WO2014162097A1 - Composition de mortier isolant - Google Patents

Composition de mortier isolant Download PDF

Info

Publication number
WO2014162097A1
WO2014162097A1 PCT/FR2014/050784 FR2014050784W WO2014162097A1 WO 2014162097 A1 WO2014162097 A1 WO 2014162097A1 FR 2014050784 W FR2014050784 W FR 2014050784W WO 2014162097 A1 WO2014162097 A1 WO 2014162097A1
Authority
WO
WIPO (PCT)
Prior art keywords
mortar
weight
total composition
mortar according
relative
Prior art date
Application number
PCT/FR2014/050784
Other languages
English (en)
Inventor
Caroline MIRA PERMANYER
David GONZALO SANZ
Original Assignee
Saint-Gobain Weber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Weber filed Critical Saint-Gobain Weber
Priority to RU2015147154A priority Critical patent/RU2662741C2/ru
Priority to MYPI2015703488A priority patent/MY189772A/en
Priority to BR112015024596-0A priority patent/BR112015024596B1/pt
Priority to CN201480019697.5A priority patent/CN105050981A/zh
Priority to EP14722256.6A priority patent/EP2981512A1/fr
Priority to SG11201508191VA priority patent/SG11201508191VA/en
Publication of WO2014162097A1 publication Critical patent/WO2014162097A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • C04B14/185Perlite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/204Mica; Vermiculite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • C04B14/24Glass ; Devitrified glass porous, e.g. foamed glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/301Oxides other than silica porous or hollow
    • C04B14/302Aerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • C04B18/106Fly ash from waste incinerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/068Peroxides, e.g. hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/12Hydraulic lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00517Coating or impregnation materials for masonry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a lightened insulating mortar and its use in the field of construction for coating and / or treating surfaces or walls of buildings, in particular facades, both for new constructions and for the renovation of existing constructions.
  • Ble particularly relates to a mortar easily applicable to surfaces by means of usual applications, such as for example by pneumatic projection using a mortar pump.
  • TE Outdoor thermal insulation
  • ITE systems conventionally comprise an insulator on which one or more layers of facing plaster are applied. They are generally complex systems that are very thick.
  • the insulating capacities of these systems are in particular a function of the choice of insulating material and its thickness. Sheets of expanded polystyrene with a thickness of between 20 and 500 mm are currently used. The greater the thickness of the plate, the better the insulation. However, too thick insulation results in a loss of floor space and also many additional costs. It is therefore necessary to find a compromise between a material with the best characteristics of soil and the most expensive weights.
  • insulating plaster or mortar incorporates insulating materials such as expanded polystyrene beads or exfoliated vermiculite. They are usually applied in several layers. Even if they allow an improvement of the insulation of the surface on which they are applied, they do not make it possible to reach technical performances equivalent to those of the other techniques and system ITE, and do not make it possible to get rid of the plates insulation. Expanded polystyrene sheets used in conventional ITE systems have a thermal conductivity of about 37 mW / mK. In order for an insulating mortar to achieve similar thermal performance, it would be necessary for it to contain no heat.
  • the present invention has sought to develop a lightweight insulating mortar usable for facade cladding to overcome the drawbacks mentioned above.
  • the insulating mortar according to the present invention has the advantage of combining good thermal insulation properties, comparable to those of expanded polystyrene plates, and good mechanical strength properties, compatible with the applications envisaged. It also has a very good fire resistance, superior to the EPS only plates.
  • the present invention provides an insulating mortar lightened and having a density of less than 300 kg / m 3 in the cured state comprising at least one inorganic binder selected from cement and lime, in an amount between 50 and 95% by weight relative to the total composition of the mortar, at least 1% by weight of a polymeric adjuvant relative to the total composition of the mortar, at least 0.2% by weight of a rheological admixture relative to the total composition of the mortar, optionally aggregates, said mortar comprising at least 70% by volume of leaching fillers having a thermal conduction of less than 55 mW / mK, relative to the composition of the mortar, chosen from expanded polystyrene, aerogels, hollow microspheres of glass, expanded glass beads, cenospheres, vermiculite and perlite and of which at least 10% by weight of the inorganic binder is substituted by a pozzolanic agent.
  • Percentages of binder, polymeric or rheological adjuvant, leaching charges or other fillers and / or additives are given by weight or by volume relative to the total composition of the mortar. Only the percentage of pozzolanic agent is expressed relative to the amount of inorganic binder, since part of it is substituted by this agent.
  • the mortar is lightened and has a density of less than 300 kg / m 3 in the cured state.
  • the density measurement is performed after setting, hardening and drying the mortar.
  • lightlyened mortar it is understood that it is a mortar of low density, and comprising a large amount of air. Relief can be obtained in different ways.
  • composition lightening fillers whose bulk density, that is to say the mass of material contained in a given volume, comprising the volume of interstitial air is conventionally less than 300 kg / m 3
  • another way to alleviate the mortar is used in the form of foam, or by introducing into the composition of a preformed foam, as described for example in patent application WO 2011/095718, or by introducing into its composition of a so-called "porogenic" agent, creating pores during its decomposition as for example described in application EP0485814.
  • the different ways of lightening the mortar can be combined with each other.
  • the mortar according to the present invention comprises at least 70% by volume of leaching fillers having a thermal conductivity of less than 55 mW / m.K., relative to the composition of the mortar.
  • the said lightening fillers are chosen from expanded polystyrene, aerogels, hollow glass microspheres, expanded glass beads, cenospheres, vermiculite and perlite.
  • the term of lightening loads it is understood that it is a component for lightening the mortar, without playing any role of binder.
  • the mortar according to the present invention comprises
  • the composition of the mortar has the advantage of being able to be applied manually and projected onto the surfaces to be coated with conventional projection machines. Ble presents a good maneuverability and makes it possible to obtain coatings having good mechanical resistance, in particular with cracks.
  • the mortar is both lightened and insulating.
  • the solution provided by the present invention is very easy to implement and can in particular be used for existing constructions, particularly in the field of renovation.
  • This mortar composition thus makes it possible to have a low thermal conductivity, without causing a decrease in mechanical performance.
  • the presence of pozzolanic agent in the important proportions described above makes it possible in particular to obtain this compromise.
  • rheological adjuvant advantageously gives the mortar good handling and thixotropic consistency for use in vertical.
  • polymeric adjuvant advantageously gives the mortar the desired mechanical strength, as well as good cohesion.
  • This additive makes it possible in particular to improve the resistance to cracking.
  • the binder making it possible to ensure the cohesion of the various constituents of the mortar and its hardening is a mixture comprising cement and / or lime, and a pozzolanic agent.
  • a pozzolanic agent In order to obtain the desired properties from a thermal and mechanical point of view, it is essential that the amount of pozzolanic agent is sufficient.
  • At least 10% of the inorganic binder selected from cement and lime is substituted by a pozzolanic agent.
  • the total amount of binder present in the mortar composition is between 50 and 95% by weight of the mortar composition.
  • the mortar may comprise a blowing agent for releasing air and thus increasing the porosity of the mortar during its shaping.
  • the decomposition of the blowing agent is generally carried out when this agent comes into contact with a decomposition catalyst.
  • the blowing agent may be based on peroxides, aluminum powder or any other component known for its decomposition capabilities.
  • the presence of this pore-forming agent can be the means of lightening the mortar. It is also possible that the mortar comprises both lightening fillers and a blowing agent.
  • the cement used in the mortar according to the present invention is chosen from Port I and cements, pozzolanic mixture cements possibly comprising fly ash, blast furnace slag, silica fume and / or natural pozzolans, calcined or synthetic materials, aluminous cements, sulphoaluminous cements, crushed industrial residues, belitic cements, alone or as a mixture.
  • the presence of the pozzolanic agent is necessary regardless of the type of inorganic binder used in the mortar to achieve the desired performance. Even if the inorganic binder comprises a pozzolanic mixture cement, at least 10% of this binder is substituted by the pozzolanic agent.
  • the pozzolanic agent is selected from metakaolin, blast furnace slags, fly ash, silica fumes.
  • the pozzolanic agent is chosen from metakaolin and blast furnace slags. These agents have the advantage of being able to react with the free lime generated during the hydration reaction of the cement to form stable hydration products and thus to improve the mechanical properties.
  • the minimum amount of pozzolanic agent to achieve the desired mechanical and thermal performance varies depending on the type of agent. According to one embodiment, at least 25% by weight of the inorganic binder is substituted with metakaolin. According to another embodiment, at least 15% by weight of the inorganic binder is substituted by blast furnace slags.
  • the lime can be hydraulic or aerial.
  • the binder consists of cement, lime and pozzolanic agent in the following proportions: it is a mixture of 20 to 70% by weight of cement, from 0 to 50% by weight of lime and 3 to 50% weight pozzolanic agent, relative to the total composition of the mortar. Even more preferably, the binder consists of a mixture of 30 to 60% by weight of cement, 20 to 40% by weight of lime and 5 to 25% by weight of pozzolanic agent, relative to the total composition of the mortar.
  • the polymeric adjuvant is a redispersible polymer powder and / or a latex.
  • redispersible polymer powder is understood to mean a polymer powder which, when mixed with an aqueous medium, splits into small particles, forming a stable dispersion in water.
  • polymers used in the composition of such a powder mention may be made of vinyl and / or acrylic polymers.
  • latex refers in particular to the latex polymers usually used in building materials.
  • latex means an emulsion or aqueous dispersion of one or more natural or synthetic polymeric substances. For example, elastomeric latexes, thermoplastic latices and thermosetting latices may be mentioned.
  • polyethylene polyisoprene, polystyrene, polyvinyl chloride, polybutadienes, alkali metal polyacrylates, polyacrylic acid, polymethylmethacrylate, polyvinyl acetate and polylaurate.
  • the polymeric adjuvant is at least 2% by weight, preferably at least 7% by weight of the total composition of the mortar.
  • the rheological adjuvant present in the mortar according to the present invention is chosen from cellulose ethers, starch ethers and their mixtures, such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methahyl cel I ulose,
  • ⁇ hydroxypropylmethyl cellulose It preferably represents between 0.4% by weight and 1.5% by weight of the total composition of the mortar.
  • the mortar may comprise aggregates, aggregates or sands, playing in particular on the rheology, the thickness, the hardness, the final appearance and the permeability of the mortar. They are generally formed of siliceous sand, limestone and / or if lic-limestone, generally having a particle size of between 100 ⁇ and 5 mm. The rate of such aggregates can represent between 0 and 10% by weight relative to the total composition of the mortar.
  • the mortar may comprise inert fillers, also called fillers, limestone and / or siliceous being generally in the form of powder whose particle size is less than 120 ⁇ . The level of fillers in the mortar composition represents between 0 and 20% by weight relative to the total composition of the mortar.
  • the mortar according to the invention may also comprise additives or adjuvants conferring particular properties. They are chosen from rheological agents such as plasticizers or superplasticizers, water-retaining agents, thickening agents, biocidal protective agents, dispersing agents, pigments, accelerators and / or retarders, hydrophobic agents, and other agents to improve the setting, hardening and / or stability of the mortar or concrete after application, to adjust the color, the workability, the implementation or the impermeability.
  • rheological agents such as plasticizers or superplasticizers, water-retaining agents, thickening agents, biocidal protective agents, dispersing agents, pigments, accelerators and / or retarders, hydrophobic agents, and other agents to improve the setting, hardening and / or stability of the mortar or concrete after application, to adjust the color, the workability, the implementation or the impermeability.
  • the total content of additives typically varies between 0.1 and 5% by weight.
  • the mortar according to the present invention is in the form of a dry mixture, preferably in a ready-to-mix form. Once the mixing with the mixing water is carried out, the mortar thus becomes applicable to the surface to be coated. The application can be done manually or by projection.
  • the mortar according to the present invention has the advantage of being projectable on the surface.
  • the present invention also relates to a coating or wall coating obtained by applying the tempered mortar described above.
  • the coating is deposited on all or part of a support such as a wall or building facade in the form of one or more layers.
  • the total thickness of the coating can vary between 1 and 12 cm.
  • the coating has a compressive strength of at least
  • the coating has a compressive strength of at least 0.4 MPa and a thermal conductivity less than or equal to
  • the support on which the tempered mortar is applied can be made of different materials, such as concrete, brick, plate, cement, polystyrene board, wood, fiber cement, rock wool or glass wool, blocks, blocks, etc.
  • the application can be carried out directly on the support or after application of an adhesion primer if necessary.
  • the coating according to the present invention can be integrated into any external thermal insulation process and meets the safety standards in this field. It has the advantage of being a continuous coating, which avoids thermal bridges. It notably has a durability and an aging compatible with its use as a facade mortar, presenting no degradation or cracks at the end of the aging cycles described by the EOTA guide used for external thermal insulation processes with mortar and / or at the end of the artificial aging tests according to NF T 30-049, NF P 84-402 and / or EN1015-21 standards.
  • Two mortar formulations according to the present invention are made by mixing the various constituents given in Table 1 in a Hobart type mixer.
  • Composition 1 comprises a mineral binder consisting of a mixture of cement, metakaolin (pozzolanic agent) and aerial lime.
  • Composition 2 comprises a mineral binder consisting of a mixture of cement, slag (pozzolanic agent) and hydraulic lime.
  • Composition A1 Composition A2
  • the mortars are prepared by mixing the various constituents with water.
  • the fresh dough is poured into appropriate molds and then matured for 28 days (at a temperature of 22 ° C and 55% relative humidity) before undergoing final drying in an oven at 70 ° C for several days until stability of the mass of the sample (corresponding to the elimination of free water).
  • the thermal conductivity is then determined on 25x25x4 cm samples, using a TCA 300DT conductivity meter from Taurus Instruments GmbH, in accordance with EN NF 12664.
  • Mortar formulations not in accordance with the invention were prepared in the same manner as in Example 1, and are described in Table 3 below.
  • Composition C2 55 0.5 250
  • Composition C3 54 0.36 236
  • Table 4 Composition C1 serves as a reference.
  • the amount of expanded polystyrene beads increases in the formulation of the mortar, it is found that the thermal conductivity is improved since it decreases, to the detriment of the mechanical strength which falls below 0.3 MPa.
  • Composition C6 is a formulation comprising a large quantity of expanded polystyrene beads and also polymeric additives: the thermal conductivity is improved but the mechanical strength does not exceed 0.3 MPa.
  • the amount of metakaolin represents 7% by weight of the total composition: even if the thermal conductivity is improved with respect to the composition C5, the mechanical strength remains around 0.3 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

La présente invention décrit un mortier isolant allégé présentant une densité inférieure à 300 kg/m3 à l'état durci comprenant au moins d'un liant minéral choisi parmi le ciment et la chaux, en une quantité comprise entre 50 et 95% en poids par rapport à la composition totale de mortier, au moins 1% poids d'un adjuvant polymérique par rapport à la composition totale du mortier, au moins 0,2% poids d'un adjuvant rhéologique par rapport à la composition totale du mortier et éventuellement des granulats, ledit mortier comprenant au moins 70% en volume de charges allégeantes ayant une conductivité thermique inférieure à 55 mW/m.K, par rapport à la composition du mortier, les dites charges étant choisies parmi le polystyrène expansé, les aérogels, les microsphères creuses de verre, les billes de verre expansé, les cénosphères, la vermiculite et la perlite et dans lequel au moins 10% poids dudit liant minéral est substitué par un agent pouzzolanique.

Description

C0MP09TI0N DE MORTIER ISOLANT
La présente invention concerne un mortier isolant allégé et son utilisation dans le domaine de la construction pour revêtir et/ ou traiter des surfaces ou paroisde bâtiments, en particulier des façades, aussi bien pour de nouvelles constructions que pour la rénovation de constructions existantes. Ble concerne notamment un mortier facilement applicable sur des surfaces par des moyens d'applications usuels, comme par exemple par projection pneumatique à l'aide d'une pompe à mortier.
L'isolation thermique par l'extérieur (\TE) présente des atouts majeurs en permettant des économies d'énergie, des réductions d'émission de dioxyde de carbone et une amélioration du confort de l'habitat. Les systèmes ITE comprennent classiquement un isolant sur lequel on applique une ou plusieurs couches d'enduits de parement. Ce sont de façon générale des systèmes complexes qui sont très épais.
Les capacités isolantes de ces systèmes sont notamment fonction du choix du matériau isolant et de son épaisseur. Des plaques de polystyrène expansé d'une épaisseur variant entre 20 et 500 mm sont actuellement utilisées. Plus l'épaisseur de la plaque est importante, meilleure sera l'isolation. Toutefois, une trop forte épaisseur d'isolant entraîne une perte de surface au sol et également de nombreux surcoûts. Il est donc nécessaire de trouver un compromis entre un matériau présentant les meilleures caract éri st i ques d' i sol at i on avec I es pl us f ai bl es épai sseurs.
Les enduits ou mortiers isolants actuels incorporent des matériaux isolants comme des billes de polystyrène expansé ou de la vermiculite exfoliée. Ils sont généralement appliqués en plusieurs couches. Même s'ils permettent une amélioration de l'isolation de la surface sur laquelle ils sont appliqués, ils ne permettent pas d'atteindre des performances techniques équivalentes à celles des autres techniques et système ITE, et ne permettent pas de s'affranchir des plaques d'isolant. Les plaques de polystyrène expansé utilisées dans les systèmes ITE conventionnels ont une conductivité thermique d'environ 37 mW/m.K. Pour qu'un mortier isolant puisse atteindre des performances thermiques semblables, il serait nécessaire qu'il ne contienne i que des granulats allégeants et isolants, du type perlite ou vermiculite dont les valeurs de conductivité thermique sont respectivement de 50 mW/m.Ket de 70 mW/m.K. Or, un tel mortier ne serait pas utilisable comme enduit de façade en raison d'une trop faible résistance mécanique. D'autre part, les solutions d'isolation envisageant la pose de plaques d'isolant présentent l'inconvénient d'existences d'inévitables de ponts thermiques au niveau des jointures entre les plaques et autour des points singuliers (ouvertures, portes- fenêtres..).
La présente invention a cherché à mettre au point un mortier isolant allégé utilisable pour revêtement de façade permettant d'obvier aux inconvénients cités ci -dessus. Le mortier isolant selon la présente invention présente l'avantage de combiner de bonnes propriétés d'isolant thermique, comparables à celles des plaques de polystyrène expansé, et de bonnes propriétés de résistance mécanique, compatibles avec les applications envisagées. Il présente également une très bonne résistance au feu, supérieure aux plaques d' EPS seul es.
Ainsi, la présente invention propose un mortier isolant allégé et présentant une masse volumique inférieure à 300 kg/ m3 à l'état durci comprenant au moins un liant minéral choisi parmi le ciment et la chaux, en une quantité comprise entre 50 et 95%en poids par rapport à la composition totale du mortier, au moins 1%poidsd'un adjuvant polymérique par rapport à la composition totale du mortier, au moins 0,2% poids d'un adjuvant rhéologique par rapport à la composition totale du mortier, éventuellement des granulats, ledit mortier comprenant au moins 70%en volume de charges allégeantes ayant une conduction thermique inférieure à 55 mW/m.K., par rapport à la composition du mortier, choisies parmi le polystyrène expansé, les aérogels, les microsphères creuses de verre, des billes de verre expansé, des cénosphères, de la vermiculite et la perlite et dont au moins 10%poids du liant minéral est substitué par un agent pouzzolanique. Les pourcentages de liant, adjuvant polymériques ou rhéologiques, charges allégeantes ou autres charges et/ ou additifs sont donnés en poids ou en volume par rapport à la composition totale du mortier. Seul le pourcentage d'agent pouzzolanique est exprimé par rapport à la quantité de liant minéral, puisqu'une partie de celui-ci est substitué par cet agent.
Le mortier est allégé et présente une masse volumique inférieure à 300 kg/ m3 à l'état durci. De façon classique, la mesure de densité est réalisée après prise, durcissement et séchage du mortier. Sous le terme de « mortier allégé », on comprend qu' il s'agit d'un mortier de faible densité, et comprenant une quantité importante d'air. L'allégement peut être obtenu par différentes façons. Il est possible d'introduire dans la composition des charges allégeantes dont la masse volumique apparente, c'est-à-dire la masse de matériau contenu dans un volume donné, comprenant le volume d'air interstitiel est classiquement inférieure à 300 kg/ m3 Une autre façon d'alléger le mortier est de l'utiliser sous forme de mousse, soit par introduction dans sa composition d'une mousse préformée, comme décrit par exemple dans la demande de brevet WO 2011/095718, soit par introduction dans sa composition d'un agent dit « porogène », créant des pores lors de sa décomposition comme par exemple décrit dans la demande EP0485814. Les différents moyens d'allégement du mortier peuvent être combinés entre eux.
Le mortier selon la présente invention comprend au moins 70% en volume de charges allégeantes ayant une conduction thermique inférieure à 55 mW/m.K., par rapport à la composition du mortier. Les dites charges allégeantes sont choisies parmi le polystyrène expansé, les aérogels, les microsphères creuses de verre, des billes de verre expansé, des cénosphères, de la vermiculite et la perlite. Au sens de la présente invention, sous le terme de charges allégeantes, on comprend qu'il s'agit d'un constituant permettant d'alléger le mortier, sans jouer aucun rôle de liant.
De façon plus préférée, le mortier selon la présente invention comprend
75% en volume par rapport à la composition totale de billes de polystyrène expansé. La composition du mortier présente l'avantage de pouvoir être appliqué manuellement et projeté sur les surfaces à enduire avec des machines à projeter classiques. Ble présente une bonne maniabilité et permet d'obtenir des enduits possédant de bonnes résistances mécaniques, notamment aux fissures. Le mortier est à la fois allégé et isolant. La solution apportée par la présente invention présente une grande facilité de mise en œuvre et peut notamment être utilisée pour des constructions déjà existantes, notamment dans le domaine de la rénovation.
Cette composition de mortier permet ainsi d'avoir une conductivité thermique faible, sans provoquer de diminution des performances mécaniques. La présence d'agent pouzzolanique dans les proportions importantes décrites ci -dessus permet notamment d'obtenir ce compromis.
La présence d'adjuvant rhéologique permet avantageusement de donner au mortier une bonne maniabilité et une consistance thixotrope permettant une utilisation en vertical.
La présence d'adjuvant polymérique permet avantageusement de donner au mortier la résistance mécanique souhaitée, ainsi qu'une bonne cohésion. Cet additif permet notamment d'améliorer la résistance à la fissuration.
Le liant permettant d'assurer la cohésion des différents constituants du mortier et son durcissement est un mélange comprenant du ciment et/ ou de la chaux, et un agent pouzzolanique. Pour pouvoir obtenir les propriétés recherchées d'un point de vue thermiques et mécaniques, il est essentiel que la quantité d'agent pouzzolanique soit suffisante. Au moins 10% du liant minéral choisi parmi le ciment et la chaux est substitué par un agent pouzzolanique. De façon classique, la quantité totale de liant présent dans la composition de mortier représente entre 50 et 95%en poids de la composition du mortier.
Le mortier peut comprendre un agent porogène permettant de libérer de l'air et donc d'augmenter la porosité du mortier lors de sa mise en forme. La décomposition de l'agent porogène est généralement effectuée lorsque cet agent entre en contact avec un catalyseur de décomposition. L'agent porogène peut être à base de peroxydes, de poudre d'aluminium ou de tout autre composant connu pour ses capacités de décomposition. La présence de cet agent porogène peut être le moyen d'allégement du mortier. Il est également possible que le mortier comprenne à la fois des charges allégeantes et un agent porogène.
Le ciment utilisé dans le mortier selon la présente invention est choisi parmi les ciments Port I and, les ciments de mélanges pouzzolaniques comprenant éventuellement des cendres volantes, des laitiers de hauts fourneaux, de la fumée de silice et/ ou des pouzzolanes naturelles, calcinées ou synthétiques, des ciments alumineux, des ciments sulfoalumineux, des résidus industriels broyés, des ciments bélitiques, seuls ou en mélange.
La présence de l'agent pouzzolanique est nécessaire quel que soit le type de liant minéral utilisé dans le mortier pour atteindre les performances recherchées. Même si le liant minéral comprend un ciment de mélanges pouzzolaniques, au moins 10% de ce liant est substitué par l'agent pouzzolanique.
L'agent pouzzolanique est choisi parmi le métakaolin, les laitiers de hauts fourneaux, les cendres volantes, les fumées de silice. De façon préférée, l'agent pouzzolanique est choisi parmi le métakaolin et les laitiers de hauts fourneaux. Ces agents présentent l'avantage de pouvoir réagir avec la chaux libre générée lors de la réaction d'hydratation du ciment pour former des produits d'hydratation stables et ainsi d'améliorer les propriétés mécaniques. La quantité minimale d'agent pouzzolanique permettant d'atteindre les performances mécaniques et thermiques souhaitées varie selon le type d'agent. Selon un mode de réalisation, au moins 25%poids du liant minéral est substitué par du métakaolin. Selon un autre mode de réalisation, au moins 15%poidsdu liant minéral est substitué par des laitiers de hauts fourneaux.
La chaux peut être hydraulique ou aérienne.
De façon avantageuse, le liant est constitué de ciment, de chaux et d'agent pouzzolanique dans les proportions suivantes : il s'agit d'un mélange de 20 à 70%poids de ciment, de 0 à 50%poids de chaux et de 3 à 50%poids d'agent pouzzolanique, par rapport à la composition totale du mortier. Encore plus préférentiellement, le liant est constitué d'un mélange de 30 à 60%poidsde ciment, de 20 à 40% poids de chaux et de 5 à 25% poids d'agent pouzzolanique, par rapport à la composition totale du mortier. L'adjuvant polymérique est une poudre polymère redispersible et/ ou un latex. SDUS le terme « poudre polymère redispersible », on comprend une poudre de polymère qui, une fois mélangée à un milieu aqueux, se divise en particules de petite taille, formant une dispersion stable dans l'eau. Parmi les polymères entrant dans la composition d'une telle poudre, on peut citer les polymères vinyliques et/ ou acryliques. Le terme «latex » désigne en particulier les polymères latex utilisés habituellement dans les matériaux de construction. On entend par « latex » une émulsion ou dispersion aqueuse d'une ou plusieurs substances polymères naturelles ou synthétiques. On peut citer par exemple les latex élastomères, les latex thermoplastiques et les latex thermodurcissables. A titre d'exemple, on peut citer le polyéthylène, le polyisoprène, le polystyrène, le polychlorure de vinyle, les polybutadiènes, les polyacrylatesde métal alcalin, le poly(acide acrylique), le polymétacrylate de méthyle, le polyacétate de vinyle, le polylaurate de vinyle, un polyacide de vinyle tel que le polyversatate de vinyle, un terpolymère organique tel qu'un copolymère d'acétate de vinyle et d'éthylène, un dérivé de copolymère de styrène et d'acide acrylique, un copolymère de styrène et de butadiène, un copoulymère d'acétate de vinyle et de versât ate de vinyle, un copolymère acryloni tri le/ ester acrylique, un copolymère styrène/ acide acrylique silanilé, un copolymère styrène/ ester acrylique silanisé. L'adjuvant polymérique représente au moins 2% poids, de préférence au moins 7% poids de la composition totale du mortier.
L'adjuvant rhéologique présent dans le mortier selon la présente invention est choisi parmi leséthersde cellulose, les éthers d'amidon et leurs mélanges, tels que l'éthyl cellulose, Γ hydroxyéthyl cellulose, I ' hydroxypropyl cel I ul ose, I ' hydroxyét hyl mét ahyl cel I ul ose,
Γ hydroxypropylméthyl cellulose. Il représente préférentiellement entre 0,4% poids et 1,5%poidsde la composition totale du mortier.
Le mortier peut comprendre des granulats, agrégats ou sables, jouant notamment sur la rhéologie, l'épaisseur, la dureté, l'aspect final et la perméabilité du mortier. Ils sont généralement formés de sables siliceux, calcaires et/ ou si lico- calcaires, présentant généralement une granulométrie comprise entre 100 μιτι et 5 mm. Le taux de tels granulats peut représenter entre 0 et 10 %poids par rapport à la composition totale du mortier. Le mortier peut comprendre des charges inertes, encore appelées fillers, calcaires et/ ou siliceuses se présentant généralement sous forme de poudre dont la granulométrie est inférieure à 120 μιτι. Le taux de fillers dans la composition de mortier représente entre 0 et 20% poids par rapport à la composition totale du mortier.
Le mortier selon l'invention peut également comprendre des additifs ou adjuvants conférant des propriétés particulières. Ils sont choisis parmi des agents rhéologiques tels que les plastifiants ou les superplastifiants, des agents rétenteurs d'eau, des agents épaississants, des agents de protection biocides, des agents dispersants, des pigments, des accélérateurs et/ ou retardateurs, des agents hydrophobes, et d'autres agents permettant d'améliorer la prise, le durcissement et/ ou la stabilité du mortier ou béton après application, d'ajuster la couleur, la maniabilité, la mise en œuvre ou l'imperméabilité. La teneur totale en additifs varie classiquement entre 0,1 et 5%en poids.
Le mortier selon la présente invention se présente sous forme de mélange sec, préférentiellement sous une forme prête à gâcher. Une fois le mélange avec l'eau de gâchage effectué, le mortier devient ainsi applicable sur la surface à revêtir. L'application peut être faite manuellement ou par projection. Le mortier selon la présente invention présente l'avantage d'être projetable sur la surface.
La présente invention a aussi pour objet un revêtement ou enduit mural obtenu par application du mortier gâché décrit ci -dessus. Le revêtement est déposé sur tout ou partie d'un support tel qu'une paroi ou façade de bâtiment sous la forme d'une ou plusieurs couches. L'épaisseur totale du revêtement peut varier entre 1 et 12 cm.
Le revêtement présente une résistance en compression d'au moins
0,35 MPa et une conductivité thermique inférieure ou égale à 55 mW/m.K. De façon préférée, le revêtement présente une résistance en compression d'au moins 0,4 MPa et une conductivité thermique inférieure ou égale à
45 mW/m.K. Les valeurs de résistance en compression et de conductivité thermique mesurées de façon classique après 28 jours. Le support sur lequel le mortier gâché est appliqué peut être fait en différents matériaux, tels que béton, brique, plaque, ciment, panneau de polystyrène, bois, fibro-ciment, laine de roche ou laine de verre, blocs, parpaings, etc. L'application peut être effectuée directement sur le support ou après application d'un primaire d'adhésion si nécessaire.
Le revêtement selon la présente invention peut s'intégrer dans tout procédé d'isolation thermique par l'extérieur et répond aux normes de sécurité dans ce domaine. Il présente l'avantage d'être un revêtement continu, ce qui permet d'éviter les ponts thermiques. Il présente notamment une durabilité et un vieillissement compatible avec son utilisation comme mortier de façade, ne présentant ni dégradation ni fissures à l'issue des cycles de vieillissement décrits par le guide EOTA utilisé pour les procédés d'isolation thermique par l'extérieur avec mortier et/ ou à l'issue des essais de vieillissement artificiels selon les normes NF T 30-049, NF P 84-402 et/ ou EN1015-21.
Les exemples ci -dessous illustrent l'invention sans en limiter la portée.
Exemples
Exemple 1 (selon l'invention)
On réalise deux formulations de mortiers selon la présente invention, en mélangeant les différents constituants donnés dans le tableau 1 dans un mélangeur de type Hobart.
La composition 1 comprend un liant minéral constitué d'un mélange de ciment, de métakaolin (agent pozzolanique) et de chaux aérienne.
La composition 2 comprend un liant minéral constitué d'un mélange de ciment, de laitier (agent pouzzolanique) et de chaux hydraulique. Composition A1 Composition A2
% Volume % % Volume %
Constituants
(poids) (unit) (volume) (poids) (unit) (volume)
Qment blanc 42,5 (CEMEX) 52,72 58,58 7,73 54,5 60,55 10,35
Chaux aérienne (Llierca) 10,0 27,78 3,66 — — — Chaux hydraulique (Saint
— — — 14,94 16,6 2,84 Astier)
Métakaolin (Newchem) 13,92 34,80 4,59 — — —
Laitier (Ecocem) — — — 10,0 11,11 1,90
Biles de polystyrène expansé
12,3 615,0 81,12 9,5 475 81,16 (Manofacturas Pals)
Pigment jaune 0,94 1,18 0,15 0,94 1,18 0,20
Résine type copolymère
acétate de vinyle et éthylène 9,0 18,0 2,38 9,0 18,0 3,07 (Wacker)
Stéarate de magnésium (Union
0,56 1,60 0,21 0,56 1,60 0,27 Derivan) (agent hydrophobe)
Slipon™FiN7002 (agent
0,036 0,19 0,02 0,036 0,19 0,03 entraîneur d'air) (Ashland)
Walocel MK10000 PF30 (éther
0,524 1,05 0,14 0,524 1,05 0,18 de cellulose) (Dow Chemical)
Tableau 1
On prépare les mortiers en mélangeant les différents constituants avec de l'eau. La pâte fraîche est versée dans des moules appropriés, puis mûrie pendant 28 jours (à une température de 22°C et 55% d' humidité relative) avant de subir un séchage final en étuve à 70°C, pendant plusieurs jours, jusqu'à stabilité de la masse de l'échantillon (correspondant à l'élimination de l'eau libre).
La conductivité thermique est ensuite déterminée sur des échantillons de dimension 25x25x4 cm, à l'aide d'un conducti mètre TCA 300DT de Taurus Instruments GmbH, selon la norme EN NF 12664.
La résistance en compression est déterminée avant l'étape de séchage finale à 70°C sur des échantillons de dimension 4x4x16 cm, selon la norme EN 196,1, à l'aide d'un banc de mesures Zwick Z020. Les résultats obtenus sont donnés dans le tableau 2 :
Figure imgf000011_0001
Tableau 2 Ces deux formulations permettent d' obtenir de bons résultats en terme d' isolation t hermique, et également au niveau de leur résistance mécanique.
.Exemple 2 (comparatif),
Des formulations de mortier non conformes à l ' invention ont été préparées de la même manière que dans l ' exemple 1 , et sont décrites dans le tableau 3 ci -dessous.
Composition Cl C2 C3 C4 C5 C6 C7
% Qment blanc 42,5
41 38,92 47,24 37 ,23 36,81 46,71 39,51 (CEMEX)
%chaux aérienne (Llierca) 49,19 34 34 32,52 32,15 23,35 29,9
%métakaolin (Newchem) - - - - - - 7,83
% de billes de polystyrène
5,8 8 10 12 13 14,48 13,03 expansé (Manofacturas Pals)
%de charges de carbonates
- 10,32 - 9,86 9,76 - - de calcium (Omya Qariana)
Pigment jaune 1,25 1,26 1,26 1,21 1,19 - 1,11
%de résine type copolymère
d'acétate de vinyle et
0,84 6 6 5,74 5,67 14,01 5,28 d'éthylène (Dow)
%de stéarate de magnésium
(agent hydrophobe) (Union 0,75 0,75 0,75 0,72 0,71 0,82 0,66 Derivan)
% Slipon™ RN7002 (agent
0,05 0,05 0,05 0,05 0,05 0,05 0,04 entraîneur d'air) (Ashland)
% adjuvant rhéologique
(Tylose MH10001P4) de 1,12 0,7 0,7 0,67 0,66 0,58 0,62 Shinetsu
%volumique de liant 62,83 24,3 22,12 17,35 19,66 13,38 22,49
Rapport volume de
liant/ vol urne de charges 60,41 70,61 75,27 79,02 80,5 82,98 79,89 allégeantes
Tableau 3 Les mesures de conductivité thermique et résistances mécaniques effectuées selon un protocole identique à celui de l'exemple 1 ont été réalisées et les résultats sont regroupés dans le tableau 4. Conductivité Résistance Masse thermique mécanique (MPa) volumique à (mW/m.K) l'état durci
(kg/ m3)
Composition C1 62 0,6 350 (référence)
Composition C2 55 0,5 250
Composition C3 54 0,36 236
Composition C4 48,6 0,26 210
Composition C5 48,2 0,26 200
Composition C6 43,7 0,3 160
Composition C7 47,2 0,31 195
Tableau 4 La composition C1 sert de référence. 3 la quantité de billes de polystyrène expansé augmente dans la formulation du mortier, on constate que la conductivité thermique est améliorée puisqu'elle diminue, au détriment de la résistance mécanique qui chute en dessous de 0,3 MPa.
La composition C6 est une formulation comprenant une quantité importante de billes de polystyrène expansé et également d'adjuvants polymériques : la conductivité thermique est améliorée mais la résistance mécanique ne dépasse pas 0,3 MPa.
Dans la composition C7, la quantité de métakaolin représente 7% poids de la composition totale : même si la conductivité thermique est améliorée par rapport à la composition C5, la résistance mécanique reste autour de 0,3 MPa.

Claims

FEVENDI CATIONS
Mortier isolant allégé présentant une densité inférieure à 300 kg/ m3 à l'état durci comprenant
au moins d'un liant minéral choisi parmi le ciment et la chaux, en une quantité comprise entre 50 et 95%en poids par rapport à la composition totale de mortier,
au moins 1% poids d'un adjuvant polymérique par rapport à la composition totale du mortier,
au moins 0,2% poids d'un adjuvant rhéologique par rapport à la composition totale du mortier et
éventuellement des granulats,
caractérisé en ce qu'il comprend au moins 70% en volume de charges allégeantes ayant une conductivité thermique inférieure à 55 mW/m.K, par rapport à la composition du mortier, les dites charges étant choisies parmi le polystyrène expansé, les aérogels, les microsphères creuses de verre, les billes de verre expansé, les cénosphères, la vermiculite et la perlite et en ce que au moins 10%poidsdudit liant minéral est substitué par un agent pouzzolanique.
Mortier selon la revendication 1 caractérisé en ce qu'il comprend au moins 75%en volume de billes de polystyrène expansé.
Mortier selon l'une des revendications 1 ou 2 caractérisé en ce qu'il comprend en outre un agent porogène.
Mortier selon l'une des revendications caractérisé en ce que le ciment est choisi parmi les ciments Portland, les ciments de mélanges pouzzolaniques comprenant éventuellement des cendres volantes, des laitiers de hauts fourneaux, de la fumée de silice et/ ou des pouzzolanes naturelles, calcinées ou synthétiques, des résidus industriels broyés, des ciments alumineux, des ciments sulfoalumineux, des ciments bélitiques, seuls ou en mélange.
Mortier selon l'une des revendications précédentes caractérisé en ce que la chaux est hydraulique ou aérienne.
6. Mortier selon l'une des revendications précédentes caractérisé en ce que l'agent pouzzolanique est choisi parmi le métakaolin, les laitiers de hauts fourneaux, les cendres volantes et les fumées de silice.
7. Mortier selon l'une des revendications précédentes caractérisé en ce que au moins 25% poids du liant minéral est substitué par du métakaolin.
8. Mortier selon l'une des revendications 1 à 6 caractérisé en ce que au moins 15°/poidsdu liant minéral est substitué par des laitiers de hauts fourneaux.
9. Mortier selon l'une des revendications précédentes caractérisé en ce que le liant est constitué d'un mélange de 20 à70%poidsde ciment, de
0 à 50%poids de chaux et de 3 à 50%poids d'agent pouzzolanique, par rapport à la composition totale du mortier.
10. Mortier selon la revendication 9 caractérisé en ce que le liant est constitué d'un mélange de 30 à 60%poids de ciment, de 20 à 40%poids de chaux et de 5 à 25%poids d'agent pouzzolanique, par rapport à la composition totale du mortier.
11. Mortier selon l'une des revendications précédentes caractérisé en ce que l'adjuvant polymérique est choisi parmi les poudres de polymères redispersibleset les latex.
12. Mortier selon la revendication 11 caractérisé en ce que l'adjuvant polymérique représente au moins 2%poids, de préférence au moins 7% poids de la composition totale du mortier.
13. Mortier selon l'une des revendications précédentes caractérisé en ce que l'adjuvant rhéologique est choisi parmi leséthersde cellulose, les éthers d'amidon et leurs mélanges, tels que l'éthyl cellulose,
1 ' hydroxyét hyl cel I ul ose, I ' hydroxypropyl cel I ul ose,
I ' hydroxyét hyl mét hyl cel I ul ose, I ' hydroxypropyl mét hyl cel I ul ose.
14. Mortier selon l'une des revendications précédentes caractérisé en ce que l'adjuvant rhéologique représente entre 0,3%poidset 1,5%poidsde la composition totale du mortier.
15. Revêtement isolant susceptible d'être obtenu après gâchage à l'eau du mortier selon l'une des revendications précédentes.
16. Revêtement selon la revendication précédente caractérisé en ce qu'il présente une résistance en compression d'au moins 0,35 MPa et une conductivité thermique inférieure ou égale à 55 mW/m.K. et de préférence une résistance en compression d'au moins 0,40 MPa et une conductivité thermique inférieure ou égale à 45 mVW m.K.
PCT/FR2014/050784 2013-04-04 2014-04-02 Composition de mortier isolant WO2014162097A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015147154A RU2662741C2 (ru) 2013-04-04 2014-04-02 Состав изоляционного строительного раствора
MYPI2015703488A MY189772A (en) 2013-04-04 2014-04-02 Insulating mortar composition
BR112015024596-0A BR112015024596B1 (pt) 2013-04-04 2014-04-02 Argamassa isolante reduzida no peso e revestimento isolante
CN201480019697.5A CN105050981A (zh) 2013-04-04 2014-04-02 保温砂浆组合物
EP14722256.6A EP2981512A1 (fr) 2013-04-04 2014-04-02 Composition de mortier isolant
SG11201508191VA SG11201508191VA (en) 2013-04-04 2014-04-02 Insulating mortar composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353034 2013-04-04
FR1353034A FR3004177B1 (fr) 2013-04-04 2013-04-04 Composition de mortier isolant

Publications (1)

Publication Number Publication Date
WO2014162097A1 true WO2014162097A1 (fr) 2014-10-09

Family

ID=48699086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050784 WO2014162097A1 (fr) 2013-04-04 2014-04-02 Composition de mortier isolant

Country Status (9)

Country Link
EP (1) EP2981512A1 (fr)
CN (1) CN105050981A (fr)
AR (1) AR095692A1 (fr)
BR (1) BR112015024596B1 (fr)
FR (1) FR3004177B1 (fr)
MY (1) MY189772A (fr)
RU (1) RU2662741C2 (fr)
SG (1) SG11201508191VA (fr)
WO (1) WO2014162097A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298012A (zh) * 2015-10-16 2016-02-03 江苏长达环保节能科技有限公司 防火免拆锚固现浇砼复合模制保温板
CN106082882A (zh) * 2016-06-29 2016-11-09 北京住总商品混凝土中心 一种高强度保温混凝土及其制备方法
WO2017032412A1 (fr) * 2015-08-26 2017-03-02 Siraso Ab Béton léger et procédé de fabrication
EP3162777A1 (fr) * 2015-10-29 2017-05-03 STO SE & Co. KGaA Composition de liant a efflorescence reduite a faible emission de co2
WO2017071722A1 (fr) * 2015-10-29 2017-05-04 Knauf Gips Kg Mortier de scellement minéral
WO2017077246A1 (fr) * 2015-11-03 2017-05-11 Parexgroup Sa Composition de construction seche projetable en voie humide a l'aide d'une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d'une telle composition
CN106752431A (zh) * 2016-12-07 2017-05-31 长江大学 一种薄涂型水性保温隔热涂料及其制备方法
US20170152182A1 (en) * 2014-06-20 2017-06-01 Ceves-Vergeer Bv Dry mortar mixture with grains of expanded glass
RU2637542C1 (ru) * 2016-10-24 2017-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" Теплоизоляционный раствор пониженной плотности
FR3055133A1 (fr) * 2016-08-19 2018-02-23 Akta Sas Composition de liant pour un beton de faible densite, tel qu'un beton de chanvre, et beton correspondant
RU2646281C1 (ru) * 2017-02-21 2018-03-02 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Вяжущее
US20180148376A1 (en) * 2015-05-31 2018-05-31 Besim Pty Ltd Thermally insulating material
RU2674484C1 (ru) * 2018-01-22 2018-12-11 федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет") Сырьевая смесь для жаростойкого теплоизоляционного торкрет-бетона
WO2021008765A1 (fr) * 2019-07-12 2021-01-21 Franken Maxit Mauermörtel GmbH & Co. Mélange d'enduit à sec pour une isolation pulvérisable
BE1028231B1 (nl) * 2020-10-21 2021-11-23 Aerobel Bv Samenstelling van een isolatiemateriaal en een vast isolatiemateriaal op zich
EP3907204A4 (fr) * 2019-01-02 2022-03-02 Shanghai Shengkui Products Co., Ltd Composition de matière première de plaque d'isolation thermique, plaque d'isolation thermique et procédé de production de plaque d'isolation thermique
WO2022175442A1 (fr) * 2021-02-19 2022-08-25 Glasmit Ip Gmbh I. G. Enduit d'isolation thermique

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201607A1 (fr) * 2016-05-24 2017-11-30 Calvin Chris Formulations de béton léger
CN106747589A (zh) * 2017-01-26 2017-05-31 北京万源恒泰科技有限公司 一种蜂窝保温砂浆及其生产线的混料装置
CN108585705A (zh) * 2018-07-27 2018-09-28 芜湖市棠华建材科技有限公司 一种改性玻璃微珠保温砂浆及其制备方法
CN108947569B (zh) * 2018-08-30 2021-10-01 盛世瑶兰(深圳)科技有限公司 一种高强度空心隔热建筑材料及其应用
CN110330288A (zh) * 2019-06-12 2019-10-15 江苏洋河新城新材料有限责任公司 一种地面保温砂浆及其制备方法
WO2023275266A1 (fr) * 2021-06-30 2023-01-05 Construction Research & Technology Gmbh Composition de coulis de ciment
CN114956716B (zh) * 2022-04-15 2023-03-17 武昌理工学院 轻质复合建筑外墙保温材料及其制备方法
EP4368595A1 (fr) * 2022-11-10 2024-05-15 STO SE & Co. KGaA Procédé de fabrication d'un élément d'isolation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485814A1 (fr) 1990-11-06 1992-05-20 Wachter KG.Hindelang Baustoffwerk Bautechnik Mortier prêt à l'emploi à haute porosité
WO1995026323A1 (fr) * 1994-03-29 1995-10-05 Thierry Lefebvre Materiau composite allege et insonorisant a matrice minerale hydraulique et procede d'elaboration d'un tel materiau
CN101033124A (zh) * 2007-02-09 2007-09-12 上海大学 利用固体废弃物制备保温砂浆的方法
DE102006019056A1 (de) * 2006-04-25 2007-10-31 Schwenk Putztechnik Gmbh & Co. Kg Verwendung einer Mörtelmischung als Ansetzmörtel
FR2942473A1 (fr) * 2009-02-26 2010-08-27 Saint Gobain Weber France Mortier isolant pulverulent, mortier isolant en couche
CN101921091A (zh) * 2010-06-29 2010-12-22 上海大学 利用废弃聚氨酯泡沫塑料制备干粉保温材料的方法
CN102010166A (zh) * 2010-11-18 2011-04-13 重庆思贝肯节能技术开发有限公司 一种微膨胀无机保温砂浆制备方法
CN102093020A (zh) * 2010-12-03 2011-06-15 吉林省志惠防腐保温工程有限公司 聚氨酯专用轻质防火防水保温浆料
FR2955790A1 (fr) * 2010-02-03 2011-08-05 Saint Gobain Weber Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
EP2404885A2 (fr) * 2010-07-06 2012-01-11 Quick-Mix Gruppe Gmbh & Co. Kg Nouveaux mélanges de matériaux de construction
EP2476659A1 (fr) * 2010-07-08 2012-07-18 Shenzhen Grandland Decoration Group Co., Ltd. Mortier de plâtrage de poids léger et économe en énergie et procédé de construction de celui-ci
CN101575191B (zh) * 2008-05-08 2012-09-05 四川蜂巢科技有限公司 一种用于建筑墙体的膨胀玻化微珠保温材料及生产工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134666C1 (ru) * 1997-05-15 1999-08-20 Открытое акционерное общество Московского института материаловедения и эффективных технологий (ОАО "Московский ИМЭТ") Изоляционно-декоративная штукатурная смесь
RU2002113323A (ru) * 2002-05-21 2004-02-27 ОАО Всероссийский федеральный технологический институт "ВНИИЖЕЛЕЗОБЕТОН" Сырьевая смесь для получения штукатурного покрытия
RU2307809C1 (ru) * 2006-02-01 2007-10-10 Общество с ограниченной ответственностью "Органикс-Кварц" Сухая строительная смесь (варианты)
EA017880B1 (ru) * 2009-10-27 2013-03-29 Компания "Матанат А" Сухая декоративно-отделочная смесь

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485814A1 (fr) 1990-11-06 1992-05-20 Wachter KG.Hindelang Baustoffwerk Bautechnik Mortier prêt à l'emploi à haute porosité
WO1995026323A1 (fr) * 1994-03-29 1995-10-05 Thierry Lefebvre Materiau composite allege et insonorisant a matrice minerale hydraulique et procede d'elaboration d'un tel materiau
DE102006019056A1 (de) * 2006-04-25 2007-10-31 Schwenk Putztechnik Gmbh & Co. Kg Verwendung einer Mörtelmischung als Ansetzmörtel
CN101033124A (zh) * 2007-02-09 2007-09-12 上海大学 利用固体废弃物制备保温砂浆的方法
CN101575191B (zh) * 2008-05-08 2012-09-05 四川蜂巢科技有限公司 一种用于建筑墙体的膨胀玻化微珠保温材料及生产工艺
FR2942473A1 (fr) * 2009-02-26 2010-08-27 Saint Gobain Weber France Mortier isolant pulverulent, mortier isolant en couche
WO2011095718A1 (fr) 2010-02-03 2011-08-11 Saint-Gobain Weber Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
FR2955790A1 (fr) * 2010-02-03 2011-08-05 Saint Gobain Weber Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
CN101921091A (zh) * 2010-06-29 2010-12-22 上海大学 利用废弃聚氨酯泡沫塑料制备干粉保温材料的方法
EP2404885A2 (fr) * 2010-07-06 2012-01-11 Quick-Mix Gruppe Gmbh & Co. Kg Nouveaux mélanges de matériaux de construction
EP2476659A1 (fr) * 2010-07-08 2012-07-18 Shenzhen Grandland Decoration Group Co., Ltd. Mortier de plâtrage de poids léger et économe en énergie et procédé de construction de celui-ci
CN102010166A (zh) * 2010-11-18 2011-04-13 重庆思贝肯节能技术开发有限公司 一种微膨胀无机保温砂浆制备方法
CN102093020A (zh) * 2010-12-03 2011-06-15 吉林省志惠防腐保温工程有限公司 聚氨酯专用轻质防火防水保温浆料

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662115B2 (en) 2014-06-20 2020-05-26 Ceves-Vergeer Bv Dry mortar mixture with grains of expanded glass
US10364186B2 (en) * 2014-06-20 2019-07-30 Ceves-Vergeer Bv Dry mortar mixture with grains of expanded glass
US20170152182A1 (en) * 2014-06-20 2017-06-01 Ceves-Vergeer Bv Dry mortar mixture with grains of expanded glass
US20180148376A1 (en) * 2015-05-31 2018-05-31 Besim Pty Ltd Thermally insulating material
WO2017032412A1 (fr) * 2015-08-26 2017-03-02 Siraso Ab Béton léger et procédé de fabrication
JP2018528920A (ja) * 2015-08-26 2018-10-04 シラソ エービー 軽量コンクリートおよび製造方法
CN105298012A (zh) * 2015-10-16 2016-02-03 江苏长达环保节能科技有限公司 防火免拆锚固现浇砼复合模制保温板
EP3162777A1 (fr) * 2015-10-29 2017-05-03 STO SE & Co. KGaA Composition de liant a efflorescence reduite a faible emission de co2
WO2017071722A1 (fr) * 2015-10-29 2017-05-04 Knauf Gips Kg Mortier de scellement minéral
EP3640224A1 (fr) * 2015-10-29 2020-04-22 STO SE & Co. KGaA Composition de liant a efflorescence reduite a faible emission de co2
GB2557859A (en) * 2015-11-03 2018-06-27 Parexgroup Sa Dry construction composition wet-sprayable by means of a screw pump and containing a binder and a biosourced filler, and preparation and uses of such
WO2017077246A1 (fr) * 2015-11-03 2017-05-11 Parexgroup Sa Composition de construction seche projetable en voie humide a l'aide d'une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d'une telle composition
ES2676912R1 (es) * 2015-11-03 2018-09-21 Parexgroup Sa Composición de construcción seca proyectable en vía húmeda con la ayuda de una bomba a tornillo y que comprende un ligante y una carga de origen biológico - preparación y aplicación de dicha composición
US11845696B2 (en) 2015-11-03 2023-12-19 Parexgroup Sa Dry construction composition wet-sprayable by means of a screw pump and containing a binder and a biosourced filler, and preparation and uses of such a composition
CN106082882A (zh) * 2016-06-29 2016-11-09 北京住总商品混凝土中心 一种高强度保温混凝土及其制备方法
FR3055133A1 (fr) * 2016-08-19 2018-02-23 Akta Sas Composition de liant pour un beton de faible densite, tel qu'un beton de chanvre, et beton correspondant
RU2637542C1 (ru) * 2016-10-24 2017-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" Теплоизоляционный раствор пониженной плотности
CN106752431A (zh) * 2016-12-07 2017-05-31 长江大学 一种薄涂型水性保温隔热涂料及其制备方法
RU2646281C1 (ru) * 2017-02-21 2018-03-02 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Вяжущее
RU2674484C1 (ru) * 2018-01-22 2018-12-11 федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет") Сырьевая смесь для жаростойкого теплоизоляционного торкрет-бетона
EP3907204A4 (fr) * 2019-01-02 2022-03-02 Shanghai Shengkui Products Co., Ltd Composition de matière première de plaque d'isolation thermique, plaque d'isolation thermique et procédé de production de plaque d'isolation thermique
WO2021008765A1 (fr) * 2019-07-12 2021-01-21 Franken Maxit Mauermörtel GmbH & Co. Mélange d'enduit à sec pour une isolation pulvérisable
BE1028231B1 (nl) * 2020-10-21 2021-11-23 Aerobel Bv Samenstelling van een isolatiemateriaal en een vast isolatiemateriaal op zich
WO2022084898A1 (fr) * 2020-10-21 2022-04-28 Aerobel Bv Composition d'un matériau isolant et matériau isolant solide en lui-même
WO2022175442A1 (fr) * 2021-02-19 2022-08-25 Glasmit Ip Gmbh I. G. Enduit d'isolation thermique

Also Published As

Publication number Publication date
FR3004177A1 (fr) 2014-10-10
MY189772A (en) 2022-03-04
CN105050981A (zh) 2015-11-11
EP2981512A1 (fr) 2016-02-10
RU2015147154A3 (fr) 2018-03-01
BR112015024596A2 (pt) 2017-07-18
AR095692A1 (es) 2015-11-04
BR112015024596B1 (pt) 2021-09-08
RU2015147154A (ru) 2017-05-15
FR3004177B1 (fr) 2015-11-20
SG11201508191VA (en) 2015-11-27
RU2662741C2 (ru) 2018-07-30

Similar Documents

Publication Publication Date Title
EP2981512A1 (fr) Composition de mortier isolant
EP2401239B1 (fr) Mortier isolant pulverulent, mortier isolant en couche
EP2822911B1 (fr) Composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
EP3442929A1 (fr) Composition de mortier fortement allege et isolant thermique
JP5026250B2 (ja) 軽量モルタル
EP2822912A1 (fr) Utilisation d'au moins un polymere superabsorbant -psa- (b), dans une composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
EP2523928A1 (fr) Adjuvant moussant pour la preparation de mousses minerales d'enduits, de mortiers et betons, mousses ainsi obtenues et produits durcis issus de ces mousses
MX2013013835A (es) Compuestos de eter de celulosa para desempeño de temperatura caliente mejorado en morteros de sistemas de acabado de aislamiento externo (eifs).
FR2973024A1 (fr) Composition cimentaire seche pour la preparation d'une formulation humide d'enduit, de mortier ou de beton sans efflorescence
JP4947716B2 (ja) 建築用セメントモルタル
JP2009096657A (ja) 左官用セメントモルタル
EP3325424A1 (fr) Procede de preparation d'un béton ou mortier allegé contenant de la glycerine
EP0760806A1 (fr) Materiau composite allege et insonorisant a matrice minerale hydraulique et procede d'elaboration d'un tel materiau
EP2531462B1 (fr) Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
CN108285308A (zh) 一种保温砂浆、保温层结构及保温外墙体结构
JP2009137787A (ja) 低温用軽量モルタル
JP2002293601A (ja) 軽量モルタル材の製造方法
CN110642584A (zh) 一种轻质隔音高弹性胶泥及其制备方法
CN116102287B (zh) 一种建筑用粘结材料及其制备方法
JP2013119498A (ja) ポリマーセメントモルタル及び補修用モルタル
RU2708138C1 (ru) Смесь для изготовления цементсодержащего строительного материала
JP2017114735A (ja) 仕上用モルタル
RU2168479C2 (ru) Состав раствора для герметизации стыков
CN113121164A (zh) 一种防水抗裂抹面砂浆及其加工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019697.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14722256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P1319/2015

Country of ref document: AE

Ref document number: 2014722256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506187

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015147154

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024596

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024596

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150924