WO2014141514A1 - フリップチップボンダおよびフリップチップボンディング方法 - Google Patents

フリップチップボンダおよびフリップチップボンディング方法 Download PDF

Info

Publication number
WO2014141514A1
WO2014141514A1 PCT/JP2013/075478 JP2013075478W WO2014141514A1 WO 2014141514 A1 WO2014141514 A1 WO 2014141514A1 JP 2013075478 W JP2013075478 W JP 2013075478W WO 2014141514 A1 WO2014141514 A1 WO 2014141514A1
Authority
WO
WIPO (PCT)
Prior art keywords
flip chip
semiconductor chip
cooling
chip bonder
bonding tool
Prior art date
Application number
PCT/JP2013/075478
Other languages
English (en)
French (fr)
Inventor
耕平 瀬山
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to KR1020147033242A priority Critical patent/KR101623368B1/ko
Priority to JP2014545028A priority patent/JP5675008B1/ja
Priority to CN201380027231.5A priority patent/CN104335336B/zh
Priority to SG11201507246VA priority patent/SG11201507246VA/en
Publication of WO2014141514A1 publication Critical patent/WO2014141514A1/ja
Priority to US14/847,295 priority patent/US9536856B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/755Cooling means
    • H01L2224/75501Cooling means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/755Cooling means
    • H01L2224/75502Cooling means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/756Means for supplying the connector to be connected in the bonding apparatus
    • H01L2224/75621Holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7565Means for transporting the components to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/81948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/37Effects of the manufacturing process
    • H01L2924/3701Effects of the manufacturing process increased through put

Definitions

  • the present invention relates to a structure of a flip chip bonder and a flip chip bonding method using the flip chip bonder.
  • flip chip bonding in which protruding electrodes called bumps are formed on the semiconductor chip and the semiconductor chip is directly connected to the circuit board has been widely adopted.
  • a plurality of bumps projection electrodes
  • the bumps are bonded to a plurality of electrodes formed on the circuit board by heating and melting.
  • a semiconductor chip and a circuit board are bonded to each other, and has advantages such as a reduction in mounting area, good electrical characteristics, and no need for mold sealing, as compared with a conventional wire bonding connection method.
  • an insulating resin film is attached to the surface of a semiconductor chip in advance, and the semiconductor chip is adsorbed and picked up by a holding member together with the insulating resin film (NCF), and then the holding member is rotated to rotate the insulating resin.
  • the semiconductor chip is inverted so that the surface of the film (NCF) is on the lower side, and a bonding tool is brought into contact with the surface of the semiconductor chip opposite to the surface on which the insulating resin film (NCF) is attached.
  • the semiconductor chip is transferred from the holding member to the bonding tool by being adsorbed by the bonding tool.
  • the surface on which the insulating resin film (NCF) of the semiconductor chip is attached is in contact with the upper surface of the holding member and is delivered to the bonding tool.
  • the surface of the insulating resin film (NCF) is on the lower side (circuit board side).
  • the bonding tool When the bonding is completed, the bonding tool is at a high temperature of about 300 ° C.
  • the surface of the semiconductor chip is brought into contact with the semiconductor chip when the high-temperature bonding tool is brought into contact with the semiconductor chip.
  • the insulating resin film (NCF) affixed to (the holding member side surface) is heated and melted and adheres to the holding member surface. For this reason, after the bonding tool in a high temperature state is once cooled to a temperature lower than the melting temperature of the insulating resin film (NCF) (for example, about 50 ° C.), the next semiconductor chip is received from the holding member, and the temperature of the bonding tool is increased again. After that, it is necessary to perform bonding.
  • the bonding tool is often cooled using air at room temperature (about 25 to 30 ° C), and it takes time to cool the bonding tool at a high temperature of about 300 ° C to about 50 ° C. There was a problem that the bonding time was long.
  • an object of the present invention is to provide a flip chip bonder that can shorten the bonding time without deteriorating the bonding quality.
  • the flip chip bonder of the present invention has a reversing mechanism for reversing the semiconductor chip, a bonding tool for receiving the semiconductor chip reversed by the reversing mechanism from the reversing mechanism and bonding it to the substrate, and a cooling mechanism for cooling the reversing mechanism. It is characterized by that.
  • the reversing mechanism includes a holding member that holds the inverted semiconductor chip, and the cooling mechanism cools the temperature of the holding member to a predetermined temperature before the bonding tool receives the semiconductor chip. This is also preferable.
  • the heat capacity of the holding member is larger than the heat capacity of the bonding tool.
  • the holding member is preferably an adsorption reversal collet that is transferred to the bonding tool in a state where the semiconductor chip is sucked and reversed, and the holding member reverses the semiconductor chip. It is also preferable that the transfer stage be transferred to the bonding tool in a state in which the semiconductor chip is reversed and the semiconductor chip is inverted.
  • the cooling mechanism is also suitable for cooling the inner surface or outer surface of the holding member.
  • the cooling mechanism includes a base member, a ground plate having a ground surface on which the surface of the holding member is grounded, and a cooling member including a heat radiating member attached to the ground plate, It is also preferable that the cooling member is supported by the base portion by a support mechanism that can change the direction of the ground contact surface so as to follow the direction of the surface of the holding member.
  • the heat capacity of the cooling member is preferably larger than the heat capacity of the holding member, and the heat dissipation member is attached to the surface of the ground plate opposite to the ground surface. It is also preferable that the heat radiating member is a heat radiating fin and includes a cooling fan for cooling the heat radiating fin.
  • the support mechanism is rotatable about two axes, a first axis along the ground plane and a second axis along the ground plane and perpendicular to the first axis. It is also preferable to support the grounding plate on the base body so that it has a cooling nozzle that blows cooling air to a holding member that is provided on the base body and whose surface is grounded to the grounding surface.
  • the ground plane of the ground plate is also suitable for heat conduction from the holding member toward the ground plate when the surface of the holding member is grounded.
  • the flip chip bonding method of the present invention includes a reversing mechanism for reversing a semiconductor chip, a bonding tool for receiving the semiconductor chip reversed by the reversing mechanism from the reversing mechanism and bonding it to a substrate, and a cooling mechanism for cooling the reversing mechanism. And a cooling step of cooling the holding member to a predetermined temperature before the bonding tool receives the semiconductor chip by the cooling mechanism.
  • the present invention has the effect of providing a flip chip bonder that can shorten the bonding time without deteriorating the bonding quality.
  • FIG. 2 is a cross-sectional view of a suction inversion collet of the flip chip bonder shown in FIG.
  • FIG. 2 is a flowchart which shows the bonding process by the flip chip bonder in embodiment of this invention. It is a graph which shows the temperature change of the bonding tool in the bonding process by the flip chip bonder of this invention, and the temperature of an adsorption
  • the flip chip bonder 101 of the present embodiment picks up and inverts a semiconductor chip 20 having an insulating resin film (NCF) 21 affixed to the surface 22, and then on the bonding stage 60. It is mounted (bonded) on the circuit board 65.
  • the flip chip bonder 101 according to this embodiment includes a pickup stage 10 that holds a semiconductor chip 20 on an upper surface 11, and an inversion that picks up and picks up the semiconductor chip 20 from the upper surface 11 of the pickup stage 10 and reverses the picked up semiconductor chip 20.
  • An adsorption reversal collet 30 as a mechanism and a bonding tool 50 that receives the inverted semiconductor chip 20 from the adsorption reversal collet 30 and bonds them to a circuit board 65 that is adsorbed and fixed to the bonding stage 60 are provided.
  • the suction reversal collet 30 includes a collet body 31 that is a holding member having a suction surface 32 that sucks the semiconductor chip 20, and a rotational movement shaft 33 to which an end of the collet body 31 opposite to the suction surface 32 is attached. Yes.
  • the rotational movement shaft 33 is moved in the vertical and horizontal directions by a rotational movement mechanism (not shown) and rotated around the central axis.
  • the suction reversing collet 30 is configured such that the collet body 31 can be moved up and down, left and right and rotated around the rotational movement shaft 33 by moving or rotating the rotational movement shaft 33 up and down and left and right by a rotational movement mechanism. Yes.
  • the rotational movement shaft 33 has a cylindrical cooling air passage 34 extending in the axial direction of the rotational movement shaft 33 and a radial direction of the rotational movement shaft 33 from the cooling air passage 34.
  • An extending cooling air nozzle 35 is provided.
  • the collet body 31 communicates with the cooling air nozzle 35 and has a first cooling air flow path 37 extending from the rotary moving shaft 33 toward the adsorption surface 32 of the collet body 31.
  • a second cooling air channel 38 that communicates with the first cooling air channel 37 and extends in a direction along the adsorption surface 32 is provided. As shown in FIG.
  • the cooling air that has flowed into the cooling air flow path 34 inside the rotary moving shaft 33 passes through the first cooling air flow path 37 and the second cooling air flow path 38 from the cooling air nozzle 35. Then, the collet body 31 is cooled by flowing out to the collet body 31.
  • the cooling medium is not limited to air but may be a liquid such as water.
  • the cooling air flow path 34, the cooling air nozzle 35, the first cooling air flow path 37, and the second cooling air flow path 38 constitute a cooling mechanism.
  • the bonding tool 50 is attached to the bonding head 40 and is moved in the horizontal and vertical directions by the bonding head 40. Further, the bonding tool 50 has a suction surface 51 (lower surface in FIG. 1) for sucking the semiconductor chip 20, and a temperature at which the bumps formed on the semiconductor chip 20 can be melted (300 ° C. to 350 ° C.). A pulse heater (not shown) for heating the semiconductor chip 20 is incorporated.
  • FIG. 4 shows bonding performed when flip chip bonding is performed by a conventional flip chip bonder in order to compare with a conventional flip chip bonder bonding process in which the collet body 31 of the adsorption reversal collet 30 is not cooled later.
  • a change in the temperature TB of the tool 50 is indicated by a broken line a, and the time of the bonding cycle is indicated as times t11 to t16.
  • a semiconductor chip 20 obtained by dicing a wafer is held on the upper surface 11 of the pickup stage 10.
  • Bumps (not shown) are formed on the bonding surface (the upper surface in FIG. 3) of the semiconductor chip 20 and an insulating resin film (NCF) 21 is attached.
  • NCF insulating resin film
  • the suction inversion collet 30 descends to the bonding surface of the semiconductor chip 20 to be picked up.
  • the adsorption reversal collet 30 includes the cooling air passage 34, the cooling air nozzle 35, the first cooling air passage 37, and the second cooling air passage 38 of the rotational movement shaft 33.
  • the temperature TC of the collet body 31 of the adsorption reversal collet 30 is the initial temperature TC1 (for example, about 30 ° C.) shown in FIG. 4B.
  • the insulating reversal collet 30 is lowered toward the semiconductor chip 20, and the insulating resin film (NCF) in which the suction surface 32 at the tip of the collet body 31 is attached to the bonding surface of the semiconductor chip 20. ) 21, the insulating resin film (NCF) 21 is adsorbed on the adsorption surface 32 of the collet body 31.
  • the temperature TC of the collet body 31 is a temperature TC1 (for example, about 30 ° C.) that is lower than the melting temperature (60 to 70 ° C.) of the insulating resin film (NCF) 21.
  • TC1 for example, about 30 ° C.
  • the rotary moving shaft 33 of the suction inversion collet 30 is turned downward by rotating 180 degrees in the direction of the arrow 83 in FIG.
  • the suction surface 32 of the collet body 31 faces upward, and the surface 22 of the semiconductor chip 20 (the surface opposite to the bonding surface on which the insulating resin film (NCF) 21 is attached) is upward in FIG. Then, the semiconductor chip 20 is inverted.
  • the suction reversal collet is held up to the delivery position of the semiconductor chip 20 to the bonding tool 50 while holding the semiconductor chip 20 while keeping the suction surface 32 of the suction reversal collet 30 upward.
  • Move 30 When the suction reversal collet 30 moves to the delivery position of the semiconductor chip 20, the bonding head 40 moves the suction surface 51 at the tip of the bonding tool 50 to the surface 22 of the semiconductor chip 20 (insulating resin film) at time t1 shown in FIG. (NCF) 21 is brought into contact with the surface opposite to the bonding surface to which 21 is affixed.
  • the temperature TB of the bonding tool 50 at time t1 shown in FIG. 4B is a temperature TB2 as shown by a solid line A in FIG.
  • the temperature TB2 is higher than the initial temperature TC1 (about 30 ° C.) of the collet body 31 of the adsorption inversion collet 30, for example, about 100 ° C.
  • the bonding head 40 raises the bonding tool 50 as shown in FIG. As shown in FIG. 4G, the semiconductor chip 20 is pressed to a predetermined position on the circuit board 65 that is sucked and fixed onto the bonding stage 60 at time t101 shown in FIG.
  • the bonding tool 50 has a temperature (300 ° C. to 350 ° C.) at which the bump formed on the semiconductor chip 20 can be melted by the pulse heater built in between the time t101 and the time t102 in FIG. To rise. Thereafter, between time t102 and time t103 shown in FIG.
  • the bonding head 40 heats and presses the semiconductor chip 20 and the insulating resin film (NCF) 21 with the bonding tool 50 in a high temperature (300 ° C. to 350 ° C.) state. Then, the bumps and the insulating resin film (NCF) 21 formed on the semiconductor chip 20 are melted. Thereafter, the bonding head 40 stops the suction of the semiconductor chip 20 of the bonding tool 50, stops the pulse heater built in the bonding tool 50, and raises the bonding tool 50. At this time, in the flip chip bonder 101 of this embodiment, the bonding tool 50 is cooled by a cooling device (not shown). Then, the temperature TB of the bonding tool 50 starts decreasing from time t103 shown in FIG. 4A, and reaches the initial temperature TB2 (about 100 ° C.) at time t2 shown in FIG. 4B.
  • the collet body 31 of the adsorption reversal collet 30 includes the cooling air passage 34, the cooling air nozzle 35, the first cooling air passage 37, and the second passage of the rotary moving shaft 33.
  • the semiconductor chip 20 is transferred to the bonding tool 50 at time t1 shown in FIG. 4B, and the bonding tool 50 is moved as shown in FIG.
  • the temperature decreases as shown by the line D in FIG.
  • the temperature TC of the collet body 31 decreases to the initial temperature TC1 (about 30 ° C.) at time t2 shown in FIG.
  • the semiconductor chip 20 is picked up and reversed by the adsorption reversal collet 30 which has been lowered to the initial temperature TC1 (about 30 ° C.), and the semiconductor chip 20 is delivered to the bonding tool 50 at the initial temperature TB1 (about 100 ° C.).
  • the bonding process is repeated, and a large number of semiconductor chips 20 are sequentially bonded onto the circuit board 65.
  • the temperature TC of the collet body 31 of the bonding tool 50 and the suction reversing collet 30 when performing flip chip bonding with a conventional flip chip bonder that does not cool the collet body 31 of the suction reversing collet 30 is described. The change will be described.
  • the temperature TB of the bonding tool 50 in the initial state is an insulating resin as shown in FIG.
  • the film is cooled to a temperature TB1 (about 50 ° C.) lower than the melting temperature (60 to 70 ° C.) of the film (NCF) 21.
  • the temperature TC of the collet body 31 of the adsorption reversal collet 30 is a temperature TC1 (about 30 ° C.) that is about the same as the room temperature, as shown in FIG.
  • the bonding tool 50 comes into contact with the semiconductor chip 20 adsorbed on the adsorption surface 32 of the collet body 31 of the adsorption inversion collet 30 as shown in FIG.
  • the temperature TC of the collet body 31 slightly increases due to the temperature difference between the initial temperature TB1 (about 50 ° C.) of the bonding tool 50 and the initial temperature TC1 (about 30 ° C.) of the collet body 31. To do.
  • the temperature TB of the bonding tool 50 is set to a temperature TB1 (about 50 ° C.) lower than the temperature TB2 (about 100 ° C.) in the case of the flip chip bonder 101 of the present embodiment. Since the semiconductor chip 20 is transferred from the suction inversion collet 30 to the bonding tool 50, the temperature rise at that time is the same as that of the flip chip bonder 101 of this embodiment described with reference to FIGS. 4 (a) and 4 (b). It is much smaller than the case.
  • the bonding tool 50 is grounded to the circuit board 65 at time t111 shown in FIG. 5B, and the temperature TB of the bonding tool 50 is formed on the semiconductor chip 20 from time t111 to t112.
  • the semiconductor chip is raised to a temperature (300 ° C. to 350 ° C.) at which the bumps can be melted, and then the bonding tool 50 in a high temperature (300 ° C. to 350 ° C.) state between time t112 and time t113 shown in FIG. 20 and the insulating resin film (NCF) 21 are heated and pressed to melt the bumps formed on the semiconductor chip 20 and the insulating resin film (NCF) 21.
  • the bonding head 40 stops the suction of the semiconductor chip 20 of the bonding tool 50, stops the pulse heater built in the bonding tool 50, and raises the bonding tool 50.
  • the bonding tool 50 is also cooled by a cooling device (not shown) even in the conventional flip chip bonder. Then, the temperature TB of the bonding tool 50 starts to decrease from time t113 in FIG. 5A, and reaches the initial temperature TB1 (about 50 ° C.) at time t12 shown in FIG. 5B.
  • the semiconductor chip 20 is transferred from the suction inversion collet 30 to the bonding tool 50 at time t11 shown in FIG.
  • the temperature of the collet body 31 hardly decreases and remains slightly higher than the initial temperature TC1 (about 30 ° C.).
  • the temperature of the collet body 31 gradually increases.
  • the temperature TC3 is the same as the temperature TB1 (about 50 ° C.) that is a temperature when the bonding tool 50 receives the semiconductor chip 20.
  • the semiconductor receiving temperature of the bonding tool 50 is from 300 to 350 ° C. during bonding to a temperature TB1 (about 50 ° C.). It is necessary to lower it.
  • the bonding tool 50 is normally cooled by blowing air at room temperature (about 25 ° C. to about 30 ° C.)
  • the temperature is lowered to the temperature TB1 (about 50 ° C.) as in the flip chip bonder of this embodiment. If the temperature is lowered to the temperature TB2 (about 100 ° C.), a large difference in the cooling time appears.
  • the time for reducing the temperature of the bonding tool 50 from TB3 (300 to 350 ° C.) to TB1 (about 50 ° C.) (shown in FIG. 4).
  • (Between time t103 and time t12) and time for reducing the temperature of the bonding tool 50 from the temperature TB3 (300 to 350 ° C.) to TB2 (about 100 ° C.) in the flip chip bonder 101 of this embodiment (time shown in FIG. 4)
  • the time difference ⁇ t between t103 and time t2) is about 4 to 5 seconds.
  • the cycle time (between times t11 and t12 shown in FIG.
  • the flip chip bonding cycle time (between the time t1 and the time t2 shown in FIG. 4) is 14-15. It can be shortened to about 2/3 from a second to about 10 seconds. Further, in the flip chip bonder 101 of the present embodiment, the bonding tool 50 is brought into contact with the semiconductor chip 20 sucked and held on the suction face 32 of the suction reversing collet 30 and then the semiconductor chip 20 is sucked and held on the suction reversing collet 30.
  • the semiconductor chip 20 Since the semiconductor chip 20 is delivered to the bonding tool 50 by being opened, it is possible to prevent the position of the semiconductor chip 20 from being greatly displaced during delivery of the semiconductor chip 20 such as the conventional flip chip bonder described in Patent Document 1. Thus, the bonding quality can be maintained.
  • the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 is made higher than that of the prior art by cooling the collet body 31 of the suction inversion collet 30, and bonding after bonding is performed. Since the cooling time of the tool 50 can be shortened, the flip chip bonding cycle time can be greatly shortened.
  • the flip chip bonder 101 of this embodiment has an effect that the bonding time can be shortened without deteriorating the bonding quality.
  • the bonding tool 50 for the cooling temperature TC1 of the collet body 31 of the adsorption reversal collet 30 (the temperature TC1 after cooling of the collet body 31 indicated by the line D in FIG. 4B).
  • the relationship of the receiving temperature TB2 of the semiconductor chip 20 (temperature TB2 after cooling of the bonding tool 50 shown by the line A in FIG. 4A) will be described in more detail.
  • the temperature of the collet body 31 rises as shown in FIGS. 7A and 7B from the high temperature bonding tool 50 at the temperature TB2. This is caused by the movement of heat toward the low temperature collet body 31 of TC1.
  • the white arrow indicates the direction of heat transfer, and the thickness indicates the amount of heat transfer.
  • the temperature TC2 of the collet body 31 after the temperature rise needs to be about 50 ° C. at which the insulating resin film (NCF) 21 does not soften or melt.
  • NCF insulating resin film
  • the cooling temperature TC1 of the collet body 31 and the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 may be selected by a graph as shown in FIG. 6, for example.
  • the line e in FIG. 6 indicates that the width of the semiconductor chip 20 to be transferred is as large as D1, and the amount of heat transferred from the bonding tool 50 to the collet body 31 when the semiconductor chip 20 is transferred.
  • the temperature TC of the collet body 31 is large and easily rises, the relationship between the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 with respect to the cooling temperature TC1 of the collet body 31 so that the temperature TC2 of the collet body 31 is 50 ° C. or less.
  • the line f of the semiconductor chip 20 to be transferred is as small as D2, and the collet is applied from the bonding tool 50 when the semiconductor chip 20 is transferred.
  • the temperature of the collet main body 31 is increased.
  • TC2 which is a line that defines the relation receipt temperature TB2 of the semiconductor chip 20 of the bonding tool 50 with respect to cooling temperature TC1 of the collet body 31 such that the 50 ° C. or less.
  • the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 is 50 ° C. as described in the conventional flip chip bonding (point g in FIG. 6). This is the same whether the width of the semiconductor chip 20 is large or small.
  • the temperature rise of the collet body is 50 ° C. or less.
  • the collet body 31 is cooled by a low-temperature refrigerant and the temperature of the collet body 31 is lowered to about 10 ° C., even when the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 is increased to 100 ° C.
  • the temperature rise of the collet body is 50 ° C. or less.
  • the cooling temperature TC1 of the collet body 31 is, for example, 30 ° C.
  • the bonding tool Even when the receiving temperature TB2 of 50 semiconductor chips 20 is increased to 150 ° C., the temperature rise of the collet body is 50 ° C. or less. Further, when the collet body 31 is cooled by a low-temperature refrigerant and the temperature of the collet body 31 is lowered to about 10 ° C., even when the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 is increased to 250 ° C. The temperature rise of the collet body is 50 ° C. or less.
  • the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 can be increased, and the bonding cycle time can be further shortened. Further, when the size of the semiconductor chip 20 to be delivered is reduced, the amount of heat transferred from the bonding tool 50 to the collet body 31 when delivering the semiconductor chip 20 is reduced even when the cooling temperature TC1 of the collet body 31 is the same.
  • the receiving temperature TB2 of the bonding tool 50 for the semiconductor chip 20 can be made higher, and the bonding cycle time can be made shorter.
  • the temperature rise of the collet body 31 is small even when the amount of heat transferred from the bonding tool 50 to the collet body 31 is the same.
  • the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 can be increased, and the bonding cycle time can be further shortened.
  • the cooling temperature TC1 of the collet main body 31 and the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 may be determined by, for example, a test in consideration of the above characteristics. Note that. FIG. 6 is a conceptual diagram showing characteristics of the relationship between the cooling temperature TC1 of the collet body 31 and the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50. The relation and characteristics may be other than the straight line shown in FIG. .
  • FIGS. 1 to 7 The parts described with reference to FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • the flip chip bonder 102 of this embodiment includes a cooling stage 110 that cools the collet main body 31 by bringing the suction surface 32 of the suction inversion collet 30 into contact with it as a cooling mechanism.
  • the cooling stage 110 includes a frame 112 as a base portion, a ground plate 114 having a ground surface 114 a to which the suction surface 32 at the tip of the collet body 31 is grounded, and a contact between the ground plate 114. And a cooling member 116 including a heat dissipating fin 115 that is a heat dissipating member attached to a surface opposite to the ground 114a.
  • the grounding plate 114 is configured so that the direction of the grounding surface 114a is variable by the support mechanism 200. It is attached to the frame 112.
  • a cooling nozzle 119 that is attached to the side surface of the frame 112 via a bracket 121 and blows cooling air from the blowout hole 120 along the vicinity of the surface of the ground contact surface 114a, and cooling that supplies the cooling air to the cooling nozzle 119.
  • Air supply pipes 117 and 118 are attached.
  • a cooling fan 122 that blows cooling air to the radiating fin 115 is disposed below the radiating fin 115 of the cooling member 116.
  • the support mechanism 200 is rotatable around a Y axis 127 that is a second axis that passes through the center 125 of the ground plate 114 and is orthogonal to the X axis 126 along the ground surface 114 a.
  • a rectangular annular intermediate frame 113 attached to the inside of the square opening of the frame 112 by the pin 123, and attached to the inside of the intermediate frame 113, passing through the center 125 of the ground plate 114 and along the ground plane 114a.
  • a pin 124 that rotatably supports the ground plate 114 around the X axis 126 that is the first axis.
  • the ground plate 114 is rotatable around the X axis 126 and the Y axis 127 passing through the center 125 with respect to the frame 112, and the direction of the ground surface 114a with respect to the frame 112 or the inclination of the ground surface 114a is variable. So that it is supported. Also, as shown in FIG. 10, the radiation fin 115 is fixed to the lower surface of the ground plate 114 (the surface opposite to the ground surface 114a) and moves integrally with the ground plate 114.
  • the cooling member 116 including 114 and the radiation fin 115 is rotatable around the X axis 126 and the Y axis 127 passing through the center 125 of the ground plate 114 as a whole.
  • the grounding surface 114a which is the surface of the grounding plate 114, is a plane that allows the suction surface 32 at the tip of the collet body 31 to be in close contact with each other, and the heat capacity of the cooling member 116 including the grounding plate 114 and the radiation fin 115 is The heat capacity of the collet body 31 is configured to be larger.
  • the suction surface 32 of the suction reversal collet 30 is cooled in contact with the upper surface of the cooling stage 110, and is at a room temperature of about 30 ° C., for example.
  • the rotational movement shaft 33 is moved up and down and left and right by a rotational movement mechanism (not shown) to just above the semiconductor chip 20 to be picked up the collet body 31 of the suction inversion collet 30.
  • the suction reversal collet 30 is lowered onto the semiconductor chip 20 to be picked up as indicated by an arrow 92 in FIG. As shown in FIG.
  • the rotational movement shaft 33 is moved, and the collet body 31 is moved to a delivery position for delivering the semiconductor chip 20 to and from the bonding tool 50 as shown in FIG.
  • the bonding head 40 has the surface 22 (insulating resin) of the semiconductor chip 20 in which the suction surface 51 of the bonding tool 50 is sucked and held on the suction surface 32 of the collet body 31.
  • the semiconductor chip 20 is adsorbed by being brought into contact with the bonding surface on which the film (NCF) 21 is attached, and the semiconductor chip 20 is received from the collet body 31 of the adsorption inversion collet 30.
  • the temperature TC of the collet body 31 rises from an initial temperature TC1 of about 30 ° C. to a temperature TC2 of about 50 ° C. as shown at time t1 in FIG.
  • the bonding head 40 grounds the bonding tool 50 to a predetermined position on the circuit board 65 fixed to the bonding stage 60.
  • the bonding tool 50 is heated by a pulse heater built in the bonding tool 50 to melt the bumps and the insulating resin film (NCF) of the semiconductor chip 20, and the semiconductor chip 20 is bonded onto the circuit board 65.
  • NCF insulating resin film
  • the temperature of the collet body 31 after delivering the semiconductor chip 20 is a temperature TC2 of about 50 ° C.
  • the rotational movement mechanism rotates the suction surface 32 of the rotational movement shaft 33 to the lower side and moves the center of the collet body 31 to the center of the cooling stage 110.
  • the cooling fan 122 of the cooling stage 110 is rotating, and cooling air is being sent to the radiation fin 115 as indicated by the arrow R in the figure.
  • the fin 115 is in a substantially normal temperature state.
  • the collet body 31 is moved downward (Z direction minus side) as indicated by an arrow P shown in FIG. 14B, and the suction surface 32 of the collet body 31 is grounded to the grounding surface 114a on the surface of the grounding plate 114.
  • the ground plate 114 is rotatable about the X axis 126 and the Y axis 127 passing through the center 125 of the ground plate 114 with respect to the frame 112 by the support mechanism 200.
  • the inclination of the grounding surface 114a follows the inclination of the suction surface 32 (the direction of the tip surface) of the collet body 31 around the X axis 126, It rotates freely around the Y axis 127.
  • the suction surface 32 of the collet body 31 is in close contact with the ground contact surface 114a. Since the ground plate 114 is fixed integrally with the radiating fin 115, when the suction surface 32 of the collet body 31 is in close contact with the ground surface 114a, the heat of the collet body 31 is indicated by an arrow S in FIG. Then, it flows toward the ground plate 114 and the heat radiation fin 115 held at room temperature.
  • the heat capacity of the cooling member 116 including the ground plate 114 and the radiating fin 115 is configured to be larger than the heat capacity of the collet body 31, the temperature of the collet body 31 rapidly decreases. Further, when the suction surface 32 of the collet body 31 is in close contact with the ground surface 114a of the ground plate 114, the direction along the ground surface 114a from the blowing hole 120 of the cooling nozzle 119 attached to the side of the frame 112 (arrow Q) The cooling air is jetted out in the direction of () and applied to the tip of the collet body 31, and cooling is also performed from the outer surface of the collet body 31.
  • the temperature of the collet body 31 decreases to the initial temperature TC1 shown in FIG.
  • the cooling fan 122 of the cooling stage 110 continues to send cooling air to the radiating fins 115 even after the suction surface 32 of the collet body 31 is separated from the ground surface 114 a of the ground plate 114. Therefore, the cooling member 116 constituted by the ground plate 114 and the heat radiation fin 115 is cooled to the initial temperature TC1 while the bonding tool 50 is bonding the semiconductor chip 20.
  • the semiconductor chip 20 is picked up and bonded to the next semiconductor chip 20 to be picked up next.
  • the flip chip bonder 102 of this embodiment has an effect that the bonding time can be shortened without deteriorating the bonding quality, like the flip chip bonder 101 of the embodiment described with reference to FIGS. 1 to 7. .
  • the cooling stage 110 is supported by combining two pins 123 and 124 and the intermediate frame 113 as shown in FIGS. 10 and 11. It has been described that the grounding plate 114 is attached to the frame 112 by the mechanism 200 and is rotatable about the XY axes. However, if the grounding plate 114 is rotatable about the XY axes, the following description will be given. It is good also as a structure which does.
  • the configuration of the cooling stage 110 having another configuration will be described with reference to FIGS. Parts similar to those of the embodiment described with reference to FIGS. 9 to 11 are denoted by the same reference numerals, and description thereof is omitted.
  • the cooling stage 110 shown in FIG. 15 pivots the support mechanism 200 of the cooling stage 110 described with reference to FIGS. 9 to 11 by the support pin 212 provided in the frame 112 with the recess 211 provided in the lower surface of the ground plate 114.
  • the pivot support mechanism 210 is supported.
  • the cooling stage 110 shown in FIG. 16 is a spring support mechanism 220 that supports the four corners of the ground plate 114 with springs 221. Further, instead of the pivot support mechanism 210 of the cooling stage 110 shown in FIG.
  • a spherical recess provided on the lower surface of the ground plate 114 may be supported by a spherical pedestal provided on the frame 112.
  • the cooling stage 110 shown in FIGS. 15 and 16 is rotatable with respect to the XY axes and is also rotatable with respect to the Z axis.
  • the heat dissipating fins 115 may be integrated with the ground plate 114 so that the heat of the ground plate 114 can be dissipated, and may be disposed beside the ground plate 114 as shown in FIG. Further, the cooling member 116 may be cooled not by the heat radiating fins 115 but by a coolant other than air, for example, by flowing cooling water therein.
  • the collet body 31 of the suction inversion collet 30 is cooled by the cooling stage 110, but the same structure as the cooling stage 110 is used.
  • another cooling stage for closely cooling the suction surface 51 at the tip of the bonding tool 50 may be provided to cool the bonding tool 50 similarly to the collet body 31.
  • the flip chip bonder 103 is a semiconductor in which the semiconductor chip 20 inverted by the suction inversion collet 30 is inverted by the suction inversion collet 30 instead of being directly transferred to the bonding tool 50.
  • the chip 20 is received by the collet 71 attached to the transfer head 70 and placed on the surface 76 of the transfer stage 75, and the transfer stage 75 holds the semiconductor chip 20 in an inverted state while passing it to the bonding tool 50. Transport to.
  • the bonding tool 50 receives the inverted semiconductor chip 20 from the surface 76 of the transfer stage 75 and bonds it onto the circuit board 65 that is sucked and fixed onto the bonding stage 60.
  • the semiconductor chip 20 is transferred between the bonding tool 50 and the transfer stage 75. Therefore, when the semiconductor chip 20 is transferred, the temperature of the transfer stage 75 is as shown in FIG. As with the collet body 31 shown in FIG. 4, the temperature rises from the temperature TC1 to the temperature TC2.
  • the suction inversion collet 30 is at room temperature and the temperature does not increase. .
  • the suction reversal collet 30, the transfer head 70, the collet 71, and the transfer stage 75 constitute a reversing mechanism, and the transfer stage 75 is a holding member that holds the reversed semiconductor chip 20.
  • the transfer stage 75 communicates with an air inflow passage 77 extending from the lower surface (the surface opposite to the surface 76 holding the semiconductor chip 20) toward the surface 76, and the air inflow passage 77.
  • a horizontal cooling channel 78 extending in a direction along the surface 76.
  • the cooling air that has flowed into the air inflow passage 77 passes through the horizontal cooling passage 78 and flows out of the side surface of the transfer stage 75 to cool the transfer stage 75.
  • the transfer stage 75 is cooled by cooling air.
  • the cooling medium is not limited to air, and a liquid such as water may be used.
  • the air inflow passage 77 and the horizontal cooling passage 78 constitute a cooling mechanism.
  • the bonding tool 50 is attached to the bonding head 40 and moved in the horizontal and vertical directions by the bonding head 40. Further, the bonding tool 50 has a suction surface 51 (lower surface in FIG. 1) for sucking the semiconductor chip 20, and a temperature at which the bumps formed on the semiconductor chip 20 can be melted (300 ° C. to 350 ° C.). A pulse heater (not shown) for heating the semiconductor chip 20 is incorporated.
  • the semiconductor chip 20 is sucked, picked up and reversed by the suction reversing collet 30.
  • the suction surface 72 of the collet 71 attached to the transfer head 70 is brought into contact with the surface 22 of the semiconductor chip 20 to bring the semiconductor chip 20 into the collet body of the suction inversion collet 30.
  • the collet 71 is moved onto the transfer stage 75 by the transfer head 70, and the semiconductor chip 20 adsorbed on the collet 71 is received by the surface 76 of the transfer stage 75. hand over.
  • the temperature of the transfer stage 75 is about 30 ° C. from the initial temperature TC 1 of about 30 ° C., similar to the temperature of the collet body 31 shown at time t1 in FIG.
  • the temperature rises to TC2.
  • the transfer stage 75 is cooled by the cooling air flowing through the air inflow passage 77 and the horizontal cooling passage 78, and the temperature thereof is the initial temperature similar to the temperature of the collet body 31 at time t2 in FIG. Return to TC1.
  • the semiconductor chip 20 receiving temperature TB2 of the bonding tool 50 is made higher than that of the prior art by cooling the transfer stage 75 that transfers the semiconductor chip 20 to and from the bonding tool 50.
  • the cooling time of the bonding tool 50 after bonding can be shortened, the cycle time of flip chip bonding can be greatly shortened.
  • the relationship between the cooling temperature of the transfer stage 75 and the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 is related to the cooling temperature TC1 of the collet body 31 and the semiconductor chip of the bonding tool 50 described with reference to FIGS.
  • the amount of heat that moves from the bonding tool 50 to the transfer stage 75 when the semiconductor chip 20 is transferred is reduced even when the cooling temperature of the transfer stage 75 is the same.
  • the receiving temperature TB2 of the semiconductor chip 20 of the tool 50 can be further increased, and the bonding cycle time can be further shortened.
  • the heat capacity of the transfer stage 75 is larger than the heat capacity of the bonding tool 50, the temperature rise of the transfer stage 75 is reduced even when the amount of heat transferred from the bonding tool 50 to the transfer stage 75 is the same.
  • the receiving temperature TB2 of the semiconductor chip 20 of the bonding tool 50 can be increased, and the bonding cycle time can be further shortened.
  • a flip chip bonder 104 according to another embodiment of the present invention will be described with reference to FIG. Parts similar to those of the embodiment described above with reference to FIGS. 17 to 20 are denoted by the same reference numerals, and description thereof is omitted.
  • the cooling stage 150 that cools the moving stage 75 is disposed on the flip chip bonder 103 described with reference to FIGS. 17 to 20, and the moving stage 75 is moved in the vertical direction.
  • the moving stage 75 is cooled by bringing the surface 76 into close contact with the ground plate 154 of the cooling stage 150.
  • the cooling stage 150 has a configuration in which the cooling stage 110 of the embodiment described with reference to FIGS. 8 to 14 is turned upside down.
  • the moving stage 75 is moved up and down to be in close contact with the ground plate 154 of the cooling stage 150.
  • the cooling stage 150 is moved up and down to move the ground plate 154. You may make it closely_contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

 フリップチップボンダにおいて、半導体チップ(20)を反転させる吸着反転コレット(30)と、吸着反転コレット(30)で反転させた半導体チップ(20)を吸着反転コレット(30)から受け取って回路基板(65)にボンディングするボンディングツール(50)とを有し、吸着反転コレット(30)は内部に冷却空気を流通させて吸着反転コレット(30)を冷却する冷却流路を備え、ボンディング品質を低下させずにボンディング時間を短縮できる。

Description

フリップチップボンダおよびフリップチップボンディング方法
 本発明は、フリップチップボンダの構造および、フリップチップボンダを用いたフリップチップボンディング方法に関する。
 半導体チップを回路基板に実装する方法として、半導体チップにバンプと呼ばれる突起電極を形成し、半導体チップを回路基板に直接接続するフリップチップボンディングが広く採用されるようになっている。フリップチップボンディングは、半導体チップの回路面に対してはんだなどの材料でバンプ(突起電極)を複数形成し、このバンプを回路基板上に形成された複数の電極に加熱溶融により接合することによって、半導体チップと回路基板とを接合するものであり、従来のワイヤーボンディング接続方式に比べて、実装面積を小さくできるうえ、電気的特性が良好、モールド封止が不要などの利点を有している。
 フリップチップボンディングにおいては、半導体チップと回路基板との接合部の接続信頼性を確保するため、半導体チップと回路基板との空隙をアンダーフィルなどにより樹脂封止することが必要となるが、アンダーフィルを用いると液状樹脂の充填に時間がかかるなどの問題がある上、半導体チップと回路基板との間の隙間が狭くなりつつある近年の現状では、液状樹脂の注入が困難となるという問題もある。このため、半導体チップの表面に予め絶縁樹脂フィルム(NCF)を貼り付けておき、半導体チップと回路基板との接合と同時に樹脂を溶融・硬化させることにより、半導体チップと回路基板との間の樹脂封止を行うボンディング方法が提案されている。
 この方法では、予め絶縁樹脂フィルム(NCF)を半導体チップの表面に貼り付けておき、絶縁樹脂フィルム(NCF)とともに半導体チップを保持部材に吸着してピックアップした後、保持部材を回転させて絶縁樹脂フィルム(NCF)の面が下側となるように半導体チップを反転させ、半導体チップの絶縁樹脂フィルム(NCF)の貼り付けられている面と反対側の面にボンディングツールを接触させて半導体チップをボンディングツールに吸着させ、半導体チップを保持部材からボンディングツールに受け渡す。したがって、半導体チップの受け渡しの際には、半導体チップの絶縁樹脂フィルム(NCF)の貼り付けられている面が保持部材の上側の面に接した状態となっており、ボンディングツールに受け渡された半導体チップは、絶縁樹脂フィルム(NCF)の面が下側(回路基板側)となっている。その後、ボンディングツールによって半導体チップを回路基板に押し付けるとともに、ボンディングツールの温度をバンプの溶融温度(300℃程度)まで上昇させると、バンプの溶融と同時に絶縁樹脂フィルム(NCF)が溶融して半導体チップと回路基板との間に入り込む。そして、ボンディングツールを上昇させると、バンプと絶縁樹脂フィルム(NCF)の温度が低下して溶融したバンプの金属と溶融した樹脂が硬化し、半導体チップの回路基板へのボンディングが終了する。
 ボンディングが終了した際にはボンディングツールは300℃程度の高温となっているので、この状態で保持部材から次の半導体チップを受け取ると、高温のボンディングツールが半導体チップに接触する際に半導体チップ表面(保持部材側の面)に貼り付けられている絶縁樹脂フィルム(NCF)が加熱され、溶融して保持部材表面に付着してしまう。このため、高温状態のボンディングツールを一旦絶縁樹脂フィルム(NCF)の溶融温度以下(例えば、50℃程度)まで冷却した後、保持部材から次の半導体チップを受け取り、再度ボンディングツールの温度を上昇させた後にボンディングを行うことが必要となる。しかし、ボンディングツールの冷却は常温(25~30℃程度)の空気を用いて行うことが多く、300℃程度の高温状態のボンディングツールを50℃程度まで冷却するのに時間がかかり、全体としてのボンディング時間が長くなってしまうという問題があった。
 そこで、保持部材とボンディングツールとを接触させない状態、つまり、ボンディングツールから保持部材への熱の伝達を遮断した状態で、半導体チップをボンディングツールの表面に吸引することにより保持部材からボンディングツールへ受け渡し、ボンディングツールの冷却を行わずにボンディングを継続することによりボンディング時間を短縮する方法が提案されている(例えば、特許文献1参照)。
特開2012-174861号公報
 ところで、フリップチップボンディングでは、多数の電極を一度に接合するために、半導体チップと回路基板の相対位置を正確に合わせることが必要である。しかし、特許文献1に記載された従来技術のように、保持部材に対して隙間を空けた状態で半導体チップをボンディングツールに吸着させる場合には、半導体チップは一旦空中に浮遊した後、ボンディングツールの表面に吸着されることとなるので、半導体チップの位置、方向が大きくずれてしまい、ボンディング品質が低下してしまうという問題があった。
 そこで、本発明は、ボンディング品質を低下させずにボンディング時間を短縮できるフリップチップボンダを提供することを目的とする。
 本発明のフリップチップボンダは、半導体チップを反転させる反転機構と、反転機構で反転させた半導体チップを反転機構から受け取って基板にボンディングするボンディングツールと、反転機構を冷却する冷却機構と、を有することを特徴とする。
 本発明のフリップチップボンダにおいて、反転機構は、反転した半導体チップを保持する保持部材を含み、冷却機構は、ボンディングツールが半導体チップを受け取る前に保持部材の温度を所定の温度まで冷却しておくこと、としても好適である。
 本発明のフリップチップボンダにおいて、保持部材の熱容量は、ボンディングツールの熱容量よりも大きいこと、としても好適である。
 本発明のフリップチップボンダにおいて、保持部材は、半導体チップを吸着して反転させた状態でボンディングツールに受け渡す吸着反転コレットであること、としても好適であるし、保持部材は、半導体チップを反転した状態で移動させ、半導体チップを反転させた状態でボンディングツールに受け渡す移送ステージであること、としても好適である。
 本発明のフリップチップボンダにおいて、冷却機構は、保持部材の内面あるいは外面を冷却すること、としても好適である。
 本発明のフリップチップボンダにおいて、冷却機構は、基体部と、保持部材の表面が接地する接地面を有する接地板と、接地板に取り付けられた放熱部材と、を含む冷却部材と、を備え、冷却部材は、保持部材の表面の方向に倣うように接地面の方向を可変とする支持機構によって基体部に支持されていること、としても好適である。
 本発明のフリップチップボンダにおいて、冷却部材の熱容量は、保持部材の熱容量よりも大きいこと、としても好適であるし、放熱部材は、接地板の接地面と反対側の面に取り付けられていること、としても好適であるし、放熱部材は、放熱フィンであり、放熱フィンを冷却する冷却ファンを備えていること、としても好適である。
 本発明のフリップチップボンダにおいて、支持機構は、接地面に沿った第一の軸と、接地面に沿い、第一の軸と直交する第二の軸との2つの軸の回りに回転自在となるように接地板を基体部に支持すること、としても好適であるし、基体部に設けられ、その表面が接地面に接地している保持部材に冷却空気を吹き付ける冷却ノズルを備えていること、としても好適であるし、接地板の接地面は、保持部材の表面が接地した際に、保持部材から接地板に向って熱伝導が生じること、としても好適である。
 本発明のフリップチップボンディング方法は、半導体チップを反転させる反転機構と、反転機構で反転させた半導体チップを反転機構から受け取って基板にボンディングするボンディングツールと、反転機構を冷却する冷却機構と、を有するフリップチップボンダを準備する工程と、冷却機構によりボンディングツールが半導体チップを受け取る前に保持部材の温度を所定の温度まで冷却しておく冷却工程と、を有すること、を特徴とする。
 本発明は、ボンディング品質を低下させずにボンディング時間を短縮できるフリップチップボンダを提供することができるという効果を奏する。
本発明の実施形態におけるフリップチップボンダの構成を示す立面図である。 図1に示すフリップチップボンダの吸着反転コレットの断面図である。 本発明の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 本発明のフリップチップボンダによるボンディング工程におけるボンディングツールの温度と吸着反転コレットの温度変化を示すグラフである。 従来技術のフリップチップボンダによるボンディング工程におけるボンディングツールの温度と吸着反転コレットの温度変化を示すグラフである。 本発明のフリップチップボンダによる吸着反転コレットの冷却温度に対するボンディングツールの半導体チップ受け取り温度の関係を示すグラフである。 本発明のフリップチップボンダによる吸着反転コレットと半導体チップとボンディングツールの大きさを示す立面図である。 本発明の他の実施形態におけるフリップチップボンダの構成を示す立面図である。 図8に示すフリップチップボンダの冷却ステージの構成を示す斜視図である。 図8に示すフリップチップボンダの冷却ステージの断面図である。 図8に示すフリップチップボンダの冷却ステージの平面図である。 本発明の他の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 本発明の他の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 本発明の他の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 図8に示すフリップチップボンダの他の冷却ステージの構成を示す断面図である。 図8に示すフリップチップボンダの他の冷却ステージの構成を示す平面図である。 本発明の他の実施形態におけるフリップチップボンダの構成を示す立面図である。 図17に示すフリップチップボンダの移送ステージの断面図である。 本発明の他の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 本発明の他の実施形態におけるフリップチップボンダによるボンディング工程を示す流れ図である。 本発明の他の実施形態におけるフリップチップボンダの構成を示す立面図である。
 以下、本発明の実施形態について図面を参照しながら説明する。図1に示すように、本実施形態のフリップチップボンダ101は、表面22に絶縁樹脂フィルム(NCF)21が貼り付けられた半導体チップ20をピックアップして反転させた後、ボンディングステージ60の上の回路基板65の上に実装(ボンディング)するものである。本実施形態のフリップチップボンダ101は、上面11に半導体チップ20を保持するピックアップステージ10と、ピックアップステージ10の上面11から半導体チップ20を吸着してピックアップし、ピックアップした半導体チップ20を反転させる反転機構である吸着反転コレット30と、反転させた半導体チップ20を吸着反転コレット30から受け取り、ボンディングステージ60に吸着固定された回路基板65にボンディングするボンディングツール50とを備えている。
 吸着反転コレット30は、半導体チップ20を吸着する吸着面32を備える保持部材であるコレット本体31と、吸着面32と反対側のコレット本体31の端部が取り付けられる回転移動軸33とを備えている。回転移動軸33は、図示しない回転移動機構によって上下左右方向に移動および、中心軸の周りに回転される。吸着反転コレット30は、回転移動機構によって回転移動軸33を上下左右に移動あるいは回転させることによってコレット本体31を上下左右に移動させるとともに回転移動軸33の周りに回転させることができるよう構成されている。
 図2に示すように、回転移動軸33は、内部に回転移動軸33の軸方向に伸びる円筒状の冷却空気流路34と、冷却空気流路34から回転移動軸33の半径方向に向かって伸びる冷却空気ノズル35が設けられており、コレット本体31には、冷却空気ノズル35に連通し、回転移動軸33からコレット本体31の吸着面32に向かって伸びる第一の冷却空気流路37と第一の冷却空気流路37に連通し、吸着面32に沿った方向に伸びる第二の冷却空気流路38とが設けられている。図2に示すように、回転移動軸33の内部の冷却空気流路34に流入した冷却空気は、冷却空気ノズル35から第一の冷却空気流路37、第二の冷却空気流路38を通ってコレット本体31に外部に流出することによって、コレット本体31の冷却を行う。本実施形態では、冷却空気によってコレット本体31の冷却を行うこととして説明したが、冷却媒体は空気に限らず、水等の液体を用いてもよい。冷却空気流路34、冷却空気ノズル35、第一の冷却空気流路37、第二の冷却空気流路38は、冷却機構を構成するものである。
 図1に示すように、ボンディングツール50は、ボンディングヘッド40に取り付けられ、ボンディングヘッド40によって水平、垂直方向に移動する。また、ボンディングツール50は半導体チップ20を吸着する先端の吸着面51(図1における下側の面)を備え、内部には半導体チップ20に形成されたバンプを溶融できる温度(300℃~350℃)まで半導体チップ20を加熱する図示しないパルスヒータが内蔵されている。
 以下、図3、図4を参照しながら本実施形態のフリップチップボンダ101によって半導体チップ20を回路基板65にボンディングする工程を説明する。なお、図4には、後で吸着反転コレット30のコレット本体31を冷却しない従来のフリップチップボンダのボンディング工程との対比を行うために、従来のフリップチップボンダによりフリップチップボンディングを行う際のボンディングツール50の温度TBの変化を破線aにより記載し、そのボンディングサイクルの時刻を時刻t11~t16として記載している。従来技術のフリップチップボンダと本実施形態のフリップチップボンダ101との対比説明は、図5を参照して従来技術のフリップチップボンダのボンディング工程を説明した後に行う。
 図3(a)に示すように、ピックアップステージ10の上面11にはウェハをダイシングした半導体チップ20が保持されている。半導体チップ20のボンディング面(図3中の上側の面)には、図示しないバンプが形成されると共に絶縁樹脂フィルム(NCF)21が貼り付けられている。まず、図3(a)の矢印81に示すように、吸着反転コレット30がピックアップしようとする半導体チップ20のボンディング面に降下してくる。図2を参照して説明したように、吸着反転コレット30は、回転移動軸33の冷却空気流路34、冷却空気ノズル35、第一の冷却空気流路37、第二の冷却空気流路38を流れる冷却空気によって冷却されているので、吸着反転コレット30のコレット本体31の温度TCは、図4(b)に示す初期状態の温度TC1(例えば、30℃程度)となっている。
 図3(b)に示すように、吸着反転コレット30が半導体チップ20に向かって降下し、コレット本体31先端の吸着面32が半導体チップ20のボンディング面に貼り付けられている絶縁樹脂フィルム(NCF)21に接すると、絶縁樹脂フィルム(NCF)21がコレット本体31の吸着面32に吸着される。この際、コレット本体31の温度TCは、絶縁樹脂フィルム(NCF)21の溶融温度(60~70℃)よりも低い温度TC1(例えば、30℃程度)となっているので、絶縁樹脂フィルム(NCF)21が吸着面32に吸着されても絶縁樹脂フィルム(NCF)21は溶融しない状態となっている。
 図3(c)に示すように、吸着反転コレット30を矢印82のように上昇させると、絶縁樹脂フィルム(NCF)21と共に半導体チップ20がピックアップステージ10の上面11からピックアップされる。
 図3(d)に示すように、半導体チップ20をピックアップしたら、吸着反転コレット30の回転移動軸33を図3(d)の矢印83の方向に180度回転させることによって下側に向いていたコレット本体31の吸着面32を上向きとし、半導体チップ20の表面22(絶縁樹脂フィルム(NCF)21の貼り付けてあるボンディング面と反対側の面)が図3(d)において上方向となるように、半導体チップ20を反転させる。
 図3(e)に示すように、吸着反転コレット30の吸着面32を上方向に保ったまま、半導体チップ20を保持した状態で、ボンディングツール50への半導体チップ20の受け渡し位置まで吸着反転コレット30を移動させる。吸着反転コレット30が半導体チップ20の受け渡し位置まで移動したら、ボンディングヘッド40は、図4(b)に示す時刻t1にボンディングツール50の先端の吸着面51を半導体チップ20の表面22(絶縁樹脂フィルム(NCF)21の貼り付けてあるボンディング面と反対側の面)に接触させる。そして、吸着反転コレット30による半導体チップ20の吸引保持を停止し、ボンディングツール50による半導体チップ20の吸着を開始することにより、半導体チップ20を吸着反転コレット30の吸着面32からボンディングツール50の吸着面51に受け渡す。
 図4(b)に示す時刻t1におけるボンディングツール50の温度TBは、図4(a)の実線Aで示すように、温度TB2となっている。温度TB2は、吸着反転コレット30のコレット本体31の初期温度TC1(30℃程度)よりも高い、例えば、100℃程度の温度である。そして、時刻t1にボンディングツール50の先端の吸着面51が半導体チップ20の表面22(絶縁樹脂フィルム(NCF)21の貼り付けてあるボンディング面と反対側の面)に接触すると、高温のボンディングツール50から半導体チップ20を介して吸着反転コレット30に熱が移動し、コレット本体31の温度は初期温度の温度TC1(30℃程度)から急速に上昇を開始する。半導体チップ20を吸着反転コレット30の吸着面32からボンディングツール50の吸着面51に受け渡すまでごく短い時間(例えば、0.1~0.2秒)の間にコレット本体31の温度は、図4(b)に示すように、温度TC2(50℃程度)まで上昇する。この温度TC2(50℃程度)は、絶縁樹脂フィルム(NCF)21の溶融温度(60~70℃)よりも低い温度であるため、吸着反転コレット30の吸着面32からボンディングツール50の吸着面51に半導体チップ20を受け渡している間に絶縁樹脂フィルム(NCF)は溶融せず、コレット本体31の吸着面32に溶融して樹脂が付着することもない。
 ボンディングツール50が図4(a)に示す時刻t1で吸着反転コレット30から半導体チップ20を受け取った後、ボンディングヘッド40は、図3(f)に示すようにボンディングツール50を上昇させ、図3(g)に示すように、図4(a)に示す時刻t101にボンディングステージ60の上に吸着固定されている回路基板65の上の所定の位置に半導体チップ20を押し付ける。そして、ボンディングツール50は、図4(a)の時刻t101から時刻t102の間に内蔵しているパルスヒータによってその温度を半導体チップ20に形成されたバンプを溶融できる温度(300℃~350℃)まで上昇させる。その後、図4(a)に示す時刻t102から時刻t103の間、ボンディングヘッド40は高温(300℃~350℃)状態のボンディングツール50により半導体チップ20と絶縁樹脂フィルム(NCF)21を加熱、押圧し、半導体チップ20に形成されたバンプおよび絶縁樹脂フィルム(NCF)21を溶融させる。その後、ボンディングヘッド40は、ボンディングツール50の半導体チップ20の吸着を停止すると共に、ボンディングツール50に内蔵されているパルスヒータを停止させ、ボンディングツール50を上昇させる。この際、本実施形態のフリップチップボンダ101では、図示しない冷却装置によってボンディングツール50を冷却する。すると、図4(a)に示す時刻t103からボンディングツール50の温度TBは低下を開始し、図4(b)に示す時刻t2に初期温度の温度TB2(100℃程度)となる。
 一方、吸着反転コレット30のコレット本体31は、図2を参照して説明したように、回転移動軸33の冷却空気流路34、冷却空気ノズル35、第一の冷却空気流路37、第二の冷却空気流路38を流れる冷却空気によって冷却されているので、図4(b)に示す時刻t1に半導体チップ20をボンディングツール50に受け渡し、図3(f)に示すようにボンディングツール50がコレット本体31から離れてボンディングツール50からの入熱がなくなると、図4(b)の線Dに示すようにその温度は低下していく。そして、コレット本体31の温度TCは、図4(b)に示す時刻t2に初期温度の温度TC1(30℃程度)まで低下する。
 以後、初期温度のTC1(30℃程度)まで低下した吸着反転コレット30により半導体チップ20をピックアップして反転させ、初期温度の温度TB1(100℃程度)のボンディングツール50に半導体チップ20を受け渡してボンディングする工程を繰り返し、多数の半導体チップ20を回路基板65の上に順次接合していく。
 次に、図5を参照しながら、吸着反転コレット30のコレット本体31を冷却しない従来のフリップチップボンダによりフリップチップボンディングを行う際のボンディングツール50と吸着反転コレット30のコレット本体31の温度TCの変化について説明する。
 図5に示すように、吸着反転コレット30のコレット本体31を冷却しない従来のフリップチップボンダの場合、図5(a)に示すように、初期状態において、ボンディングツール50の温度TBは、絶縁樹脂フィルム(NCF)21の溶融温度(60~70℃)よりも低い温度TB1(50℃程度)まで冷却されている。一方、初期状態において、吸着反転コレット30のコレット本体31の温度TCは、図5(b)に示すように室温と同程度の温度TC1(30℃程度)となっている。そして、図5に示す時間t11において、図3(e)に示すように、ボンディングツール50が吸着反転コレット30のコレット本体31の吸着面32に吸着されている半導体チップ20に接触し、吸着反転コレット30から半導体チップ20を受け取る際に、コレット本体31の温度TCは、ボンディングツール50の初期温度TB1(50℃程度)とコレット本体31の初期温度TC1(30℃程度)の温度差により若干上昇する。コレット本体31を冷却しない従来のフリップチップボンダにおいては、ボンディングツール50の温度TBを本実施形態のフリップチップボンダ101の場合の温度TB2(100℃程度)よりも低い温度TB1(50℃程度)として吸着反転コレット30からボンディングツール50に半導体チップ20を受け渡しているので、その際の温度上昇は図4(a)、図4(b)を参照して説明した本実施形態のフリップチップボンダ101の場合よりもずっと小さくなっている。
 従来技術のフリップチップボンダでは、図5(b)に示す時間t111にボンディングツール50を回路基板65に接地させ、時間t111からt112までの間にボンディングツール50の温度TBを半導体チップ20に形成されたバンプを溶融できる温度(300℃~350℃)まで上昇させ、その後、図5(a)に示す時刻t112から時刻t113の間、高温(300℃~350℃)状態のボンディングツール50により半導体チップ20と絶縁樹脂フィルム(NCF)21を加熱、押圧し、半導体チップ20に形成されたバンプおよび絶縁樹脂フィルム(NCF)21を溶融させる。その後、ボンディングヘッド40は、ボンディングツール50の半導体チップ20の吸着を停止すると共に、ボンディングツール50に内蔵されているパルスヒータを停止させ、ボンディングツール50を上昇させる。この際、従来技術におけるフリップチップボンダでも、図示しない冷却装置によってボンディングツール50を冷却する。すると、図5(a)の時刻t113からボンディングツール50の温度TBは低下を開始し、図5(b)に示す時刻t12に初期温度の温度TB1(50℃程度)の温度となっている。
 一方、従来技術のフリップチップボンダでは、吸着反転コレット30のコレット本体31の冷却を行わないので、図5(b)に示す時刻t11に吸着反転コレット30からボンディングツール50への半導体チップ20の受け渡しが終わっても、コレット本体31の温度はほとんど低下せず、初期温度のTC1(30℃程度)よりも若干高い温度のままとなっている。このため、図5(b)に示す一点差線bに示すように、時刻t12~t18において吸着反転コレット30からボンディングツール50へ半導体チップ20を受け渡す都度、コレット本体31の温度は少しずつ上昇し、最終的には温度TC3となる。温度TC3は、ボンディングツール50の半導体チップ20を受け取る際の温度である温度TB1(50℃程度)と同一温度である。
 このためコレット本体31の冷却を行わない従来技術のフリップチップボンダでは、ボンディングツール50の半導体受け取り温度は、ボンディングツール50の温度をボンディングの際の300~350℃から温度TB1(50℃程度)まで低下させることが必要となる。ところが、通常、ボンディングツール50の冷却は、室温(25℃~30℃程度)の空気の吹き付けによって行うので、温度TB1(50℃程度)まで低下させるのと、本実施形態のフリップチップボンダのように温度TB2(100℃程度)まで低下させるのではその冷却時間に大きな差がでてくる。
 次に、図4(a)を参照しながら、コレット本体31を冷却しない従来技術のフリップチップボンダと本実施形態のフリップチップボンダ101のボンディング工程の相違について説明する。
 図4(a)の点線aに示すように、従来技術のフリップチップボンダにおいて、ボンディングツール50の温度をTB3(300~350℃)からTB1(50℃程度)まで低下させる時間(図4に示す時刻t103と時刻t12の間)と、本実施形態のフリップチップボンダ101においてボンディングツール50の温度を温度TB3(300~350℃)からTB2(100℃程度)まで低下させる時間(図4に示す時刻t103と時刻t2の間)との時間差Δtは、4~5秒程度となる。従来技術のフリップチップボンダによって半導体チップ20をピックアップしてからボンディングを行い、ボンディングツール50の冷却が完了するまでのサイクルタイムは(図4に示す時刻t11とt12との間)、14~15秒程度であるから、本実施形態のフリップチップボンダ101において、コレット本体31の冷却を行った場合には、フリップチップボンディングのサイクルタイム(図4に示す時刻t1と時刻t2の間)を14~15秒から10秒程度まで、約2/3に短縮することが可能である。また、本実施形態のフリップチップボンダ101では、吸着反転コレット30の吸着面32に吸着保持されている半導体チップ20にボンディングツール50を接触させてから吸着反転コレット30の半導体チップ20の吸着保持を開放してボンディングツール50に半導体チップ20を受け渡すので、特許文献1に記載された従来技術のフリップチップボンダのような半導体チップ20の受け渡しの際に半導体チップ20の位置が大きくずれることが抑制され、ボンディング品質を維持することが可能となる。
 つまり、本実施形態のフリップチップボンダ101においては、吸着反転コレット30のコレット本体31を冷却することによって、ボンディングツール50の半導体チップ20の受け取り温度TB2を従来技術よりも高くし、ボンディング後のボンディングツール50の冷却時間を短縮することができるのでフリップチップボンディングのサイクルタイムを大幅に短縮することができるものである。
 以上説明したように、本実施形態のフリップチップボンダ101は、ボンディング品質を低下させずにボンディング時間を短縮できるという効果を奏すものである。
 次に、図6、図7を参照しながら、吸着反転コレット30のコレット本体31の冷却温度TC1(図4(b)の線Dで示すコレット本体31の冷却後の温度TC1)に対するボンディングツール50の半導体チップ20の受け取り温度TB2(図4(a)の線Aで示すボンディングツール50の冷却後の温度TB2)の関係についてより詳細に説明する。
 図4(b)の曲線Dに示すように、コレット本体31の温度が上昇するのは、図7(a)、図7(b)に示す様に、温度TB2の高温のボンディングツール50から温度TC1の低温のコレット本体31に向かって熱が移動することによって生じるものである。図7(a)、図7(b)において白抜き矢印は熱移動の方向を示し、その太さは熱移動量の大きさを示す。そして、温度上昇後のコレット本体31の温度TC2が絶縁樹脂フィルム(NCF)21の溶融温度(60~70℃)に近くなるとコレット本体31の吸着面32に接している絶縁樹脂フィルム(NCF)21の軟化、溶融が発生し、溶融して樹脂がコレット本体31の吸着面32に付着することとなる。したがって、温度上昇後のコレット本体31の温度TC2は、絶縁樹脂フィルム(NCF)21の軟化、溶融が発生しない50℃程度の温度にする必要がある。一方、フリップチップボンディングのサイクルタイムを短くするには、半導体チップ20の受け渡しの際のボンディングツール50の温度TB2をできるだけ高くすることがよい。
 そこで、コレット本体31の冷却温度TC1と、ボンディングツール50の半導体チップ20の受け取り温度TB2は、例えば、図6のようなグラフによって選定することとしてもよい。図6の線eは、図7(a)に記載したように、受け渡しする半導体チップ20の幅がD1と大きく、半導体チップ20を受け渡す際にボンディングツール50からコレット本体31に移動する熱量が大きく、コレット本体31の温度TCが上昇しやすい場合に、コレット本体31の温度TC2を50℃以下とするようなコレット本体31の冷却温度TC1に対するボンディングツール50の半導体チップ20の受け取り温度TB2の関係を規定する線であり、図6の線fは、図7(b)に記載したように、受け渡しする半導体チップ20の幅がD2と小さく、半導体チップ20を受け渡す際にボンディングツール50からコレット本体31に移動する熱量が小さく、コレット本体31の温度TCが上昇しにくい場合に、コレット本体31の温度TC2を50℃以下とするようなコレット本体31の冷却温度TC1に対するボンディングツール50の半導体チップ20の受け取り温度TB2の関係を規定する線である。
 コレット本体31を冷却しない場合には、従来技術のフリップチップボンディンクにおいて説明した様に、ボンディングツール50の半導体チップ20の受け取り温度TB2は50℃である(図6の点g)。これは、半導体チップ20の幅が大きい場合も小さい場合も同様である。
 コレット本体31を冷却する場合で図6の線eに示すように半導体チップ20の幅が大きい場合には、コレット本体31の冷却温度TC1が、例えば、30℃の場合には、ボンディングツール50の半導体チップ20の受け取り温度TB2を100℃まで高くした場合でも、コレット本体の温度上昇は50℃以下となる。さらに、温度の低い冷媒によってコレット本体31を冷却し、コレット本体31の温度を10℃程度まで低下させた場合には、ボンディングツール50の半導体チップ20の受け取り温度TB2を100℃まで高くした場合でも、コレット本体の温度上昇は50℃以下となる。
 また、コレット本体31を冷却する場合で図6の線fに示すように半導体チップ20の幅が小さい場合には、コレット本体31の冷却温度TC1が、例えば、30℃の場合には、ボンディングツール50の半導体チップ20の受け取り温度TB2を150℃まで高くした場合でも、コレット本体の温度上昇は50℃以下となる。さらに、温度の低い冷媒によってコレット本体31を冷却し、コレット本体31の温度を10℃程度まで低下させた場合には、ボンディングツール50の半導体チップ20の受け取り温度TB2を250℃まで高くした場合でも、コレット本体の温度上昇は50℃以下となる。
 つまり、コレット本体31の冷却温度TC1を低くするほど、ボンディングツール50の半導体チップ20の受け取り温度TB2を高くすることができ、ボンディングのサイクルタイムをより短くすることができる。また、受け渡す半導体チップ20の大きさが小さくなると、コレット本体31の冷却温度TC1が同じ温度でも、半導体チップ20を受け渡す際にボンディングツール50からコレット本体31に移動する熱量が少なくなるので、ボンディングツール50の半導体チップ20の受け取り温度TB2をより高くすることができ、ボンディングのサイクルタイムをより短くすることができる。
 コレット本体31の熱容量がボンディングツール50の熱容量に対して大きい場合には、ボンディングツール50からコレット本体31に移動する熱量が同様の場合でもコレット本体31の温度上昇は小さくなるので、コレット本体31の熱容量がボンディングツール50の熱容量に対して大きいほど、ボンディングツール50の半導体チップ20の受け取り温度TB2を高くすることができ、ボンディングのサイクルタイムをより短くすることができる。
 コレット本体31の冷却温度TC1、ボンディングツール50の半導体チップ20の受け取り温度TB2は、上記のような特性を考慮した上で、例えば、試験などによって決定する事としてもよい。なお。図6はコレット本体31の冷却温度TC1、ボンディングツール50の半導体チップ20の受け取り温度TB2の関係の特性を示す概念図であり、その関係、特性は、図6に示した直線以外の場合もある。
 次に、図8から図14を参照しながら、本発明の他の実施形態について説明する。図1から図7を参照して説明した部分には同様の符号を付してその説明は省略する。
 図8に示すように、本実施形態のフリップチップボンダ102は、冷却機構として吸着反転コレット30の吸着面32を接触させてコレット本体31の冷却を行う冷却ステージ110を備えるものである。
 図9、図10に示すように、冷却ステージ110は、基体部であるフレーム112と、コレット本体31の先端の吸着面32が接地する接地面114aを有する接地板114と、接地板114の接地面114aと反対側の面に取り付けられた放熱部材である放熱フィン115と、を含む冷却部材116と、を備え、接地板114は、支持機構200によって接地面114aの方向が可変となるようにフレーム112に取り付けられている。また、フレーム112の側面には、ブラケット121を介して取り付けられ、接地面114aの表面近傍に沿って吹き出し穴120から冷却空気を噴出す冷却ノズル119と、冷却ノズル119に冷却空気を供給する冷却空気供給管117,118とが取り付けられている。また、冷却部材116の放熱フィン115の下側には、放熱フィン115に冷却空気を吹き付ける冷却ファン122が配置されている。
 図10,図11に示すように、支持機構200は、接地板114の中心125を通り接地面114aに沿ったX軸126に直交する第二の軸であるY軸127の周りに回転自在となるように、ピン123によってフレーム112の四角い開口の内側に取り付けられている四角環状の中間フレーム113と、中間フレーム113の内側に取り付けられ、接地板114の中心125を通り接地面114aに沿った第一の軸であるX軸126の周りに接地板114を回転自在に支持するピン124と、によって構成されている。したがって、接地板114は、フレーム112に対して、中心125を通るX軸126およびY軸127の周りに回転自在で、フレーム112に対する接地面114aの方向あるいは、接地面114aの傾きが可変となるように支持されている。また、図10に示すように、放熱フィン115は、接地板114の下側の面(接地面114aと反対側の面)に固定され、接地板114と一体となって移動するので、接地板114と放熱フィン115とを含む冷却部材116は、全体として接地板114の中心125を通るX軸126およびY軸127の周りに回転自在となる。
 接地板114の表面である接地面114aは、コレット本体31の先端の吸着面32が密着することができるような平面となっており、接地板114と放熱フィン115を含む冷却部材116の熱容量は、コレット本体31の熱容量よりも大きくなるように構成されている。
 以上のように構成された冷却ステージ110を備えるフリップチップボンダ102によるフリップチップボンディングの動作について図12から図14を参照しながら説明する。図1から図7を参照して説明した部分には同様の符号を付して説明は省略する。
 図12(a)に示すように、初期状態では、吸着反転コレット30の吸着面32は冷却ステージ110の上面に接して冷却され、例えば、30℃程度の常温となっている。図12(b)の矢印91に示すように、図示しない回転移動機構によって回転移動軸33を上下左右に移動させて、吸着反転コレット30のコレット本体31をピックアップしようとする半導体チップ20の直上まで移動させ、図12(b)の矢印92に示すように、吸着反転コレット30をピックアップする半導体チップ20の上に降下させる。図12(c)に示すように、吸着反転コレット30のコレット本体31の吸着面32が半導体チップ20の表面の絶縁樹脂フィルム(NCF)21に接したら、吸着反転コレット30は、絶縁樹脂フィルム(NCF)21を吸着し、図12(d)の矢印93に示すように絶縁樹脂フィルム(NCF)21と半導体チップ20とをピックアップする。そして、図示しない回転移動機構によって図12(e)の矢印94に示すように回転移動軸33の周りにコレット本体31を回転させて、ピックアップした半導体チップ20を反転させ、図示しない回転移動機構により回転移動軸33を移動させ、図13(f)に示すように、コレット本体31をボンディングツール50との間で半導体チップ20の受け渡しを行う受け渡し位置まで移動させる。図13(f)の矢印95に示すように、ボンディングヘッド40はボンディングツール50の吸着面51をコレット本体31の吸着面32に反転状態で吸着保持されている半導体チップ20の表面22(絶縁樹脂フィルム(NCF)21が貼り付けてあるボンディング面と反対側の面)に接触させ、半導体チップ20を吸着し、吸着反転コレット30のコレット本体31から半導体チップ20を受け取る。半導体チップ20の受け渡しの際、コレット本体31の温度TCは、図4(b)の時刻t1に示すように30℃程度の初期の温度TC1から50℃程度の温度TC2まで上昇する。図13(i)の矢印98に示すように、ボンディングヘッド40はボンディングツール50をボンディングステージ60に固定されている回路基板65の所定の位置に接地させる。そして、ボンディングツール50に内蔵されているパルスヒータによりボンディングツール50を加熱して半導体チップ20のバンプおよび絶縁樹脂フィルム(NCF)を溶融させ、半導体チップ20を回路基板65の上にボンディングする。
 図4(b)で説明したように、半導体チップ20を受け渡した後のコレット本体31の温度は、50℃程度の温度TC2となっている。図13(h)の矢印97に示すように、回転移動機構は回転移動軸33の吸着面32が下側となるように回転させると共にコレット本体31の中心を冷却ステージ110の中心に移動させる。図14(a)に示すように、冷却ステージ110の冷却ファン122は回転しており、放熱フィン115に図中の矢印Rで示すように、冷却空気を送っているので、接地板114、放熱フィン115は略常温状態となっている。
 コレット本体31を図14(b)に示す矢印Pのように下方向(Z方向マイナス側)に移動させ、コレット本体31の吸着面32を接地板114の表面の接地面114aに接地させる。図10,図11を参照して説明したように、接地板114は、支持機構200によってフレーム112に対して接地板114の中心125を通るX軸126、Y軸127の周りに回転自在になるようにフレーム112に取りつけられているので、その接地面114aの傾き(接地面114aの方向)は、コレット本体31の吸着面32の傾き(先端面の方向)に倣ってX軸126の周り、Y軸127の周りに自在に回転する。これによってコレット本体31の吸着面32は接地面114aに密着する。接地板114は放熱フィン115とは一体に固定されていることから、接地面114aにコレット本体31の吸着面32が密着するとコレット本体31の熱は図14(b)の矢印Sに示すように、常温に保持されている接地板114、放熱フィン115に向かって流れていく。接地板114および放熱フィン115を含む冷却部材116の熱容量は、コレット本体31の熱容量よりも大きくなるように構成されているので、コレット本体31の温度は、急速に低下していく。また、コレット本体31の吸着面32が接地板114の接地面114aに密着している際に、フレーム112の横に取り付けた冷却ノズル119の吹き出し穴120から接地面114aに沿った方向(矢印Qの方向)に冷却空気を噴出してコレット本体31の先端に当て、コレット本体31の外面からも冷却を行う。
 所定の時間だけコレット本体31を接地板114の接地面114aに密着させると、コレット本体31の温度は、図4(b)に示す初期温度TC1まで低下する。冷却ステージ110の冷却ファン122は、図14(a)に示すように、コレット本体31の吸着面32が接地板114の接地面114aから離れた後も冷却空気を放熱フィン115に送り続けているので、接地板114と放熱フィン115により構成されている冷却部材116は、ボンディングツール50によって半導体チップ20のボンディングを行っている間に初期温度の温度TC1まで冷却される。
 冷却が終了したら、再び、図12(b)に示すように、次にピックアップする半導体チップ20の上に移動して次の半導体チップ20のピックアップとボンディングを行う。
 本実施形態のフリップチップボンダ102は、図1から図7を参照して説明した実施形態のフリップチップボンダ101と同様、ボンディング品質を低下させずにボンディング時間を短縮できるという効果を奏すものである。
 図8から図14を参照して説明した実施形態のフリップチップボンダ102では、冷却ステージ110は、図10、図11に示すように、2つのピン123,124と中間フレーム113とを組み合わせた支持機構200によってフレーム112に取り付けられ、接地板114がXYの各軸に対して回転自在となることとして説明したが、接地板114がXYの各軸に対して回転自在となれば、以下に説明するような構成としてもよい。
 図15,図16を参照して他の構成の冷却ステージ110の構成について説明する。図9から図11を参照して説明した実施形態と同様の部分には同様の符号を付してその説明は省略する。図15に示す冷却ステージ110は、図9から図11を参照して説明した冷却ステージ110の支持機構200を、接地板114の下面に設けた窪み211をフレーム112に設けた支持ピン212でピボット支持するピボット支持機構210としたものである。また、図16に示す冷却ステージ110は、接地板114の四隅をばね221で支持するばね支持機構220としたものである。また、図15に示した冷却ステージ110のピボット支持機構210に代えて接地板114の下面に設けた球面状の窪みをフレーム112に設けた球面状の台座で支持するようにしてもよい。図15、図16に示した冷却ステージ110は、XY各軸に対して回転自在である上、Z軸に対しても回転自在である。また、放熱フィン115は、接地板114の熱を放熱できるように接地板114と一体になっていれば良く、図15に示すように、接地板114の横に配置してもよい。更に、冷却部材116は、放熱フィン115ではなく、たとえば、内部に冷却水を流すなど空気以外の冷媒によって冷却するものであってもよい。
 なお、図8から図16を参照して説明した実施形態のフリップチップボンダ102では、吸着反転コレット30のコレット本体31を冷却ステージ110で冷却することとして説明したが、冷却ステージ110と同様の構造でボンディングツール50の先端の吸着面51を密着させて冷却する他の冷却ステージを設け、コレット本体31と同様にボンディングツール50を冷却するようにしてもよい。
 次に図17、図18を参照しながら本発明の他の実施形態について説明する。図1から図7を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。図17に示すように、本実施形態のフリップチップボンダ103は、吸着反転コレット30で反転させた半導体チップ20を直接ボンディングツール50に受け渡すのに代わって、吸着反転コレット30によって反転させた半導体チップ20を移送ヘッド70に取り付けられたコレット71で受け取って、移送ステージ75の表面76に載置し、移送ステージ75は半導体チップ20を反転した状態で保持しながら、ボンディングツール50への受け渡し位置まで搬送する。そして、ボンディングツール50は、移送ステージ75の表面76から反転状態の半導体チップ20を受け取り、ボンディングステージ60の上に吸着固定された回路基板65の上にボンディングするものである。本実施形態のフリップチップボンダ103では、ボンディングツール50と移送ステージ75との間で半導体チップ20の受け渡しが行われるので、半導体チップ20の受け渡しの際に移送ステージ75の温度が図4(b)に示したコレット本体31と同様、温度TC1から温度TC2に上昇するものである。なお、移送ヘッド70に取り付けられているコレット71は、常温で用いられるものであるから、本実施形態のフリップチップボンダ103では、吸着反転コレット30は常温であり、温度の上昇はないものである。
 したがって、本実施形態においては、吸着反転コレット30と、移送ヘッド70、コレット71、および移送ステージ75は反転機構を構成し、移送ステージ75は、反転した半導体チップ20を保持する保持部材である。
 図18に示すように、移送ステージ75は、その下面(半導体チップ20を保持する表面76と反対側の面)から表面76に向かって伸びる空気流入路77と、空気流入路77に連通して表面76に沿った方向に伸びる水平冷却流路78とを備えている。図18に示すように、空気流入路77に流入した冷却空気は、水平冷却流路78通って移送ステージ75の側面から外部に流出することによって、移送ステージ75の冷却を行う。本実施形態では、冷却空気によって移送ステージ75の冷却を行うこととして説明したが、冷却媒体は空気に限らず、水等の液体を用いてもよい。空気流入路77、水平冷却流路78は冷却機構を構成するものである。
 図1を参照して説明したように、本実施形態のフリップチップボンダ103においても、ボンディングツール50は、ボンディングヘッド40に取り付けられ、ボンディングヘッド40によって水平、垂直方向に移動する。また、ボンディングツール50は半導体チップ20を吸着する先端の吸着面51(図1における下側の面)を備え、内部には半導体チップ20に形成されたバンプを溶融できる温度(300℃~350℃)まで半導体チップ20を加熱する図示しないパルスヒータが内蔵されている。
 以下、図19、図20を参照しながら本実施形態のフリップチップボンダ103によって半導体チップ20を回路基板65にボンディングする工程を説明する。図1から図7を参照して説明した実施形態と同様の工程、部材には同様の符号を付し、説明は省略する。
 図19(a)から図19(d)に示すように、吸着反転コレット30によって半導体チップ20を吸着、ピックアップし、反転させる。その後、図19(e)の矢印84に示すように、移送ヘッド70に取り付けられたコレット71の吸着面72を半導体チップ20の表面22に接触させて半導体チップ20を吸着反転コレット30のコレット本体31から受け取り、図19(f)の矢印87に示すように、移送ヘッド70によってコレット71を移送ステージ75の上に移動させ、コレット71に吸着した半導体チップ20を移送ステージ75の表面76に受け渡す。図20(g)に示すように、半導体チップ20の移送ステージ75への受け渡しが終わったら、移送ヘッド70はコレット71を上昇させる。移送ステージは、表面76に反転した状態の半導体チップ20を保持したまま、図20(g)の白抜き矢印88に示すように、半導体チップ20のボンディングツール50への受け渡し位置まで移動する。図20(h)に示すように、移送ステージ75が所定の受け渡し位置に来たら、ボンディングツール50は移送ステージ75の表面76から半導体チップ20を受け取り、ボンディングステージ60の表面61に吸着保持されている回路基板65の上に半導体チップ20をボンディングする。
 ボンディングツール50に半導体チップ20を受け渡した際に移送ステージ75の温度は、図4(b)の時刻t1に示すコレット本体31の温度と同様に初期の30℃程度の温度TC1から50℃程度の温度TC2に上昇する。その後、移送ステージ75は、空気流入路77、水平冷却流路78に流れる冷却空気によって冷却され、その温度は、図4(b)の時刻t2に示すコレット本体31の温度と同様に初期の温度TC1に戻る。
 本実施形態のフリップチップボンダ103においては、ボンディングツール50との間で半導体チップ20の受け渡しを行う移送ステージ75を冷却することによって、ボンディングツール50の半導体チップ20受け取り温度TB2を従来技術よりも高くし、ボンディング後のボンディングツール50の冷却時間を短縮することができるのでフリップチップボンディングのサイクルタイムを大幅に短縮することができるものである。
 なお、移送ステージ75の冷却温度とボンディングツール50の半導体チップ20の受け取り温度TB2との関係は、図6、図7を参照して説明したコレット本体31の冷却温度TC1とボンディングツール50の半導体チップ20の受け取り温度TB2との関係と同様、移送ステージ75の冷却温度を低くするほど、ボンディングツール50の半導体チップ20の受け取り温度TB2を高くすることができ、ボンディングのサイクルタイムをより短くすることができる。また、受け渡す半導体チップ20の大きさが小さくなると、移送ステージ75の冷却温度が同じ温度でも、半導体チップ20を受け渡す際にボンディングツール50から移送ステージ75に移動する熱量が少なくなるので、ボンディングツール50の半導体チップ20の受け取り温度TB2をより高くすることができ、ボンディングのサイクルタイムをより短くすることができる。また、移送ステージ75の熱容量がボンディングツール50の熱容量に対して大きい場合には、ボンディングツール50から移送ステージ75に移動する熱量が同様の場合でも移送ステージ75の温度上昇は小さくなるので、移送ステージ75の熱容量がボンディングツール50の熱容量に対して大きいほど、ボンディングツール50の半導体チップ20の受け取り温度TB2を高くすることができ、ボンディングのサイクルタイムをより短くすることができる。
 図21を参照しながら本発明の他の実施形態のフリップチップボンダ104について説明する。先に、図17から図20を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。本実施形態のフリップチップボンダ104は、先に、図17から図20を参照して説明したフリップチップボンダ103に移動ステージ75を冷却する冷却ステージ150を配置し、移動ステージ75を上下方向に移動させてその表面76を冷却ステージ150の接地板154に密着させることによって移動ステージ75の冷却を行うように構成したものである。冷却ステージ150は、図8から図14を参照して説明した実施形態の冷却ステージ110を上下反転した構成である。本実施形態の効果は図17から図20を参照して説明した実施形態と同様である。なお、本実施形態では、移動ステージ75を上下方向に移動させて冷却ステージ150の接地板154に密着させることとして説明したが、逆に冷却ステージ150を上下方向に移動させて接地板154を移動ステージ75の表面76に密着させるようにしてもよい。
 本発明は以上説明した実施形態に限定されるものではなく、請求の範囲により規定されている本発明の技術的範囲ないし本質から逸脱することない全ての変更及び修正を包含するものである。
 10 ピックアップステージ、11 上面、20 半導体チップ、21 絶縁樹脂フィルム(NCF)、22 表面、30 吸着反転コレット、31 コレット本体、32,51,72 吸着面、33 回転移動軸、34 冷却空気流路、35 冷却空気ノズル、37 第一の冷却空気流路、38 第二の冷却空気流路、40 ボンディンググヘッド、50 ボンディングツール、60 ボンディングステージ、61,76 表面、65 回路基板、70 移送ヘッド、71 コレット、75 移送ステージ、77 空気流入路、78 水平冷却流路、101,102,103,104 フリップチップボンダ、110,150 冷却ステージ、112 フレーム、113 中間フレーム、114,154 接地板、114a 接地面、115 放熱フィン、116 冷却部材、117,118 冷却空気供給管、119 冷却ノズル、120 穴、121 ブラケット、122 冷却ファン、123,124 ピン、125 中心、126 X軸、127 Y軸、200 支持機構、210 ピボット支持機構、212 支持ピン、221 ばね、220 ばね支持機構。

Claims (16)

  1.  半導体チップを反転させる反転機構と、
     前記反転機構で反転させた前記半導体チップを前記反転機構から受け取って基板にボンディングするボンディングツールと、
     前記反転機構を冷却する冷却機構と、を有するフリップチップボンダ。
  2.  請求項1に記載のフリップチップボンダであって、
     前記反転機構は、反転した前記半導体チップを保持する保持部材を含み、
     前記冷却機構は、前記ボンディングツールが前記半導体チップを受け取る前に前記保持部材の温度を所定の温度まで冷却しておくフリップチップボンダ。
  3.  請求項2に記載のフリップチップボンダであって、
     前記保持部材の熱容量は、前記ボンディングツールの熱容量よりも大きいフリップチップボンダ。
  4.  請求項2に記載のフリップチップボンダであって、
     前記保持部材は、前記半導体チップを吸着して反転させた状態で前記ボンディングツールに受け渡す吸着反転コレットであるフリップチップボンダ。
  5.  請求項3に記載のフリップチップボンダであって、
     前記保持部材は、前記半導体チップを吸着して反転させた状態で前記ボンディングツールに受け渡す吸着反転コレットであるフリップチップボンダ。
  6.  請求項2に記載のフリップチップボンダであって、
     前記保持部材は、前記半導体チップを反転した状態で移動させ、前記半導体チップを反転させた状態で前記ボンディングツールに受け渡す移送ステージであるフリップチップボンダ。
  7.  請求項3に記載のフリップチップボンダであって、
     前記保持部材は、前記半導体チップを反転した状態で移動させ、前記半導体チップを反転させた状態で前記ボンディングツールに受け渡す移送ステージであるフリップチップボンダ。
  8.  請求項2から7のいずれか1項に記載のフリップチップボンダであって、
     前記冷却機構は、前記保持部材の内面あるいは外面を冷却するフリップチップボンダ。
  9.  請求項2から7のいずれか1項に記載のフリップチップボンダであって、
     前記冷却機構は、
     基体部と、
     前記保持部材の表面が接地する接地面を有する接地板と、前記接地板に取り付けられた放熱部材と、を含む冷却部材と、を備え、
     前記冷却部材は、前記保持部材の表面の方向に倣うように前記接地面の方向を可変とする支持機構によって前記基体部に支持されているフリップチップボンダ。
  10.  請求項9に記載のフリップチップボンダであって、
     前記冷却部材の熱容量は、前記保持部材の熱容量よりも大きいフリップチップボンダ。
  11.  請求項9に記載のフリップチップボンダであって、
     前記放熱部材は、前記接地板の接地面と反対側の面に取り付けられているフリップチップボンダ。
  12.  請求項9に記載のフリップチップボンダであって、
     前記放熱部材は、放熱フィンであり、
     前記放熱フィンを冷却する冷却ファンを備えているフリップチップボンダ。
  13.  請求項9に記載のフリップチップボンダであって、
     前記支持機構は、前記接地面に沿った第一の軸と、前記接地面に沿い、前記第一の軸と直交する第二の軸との2つの軸の回りに回転自在となるように前記接地板を前記基体部に支持するフリップチップボンダ。
  14.  請求項9に記載のフリップチップボンダであって、
     前記基体部に設けられ、その表面が前記接地面に接地している前記保持部材に冷却空気を吹き付ける冷却ノズルを備えているフリップチップボンダ。
  15.  請求項9に記載のフリップチップボンダであって、
     前記接地板の前記接地面は、前記保持部材の前記表面が接地した際に、前記保持部材から前記接地板に向って熱伝導が生じるフリップチップボンダ。
  16.  フリップチップボンディング方法であって、
     半導体チップを反転させる反転機構と、前記反転機構で反転させた前記半導体チップを前記反転機構から受け取って基板にボンディングするボンディングツールと、前記反転機構を冷却する冷却機構と、を有するフリップチップボンダを準備する工程と、
     前記冷却機構により前記ボンディングツールが前記半導体チップを受け取る前に前記保持部材の温度を所定の温度まで冷却しておく冷却工程と、を有するフリップチップボンディング方法。
PCT/JP2013/075478 2013-03-12 2013-09-20 フリップチップボンダおよびフリップチップボンディング方法 WO2014141514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147033242A KR101623368B1 (ko) 2013-03-12 2013-09-20 플립칩 본더 및 플립칩 본딩 방법
JP2014545028A JP5675008B1 (ja) 2013-03-12 2013-09-20 フリップチップボンダおよびフリップチップボンディング方法
CN201380027231.5A CN104335336B (zh) 2013-03-12 2013-09-20 覆晶接合器以及覆晶接合方法
SG11201507246VA SG11201507246VA (en) 2013-03-12 2013-09-20 Flip chip bonder and flip chip bonding method
US14/847,295 US9536856B2 (en) 2013-03-12 2015-09-08 Flip chip bonder and flip chip bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013049541 2013-03-12
JP2013-049541 2013-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/847,295 Continuation US9536856B2 (en) 2013-03-12 2015-09-08 Flip chip bonder and flip chip bonding method

Publications (1)

Publication Number Publication Date
WO2014141514A1 true WO2014141514A1 (ja) 2014-09-18

Family

ID=51536201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075478 WO2014141514A1 (ja) 2013-03-12 2013-09-20 フリップチップボンダおよびフリップチップボンディング方法

Country Status (7)

Country Link
US (1) US9536856B2 (ja)
JP (1) JP5675008B1 (ja)
KR (1) KR101623368B1 (ja)
CN (1) CN104335336B (ja)
SG (1) SG11201507246VA (ja)
TW (1) TWI490956B (ja)
WO (1) WO2014141514A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834644B1 (ko) * 2016-06-30 2018-03-05 세메스 주식회사 다이 본딩 장치
WO2023145558A1 (ja) * 2022-01-27 2023-08-03 東京エレクトロン株式会社 基板処理装置、及び基板処理方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576196B (zh) * 2012-12-05 2017-04-01 Shinkawa Kk The cooling method of the joining tool cooling device and the joining tool
US9093549B2 (en) * 2013-07-02 2015-07-28 Kulicke And Soffa Industries, Inc. Bond heads for thermocompression bonders, thermocompression bonders, and methods of operating the same
DE102015106298B4 (de) * 2015-04-24 2017-01-26 Semikron Elektronik Gmbh & Co. Kg Vorrichtung, Verfahren und Anlage zur inhomogenen Abkühlung eines flächigen Gegenstandes
US9929121B2 (en) 2015-08-31 2018-03-27 Kulicke And Soffa Industries, Inc. Bonding machines for bonding semiconductor elements, methods of operating bonding machines, and techniques for improving UPH on such bonding machines
JP6705727B2 (ja) * 2016-09-26 2020-06-03 ファスフォードテクノロジ株式会社 フリップチップボンダおよび半導体装置の製造方法
JP7018338B2 (ja) * 2018-03-19 2022-02-10 ファスフォードテクノロジ株式会社 ダイボンディング装置および半導体装置の製造方法
KR20210004324A (ko) 2019-07-04 2021-01-13 삼성전자주식회사 마이크로 led 디스플레이 모듈 및 이를 제조하는 방법
KR102221704B1 (ko) * 2019-09-03 2021-03-02 세메스 주식회사 진공 피커 및 이를 포함하는 다이 본딩 장치
TWI839419B (zh) * 2019-11-27 2024-04-21 日商邦德科技股份有限公司 元件安裝系統、元件供應裝置以及元件安裝方法
US11289360B2 (en) 2019-12-16 2022-03-29 Micron Technology, Inc. Methods and apparatus for protection of dielectric films during microelectronic component processing
KR20230067922A (ko) 2021-11-10 2023-05-17 주식회사 쌤토스 마이크로 ic 플립형 실장 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275833A (ja) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd パルスヒーター及び半導体チップ実装ボードの製法
JP2001168146A (ja) * 1999-12-09 2001-06-22 Sony Corp 部品装着装置及び部品装着方法
JP2012174861A (ja) * 2011-02-21 2012-09-10 Sekisui Chem Co Ltd フリップチップ実装方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291354A (ja) 1992-04-10 1993-11-05 Nippon Steel Corp ボンディング装置
JP3295529B2 (ja) * 1994-05-06 2002-06-24 松下電器産業株式会社 Ic部品実装方法及び装置
JPH0997819A (ja) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd 電子部品ボンディング装置
JP3382436B2 (ja) 1995-10-27 2003-03-04 松下電器産業株式会社 電子部品搭載装置
US5923086A (en) * 1997-05-14 1999-07-13 Intel Corporation Apparatus for cooling a semiconductor die
JP3399367B2 (ja) * 1998-06-26 2003-04-21 松下電器産業株式会社 ワークの熱圧着装置
JP3635930B2 (ja) 1998-07-06 2005-04-06 松下電器産業株式会社 光通信ユニットの実装方法
JP2002158257A (ja) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp フリップチップボンディング方法
JP2002367931A (ja) * 2001-06-07 2002-12-20 Lintec Corp ダイボンディングシート貼着装置およびダイボンディングシートの貼着方法
TW559963B (en) * 2001-06-08 2003-11-01 Shibaura Mechatronics Corp Pressuring apparatus of electronic device and its method
US7296727B2 (en) * 2001-06-27 2007-11-20 Matsushita Electric Industrial Co., Ltd. Apparatus and method for mounting electronic components
JP3671051B2 (ja) * 2002-12-03 2005-07-13 芝浦メカトロニクス株式会社 電子部品のボンディング装置およびボンディング方法
JP4057457B2 (ja) * 2003-04-15 2008-03-05 株式会社ディスコ フリップチップボンダー
WO2005008726A2 (en) * 2003-07-09 2005-01-27 Newport Corporation Flip chip device assembly machine
JP4516354B2 (ja) * 2004-05-17 2010-08-04 パナソニック株式会社 部品供給方法
JP4761026B2 (ja) 2005-06-03 2011-08-31 ソニー株式会社 素子転写装置、素子の転写方法および表示装置の製造方法
JP2009289959A (ja) * 2008-05-29 2009-12-10 Elpida Memory Inc ボンディング装置およびボンディング方法
JP5167071B2 (ja) 2008-11-04 2013-03-21 アルファーデザイン株式会社 フリップチップボンダ装置の作業台板の水平化調整方法及びプログラム
JP5167072B2 (ja) 2008-11-04 2013-03-21 アルファーデザイン株式会社 フリップチップボンダ装置
JP5281550B2 (ja) * 2008-12-08 2013-09-04 パナソニック株式会社 ボンディングツール、電子部品装着装置、および電子部品装着方法
JP5296722B2 (ja) * 2009-03-02 2013-09-25 パナソニック株式会社 ボンディングツール、電子部品装着装置、および電子部品装着方法
TWI485799B (zh) * 2009-12-10 2015-05-21 Orbotech Lt Solar Llc 自動排序之直線型處理裝置
US8231044B2 (en) * 2010-10-01 2012-07-31 Orthodyne Electronics Corporation Solar substrate ribbon bonding system
US8196798B2 (en) * 2010-10-08 2012-06-12 Kulicke And Soffa Industries, Inc. Solar substrate ribbon bonding system
TWI564106B (zh) * 2011-03-28 2017-01-01 山田尖端科技股份有限公司 接合裝置以及接合方法
SG195237A1 (en) * 2011-06-03 2013-12-30 Orion Systems Integration Pte Ltd Method and systems for semiconductor chip pick & transfer and bonding
WO2014038439A1 (ja) * 2012-09-04 2014-03-13 シャープ株式会社 液晶表示装置の製造方法
CH707378A1 (de) * 2012-12-21 2014-06-30 Besi Switzerland Ag Thermokompressionsverfahren und Vorrichtung für die Montage von Halbleiterchips auf einem Substrat.
JP6182082B2 (ja) * 2013-03-15 2017-08-16 日本碍子株式会社 緻密質複合材料、その製法及び半導体製造装置用部材
JP6182084B2 (ja) * 2013-03-25 2017-08-16 日本碍子株式会社 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
US9093549B2 (en) * 2013-07-02 2015-07-28 Kulicke And Soffa Industries, Inc. Bond heads for thermocompression bonders, thermocompression bonders, and methods of operating the same
US9484241B2 (en) * 2013-07-29 2016-11-01 Asm Technology Singapore Pte Ltd Device for holding multiple semiconductor devices during thermocompression bonding and method of bonding
KR101543864B1 (ko) * 2013-11-13 2015-08-11 세메스 주식회사 본딩 헤드 및 이를 포함하는 다이 본딩 장치
KR102168070B1 (ko) * 2013-11-29 2020-10-21 삼성전자주식회사 반도체 제조 장치 및 방법
US9548284B2 (en) * 2013-12-18 2017-01-17 Intel Corporation Reduced expansion thermal compression bonding process bond head
US9282650B2 (en) * 2013-12-18 2016-03-08 Intel Corporation Thermal compression bonding process cooling manifold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275833A (ja) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd パルスヒーター及び半導体チップ実装ボードの製法
JP2001168146A (ja) * 1999-12-09 2001-06-22 Sony Corp 部品装着装置及び部品装着方法
JP2012174861A (ja) * 2011-02-21 2012-09-10 Sekisui Chem Co Ltd フリップチップ実装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834644B1 (ko) * 2016-06-30 2018-03-05 세메스 주식회사 다이 본딩 장치
WO2023145558A1 (ja) * 2022-01-27 2023-08-03 東京エレクトロン株式会社 基板処理装置、及び基板処理方法

Also Published As

Publication number Publication date
TW201436063A (zh) 2014-09-16
CN104335336A (zh) 2015-02-04
TWI490956B (zh) 2015-07-01
US9536856B2 (en) 2017-01-03
KR20150013622A (ko) 2015-02-05
US20150380381A1 (en) 2015-12-31
SG11201507246VA (en) 2015-10-29
KR101623368B1 (ko) 2016-05-23
JPWO2014141514A1 (ja) 2017-02-16
CN104335336B (zh) 2017-03-15
JP5675008B1 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5675008B1 (ja) フリップチップボンダおよびフリップチップボンディング方法
US8381966B2 (en) Flip chip assembly method employing post-contact differential heating
TWI576196B (zh) The cooling method of the joining tool cooling device and the joining tool
JP6603401B2 (ja) ボンディング装置
TWI728086B (zh) 安裝裝置及安裝方法
TW201027644A (en) In-situ melt and reflow process for forming flip-chip interconnections and system thereof
US9059241B2 (en) 3D assembly for interposer bow
US10568245B2 (en) Electronic-component mounting apparatus
TWI451508B (zh) 用於矽晶粒的預加熱系統及方法
JP2008252091A (ja) 半導体チップの取り付け
JP7209400B2 (ja) 半導体装置の製造装置および製造方法
US20170025378A1 (en) Method of bonding a bump of a semiconductor package and apparatus for performing the same
JP2005142460A (ja) ボンディング装置及びボンディング方法
TW201719800A (zh) 接合半導體元件的接合機、其操作方法和改進其每小時的產量的方法
JP4952527B2 (ja) 半導体装置の製造方法及び半導体装置
JP2002057190A (ja) 半導体装置の製造方法および半導体装置の製造装置
JP2012019096A (ja) 半導体チップの接合方法及び半導体チップの接合装置
JP2011044530A (ja) はんだ接合方法およびはんだ接合装置
Clauberg et al. Advanced thermocompression flip chip bonding
Colosimo et al. High Productivity Thermo-Compression Flip Chip Bonding
JP2016051837A (ja) 半導体装置の製造方法
TW200522250A (en) Method for forming an underfilling material under chip from bottom surface of substrate
JPH0547858A (ja) フリツプチツプのボンデイングヘツド及びボンデイング方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014545028

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033242

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877852

Country of ref document: EP

Kind code of ref document: A1