing bubbles, and the inside of the container is made of transparent silica glass.
  • a silica container was manufactured by a normal pressure arc melting method using natural quartz powder as a raw material powder.
  • a synthetic cristobalite powder was used as a raw material, and a high-purity silica glass layer was formed over the entire inner surface of the silica container by atmospheric pressure melting while spraying the raw material powder from above the silica container.
  • Particle size measurement of each raw material powder Two-dimensional shape observation and area measurement of each raw material powder were performed with an optical microscope or an electron microscope. Next, assuming that the shape of the particle is a perfect circle, the diameter was calculated from the area value. This method was repeated statistically and shown in Tables 1 to 8 as values of a particle size range (in which the raw material powder of 99 mass% or more is included).
  • Layer thickness measurement of silica container The silica container was cut with a cutter, and the cross section was determined by measuring with a scale.
  • OH group concentration measurement The OH group concentration was measured by infrared absorption spectrophotometry. Conversion to OH group concentration follows the following literature. Dodd, D.D. M.M. and Fraser, D.A. B. (1966) Optical determination of OH in fused silica. Journal of Applied Physics, vol. 37, P.I. 3911.
  • Impurity metal element concentration analysis When the impurity metal element concentration is relatively low (the glass is highly pure), plasma emission spectrometry (ICP-AES) or plasma mass spectrometry (ICP-MS) is used, and the impurity metal element concentration is relatively high ( In the case of low purity glass), it was performed by atomic absorption spectrophotometry (AAS). Concentration analysis of 15 elements of alkali metal elements Li, Na, K, alkaline earth metal elements Ca, Mg, transition metal elements Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, W, and Pb was performed.
  • Measuring method of H 2 O gas release amount About 2 g was sampled from each raw material powder, and this was placed in a vacuum chamber, and the amount of gas released under vacuum at 1000 ° C. was measured. Details follow the following literature. Nasu, S .; et al. (1990) “Gas release of various kinds of vitreous silica”, Journal of Illuminating Engineering of Japan, vol. 74, no. 9, pp. 595-600.
  • Single crystal silicon continuous pulling (multi pulling) evaluation Into the manufactured silica container, metal polysilicon having a purity of 99.99999999 mass% is charged, heated to a silicon melt, and then single crystal silicon is pulled up three times (multiple pulling) to grow single crystal silicon. Evaluated as a success rate.
  • the inside of the pulling apparatus CZ apparatus
  • the pulling speed is 1 mm / min
  • the single crystal silicon dimensions are 300 mm in diameter, 900 mm in length, and the operation per single pulling of single crystal silicon.
  • the time was about 30 hours.
  • the classification of the success ratio of three times of single crystal silicon growth was as follows. ⁇ Successfully raised 3 single crystal silicon ingots ⁇ (Good) ⁇ Successfully raised two single crystal silicon ingots ⁇ (somewhat good) ⁇
  • the single crystal silicon ingot was pulled up by one ⁇ (defect)
  • Evaluation of voids and pinholes in the pulled single crystal silicon was performed as follows. In the single-crystal silicon continuous pulling, 200 double-side polished silicon wafers each having a diameter of 300 mm and a thickness of 200 ⁇ m were prepared from an arbitrary portion of the first single-crystal silicon after each single-crystal silicon multi-pull-up. Next, the number of voids and pinholes present on both surfaces of each silicon wafer was measured by a particle detector, and statistical processing was performed to obtain the number of defects free of 200 silicon wafers. As a result, the following evaluation was made according to the number of silicon wafers in which neither voids nor pinholes were detected.
  • the detectable void and pinhole diameter was 50 ⁇ m or more. ⁇ Number of defect-free silicon wafers 200 to 199 ⁇ (good) ⁇ Number of defect-free silicon wafers 198 to 197 ⁇ (Slightly good) ⁇ Number of defect-free silicon wafers 196 or less ⁇ (defect)
  • Examples 1 to 14 it was possible to suppress the molten metal surface vibration when pulling up the single crystal silicon, and to perform the multi-pull up smoothly. Further, in Examples 11 to 14, the mixed silica layer 53 was formed not only on the straight body portion 61 but also on the curved portion 62, so that the single-crystal silicon was pulled up even though a rough surface was generated on the inner surface. It was also found that almost no void defects called voids or pinholes were introduced into the crystalline silicon. Further, in Examples 11 to 14, the vibration of the melt surface of the silicon melt could be stably suppressed even at the stage after the initial stage of pulling the single crystal silicon.
  • Example 15 In accordance with the steps (2-a) to (2-g) shown in FIG. 16, the single crystal silicon pulling silica container 74 shown in FIG. 14 was manufactured.
  • natural quartz powder (a) having a particle size of 50 to 500 ⁇ m and a purity of 99.999 mass% was prepared.
  • the impurity concentration of this natural quartz powder (a) is shown in Table 19.
  • the second raw material powder 12 a mixed powder of crystalline silica powder 13 which is natural quartz powder (b) and amorphous silica powder 14 which is synthetic silica glass powder (a) was prepared.
  • the amorphous silica powder 14 is a synthetic silica glass powder produced by an oxyhydrogen flame hydrolysis method of silicon tetrachloride SiCl 4 .
  • the impurity element concentration, OH group concentration, and H 2 O molecule release amount of the natural quartz powder (b) and synthetic silica glass powder (a) are shown in Table 20 and Table 21, respectively.
  • the mixing ratio of the crystalline silica powder 13 and the amorphous silica powder 14 was 40:60 (mass% ratio).
  • the first raw material powder 11 and the second raw material powder 12 were charged while rotating the graphite mold 101 shown in FIGS. 4, 17, and 18, thereby obtaining a second temporary molded body 43.
  • the silica container 73 was manufactured by performing discharge heating and melting inside the second temporary molded body 43 while reducing the intake pressure from the outer peripheral portion with a mixed gas of%.
  • the bottom silica glass layer 55 is placed on the bottom of the silica container 73, and the molten atmosphere gas is N 2 95 vol. %, H 2 5 vol.
  • the silica container 74 shown in FIG. 14 was manufactured.
  • the raw material powder (third raw material powder 22) for the bottom silica glass layer 55 at this time was a synthetic cristobalite powder (a) having the impurity concentration, OH group concentration and H 2 O molecule release amount shown in Table 22. .
  • Example 16 A silica container 74 shown in FIG. 14 was produced.
  • the production conditions are as follows: the mixing ratio of crystalline silica powder (natural quartz powder (b) and amorphous silica powder (synthetic silica glass powder (a)) is 60:40 (mass ratio), and the molten atmosphere gas is N 2 50 vol. %, H 2 10 vol.%, He 40 vol.%, And the same as in Example 15 except that the bottom silica glass layer 55 was formed thicker than in Example 15.
  • Example 17 A silica container 74 shown in FIG. 14 was produced. The production condition is that the mixing ratio of crystalline silica powder (natural quartz powder (b) and amorphous silica powder (synthetic silica glass powder (a)) is 80:20 (mass ratio), and the bottom silica glass layer 55 is implemented.
  • Example 15 is the same as Example 15 except that the layer is thicker than Example 15.
  • Example 18 The silica container 74 shown in FIG. 15, that is, the silica container 74 in which the mixed silica layer 53 was formed up to the upper end of the inner surface layer was manufactured.
  • the other production conditions were that the synthetic silica glass powder (b) shown in Table 21 was used as the amorphous silica powder 14 and the molten atmosphere gas was N 2 90 vol. %, H 2 10 vol. %, And the same as Example 15, except that the bottom silica glass layer 55 was formed thicker than Example 15.
  • Example 19 A silica container 74 shown in FIG. 15 was produced by the same method as in Example 18, but the crystalline silica powder (natural quartz powder (b)) and amorphous silica powder (synthetic silica glass powder (b)) were mixed. The ratio was 60:40 (mass ratio), and the molten atmosphere gas was N 2 95 vol. %, H 2 5 vol. %.
  • Example 20 The silica container 74 shown in FIG. 15 was manufactured by the same method as in Example 19, but the mixing of crystalline silica powder (natural quartz powder (b)) and amorphous silica powder (synthetic silica glass powder (b)) The ratio was 80:20 (mass ratio).
  • a silica container 91 shown in FIG. 22 was manufactured by a reduced pressure arc discharge melting method using natural quartz powder as a raw material powder.
  • the silica container 91 does not have a portion corresponding to the mixed silica layer 53 of the present invention, the container outer side is made of opaque silica glass 81 containing bubbles, and the container inner side 82 is made of transparent silica glass.
  • a silica container 92 shown in FIG. 23 was manufactured. First, by using natural quartz powder as a raw material powder, a silica container in which the outer side of the container is made of opaque silica glass 81 containing bubbles and the inner side of the container 82 is made of transparent silica glass is produced by atmospheric pressure arc melting method. A bottom silica glass layer 85 was formed on the bottom using synthetic cristobalite powder as a raw material.
  • Example 5 A silica container 93 having a mixed silica layer 83 on the entire inner surface of the container shown in FIG. That is, the silica container 93 has the same configuration as in Examples 18 to 20 except that the bottom silica glass layer is not formed.
  • the specific production method is the same as that of Example 19 except that the bottom silica glass layer is not formed and the synthetic silica glass powder (a) is used as the amorphous silica powder.
  • Example 21 A silica container 94 shown in FIG. 25 was manufactured.
  • the silica container 94 has a mixing ratio of crystalline silica powder (natural quartz powder (b)) and amorphous silica powder (synthetic quartz glass powder) of 50:50 (mass% ratio), and the mixed silica layer 53 is straight It was manufactured in the same manner as in Example 15 except that it was formed in a thickness of 2 mm only on the part (the height (width) in the straight body part was 150 mm) and the bottom silica glass layer 55 was not formed.
  • the particle size of each raw material powder was measured in the same manner as described above and shown in Tables 14-18.
  • silica container layer thickness measurement, OH group concentration measurement, impurity metal element concentration analysis, and H 2 O gas release amount measurement method were performed in the same manner as described above.
  • Example 15 to 16 it was possible to suppress the molten metal surface vibration during the single crystal silicon pulling, and the multi pulling could be performed smoothly.
  • Examples 15 to 16 almost no void defects called voids or pinholes were introduced into the single crystal silicon.
  • Comparative Examples 3 and 4 the molten metal surface vibration was generated, and particularly generated from the initial stage of the pulling process. Also in Example 21, the molten metal surface vibration was generated particularly from the second single crystal silicon pulling step.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、少なくとも前記直胴部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有する単結晶シリコン引き上げ用シリカ容器である。これにより、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制できる単結晶シリコン引き上げ用シリカ容器が提供される。

Description

単結晶シリコン引き上げ用シリカ容器及びその製造方法
 本発明は、単結晶シリコンを引き上げるためのシリカ容器及びその製造方法に関する。
 従来より、単結晶シリコン引き上げ用シリカルツボの製造方法としては、特許文献1及び特許文献2に記載されているような製造方法が使用されている。これらの方法は、回転する型枠の中に高純度化処理された石英粉を投入、成形した後、上部から電極を押し込み、電極に加電することによりアーク放電を起こし、雰囲気温度を石英粉の溶融温度域(1800~2100℃程度と推定)まで上昇させて、石英粉を溶融、焼結させる方法である。しかし、このように製造されたシリカルツボの使用時において、溶融シリコンとシリカルツボとが反応して一酸化ケイ素(SiO)ガスが生じ、それが単結晶シリコンに気泡(ガス泡)として取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が生成する等の単結晶シリコンの品質上の問題が出ていた。
 特に、単結晶シリコンの一般的な引き上げ法であるCZ法(チョクラルスキー法)では、ルツボと呼ばれるシリカ容器内の溶融シリコンの融液面(以下、単に「湯面」とも称する。)に種結晶を付け(シーディング)、次いで種結晶の直径を若干絞りつつ成長させ(ネッキング)、次いで直径を拡大させつつ大直径単結晶シリコンを作製し(ショルダーリング)、引き続いて大直径単結晶シリコンの直径を一定に保持しつつ引き上げて(プリング)、長軸寸法の単結晶シリコンを取り出している。この引き上げ時に、溶融シリコンの湯面が振動する現象(以下、この現象を単に「湯面振動」と称する。)が発生する。この湯面振動が発生するとシーディング、ネッキングやショルダーリングができなくなったり、引き上げ(プリング)中に単結晶シリコンの一部が多結晶化する問題が生じていた。この原因の一つとして、酸化ケイ素(SiO)ガス発生による湯面振動が考えられていた。特許文献1、2で作製されたシリカルツボでは、特に直径12インチ(30cm)~18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)~54インチ(135cm)の大型容器である場合、高い頻度で強い湯面振動が発生するため、早急なる解決が求められていた。以下、シリカルツボと石英ルツボは同意語である。シリカガラスと石英ガラスも同意語である。
 特許文献3では、溶融シリコンの湯面振動が発生しない石英ガラスルツボとして、ルツボの壁のIR(赤外線)透過率を3~30%に設定すること等が示されている。しかしこのような広い透過率範囲の物性を有する大形化した石英ガラスルツボを使用しても、大直径単結晶シリコン引き上げ時における湯面振動を抑制することはできなかった。
 特許文献4では、溶融シリコンの湯面振動が発生しない石英ガラスルツボの製造方法として、ルツボ製造時にルツボ内側の雰囲気に水蒸気を導入することが示されており、ルツボ内側表層全体におけるOH基濃度を高めることが湯面振動抑制に好ましいとされている。しかし、このような製造方法による、大形化した石英ガラスルツボを使用しても大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。またルツボ内側のシリコン融液による侵蝕(エッチング)が激しく、ルツボの寿命は短いものとなっていた。
 特許文献5では、単結晶シリコン引き上げ時の石英ガラスルツボにおいて、溶融シリコン湯面付近の石英ガラスルツボ内表面の帯状部分のみを天然石英ガラスとすることにより、湯面振動を防止できると示している。しかしこのルツボは、全合成石英ガラスルツボに比較して湯面振動が相対的に少ないというものであり、大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。
 特許文献6では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に、気泡含有量の多い部分を帯状に分布させることにより、湯面振動を防止できると示している。しかしこのルツボではある程度の湯面振動抑制効果は認められるものの、気泡含有量の多い帯状部分の溶融シリコンによる侵蝕(エッチング)量が大きく、ルツボの寿命は短いものとなってしまった。また帯状部分に含まれている気泡が単結晶シリコン中に取り込まれる確率が高くなり、しばしば単結晶シリコン中にボイドやピンホールという空隙欠陥が生成する問題があった。
 特許文献7では、回転軸対称性を有する石英ガラスルツボの気泡含有率、肉厚、透過率を円周にわたって均質にすることにより、溶融シリコンの湯面振動が防止できると示している。ルツボの各種物性を円周にわたって回転軸対称に高精度で作製することは湯面振動防止の観点からは基本的に重要なことと考えられる。しかし、ある程度の物性変動が生じたとしても、該湯面振動を防止できることが求められていた。
 特許文献8では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に複数個の微小凹部を具え、かつその下部に複数個の気泡を具えることにより湯面振動を防止できると示している。しかしこのルツボでは単結晶シリコン製造における初期の湯面振動は抑制できるものの、微小凹部が溶解された後では、再び振動が発生するという問題があった。特に単結晶シリコンを複数本引き上げる(マルチプリング)場合、2本目以降製造時の湯面振動が激しくなるということがあった。
 特許文献9では、石英ガラスルツボ内表面に、石英粉を用いたサンドブラスト処理をすることにより、帯状に粗面領域を作製し、湯面振動を防止できると示している。しかしこのようなルツボでは単結晶シリコン製造時の初期の湯面振動は抑制できるものの、その効果は長く続かないものであった。また1個のルツボによりマルチプリングをすることは困難であった。
 特許文献10では、石英ルツボ内表面にシリカ粉を酸水素火炎で溶融して、OH基を500~1500ppm含有するシリカガラス層を堆積することにより、湯面振動を防止することができると示している。しかしこの製法は工程が複雑化して高コストになるばかりではなく、湯面付近のシリコン融液によるエッチングが大きく、そのため湯面振動が徐々に激しくなったりルツボ寿命が短くなってしまうという欠点が生じていた。
特公平4-22861号公報 特公平7-29871号公報 特開2000-219593号公報 特開2001-348240号公報 特許第4338990号公報 特許第4390461号公報 特開2010-30884号公報 特開2011-105552号公報 国際公開第WO2011/158712号パンフレット 特開2012-17240号公報
 本発明は前述のような問題に鑑みてなされたもので、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制できる単結晶シリコン引き上げ用シリカ容器を提供すること、及びそのようなシリカ容器の製造方法を提供することを目的とする。
 また、本発明は、単結晶シリコン引き上げの全工程において、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制でき、かつ、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる単結晶シリコン引き上げ用シリカ容器を提供すること、及びそのようなシリカ容器の製造方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器の製造方法であって、第1の原料粉として、粒径が10~1000μmである結晶質シリカ粉を作製する工程と、第2の原料粉として、粒径が50~2000μmである結晶質シリカ粉と、粒径が50~2000μmである非晶質シリカ粉との混合粉を作製する工程と、前記第1の原料粉を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉から成る第1の仮成形体を形成する工程と、前記第2の原料粉を、前記型枠内に形成した第1の仮成形体の内側及び上部の少なくともいずれか一方に投入して前記第1の原料粉から成る部分及び前記第2の原料粉から成る部分を有する第2の仮成形体を、製造するシリカ容器の形状に応じた形状として、かつ、該製造するシリカ容器の少なくとも直胴部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成する工程と、前記型枠を回転させつつ、前記第2の仮成形体の内側から放電加熱溶融法によって加熱することにより、前記第2の仮成形体のうち前記第2の原料粉から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とするとともに、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るものとする工程とを含むことを特徴とする単結晶シリコン引き上げ用シリカ容器の製造方法を提供する。
 このような工程を有するシリカ容器の製造方法により、少なくとも直胴部の内側表層部分に、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有する単結晶シリコン引き上げ用シリカ容器を製造することができる。この混合シリカ層の存在する部分は、シリカ容器内部に原料シリコン融液を保持した際に、シリコン融液によるエッチング(侵蝕)を受ける。このエッチングは非晶質シリカ粉が溶融した相の方が、結晶質シリカ粉が溶融した相より速く、エッチング量が大きい。このエッチング効果の違いにより、混合シリカ層の表面(原料シリコン融液との界面)に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、高温度下での使用が長時間にわたることにより混合シリカ層のエッチングが進んでも、この微小な凹凸は消滅せずに存在し続けるため、長時間にわたってシリコン融液の湯面振動を抑制することができる。
 この場合、前記混合シリカ層を、前記製造されるシリカ容器の内表面のうち、該シリカ容器が原料シリコン融液を保持した際の初期の融液面に相当する内表面上の位置を含んで形成することが好ましい。
 混合シリカ層を形成する位置をこのようにすることにより、特に、単結晶シリコンを引き上げる方法の初期(シーディング、ネッキング、ショルダーリング等)におけるシリコン融液の湯面振動を効果的に抑制することができる。
 また、前記第2の仮成形体の形成を、前記製造するシリカ容器の直胴部及び湾曲部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成することが好ましい。
 このように第2の仮成形体の形成を行うことにより、シリカ容器の直胴部及び湾曲部の内側表層部分に混合シリカ層を形成することができる。これにより、単結晶シリコン引き上げの初期段階(シーディング、ネッキング、ショルダーリング等)に加えて、それより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動をも効果的に抑制することができる。
 また、前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であり、幅が100mm以上であるものとして形成することが好ましい。
 このような厚さ及び幅を有する混合シリカ層を形成することにより、製造したシリカ容器において原料シリコン融液の湯面振動の抑制をより確実に行い、その効果を持続させることができる。
 また、本発明の単結晶シリコン引き上げ用シリカ容器の製造方法においては、上記のいずれかの方法によりシリカ容器を製造した後、さらに、該シリカ容器の内表面のうち前記混合シリカ層が形成されていない内表面の少なくとも一部に、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmの高純度シリカガラス層を形成する工程を有することが好ましい。
 このように、混合シリカ層以外の部分に高純度シリカガラス層を追加で形成することにより、高温での使用時においてシリカ容器内壁から原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
 また、本発明の単結晶シリコン引き上げ用シリカ容器の製造方法においては、前記第2の仮成形体を形成する工程において、前記第2の原料粉を、前記第1の仮成形体の内側に投入し、前記第2の仮成形体を、前記製造するシリカ容器の直胴部、湾曲部、及び底部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成することとし、さらに、第3の原料粉として、粒径が10~1000μmである結晶質シリカ粉を作製する工程を含み、前記放電加熱溶融法によって加熱することにより前記シリカ容器を製造した後に、さらに、前記シリカ容器の上部から前記第3の原料粉を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉を前記底部の内表面部分に付着させ底部シリカガラス層を形成する工程を含むことができる。
 このようなシリカ容器の製造方法により、直胴部、湾曲部、及び底部の内側表層部分を、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とし、底部の混合シリカ層の内表面上に底部シリカガラス層を有する単結晶シリコン引き上げ用シリカ容器を製造することができる。底部シリカガラス層に覆われていない、混合シリカ層が露出する部分は、シリカ容器内部に原料シリコン融液を保持した際に、シリコン融液によるエッチング(侵蝕)を受ける。このエッチングは非晶質シリカ粉が溶融した相の方が、結晶質シリカ粉が溶融した相より速く、エッチング量が大きい。このエッチング効果の違いにより、混合シリカ層の表面(原料シリコン融液との界面)に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、高温度下での使用が長時間にわたることにより混合シリカ層のエッチングが進んでも、この微小な凹凸は消滅せずに存在し続けるため、長時間にわたってシリコン融液の湯面振動を抑制することができる。
 また、このシリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階(シーディング、ネッキング、ショルダーリング等)及びそれより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部は底部シリカガラス層に覆われるため、底部には混合シリカ層に起因する凹凸は生じず、これによるガス泡の成長もない。そのため、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
 この場合、前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であるものとして形成することが好ましい。
 このような厚さを有する混合シリカ層を形成することにより、製造したシリカ容器において原料シリコン融液の湯面振動の抑制をより確実に行い、その効果を持続させることができる。
 また、本発明の単結晶シリコン引き上げ用シリカ容器においては、前記第2の仮成形体の放電加熱溶融法による加熱を、該第2の仮成形体の外側から減圧しながら行うことが好ましい。
 このように減圧しながら行う加熱により、容器外側の不透明シリカガラス及び容器内側の透明シリカガラスを効率よく作製することができる。
 また、前記第2の原料粉において、前記結晶質シリカ粉のOH基濃度を50massppm以下とし、前記非晶質シリカ粉のOH基濃度を200~2000ppmとすることが好ましい。
 第2の原料粉を構成する両シリカ粉におけるOH基濃度をこのように設定することにより、作製される混合シリカ層の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器内表面の凹凸をより確実に形成させることができる。
 また、前記第2の原料粉の不純物元素の濃度を、Li、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下とすることが好ましい。
 第2の原料粉の不純物元素濃度をこのようにすれば、作製される混合シリカ層がエッチングされる際に原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
 また、本発明は、直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、少なくとも前記直胴部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有することを特徴とする単結晶シリコン引き上げ用シリカ容器を提供する。
 このような混合シリカ層等の構成を有するシリカ容器は、内部に原料シリコン融液を保持した際に、シリコン融液によるエッチングにより混合シリカ層の表面に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。
 この場合、前記混合シリカ層が、前記シリカ容器の内表面のうち、該シリカ容器が原料シリコン融液を保持した際の初期の融液面に相当する内表面上の位置を含んで形成されていることが好ましい。
 このような位置に混合シリカ層を形成することにより、特に、単結晶シリコンを引き上げる方法の初期におけるシリコン融液の湯面振動を効果的に抑制することができる。
 また、前記混合シリカ層を前記直胴部及び前記湾曲部の内側表層部分において有するものであることが好ましい。
 このように、シリカ容器の直胴部及び湾曲部の内側表層部分に混合シリカ層を有するものであれば、単結晶シリコン引き上げの初期段階(シーディング、ネッキング、ショルダーリング等)に加えて、それより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動をも効果的に抑制することができる。
 また、前記混合シリカ層は、前記シリカ容器の肉厚方向における厚さが2mm以上であり、幅が100mm以上であることが好ましい。
 このような厚さ及び幅を有する混合シリカ層を形成することにより、原料シリコン融液の湯面振動の抑制をより確実に行い、持続させることができる。
 また、前記シリカ容器の内表面のうち前記混合シリカ層が形成されていない内表面の少なくとも一部に、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmの高純度シリカガラス層を有することが好ましい。
 このような高純度シリカガラス層を追加で有することにより、高温での使用時においてシリカ容器内壁から原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
 また、本発明の単結晶シリコン引き上げ用シリカ容器は、前記混合シリカ層を前記直胴部、湾曲部、及び底部の内側表層部分において有し、前記底部の混合シリカ層の内表面上に底部シリカガラス層を有することができる。
 このような混合シリカ層及び底部シリカガラス層等の構成を有するシリカ容器は、内部に原料シリコン融液を保持した際に、シリコン融液によるエッチングにより混合シリカ層の表面に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、このシリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階及びそれより後の段階におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部が底部シリカガラス層に覆われることにより、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
 また、本発明の単結晶シリコン引き上げ用シリカ容器においては、前記混合シリカ層が、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200~2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることが好ましい。
 混合シリカ層をこのようなOH基濃度の違いを有する2種のシリカ粉の混合粉を原料として形成されたものとすることにより、混合シリカ層の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器内表面の凹凸をより確実に形成させることができる。
 また、前記混合シリカ層における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることが好ましい。
 混合シリカ層の不純物元素濃度をこのようにすることにより、混合シリカ層がエッチングされる際に原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
 本発明に係る単結晶シリコン引き上げ用シリカ容器の製造方法により、少なくとも直胴部の内側表層部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とした単結晶シリコン引き上げ用シリカ容器を製造することができる。
 このような混合シリカ層を有する本発明に係る単結晶シリコン引き上げ用シリカ容器は、内部に原料シリコン融液を保持した際に、混合シリカ層を構成する非晶質シリカ粉が溶融した相と結晶質シリカ粉が溶融した相のエッチング効果の差により、混合シリカ層の表面に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、高温度下での使用が長時間にわたることにより混合シリカ層のエッチングが進んでも、この微小な凹凸は消滅せずに存在し続けるため、長時間にわたってシリコン融液の湯面振動を抑制する効果を維持することができる。長時間にわたって湯面振動を防止する効果が続くため、単結晶シリコンのマルチ引き上げ(マルチプリング)に特に有効であり、シリカ容器の寿命も長期にすることができる。
 また、本発明に係る単結晶シリコン引き上げ用シリカ容器の製造方法により、直胴部、湾曲部、及び底部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有し、底部の混合シリカ層の内表面上に底部シリカガラス層を有する単結晶シリコン引き上げ用シリカ容器を製造することもできる。
 このような混合シリカ層及び底部シリカガラス層を有する本発明に係る単結晶シリコン引き上げ用シリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階及びそれより後の段階におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部が底部シリカガラス層に覆われることにより、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
本発明の第1の実施形態に係るシリカ容器の構造の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法の一例の概略を示すフロー図である。 本発明に係るシリカ容器の製造方法において用いることができる型枠の一例を示す概略断面図である。 本発明に係るシリカ容器の製造方法において用いることができる型枠の別の一例を示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法における、第1の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融前)を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融中)を模式的に示す概略断面図である。 本発明の第1の実施形態に係るシリカ容器の製造方法における任意の追加工程として、底部の内表面部分に高純度シリカガラス層を形成する工程の一例を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の構造の一例を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の製造方法の一例の概略を示すフロー図である。 本発明の第2の実施形態に係るシリカ容器の製造方法における、第1の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融前)を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融中)を模式的に示す概略断面図である。 本発明の第2の実施形態に係るシリカ容器の製造方法における、底部シリカガラス層を形成する工程の一例を模式的に示す概略断面図である。 比較例3のシリカ容器の構造を模式的に示す概略断面図である。 比較例4のシリカ容器の構造を模式的に示す概略断面図である。 比較例5のシリカ容器の構造を模式的に示す概略断面図である。 実施例21のシリカ容器の構造を模式的に示す概略断面図である。
 本発明に係る単結晶シリコン引き上げ用シリカ容器は、内部に単結晶シリコンの原料となる多結晶シリコン等を収容し、該多結晶シリコン等を溶融して原料シリコン融液とし、この融液から単結晶シリコンを引き上げるためのものである。本発明のシリカ容器は、大規模集積回路(LSI)用又は太陽光発電(太陽電池、PV)用に使用される単結晶シリコンを引き上げるためのシリカ容器として用いることができる。
 以下、本発明に係る単結晶シリコン引き上げ用シリカ容器及びその製造方法について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。以下では特に単結晶シリコン製造用の大口径シリカ容器のルツボを例として説明する。なお、本発明のシリカ容器とはシリカルツボのことを示す。
(第1の実施形態)
 まず、本発明の第1の実施形態を説明する。本発明の第1の実施形態に係る単結晶シリコン引き上げ用シリカ容器の構造の例を、図1~図5に示した。まず、図1を参照して説明する。図1に示したように、本発明の第1の実施形態に係るシリカ容器71は、回転軸対称性を有するルツボ形状であり、直胴部61、湾曲部62、及び底部63を有する。このとき、便宜上シリカ容器71の外径(D)の1/3を底部63の直径(D)とする。底部63は円形状の部分である。直胴部61は、シリカ容器71の上縁から高さ(H)の1/3の高さ部分までの間(高さH-H)の円筒状の部分である。またシリカ容器71の高さ(H)の1/3の高さ部分から底部63までの間(高さH)のうち、底部63以外を湾曲部62とする。
 シリカ容器71は、少なくとも直胴部61の内側表層部分において、混合シリカ層53を有する。混合シリカ層53は結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在して成るものである。混合シリカ層53は、均一なものではなく数100μm~数1000μm単位で微細な粒状構造を有するものである。より具体的には、混合シリカ層53を構成する結晶質シリカ粉が溶融した相は、石英粉、水晶粉、クリストバライト粉等の結晶質シリカ粉を原料とし、混合シリカ層53を構成する非晶質シリカ粉が溶融した相は、火炎加水分解法による合成シリカガラス粉、酸水素ベルヌイ法による溶融シリカガラス粉等の非晶質シリカ粉を原料としている。すなわち、混合シリカ層53はこれらの混合粉を溶融して一体化したシリカ層である。
 また、シリカ容器71は、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成る。シリカ容器71においてこのような2層構造とすることにより、高温度下のシリカ容器使用時において、シリカ容器71の内部の均熱性を確保することができる。この不透明シリカガラスは、通常、白色不透明である。透明シリカガラスは、実質的に気泡を含有しないため透明であり、通常、無色透明である。不透明シリカガラス51のかさ密度は、1.90~2.15(g/cm)程度であり、透明シリカガラス52のかさ密度はほぼ2.20(g/cm)である。混合シリカ層53の位置を示すために、便宜上、図中には、混合シリカ層53以外の部分について不透明シリカガラス51及び透明シリカガラス52を示した。実際には、混合シリカ層53も、容器外側の領域に位置する部分は不透明シリカガラスから成り、容器内側の領域に位置する部分は透明シリカガラスから成る。
 シリカ容器71に単結晶シリコン引き上げのための原料としてシリコン融液を保持した際に、シリカ容器71の内表面を構成するシリカ成分とシリコン融液との間の反応(溶融反応)により、シリカ容器71の内表面はシリコン融液によるエッチング(侵蝕)を受ける。このとき、混合シリカ層53では、結晶質シリカ粉が溶融した相の方が、非晶質シリカ粉が溶融した相よりもエッチング量(侵蝕量)が少ない(すなわち、エッチング速度が遅い)ことから、結晶質シリカ粉が溶融した相の粒状構造の部分が凸部となり、非晶質シリカ粉が溶融した相が凹部となる。このエッチング効果の違いにより、混合シリカ層53の表面(原料シリコン融液との界面)に微小な凹凸が形成され、ザラザラした粗面へと変化する。この粗面の発生により、高温度下におけるシリカ容器中の溶融シリコンの湯面において微細振動が発生しづらいし、発生した場合においても、波のように発生する湯面振動を該粗面により抑制できることになる。これは海岸にテトラポットの波消しブロックを配置することにより、海面の波を止めることができる現象に似ている。このように、混合シリカ層53は、湯面振動抑制層として作用する。
 また、高温度下での使用が長時間にわたることにより混合シリカ層53のエッチングが進んでも、本発明の第1の実施形態のシリカ容器71では、混合シリカ層53が一定の厚さを有するため、微小な凹凸(粗面)は消滅せずに存在し続け、長時間にわたってシリコン融液の湯面振動を抑制することができる。長時間にわたって湯面振動を防止する効果が続くため、単結晶シリコンのマルチ引き上げ(マルチプリング)に特に有効である。
 混合シリカ層53は、典型的には、図1に示したように、ルツボ形状のシリカ容器71の内側表層部分に帯状に位置する帯状内周層として形成されるが、必ずしもこれに限定されない。また、混合シリカ層53は、シリカ容器71の内表面のうち、シリカ容器71が原料シリコン融液を保持した際の初期の融液面(初期湯面)に相当する内表面上の位置を含んで形成されていることが好ましい。混合シリカ層53を形成する位置をこのように設定することにより、特に、単結晶シリコンを引き上げる方法の初期(シーディング、ネッキング、ショルダーリング等)における原料シリコン融液の湯面振動を効果的に抑制することができる。単結晶シリコンの引き上げにおいては、これらの引き上げ初期の工程における湯面振動を抑制することが特に重要である。初期工程において湯面振動が抑制できれば、後続の単結晶シリコン引き上げ工程において安定して引き上げることができる。本発明の第1の実施形態に係るシリカ容器71であれば、特に直径12インチ(30cm)~直径18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)~直径54インチ(135cm)の大口径シリカ容器においても、湯面振動の抑制を行うことができる。
 混合シリカ層53は、シリカ容器71の肉厚方向における厚さが2mm以上であり、幅が100mm以上であることが好ましい。ここでいう混合シリカ層53の「幅」とは、シリカ容器71の内表面に露出している混合シリカ層53の領域のうち、シリカ容器71の高さ方向の長さを意味する。原料シリコン融液を保持した状態での高温でのシリカ容器の使用中に混合シリカ層53は徐々にエッチングされて薄くなっていくが、混合シリカ層53の厚さを2mm以上とすることにより、長時間にわたって原料シリコン融液の湯面振動の抑制をより確実に行うことができる。また、混合シリカ層53の幅(高さ)を100mm以上とすることにより、単結晶シリコンの引き上げ初期の湯面高さに混合シリカ層53をより確実に対応させることができる。また、単結晶シリコン引き上げ中に原料シリコン融液の湯面高さが低下しても一定期間湯面振動を抑制する効果を持続することができる。
 混合シリカ層53は、直胴部の内側表層部分の少なくとも一部に形成されていればよく、その他の領域を含んでもよい。例えば、図3に示したように、混合シリカ層53をシリカ容器71の直胴部61の側壁を貫通するように形成してもよい。また、図4に示したように、混合シリカ層53をシリカ容器71の上端まで形成してもよい。この場合、直胴部61の側壁のうち一定高さ以上の部分を全て混合シリカ層53としてもよい。
 また、図5に示したように、混合シリカ層53をシリカ容器71の直胴部61及び湾曲部62の内側表層部分において有するものとしてもよい。この構造により、単結晶シリコン引き上げの初期段階(シーディング、ネッキング、ショルダーリング等)に加えて、それより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動をも効果的に抑制することができる。
 ただし、以下の理由により、シリカ容器71の底部63には混合シリカ層53を設定しないことが好ましい。シリカ容器71の底部63に混合シリカ層53の表面が存在すると、単結晶製造時において、底部63の内側表面にも凹凸が生成し、ザラザラした粗面へ変化する。この状態でシリカガラスとシリコン融液が反応した際に、酸化ケイ素(SiO)ガスが発生し、底部63の凹凸面上でガス泡が成長し、その後シリコン融液中へガス泡が上昇することにより、成長中の単結晶シリコンの中に取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が発生しやすくなってしまう。
 シリカ容器71の底部63の直径は製造する単結晶シリコンの直径に近似するため、少なくともシリカ容器71の底部63の内表面には、混合シリカ層53を設定せず、結晶質シリカ粉のみから成る原料粉を溶融した気泡を含まない透明シリカガラスからなる層(透明シリカガラス52)とすることが好ましい。
 混合シリカ層53は、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200~2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることが好ましい。混合シリカ層53をこのようなOH基濃度の違いを有する2種のシリカ粉の混合粉を原料として形成されたものとすることにより、混合シリカ層53の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器71の内表面の凹凸をより確実に形成させることができる。結晶質シリカ粉が溶融した相のOH基濃度は結晶質シリカ粉のOH基濃度に、非晶質シリカ粉が溶融した相のOH基濃度は非晶質シリカ粉のOH基濃度に、それぞれ対応するが、シリカ容器71は1800℃程度以上のような高温の工程を経て製造されるため、多少の変動があるものと推定される。なお、混合シリカ層53全体のOH基濃度を赤外線分光光度法により測定した場合には、両原料粉のOH基濃度の平均程度の値となる。
 混合シリカ層53は、原料シリコン融液を保持した際に、その界面からエッチングされるものである。そのため、混合シリカ層53を高純度のものとすることにより、混合シリカ層53から原料シリコン融液に取り込まれる不純物元素の量を低減することが好ましい。具体的には、混合シリカ層53における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることが好ましい。
 図2には、本発明の第1の実施形態に係るシリカ容器の別の一例の概略を示した。図1に示したシリカ容器と対応する要素については同一の符号を付し、重複する説明は省略する。図2に示したシリカ容器72は、その内表面のうち混合シリカ層53が形成されていない内表面の少なくとも一部に、高純度シリカガラス層59を有する。図2に示したように、底部63の内表面上に高純度シリカガラス層59が形成されていることが好ましい。ただし、これに限定されず、湾曲部62及び底部63にかけて形成されていてもよく、また、シリカ容器72の内表面のうち、混合シリカ層53以外の全ての部分に形成されていてもよい。また、混合シリカ層53がシリカ容器72の内表面に露出されている部分があれば、混合シリカ層53の一部が高純度シリカガラス層59で覆われていてもよい。
 高純度シリカガラス層59は、具体的には、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmであることが好ましい。シリカ容器72は、高純度シリカガラス層59を追加で有することにより、高温での使用時においてシリカ容器72の内壁から原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。この態様は、高純度が要求される用途において特に好ましい。
 また、図1~図5のシリカ容器71、72における混合シリカ層53(及び高純度シリカガラス層59)以外の部分(以下、「通常シリカ部分」とも称する)の純度は、用途にもよるが、シリカ(SiO)純度としてソーラー用単結晶引き上げ用では99.99mass%以上、LSI用単結晶引き上げ用では99.999mass%以上が好ましい。また、この通常シリカ部分を作製するための原料粉として例えばアルカリ金属元素Li、Na、Kの各々が10massppm程度含有されるシリカ原料粉を使った場合においても、例えば、通常シリカ部分のOH基濃度を10~50massppmに設定し、同時にAlを5~30massppmに設定することにより、これらアルカリ金属元素のような拡散係数の値の大きな元素をシリカ容器の肉厚中に吸着、閉じ込めておくことが可能となる。OH基含有の効果として、金属不純物元素を吸着、固定する良い効果があるが、高温度下における粘性度を低下させシリカ容器を変形させてしまうという負の効果もあるので、上記の範囲とすることが好ましい。Alについては、金属不純物元素を吸着、固定する効果とシリカガラスの高温度下における粘性度を向上させる良い効果があるが、被処理物のシリコン融液をAlで汚染するという負の効果もある。従ってAlを含有させる場合でも上記のように5~30massppm(より好ましくは10~20massppm)の範囲とすることが好ましい。
 以下では、上記のようなシリカ容器71、72を製造することができる、本発明の第1の実施形態の単結晶シリコン引き上げ用シリカ容器の製造方法を具体的に説明する。
 まず、図1に示したシリカ容器71の製造方法を、図6を参照して説明する。
 図6の(1-a)及び(1-b)に示したように、第1の原料粉11及び第2の原料粉12を作製、準備する(工程(1-a)、工程(1-b))。第1の原料粉11は後述の第1の仮成形体41の作製工程より前に準備すればよく、第2の原料粉12は後述の第2の仮成形体43の作製工程より前に準備すればよい。
(第1の原料粉11の作製)
 第1の原料粉11は、シリカ容器71、72のうち、混合シリカ層53(及び高純度シリカガラス層59)以外の部分(通常シリカ部分)を構成する材料となるものである。第1の原料粉11としては、粒径が10~1000μmである結晶質シリカ粉を作製、準備する(工程(1-a))。第1の原料粉11は例えば以下のようにして珪石塊を粉砕、整粒することにより作製することができるが、これに限定されない。
 まず、直径5~50mm程度の天然珪石塊(天然に産出する水晶、石英、珪石、珪質岩石、オパール石等)を大気雰囲気下、600~1000℃の温度域にて1~10時間程度加熱する。次いで該天然珪石塊を水中に投入し、急冷却後取出し、乾燥させる。この処理により、次のクラッシャー等による粉砕、整粒の処理を行いやすくできるが、この加熱急冷処理は行わずに粉砕処理へ進んでもよい。
 次いで、該天然珪石塊をクラッシャー等により粉砕、整粒し、粒径を10~1000μm、好ましくは50~500μmに調整して天然珪石粉を得る。
 次いで、この天然珪石粉を、傾斜角度を有するシリカガラス製チューブから成るロータリーキルンの中に投入し、キルン内部を塩化水素(HCl)又は、塩素(Cl)ガス含有雰囲気とし、800~1100℃にて1~100時間程度加熱することにより高純度化処理を行う。ただし高純度を必要としない製品用途では、この高純度化処理を行わずに次処理へ進んでもよい。
 以上のような工程後に得られる第1の原料粉11は結晶質のシリカである。
 第1の原料粉11の粒径は、上記のように10~1000μmとする。この粒径は50~500μmとすることが好ましい。第1の原料粉11のシリカ純度(SiO)は、99.99mass%以上とすることが好ましく、99.999mass%以上とすることがさらに好ましい。
 第1の原料粉11の純度が低い(悪い)場合、製造したシリカ容器71、72から内表面へ、さらには収容するシリコン融液への不純物金属元素の移動、拡散を防止するために、第1の原料粉11にAl、OH基を所定量含ませることができる。Alは、例えば硝酸塩、酢酸塩、炭酸塩、塩化物等を水又はアルコール溶液として、これら溶液の中にシリカ粉を投入、浸漬させ、次いで乾燥することにより得られる。OH基は天然珪石に当初から含んでいるもの、又は中間工程で混合する水分をその後の乾燥工程におけるガス雰囲気、処理温度、時間により調整することができる。通常シリカ部分を構成するための第1の原料粉11のAlの含有量は上記のように5~30massppmとすることが好ましい。第1の原料粉11のOH基濃度は10~50massppmとすることができるが、上記のようにその後の工程でもOH基濃度を調整できる。
 これらAl、OH基の含有が不純物金属元素のシリカガラス中の移動、拡散を防止するメカニズムの詳細は不明であるが、AlはSiと置換することにより不純物金属元素の陽イオン(カチオン)をシリカガラスネットワークの電荷バランスを保つという点から吸着、拡散防止するものと推定される。またOH基は水素イオンと金属イオンが置換することにより、これら不純物金属元素を吸着ないし拡散防止する効果が生ずるものと推定される。
(第2の原料粉の作製)
 第2の原料粉12は、混合シリカ層53を構成するための材料となるものである。第2の原料粉12として、粒径が50~2000μmである結晶質シリカ粉13と、粒径が50~2000μmである非晶質シリカ粉14との混合粉を作製する(工程(1-b))。結晶質シリカ粉13及び非晶質シリカ粉14をそれぞれ別個に作製し、これを混合することにより第2の原料粉12を作製、準備することができる。
(結晶質シリカ粉13の作製)
 結晶質シリカ粉13の作製は、基本的に上記の第1の原料粉11の作製と同様にできるが、粒径は50~2000μmとする。このように比較的粗い方が混合シリカ層53の結晶質シリカ粉が溶融した相とした際にシリコン融液によりエッチングされにくいため好ましい。粒径は300~1000μmとすることがさらに好ましい。また、結晶質シリカ粉13のOH基濃度は後述のように50massppm以下とすることが好ましい。結晶質シリカ粉が溶融した相自体はシリコン融液に対してエッチングされにくいものであるものの、結晶質シリカ粉13は、エッチングされることを目的とする混合シリカ層53を構成する原料となるため、結晶質シリカ粉13には、Al自体によるシリコン融液の汚染を考慮してAl元素を含有させない方が良い。ただし、場合によっては結晶質シリカ粉13にもAlを含有させてもよい。
(非晶質シリカ粉14の作製)
 非晶質シリカ粉14の材質としては、高純度化処理された天然石英粉、天然水晶粉、又はクリストバライト粉を酸水素火炎溶融してシリカガラス塊とした後、粉砕、整粒したものや、四塩化ケイ素(SiCl)等のケイ素化合物の酸水素火炎加水分解法による合成シリカガラス塊を粉砕、整粒したシリカガラス粉が挙げられる。第2の原料粉12の粒径は50~2000μmとし、好ましくは300~1000μmとする。純度はシリカ成分(SiO)99.999mass%以上、より具体的には不純物元素の濃度を、Li、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下とすることが好ましい。
(第2の原料粉12の混合調整)
 以上のようにして作製した結晶質シリカ粉13及び非晶質シリカ粉14を混合することにより第2の原料粉12を作製、準備することができる。混合シリカ層53がシリコン融液にエッチングされた際の粗面の構造を適切なものにするため、2種類のシリカ粉の混合比率は結晶質シリカ粉13を90~20mass%とすることが好ましく、80~50mass%とすることがより好ましい。残りの比率が非晶質シリカ粉14である。
 第2の原料粉12において、結晶質シリカ粉13のOH基濃度を50massppm以下とし、非晶質シリカ粉14のOH基濃度を200~2000ppmとすることが好ましい。結晶質シリカ粉13のOH基濃度は上記のように調整することができる。結晶質シリカ粉13の水蒸気放出量は2×1017(HO分子/g)以下とすることが好ましい。非晶質シリカ粉14のOH基濃度の調節は種々の公知の方法を用いることができる。例えば、上記高純度化処理された天然石英粉、天然水晶粉、又はクリストバライト粉を酸水素火炎溶融する場合には、酸水素火炎の酸素、水素の流量を調節することによって、非晶質シリカ粉14中のOH基濃度を調節することができる。また、四塩化ケイ素のケイ素化合物の酸水素火炎加水分解法による作製の場合には、原料である四塩化ケイ素の流量に比べて、酸素及び水素の流量を増やすことにより非晶質シリカ粉14中のOH基濃度を上昇させることができる。
(第1の仮成形体の形成)
 少なくとも第1の原料粉11を作製した後、図6の(1-c)に示すように、第1の原料粉11を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉11から成る第1の仮成形体41を形成する(工程(1-c))。図7及び図8に、第1の原料粉11を仮成形する型枠の概略を表す断面図を示した。本発明の第1の実施形態で用いる型枠101、101’は、例えば、グラファイト、アルミナ等の耐熱性セラミック又は冷却システムを有する耐熱性金属から成り、回転対称性を有しており、型枠回転用モーター(不図示)により回転させることができる。また、図7に示したように、型枠101の内壁102には、減圧用の孔103が分配されて形成されていてもよい。減圧用の孔103は、減圧用の通路104に連なっている。また、型枠101を回転させるための回転軸106にも減圧用の通路105が通っており、ここから真空引きを行うことができるようになっている。本発明の第1の実施形態では、図8に示したような、減圧用の装備がない型枠101’を用いることもできる。この型枠101’の内壁102’には減圧用の孔が形成されておらず、回転軸106’にも減圧用の通路はない。以下では、図7に示した型枠101を用いた場合を例として説明するが、減圧を行わないこと以外は図8に示した型枠101’も同様に用いることができる。
 工程(1-c)では、図7に示した型枠101の内壁102に、第1の原料粉11を導入し、第1の原料粉11を型枠101の内壁102に応じた所定の形状に仮成形して第1の仮成形体41とする(図9参照)。具体的には、型枠101を回転させつつ、徐々に第1の原料粉11を型枠101の内壁102に投入し、遠心力を利用して所定の厚さを有する容器形状に成形する。また内側から板状の内型枠(図示せず)を、回転する粉体に接触させることにより、第1の仮成形体41の肉厚を所定量に調整してもよい。この際、次の工程において第2の原料粉12を導入するための部位を残して調整する。図9には、第1の仮成形体41に凹部42を形成する場合を図示した。また、この第1の原料粉11の型枠101への供給方法は特に限定されないが、例えば、攪拌用スクリューと計量フィーダを備えるホッパーを用いることができる。この場合、ホッパーに充填された第1の原料粉11を、攪拌用スクリューで攪拌し、計量フィーダで供給量を調節しながら供給する。
 次に、図6の(1-d)に示すように、第2の原料粉12を、型枠101内に形成した第1の仮成形体41の凹部42に投入する(工程(1-d))。これにより、第1の原料粉11から成る部分及び第2の原料粉12から成る部分を有する第2の仮成形体43を形成する。第2の仮成形体43の形状は製造するシリカ容器71、72の形状に応じた形状として、かつ、該製造するシリカ容器71、72の直胴部の内側表層部分の少なくとも一部に相当する部分が第2の原料粉12から成るものとして形成する。第2の原料粉12は、少なくとも第1の原料粉11の一部により第1の仮成形体41が形成された後に投入されるが、必要に応じて第2の原料粉12の投入後にも第1の原料粉11の一部を投入して第2の仮成形体43の全体を形成することもできる。
 図10に図示した例は、図1に示したシリカ容器71又は図2に示したシリカ容器72の形状に応じたものである。この場合、第2の原料粉12は第1の仮成形体41の内側(凹部42)に投入される。図3~図5に示したシリカ容器71を製造する場合は、それぞれ、各シリカ容器71に応じた形状になるように第2の仮成形体43の形状を調節する。図3に示したシリカ容器71を製造する場合は、第1の原料粉11を型枠内に導入した後、その側壁上部に第2の原料粉12を導入し、さらにその側壁上部に第1の原料粉11を導入すればよい。図4に示したシリカ容器71を製造する場合は、凹部を図4の混合シリカ層53の形状に相当するように第1の仮成形体41の内側かつ上部に形成し、該凹部に第2の原料粉12を導入する。
 第2の仮成形体43における第2の原料粉12の占める領域(すなわち、混合シリカ層53となる領域)は、製造されるシリカ容器71の内表面のうち、シリカ容器71が原料シリコン融液を保持した際の初期の融液面に相当する内表面上の位置を含むことが好ましい。これにより、シリカ容器71により単結晶シリコンを引き上げる方法の初期におけるシリコン融液の湯面振動を効果的に抑制することができる。なお、上記のように、製造したシリカ容器71において原料シリコン融液の湯面振動の抑制をより確実に行い、その効果を持続させるため、混合シリカ層53を、シリカ容器71の肉厚方向における厚さが2mm以上であり、幅が100mm以上であるものとして形成することが好ましい。これは、第2の仮成形体43において第2の原料粉12の占める領域を調整することにより達成することができる。
 また、第2の仮成形体43の形成を、製造するシリカ容器71の直胴部61及び湾曲部62の内側表層部分に相当する位置において、第2の原料粉12から成る部分を有するものとして形成することが好ましい。このように第2の仮成形体43の形成を行うことにより、シリカ容器71の直胴部61及び湾曲部62の内側表層部分に混合シリカ層53を形成することができる。これにより、単結晶シリコン引き上げの初期段階に加えて、それより後の段階におけるシリコン融液の湯面振動をも効果的に抑制することができる。
 次に、図6の(1-e)に示したように、型枠101を回転させつつ、第2の仮成形体43の内側から放電加熱溶融法によって加熱することにより、第2の仮成形体43のうち第2の原料粉12から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層53とするとともに、容器外側が気泡を含有する不透明シリカガラス51から成り、容器内側が透明シリカガラス52から成るものとする(工程(1-e))。この第2の仮成形体43の放電加熱溶融法による加熱は、該第2の仮成形体43の外側から減圧しながら行うことが好ましい。減圧しながら行う加熱により、容器外側の不透明シリカガラス及び容器内側の透明シリカガラスを効率よく作製することができる。
 この工程の様子を、図11及び図12に具体的に示した。このシリカ容器71を作製する装置は、上記の回転軸対称性を有する回転可能な型枠101の他、回転モーター(図示せず)、及び放電加熱溶融(アーク溶融、アーク放電溶融とも呼ばれる)の熱源となる炭素電極(カーボン電極)212、電線212a、高圧電源ユニット211、蓋213等から成る。カーボン電極212は2本又は3本が一般的である。電源は、交流又は直流の2種類が使用できる。さらに、第2の仮成形体43の内側から供給する雰囲気ガスを調整するための構成要素、例えば、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備する。
 第2の仮成形体43の溶融、焼結手順としては、炭素電極212間に加電を開始する前に、まず、水素含有ガスを、第2の仮成形体43の内側から供給し始めることが好ましい。具体的には、図11に示したように、水素ガス供給用ボンベ411から水素ガスを、不活性ガス供給用ボンベ412から不活性ガス(例えば、窒素(N)やアルゴン(Ar)、ヘリウム(He))を供給して混合し、混合ガス供給管420を通じて、第2の仮成形体43の内側から供給する。なお、符号510で示した白抜き矢印は混合ガスの流れを示す。
 次に、上記のように混合ガスの供給を続けた状態で、第2の仮成形体43が入っている型枠101を一定速度で回転させつつ、脱ガス用真空ポンプ(図示せず)を起動させ、減圧用の孔103、減圧用の通路104、105を通じて第2の仮成形体43の外側から減圧するとともに炭素電極212間に加電を開始する。
 炭素電極212間にアーク放電(図12の符号220で図示)が開始されると、第2の仮成形体43の内表面部はシリカ粉の溶融温度域(1800~2000℃程度と推定)となり、最表層部から溶融が始まる。最表層部が溶融すると脱ガス真空ポンプによる真空引きの減圧度が増加し(急に圧力が低下し)、第1の原料粉11及び第2の原料粉12に含まれている水や酸素等の溶存ガスを脱ガスしつつ溶融シリカガラス層への変化が内側から外側へ進行することになる。
 第2の仮成形体43の全厚さの内側3分の1ないし半分程度が溶融し透明シリカガラスとなり、残り外側3分の2ないし半分程度が焼結した不透明シリカとなるまでに加電による加熱を継続する。
 この放電加熱溶融時の容器肉厚層内部の雰囲気ガスは電極の消耗を少なくする目的からは窒素(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分としても良いが、溶融後のシリカガラス中の溶存ガスを少なくするために、上記のように、この工程では雰囲気ガスを水素含有ガスとすることが好ましい。この水素含有ガスは、例えば、水素ガスと、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスからなる混合ガスとすることができる。水素ガス(H)の含有比率は1vol.%以上とすることが好ましく、1~10vol.%とすることがより好ましい。この理由は、例えば脱ガスしにくい酸素ガス(O)が水素と反応し水(HO)を生成し、水分子は酸素分子に比較して拡散係数が大きいため、外層の外部へ放出されやすくなるものと考えられる。また水素ガス(H)は分子半径が小さく拡散係数が大きいため、雰囲気ガスに含まれていても外層外部へ放出されやすい。
 ここまでの工程で、混合シリカ層53を有し、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成る本発明の第1の実施形態のシリカ容器71が製造される(図12参照)。
 このようにしてシリカ容器71を製造した後、図2に示すシリカ容器72を製造するため、追加の工程として、該シリカ容器71の内表面のうち混合シリカ層53が形成されていない内表面の少なくとも一部に、高純度シリカガラス層59を形成することができる(図6の工程(1-f))。高純度シリカガラス層59は、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmであるものとして形成することが好ましい。
 以下では、図2に示すシリカ容器72のように容器底部に高純度シリカガラス層59を形成する場合を例として説明する。この工程は、図6の(1-f)及び図13に示したように、工程(1-a)~(1-e)で作製したシリカ容器71の内側の空間に高純度シリカガラス層形成用原料粉21を散布しながら放電加熱溶融法により溶融し、該溶融した高純度シリカガラス層形成用原料粉21をシリカ容器71の底部の内表面部分に付着させることにより、シリカ容器71の底部の内表面部分に高純度シリカガラス層59を形成する。これにより、図2に示したシリカ容器72を製造することができる。この工程による高純度シリカガラス層59の基本的な形成方法は、例えば特許文献1及び特許文献2に示される内容に類似しているが、本発明の第1の実施形態においては、シリカ容器71の内表面のうち混合シリカ層53が形成されていない内表面の少なくとも一部(図2及び図13の場合は容器底部表面)に形成する。
 図13に示した、シリカ容器71の底部の内表面部分に高純度シリカガラス層59を形成する装置は、工程(1-e)とほぼ同様であり、回転軸対称性を有するシリカ容器が設置されている回転可能な型枠101、回転モーター(図示せず)、及び高純度シリカガラス層形成用原料粉21が入った原料粉ホッパー303、攪拌用スクリュー304、計量フィーダ305、及び放電加熱溶融の熱源となる炭素電極212、電線212a、高圧電源ユニット211、蓋213等から成る。また、雰囲気ガスを調整する場合には、工程(1-e)と同様に、さらに、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備していてもよい。これらの装置は工程(1-e)から続けて使用することができる。
 高純度シリカガラス層59を形成する方法としては、まず、型枠101を所定の回転速度に設定し、高圧電源ユニット211から徐々に高電圧を負荷するのと同時に原料ホッパー303から徐々に高純度シリカガラス層形成用原料粉21をシリカ容器71の上部から散布する。この時炭素電極212間に放電は開始されており、シリカ容器71内部はシリカ粉の溶融温度域(1800~2000℃程度と推定)にあるため、散布された高純度シリカガラス層形成用原料粉21はシリカの溶融粒子となってシリカ容器71の内表面に付着していく。シリカ容器71の上部開口部に設置されている炭素電極212、原料粉投入口、蓋213はシリカ容器71に対してある程度位置が変化させられる機構となっており、これらの位置を変化させることにより、シリカ容器71の底部の所定の場所に所定の厚さで高純度シリカガラス層59を形成することができる。
 アーク放電溶融中のシリカ容器71内部の雰囲気ガスは炭素電極の消耗を少なくするために、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分とするが、水素ガス(H)1~10vol.%の混合雰囲気とすることにより、含有する気泡が少ない高純度シリカガラス層59が得られる。
 アーク放電溶融時に発生するカーボン微粒子、及びカーボンと酸素との化合物である一酸化炭素(CO)、二酸化炭素(CO)は高純度シリカガラス層59中に残留した場合、単結晶シリコン引き上げ時に不純物として再発生し、該シリコンの品質を低下させる原因のひとつとなりうる。これを抑制するためには、シリカ容器71外部からクリーンな雰囲気ガスを一定流量で供給しつつ、容器内部のガスを一定流量で排出させて溶融中のシリカ容器内部を適切に換気することが好ましい。
(第2の実施形態)
 本発明の第2の実施形態を説明する。第1の実施形態と同様の事項については説明を省略する。
 本発明の第2の実施形態に係る単結晶シリコン引き上げ用シリカ容器の構造の例を、図14及び図15に示した。図14に示したように、本発明の第2の実施形態に係るシリカ容器74は、回転軸対称性を有するルツボ形状であり、直胴部61、湾曲部62、及び底部63を有する。このとき、便宜上シリカ容器74の外径(D)の1/3を底部63の直径(D)とする。底部63は円形状の部分である。直胴部61は、シリカ容器74の上縁から高さ(H)の1/3の高さ部分までの間(高さH-H)の円筒状の部分である。またシリカ容器74の高さ(H)の1/3の高さ部分から底部63までの間(高さH)のうち、底部63以外を湾曲部62とする。
 シリカ容器74は、直胴部61、湾曲部62、及び底部63の内側表層部分において、混合シリカ層53を有し、底部63の混合シリカ層53の内表面上に底部シリカガラス層55を有する。混合シリカ層53は、第1の実施形態の場合と同様に、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在して成るものである。
 また、シリカ容器74は、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成る。シリカ容器74においてこのような2層構造とすることにより、高温度下のシリカ容器使用時において、シリカ容器74の内部の均熱性を確保することができる。
 シリカ容器74に単結晶シリコン引き上げのための原料としてシリコン融液を保持した際に、シリカ容器74の内表面を構成するシリカ成分とシリコン融液との間の反応(溶融反応)により、シリカ容器74の内表面はシリコン融液によるエッチング(侵蝕)を受ける。このとき、底部シリカガラス層55に覆われていない、混合シリカ層53が露出する部分では、結晶質シリカ粉が溶融した相の方が、非晶質シリカ粉が溶融した相よりもエッチング量(侵蝕量)が少ない(すなわち、エッチング速度が遅い)ことから、結晶質シリカ粉が溶融した相の粒状構造の部分が凸部となり、非晶質シリカ粉が溶融した相が凹部となる。このエッチング効果の違いにより、混合シリカ層53の表面(原料シリコン融液との界面)に微小な凹凸が形成され、ザラザラした粗面へと変化する。この粗面の発生により、高温度下におけるシリカ容器中の溶融シリコンの湯面において微細振動が発生しづらいし、発生した場合においても、波のように発生する湯面振動を該粗面により抑制できることになる。これは海岸にテトラポットの波消しブロックを配置することにより、海面の波を止めることができる現象に似ている。このように、混合シリカ層53は、湯面振動抑制層として作用する。
 また、高温度下での使用が長時間にわたることにより混合シリカ層53のエッチングが進んでも、本発明の第2の実施形態のシリカ容器74では、混合シリカ層53が一定の厚さを有するため、微小な凹凸(粗面)は消滅せずに存在し続け、長時間にわたってシリコン融液の湯面振動を抑制することができる。長時間にわたって湯面振動を防止する効果が続くため、単結晶シリコンのマルチ引き上げ(マルチプリング)に特に有効である。
 混合シリカ層53は、シリカ容器74の直胴部、湾曲部、及び底部の内側表層部分に位置するように形成される。混合シリカ層53は、図14に示したように、シリコン融液と接しない直胴部のうち上端から一定の範囲には形成しなくてもよいが、シリカ容器74が原料シリコン融液を保持した際の初期の融液面(初期湯面)に相当する内表面上の位置を含む。また、図15に示したように、シリカ容器74の直胴部、湾曲部、及び底部の内側表層部分の全てを混合シリカ層53としてもよい。なお、図15においては便宜上透明シリカガラス(図14の「透明シリカガラス52」)を図示していないが、実際には、混合シリカ層53のうち容器内側の領域に位置する部分には透明シリカガラスから成る部分が存在する。
 シリカ容器74は、直胴部61及び湾曲部62において、内表面に混合シリカ層53が露出しているため、単結晶シリコンを引き上げる方法の初期段階(シーディング、ネッキング、ショルダーリング等)及びそれより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動を効果的に抑制することができる。単結晶シリコン引き上げの全工程における湯面振動を抑制することができるため、単結晶シリコンの3本以上のマルチ引き上げ(マルチプリング)に特に適している。
 シリカ容器74の底部63の内表面に底部シリカガラス層55を形成するのは、シリカ容器74の底部63の直径は製造する単結晶シリコンの直径に近似するためである。シリカ容器74の底部63に混合シリカ層53の表面が存在すると、単結晶製造時において、底部63の内側表面にも凹凸が生成し、ザラザラした粗面へ変化する。この状態でシリカガラスとシリコン融液が反応した際に、酸化ケイ素(SiO)ガスが発生し、底部63の凹凸面上でガス泡が成長し、その後シリコン融液中へガス泡が上昇することにより、成長中の単結晶シリコンの中に取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が発生しやすくなってしまう。本発明の第2の実施形態のシリカ容器74の底部63は底部シリカガラス層55に覆われるため、底部63の内表面には混合シリカ層55に起因する凹凸は生じず、これによるガス泡の成長もない。そのため、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
 本発明の第2の実施形態に係るシリカ容器74であれば、特に直径12インチ(30cm)~直径18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)~直径54インチ(135cm)の大口径シリカ容器においても、単結晶シリコン引き上げの全工程にわたって、湯面振動の抑制を行うことができる。
 混合シリカ層53は、シリカ容器74の肉厚方向における厚さが2mm以上であることが好ましい。原料シリコン融液を保持した状態での高温でのシリカ容器の使用中に混合シリカ層53は徐々にエッチングされて薄くなっていくが、混合シリカ層53の厚さを2mm以上とすることにより、長時間にわたって原料シリコン融液の湯面振動の抑制をより確実に行うことができる。
 混合シリカ層53は、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200~2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることが好ましい。混合シリカ層53をこのようなOH基濃度の違いを有する2種のシリカ粉の混合粉を原料として形成されたものとすることにより、混合シリカ層53の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器74の内表面の凹凸をより確実に形成させることができる。結晶質シリカ粉が溶融した相のOH基濃度は結晶質シリカ粉のOH基濃度に、非晶質シリカ粉が溶融した相のOH基濃度は非晶質シリカ粉のOH基濃度に、それぞれ対応するが、シリカ容器74は1800℃程度以上のような高温の工程を経て製造されるため、多少の変動があるものと推定される。なお、混合シリカ層53全体のOH基濃度を測定した場合には、両原料粉のOH基濃度の平均程度の値となる。
 混合シリカ層53は、原料シリコン融液を保持した際に、その界面からエッチングされるものである。そのため、混合シリカ層53を高純度のものとすることにより、混合シリカ層53から原料シリコン融液に取り込まれる不純物元素の量を低減することが好ましい。具体的には、混合シリカ層53における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることが好ましい。
 底部シリカガラス層55も高純度であることが好ましく、具体的には、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmであることが好ましい。
 また、図14及び図15のシリカ容器74における混合シリカ層53及び底部シリカガラス層55以外の部分(以下、「通常シリカ部分」とも称する)の純度は、用途にもよるが、シリカ(SiO)純度としてソーラー用単結晶引き上げ用では99.99mass%以上、LSI用単結晶引き上げ用では99.999mass%以上が好ましい。通常シリカ部分のOH基濃度及びAl濃度については、第1の実施形態と同様にすることができる。
 以下では、上記のようなシリカ容器74を製造することができる、本発明の第2の実施形態の単結晶シリコン引き上げ用シリカ容器の製造方法を具体的に説明する。
 図14及び図15に示したシリカ容器74の製造方法を、図16を参照して説明する。
 図16の(2-a)、(2-b)及び(2-c)に示したように、第1の原料粉11、第2の原料粉12及び第3の原料粉22を作製、準備する(工程(2-a)、工程(2-b)及び工程(2-c))。第1の原料粉11は後述の第1の仮成形体41の形成工程より前に準備すればよく、第2の原料粉12は後述の第2の仮成形体43の形成工程より前に準備すればよい。第3の原料粉22は後述の底部シリカガラス層55の形成工程より前に準備すればよい。
(第1の原料粉11の作製)
 第1の原料粉11は、シリカ容器74のうち、混合シリカ層53及び底部シリカガラス層55以外の部分(通常シリカ部分)を構成する材料となるものである。第1の原料粉11としては、粒径が10~1000μmである結晶質シリカ粉を作製、準備する(工程(2-a))。第1の原料粉11は、例えば、前述のようにして珪石塊を粉砕、整粒することにより作製することができるが、これに限定されない。その他、高純度合成クリストバライト粉等の種々の結晶質シリカ粉を用いることもできる。
 第1の原料粉11の粒径は、上記のように10~1000μmとする。この粒径は50~500μmとすることが好ましい。第1の原料粉11のシリカ純度(SiO)は、99.99mass%以上とすることが好ましく、99.999mass%以上とすることがさらに好ましい。
 第1の原料粉11の純度が低い(悪い)場合、製造したシリカ容器74から内表面へ、さらには収容するシリコン融液への不純物金属元素の移動、拡散を防止するために、第1の実施形態の場合と同様に、第1の原料粉11にAl、OH基を所定量含ませることができる。
(第2の原料粉の作製)
 第2の原料粉12は、混合シリカ層53を構成するための材料となるものである。第2の原料粉12として、第1の実施形態の場合と同様に、粒径が50~2000μmである結晶質シリカ粉13と、粒径が50~2000μmである非晶質シリカ粉14との混合粉を作製する(工程(2-b))。結晶質シリカ粉13の作製、非晶質シリカ粉14の作製、第2の原料粉12の混合調整も、第1の態様と同様に行うことができる。
(第3の原料粉の作製)
 第3の原料粉22は底部シリカガラス層55の原料となるものである。第3の原料粉22として、粒径が10~1000μmである結晶質シリカ粉を作製する(工程(2-c))。第3の原料粉22は、第1の原料粉11と同様の方法により作製、準備することができる。第3の原料粉22は、高純度であることが好ましい。純度はシリカ成分(SiO)99.999mass%以上、より具体的には不純物元素の濃度を、Li、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下とすることが好ましい。
(第1の仮成形体の形成)
 少なくとも第1の原料粉11を作製した後、図16の(2-d)に示すように、第1の原料粉11を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉11から成る第1の仮成形体41を形成する(工程(2-d))。図7及び図8に、第1の原料粉11を仮成形する型枠の概略を表す断面図を示した。本発明の第2の実施形態で用いる型枠101、101’は、例えば、グラファイト、アルミナ等の耐熱性セラミック又は冷却システムを有する耐熱性金属から成り、回転対称性を有しており、型枠回転用モーター(不図示)により回転させることができる。また、図7に示したように、型枠101の内壁102には、減圧用の孔103が分配されて形成されていてもよい。減圧用の孔103は、減圧用の通路104に連なっている。また、型枠101を回転させるための回転軸106にも減圧用の通路105が通っており、ここから真空引きを行うことができるようになっている。本発明の第2の実施形態では、図8に示したような、減圧用の装備がない型枠101’を用いることもできる。この型枠101’の内壁102’には減圧用の孔が形成されておらず、回転軸106’にも減圧用の通路はない。以下では、図7に示した型枠101を用いた場合を例として説明するが、減圧を行わないこと以外は図8に示した型枠101’も同様に用いることができる。
 工程(2-c)では、図7に示した型枠101の内壁102に、第1の原料粉11を導入し、第1の原料粉11を型枠101の内壁102に応じた所定の形状に仮成形して第1の仮成形体41とする(図17参照)。具体的には、型枠101を回転させつつ、徐々に第1の原料粉11を型枠101の内壁102に投入し、遠心力を利用して所定の厚さを有する容器形状に成形する。また内側から板状の内型枠(図示せず)を、回転する粉体に接触させることにより、第1の仮成形体41の肉厚を所定量に調整してもよい。この際、次の工程において第2の原料粉12を導入するための部位を残して調整する。図17には、第1の仮成形体41に凹部42を形成する場合を図示した。また、この第1の原料粉11の型枠101への供給方法は特に限定されないが、例えば、攪拌用スクリューと計量フィーダを備えるホッパーを用いることができる。この場合、ホッパーに充填された第1の原料粉11を、攪拌用スクリューで攪拌し、計量フィーダで供給量を調節しながら供給する。
 次に、図16の(2-e)に示すように、第2の原料粉12を、型枠101内に形成した第1の仮成形体41の凹部42に投入する(工程(2-e))。これにより、第1の原料粉11から成る部分及び第2の原料粉12から成る部分を有する第2の仮成形体43を形成する。第2の仮成形体43の形状は製造するシリカ容器74の形状に応じた形状として、かつ、該製造するシリカ容器74の直胴部、湾曲部、及び底部の内側表層部分に相当する部分が第2の原料粉12から成るものとして形成する。第2の原料粉12は、少なくとも第1の原料粉11の一部により第1の仮成形体41が形成された後に投入されるが、必要に応じて第2の原料粉12の投入後にも第1の原料粉11の一部を投入して第2の仮成形体43の全体を形成することもできる。
 図18に図示した例は、図14に示したシリカ容器74の形状に応じたものである。この場合、第2の原料粉12は第1の仮成形体41の内側(凹部42)に投入される。図15に示したシリカ容器74を製造する場合は、図15のシリカ容器74に応じた形状になるように第2の仮成形体43の形状を調節する。
 次に、図16の(2-f)に示したように、型枠101を回転させつつ、第2の仮成形体43の内側から放電加熱溶融法によって加熱することにより、第2の仮成形体43のうち第2の原料粉12から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層53とするとともに、容器外側が気泡を含有する不透明シリカガラス51から成り、容器内側が透明シリカガラス52から成るシリカ容器73とする(工程(2-f))。この第2の仮成形体43の放電加熱溶融法による加熱は、該第2の仮成形体43の外側から減圧しながら行うことが好ましい。減圧しながら行う加熱により、容器外側の不透明シリカガラス及び容器内側の透明シリカガラスを効率よく作製することができる。
 この工程の様子を、図19及び図20に具体的に示した。このシリカ容器73を作製する装置は、上記の回転軸対称性を有する回転可能な型枠101の他、回転モーター(図示せず)、及び放電加熱溶融(アーク溶融、アーク放電溶融とも呼ばれる)の熱源となる炭素電極(カーボン電極)212、電線212a、高圧電源ユニット211、蓋213等から成る。カーボン電極212は2本又は3本が一般的である。電源は、交流又は直流の2種類が使用できる。さらに、第2の仮成形体43の内側から供給する雰囲気ガスを調整するための構成要素、例えば、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備する。
 第2の仮成形体43の溶融、焼結手順としては、炭素電極212間に加電を開始する前に、まず、水素含有ガスを、第2の仮成形体43の内側から供給し始めることが好ましい。具体的には、図19に示したように、水素ガス供給用ボンベ411から水素ガスを、不活性ガス供給用ボンベ412から不活性ガス(例えば、窒素(N)やアルゴン(Ar)、ヘリウム(He))を供給して混合し、混合ガス供給管420を通じて、第2の仮成形体43の内側から供給する。なお、符号510で示した白抜き矢印は混合ガスの流れを示す。
 次に、上記のように混合ガスの供給を続けた状態で、第2の仮成形体43が入っている型枠101を一定速度で回転させつつ、脱ガス用真空ポンプ(図示せず)を起動させ、減圧用の孔103、減圧用の通路104、105を通じて第2の仮成形体43の外側から減圧するとともに炭素電極212間に加電を開始する。
 炭素電極212間にアーク放電(図20の符号220で図示)が開始されると、第2の仮成形体43の内表面部はシリカ粉の溶融温度域(1800~2000℃程度と推定)となり、最表層部から溶融が始まる。最表層部が溶融すると脱ガス真空ポンプによる真空引きの減圧度が増加し(急に圧力が低下し)、第1の原料粉11及び第2の原料粉12に含まれている水や酸素等の溶存ガスを脱ガスしつつ溶融シリカガラス層への変化が内側から外側へ進行することになる。
 第2の仮成形体43の全厚さの内側3分の1から半分程度が溶融し透明シリカガラスとなり、残り外側3分の2から半分程度が焼結した不透明シリカとなるまでに加電による加熱を継続する。
 この放電加熱溶融時の容器肉厚層内部の雰囲気ガスは電極の消耗を少なくする目的からは窒素(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分としても良いが、溶融後のシリカガラス中の溶存ガスを少なくするために、上記のように、この工程では雰囲気ガスを水素含有ガスとすることが好ましい。この水素含有ガスは、例えば、水素ガスと、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスからなる混合ガスとすることができる。水素ガス(H)の含有比率は1vol.%以上とすることが好ましく、1~10vol.%とすることがより好ましい。この理由は、例えば脱ガスしにくい酸素ガス(O)が水素と反応し水(HO)を生成し、水分子は酸素分子に比較して拡散係数が大きいため、外層の外部へ放出されやすくなるものと考えられる。また水素ガス(H)は分子半径が小さく拡散係数が大きいため、雰囲気ガスに含まれていても外層外部へ放出されやすい。
 ここまでの工程で、混合シリカ層53を有し、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るシリカ容器73が製造される(図20参照)。
 次に、図16の(2-g)に示したように、シリカ容器73の底部に底部シリカガラス層55を形成して、本発明の第2の実施形態のシリカ容器74を製造する(工程(2-g))。この工程は、シリカ容器73の上部から第3の原料粉(底部シリカガラス層形成用原料粉)22を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉22をシリカ容器73の底部の内表面部分に付着させることにより、底部シリカガラス層55を形成する。底部シリカガラス層55は、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmであるものとして形成することが好ましい。
 これにより、図14に示したシリカ容器74を製造することができる。この工程による底部シリカガラス層55の基本的な形成方法は、例えば特許文献1及び特許文献2に示される内容に類似しているが、本発明の第2の実施形態においては、シリカ容器73の内表面のうち底部のみに形成する。
 図21に示した、シリカ容器73の底部の内表面部分に底部シリカガラス層55を形成する装置は、工程(2-f)とほぼ同様であり、回転軸対称性を有するシリカ容器が設置されている回転可能な型枠101、回転モーター(図示せず)、及び第3の原料粉22が入った原料粉ホッパー303、攪拌用スクリュー304、計量フィーダ305、及び放電加熱溶融の熱源となる炭素電極212、電線212a、高圧電源ユニット211、蓋213等から成る。また、雰囲気ガスを調整する場合には、工程(2-f)と同様に、さらに、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備していてもよい。これらの装置は工程(2-f)から続けて使用することができる。
 底部シリカガラス層55を形成する方法としては、まず、型枠101を所定の回転速度に設定し、高圧電源ユニット211から徐々に高電圧を負荷するのと同時に原料ホッパー303から徐々に第3の原料粉22をシリカ容器73の上部から散布する。この時炭素電極212間に放電は開始されており、シリカ容器73内部はシリカ粉の溶融温度域(1800~2000℃程度と推定)にあるため、散布された第3の原料粉22はシリカの溶融粒子となってシリカ容器73の内表面に付着していく。シリカ容器73の上部開口部に設置されている炭素電極212、原料粉投入口、蓋213はシリカ容器73に対してある程度位置が変化させられる機構となっており、これらの位置を変化させることにより、シリカ容器73の底部の所定の場所に所定の厚さで底部シリカガラス層55を形成することができる。
 アーク放電溶融中のシリカ容器73内部の雰囲気ガスは炭素電極の消耗を少なくするために、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分とするが、水素ガス(H)、1~10vol.%の混合雰囲気とすることにより、含有する気泡が少ない底部シリカガラス層55が得られる。
 アーク放電溶融時に発生するカーボン微粒子、及びカーボンと酸素との化合物である一酸化炭素(CO)、二酸化炭素(CO)は底部シリカガラス層55中に残留した場合、単結晶シリコン引き上げ時に不純物として再発生し、該シリコンの品質を低下させる原因のひとつとなりうる。これを抑制するためには、シリカ容器73外部からクリーンな雰囲気ガスを一定流量で供給しつつ、容器内部のガスを一定流量で排出させて溶融中のシリカ容器内部を適切に換気することが好ましい。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらにより限定されるものではない。
(実施例1)
 図6に示した工程(1-a)~(1-e)に従い、図1に示す単結晶シリコン引き上げ用シリカ容器71を製造した。第1の原料粉11として、粒径50~500μm、純度99.999mass%の天然石英粉(A)を準備した。この天然石英粉(A)の不純物濃度、OH基濃度、HO分子放出量は表9に示したものである。第2の原料粉12として、天然石英粉(B)である結晶質シリカ粉13及び合成シリカガラス粉(A)である非晶質シリカ粉14の混合粉を準備した。非晶質シリカ粉14は、四塩化ケイ素SiClの酸水素火炎加水分解法により作製した合成シリカガラス粉である。この天然石英粉(B)及び合成シリカガラス粉(A)の不純物元素濃度、OH基濃度、HO分子放出量は表10に示したものである。結晶質シリカ粉13と非晶質シリカ粉14の混合比率は50:50(質量%比)とした。
 図7、図9及び図10に示したグラファイト型枠101を回転させつつ第1の原料粉11及び第2の原料粉12を投入し、第2の仮成形体43とした。次いで図11及び図12に示した装置を用いて、第2の仮成形体43の内部雰囲気を乾燥したN95vol%、H5vol%の混合ガスとし、外周部から吸気減圧しつつ、第2の仮成形体43内部で放電加熱溶融を行い、シリカ容器71を作製した。
(実施例2)
 第2の原料粉12を構成する非晶質シリカ粉14を表10に示した合成シリカガラス粉(B)とした他は実施例1と同様の方法により図1に示したシリカ容器71を製造した。
(実施例3)
 第2の原料粉12を構成する非晶質シリカ粉14を表10に示した合成シリカガラス粉(C)とした他は実施例1と同様の方法により図1に示したシリカ容器71を製造した。
(実施例4)
 実施例3と基本的に同様として図1に示したシリカ容器71を製造したが、結晶質シリカ粉13と非晶質シリカ粉14の混合比率を30:70(質量%比)とした。
(実施例5)
 実施例3と同様の方法により製造したシリカ容器71の底部に高純度シリカガラス層59(図6の工程(1-f))を形成して、図2に示すシリカ容器72を製造した。この際の高純度シリカガラス層59のための原料粉は表11に示す不純物濃度及びOH基濃度である合成クリストバライト粉(A)とした。
(実施例6)
 まず、放電加熱溶融時の溶融雰囲気ガスをN50vol%、H10vol%、He40vol%の混合ガスとした他は実施例2と同様の方法によりシリカ容器71を製造した。このシリカ容器71の底部に高純度シリカガラス層59(図6の工程(1-f))を、溶融雰囲気ガスをN50vol%、H10vol%、He40vol%として形成して、図2に示すシリカ容器72を製造した。この際の高純度シリカガラス層59のための原料粉(高純度シリカガラス層形成用原料粉21)は表11に示す不純物濃度及びOH基濃度である合成クリストバライト粉(A)とした。
(実施例7)
 基本的に実施例3と同様にシリカ容器71を製造したが、混合シリカ層53の厚さを2mmとした。
(実施例8)
 図3に示した態様のシリカ容器71を製造した。その他の条件は実施例3と同様とした。
(実施例9)
 第2の原料粉12を構成する非晶質シリカ粉14を表10に示した合成シリカガラス粉(D)とした他は実施例1と同様の方法により図1に示したシリカ容器71を製造した。
(実施例10)
 第2の原料粉12を構成する非晶質シリカ粉14を表10に示した合成シリカガラス粉(D)とした他は実施例6と同様の方法により図2に示したシリカ容器72を製造した。
(実施例11)
 図6に示した工程(1-a)~(1-e)に従い、図5に示す単結晶シリコン引き上げ用シリカ容器71、すなわち、混合シリカ層53を直胴部61及び湾曲部62の内側表層部分において有するものを製造した。第1の原料粉11として、粒径50~500μm、純度99.999mass%の天然石英粉(A)を準備した。この天然石英粉(A)の不純物濃度は表9に示したものである。第2の原料粉12として、天然石英粉(C)である結晶質シリカ粉13及び合成シリカガラス粉(E)である非晶質シリカ粉14の混合粉を準備した。結晶質シリカ粉13の天然石英粉(C)は天然石英粉(B)を高純度化処理したものであり、非晶質シリカ粉14は、四塩化ケイ素SiClの酸水素火炎加水分解法により作製した合成シリカガラス粉である。この天然石英粉(C)及び合成シリカガラス粉(E)の不純物元素濃度、OH基濃度、HO分子放出量は表12及び表13に示したものである。結晶質シリカ粉13と非晶質シリカ粉14の混合比率は60:40(質量%比)とした。
(実施例12)
 第2の原料粉12を構成する非晶質シリカ粉14を表13に示した合成シリカガラス粉(F)とし、結晶質シリカ粉13と非晶質シリカ粉14の混合比率を60:40(質量%比)とした他は実施例11と同様の方法により図5に示したシリカ容器71を製造した。
(実施例13)
 第2の原料粉12を構成する非晶質シリカ粉14を表13に示した合成シリカガラス粉(G)とし、放電加熱溶融時の溶融雰囲気ガスをN93vol%、H7vol%の混合ガスとした他は、実施例12と同様の方法により、図5に示したシリカ容器71を製造した。
(実施例14)
 結晶質シリカ粉13と非晶質シリカ粉14の混合比率を30:70(質量%比)とした他は、実施例13と同様の方法により、図5に示したシリカ容器71を製造した。
(比較例1)
 原料粉として天然石英粉を用いて、減圧アーク溶融法により、シリカ容器を製造した。このシリカ容器は、本発明の混合シリカ層53に相当する部分がなく、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るものである。
(比較例2)
 まず、原料粉として天然石英粉を用いて、常圧アーク溶融法により、シリカ容器を製造した。次に、合成クリストバライト粉を原料として、シリカ容器上方からこの原料粉を散布しつつ常圧アーク溶融法によりこのシリカ容器の内表面全体にわたって高純度シリカガラス層を形成した。
[実施例及び比較例における評価方法]
 実施例1~14及び比較例1、2において用いた原料粉及び製造したシリカ容器の物性、特性評価を以下のようにして行った。
各原料粉の粒径測定:
 光学顕微鏡又は電子顕微鏡で各原料粉の二次元的形状観察及び面積測定を行った。次いで、粒子の形状を真円と仮定し、その面積値から直径を計算して求めた。この手法を統計的に繰り返し行い、粒径の範囲(この範囲の中に99mass%以上の原料粉が含まれる)の値として、表1~8に示した。
シリカ容器の層厚測定:
 シリカ容器をカッターで切断し、断面をスケールで測定することにより求めた。
OH基濃度測定:
 OH基濃度は、赤外線吸収分光光度法で測定を行った。OH基濃度への換算は、以下の文献に従う。
 Dodd, D. M. and Fraser, D. B. (1966) Optical determination of OH in fused silica. Journal of Applied Physics, vol.37, P.3911.
不純物金属元素濃度分析:
 不純物金属元素濃度が比較的低い(ガラスが高純度である)場合は、プラズマ発光分析法(ICP-AES)又はプラズマ質量分析法(ICP-MS)で行い、不純物金属元素濃度が比較的高い(ガラスが低純度である)場合は、原子吸光光度法(AAS)で行った。アルカリ金属元素Li、Na、K、アルカリ土類金属元素Ca、Mg、遷移金属元素Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの15元素の濃度分析を行った。
Oガス放出量の測定方法:
 各原料粉から2g程度サンプリングし、これを真空チャンバー内に設置し、1000℃真空下におけるガス放出量を測定した。詳細は以下の文献に従う。
 Nasu, S. et al. (1990) “Gas release of various kinds of vitreous silica” ,Journal of Illuminating Engineering Institute of Japan, vol.74, No.9, pp. 595-600.
単結晶シリコン引き上げ時の湯面振動評価:
 直径800mm(32インチ)のシリカ容器の中に純度99.99999999mass%の金属ポリシリコンを投入し、昇温を行いシリコン融液とした。その際、実施例1~10では、シリコン湯面はシリカ容器の混合シリカ層(帯状内周層)のほぼ中央部分になるように設定されていた。CZ装置内をアルゴン(Ar)ガス100%雰囲気とし、単結晶シリコンの種結晶を回転させつつ下部へ移動させ、シーディング、ネッキング、ショルダーリングを進めた。湯面振動の程度の評価は下記の通りとした。
 ・湯面振動が無く、シーディング、ネッキング、ショルダーリングの全てが順調に行えた。               ○(良好)
 ・湯面振動が若干あったが、シーディング、ネッキングの工程を複数回繰り返すことによりショルダーリングまで行えた。 △(やや良好)
 ・湯面振動が激しくシーディング、ネッキング、ショルダーリングを行うことが不可能であった。            ×(不良)
単結晶シリコン連続引き上げ(マルチ引き上げ)評価:
 製造したシリカ容器の中に純度99.99999999mass%の金属ポリシリコンを投入し、昇温を行いシリコン融液とし、次いで単結晶シリコンの引き上げを3回繰り返して行い(マルチ引き上げ)、単結晶シリコン育成の成功率として評価した。引き上げ条件は、引き上げ装置(CZ装置)内をアルゴン(Ar)ガス100%雰囲気とし、引き上げ速度1mm/分、単結晶シリコン寸法は直径300mm、長さ900mm、単結晶シリコンの引き上げ1回当たりの操業時間は約30時間とした。単結晶シリコン育成3回繰り返しの成功比率の分類は以下の通りとした。
 ・単結晶シリコンインゴット3本の引き上げに成功した   ○(良好)
 ・単結晶シリコンインゴット2本の引き上げに成功した   △(やや良好)
 ・単結晶シリコンインゴット引き上げは1本であった  ×(不良)
ボイドとピンホールの評価:
 実施例11~14について、引き上げた単結晶シリコンにおけるボイドとピンホールの評価を以下のように行った。前記の単結晶シリコン連続引き上げにおいて、各単結晶シリコンマルチ引き上げ後の1本目の単結晶シリコンの任意の部位から、直径300mm、厚さ200μmの両面研磨仕上げのシリコンウェーハ各200枚を作製した。次いで各々のシリコンウェーハの両面に存在するボイドとピンホールの個数をパーティクル検出器により測定し、統計的に数値処理を行いシリコンウェーハ200枚当たりの欠陥の無い枚数を求めた。その結果、ボイドもピンホールも検出されないシリコンウェーハ枚数に応じて以下のような評価とした。ただし検出可能なボイドとピンホールの直径は50μm以上であった。
 ・無欠陥シリコンウェーハ枚数 200枚~199枚     ○(良好)
 ・無欠陥シリコンウェーハ枚数 198枚~197枚     △(やや良好)
 ・無欠陥シリコンウェーハ枚数 196枚以下        ×(不良)
 実施例1~14、比較例1~2で製造したそれぞれのシリカ容器の製造条件と、測定した物性値、評価結果をまとめ、下記の表1~13に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表1~13からわかるように、実施例1~14では、単結晶シリコン引き上げ時に湯面振動を抑制することができ、マルチ引き上げを順調に行うことができた。また、実施例11~14では、直胴部61に加えて湾曲部62にも混合シリカ層53を形成したことにより、単結晶シリコン引き上げ時にその内表面に粗面が生じるにもかかわらず、単結晶シリコンにボイドやピンホールと呼ばれる空隙欠陥がほとんど導入されなかったこともわかった。また、実施例11~14では、単結晶シリコン引き上げの初期段階より後の段階においてもシリコン融液の湯面振動も安定して抑制できていた。
(実施例15)
 図16に示した工程(2-a)~(2-g)に従い、図14に示す単結晶シリコン引き上げ用シリカ容器74を製造した。第1の原料粉11として、粒径50~500μm、純度99.999mass%の天然石英粉(a)を準備した。この天然石英粉(a)の不純物濃度は表19に示したものである。第2の原料粉12として、天然石英粉(b)である結晶質シリカ粉13及び合成シリカガラス粉(a)である非晶質シリカ粉14の混合粉を準備した。非晶質シリカ粉14は、四塩化ケイ素SiClの酸水素火炎加水分解法により作製した合成シリカガラス粉である。この天然石英粉(b)及び合成シリカガラス粉(a)の不純物元素濃度、OH基濃度、HO分子放出量は表20及び表21に示したものである。結晶質シリカ粉13と非晶質シリカ粉14の混合比率は40:60(質量%比)とした。
 図4、図17及び図18に示したグラファイト型枠101を回転させつつ第1の原料粉11及び第2の原料粉12を投入し、第2の仮成形体43とした。次いで図19及び図20に示した装置を用いて、第2の仮成形体43の内部雰囲気を乾燥したN95vol.%、H5vol.%の混合ガスとし、外周部から吸気減圧しつつ、第2の仮成形体43内部で放電加熱溶融を行い、シリカ容器73を作製した。このシリカ容器73の底部に底部シリカガラス層55を、溶融雰囲気ガスをN95vol.%、H5vol.%として形成して、図14に示すシリカ容器74を製造した。この際の底部シリカガラス層55のための原料粉(第3の原料粉22)は、表22に示す不純物濃度、OH基濃度及びHO分子放出量である合成クリストバライト粉(a)とした。
(実施例16)
 図14に示したシリカ容器74を製造した。製造条件は、結晶質シリカ粉(天然石英粉(b)と非晶質シリカ粉(合成シリカガラス粉(a))の混合比率を60:40(質量比)とし、溶融雰囲気ガスをN50vol.%、H10vol.%、He40vol.%とし、底部シリカガラス層55を実施例15よりも厚く形成した以外は実施例15と同様である。
(実施例17)
 図14に示したシリカ容器74を製造した。製造条件は、結晶質シリカ粉(天然石英粉(b)と非晶質シリカ粉(合成シリカガラス粉(a))の混合比率を80:20(質量比)とし、底部シリカガラス層55を実施例15よりも厚く形成した以外は実施例15と同様である。
(実施例18)
 図15に示したシリカ容器74、すなわち、混合シリカ層53を内表層上端まで形成したシリカ容器74を製造した。その他の製造条件は、非晶質シリカ粉14として表21に示した合成シリカガラス粉(b)を用いたこと、溶融雰囲気ガスをN90vol.%、H10vol.%としたこと、及び底部シリカガラス層55を実施例15よりも厚く形成したこと以外は実施例15と同様である。
(実施例19)
 実施例18と同様の方法により図15に示したシリカ容器74を製造したが、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成シリカガラス粉(b))の混合比率を60:40(質量比)とし、溶融雰囲気ガスをN95vol.%、H5vol.%とした。
(実施例20)
 実施例19と同様の方法により図15に示したシリカ容器74を製造したが、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成シリカガラス粉(b))の混合比率を80:20(質量比)とした。
(比較例3)
 原料粉として天然石英粉を用いて、減圧アーク放電溶融法により、図22に示したシリカ容器91を製造した。シリカ容器91は本発明の混合シリカ層53に相当する部分はなく、容器外側が気泡を含有する不透明シリカガラス81から成り、容器内側82が透明シリカガラスから成る。
(比較例4)
 図23に示したシリカ容器92を製造した。まず、原料粉として天然石英粉を用いて、常圧アーク放電溶融法により、容器外側が気泡を含有する不透明シリカガラス81から成り、容器内側82が透明シリカガラスから成るシリカ容器を作製し、その底部に合成クリストバライト粉を原料として底部シリカガラス層85を形成した。
(比較例5)
 図24に示した、容器内側全面に混合シリカ層83を有し、その外側は不透明シリカガラス81から成るシリカ容器93を製造した。すなわち、シリカ容器93は、底部シリカガラス層を形成しないこと以外は、実施例18~20と同様の構成である。具体的な製造方法は、底部シリカガラス層を形成しないことの他、非晶質シリカ粉として合成シリカガラス粉(a)を用いたこと以外は、実施例19と同様である。
(実施例21)
 図25に示したシリカ容器94を製造した。シリカ容器94は、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成石英ガラス粉)の混合比率を50:50(質量%比)とし、混合シリカ層53を直胴部のみ(直胴部における高さ(幅)を150mmとした)に厚さ2mmで形成し、底部シリカガラス層55を形成しなかったこと以外は実施例15と同様に製造したものである。
[実施例及び比較例における評価方法]
 実施例15~21及び比較例3~5において用いた原料粉及び製造したシリカ容器の物性、特性評価を以下のようにして行った。
 各原料粉の粒径測定を前述と同様に行い、表14~18に示した。
 シリカ容器の層厚測定、OH基濃度測定、不純物金属元素濃度分析、HOガス放出量の測定方法を、前述と同様に行った。
単結晶シリコン引き上げ時の湯面振動評価:
 直径800mm(32インチ)のシリカ容器の中に純度99.99999999mass%の金属ポリシリコンを投入し、昇温を行いシリコン融液とした。その際、実施例15~17では、シリコン湯面はシリカ容器の混合シリカ層の上端近くになるように設定されていた。CZ装置内をアルゴン(Ar)ガス100%雰囲気とし、単結晶シリコンの種結晶を回転させつつ下部へ移動させ、順次シーディング、ネッキング、ショルダーリング、プリング、テーリングを進めた。湯面振動の程度の評価は下記の通りとした。矢印の前は1回目の単結晶シリコン引き上げの際の評価を示し、矢印の後は2回目の単結晶シリコン引き上げの際の評価を示す。
 ・湯面振動が無く、シーディング、ネッキング、ショルダーリング、プリング、テーリングの全てが順調に行えた。               ○(良好)
 ・湯面振動が若干あったが、シーディング、ネッキングの工程を複数回繰り返すことによりショルダーリング、プリング、テーリングまで行えた。 △(やや良好)
 ・湯面振動が激しくシーディング、ネッキング、ショルダーリングを行うことが不可能であった。                       ×(不良)
 単結晶シリコン連続引き上げ(マルチ引き上げ)評価及びボイドとピンホールの評価を前述と同様に行った。
 実施例15~20、比較例3~5、実施例21で製造したそれぞれのシリカ容器の製造条件と、測定した物性値、評価結果をまとめ、下記の表14~22に示した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表14~22からわかるように、実施例15~16では、単結晶シリコン引き上げ時に湯面振動を抑制することができ、マルチ引き上げを順調に行うことができた。また、実施例15~16では、単結晶シリコンにボイドやピンホールと呼ばれる空隙欠陥がほとんど導入されなかった。比較例3、4では湯面振動が発生し、特に引き上げ工程の初期段階より大きく発生した。実施例21でも特に2本目の単結晶シリコン引き上げ工程より湯面振動が発生した。
 比較例5では湯面振動の発生はほとんどなかったが、ボイド、ピンホール評価は非常に悪かった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (15)

  1.  直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器の製造方法であって、
     第1の原料粉として、粒径が10~1000μmである結晶質シリカ粉を作製する工程と、
     第2の原料粉として、粒径が50~2000μmである結晶質シリカ粉と、粒径が50~2000μmである非晶質シリカ粉との混合粉を作製する工程と、
     前記第1の原料粉を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉から成る第1の仮成形体を形成する工程と、
     前記第2の原料粉を、前記型枠内に形成した第1の仮成形体の内側及び上部の少なくともいずれか一方に投入して前記第1の原料粉から成る部分及び前記第2の原料粉から成る部分を有する第2の仮成形体を、製造するシリカ容器の形状に応じた形状として、かつ、該製造するシリカ容器の少なくとも直胴部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成する工程と、
     前記型枠を回転させつつ、前記第2の仮成形体の内側から放電加熱溶融法によって加熱することにより、前記第2の仮成形体のうち前記第2の原料粉から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とするとともに、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るものとする工程と
     を含むことを特徴とする単結晶シリコン引き上げ用シリカ容器の製造方法。
  2.  前記混合シリカ層を、前記製造されるシリカ容器の内表面のうち、該シリカ容器が原料シリコン融液を保持した際の初期の融液面に相当する内表面上の位置を含んで形成することを特徴とする請求項1に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  3.  前記第2の仮成形体の形成を、前記製造するシリカ容器の直胴部及び湾曲部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成することを特徴とする請求項1又は請求項2に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  4.  前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であり、幅が100mm以上であるものとして形成することを特徴とする請求項1ないし請求項3のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  5.  請求項1ないし請求項4のいずれか1項に記載の方法によりシリカ容器を製造した後、さらに、該シリカ容器の内表面のうち前記混合シリカ層が形成されていない内表面の少なくとも一部に、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmの高純度シリカガラス層を形成する工程を有することを特徴とする単結晶シリコン引き上げ用シリカ容器の製造方法。
  6.  前記第2の仮成形体を形成する工程において、前記第2の原料粉を、前記第1の仮成形体の内側に投入し、前記第2の仮成形体を、前記製造するシリカ容器の直胴部、湾曲部、及び底部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成することとし、
     さらに、第3の原料粉として、粒径が10~1000μmである結晶質シリカ粉を作製する工程を含み、
     前記放電加熱溶融法によって加熱することにより前記シリカ容器を製造した後に、さらに、前記シリカ容器の上部から前記第3の原料粉を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉を前記底部の内表面部分に付着させ底部シリカガラス層を形成する工程を含むことを特徴とする請求項1に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  7.  前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であるものとして形成することを特徴とする請求項6に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  8.  前記第2の原料粉において、前記結晶質シリカ粉のOH基濃度を50massppm以下とし、前記非晶質シリカ粉のOH基濃度を200~2000ppmとすることを特徴とする請求項1ないし請求項7のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  9.  直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、
     容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、
     少なくとも前記直胴部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有する
     ことを特徴とする単結晶シリコン引き上げ用シリカ容器。
  10.  前記混合シリカ層が、前記シリカ容器の内表面のうち、該シリカ容器が原料シリコン融液を保持した際の初期の融液面に相当する内表面上の位置を含んで形成されていることを特徴とする請求項9に記載の単結晶シリコン引き上げ用シリカ容器。
  11.  前記混合シリカ層を前記直胴部及び前記湾曲部の内側表層部分において有するものであることを特徴とする請求項9又は請求項10に記載の単結晶シリコン引き上げ用シリカ容器。
  12.  前記混合シリカ層は、前記シリカ容器の肉厚方向における厚さが2mm以上であり、幅が100mm以上であることを特徴とする請求項9ないし請求項11のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器。
  13.  前記シリカ容器の内表面のうち前記混合シリカ層が形成されていない内表面の少なくとも一部に、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200~2000μmの高純度シリカガラス層を有することを特徴とする請求項9ないし請求項12のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器。
  14.  前記混合シリカ層を前記直胴部、湾曲部、及び底部の内側表層部分において有し、
     前記底部の混合シリカ層の内表面上に底部シリカガラス層を有する
     ことを特徴とする請求項9に記載の単結晶シリコン引き上げ用シリカ容器。
  15.  前記混合シリカ層が、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200~2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることを特徴とする請求項9ないし請求項14のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器。
PCT/JP2014/001681 2013-04-08 2014-03-25 単結晶シリコン引き上げ用シリカ容器及びその製造方法 WO2014167788A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480001704.9A CN104395509A (zh) 2013-04-08 2014-03-25 单晶硅提拉用二氧化硅容器及其制造方法
KR1020147031698A KR101645663B1 (ko) 2013-04-08 2014-03-25 단결정 실리콘 인상용 실리카 용기 및 그 제조방법
US14/398,880 US20150114284A1 (en) 2013-04-08 2014-03-25 Silica container for pulling single crystal silicon and method for manufacturing the same
EP14782930.3A EP2835452A4 (en) 2013-04-08 2014-03-25 SILICON DIOXIDE TIP FOR PULLING A SILICONE INCRISTAL AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013080812A JP5608257B1 (ja) 2013-04-08 2013-04-08 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP2013-080812 2013-04-08
JP2013085130A JP5608258B1 (ja) 2013-04-15 2013-04-15 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP2013-085130 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014167788A1 true WO2014167788A1 (ja) 2014-10-16

Family

ID=51689211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001681 WO2014167788A1 (ja) 2013-04-08 2014-03-25 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Country Status (6)

Country Link
US (1) US20150114284A1 (ja)
EP (1) EP2835452A4 (ja)
KR (1) KR101645663B1 (ja)
CN (1) CN104395509A (ja)
TW (1) TWI516646B (ja)
WO (1) WO2014167788A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109153593A (zh) * 2015-12-18 2019-01-04 贺利氏石英玻璃有限两合公司 合成石英玻璃粉粒的制备
KR20180095624A (ko) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 불투명 실리카 유리 제품의 제조
TWI813534B (zh) 2015-12-18 2023-09-01 德商何瑞斯廓格拉斯公司 利用露點監測在熔融烘箱中製備石英玻璃體
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
TWI812586B (zh) 2015-12-18 2023-08-21 德商何瑞斯廓格拉斯公司 石英玻璃體、其製備方法與應用、及用於控制烘箱出口處之露點
WO2017103166A2 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Herstellung eines quarzglaskörpers in einem mehrkammerofen
JP7044454B2 (ja) 2015-12-18 2022-03-30 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー 石英ガラス調製時の中間体としての炭素ドープ二酸化ケイ素造粒体の調製
JP6984897B2 (ja) 2015-12-18 2021-12-22 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー 石英ガラス調製時のケイ素含有量の増大
JP6981710B2 (ja) 2015-12-18 2021-12-17 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー 二酸化ケイ素造粒体からの石英ガラス体の調製
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
CN108977879B (zh) * 2018-09-13 2021-02-26 浙江美晶新材料有限公司 一种单晶用高纯石英坩埚及其制备方法
JP7157932B2 (ja) * 2019-01-11 2022-10-21 株式会社Sumco シリカガラスルツボの製造装置および製造方法
CN110656370A (zh) * 2019-11-06 2020-01-07 西安奕斯伟硅片技术有限公司 一种坩埚
KR102677112B1 (ko) * 2022-05-09 2024-06-20 (주)셀릭 저저항 대구경 잉곳 제조장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422861B2 (ja) 1987-12-03 1992-04-20 Shinetsu Handotai Kk
JPH0672793A (ja) * 1991-12-24 1994-03-15 Mitsubishi Material Kuootsu Kk シリコン単結晶引上げ用石英ルツボとその製造方法
JPH0729871B2 (ja) 1987-12-03 1995-04-05 信越半導体 株式会社 単結晶引き上げ用石英るつぼ
JP2000219593A (ja) 1999-01-29 2000-08-08 Shinetsu Quartz Prod Co Ltd シリコン単結晶引き上げ用大口径石英ガラスるつぼ
JP2001348240A (ja) 2000-05-31 2001-12-18 Shinetsu Quartz Prod Co Ltd 石英ガラスルツボの製造方法
JP2007326780A (ja) * 2007-09-18 2007-12-20 Shinetsu Quartz Prod Co Ltd シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP4338990B2 (ja) 2003-02-21 2009-10-07 ジャパンスーパークォーツ株式会社 石英ガラスルツボ及びこれを用いたシリコン単結晶の引き上げ方法
JP4390461B2 (ja) 2003-02-21 2009-12-24 ジャパンスーパークォーツ株式会社 石英ガラスルツボ及びこれを用いたシリコン単結晶の引き上げ方法
JP2010030884A (ja) 2008-06-30 2010-02-12 Japan Siper Quarts Corp 石英ガラスルツボおよび石英ガラスルツボを用いたシリコン単結晶の引き上げ方法
JP2011105552A (ja) 2009-11-18 2011-06-02 Japan Siper Quarts Corp シリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法
WO2011158712A1 (ja) 2010-06-16 2011-12-22 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスるつぼ及びその製造方法
JP2012017240A (ja) 2010-12-24 2012-01-26 Covalent Materials Corp シリコン単結晶引上げ用シリカガラスルツボの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422861A (ja) 1990-05-17 1992-01-27 Matsushita Seiko Co Ltd 炭酸ガス検知装置
JPH04338990A (ja) 1991-02-05 1992-11-26 Konica Corp トナーカートリッジの誤装着防止機構
JPH0729871A (ja) 1993-06-25 1995-01-31 Toshiba Corp 表面処理方法および表面処理装置
JP4549008B2 (ja) * 2002-05-17 2010-09-22 信越石英株式会社 水素ドープシリカ粉及びそれを用いたシリコン単結晶引上げ用石英ガラスルツボ
JP4086283B2 (ja) * 2002-07-31 2008-05-14 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボおよびその製造方法
EP2484814A1 (en) * 2003-05-01 2012-08-08 Heraeus Quarzglas GmbH & Co. KG Quartz glass crucible for pulling up silicon single crystal and method for producing the same
JP4789437B2 (ja) * 2004-07-16 2011-10-12 信越石英株式会社 シリコン単結晶引上げ用石英ガラスるつぼおよびその製造方法
JP4428529B2 (ja) * 2004-12-20 2010-03-10 株式会社ワコム製作所 石英ルツボ
JP4874888B2 (ja) * 2007-07-26 2012-02-15 信越石英株式会社 シリコン単結晶引上用石英ガラスルツボおよびその製造方法
JP5072933B2 (ja) * 2008-10-31 2012-11-14 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
KR101226510B1 (ko) * 2009-04-28 2013-01-25 신에쯔 세끼에이 가부시키가이샤 실리카 용기 및 그 제조 방법
JP4922355B2 (ja) * 2009-07-15 2012-04-25 信越石英株式会社 シリカ容器及びその製造方法
JP4951040B2 (ja) * 2009-08-05 2012-06-13 信越石英株式会社 シリカ容器及びその製造方法
WO2011030657A1 (ja) * 2009-09-10 2011-03-17 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422861B2 (ja) 1987-12-03 1992-04-20 Shinetsu Handotai Kk
JPH0729871B2 (ja) 1987-12-03 1995-04-05 信越半導体 株式会社 単結晶引き上げ用石英るつぼ
JPH0672793A (ja) * 1991-12-24 1994-03-15 Mitsubishi Material Kuootsu Kk シリコン単結晶引上げ用石英ルツボとその製造方法
JP2000219593A (ja) 1999-01-29 2000-08-08 Shinetsu Quartz Prod Co Ltd シリコン単結晶引き上げ用大口径石英ガラスるつぼ
JP2001348240A (ja) 2000-05-31 2001-12-18 Shinetsu Quartz Prod Co Ltd 石英ガラスルツボの製造方法
JP4338990B2 (ja) 2003-02-21 2009-10-07 ジャパンスーパークォーツ株式会社 石英ガラスルツボ及びこれを用いたシリコン単結晶の引き上げ方法
JP4390461B2 (ja) 2003-02-21 2009-12-24 ジャパンスーパークォーツ株式会社 石英ガラスルツボ及びこれを用いたシリコン単結晶の引き上げ方法
JP2007326780A (ja) * 2007-09-18 2007-12-20 Shinetsu Quartz Prod Co Ltd シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP2010030884A (ja) 2008-06-30 2010-02-12 Japan Siper Quarts Corp 石英ガラスルツボおよび石英ガラスルツボを用いたシリコン単結晶の引き上げ方法
JP2011105552A (ja) 2009-11-18 2011-06-02 Japan Siper Quarts Corp シリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法
WO2011158712A1 (ja) 2010-06-16 2011-12-22 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスるつぼ及びその製造方法
JP2012017240A (ja) 2010-12-24 2012-01-26 Covalent Materials Corp シリコン単結晶引上げ用シリカガラスルツボの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DODD, D. M.; FRASER, D. B.: "Optical determination of OH in fused silica", JOURNAL OF APPLIED PHYSICS, vol. 37, 1966, pages 3911
NASU, S. ET AL.: "Gas release of various kinds of vitreous silica", JOURNAL OF ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, vol. 74, no. 9, 1990, pages 595 - 600
See also references of EP2835452A4 *

Also Published As

Publication number Publication date
EP2835452A1 (en) 2015-02-11
TWI516646B (zh) 2016-01-11
TW201439386A (zh) 2014-10-16
KR20140146189A (ko) 2014-12-24
KR101645663B1 (ko) 2016-08-04
US20150114284A1 (en) 2015-04-30
CN104395509A (zh) 2015-03-04
EP2835452A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2014167788A1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5608257B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP4907735B2 (ja) シリカ容器及びその製造方法
JP4951057B2 (ja) シリカ容器及びその製造方法
JP4903288B2 (ja) シリカ容器及びその製造方法
JP5462423B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
EP2687623B1 (en) Single-crystal silicon pulling silica container and manufacturing method thereof
JP5497247B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5308594B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5595615B2 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5608258B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14398880

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014782930

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782930

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031698

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE