WO2014156543A1 - 冷却板、その製法及び半導体製造装置用部材 - Google Patents

冷却板、その製法及び半導体製造装置用部材 Download PDF

Info

Publication number
WO2014156543A1
WO2014156543A1 PCT/JP2014/055813 JP2014055813W WO2014156543A1 WO 2014156543 A1 WO2014156543 A1 WO 2014156543A1 JP 2014055813 W JP2014055813 W JP 2014055813W WO 2014156543 A1 WO2014156543 A1 WO 2014156543A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cooling plate
silicon carbide
composite material
dense composite
Prior art date
Application number
PCT/JP2014/055813
Other languages
English (en)
French (fr)
Inventor
明日美 神藤
勝弘 井上
勝田 祐司
俊 片居木
真悟 天野
博哉 杉本
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201480001099.5A priority Critical patent/CN104254913B/zh
Priority to JP2014530025A priority patent/JP5666749B1/ja
Priority to KR20147030617A priority patent/KR101483921B1/ko
Publication of WO2014156543A1 publication Critical patent/WO2014156543A1/ja
Priority to US14/515,800 priority patent/US9257315B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a cooling plate, a manufacturing method thereof, and a member for a semiconductor manufacturing apparatus.
  • ⁇ Cooling plates are joined to the electrostatic chuck, which is heated during the semiconductor process, for heat dissipation.
  • aluminum nitride may be used as the electrostatic chuck material
  • aluminum may be used as the cooling plate material
  • resin may be used as the bonding material.
  • the difference in coefficient of linear thermal expansion between aluminum nitride and aluminum is very large.
  • the coefficient of linear thermal expansion of aluminum nitride is 5.0 ppm / K (RT-800 ° C: Uchida Otsukuru, “Ceramic Physics”), aluminum wire
  • the coefficient of thermal expansion is 31.1 ppm / K (RT-800 ° C., edited by the Japan Society of Thermophysical Properties, “New Edition Thermophysical Handbook”).
  • a soft resin is used as a bonding material, the stress caused by the difference in linear thermal expansion coefficient can be relieved.
  • a resin is used as a bonding material.
  • the resin is an organic material, heat dissipation is low and it is easily decomposed at high temperatures. Therefore, it is generally difficult to use in high temperature processes. Therefore, it has been confirmed that metal is effective as a high heat dissipation bonding material instead of resin.
  • This method of joining with metal is called metal joining.
  • As a bonding material for metal bonding for example, aluminum is known.
  • the bonding material for metal bonding that is, the metal is not as soft as resin
  • the stress caused by a large difference in linear thermal expansion coefficient between the electrostatic chuck and the cooling plate cannot be relieved.
  • a cooling plate material suitable for metal bonding with an electrostatic chuck that is, a new material that has a small difference in linear thermal expansion coefficient from that of aluminum nitride and that has the necessary characteristics as a cooling plate. It was. Properties required for the cooling plate include high thermal conductivity in order to maintain heat dissipation, high density in order to pass the coolant, and high strength in order to withstand processing and the like.
  • the present invention has been made to solve such problems, and in a cooling plate that has a refrigerant passage inside and is used for cooling an AlN ceramic member, the difference in linear thermal expansion coefficient from AlN is extremely small.
  • the main purpose is to provide a material having sufficiently high thermal conductivity, denseness and strength.
  • the cooling plate of the present invention is A cooling plate having a refrigerant passage formed therein and used for cooling the AlN ceramic member,
  • the top three of the largest contents are silicon carbide, titanium silicon carbide, and titanium carbide.
  • the order of arrangement is from the largest to the smallest, and the silicon carbide is contained in an amount of 51 to 68% by mass.
  • the top three of the largest contents are silicon carbide, titanium silicon carbide, and titanium carbide.
  • a first substrate made of a dense composite material that does not contain titanium silicide and has an open porosity of 1% or less;
  • a second substrate made of the dense composite material and having a groove serving as the coolant passage on a surface facing the first substrate;
  • a metal bonding layer formed by hot-pressure bonding the two substrates with a metal bonding material interposed between the first substrate and the surface of the second substrate provided with the groove; It is equipped with.
  • each substrate bonded by a metal bonding layer is made of the dense composite material described above.
  • This dense composite material has a very small difference in linear thermal expansion coefficient from AlN, and has a sufficiently high thermal conductivity, denseness and strength. For this reason, such a member for a semiconductor manufacturing apparatus in which a cooling plate and an AlN ceramic member are joined does not peel off the cooling plate and the AlN ceramic member even when used repeatedly between low and high temperatures, and has high heat dissipation performance. While maintaining, the service life is extended.
  • TCB Thermal Compression Bonding
  • the metal bonding layer employs an aluminum alloy bonding material containing Mg or Si and Mg as the metal bonding material, and at a temperature lower than the solidus temperature of the bonding material. It is preferably formed by hot press bonding. In this way, better cooling performance can be obtained.
  • the dense composite material preferably contains 23 to 40% by mass of the titanium silicon carbide and 4 to 12% by mass of the titanium carbide.
  • the dense composite material is preferably present in the gap between the silicon carbide particles so that at least one of the titanium silicon carbide and the titanium carbide covers the surface of the silicon carbide particles.
  • the dense composite material preferably has a difference in average linear thermal expansion coefficient at 40 ° C. to 570 ° C. from AlN of 0.5 ppm / K or less.
  • the dense composite material preferably has an average linear thermal expansion coefficient of 5.4 to 6.0 ppm / K at 40 ° C. to 570 ° C.
  • the dense composite material preferably has a thermal conductivity of 100 W / m ⁇ K or more and a four-point bending strength of 300 MPa or more.
  • the manufacturing method of the cooling plate of the present invention is as follows: A method of manufacturing a cooling plate having a coolant passage formed therein and used for cooling an AlN ceramic member, (A) The top three of the materials with the highest content are silicon carbide, titanium silicon carbide, and titanium carbide, and the order of the arrangement is from the highest content to the lowest.
  • the top three of the materials with the highest content are silicon carbide, titanium silicon carbide, and titanium carbide, and the order of the arrangement is from the highest content to the lowest.
  • the above-described cooling plate can be easily manufactured.
  • a bonding material of an aluminum alloy containing Mg or containing Si and Mg is adopted as the metal bonding material, and the solidus temperature or lower of the bonding material. It is preferable to perform hot-pressure bonding at a temperature of In this way, a cooling plate with better cooling performance can be obtained.
  • the semiconductor manufacturing apparatus member of the present invention is An electrostatic chuck made of AlN with a built-in electrostatic electrode and heater electrode; Any of the cooling plates described above; A cooling plate-chuck bonding layer formed by hot-pressure bonding a metal bonding material between the surface of the first substrate of the cooling plate and the electrostatic chuck; It is equipped with.
  • the cooling plate and the AlN ceramic member are not peeled off, and the service life is extended while maintaining high heat dissipation performance. Further, the heat of the electrostatic chuck can be efficiently released to the cooling plate.
  • the cooling plate-chuck bonding layer employs an aluminum alloy bonding material containing Mg or Si and Mg as the metal bonding material, and a solid phase of the bonding material. It is preferably formed by hot-pressure bonding at a temperature below the line temperature.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 6 is an SEM image (reflection electron image) of the dense composite material obtained in Experimental Example 5.
  • 18 is an SEM image (reflection electron image) of the dense composite material obtained in Experimental Example 15.
  • FIG. 1 is a plan view of a member 10 for a semiconductor manufacturing apparatus
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the semiconductor manufacturing apparatus member 10 includes an AlN electrostatic chuck 20 capable of attracting a silicon wafer W subjected to plasma processing, and a cooling plate made of a dense composite material having a linear thermal expansion coefficient similar to that of AlN. 30 and a cooling plate-chuck bonding layer 40 for bonding the electrostatic chuck 20 and the cooling plate 30 to each other.
  • the electrostatic chuck 20 is a disc-shaped AlN plate having an outer diameter smaller than the outer diameter of the wafer W, and includes an electrostatic electrode 22 and a heater electrode 24.
  • the electrostatic electrode 22 is a planar electrode to which a DC voltage can be applied by an external power source (not shown) via a rod-shaped power supply terminal 23.
  • a DC voltage is applied to the electrostatic electrode 22
  • the wafer W is attracted and fixed to the wafer mounting surface 20a by the Johnson-Rahbek force.
  • the application of the DC voltage is canceled, the wafer W is attracted and fixed to the wafer mounting surface 20a. Is released.
  • the heater electrode 24 is patterned, for example, in the manner of a single stroke so as to be wired over the entire surface of the electrostatic chuck 20, and generates heat when a voltage is applied to heat the wafer W.
  • a voltage can be applied to the heater electrode 24 by a bar-shaped power supply terminal 25 that reaches one end and the other end of the heater electrode 24 from the back surface of the cooling plate 30.
  • the cooling plate 30 is a disk-like plate whose outer diameter is the same as or slightly larger than that of the electrostatic chuck 20, and includes a first substrate 31, a second substrate 32, a third substrate 33, a first substrate 31 and a second substrate. 32, a first metal bonding layer 34 formed between the second substrate 32 and the third metal bonding layer 35 formed between the second substrate 32 and the third substrate 33, a refrigerant passage 36 through which a refrigerant can flow, It has.
  • the first to third substrates 31, 32, and 33 are formed of a dense composite material. In this dense composite material, silicon carbide, titanium silicon carbide, and titanium carbide are the top three in terms of content, and the order of the order is from high to low.
  • the second substrate 32 is formed with a punched portion 32a.
  • the punched portion 32 a is formed by punching from one surface of the second substrate 32 to the other surface so as to have the same shape as the coolant passage 36.
  • the first and second metal bonding layers 34, 35 are formed between the first substrate 31 and one surface of the second substrate 32, and between the other surface of the second substrate 32 and the third substrate 33.
  • Each of the substrates 31 to 33 is formed by hot-pressure bonding with a —Si—Mg-based metal bonding material interposed therebetween.
  • the cooling plate 30 has a refrigerant supply hole 46a that extends from a surface opposite to the surface on which the electrostatic chuck 20 is bonded to the inlet 36a and the outlet 36b of the refrigerant passage 36 and extends in a direction orthogonal to the wafer mounting surface 20a.
  • a refrigerant discharge hole 46b is formed.
  • terminal insertion holes 43 and 45 are formed in the cooling plate 30 so as to penetrate the surface to which the electrostatic chuck 20 is bonded and the opposite surface.
  • the terminal insertion hole 43 is a hole for inserting the power supply terminal 23 of the electrostatic electrode 22, and the terminal insertion hole 45 is a hole for inserting the power supply terminal 25 of the heater electrode 24.
  • the cooling plate-chuck bonding layer 40 is hot-pressure bonded by sandwiching an Al—Si—Mg-based or Al—Mg-based metal bonding material between the first substrate 31 of the cooling plate 30 and the electrostatic chuck 20. It is formed by.
  • the power supply terminals 23 and 25 are configured not to directly contact the cooling plate 30, the first and second metal bonding layers 34 and 35, and the cooling plate-chuck bonding layer 40.
  • the semiconductor manufacturing apparatus member 10 has a gas supply hole for supplying He gas to the back surface of the wafer W and a lift pin insertion hole for inserting a lift pin for lifting the wafer W from the wafer mounting surface 20a. You may provide so that the member 10 for semiconductor manufacturing apparatuses may be penetrated in the direction orthogonal to the mounting surface 20a.
  • the wafer W is mounted on the wafer mounting surface 20a with the semiconductor manufacturing apparatus member 10 installed in a vacuum chamber (not shown). Then, the inside of the vacuum chamber is depressurized by a vacuum pump so as to obtain a predetermined degree of vacuum, a direct current voltage is applied to the electrostatic electrode 22 to generate a Johnson-Rahbek force, and the wafer W is placed on the wafer mounting surface 20a. Adsorb and fix. Next, the inside of the vacuum chamber is set to a reactive gas atmosphere at a predetermined pressure (for example, several tens to several hundreds Pa), and plasma is generated in this state. Then, the surface of the wafer W is etched by the generated plasma. A controller (not shown) controls the power supplied to the heater electrode 24 so that the temperature of the wafer W becomes a preset target temperature.
  • a predetermined pressure for example, several tens to several hundreds Pa
  • FIG. 5A and 5B are explanatory views of the second substrate 32, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line BB of FIG.
  • the first to third substrates 31 to 33 which are disk-shaped thin plates, are manufactured using the dense composite material described above (see FIG. 3A).
  • punching is performed from one surface of the second substrate 32 to the other surface so as to have the same shape as the coolant passage 36, and a punching portion 32a is formed in the second substrate 32 (see FIGS. 3B and 5).
  • the punched portion 32a can be formed by a machining center, a water jet, electric discharge machining, or the like.
  • the metal bonding material 51 is sandwiched between one surface of the first substrate 31 and the second substrate 32, and the metal bonding material 52 is interposed between the other surface of the second substrate 32 and the third substrate 33.
  • the first to third substrates 31 to 32 are hot-press bonded (see FIG. 3D). Thereby, the punched portion 32 a becomes the coolant passage 36, the first metal bonding layer 34 is formed between the first substrate 31 and the second substrate 32, and the first metal bonding layer 34 is formed between the second substrate 32 and the third substrate 33. The two-metal bonding layer 35 is formed, and the cooling plate 30 is completed. At this time, as the metal bonding materials 51 and 52, it is preferable to use an Al—Si—Mg-based or Al—Mg-based bonding material.
  • Thermocompression bonding (TCB) using these bonding materials takes 1 to 5 hours at a pressure of 0.5 to 2.0 kg / mm 2 with each substrate heated to a temperature below the solidus temperature in a vacuum atmosphere. And pressurizing. Thereafter, a coolant supply hole 46a extending from the back surface side of the cooling plate 30 to the inlet 36a of the coolant passage 36 and a coolant discharge hole 46b extending from the back surface side of the cooling plate 30 to the outlet 36b of the coolant passage 36 are formed. Terminal insertion holes 43 and 45 penetrating the front and back surfaces of 30 are formed (see FIG. 3E). In FIG. 3E, the inlet 36a and outlet 36b of the refrigerant passage 36, the refrigerant supply hole 46a, and the refrigerant discharge hole 46b are formed. (See Figure 1 for these).
  • the electrostatic chuck 20 in which the electrostatic electrode 22 and the heater electrode 24 are embedded and the power supply terminals 23 and 25 are attached is manufactured (see FIG. 4A).
  • Such an electrostatic chuck 20 can be prepared in accordance with, for example, the description of JP-A-2006-196864.
  • a metal bonding material 28 is sandwiched between the surface of the electrostatic chuck 20 opposite to the wafer mounting surface 20a and the surface of the first substrate 31 of the cooling plate 30, and the power supply terminals 23 and 25 are respectively inserted into the terminal insertion holes.
  • the electrostatic chuck 20 and the cooling plate 30 are hot-pressure bonded (see FIG. 4A).
  • a cooling plate-chuck bonding layer 40 is formed between the electrostatic chuck 20 and the cooling plate 30 to complete the semiconductor manufacturing apparatus member 10 (see FIG. 4B).
  • the metal bonding material 28 it is preferable to perform TCB using an Al—Si—Mg-based or Al—Mg-based bonding material as described above.
  • the cooling plate 30 is made of the above-mentioned dense composite material in which the first to third substrates 31 to 33 bonded by the first and second metal bonding layers 34 and 35 are formed.
  • This dense composite material has a very small difference in linear thermal expansion coefficient from AlN, and has a sufficiently high thermal conductivity, denseness and strength. Therefore, the semiconductor manufacturing apparatus member 10 in which the cooling plate 30 and the electrostatic chuck 20 which is an AlN ceramic member are joined can be used even when the cooling plate 30 and the electrostatic chuck 20 are repeatedly used between a low temperature and a high temperature. As a result, the service life is extended while maintaining high heat dissipation performance.
  • first to third substrates 31 to 33 made of the above-mentioned dense composite material are difficult to be joined by electron beam welding or the like, and cooling performance is lowered when joined by a resin adhesive, Since the bonding is performed by TCB using a metal bonding material, bonding can be performed relatively easily, and good cooling performance can be obtained.
  • the first to third substrates 31 to 33 are sufficiently dense, the cooling liquid and the cooling gas can be passed through the cooling plate 30, and the cooling efficiency is further improved. Furthermore, since the first to third substrates 31 to 33 have sufficiently high strength, they can withstand processing and bonding when manufacturing the semiconductor manufacturing apparatus member 10, and are resistant to stress caused by temperature changes during use. Can withstand enough.
  • FIG. 6 is a cross-sectional view of the semiconductor manufacturing apparatus member 110.
  • the semiconductor manufacturing apparatus member 110 includes an AlN electrostatic chuck 20 capable of attracting a silicon wafer W subjected to plasma processing, and a cooling plate made of a dense composite material having a linear thermal expansion coefficient similar to that of AlN. 130, and a cooling plate-chuck bonding layer 40 for bonding the cooling plate 130 and the electrostatic chuck 20 to each other.
  • the cooling plate 130 is a disk-like plate whose outer diameter is the same as or slightly larger than that of the electrostatic chuck 20, and is formed between the first substrate 131, the second substrate 132, and the first substrate 131 and the second substrate 132. And a coolant passage 136 through which the coolant can flow.
  • the first and second substrates 131 and 132 are made of the same material as the dense composite material used in the first embodiment.
  • the second substrate 132 has a groove serving as a coolant passage 136 on the surface facing the first substrate 131.
  • the metal bonding layer 134 is formed by sandwiching an Al—Si—Mg-based or Al—Mg-based metal bonding material between the first substrate 131 and the surface of the second substrate 132 where the groove 132a is provided. , 132 are formed by hot-pressure bonding.
  • the cooling plate 130 is formed with a refrigerant supply hole and a refrigerant discharge hole that are connected to the inlet and the outlet of the refrigerant passage 136, respectively. Further, terminal insertion holes 43 and 45 are formed in the cooling plate 130 as in the first embodiment. Since the cooling plate-chuck bonding layer 40 is the same as that of the first embodiment, the description thereof is omitted.
  • the usage example of the member 110 for a semiconductor manufacturing apparatus is the same as that of the first embodiment, and thus the description thereof is omitted.
  • FIG. 7 is a manufacturing process diagram of the member 110 for a semiconductor manufacturing apparatus
  • FIG. 8 is an explanatory view of the second substrate 132
  • (a) is a plan view
  • (b) is a CC cross-sectional view.
  • the first and second substrates 131 and 132 which are disk-shaped thin plates, are manufactured using the dense composite material described above (see FIG. 7A).
  • channel 132a used as the refrigerant path 136 is formed in the surface facing the 1st board
  • the groove 132a can be formed by a machining center, a water jet, electric discharge machining, or the like.
  • the metal bonding material 61 is sandwiched between the first substrate 131 and the surface of the second substrate 132 where the groove 132a is formed (see FIG. 7C), and the first and second substrates 131 and 132 are heated. Pressure bonding is performed (see FIG. 7D).
  • the groove 132a becomes the coolant passage 36
  • the metal bonding layer 134 is formed between the first substrate 131 and the second substrate 132
  • the cooling plate 130 is completed.
  • the first and second substrates 131 and 132 joined by the metal joining layer 134 are made of the dense composite material described above.
  • the composite material has a very small difference in linear thermal expansion coefficient from AlN, and has sufficiently high thermal conductivity, denseness and strength. Therefore, the semiconductor manufacturing apparatus member 110 in which the cooling plate 130 and the electrostatic chuck 20 which is an AlN ceramic member are joined can be used even when the cooling plate 130 and the electrostatic chuck 20 are repeatedly used between a low temperature and a high temperature. As a result, the service life is extended while maintaining high heat dissipation performance.
  • first and second substrates 131 and 132 made of the above-described dense composite material are difficult to be joined by electron beam welding or the like, and if they are joined with a resin adhesive, the cooling performance is lowered. Since the bonding is performed by TCB using a metal bonding material, bonding can be performed relatively easily, and good cooling performance can be obtained.
  • first and second substrates 131 and 132 are sufficiently dense, the cooling liquid and the cooling gas can be passed through the cooling plate 130, and the cooling efficiency is further improved. Furthermore, since the first and second substrates 131 and 132 have sufficiently high strength, they can withstand the processing and joining when manufacturing the semiconductor manufacturing apparatus member 110, and are resistant to stress caused by temperature changes during use. Can withstand enough.
  • the dense composite materials used in the above-described embodiments have the highest content of silicon carbide, titanium silicon carbide, and titanium carbide, and the order of arrangement is from the highest content to the lowest.
  • Silicon carbide is contained in an amount of 51 to 68% by mass, titanium silicide is not contained, and the open porosity is 1% or less.
  • the content is a value obtained based on the peak of X-ray diffraction.
  • the open porosity is a value measured by Archimedes method using pure water as a medium.
  • Silicon carbide is contained in an amount of 51 to 68% by mass.
  • the content is less than 51% by mass, the difference in thermal expansion coefficient from aluminum nitride becomes large, which is not preferable.
  • the open porosity becomes large and the strength does not become sufficiently high.
  • Titanium silicon carbide is contained in a smaller amount than silicon carbide, and titanium carbide is contained in a smaller amount than titanium silicon carbide.
  • the titanium silicon carbide is preferably Ti 3 SiC 2 (TSC), and the titanium carbide is preferably TiC.
  • TSC Ti 3 SiC 2
  • At least one of titanium silicon carbide and titanium carbide exists in the gap between the silicon carbide particles so as to cover the surface of the silicon carbide particles.
  • the silicon carbide particles are dispersed at a high frequency, pores are likely to remain between the silicon carbide particles.
  • the silicon carbide particle surface is covered with other particles as described above, the pores are easily filled. It is preferable because it tends to be a dense and high-strength material.
  • the dense composite material used in the above-described embodiment has the same linear thermal expansion coefficient as that of aluminum nitride. Therefore, when a member made of this dense composite material and a member made of aluminum nitride are bonded (for example, metal bonding), even if they are repeatedly used between low and high temperatures, they are difficult to peel off.
  • the dense composite material preferably has a difference in average linear thermal expansion coefficient of 40 to 570 ° C. from aluminum nitride of 0.5 ppm / K or less.
  • the average linear thermal expansion coefficient of this dense composite material at 40 to 570 ° C. is more preferably 5.4 to 6.0 ppm / K.
  • the central value is a linear thermal expansion coefficient of 5.5 ppm / K (40 to 570 ° C.), which is a value between the two, and the difference between the average linear thermal expansion coefficients is 0.5 ppm / K or less.
  • the object was to provide an aluminum sintered body.
  • the dense composite material used in the above-described embodiment is excellent in thermal conductivity, but specifically, the thermal conductivity is preferably 100 W / m ⁇ K or more. In this way, when the member made of this dense composite material and the member made of aluminum nitride are metal-bonded, the heat of aluminum nitride can be efficiently released.
  • the dense composite material used in the above-described embodiment is excellent in strength, but specifically, the four-point bending strength is preferably 300 MPa or more. If it carries out like this, it will become easy to apply the member produced with this dense composite material to a cooling plate etc.
  • the method for producing a dense composite material used in the above-described embodiment is, for example, (a) containing 43 to 52% by mass of silicon carbide and 33 to 45% by mass of titanium carbide, with the balance being 18% by mass or less of titanium silicide. And / or a step of producing a powder mixture containing 13% by mass or less of silicon, and (b) sintering the powder mixture by hot pressing under an inert atmosphere, thereby producing the above-mentioned dense composite material. And a step of obtaining.
  • the particle size of the raw material powder of silicon carbide is not particularly limited, but the average particle size is preferably 2 to 35 ⁇ m. Further, only coarse particles (for example, an average particle size of 15 to 35 ⁇ m) may be used, only fine particles (for example, an average particle size of 2 to 10 ⁇ m) may be used, or coarse particles and fine particles may be mixed. It may be used.
  • the average particle size of SiC is smaller than 2 ⁇ m, the composition having a large SiC ratio in the raw material increases the surface area of the SiC particles, so that the sinterability is lowered and it is difficult to obtain a dense sintered body.
  • silicon carbide, titanium carbide, or titanium silicide may be used as the raw material powder.
  • the material powder is appropriately selected from silicon carbide, titanium carbide, titanium silicide, titanium, and silicon. It may be used.
  • examples of the inert atmosphere include a vacuum atmosphere, a nitrogen gas atmosphere, and an argon gas atmosphere.
  • the pressure is preferably 100 ⁇ 400kgf / cm 2 at the time of hot press, and more preferably 200 ⁇ 300kgf / cm 2.
  • the temperature during hot pressing is preferably 1550 to 1800 ° C, more preferably 1600 to 1750 ° C. The relationship between the pressure and the temperature may be appropriately set within this range depending on the composition of the powder mixture, the particle size of the raw material powder, and the like.
  • the powder mixture when the content rate of silicon carbide in the powder mixture is low, the powder mixture is easily sintered, so that it is densified under relatively mild hot press conditions.
  • the content rate of silicon carbide in the powder mixture when the content rate of silicon carbide in the powder mixture is high, the powder mixture is difficult to sinter, and thus is densified under relatively severe hot pressing conditions.
  • silicon carbide when silicon carbide uses only coarse grains, it is densified under relatively severe hot press conditions. However, when mixed with coarse grains and fine grains, it is densified under relatively mild hot press conditions.
  • the firing time may be appropriately set according to hot press conditions, but may be appropriately set, for example, between 1 and 10 hours. However, compared to the case of using only coarse particles, the case of using a mixture of coarse particles and fine particles is preferable because it tends to be densified under mild hot press conditions.
  • the hot pressing conditions in the step (b) are 200 to 1600 to 1800 ° C. regardless of whether the silicon carbide is coarse or fine.
  • a condition of ⁇ 400 kgf / cm 2 is preferred.
  • silicon carbide in the powder mixture is 47% by mass or more and 52% by mass or less, regardless of whether the silicon carbide is coarse or fine, the condition is 1650 to 1800 ° C. and 300 to 400 kgf / cm 2 , or 1750
  • the condition of 250 to 400 kgf / cm 2 at ⁇ 1800 ° C. is preferable, but if silicon carbide is a mixed grain of coarse and fine particles, the condition of 1650 to 1800 ° C. and 300 to 400 kgf / cm 2 , or 1700 to 1800 ° C.
  • the condition of 250 to 400 kgf / cm 2 is preferable.
  • the semiconductor manufacturing apparatus member 10 of the embodiment is a Johnson-Rabeck type made of AlN as the electrostatic chuck 20 and has a diameter of 297 mm, a thickness of 5 mm, and a dielectric film thickness (from the electrostatic electrode 22 to the wafer mounting surface).
  • the thickness up to 20a was 0.35 mm
  • the heater electrode 24 was an Nb coil.
  • first to third substrates 31 to 33 made of a dense material of Experimental Example 15 to be described later are made of Al—Si—Mg based bonding material (88.5 wt% Al, 10 wt%). Of Si, 1.5 wt% Mg, and the solidus temperature was about 560 ° C.).
  • TCB was performed by pressurizing each substrate at a pressure of 1.5 kg / mm 2 over 5 hours in a vacuum atmosphere while being heated to 540 to 560 ° C.
  • the obtained cooling plate 30 had a diameter of 340 mm and a thickness of 32 mm.
  • the electrostatic chuck 20 and the cooling plate 30 were also joined by TCB using the same joining material.
  • the thickness of the cooling plate-chuck bonding layer 40 was 0.12 mm.
  • the member for the semiconductor manufacturing apparatus of the comparative example is the same as the above-described example except that a cooling plate in which the first to third substrates made of aluminum are joined by acrylic resin (thermal conductivity 0.2 W / mK) is used. It produced similarly.
  • pure water (refrigerant) having a temperature of 25 ° C. is flowed through the refrigerant passage 36 of the cooling plate 30 of the semiconductor manufacturing apparatus member 10 of the embodiment at a flow rate of 13 L / min, and predetermined power is supplied to the heater electrode 24 to thereby form the heater electrode.
  • the temperature of the wafer mounting surface 20a when 24 was heated was monitored with a surface thermometer.
  • the semiconductor manufacturing apparatus member of the comparative example was monitored in the same manner. The results are shown in Table 1. From Table 1, it can be seen that the cooling performance of the example is superior to that of the comparative example regardless of the input power.
  • the suitable application example of the dense composite material used by embodiment mentioned above is demonstrated.
  • SiC raw material a commercial product having a purity of 96.0% or more and an average particle diameter of 32.3 ⁇ m, 16.4 ⁇ m, or 2.9 ⁇ m was used.
  • the TiC raw material used was a commercial product having a purity of 94.5% or more and an average particle size of 4.3 ⁇ m.
  • TiSi 2 raw material a commercial product having a purity of 96.0% or more and an average particle diameter of 6.9 ⁇ m was used.
  • Si raw material a commercial product having a purity of 97.0% or more and an average particle diameter of 2.1 ⁇ m was used.
  • hot press firing firing was performed at the firing temperature (maximum temperature) and press pressure shown in Tables 2 and 3, and a vacuum atmosphere was maintained until the firing was completed. The holding time at the firing temperature was 4 hours.
  • hot press is abbreviated as HP.
  • Experimental Examples Tables 2 and 3 show the starting material composition (mass%) of each experimental example, the particle size and ratio of the SiC raw material, the HP firing conditions, and the constituent phases and amounts of the sintered bodies obtained from the XRD measurement results. The ratio (simple quantitative result) and the basic characteristics of the sintered body (open porosity, bulk density, 4-point bending strength, linear thermal expansion coefficient, thermal conductivity) were shown.
  • Experimental Examples 1 to 36 Experimental Examples 3 to 7, 10, 12, 13, 15, 16, 18 to 21, 23, 24, 26, 33 to 36 are suitable for use in the above-described embodiment. A dense composite material, and the rest are unsuitable materials.
  • the simple profile fitting function (FPM Eval.) Of the powder diffraction data analysis software “EVA” manufactured by Bruker AXS was used. This function calculates the component phase quantity ratio using I / Icor (intensity ratio to corundum diffraction intensity) of the qualitative crystalline phase ICDD PDF card.
  • I / Icor intensity ratio to corundum diffraction intensity
  • “-” indicates that no XRD profile was detected.
  • Another alumina standard sample was prepared, and the value obtained by measuring the linear thermal expansion coefficient under the same conditions was 7.7 ppm / K. Under these conditions, the average linear thermal expansion coefficient of 40 to 570 ° C. of an aluminum nitride sintered body obtained by adding 5% by weight of Y 2 O 3 as a sintering aid to aluminum nitride was measured to be 5.7 ppm / K. The average coefficient of linear thermal expansion of the aluminum nitride sintered body without a sintering aid was measured and found to be 5.2 ppm / K. (4) Thermal conductivity It measured by the laser flash method.
  • Experimental Example 6 it baked on the same raw material composition and the same HP baking conditions as Experimental Example 5 except having used the SiC raw material with an average particle diameter of 2.9 micrometers.
  • a dense composite material having performance equivalent to that of Experimental Example 5 was obtained.
  • SEM images (reflection electron images) and XRD profiles of the dense composite material obtained in Experimental Example 5 are shown in FIGS. 9 and 10, respectively. From FIG. 9, it can be seen that the surface of the SiC particles is covered with at least one of TSC and TiC. Similar SEM images and XRD profiles were obtained for other experimental examples.
  • Experimental Examples 7 to 12 an SiC raw material having an average particle diameter of 16.4 ⁇ m was used, except that the powder was fired under different HP firing conditions, and the prepared powder having the same raw material composition was fired.
  • the SiC content in the prepared powder was 49.2% by mass.
  • dense composite materials having a SiC content of 59 to 64 mass%, an open porosity of 0.2 to 0.9%, and a thermal expansion coefficient of 5.8 ppm / K were obtained. .
  • These 4-point bending strengths were 300 MPa or more, and the thermal conductivity was 100 W / m ⁇ K or more.
  • Experimental Examples 19 and 20 prepared powders having the same raw material composition were fired under the same HP firing conditions except that different SiC raw materials were used.
  • SiC obtained by mixing SiC raw material having an average particle diameter of 32.3 ⁇ m and SiC raw material having an average particle diameter of 2.9 ⁇ m at 65:35 (mass ratio) was used.
  • the average particle diameter of 32 was used.
  • SiC obtained by mixing a SiC raw material having a particle diameter of 3 ⁇ m and a SiC raw material having an average particle diameter of 2.9 ⁇ m at a mass ratio of 55:45 was used.
  • the SiC content in the prepared powder was 49.2% by mass.
  • Experimental Examples 21 to 26 SiC obtained by mixing SiC raw material having an average particle diameter of 16.4 ⁇ m and SiC raw material having an average particle diameter of 2.9 ⁇ m at a 65:35 (mass ratio) except for baking under different HP baking conditions. Used, the prepared powder of the same raw material composition was fired. The SiC content in the prepared powder was 51.4% by mass. As a result, in Experimental Examples 21, 23, 24, and 26, a dense material having an SiC content of 66 to 68% by mass, an open porosity of 0.2 to 0.9%, and a thermal expansion coefficient of 5.4 to 5.5 ppm / K. A composite material was obtained.
  • Experimental examples 27 to 32 SiC obtained by mixing SiC raw material having an average particle diameter of 16.4 ⁇ m and SiC raw material having an average particle diameter of 2.9 ⁇ m at a ratio of 65:35 (mass ratio), except for baking under different HP baking conditions. Used, the prepared powder of the same raw material composition was fired. The SiC content in the prepared powder was 53.8% by mass. As a result, in Experimental Examples 27 to 32, a composite material having an SiC content of 68 to 72 mass% and a thermal expansion coefficient of 5.2 to 5.3 ppm / K was obtained, but the open porosity exceeded 1%. . In Experimental Examples 27 to 32, too much SiC raw material was used, so that it was not sufficiently sintered even by HP firing, and it seems that the open porosity became high.
  • the mixed powder for obtaining the dense composite material is in the range of 43 to 52% by mass of SiC, 33 to 45% by mass of TiC, and 14 to 18% by mass of TiSi 2 . It can be seen that the dense composite material falls within the range of 51 to 68% by mass of SiC, 27 to 40% by mass of TSC, and 4 to 12% by mass of TiC. Further, from the results of Experimental Examples 33 to 36, it can be seen that a dense composite material having the same characteristics can be developed by substituting a part or all of the SiC or TiSi 2 raw material with a raw material such as TiC or Si. .
  • SiC is in the range of 43 to 52% by mass
  • titanium carbide is in the range of 33 to 45% by mass
  • the balance is 18% by mass or less of titanium silicide and / or 13% by mass or less of Si. Enter the range.
  • the cooling plate of the present invention is used, for example, as a cooling plate that is metal-bonded to an electrostatic chuck or susceptor made of aluminum nitride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

半導体製造装置用部材(10)は、AlN製の静電チャック(20)と、冷却板(30)と、冷却板-チャック接合層(40)とを備えている。冷却板(30)は、第1~第3基板(31~33)と、第1及び第2基板(31,32)の間に形成された第1金属接合層(34)と、第2及び第3基板(32,33)の間に形成された第2金属接合層(35)と、冷媒通路(36)とを備えている。第1~第3基板(31~33)は、含有量の多いものからSiC,TiSiC及びTiCをこの順に含む緻密質複合材料で形成されている。金属接合層(34,35)は、第1及び第2基板(31,32)の間と第2及び第3基板(32,33)の間にAl-Si-Mg系接合材を挟んで各基板(31~33)を熱圧接合することにより形成されたものである。

Description

冷却板、その製法及び半導体製造装置用部材
 本発明は、冷却板、その製法及び半導体製造装置用部材に関する。
 半導体プロセス中で高温化する静電チャックには、放熱のために冷却板が接合されている。この場合、静電チャックの材料としては窒化アルミニウム、冷却板の材料としてはアルミニウム、接合材としては樹脂が用いられることがある。窒化アルミニウムとアルミニウムは線熱膨張係数差が非常に大きく、例えば、窒化アルミニウムの線熱膨張係数は5.0ppm/K(RT-800℃:内田老鶴圃 「セラミックの物理」)、アルミニウムの線熱膨張係数は31.1ppm/K(RT-800℃:日本熱物性学会編、「新編熱物性ハンドブック」)である。このような静電チャックでは、接合材として柔らかい樹脂を用いているため、その線熱膨張係数差によって生じる応力を緩和することができる。
特開2006-143580号公報
 上述した静電チャックでは、接合材として樹脂が用いられているが、樹脂は有機材料であるため、放熱性が低く、高温で分解しやすい。そのため、高温プロセスでは一般に使いにくい。そこで、樹脂に代わる高放熱な接合材として、金属が有効であることが確認されている。このように金属で接合する方法を金属接合という。金属接合の接合材としては、例えばアルミニウムなどが知られている。
 しかしながら、金属接合の接合材つまり金属には樹脂のような柔らかさがないため、静電チャックと冷却板との間の大きな線熱膨張係数差によって生じる応力を緩和することができない。こうしたことから、静電チャックとの金属接合に適する冷却板材料、つまり、窒化アルミニウムとの線熱膨張係数差が小さく、しかも冷却板として必要な特性を備えている新材料の開発が望まれていた。冷却板として必要な特性としては、放熱性を維持するため熱伝導率が高いこと、冷却液を通すため緻密性が高いこと、加工等に耐えるため強度が高いことなどが挙げられる。
 本発明はこのような課題を解決するためになされたものであり、内部に冷媒通路を有し、AlNセラミック部材の冷却に用いられる冷却板において、AlNとの線熱膨張係数差がきわめて小さく、熱伝導率、緻密性及び強度が十分高いものを提供することを主目的とする。
 本発明の冷却板は、
 内部に冷媒通路が形成され、AlNセラミック部材の冷却に用いられる冷却板であって、
 含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料で作製された第1基板と、
 前記緻密質複合材料で作製され、前記冷媒通路と同じ形状となるように打ち抜かれた打ち抜き部を有する第2基板と、
 前記緻密質複合材料で作製された第3基板と、
 前記第1基板と前記第2基板との間に金属接合材を挟んで両基板を熱圧接合することにより両基板間に形成された第1金属接合層と、
 前記第2基板と前記第3基板との間に金属接合材を挟んで両基板を熱圧接合することにより両基板間に形成された第2金属接合層と、
 を備えたものであるか、
 又は、
 含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料で作製された第1基板と、
 前記緻密質複合材料で作製され、前記第1基板と向かい合う面に前記冷媒通路となる溝を有する第2基板と、
 前記第1基板と前記第2基板のうち前記溝が設けられた面との間に金属接合材を挟んで両基板を熱圧接合することにより形成された金属接合層と、
 を備えたものである。
 この冷却板は、金属接合層によって接合された各基板が上述した緻密質複合材料で作製されている。この緻密質複合材料は、AlNとの線熱膨張係数差がきわめて小さく、熱伝導率、緻密性及び強度が十分高い。このため、こうした冷却板とAlNセラミック部材とを接合した半導体製造装置用部材は、低温と高温との間で繰り返し使用したとしても冷却板とAlNセラミック部材とが剥がれることがなく、高い放熱性能を維持したまま、耐用期間が長くなる。また、上述した緻密質複合材料で作製された基板同士は、電子ビーム溶接などによる接合が難しく、樹脂接着材で接合すると冷却性能が低下してしまうが、ここでは、金属接合材を用いた熱圧接合(Thermal Compression Bonding,TCBと略す)により接合しているため、比較的容易に接合でき、しかも良好な冷却性能が得られる。
 本発明の冷却板において、前記金属接合層は、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合することにより形成されたものであることが好ましい。こうすれば、より良好な冷却性能が得られる。
 本発明の冷却板において、前記緻密質複合材料は、前記チタンシリコンカーバイドを23~40質量%、前記炭化チタンを4~12質量%含有することが好ましい。前記緻密質複合材料は、前記炭化珪素粒子同士の間隙に、前記チタンシリコンカーバイド及び前記炭化チタンの少なくとも1つが前記炭化珪素粒子表面を覆うように存在していることが好ましい。前記緻密質複合材料は、AlNとの40℃~570℃の平均線熱膨張係数の差が0.5ppm/K以下であることが好ましい。前記緻密質複合材料は、40℃~570℃の平均線熱膨張係数が5.4~6.0ppm/Kであることが好ましい。前記緻密質複合材料は、熱伝導率が100W/m・K以上、4点曲げ強度が300MPa以上であることが好ましい。
 本発明の冷却板の製法は、
 内部に冷媒通路が形成され、AlNセラミック部材の冷却に用いられる冷却板を製造する方法であって、
(a)含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料を用いて、第1~第3基板を作製する工程と、
(b)前記第2基板の一方の面から他方の面まで前記冷媒通路と同じ形状となるように打ち抜いて前記第2基板に打ち抜き部を形成する工程と、
(c)前記第1基板と前記第2基板の一方の面との間および前記第3基板と前記第2基板の他方の面との間にそれぞれ金属接合材を挟んで前記第1~第3基板を熱圧接合する工程と、
 を含むものであるか、
 又は、
(a)含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料を用いて、第1基板及び第2基板を作製する工程と、
(b)前記第2基板の一方の面に前記冷媒通路となる溝を形成する工程と、
(c)前記第1基板と前記第2基板のうち前記溝が設けられた面との間に金属接合材を挟んで両基板を熱圧接合する工程と、
 を含むものである。
 この冷却板の製法によれば、上述した冷却板を容易に製造することができる。特に、上述した緻密質複合材料で作製された基板同士は、電子ビーム溶接などによる接合が難しく、樹脂接着材で接合すると冷却性能が低下してしまうが、ここでは、金属接合材を用いた熱圧接合により接合しているため、比較的容易に接合でき、しかも良好な冷却性能が得られる。
 本発明の冷却板の製法において、前記工程(c)では、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合するのが好ましい。こうすれば、より良好な冷却性能を持つ冷却板が得られる。
 本発明の半導体製造装置用部材は、
 静電電極及びヒータ電極を内蔵したAlN製の静電チャックと、
 上述したいずれかの冷却板と、
 前記冷却板の前記第1基板の表面と前記静電チャックとの間に金属接合材を挟んで両者を熱圧接合することにより形成された冷却板-チャック接合層と、
 を備えたものである。
 この半導体製造装置用部材によれば、低温と高温との間で繰り返し使用したとしても冷却板とAlNセラミック部材とが剥がれることがなく、高い放熱性能を維持したまま、耐用期間が長くなる。また、静電チャックの熱を効率よく冷却板へ逃がすことができる。
 本発明の半導体製造装置用部材において、前記冷却板-チャック接合層は、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合することにより形成されたものであることが好ましい。
半導体製造装置用部材10の平面図。 図1のA-A断面図。 半導体製造装置用部材10の製造工程図。 半導体製造装置用部材10の製造工程図。 第2基板32の説明図。 半導体製造装置用部材110の断面図。 半導体製造装置用部材110の製造工程図。 第2基板132の説明図。 実験例5で得られた緻密質複合材料のSEM像(反射電子像)。 実験例5で得られた緻密質複合材料のXRDプロファイル。 実験例15で得られた緻密質複合材料のSEM像(反射電子像)。 実験例15で得られた緻密質複合材料のXRDプロファイル。
[半導体製造装置用部材-第1実施形態]
 以下に、第1実施形態の半導体製造装置用部材10について説明する。図1は半導体製造装置用部材10の平面図、図2は図1のA-A断面図である。
 半導体製造装置用部材10は、プラズマ処理を施すシリコン製のウエハWを吸着可能なAlN製の静電チャック20と、線熱膨張係数がAlNと同程度の緻密質複合材料で作製された冷却板30と、静電チャック20と冷却板30とを接合する冷却板-チャック接合層40と、を備えている。
 静電チャック20は、外径がウエハーWの外径よりも小さい円盤状のAlNプレートであり、静電電極22とヒータ電極24とを内蔵している。静電電極22は、棒状の給電端子23を介して図示しない外部電源により直流電圧を印加可能な平面状の電極である。この静電電極22に直流電圧が印加されるとウエハWはジョンソン・ラーベック力によりウエハ載置面20aに吸着固定され、直流電圧の印加を解除するとウエハWのウエハ載置面20aへの吸着固定が解除される。ヒータ電極24は、静電チャック20の全面にわたって配線されるように例えば一筆書きの要領でパターン形成され、電圧を印加すると発熱してウエハWを加熱する。ヒータ電極24には、冷却板30の裏面からヒータ電極24の一端及び他端にそれぞれ到達する棒状の給電端子25によって電圧を印加可能である。
 冷却板30は、外径が静電チャック20と同等かやや大きい円盤状のプレートであり、第1基板31と、第2基板32と、第3基板33と、第1基板31と第2基板32との間に形成された第1金属接合層34と、第2基板32と第3基板33との間に形成された第2金属接合層35と、冷媒が流通可能な冷媒通路36と、を備えている。第1~第3基板31,32,33は、緻密質複合材料で形成されている。この緻密質複合材料は、含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下であるが、詳しくは後述する。また、第2基板32には、打ち抜き部32aが形成されている。この打ち抜き部32aは、第2基板32の一方の面から他方の面までを冷媒通路36と同じ形状となるように打ち抜いたものである。第1及び第2金属接合層34,35は、第1基板31と第2基板32の一方の面との間と、第2基板32の他方の面と第3基板33との間に、Al-Si-Mg系の金属接合材を挟んで各基板31~33を熱圧接合することにより形成されたものである。冷却板30には、静電チャック20が接合された面とは反対側の面からウエハ載置面20aと直交する方向に延びて冷媒通路36の入口36a及び出口36bにそれぞれ繋がる冷媒供給孔46a及び冷媒排出孔46bが形成されている。また、冷却板30には、静電チャック20が接合された面とその反対側の面とを貫通する端子挿通孔43,45が形成されている。端子挿通孔43は、静電電極22の給電端子23を挿通するための孔であり、端子挿通孔45は、ヒータ電極24の給電端子25を挿通するための孔である。
 冷却板-チャック接合層40は、冷却板30の第1基板31と静電チャック20との間にAl-Si-Mg系又はAl-Mg系の金属接合材を挟んで両者を熱圧接合することにより形成されたものである。なお、各給電端子23,25は、冷却板30や第1及び第2金属接合層34,35、冷却板-チャック接合層40と直接接触しないように構成されている。
 なお、半導体製造装置用部材10には、ウエハWの裏面にHeガスを供給するためのガス供給孔やウエハWをウエハ載置面20aから持ち上げるリフトピンを挿通するためのリフトピン挿通孔を、ウエハ載置面20aと直交する方向に半導体製造装置用部材10を貫通するように設けてもよい。
 次に、半導体製造装置用部材10の使用例について説明する。まず、図示しない真空チャンバ内に半導体製造装置用部材10を設置した状態で、ウエハWをウエハ載置面20aに載置する。そして、真空チャンバ内を真空ポンプにより減圧して所定の真空度になるように調整し、静電電極22に直流電圧をかけてジョンソン-ラーベック力を発生させ、ウエハWをウエハ載置面20aに吸着固定する。次に、真空チャンバ内を所定圧力(例えば数10~数100Pa)の反応ガス雰囲気とし、この状態で、プラズマを発生させる。そして、発生したプラズマによってウエハWの表面のエッチングを行う。図示しないコントローラは、ウエハWの温度が予め設定された目標温度となるように、ヒータ電極24へ供給する電力を制御する。
 次に、半導体製造装置用部材10の製造例について説明する。図3及び図4は半導体製造装置用部材10の製造工程図である。図5は第2基板32の説明図であり、(a)は平面図、(b)は(a)のB-B断面図である。
 まず、上述した緻密質複合材料を用いて、円盤状の薄型プレートである第1~第3基板31~33を作製する(図3(a)参照)。次に、第2基板32の一方の面から他方の面まで冷媒通路36と同じ形状となるように打ち抜いて、第2基板32に打ち抜き部32aを形成する(図3(b)及び図5参照)。打ち抜き部32aは、マシニングセンタ、ウォータジェット、放電加工などにより形成することができる。次に、第1基板31と第2基板32の一方の面との間に金属接合材51を挟むと共に、第2基板32の他方の面と第3基板33との間に金属接合材52を挟み(図3(c)参照)、第1~第3基板31~32を熱圧接合する(図3(d)参照)。これにより、打ち抜き部32aが冷媒通路36になり、第1基板31と第2基板32との間に第1金属接合層34が形成され、第2基板32と第3基板33との間に第2金属接合層35が形成され、冷却板30が完成する。このとき、金属接合材51,52としては、Al-Si-Mg系又はAl-Mg系接合材を使用するのが好ましい。これらの接合材を用いた熱圧接合(TCB)は、真空雰囲気下、固相線温度以下に加熱した状態で各基板を0.5~2.0kg/mm2  の圧力で1~5時間かけて加圧することにより行う。その後、冷却板30の裏面側から冷媒通路36の入口36aに至る冷媒供給孔46aと、冷却板30の裏面側から冷媒通路36の出口36bに至る冷媒排出孔46bとを形成すると共に、冷却板30の表裏を貫通する端子挿通孔43,45を形成する(図3(e)参照、図3(e)には、冷媒通路36の入口36aや出口36b、冷媒供給孔46a、冷媒排出孔46bは現れていないが、これらについては図1を参照)。
 一方、静電電極22及びヒータ電極24が埋設され、給電端子23,25が取り付けられた静電チャック20を作製する(図4(a)参照)。こうした静電チャック20は、例えば特開2006-196864号公報の記載にしたがって用意することができる。そして、静電チャック20のウエハ載置面20aとは反対側の面と冷却板30の第1基板31の表面との間に金属接合材28を挟み、給電端子23,25をそれぞれ端子挿通孔43,45に挿通し、静電チャック20と冷却板30とを熱圧接合する(図4(a)参照)。これにより、静電チャック20と冷却板30との間には冷却板-チャック接合層40が形成され、半導体製造装置用部材10が完成する(図4(b)参照)。金属接合材28としては、上述したようにAl-Si-Mg系又はAl-Mg系接合材を使用してTCBを行うのが好ましい。
 以上詳述した第1実施形態によれば、冷却板30は、第1及び第2金属接合層34,35によって接合された第1~第3基板31~33が上述した緻密質複合材料で作製されており、この緻密質複合材料は、AlNとの線熱膨張係数差がきわめて小さく、熱伝導率、緻密性及び強度が十分高い。このため、こうした冷却板30とAlNセラミック部材である静電チャック20とを接合した半導体製造装置用部材10は、低温と高温との間で繰り返し使用したとしても冷却板30と静電チャック20とが剥がれることがなく、高い放熱性能を維持したまま、耐用期間が長くなる。また、上述した緻密質複合材料で作製された第1~第3基板31~33は、電子ビーム溶接などによる接合が難しく、樹脂接着材で接合すると冷却性能が低下してしまうが、ここでは、金属接合材を用いたTCBにより接合しているため、比較的容易に接合でき、しかも良好な冷却性能が得られる。
 また、第1~第3基板31~33は緻密性が十分高いため、冷却板30の内部に冷却液や冷却ガスを通過させることができ、冷却効率が一層向上する。更に、第1~第3基板31~33は、強度が十分高いため、半導体製造装置用部材10を製造する際の加工や接合に耐えることができるし、使用時の温度変化によって生じる応力にも十分耐えることができる。
[半導体製造装置用部材-第2実施形態]
 以下に、第2実施形態の半導体製造装置用部材110について説明する。図6は半導体製造装置用部材110の断面図である。
 半導体製造装置用部材110は、プラズマ処理を施すシリコン製のウエハWを吸着可能なAlN製の静電チャック20と、線熱膨張係数がAlNと同程度の緻密質複合材料で作製された冷却板130と、冷却板130と静電チャック20とを接合する冷却板-チャック接合層40と、を備えている。
 静電チャック20は、第1実施形態と同じであるため、第1実施形態と同じ符号を付し、説明を省略する。冷却板130は、外径が静電チャック20と同等かやや大きい円盤状のプレートであり、第1基板131と、第2基板132と、第1基板131と第2基板132との間に形成された金属接合層134と、冷媒が流通可能な冷媒通路136と、を備えている。第1及び第2基板131,132は、第1実施形態で用いた緻密質複合材料と同じ材料で形成されている。第2基板132は、第1基板131と向かい合う面に冷媒通路136となる溝を有している。金属接合層134は、第1基板131と第2基板132のうち溝132aが設けられた面との間に、Al-Si-Mg系又はAl-Mg系の金属接合材を挟んで両基板131,132を熱圧接合することにより形成されたものである。冷却板130には、第1実施形態と同様、冷媒通路136の入口及び出口にそれぞれ繋がる冷媒供給孔及び冷媒排出孔が形成されているが、これらの図示は省略する。また、冷却板130には、第1実施形態と同様、端子挿通孔43,45が形成されている。冷却板-チャック接合層40は、第1実施形態と同じであるため、説明を省略する。
 半導体製造装置用部材110の使用例は、第1実施形態と同じであるため、説明を省略する。
 次に、半導体製造装置用部材110の製造例について説明する。図7は半導体製造装置用部材110の製造工程図、図8は第2基板132の説明図であり、(a)は平面図、(b)はC-C断面図である。まず、上述した緻密質複合材料を用いて、円盤状の薄型プレートである第1及び第2基板131,132を作製する(図7(a)参照)。次に、第2基板132のうち第1基板131と向かい合う面に冷媒通路136となる溝132aを形成する(図7(b)及び図8参照)。溝132aは、マシニングセンタ、ウォータジェット、放電加工などにより形成することができる。次に、第1基板131と第2基板132の溝132aが形成された面との間に金属接合材61を挟み(図7(c)参照)、第1及び第2基板131,132を熱圧接合する(図7(d)参照)。これにより、溝132aが冷媒通路36になり、第1基板131と第2基板132との間に金属接合層134が形成され、冷却板130が完成する。このとき、金属接合材61としては、上述したようにAl-Si-Mg系又はAl-Mg系接合材を使用してTCBを行うのが好ましい。この後の工程すなわち静電チャック20と冷却板130との接合工程は、第1実施形態と同様であるため、その説明を省略する。
 以上詳述した第2実施形態によれば、冷却板130は、金属接合層134によって接合された第1及び第2基板131,132が上述した緻密質複合材料で作製されており、この緻密質複合材料は、AlNとの線熱膨張係数差がきわめて小さく、熱伝導率、緻密性及び強度が十分高い。このため、こうした冷却板130とAlNセラミック部材である静電チャック20とを接合した半導体製造装置用部材110は、低温と高温との間で繰り返し使用したとしても冷却板130と静電チャック20とが剥がれることがなく、高い放熱性能を維持したまま、耐用期間が長くなる。また、上述した緻密質複合材料で作製された第1及び第2基板131,132は、電子ビーム溶接などによる接合が難しく、樹脂接着材で接合すると冷却性能が低下してしまうが、ここでは、金属接合材を用いたTCBにより接合しているため、比較的容易に接合でき、しかも良好な冷却性能が得られる。
 また、第1及び第2基板131,132は緻密性が十分高いため、冷却板130の内部に冷却液や冷却ガスを通過させることができ、冷却効率が一層向上する。更に、第1及び第2基板131,132は、強度が十分高いため、半導体製造装置用部材110を製造する際の加工や接合に耐えることができるし、使用時の温度変化によって生じる応力にも十分耐えることができる。
[緻密質複合材料]
 上述した実施形態で使用する緻密質複合材料は、含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下のものである。ここでは、含有量は、X線回折のピークに基づいて求めた値とする。また、開気孔率は、純水を媒体としたアルキメデス法により測定した値とする。
 炭化珪素は、51~68質量%含有されている。51質量%未満しか含有されていない場合には、窒化アルミニウムとの熱膨張係数差が大きくなるため、好ましくない。また、68質量%を超えると、開気孔率が大きくなったり強度が十分高くならなかったりするため、好ましくない。
 チタンシリコンカーバイドは、炭化珪素より少量含有されており、炭化チタンは、チタンシリコンカーバイドより少量含有されている。チタンシリコンカーバイドとしては、Ti3SiC2(TSC)が好ましく、炭化チタンとしては、TiCが好ましい。例えば、チタンシリコンカーバイドを27~40質量%含有し、炭化チタンを4~12質量%含有していることが好ましい。
 炭化珪素粒子同士の間隙には、チタンシリコンカーバイド及び炭化チタンの少なくとも1つが炭化珪素粒子表面を覆うように存在していることが好ましい。炭化珪素粒子が高頻度に分散している場合、炭化珪素粒子間に気孔が残存しやすくなるが、上述したように炭化珪素粒子表面が他の粒子で覆われていると、その気孔が埋まりやすくなり、緻密且つ高強度な材料となりやすいため、好ましい。
 上述した実施形態で使用する緻密質複合材料は、線熱膨張係数が窒化アルミニウムと同程度である。そのため、この緻密質複合材料で作製された部材と窒化アルミニウムで作製された部材とを接合(例えば金属接合)した場合、低温と高温との間で繰り返し使用したとしても剥離しにくい。具体的には、この緻密質複合材料は、窒化アルミニウムとの40~570℃の平均線熱膨張係数の差が0.5ppm/K以下であることが好ましい。また、この緻密質複合材料の40~570℃の平均線熱膨張係数は5.4~6.0ppm/Kであることがより好ましい。なお、この緻密質複合材料と同じ条件で、窒化アルミニウムに焼結助剤としてY23を5重量%添加した窒化アルミニウム焼結体の40~570℃の平均線熱膨張係数を測定したところ、5.7ppm/Kであり、焼結助剤なしの窒化アルミニウム焼結体の平均線熱膨張係数を測定したところ、5.2ppm/Kであった。よって、本発明では両者の間の値である、線熱膨張係数5.5ppm/K(40~570℃)を中心値とし、平均線熱膨張係数の差が0.5ppm/K以下である窒化アルミニウム焼結体の提供を目的とした。
 上述した実施形態で使用する緻密質複合材料は、熱伝導性に優れているが、具体的には熱伝導率が100W/m・K以上であることが好ましい。こうすれば、この緻密質複合材料で作製された部材と窒化アルミニウムで作製された部材とを金属接合した場合、窒化アルミニウムが持つ熱を効率よく逃がすことができる。
 上述した実施形態で使用する緻密質複合材料は、強度に優れているが、具体的には4点曲げ強度が300MPa以上であることが好ましい。こうすれば、この緻密質複合材料で作製された部材を冷却板等に適用しやすくなる。
 上述した実施形態で使用する緻密質複合材料の製法は、例えば、(a)炭化珪素を43~52質量%、炭化チタンを33~45質量%含有し、残部が、珪化チタンを18質量%以下、及び/又は、シリコンを13質量%以下含有する粉体混合物を作製する工程と、(b)前記粉体混合物を不活性雰囲気下ホットプレスで焼結させることにより、上述した緻密質複合材料を得る工程と、を含むものとしてもよい。
 工程(a)では、炭化珪素の原料粉末の粒径は特に限定されないが、平均粒径が2~35μmであることが好ましい。また、粗粒(例えば平均粒径15~35μm)のみを用いてもよいし、細粒(例えば平均粒径2~10μm)のみを用いてもよいし、粗粒と細粒とを混合して用いてもよい。SiCの平均粒径が2μmよりも小さい場合、原料中のSiC比が多い組成ではSiC粒子の表面積が増加する為に焼結性が低下し、緻密な焼結体が得られにくい。一方、SiCの平均粒径が35μmよりも大きい場合は、焼結性には問題無いが、強度が低下することが懸念される。また、工程(a)では、上述したように、原料粉末として炭化珪素、炭化チタン、珪化チタンを用いてもよいが、炭化珪素、炭化チタン、珪化チタン、チタン、シリコンの中から適宜選択して用いてもよい。
 工程(b)では、不活性雰囲気とは、例えば真空雰囲気、窒素ガス雰囲気、アルゴンガス雰囲気などが挙げられる。また、ホットプレス条件は、上述した緻密質複合材料が得られるように設定すればよい。例えば、ホットプレス時の圧力は100~400kgf/cm2が好ましく、200~300kgf/cm2がより好ましい。ホットプレス時の温度は1550~1800℃が好ましく、1600~1750℃がより好ましい。圧力と温度との関係は、粉体混合物の組成や原料粉の粒径などにより、この範囲内で適宜設定すればよい。例えば、粉体混合物中の炭化珪素の含有率が低い場合には、粉体混合物は焼結しやすいため、比較的穏やかなホットプレス条件で緻密化する。一方、粉体混合物中の炭化珪素の含有率が高い場合には、粉体混合物は焼結しにくいため、比較的厳しいホットプレス条件で緻密化する。また、炭化珪素が粗粒のみを用いる場合には、比較的厳しいホットプレス条件で緻密化するが、粗粒と細粒を混合して用いる場合には、比較的穏やかなホットプレス条件で緻密化する。なお、焼成時間は、ホットプレス条件に応じて適宜設定すればよいが、例えば1~10時間の間で適宜設定すればよい。但し、粗粒のみを用いる場合に比べて、粗粒と細粒とを混合して用いた場合の方が、穏やかなホットプレス条件で緻密化する傾向があるため、好ましい。
 工程(b)のホットプレス条件は、例えば、粉体混合物中の炭化珪素が43質量%以上47質量%未満の場合、炭化珪素が粗粒か細粒かにかかわらず、1600~1800℃で200~400kgf/cm2という条件が好ましい。また、粉体混合物中の炭化珪素が47質量%以上52質量%以下の場合、炭化珪素が粗粒か細粒かにかかわらず、1650~1800℃で300~400kgf/cm2という条件か、1750~1800℃で250~400kgf/cm2という条件が好ましいが、炭化珪素が粗粒と細粒の混合粒であれば、1650~1800℃で300~400kgf/cm2という条件か、1700~1800℃で250~400kgf/cm2という条件が好ましい。
[半導体製造装置用部材]
 実施例の半導体製造装置用部材10は、静電チャック20として、AlN製のジョンソン-ラーベックタイプで、直径が297mm、厚み5がmm、誘電体膜厚(静電電極22からウエハ載置面20aまでの厚み)が0.35mm、ヒータ電極24がNbコイルのものを用いた。また、冷却板30として、後述する実験例15の緻密質材料で作製した第1~第3基板31~33を、Al-Si-Mg系接合材(88.5重量%のAl、10重量%のSi、1.5重量%のMgを含有し、固相線温度が約560℃)を用いてTCBにより接合した。TCBは、真空雰囲気下、540~560℃に加熱した状態で各基板を1.5kg/mm2  の圧力で5時間かけて加圧することにより行った。得られた冷却板30は、直径が340mm、厚みが32mmであった。静電チャック20と冷却板30との接合も、同じ接合材を用いてTCBにより行った。冷却板-チャック接合層40の厚みは0.12mmであった。一方、比較例の半導体製造装置用部材は、アルミニウム製の第1~第3基板をアクリル樹脂(熱伝導率0.2W/mK)により接合した冷却板を用いた以外は、上述した実施例と同様にして作製した。
 そして、実施例の半導体製造装置用部材10の冷却板30の冷媒通路36に温度25℃の純水(冷媒)を流量13L/minを流し、ヒータ電極24に所定の電力を投入してヒータ電極24を発熱させたときのウエハ載置面20aの温度を表面温度計でモニターした。比較例の半導体製造装置用部材についても、同様にしてモニターした。その結果を表1に示す。表1から、投入電力にかかわらず、実施例の方が比較例よりも冷却性能が優れていることがわかる。
Figure JPOXMLDOC01-appb-T000001
[緻密質複合材料]
 以下に、上述した実施形態で使用する緻密質複合材料の好適な適用例について説明する。SiC原料は、純度96.0%以上、平均粒径32.3μm或いは、16.4μm或いは、2.9μmの市販品を使用した。TiC原料は、純度94.5%以上、平均粒径4.3μmの市販品を使用した。TiSi2原料は、純度96.0%以上、平均粒径6.9μmの市販品を使用した。Si原料は、純度97.0%以上、平均粒径2.1μmの市販品を使用した。
1.製造手順
・調合
 SiC原料、TiC原料及びTiSi2原料、あるいは、SiC原料、TiC原料及びSi原料を、表2,3に示す質量%となるように秤量し、イソプロピルアルコールを溶媒とし、ナイロン製のポット、直径10mmの鉄芯入りナイロンボールを用いて4時間湿式混合した。混合後スラリーを取り出し、窒素気流中110℃で乾燥した。その後、30メッシュの篩に通し、調合粉末とした。尚、秤量した原料約300gを高速流動混合機(粉体投入部の容量1.8L)に投入し、攪拌羽根の回転数1500rpmで混合した場合にも湿式混合と同様の材料特性が得られることを確認した。
・成形
 調合粉末を、200kgf/cm2の圧力で一軸加圧成形し、直径50mm、厚さ15mm程度の円盤状成形体を作製し、焼成用黒鉛モールドに収納した。
・焼成
 円盤状成形体をホットプレス焼成することにより緻密質焼結材料を得た。ホットプレス焼成では、表2,3に示す焼成温度(最高温度)及びプレス圧力で焼成し、焼成終了まで真空雰囲気とした。焼成温度での保持時間は4時間とした。なお、以下では、ホットプレスをHPと略す。
2.各実験例
 表2,3には、各実験例の出発原料組成(質量%)、SiC原料の粒径とその割合、HP焼成条件、XRD測定結果から求めた焼結体の構成相とその量比(簡易定量結果)、焼結体の基本特性(開気孔率、嵩密度、4点曲げ強度、線熱膨張係数、熱伝導率)を示した。なお、実験例1~36のうち、実験例3~7,10,12,13,15,16,18~21,23,24、26,33~36が上述した実施形態で使用するのに適した緻密質複合材料であり、残りは適さない材料である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
3.構成相の簡易定量
 複合材料を乳鉢で粉砕し、X線回折装置により結晶相を同定した。測定条件はCuKα,40kV,40mA,2θ=5~70°とし、封入管式X線回折装置(ブルカー・エイエックスエス製 D8 ADVANCE)を使用した。また、構成相の簡易定量を行った。この簡易定量は、複合材料に含まれる結晶相の含有量をX線回折のピークに基づいて求めた。ここでは、SiC、TSC(Ti3SiC2)、TiC及びTiSi2に分けて簡易定量を行い含有量を求めた。簡易定量には、ブルカー・エイエックスエス社の粉末回折データ解析用ソフトウェア「EVA」の簡易プロファイルフィッティング機能(FPM Eval.)を利用した。本機能は定性した結晶相のICDD PDFカードのI/Icor(コランダムの回折強度に 対する強度比)を用いて構成相の量比を算出するものである。各結晶相のPDFカード番号は、SiC:00-049-1428、TSC:01-070-6397、TiC:01-070-9258(TiC0.62)、TiSi2:01-071-0187を用いた。なお、表2,3中、「-」はXRDプロファイルにて検出されなかったことを示す。
4.基本特性の測定
(1)開気孔率及び嵩密度
 純水を媒体としたアルキメデス法により測定した。
(2)4点曲げ強度
 JIS-R1601に従って求めた。
(3)線熱膨張係数(40~570℃の平均線熱膨張係数)
 ブルカーエイエックスエス(株)製、TD5020S(横型示差膨張測定方式)を使用し、アルゴン雰囲気中、昇温速度20℃/分の条件で650℃まで2回昇温し、2回目の測定データから40~570℃の平均線熱膨張計数を算出した。標準試料には装置付属のアルミナ標準試料(純度99.7%、嵩密度3.9g/cm3、長さ20mm)を使用した。このアルミナ標準試料をもう1本用意し、同一条件で線熱膨張係数を測定した値は7.7ppm/Kであった。尚、本条件で、窒化アルミニウムに焼結助剤としてY23を5重量%添加した窒化アルミニウム焼結体の40~570℃の平均線熱膨張係数を測定したところ、5.7ppm/Kであり、焼結助剤なしの窒化アルミニウム焼結体の平均線熱膨張係数を測定したところ、5.2ppm/Kであった。
(4)熱伝導率
 レーザーフラッシュ法により測定した。
5.結果
(1)実験例1,2
 実験例1では、平均粒径が16.4μmのSiC原料を使用し、実験例2では、平均粒径が2.9μmのSiC原料を使用した以外は、同じ原料組成、同じHP焼成条件で焼成した。調合粉末中のSiC含有率は41.2質量%とした。その結果、実験例1,2では、開気孔率0%の緻密質複合材料が得られたものの、窒化アルミニウムとの熱膨張係数差が0.5ppm/Kを超えてしまった。実験例1,2では、使用したSiC原料が少なすぎたため、得られた緻密質複合材料中のSiCが47~49質量%と低くなりすぎ、熱膨張係数が十分低くならなかったと考えられる。
(2)実験例3~6
 実験例3~5では、異なるHP焼成条件で焼成した以外は、平均粒径が16.4μmのSiC原料を使用し、同じ原料組成の調合粉末を焼成した。調合粉末中のSiC含有率は43.1質量%とした。その結果、実験例3~5では、SiC含有率51~53質量%、開気孔率0%、熱膨張係数6.0ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。また、実験例6では、平均粒径が2.9μmのSiC原料を使用した以外は、実験例5と同じ原料組成、同じHP焼成条件で焼成した。その結果、実験例6では、実験例5と同等の性能を持つ緻密質複合材料が得られた。ここで、代表例として実験例5で得られた緻密質複合材料のSEM像(反射電子像)とXRDプロファイルを図9及び図10にそれぞれ示す。図9から、SiC粒子の表面はTSC及びTiCの少なくとも1つによって覆われていることがわかる。なお、他の実験例についても同様のSEM像及びXRDプロファイルが得られた。
(3)実験例7~12
 実験例7~12では、異なるHP焼成条件で焼成した以外は、平均粒径が16.4μmのSiC原料を使用し、同じ原料組成の調合粉末を焼成した。調合粉末中のSiC含有率は49.2質量%とした。その結果、実験例7,10,12では、SiC含有率59~64質量%、開気孔率0.2~0.9%、熱膨張係数5.8ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。一方、実験例8,9,11では、熱膨張係数5.8ppm/Kの複合材料が得られたが、開気孔率が1%を超えていた。実験例8,9では、HP焼成条件として温度1700℃、実験例11では、HP焼成条件として温度1750℃を採用したが、いずれもプレス圧力が不足していたため開気孔率が大きくなったと思われる。なお、実験例7,10,12についても図9及び図10と同様のSEM像及びXRDプロファイルが得られた。
(4)実験例13~18
 実験例13~18では、異なるHP焼成条件で焼成した以外は、平均粒径16.4μmのSiC原料と平均粒径2.9μmのSiC原料とを65:35(質量比)で混合したSiCを使用し、同じ原料組成の調合粉末を焼成した。調合粉末中のSiC含有率は49.2質量%とした。その結果、実験例13,15,16,18では、SiC含有率60~63質量%、開気孔率0~0.9%、熱膨張係数5.7~5.8ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。一方、実験例14,17では、熱膨張係数5.7~5.8ppm/Kの複合材料が得られたが、開気孔率が1%を超えていた。実験例14では、HP焼成条件として温度1700℃、実験例17では、HP焼成条件として温度1725℃を採用したが、いずれもプレス圧力が不足していたため開気孔率が大きくなったと考えられる。ここで、代表例として実験例15で得られた緻密質複合材料のSEM像(反射電子像)とXRDプロファイルを図11及び図12にそれぞれ示す。図11から、SiC粒子の表面はTSC及びTiCの少なくとも1つによって覆われていることがわかる。なお、実験例13,16,18についても図11及び図12と同様のSEM像及びXRDプロファイルが得られた。
 ここで、実験例15と実験例9とを対比すると、実験例15では粗粒と細粒とが入り交じったSiC原料を用いたのに対して、実験例9では粗粒のみのSiC原料を用いたことが異なるが、それ以外は、同じ原料組成、同じHP焼成条件で調合粉末を焼成した。その結果、実験例9の焼結体は十分緻密化しなかった(開気孔率1.9%)が、実験例15の焼結体は十分緻密化した(開気孔率が0.4%)。この結果から、粗粒と細粒とが入り交じったSiC原料を使用した方が、粗粒のみのSiC原料を使用した場合に比べて緻密化しやすい傾向があるといえる。
(5)実験例19,20
 実験例19,20では、異なるSiC原料を用いた以外は、同じ原料組成の調合粉末を、同じHP焼成条件で焼成した。実験例19では、平均粒径32.3μmのSiC原料と平均粒径2.9μmのSiC原料とを65:35(質量比)で混合したSiCを使用し、実験例20では、平均粒径32.3μmのSiC原料と平均粒径2.9μmのSiC原料とを55:45(質量比)で混合したSiCを使用した。調合粉末中のSiC含有率は49.2質量%とした。その結果、SiC含有率64~66質量%、開気孔率0.5~0.8%、熱膨張係数5.7~5.8ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。なお、実験例19,20についても図11及び図12と同様のSEM像及びXRDプロファイルが得られた。
 ここで、実験例17と実験例19とを対比すると、実験例17では平均粒径が16.4μmのSiC原料を用いたのに対して、実験例19では平均粒径が32.3μmのSiC原料を用いたことが異なるが、それ以外は、同じ原料組成、同じHP焼成条件で調合粉末を焼成した。その結果、実験例17の焼結体は十分緻密化しなかった(開気孔率1.7%)が、実験例19の焼結体は十分緻密化した(開気孔率0.8%)。この結果から、平均粒径の大きな粗粒のSiC原料を使用した方が、平均粒径の小さな粗粒のSiC原料を使用した場合に比べて緻密化しやすい傾向があるといえる。特にSiC原料の量が多い場合において、粗粒のSiC量の割合を多くすることが緻密化に有効となる。
(6)実験例21~26
 実験例21~26では、異なるHP焼成条件で焼成した以外は、平均粒径16.4μmのSiC原料と平均粒径2.9μmのSiC原料とを65:35(質量比)で混合したSiCを使用し、同じ原料組成の調合粉末を焼成した。調合粉末中のSiC含有率は51.4質量%とした。その結果、実験例21,23,24,26では、SiC含有率66~68質量%、開気孔率0.2~0.9%、熱膨張係数5.4~5.5ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。一方、実験例22,25では、熱膨張係数5.5ppm/Kの複合材料が得られたが、開気孔率が1%を超えていた。実験例22では、HP焼成条件として温度1700℃、実験例25では、HP焼成条件として温度1750℃を採用したが、いずれもプレス圧力が不足していたため開気孔率が大きくなったと考えられる。なお、実験例21,23,24,26についても図11及び図12と同様のSEM像及びXRDプロファイルが得られた。
(7)実験例27~32
 実験例27~32では、異なるHP焼成条件で焼成した以外は、平均粒径16.4μmのSiC原料と平均粒径2.9μmのSiC原料とを65:35(質量比)で混合したSiCを使用し、同じ原料組成の調合粉末を焼成した。調合粉末中のSiC含有率は53.8質量%とした。その結果、実験例27~32では、SiC含有率68~72質量%、熱膨張係数5.2~5.3ppm/Kの複合材料が得られたが、開気孔率は1%を超えていた。実験例27~32では、使用したSiC原料が多すぎたため、HP焼成でも十分に焼結せず、開気孔率が高くなってしまったと思われる。
(8)実験例33~36
 実験例33~36では、原料にTiSi2を使用せず、TiCとSiを用い、平均粒径16.4μmのSiC原料と平均粒径2.9μmのSiC原料とを65:35(質量比)で混合したSiCを使用し、SiC:TiC:Si=43.2:44.2:12.6(質量比)の原料組成の調合粉末を異なるHP焼成条件で焼成した。その結果、SiC含有率61~63質量%、開気孔率0.1~0.9%、熱膨張係数5.8~5.9ppm/Kの緻密質複合材料が得られた。これらの4点曲げ強度は300MPa以上であり、熱伝導率は100W/m・K以上であった。
 ここで、実験例14、17と実験例33,34とを対比すると、原料の種類と組成が異なるが、それ以外は、同じHP焼成条件で調合粉末を焼成した。その結果、実験例14、17の焼結体は十分緻密化しなかったが、実験例33,34の焼結体は十分緻密化した。実験例33,34と実験例14、17の焼結体のSiC含有量は同等であることから、原料のSiC、TiSi2を減量し、代わりにTiSi2よりも平均粒径の小さなTiC、Si原料を用いてSi、Ti、C成分量を調整することによって、より緻密化しやすくなる傾向があることが分かった。
(9)まとめ
 実験例3~7,10,12,13,15,16,18~21,23,24、26,33~36で得られた緻密質複合材料は、開気孔率が1%以下で、線熱膨張係数が窒化アルミニウムとほとんど同じ(40~570℃で5.4~6.0ppm/K)であり、熱伝導率、緻密性及び強度が十分高かった。このため、こうした緻密質複合材料からなる第1板材と、窒化アルミニウムからなる第2板材とを金属接合した半導体製造装置用部材は、低温と高温との間で繰り返し使用されたとしても、第1部材と第2部材とが剥がれることがないため、耐用期間が長くなる。これらの実験例をみると、緻密質複合材料を得るための調合粉末については、SiCは43~52質量%、TiCは33~45質量%、TiSi2は14~18質量%の範囲に入り、緻密質複合材料については、SiCは51~68質量%、TSCは27~40質量%、TiCは4~12質量%の範囲に入ることがわかる。また、実験例33~36の結果から、SiC、TiSi2原料の一部或いは全量をTiC、Siのような原料で代替することによっても、同等の特性を有する緻密質複合材が発現できることがわかる。この場合、調合粉末については、SiCは43~52質量%、炭化チタンは33~45質量%の範囲に入り、残部は、珪化チタンが18質量%以下、及び/又は、Siが13質量%以下の範囲に入る。
 本出願は、2013年3月25日に出願された日本国特許出願第2013-061856号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明の冷却板は、例えば、窒化アルミニウム製の静電チャックやサセプターなどに金属接合される冷却板に用いられる。
10 半導体製造装置用部材、20 静電チャック、20a ウエハ載置面、22 静電電極、23 給電端子、24 ヒータ電極、25 給電端子、28 金属接合材、30 冷却板、31 第1基板、32 第2基板、32a 打ち抜き部、33 第3基板、34 第1金属接合層、35 第2金属接合層、36 冷媒通路、36a 入口、36b 出口、40 冷却板-チャック接合層、43 端子挿通孔、45 端子挿通孔、46a 冷媒供給孔、46b 冷媒排出孔、51 金属接合材、52 金属接合材、61 金属接合材、110 半導体製造装置用部材、130 冷却板、132 第2基板、132a 溝、134 金属接合層、136 冷媒通路。

Claims (13)

  1.  内部に冷媒通路が形成され、AlNセラミック部材の冷却に用いられる冷却板であって、
     含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料で作製された第1基板と、
     前記緻密質複合材料で作製され、前記冷媒通路と同じ形状となるように打ち抜かれた打ち抜き部を有する第2基板と、
     前記緻密質複合材料で作製された第3基板と、
     前記第1基板と前記第2基板との間に金属接合材を挟んで両基板を熱圧接合することにより両基板間に形成された第1金属接合層と、
     前記第2基板と前記第3基板との間に金属接合材を挟んで両基板を熱圧接合することにより両基板間に形成された第2金属接合層と、
     を備えた冷却板。
  2.  内部に冷媒通路を有し、AlNセラミック部材の冷却に用いられる冷却板であって、
     含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料で作製された第1基板と、
     前記緻密質複合材料で作製され、前記第1基板と向かい合う面に前記冷媒通路となる溝を有する第2基板と、
     前記第1基板と前記第2基板のうち前記溝が設けられた面との間に金属接合材を挟んで両基板を熱圧接合することにより形成された金属接合層と、
     を備えた冷却板。
  3.  前記金属接合層は、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合することにより形成されたものである、
     請求項1又は2に記載の冷却板。
  4.  前記緻密質複合材料は、前記チタンシリコンカーバイドを23~40質量%、前記炭化チタンを4~12質量%含有する、
     請求項1~3のいずれか1項に記載の冷却板。
  5.  前記緻密質複合材料は、前記炭化珪素粒子同士の間隙に、前記チタンシリコンカーバイド及び前記炭化チタンの少なくとも1つが前記炭化珪素粒子表面を覆うように存在している、
     請求項1~4のいずれか1項に記載の冷却板。
  6.  前記緻密質複合材料は、AlNとの40℃~570℃の平均線熱膨張係数の差が0.5ppm/K以下である、
     請求項1~5のいずれか1項に記載の冷却板。
  7.  前記緻密質複合材料は、40℃~570℃の平均線熱膨張係数が5.4~6.0ppm/Kである、
     請求項1~6のいずれか1項に記載の冷却板。
  8.  前記緻密質複合材料は、熱伝導率が100W/m・K以上、4点曲げ強度が300MPa以上である、
     請求項1~7のいずれか1項に記載の冷却板。
  9.  内部に冷媒通路が形成され、AlNセラミック部材の冷却に用いられる冷却板を製造する方法であって、
    (a)含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料を用いて、第1~第3基板を作製する工程と、
    (b)前記第2基板の一方の面から他方の面まで前記冷媒通路と同じ形状となるように打ち抜いて前記第2基板に打ち抜き部を形成する工程と、
    (c)前記第1基板と前記第2基板の一方の面との間および前記第3基板と前記第2基板の他方の面との間にそれぞれ金属接合材を挟んで前記第1~第3基板を熱圧接合する工程と、
     を含む冷却板の製法。
  10.  内部に冷媒通路を有し、AlNセラミック部材の冷却に用いられる冷却板を製造する方法であって、
    (a)含有量の多いものの上位3つが炭化珪素、チタンシリコンカーバイド、炭化チタンであり、この並び順が含有量の多いものから少ないものの順序を示しており、前記炭化珪素を51~68質量%含有し、珪化チタンを含有せず、開気孔率が1%以下である緻密質複合材料を用いて、第1基板及び第2基板を作製する工程と、
    (b)前記第2基板の一方の面に前記冷媒通路となる溝を形成する工程と、
    (c)前記第1基板と前記第2基板のうち前記溝が設けられた面との間に金属接合材を挟んで両基板を熱圧接合する工程と、
     を含む冷却板の製法。
  11.  前記工程(c)では、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合する、
     請求項9又は10に記載の冷却板の製法。
  12.  静電電極及びヒータ電極を内蔵したAlN製の静電チャックと、
     請求項1~8のいずれか1項に記載の冷却板と、
     前記冷却板の前記第1基板の表面と前記静電チャックとの間に金属接合材を挟んで両者を熱圧接合することにより形成された冷却板-チャック接合層と、
     を備えた半導体製造装置用部材。
  13.  前記冷却板-チャック接合層は、前記金属接合材としてMgを含有するかSi及びMgを含有するアルミニウム合金の接合材を採用し、該接合材の固相線温度以下の温度で熱圧接合することにより形成されたものである、
     請求項12に記載の半導体製造装置用部材。
PCT/JP2014/055813 2013-03-25 2014-03-06 冷却板、その製法及び半導体製造装置用部材 WO2014156543A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480001099.5A CN104254913B (zh) 2013-03-25 2014-03-06 冷却板、其制法以及半导体制造装置用部件
JP2014530025A JP5666749B1 (ja) 2013-03-25 2014-03-06 冷却板、その製法及び半導体製造装置用部材
KR20147030617A KR101483921B1 (ko) 2013-03-25 2014-03-06 냉각판, 그 제조방법 및 반도체 제조 장치용 부재
US14/515,800 US9257315B2 (en) 2013-03-25 2014-10-16 Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061856 2013-03-25
JP2013061856 2013-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/515,800 Continuation US9257315B2 (en) 2013-03-25 2014-10-16 Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2014156543A1 true WO2014156543A1 (ja) 2014-10-02

Family

ID=51569352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055813 WO2014156543A1 (ja) 2013-03-25 2014-03-06 冷却板、その製法及び半導体製造装置用部材

Country Status (6)

Country Link
US (2) US9184070B2 (ja)
JP (2) JP6182084B2 (ja)
KR (2) KR101483921B1 (ja)
CN (2) CN104254913B (ja)
TW (2) TWI599554B (ja)
WO (1) WO2014156543A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126640A (ja) * 2016-01-13 2017-07-20 日本特殊陶業株式会社 保持装置
CN107488043A (zh) * 2016-06-12 2017-12-19 中国科学院宁波材料技术与工程研究所 多层复合膜、其制备方法以及作为碳化硅及其复合材料连接材料的应用
JP2021116218A (ja) * 2020-01-29 2021-08-10 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
JP2021145129A (ja) * 2015-05-19 2021-09-24 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 高温プロセス用の金属接合されたバッキングプレートを有する静電パックアセンブリ
CN113526983A (zh) * 2020-04-16 2021-10-22 清华大学 一种核反应堆用石墨材料的复合高温抗氧化涂层及其制备方法
WO2023228281A1 (ja) * 2022-05-24 2023-11-30 日本碍子株式会社 冷却板及び半導体製造装置用部材

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490956B (zh) * 2013-03-12 2015-07-01 Shinkawa Kk 覆晶接合器以及覆晶接合方法
US10008404B2 (en) 2014-10-17 2018-06-26 Applied Materials, Inc. Electrostatic chuck assembly for high temperature processes
US9520295B2 (en) * 2015-02-03 2016-12-13 Lam Research Corporation Metal doping of amorphous carbon and silicon films used as hardmasks in substrate processing systems
CN106935529B (zh) * 2015-12-31 2020-03-24 中微半导体设备(上海)股份有限公司 一种基片支撑台及其制造方法
US10249526B2 (en) 2016-03-04 2019-04-02 Applied Materials, Inc. Substrate support assembly for high temperature processes
CN105845582A (zh) * 2016-04-28 2016-08-10 东莞市凯昶德电子科技股份有限公司 一种igbt封装用陶瓷基板的制备方法
CN107487055B (zh) * 2016-06-12 2019-08-20 中国科学院宁波材料技术与工程研究所 多层复合膜、其制备方法以及作为碳纤维增强碳复合材料的连接材料的应用
WO2018038044A1 (ja) * 2016-08-26 2018-03-01 日本碍子株式会社 ウエハ載置台
JP6741548B2 (ja) 2016-10-14 2020-08-19 日本碍子株式会社 半導体製造装置用部材及びその製法
JP6951657B2 (ja) * 2017-01-30 2021-10-20 日本電気硝子株式会社 無機多孔質シートの製造方法
CN107573076B (zh) * 2017-09-18 2020-05-22 山东理工大学 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件
CN107619282B (zh) * 2017-09-18 2020-06-09 山东理工大学 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
JP7064895B2 (ja) * 2018-02-05 2022-05-11 株式会社日立ハイテク プラズマ処理装置
US11287107B2 (en) * 2018-02-14 2022-03-29 Ngk Spark Plug Co., Ltd. Optical wavelength conversion device
WO2019163710A1 (ja) 2018-02-20 2019-08-29 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
US10957572B2 (en) 2018-05-02 2021-03-23 Applied Materials, Inc. Multi-zone gasket for substrate support assembly
TWI725792B (zh) * 2019-03-28 2021-04-21 日商Toto股份有限公司 靜電吸盤
JP2021019193A (ja) * 2019-07-18 2021-02-15 日本特殊陶業株式会社 半導体製造装置用部品およびその製造方法
KR102188261B1 (ko) * 2019-08-02 2020-12-09 세미기어, 인코포레이션 기판 냉각 장치 및 방법
JP7312712B2 (ja) * 2020-02-07 2023-07-21 新光電気工業株式会社 セラミックス基板、静電チャック、静電チャックの製造方法
JP7202326B2 (ja) * 2020-03-11 2023-01-11 日本碍子株式会社 セラミックヒータ
US11776794B2 (en) * 2021-02-19 2023-10-03 Applied Materials, Inc. Electrostatic chuck assembly for cryogenic applications
JPWO2023037698A1 (ja) 2021-09-09 2023-03-16
JP2023056710A (ja) 2021-10-08 2023-04-20 日本碍子株式会社 ウエハ載置台
CN115966449A (zh) 2021-10-08 2023-04-14 日本碍子株式会社 晶片载放台
JP2023058845A (ja) 2021-10-14 2023-04-26 日本碍子株式会社 ウエハ載置台
JP2023061196A (ja) 2021-10-19 2023-05-01 日本碍子株式会社 ウエハ載置台
JP2023070860A (ja) 2021-11-10 2023-05-22 日本碍子株式会社 ウエハ載置台
JP2023070861A (ja) 2021-11-10 2023-05-22 日本碍子株式会社 ウエハ載置台
JP2023079422A (ja) 2021-11-29 2023-06-08 日本碍子株式会社 ウエハ載置台
US20230238258A1 (en) 2022-01-27 2023-07-27 Ngk Insulators, Ltd. Wafer placement table, and member for semiconductor manufacturing apparatus, using the same
JPWO2024004040A1 (ja) 2022-06-28 2024-01-04
CN116283301A (zh) * 2023-03-23 2023-06-23 长春工程学院 一种碳化硅半导体材料及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277172A (ja) * 1988-05-04 1990-03-16 Astrosyst Inc 太陽電池
JP2007261830A (ja) * 2006-03-27 2007-10-11 Akita Prefecture TiC基Ti−Si−C系複合セラミックス及びその製造方法
JP2008071845A (ja) * 2006-09-13 2008-03-27 Denki Kagaku Kogyo Kk 放熱部品及びその製造方法
CN101269966A (zh) * 2008-04-29 2008-09-24 北京交通大学 原位置换反应热压制备SiC/Ti3SiC2材料的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3582238D1 (de) * 1985-01-11 1991-04-25 Hitachi Ltd Keramikwerkstoff mit hoher zaehigkeit und verfahren zu seiner herstellung.
JPS62260774A (ja) * 1986-05-01 1987-11-13 新日本製鐵株式会社 炭化珪素系複合セラミックス焼結体
US5500394A (en) * 1994-12-22 1996-03-19 Composite Materials, Inc. Fire-resistant and thermal shock-resistant composite ceramic material and method of making same
US5942455A (en) * 1995-11-14 1999-08-24 Drexel University Synthesis of 312 phases and composites thereof
WO1998030340A1 (en) 1997-01-10 1998-07-16 Drexel University Surface treatment of 312 ternary ceramic materials and products thereof
FR2806405B1 (fr) * 2000-03-14 2002-10-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage refractaire non reactif, composition de brasure, et joint et assemblage refractaires obtenus par ce procede
JP2003060019A (ja) * 2001-08-13 2003-02-28 Hitachi Ltd ウエハステージ
JP2003245792A (ja) * 2002-02-21 2003-09-02 Sumitomo Electric Ind Ltd 接続構造
JP2005281084A (ja) * 2004-03-30 2005-10-13 Tungaloy Corp 焼結体およびその製造方法
JP4614868B2 (ja) 2004-11-22 2011-01-19 日本碍子株式会社 接合体及びその製造方法
JP4542485B2 (ja) 2004-12-14 2010-09-15 日本碍子株式会社 アルミナ部材及びその製造方法
FR2905754B1 (fr) * 2006-09-12 2008-10-31 Boostec Sa Sa Procede de fabrication d'un dispositif de type echangeur de chaleur en carbure de silicium et dispositif en carbure de silicium realise par le procede
JP4836263B2 (ja) * 2007-01-04 2011-12-14 独立行政法人産業技術総合研究所 高強度チタンシリコンカーバイド基複合材料及びその製造方法
FR2925044B1 (fr) 2007-12-13 2010-03-12 Snecma Propulsion Solide Procede de realisation d'une couche de carbure refractaire sur une piece en materiau composite c/c.
BRPI0909886A2 (pt) * 2008-06-06 2015-10-06 Dow Global Technologies Inc método para formar um composto de um metal e um material cerâmio inicial de titânio-silício-carbeto ou titânio-alumínio carbeto e composto densificado
WO2012102348A1 (ja) * 2011-01-26 2012-08-02 日本碍子株式会社 Ti3SiC2質材料、電極、スパークプラグ、及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277172A (ja) * 1988-05-04 1990-03-16 Astrosyst Inc 太陽電池
JP2007261830A (ja) * 2006-03-27 2007-10-11 Akita Prefecture TiC基Ti−Si−C系複合セラミックス及びその製造方法
JP2008071845A (ja) * 2006-09-13 2008-03-27 Denki Kagaku Kogyo Kk 放熱部品及びその製造方法
CN101269966A (zh) * 2008-04-29 2008-09-24 北京交通大学 原位置换反应热压制备SiC/Ti3SiC2材料的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145129A (ja) * 2015-05-19 2021-09-24 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 高温プロセス用の金属接合されたバッキングプレートを有する静電パックアセンブリ
JP7263435B2 (ja) 2015-05-19 2023-04-24 アプライド マテリアルズ インコーポレイテッド 高温プロセス用の金属接合されたバッキングプレートを有する静電パックアセンブリ
JP2017126640A (ja) * 2016-01-13 2017-07-20 日本特殊陶業株式会社 保持装置
CN107488043A (zh) * 2016-06-12 2017-12-19 中国科学院宁波材料技术与工程研究所 多层复合膜、其制备方法以及作为碳化硅及其复合材料连接材料的应用
JP2021116218A (ja) * 2020-01-29 2021-08-10 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
CN113264775A (zh) * 2020-01-29 2021-08-17 日本碍子株式会社 致密质复合材料、其制法、接合体及半导体制造装置用构件
CN113264775B (zh) * 2020-01-29 2023-07-04 日本碍子株式会社 致密质复合材料、其制法、接合体及半导体制造装置用构件
JP7319205B2 (ja) 2020-01-29 2023-08-01 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
CN113526983A (zh) * 2020-04-16 2021-10-22 清华大学 一种核反应堆用石墨材料的复合高温抗氧化涂层及其制备方法
CN113526983B (zh) * 2020-04-16 2022-09-09 清华大学 一种核反应堆用石墨材料的复合高温抗氧化涂层及其制备方法
WO2023228281A1 (ja) * 2022-05-24 2023-11-30 日本碍子株式会社 冷却板及び半導体製造装置用部材

Also Published As

Publication number Publication date
JP5666749B1 (ja) 2015-02-12
TWI599554B (zh) 2017-09-21
US9184070B2 (en) 2015-11-10
KR101483921B1 (ko) 2015-01-16
KR20140116817A (ko) 2014-10-06
KR20140137016A (ko) 2014-12-01
US20140287245A1 (en) 2014-09-25
US9257315B2 (en) 2016-02-09
TWI600634B (zh) 2017-10-01
CN104072140A (zh) 2014-10-01
JPWO2014156543A1 (ja) 2017-02-16
US20150036261A1 (en) 2015-02-05
CN104254913A (zh) 2014-12-31
JP6182084B2 (ja) 2017-08-16
TW201506000A (zh) 2015-02-16
KR102114773B1 (ko) 2020-05-26
CN104072140B (zh) 2017-09-05
TW201505999A (zh) 2015-02-16
JP2014208567A (ja) 2014-11-06
CN104254913B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5666749B1 (ja) 冷却板、その製法及び半導体製造装置用部材
JP5666748B1 (ja) 冷却板、その製法及び半導体製造装置用部材
JP4997431B2 (ja) 高熱伝導窒化ケイ素基板の製造方法
TWI445682B (zh) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
CN111902383B (zh) 复合烧结体、半导体制造装置部件以及复合烧结体的制造方法
JP2010208871A (ja) 酸化アルミニウム焼結体、その製法及び半導体製造装置部材
CN113264775B (zh) 致密质复合材料、其制法、接合体及半导体制造装置用构件
KR20210052250A (ko) 복합 소결체 및 복합 소결체의 제조 방법
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP2002029851A (ja) 窒化珪素質組成物、それを用いた窒化珪素質焼結体の製造方法と窒化珪素質焼結体
JP7350215B1 (ja) 冷却板及び半導体製造装置用部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530025

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030617

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776459

Country of ref document: EP

Kind code of ref document: A1