WO2014136933A1 - ポリプロピレン系樹脂発泡粒子の製造方法 - Google Patents

ポリプロピレン系樹脂発泡粒子の製造方法 Download PDF

Info

Publication number
WO2014136933A1
WO2014136933A1 PCT/JP2014/055944 JP2014055944W WO2014136933A1 WO 2014136933 A1 WO2014136933 A1 WO 2014136933A1 JP 2014055944 W JP2014055944 W JP 2014055944W WO 2014136933 A1 WO2014136933 A1 WO 2014136933A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
particles
resin particles
pressure
weight
Prior art date
Application number
PCT/JP2014/055944
Other languages
English (en)
French (fr)
Inventor
福澤 淳
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2015504412A priority Critical patent/JP6447494B2/ja
Priority to EP14760548.9A priority patent/EP2966119B9/en
Priority to ES14760548.9T priority patent/ES2687099T3/es
Priority to US14/773,204 priority patent/US20160009887A1/en
Priority to CN201480013100.6A priority patent/CN105008443B/zh
Publication of WO2014136933A1 publication Critical patent/WO2014136933A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing polypropylene resin expanded particles. More specifically, the present invention relates to a method for producing polypropylene resin expanded particles that can be suitably used as a raw material for an in-mold expanded molded article and that can be molded at a low temperature and has a wide range of molded and heated steam pressure in a single expansion process.
  • In-mold foam moldings obtained by filling polypropylene resin foam particles in molds and heat-molding with water vapor are the advantages of in-mold foam moldings, such as shape flexibility, lightness, and heat insulation. have. Compared to in-mold foam moldings using similar synthetic resin foam particles, compared with in-mold foam moldings obtained using polystyrene resin foam particles, chemical resistance, heat resistance, strain recovery rate after compression In addition, it has excellent dimensional accuracy, heat resistance, and compressive strength as compared with an in-mold foam molded product using polyethylene resin expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin foam particles are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automobile bumper core materials.
  • a resin having a low resin melting point and a high resin rigidity when compared at the same melting point is known.
  • a propylene / 1-butene random copolymer using a Ziegler-based polymerization catalyst or Propylene / ethylene / 1-butene random terpolymers Patent Documents 1 and 2
  • polypropylene homopolymers or propylene / ethylene random copolymers using metallocene polymerization catalysts have been proposed.
  • the melting point can be further lowered and the melting point can be lowered to 130 ° C. or lower.
  • polypropylene resin foam particles made of a polypropylene resin having a resin melting point of 115 to 135 ° C. and an Olsen bending elastic modulus of 500 MPa or more have been proposed ( Patent Document 3).
  • the resin used in Patent Document 3 is partly a propylene / ethylene / 1-butene random terpolymer, and most is a propylene / ethylene random copolymer produced using a metallocene polymerization catalyst.
  • the resin melting point of the example of Patent Document 3 is 120 to 134 ° C., and indeed in-mold foam molding is realized at a low heating temperature.
  • improvement is necessary in terms of in-mold foam molding at high temperatures, and a wide range of molding heating steam pressure has not been realized.
  • a polymer using a metallocene polymerization catalyst is very expensive, a molded product cannot be provided to the market at a low cost, which is industrially unpreferable.
  • Patent Documents 4 and 5 polypropylene-based resin expanded particles obtained by using water as a foaming agent and using air or nitrogen together and releasing into a high-temperature low-pressure region have been proposed.
  • Patent Documents 4 and 5 even a method using water as the foaming agent and using air or nitrogen in combination has not yet achieved a wide molding heating water vapor width.
  • polypropylene-based resin foamed particles and such polypropylene-based resin foamed particles that can be molded at a low temperature and do not impair the moldability at high temperatures and have a wide range of molded heat steam pressure are produced in a single foaming process. There is no known way to do it.
  • the present invention can produce an in-mold foam molded product with a low molding heating steam pressure, and does not impair moldability when the molding heating steam pressure is high.
  • An object of the present invention is to provide polypropylene resin foamed particles that exhibit good moldability when using a mold or the like, and have little deterioration in physical properties such as compression strength when formed into an in-mold foam molded product.
  • the present inventor can perform in-mold foam molding with low molding heating steam pressure by foaming polypropylene resin particles satisfying specific requirements under specific conditions, and , Moldability when molding heating steam pressure is high, wide molding heating condition range, good moldability even when using complicated molds, large molds, etc., and polypropylene resin
  • the present inventors have found that polypropylene resin expanded particles with little deterioration in physical properties such as compressive strength when formed into an in-mold expanded molded article can be produced in a single expansion process, and have completed the present invention.
  • this invention consists of the following structures.
  • the melting rate of the apparent bulk density before and after being heated at a melting point of ⁇ 15 ° C. of the polypropylene resin as the base resin is ⁇ 2% or more and + 2% or less, and the expansion ratio Is a method of producing foamed polypropylene resin particles having a ratio of 15 times to 45 times in a single foaming step, and a polypropylene resin particle containing polyethylene glycol and / or glycerin together with an aqueous dispersion medium in a pressure resistant container.
  • [6] The method for producing expanded polypropylene resin particles according to any one of [1] to [5], wherein the polypropylene resin contains an inorganic nucleating agent.
  • [7] The expanded polypropylene resin particles according to any one of [1] to [6], wherein the amount of the foaming agent used is 3 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. Manufacturing method.
  • [8] Expanded polypropylene resin particles produced by the method according to any one of [1] to [7].
  • [9] An in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin expanded particles according to [8].
  • the method of the present invention it is possible to produce a polypropylene resin in-mold foam molded product with a low molding heating steam pressure, and without compromising moldability when the molding heating steam pressure is high, the molding heating steam width is wide and complicated.
  • Polypropylene resin foam particles exhibit good moldability when using a mold having a shape, a large mold, etc., and have little deterioration in physical properties such as compressive strength when formed into an in-mold foam molded product. Can be obtained in the process.
  • the in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin foam particles obtained by the method of the present invention is used for various applications such as a heat insulating material, a buffer packaging material, an automobile interior member, and a core material for an automobile bumper. Can do.
  • FIG. 3 is an example of a DSC curve obtained when 3-6 mg of expanded polypropylene resin particles obtained by the method of the present invention are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter.
  • a point where the endotherm is the smallest between the two melting peaks of the DSC curve is A, and a tangent line is drawn from the point A to the DSC curve, and among the parts surrounded by the tangent line and the DSC curve, the high temperature side is the high temperature side.
  • the melting peak heat amount Qh, and the low temperature side is the melting peak heat amount Ql on the low temperature side.
  • the heat deformation rate which is the rate of change in apparent bulk density before and after heating at a melting point of ⁇ 15 ° C. of the polypropylene resin as the base resin, is ⁇ 2 % And + 2% or less, and is a method of producing polypropylene resin foamed particles having a foaming ratio of 15 to 45 times in a single foaming process, and contains polyethylene glycol and / or glycerin in a pressure vessel.
  • the polypropylene resin particles are dispersed together with an aqueous dispersion medium, carbon dioxide gas is introduced into the pressure vessel as a blowing agent, and the polypropylene resin particles are impregnated with the blowing agent under heating and pressure conditions, and then the pressure vessel It is characterized in that the foaming is carried out by discharging into a pressure range lower than the internal pressure and in a pressure range having a predetermined atmospheric temperature.
  • the polypropylene resin used in the present invention is preferably a polypropylene random copolymer containing 1-butene and / or ethylene as a comonomer. However, it may contain a comonomer other than 1-butene and ethylene. Examples of such a comonomer include isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, Examples include ⁇ -olefins such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, and 1-decene.
  • cyclic olefins such as cyclopentene, norbornene, tetracyclo [6,2,11,8,13,6] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene
  • dienes such as 2-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene.
  • a propylene / ethylene / 1-butene random copolymer or a propylene / ethylene random copolymer is preferable from the viewpoint of good foamability.
  • the structural unit composed of propylene is 90 wt% or more and 99.8 wt% or less in 100 wt% of the polypropylene resin.
  • the structural unit composed of 1-butene and / or ethylene is preferably 0.2% by weight or more and 10% by weight or less, the structural unit composed of propylene is 92% by weight or more and 99% by weight or less, and 1-butene and / or ethylene. It is more preferable that the structural unit consisting of 1 to 8% by weight.
  • the molding heating steam pressure tends to be high during in-mold foam molding. is there.
  • the structural unit composed of propylene is less than 90% by weight and the structural unit composed of 1-butene and / or ethylene exceeds 10% by weight, the dimensional stability of the in-mold foamed molded product tends to decrease and the compressive strength decreases. Tend.
  • the structural unit composed of 1-butene is preferably 6% by weight or less, more preferably 3% by weight or more and 5% by weight or less. If the structural unit consisting of 1-butene exceeds 6% by weight, the rigidity of the polypropylene random copolymer itself tends to be weak, and there is a tendency that practical rigidity such as compressive strength is not satisfied.
  • the structural unit composed of ethylene is preferably 0.2% by weight or more and 4% by weight or less, more preferably 0.2% by weight or more and 3% by weight or less. More preferably, it is 5% by weight or less. If the structural unit composed of ethylene is less than 0.2% by weight, the molding heating steam pressure tends to be high during in-mold foam molding, and if it exceeds 4% by weight, it tends to endure practical rigidity such as compressive strength. is there.
  • the melting point of the polypropylene random copolymer used in the present invention is preferably 125 ° C. or higher and 155 ° C. or lower, more preferably 130 ° C. or higher and 150 ° C. or lower, and 135 ° C. or higher and 148 ° C. or lower. Further preferred. If the melting point of the polypropylene random copolymer is less than 125 ° C., the dimensional stability of the in-mold foam molding tends to decrease. If the melting point exceeds 155 ° C., the molding heating steam pressure during foam molding in the mold is low. Tend to be higher.
  • the polypropylene random copolymer of the present invention may contain a heat ray radiation inhibitor and other additives, which will be described later, as necessary.
  • the melting point of the polypropylene random copolymer containing the heat ray radiation inhibitor and other additives is taken as the melting point of the polypropylene random copolymer in the present invention.
  • the melting point can be made the melting point of the polypropylene random copolymer of the present invention. is there.
  • the melting point of the polypropylene random copolymer is measured using a differential scanning calorimeter DSC [for example, DSC6200, manufactured by Seiko Instruments Inc.] as follows. That is, 5 to 6 mg of a polypropylene random copolymer resin was heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min to melt the resin, and then from 220 ° C. at a temperature decrease rate of 10 ° C./min. From the DSC curve obtained when crystallizing by lowering the temperature to 40 ° C. and then increasing again from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min, and giving such a series of temperature history, The melting peak temperature at the second temperature increase is taken as the melting point (Tm in FIG. 2).
  • DSC differential scanning calorimeter
  • the melt flow rate (hereinafter referred to as “MFR”) of the polypropylene random copolymer used in the present invention is not particularly limited, but is preferably 0.5 g / 10 min to 100 g / 10 min, and preferably 2 g / 10 minutes or more and 50 g / 10 minutes or less is more preferable, and 3 g / 10 minutes or more and 20 g / 10 minutes or less is more preferable.
  • MFR of the polypropylene random copolymer is in the above range, it is easy to obtain polypropylene resin expanded particles having a relatively large expansion ratio, and the surface of the in-mold foam molded product obtained by in-mold foam molding is beautiful. It is possible to obtain one having excellent properties and a small dimensional shrinkage rate.
  • the value of MFR is the conditions of orifice 2.0959 ⁇ 0.005 mm ⁇ , orifice length 8.000 ⁇ 0.025 mm, load 2160 g, 230 ⁇ 0.2 ° C. using an MFR measuring instrument described in JIS-K7210. It is the value when measured below.
  • a polypropylene random copolymer contains the heat ray radiation inhibitor and other additives which will be described later
  • the MFR of the polypropylene random copolymer containing the heat ray radiation inhibitor and other additives is added to the present invention.
  • the polypropylene resin foam particles used in the present invention can be obtained by processing the above-mentioned polypropylene random copolymer into polypropylene resin particles and then foaming them.
  • the polypropylene resin particles used in the present invention are, for example, a polypropylene random copolymer melted using an extruder, a kneader, a Banbury mixer, a roll, etc., extruded into a strand shape, for example, before or after cooling, in a cylindrical shape Then, it is molded into a desired particle shape such as an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, and the like, and becomes a polypropylene resin particle.
  • polyethylene glycol and / or glycerin is contained in the polypropylene resin as the base resin.
  • Polyethylene glycol and / or glycerin when bringing polypropylene resin particles into contact with water or impregnating with a foaming agent in an aqueous dispersion, contain water in the polypropylene resin particles, thereby improving foamability, Molding is possible even with a low molding heating vapor pressure, and polypropylene resin expanded particles with a wide range of molding heating conditions can be obtained.
  • the content of the polyethylene glycol and / or glycerin is preferably 0.01% by weight or more and 2% by weight or less, and more preferably 0.1% by weight or more and 1% by weight or less in 100% by weight of the polypropylene resin.
  • the inorganic nucleating agent used in the present invention promotes the formation of bubble nuclei as a starting point of foaming, contributes to the improvement of the foaming ratio and contributes to uniform bubble formation.
  • examples of the inorganic nucleating agent include talc, silica, calcium carbonate and the like.
  • the content of the inorganic nucleating agent in the present invention is preferably added so as to be 0.005 wt% or more and 0.5 wt% or less in 100 wt% of the polypropylene resin particles.
  • additives such as a heat ray radiation inhibitor, an antioxidant, a light resistance improver, an antistatic agent, a colorant, a flame retardant improver, and a conductivity improver are added to the polypropyne resin particles of the present invention.
  • polypropylene resin particles may be used.
  • the heat ray radiation inhibitor used in the present invention is not particularly limited as long as it is a substance that suppresses heat conduction by radiation, and examples thereof include carbon black, graphite, activated carbon, titanium oxide, and barium sulfate. These may be used alone or in combination. Among these, carbon black, graphite, activated carbon, and titanium oxide are preferable from the viewpoint of radiation suppression effect, and carbon black and activated carbon are more preferable.
  • the carbon black used in the present invention is not particularly limited, and coloring carbon black, conductive carbon black, and the like can be used.
  • activated carbon used by this invention is a powdered activated carbon.
  • powdered activated carbon having a particle size of 0.1 ⁇ m or more and 150 ⁇ m or less and a BET specific surface area of 500 m 2 / g or more and 2000 m 2 / g or less is preferably used.
  • the content of the heat ray radiation inhibitor in the present invention is not particularly limited, but it is preferably added so that it is 0.1 wt% or more and 20 wt% or less in 100 wt% of the polypropylene resin particles.
  • the addition amount of the heat ray radiation inhibitor is less than 0.1% by weight, the radiation suppression effect tends to be small, and when it exceeds 20% by weight, the expansion ratio tends to be difficult to increase.
  • the water-absorbing substance used in the present invention means that when the substance is added to polypropylene resin particles and the polypropylene resin particles are brought into contact with water or impregnated with a foaming agent in an aqueous dispersion, A substance that can contain water.
  • water-absorbing substance used in the present invention examples include water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax, and zinc borate, and a special block type polymer having a polyether as a hydrophilic segment (trade name: Pelestat; Sanyo) Kasei Co., Ltd.), alkali metal salt of ethylene (meth) acrylic acid copolymer, alkali metal salt of butadiene (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, isobutylene-maleic anhydride copolymer
  • hydrophilic polymers such as alkali metal salts of polymers and alkali metal salts of poly (meth) acrylic acid, polyhydric alcohols such as ethylene glycol and pentaerythritol, and triazines such as melamine and isocyanuric acid.
  • the content of the water-absorbing substance in the present invention varies depending on the target foaming ratio, the blowing agent used, and the type of the water-absorbing substance used, and cannot be described in general, but when water-soluble inorganic substances and polyhydric alcohols are used In 100% by weight of polypropylene resin particles, it is preferably 0.01% by weight or more and 2% by weight or less. When a hydrophilic polymer is used, 0.05% by weight or more and 5% by weight in 100% by weight of polypropylene resin particles. It is preferable that it is below wt%.
  • the addition of the colorant is not limited, and it is possible to obtain a natural color without adding the colorant, or to add a colorant such as blue, red, and black to obtain a desired color.
  • the colorant include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, selenium organic pigments, dioxazine organic pigments, isoindoline organic pigments, and carbon black.
  • the polypropylene resin expanded particles in the present invention are prepared by storing a dispersion containing polypropylene resin particles and water in a pressure vessel, and then dispersing them under stirring conditions and in the presence of a foaming agent.
  • the polypropylene resin is heated to above the softening temperature, impregnated with a polypropylene resin under a pressurized condition, and then the dispersion in the pressure container is discharged to a pressure region lower than the internal pressure of the pressure container.
  • Particles can be produced by foaming.
  • this process may be referred to as a “single-stage foaming process”, and the polypropylene resin particles obtained in this process may be referred to as “single-stage foaming particles”.
  • the following method is mentioned, for example.
  • the following foaming agent is introduced and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin. By heating, the pressure in the pressure vessel rises from about 2 MPa ⁇ G to 5 MPa ⁇ G.
  • polypropylene-based resin expanded particles can be obtained.
  • Polypropylene resin foamed particles can be obtained by introducing a foaming agent while heating and then releasing it into a pressure range lower than the internal pressure of the pressure vessel.
  • the foaming ratio can also be adjusted by controlling the pressure by introducing carbon dioxide used as a foaming agent, nitrogen, air, or the like into the pressure-resistant container even during release into the low pressure region.
  • the pressure range lower than the internal pressure of the pressure vessel is preferably atmospheric pressure. In this case, the equipment does not become complicated, and no special pressure adjustment in the low pressure region is required.
  • the atmospheric temperature in the low pressure region is more than 80 ° C. and 110 ° C. or less, more preferably 90 ° C. or more and 100 ° C. or less, thereby reducing the heat deformation rate of the expanded particles.
  • the foamability of the foamed particles can be improved, and the heated steam pressure during in-mold foam molding can be lowered.
  • the dispersion is discharged into a pressure range lower than the internal pressure of the pressure vessel to produce polypropylene resin particles by foaming
  • the atmospheric temperature in the pressure range is 80 ° C. or less
  • the heat deformation rate of the foamed particles is ⁇ 2 %
  • the effect of lowering the heating water vapor pressure at the time of in-mold molding is hardly obtained.
  • the atmospheric temperature exceeds 110 ° C.
  • Examples of the pressure region heated by the heated steam in the present invention include, for example, a foaming tank 9 disposed through an orifice 5 provided at the lower portion of the pressure vessel 3 as shown in FIG.
  • the foaming tank 9 is maintained in the tank temperature by blowing steam from the steam blowing port 8 in advance. Then, in the pressure vessel 3, the contents composed of the polypropylene resin particles 1 and water 2 as a dispersion medium heated to the foaming temperature and maintained at the foaming pressure are opened, and the valve 4 below the pressure vessel 3 is opened.
  • the polypropylene-based resin expanded particles 7 are obtained by discharging into the foaming tank 9 through the orifice 5. At this time, the foamed particles 7 are preferably in contact with a high temperature region of more than 80 ° C. and 110 ° C. or less for 5 minutes or more in the foaming tank 9.
  • the pressure vessel used when producing the expanded polypropylene resin particles there is no particular limitation on the pressure vessel used when producing the expanded polypropylene resin particles, and any vessel that can withstand the pressure and temperature in the vessel at the time of producing the expanded polypropylene resin particles can be used.
  • an autoclave type pressure vessel can be used. It is done.
  • carbon dioxide gas is used as a foaming agent.
  • aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane
  • aliphatic cyclized hydrogens such as cyclopentane and cyclobutane
  • carbon dioxide using air, nitrogen, water, and the like as a blowing agent
  • water it is particularly preferable to use water together.
  • water water used as an aqueous dispersion medium described later can be used.
  • the amount of the foaming agent used in the present invention is not particularly limited, and may be appropriately used according to the desired expansion ratio of the polypropylene resin expanded particles.
  • the amount of the foaming agent used is preferably 3 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.
  • the aqueous dispersion medium used in the present invention is preferably water, but a dispersion medium to which methanol, ethanol or the like is added can also be used as the aqueous dispersion medium.
  • an inorganic dispersant from the viewpoint of enhancing the dispersibility of the dispersion during the production of the polypropylene resin expanded particles and preventing the adhesion between the polypropylene resin expanded particles.
  • examples of such inorganic dispersants include tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate, kaolin, and sulfuric acid. Barium etc. are mentioned.
  • a dispersion aid in combination in order to further improve dispersibility.
  • a dispersion aid include sodium dodecylbenzene sulfonate, sodium alkane sulfonate, sodium alkyl sulfonate, sodium alkyldiphenyl ether disulfonate, sodium ⁇ -propylene sulfonate, and the like.
  • a combination of the inorganic dispersant and the dispersion aid a combination of tricalcium phosphate and sodium alkylsulfonate is preferable.
  • the amount of the inorganic dispersant and dispersion aid used in the present invention varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 part by weight of the inorganic dispersant with respect to 100 parts by weight of water.
  • the amount is preferably 3 parts by weight or less and more preferably 0.001 part by weight or more and 0.1 parts by weight or less.
  • the polypropylene resin particles are usually preferably used in an amount of 20 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of water in order to improve dispersibility in water.
  • the expansion ratio of the expanded polypropylene resin particles of the present invention is preferably 15 times or more and 45 times or less, more preferably 15 times or more and 40 times or less, and further preferably 18 times or more and 25 times or less. If the expansion ratio of the polypropylene resin expanded particles is less than 15 times, it is not necessary to use the technology of the present invention. If the expansion ratio exceeds 45 times, the polypropylene resin expanded particles tend to be blocked during the production of the expanded polypropylene resin particles, The resulting foamed molded product tends to shrink.
  • the foaming ratio K ⁇ r / ⁇ b is calculated from the ratio with the density ⁇ r of the polypropylene resin particles before foaming.
  • the heat deformation rate of the expanded polypropylene resin particles of the present invention is preferably -2% or more and + 2% or less. If the polypropylene foam particles have a heat deformation ratio of more than ⁇ 2%, the effect of lowering the molding heating water vapor pressure at the time of molding in the mold tends to be difficult to obtain. The part with good fusion and the part with bad fusion are likely to occur, and when trying to improve the whole, a high heating steam pressure is required, and there are cases where intergranularity is likely to occur on the surface of the molded body. is there.
  • the heat deformation rate of the polypropylene resin expanded particles is obtained by measuring the apparent bulk density of the expanded particles before heating after adjusting the expanded particles in a standard state of 23 ° C. for 16 hours or more.
  • the bulk density was measured using a 250 cc graduated cylinder (made of heat-resistant glass), and the foamed particles weighed about 200 cc were put into the graduated cylinder. After tapping 20 times, the volume is measured using the scale of the graduated cylinder, and the bulk density (g / cc) before heating is determined by dividing the weight by the volume.
  • the foamed particles placed in a graduated cylinder are placed in a hot air circulating dryer adjusted to a temperature of the melting point of the resin of ⁇ 15 ° C., heated for 1 hour, and then taken out. Since the foam particles may be blocking each other, once loosen the foam particles in the graduated cylinder, leave them in a standard test place at 23 ° C for 1 hour, and adjust the bulk density of the foam particles as described above. Determine the bulk density of the expanded foam after heating.
  • the amount of the inorganic dispersant adhered to the surface of the expanded polypropylene resin particles of the present invention is preferably 2000 ppm or less, more preferably 1300 ppm or less, and even more preferably 800 ppm or less.
  • the amount of the inorganic dispersant adhering to the surface of the polypropylene resin foamed particles exceeds 2000 ppm, the fusion property during in-mold foam molding tends to be lowered.
  • the expanded polypropylene resin particles of the present invention preferably have two melting peaks in a DSC curve obtained by differential scanning calorimetry.
  • foamed particles having two melting peaks there is a tendency to obtain a polypropylene resin in-mold foam molded article having good in-mold foam moldability and good mechanical strength and heat resistance.
  • the DSC curve obtained by differential scanning calorimetry of the polypropylene resin foamed particles means that 3 to 6 mg of foamed particles were heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter. It is a DSC curve sometimes obtained.
  • the expanded polypropylene resin particles having two melting peaks can be easily obtained by setting the temperature in the pressure resistant container at the time of foaming to an appropriate value. That is, in the case of the present invention, the temperature in the pressure vessel is usually not less than the softening temperature of the polypropylene resin used as the base material, preferably not less than the melting point, more preferably not less than the melting point + 5 ° C. and less than the melting end temperature, preferably Tends to obtain expanded polypropylene resin particles having two melting peaks by setting the melting end temperature to ⁇ 2 ° C. or lower.
  • the melting end temperature is 3 to 6 mg of polypropylene resin particles raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then up to 40 ° C. at a rate of 10 ° C./min. This is the temperature when the bottom of the melting peak of the DSC curve obtained when the temperature is cooled and raised again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.
  • the melting peak calorific value on the high temperature side (hereinafter sometimes referred to as Qh) is preferably 5 to 40 J / g, and more preferably 7 to 30 J / g. If Qh is less than 5 J / g, the closed cell ratio (closed cell ratio required by JIS K7138: 2006) of the polypropylene resin expanded particles tends to be low, and if it exceeds 40 J / g, the expanded foam in the polypropylene resin mold is used. There is a tendency that the fusing property at the time of obtaining is reduced.
  • the melting peak heat quantity Qh on the high temperature side is defined as A where the endothermic quantity is the smallest between the two melting peaks of the DSC curve, and a tangent line is drawn from point A to the DSC curve.
  • the high temperature side is the melting peak heat amount Qh on the high temperature side
  • the low temperature side is the melting peak heat amount Ql on the low temperature side.
  • the high temperature heat ratio is preferably 10% or more and 40% or less, more preferably 15% or more and 30% or less.
  • the high-temperature heat ratio and the high-temperature side heat of fusion are, for example, the retention time from temperature rise to foaming in the one-stage foaming process (maintenance time from reaching the foaming temperature until foaming), foaming temperature (at the time of foaming) Temperature), foaming pressure (pressure during foaming), and the like.
  • the high-temperature heat quantity ratio or the high-temperature side heat of fusion tends to increase. From the above, it is possible to easily find the conditions for the desired high-temperature calorie ratio and high-temperature side melting peak calorie by experimenting several times with systematically changing the holding time, foaming temperature, and foaming pressure. Can do.
  • the foaming pressure can be adjusted by adjusting the amount of foaming agent.
  • the expanded polypropylene particles in which the heat deformation rate of the expanded particles is in the range of ⁇ 2% or more and + 2% or less can be easily obtained by, for example, a combination of the following production conditions.
  • a one-stage foaming step polypropylene resin particles impregnated with a foaming agent are foamed in a heated low pressure region such as in heated steam.
  • Polyethylene glycol and / or glycerin is contained in an amount of 0.01% by weight to 2% by weight in 100% by weight of the polypropylene resin particles.
  • 3 to 60 parts by weight of carbon dioxide gas is used as a foaming agent with respect to 100 parts by weight of the polypropylene resin.
  • the atmospheric temperature in the heating and low pressure region is set to be over 80 ° C. and 110 ° C.
  • the average cell diameter of the expanded polypropylene resin particles of the present invention is preferably from 50 ⁇ m to 400 ⁇ m, and more preferably from 90 ⁇ m to 300 ⁇ m.
  • the average cell diameter of the polypropylene resin expanded particles is less than 50 ⁇ m, the appearance of the surface of the in-mold foam molded product tends to be poor, and when it exceeds 400 ⁇ m, the strength may be lowered.
  • the particle weight of the polypropylene resin expanded particles of the present invention is preferably 0.5 mg / particle or more and 1.8 mg / particle or less, more preferably 0.7 mg / particle or more and 1.2 mg / particle or less. preferable.
  • the particle weight of the polypropylene resin expanded particles can be easily within the above range by setting the particle weight of the polypropylene resin particles to 0.5 mg / particle or more and 1.8 mg / particle or less.
  • the polypropylene resin particles in the present invention are obtained by extruding a once melted resin into a strand shape, and before cooling or after cooling, a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc.
  • a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc.
  • the particle weight is less than 0.5 mg / particle, the variation in the particle weight tends to be large, and the foamed polypropylene resin particles have a large variation in the expansion ratio.
  • the grain weight exceeds 1.8 mg / grain, the foamed particles tend not to be filled in detail.
  • the in-mold foam molded product obtained by in-mold foam molding of the polypropylene resin foamed particles of the present invention can be used for various applications such as a heat insulating material, a buffer packaging material, an automobile interior member, and an automobile bumper core material.
  • Polypropylene resin ⁇ Polypropylene resin A [ethylene content 2.9% by weight in a propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.] ⁇ Polypropylene resin B [ethylene content in propylene / ethylene random copolymer 3.6% by weight, melt index 7 g / 10 min, melting point 139 ° C.]
  • Cell nucleating agent ⁇ Talc [Made by Hayashi Kasei Co., Ltd., PK-S] Other: ⁇ Polyethylene glycol [manufactured by Lion Corporation, PEG # 300] ⁇ Melamine [Mitsui Chemicals, Inc.]
  • ⁇ DSC measurement of polypropylene resin expanded particles When using a differential scanning calorimeter (DSC) [DSC6200 type, manufactured by Seiko Instruments Inc.], 3-6 mg of expanded polypropylene resin particles is heated from 20 ° C. to 220 ° C. at a rate of 10 ° C./min. Each melting peak temperature or heat of fusion was determined from the DSC curve obtained during the first temperature increase (see FIG. 1).
  • DSC differential scanning calorimeter
  • ⁇ Average cell diameter of expanded particles> A line corresponding to a length of 1 mm is observed on the cut surface of each sample taken out of the expanded particles and observed with a microscope with respect to the cut surface of each sample cut with great care so as not to destroy the cell membrane. The number of bubbles through which the line segment passes was measured, and thereafter the average bubble diameter was measured according to ASTM D3576.
  • the obtained foamed particles are conditioned for 16 hours or more in a standard state of 23 ° C., and then the apparent bulk density of the foamed particles before heating is measured.
  • the bulk density was measured using a 250 cc graduated cylinder (SCHOTT, manufactured by DURAN borosilicate glass), and the foam particles measured for weight of about 200 cc were put into the graduated cylinder so that there was no loosening between the foam particles. After tapping the graduated cylinder about 20 times, the volume is measured using the scale of the graduated cylinder, and the weight density is divided by the volume to obtain the bulk density (g / cc) before heating.
  • the foamed particles placed in a graduated cylinder were placed in a hot air circulating dryer (manufactured by Nagano Kagaku Kikai Seisakusho, CH40-15P) adjusted to a temperature of the melting point of the resin of ⁇ 15 ° C. and heated for 1 hour. Then take out. Since the foam particles may be blocking each other, once loosen the foam particles in the graduated cylinder, leave them in a standard test place at 23 ° C for 1 hour, and adjust the bulk density of the foam particles as described above. Determine the bulk density of the expanded foam after heating.
  • the fusion property between particles, the surface property of the in-mold foam molded product, the density of the molded product and the 50% compressive strength were evaluated, and all of the fusion property, surface property and 50% compressive strength passed (evaluation was “ ⁇ The lowest molding heating steam pressure at the time of in-mold foam molding that gives an in-mold foam molding was taken as the minimum molding heating steam pressure.
  • Example 1 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin A (ethylene content 2.9% by weight in propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.) After blending 0.50 part by weight of polyethylene glycol as a part by weight and a water-absorbing agent, the mixture was melt-kneaded at a resin temperature of 220 ° C. in a ⁇ 50 mm single screw extruder (Osaka Seiki Machine Co., Ltd., 20VSE-50-28 type). .
  • the obtained melt-kneaded resin was extruded into a strand from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a cylindrical shape and a weight of 1.2 mg / particle.
  • Polypropylene resin foamed particles were produced using an apparatus in which a foaming tank 9 as shown in FIG. 3 was disposed under the pressure-resistant autoclave (pressure-resistant vessel 3) having a capacity of 10L through an orifice 5.
  • a pressure-resistant autoclave having a capacity of 10 L 100 parts by weight of the obtained polypropylene-based resin particles, 170 parts by weight of water, 1.0 part by weight of calcium triphosphate as a dispersing agent, 0.07 part by weight of sodium n-paraffin sulfonate as a dispersing aid Then, 6.0 parts by weight of carbon dioxide gas was added as a foaming agent with stirring. After the temperature of the autoclave was raised and heated to a foaming temperature of 150 ° C., carbon dioxide was further added to adjust the autoclave internal pressure to 3.0 MPa ⁇ G.
  • the valve 4 at the lower part of the autoclave was opened, and the autoclave contents were discharged through the opening orifice 5 of 3.6 mm ⁇ into the foaming tank 9 under atmospheric pressure to obtain one-stage expanded particles.
  • a steam blowing port 8 is provided immediately after the orifice 5 in the foaming tank 9, and the atmospheric temperature in the foaming tank 9 is set to 98 ° C. by steam heating, and the foamed particles are set in contact with each other for 5 minutes. It was.
  • In-mold foam molding was carried out by changing the pressure by 0.01 MPa ⁇ G between 16 and 0.32 MPa ⁇ G.
  • the obtained in-mold foamed molded product was allowed to stand at room temperature for 1 hour, then cured and dried in a thermostatic chamber at 75 ° C. for 15 hours, taken out again to room temperature, and then allowed to stand at room temperature for 4 hours, and the adhesion between particles.
  • Example 2 The one-stage expanded particles and in-mold expanded molded article were obtained in the same manner as in Example 1 except that the temperature rise (foaming temperature) of the autoclave contents in [Production of polypropylene resin expanded particles] was changed to 149 ° C. Got.
  • the resulting single-stage expanded particles had an expansion ratio of 18 times, a DSC peak ratio of 29%, and a heat deformation ratio of 0.0%.
  • the minimum molding heating water vapor pressure is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property, surface property and 50% compression strength are acceptable. It was.
  • Table 1 The results are shown in Table 1.
  • Example 3 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin B (ethylene content in propylene / ethylene random copolymer 3.6% by weight, melt index 7 g / 10 min, melting point 139 ° C.), talc 0.10 as a cell nucleating agent Polypropylene resin particles were obtained in the same manner as in Example 1 except that 0.50 part by weight of polyethylene glycol was blended as a part by weight and a water absorbing agent.
  • the minimum molding heating water vapor pressure is 0.18 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property, surface property and 50% compression strength are acceptable. It was. The results are shown in Table 1.
  • Example 4 Except for changing the temperature rise (foaming temperature) of the autoclave contents to 135 ° C. in [Production of polypropylene resin foamed particles], the same procedure as in Example 3 was carried out to obtain one-stage expanded particles and in-mold expanded molded articles. Got. The resulting single-stage expanded particles had an expansion ratio of 19 times, a DSC peak ratio of 28%, and a heat deformation rate of 1.6%.
  • the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.19 MPa ⁇ G, and in the range of the total heating water vapor pressure up to a high heating water vapor pressure of 0.32 MPa ⁇ G, the fusion property and the surface property The 50% compressive strength was acceptable. The results are shown in Table 1.
  • Example 5 [Production of polypropylene resin particles] For 100 parts by weight of polypropylene resin A (ethylene content 2.9% by weight in propylene / ethylene random copolymer, melt index 7 g / 10 min, melting point 144 ° C.) Polypropylene resin particles and an in-mold foam molded article were obtained by the same operation as in Example 1 except that 0.20 part by weight of glycerin was blended as a part by weight and a water absorbing agent. The resulting single-stage expanded particles had an expansion ratio of 19 times, a DSC peak ratio of 22%, and a heat deformation ratio of -0.2%.
  • the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties The 50% compressive strength was acceptable. The results are shown in Table 1.
  • Example 6 The one-stage expanded particles and in-mold expanded molded article were obtained in the same manner as in Example 5 except that the temperature rise (foaming temperature) of the autoclave contents in [Production of polypropylene resin expanded particles] was changed to 149 ° C. Got.
  • the resulting single-stage expanded particles had an expansion ratio of 18 times, a DSC peak ratio of 29%, and a heat deformation rate of 0%.
  • the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties
  • the 50% compressive strength was acceptable. The results are shown in Table 1.
  • Example 7 In [Production of polypropylene resin foamed particles], the single-stage foamed particles and the in-mold foam-molded product were obtained in the same manner as in Example 5 except that the internal pressure of the autoclave when adding carbon dioxide gas was 3.5 MPa ⁇ G. Obtained.
  • the resulting single-stage expanded particles had an expansion ratio of 25 times, a DSC peak ratio of 17%, and a heat deformation ratio of -1.1%.
  • the minimum molding heating water vapor pressure for obtaining an in-mold foamed molded product is 0.22 MPa ⁇ G, and in the range of the total heating water vapor pressure from there to a high heating water vapor pressure of 0.32 MPa ⁇ G, fusion properties and surface properties The 50% compressive strength was acceptable. The results are shown in Table 1.
  • Example 1 Manufacture of expanded foam in polypropylene resin mold
  • Example 1-1 The lowest molding heating water vapor pressure was determined from the fusion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.25 MPa ⁇ G.
  • Comparative Example 1-2 the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 1-2. It was rejected in terms of fusion rate and surface properties.
  • Example 1 it can be seen that the lowest molded heating water vapor pressure can be reduced by using the foamed particles having a heat deformation rate close to zero.
  • Example 4 [Production of polypropylene resin particles] Polypropylene resin A was treated in the same manner as in Example 1 except that 100 parts by weight of polypropylene resin A was blended with only 0.5 part by weight of talc [manufactured by Hayashi Kasei Co., Ltd., PK-S] as a cell nucleating agent. Resin particles were obtained.
  • Example 1 The lowest molding heating water vapor pressure was determined from the adhesion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.26 MPa ⁇ G. Incidentally, the evaluation results in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G are shown in Comparative Example 4-2. It was rejected in terms of fusion rate and surface properties. In Example 1, it can be seen that the lowest molded heating water vapor pressure can be reduced by using the foamed particles having a heat deformation rate close to zero.
  • Single-stage expanded particles were obtained in the same manner as in Example 1 except that the release was performed (the temperature in the expansion tank 9 became 45 ° C.).
  • the resulting single-stage expanded particles had an expansion ratio of 15 times and a DSC peak ratio of 22%.
  • An internal pressure of 0.28 MPa ⁇ G was applied to the obtained one-stage expanded particles by air impregnation, and heated with 0.02 MPa ⁇ G of steam to obtain expanded particles having an expansion ratio of 19 times.
  • Manufacture of expanded foam in polypropylene resin mold In-mold foam molding was performed in the same manner as in Example 1, and the moldability and the obtained molded body were evaluated.
  • Comparative Example 5-1 The result is shown as Comparative Example 5-1 in Table 2.
  • the lowest molding heating water vapor pressure was determined from the adhesion between the particles of the molded body, surface properties, and 50% compressive strength, and was 0.26 MPa ⁇ G.
  • the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 5-2. It was rejected in terms of fusion rate and surface properties.
  • Example 1 it can be seen that the minimum molding heating water vapor pressure can be reduced by using foamed particles obtained by using carbon dioxide gas as the foaming agent and having a heating deformation rate close to zero.
  • Example 1 the evaluation result in Example 1 at the minimum molding heating water vapor pressure of 0.21 MPa ⁇ G is shown in Comparative Example 6-2. It was rejected in terms of fusion rate and surface properties.
  • Example 1 it can be seen that the minimum molding heating water vapor pressure can be reduced by using foamed particles obtained by using carbon dioxide gas as the foaming agent and having a heating deformation rate close to zero.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 耐圧容器内に、ポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、80℃超、110℃以下の雰囲気温度とした圧力域へ放出させて発泡させて得られるポリプロピレン系樹脂発泡粒子は、低い成形加熱水蒸気圧で型内発泡成形体を生産でき、かつ、成形加熱水蒸気圧が高い場合の成形性も損なわず、成形加熱水蒸気幅が広く、複雑な形状の金型、大きな金型等を使用する場合も良好な成形性を示し、また、型内発泡成形体としたときの圧縮強度等の物性低下が少ないポリプロピレン系樹脂発泡粒子を提供できる。

Description

ポリプロピレン系樹脂発泡粒子の製造方法
 本発明は、ポリプロピレン系樹脂発泡粒子の製造方法に関するものである。さらに詳しくは、型内発泡成形体の原料として好適に使用出来る、低温成形可能で、かつ成形加熱水蒸気圧幅の広い、ポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法に関する。
 ポリプロピレン系樹脂発泡粒子を金型内に充填し、水蒸気で加熱成形して得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。また同様の合成樹脂発泡粒子を用いる型内発泡成形体と比較すると、ポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体に比べて、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂発泡粒子を用いる型内発泡成形体と比べて、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いられている。
 その反面、ポリプロピレン系樹脂発泡粒子を型内で粒子同士を相互融着させて型内発泡成形体とするには、ポリスチレン系樹脂発泡粒子やポリエチレン系樹脂発泡粒子に比べて、高温での加熱、すなわち高い水蒸気圧での加熱が必要である。そのため、高圧に耐える金型、成形機が必要で、かつ成形に要する蒸気コストが高い問題がある。
 ポリプロピレン系樹脂発泡粒子の型内発泡成形用の成形機は、耐圧上限が0.4MPa・G(Gはゲージ圧を示す。以下同様。)程度の仕様であるものが大半を占めている。型内発泡成形に用いられるポリプロピレン系樹脂発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が140~150℃程度のプロピレン系ランダム共重合体が用いられている。
 しかしながら、昨今の燃料価格の高騰などにより、より低温での型内発泡成形、すなわち、成形加熱水蒸気圧の低減が待望されている。また、複雑な形状の金型、大きな金型等を使用する場合、発泡粒子同士の相互融着が悪い部分が一部に発生することがあり、その部分を融着させるために成形加熱水蒸気圧を高くすると変形、収縮が起こり易く、従来以上の成形加熱水蒸気圧幅(「成形加熱条件幅」とも言う。)の広さも待望されている。
 この問題を解決するために、樹脂融点が低く、かつ同一融点で比較した場合の樹脂剛性が高い樹脂が知られており、例えば、チーグラー系重合触媒を用いるプロピレン・1-ブテンランダム共重合体またはプロピレン・エチレン・1-ブテンランダム3元共重合体(特許文献1、特許文献2)、あるいはメタロセン系重合触媒を用いるポリプロピレンホモポリマーまたはプロピレン・エチレンランダム共重合体などが提案されている。
 しかし、チーグラー系重合触媒を用いる、1-ブテンコモノマーを含むプロピレン系ランダム共重合体において、同じ融点で比較した場合の樹脂剛性は高くできるが、融点が高い樹脂と同等の強度を得ることはできない。
 一方、メタロセン系重合触媒を用いるプロピレン・エチレンランダム共重合体の場合はより低融点化が可能であり、130℃以下の低融点化が可能である。例えば、低い加熱温度での型内発泡成形を実現するために、樹脂融点が115~135℃、且つオルゼン曲げ弾性率が500MPa以上のポリプロピレン系樹脂からなるポリプロピレン系樹脂発泡粒子が提案されている(特許文献3)。特許文献3で用いられる樹脂は、一部がプロピレン・エチレン・1-ブテンランダム3元共重合体で、大部分はメタロセン系重合触媒を用いて製造されたプロピレン・エチレンランダム共重合体である。特許文献3の実施例の樹脂融点は、120~134℃であり、確かに低い加熱温度での型内発泡成形を実現している。しかし、高温での型内発泡成形という点では改善を要するものであり、広い成形加熱水蒸気圧幅を実現するには至っていない。また、メタロセン系重合触媒を用いたポリマーは、非常に高価であるため、成形体を安価に市場に提供することができず、産業上好ましくない。
 また、発泡剤として水を用い、空気や窒素を併用するとともに、高温の低圧域に放出することで得られるポリプロピレン系樹脂発泡粒子も提案されている(特許文献4、特許文献5)。しかし、このような発泡剤として水を用い、空気や窒素を併用する方法においても、広い成形加熱水蒸気幅を実現するには至っていない。
 すなわち、従来、低温成形が可能で、かつ高温での成形性も損なわず、成形加熱水蒸気圧幅の広い、ポリプロピレン系樹脂発泡粒子及びそのようなポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法は知られていない。
特開平1-242638号公報 特開平7-258455号公報 国際公開2008/139822号公報 特開2004-67768号公報 特開2001-151928号公報
 本発明は、低い成形加熱水蒸気圧で型内発泡成形体を生産でき、かつ、成形加熱水蒸気圧が高い場合の成形性も損なわず、成形加熱水蒸気幅が広く、複雑な形状の金型、大きな金型等を使用する場合も良好な成形性を示し、また、型内発泡成形体としたときの圧縮強度等の物性低下が少ないポリプロピレン系樹脂発泡粒子を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究した結果、特定の要件を満たすポリプロピレン系樹脂粒子を特定の条件で発泡させることにより、低い成形加熱水蒸気圧で型内発泡成形が可能で、かつ、成形加熱水蒸気圧が高い場合の成形性も損なわず、成形加熱条件幅が広く、複雑な形状の金型、大きな金型等を使用する場合も良好な成形性を示し、また、ポリプロピレン系樹脂型内発泡成形体とした際の圧縮強度等の物性低下が少ないポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の構成よりなる。
[1] 基材樹脂であるポリプロピレン系樹脂の融点-15℃の温度で加熱した前後での見掛けのかさ密度の変化率である加熱変形率が-2%以上、+2%以下であり、発泡倍率が15倍以上45倍以下であるポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法であり、耐圧容器内に、ポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、80℃超、110℃以下の雰囲気温度とした圧力域へ放出させることにより、前記ポリプロピレン系樹脂粒子を発泡させることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
[2] 前記ポリプロピレン系樹脂発泡粒子の発泡倍率が18倍以上25倍以下である前記[1]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[3] 前記ポリプロピレン系樹脂が、コモノマーとして1-ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体である前記[1]または[2]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[4] 前記ポリプロピレン系ランダム共重合体の融点が、125℃以上155℃以下である前記[3]に記載のポリプロピレン系樹脂発泡粒子の製造方法。
[5] 前記ポリエチレングリコール及び/又はグリセリンの含有量が、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることを特徴とする前記[1]~[4]のいずれかに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[6] 前記ポリプロピレン系樹脂が、無機造核剤を含有してなる前記[1]~[5]のいずれに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[7] 前記発泡剤の使用量が、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下である前記[1]~[6]のいずれかに記載のポリプロピレン系樹脂発泡粒子の製造方法。
[8] 前記[1]~[7]のいずれかに記載の方法により製造されるポリプロピレン系樹脂発泡粒子。
[9] 前記[8]に記載のポリプロピレン系樹脂発泡粒子を型内発泡成形してなる型内発泡成形体。
 本発明方法によれば、低い成形加熱水蒸気圧でポリプロピレン系樹脂型内発泡成形体を生産でき、かつ、成形加熱水蒸気圧が高い場合の成形性も損なわず、成形加熱水蒸気幅が広く、複雑な形状の金型、大きな金型等を使用する場合も良好な成形性を示し、また、型内発泡成形体とした時の圧縮強度等の物性低下が少ないポリプロピレン系樹脂発泡粒子を1回の発泡工程で得ることができる。本発明方法により得られるポリプロピレン系樹脂発泡粒子を型内発泡成形して得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いることができる。
本発明方法で得られるポリプロピレン系樹脂発泡粒子3~6mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温した際に得られるDSC曲線の一例である。DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点をAとし、点AからDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた部分のうち、高温側が高温側の融解ピーク熱量Qh、低温側が低温側の融解ピーク熱量Qlである。 ポリプロピレン系ランダム共重合体樹脂5~6mgを、10℃/分の昇温速度で40℃から220℃まで昇温して樹脂を融解し、その後10℃/分の降温速度で220℃から40℃まで降温することにより結晶化させた後に、再度10℃/分の昇温速度で40℃から220℃まで昇温し、このような一連の温度履歴を与えた時に得られるDSC曲線のうち、2回目の昇温時のDSC曲線の一例である。 本発明の実施例に係る発泡装置の一例を示す概略図である。
 本発明に係るポリプロピレン系樹脂発泡粒子の製造方法は、基材樹脂であるポリプロピレン系樹脂の融点-15℃の温度で加熱した前後での見掛けのかさ密度の変化率である加熱変形率が-2%以上、+2%以下であり、発泡倍率が15倍以上45倍以下であるポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法であり、耐圧容器内にポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、所定の雰囲気温度とした圧力域へ放出させて発泡することを特徴とする。
 本発明で用いられるポリプロピレン系樹脂は、コモノマーとして1-ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体であることが好ましい。但し、1-ブテンやエチレン以外のコモノマーを含んでいても良く、このようなコモノマーとしては、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどのα-オレフィンが挙げられる。更にはシクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン、5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、2-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエンなどが挙げられる。
 本発明においては、ポリプロピレン系ランダム共重合体の中でも、良好な発泡性の観点から、プロピレン/エチレン/1-ブテンランダム共重合体、あるいはプロピレン/エチレンランダム共重合体が好ましい。
 更に、これらプロピレン/エチレン/1-ブテンランダム共重合体、プロピレン/エチレンランダム共重合体においては、ポリプロピレン系樹脂100重量%中、プロピレンからなる構造単位が90重量%以上99.8重量%以下、1-ブテンおよび/またはエチレンからなる構造単位が0.2重量%以上10重量%以下であることが好ましく、プロピレンからなる構造単位が92重量%以上99重量%以下、1-ブテンおよび/またはエチレンからなる構造単位が1重量%以上8重量%以下であることがより好ましい。プロピレンからなる構造単位が99.8重量%を超え、1-ブテンおよび/またはエチレンからなる構造単位が0.2重量%未満では、型内発泡成形する際の成形加熱蒸気圧力が高くなる傾向がある。プロピレンからなる構造単位が90重量%未満で、1-ブテンおよび/またはエチレンからなる構造単位が10重量%を超えると、型内発泡成形体の寸法安定性が低下する傾向や圧縮強度が低下する傾向がある。
 前記プロピレン/エチレン/1-ブテンランダム共重合体において、1-ブテンからなる構造単位としては、6重量%以下が好ましく、3重量%以上5重量%以下がさらに好ましい。1-ブテンからなる構造単位が6重量%を超えると、ポリプロピレン系ランダム共重合体自体の剛性が弱くなり、圧縮強度等の実用剛性を満足しなくなる傾向がある。
 これらプロピレン/エチレン/1-ブテンランダム共重合体、プロピレン/エチレンランダム共重合体において、エチレンからなる構造単位としては、0.2重量%以上4重量%以下が好ましく、0.2重量%以上3.5重量%以下がさらに好ましい。エチレンからなる構造単位が0.2重量%未満では、型内発泡成形する際の成形加熱蒸気圧力が高くなる傾向があり、4重量%を超えると、圧縮強度等の実用剛性に耐えなくなる傾向がある。
 本発明で用いられるポリプロピレン系ランダム共重合体の融点は、125℃以上155℃以下であることが好ましく、130℃以上150℃以下であることがより好ましく、135℃以上148℃以下であることがさらに好ましい。ポリプロピレン系ランダム共重合体の融点が125℃未満では、型内発泡成形体の寸法安定性が低下する傾向があり、融点が155℃を超えると、型内発泡成形する際の成形加熱蒸気圧力が高くなる傾向がある。
 本発明のポリプロピレン系ランダム共重合体は、必要に応じて、後述する熱線輻射抑制剤やその他の添加剤を含有していてもよい。このような場合、熱線輻射抑制剤やその他の添加剤を含んだポリプロピレン系ランダム共重合体の融点を、本発明におけるポリプロピレン系ランダム共重合体の融点とする。なお、本発明で用いられるポリプロピレン系樹脂粒子の融点を次に述べる示差走査熱量計を用いて測定することにより、その融点を、本発明のポリプロピレン系ランダム共重合体の融点とすることが可能である。
 ここで、ポリプロピレン系ランダム共重合体の融点の測定は、示差走査熱量計DSC[例えば、セイコーインスツルメンツ(株)製、DSC6200型]を用いて、次のように行う。すなわち、ポリプロピレン系ランダム共重合体樹脂5~6mgを、10℃/分の昇温速度で40℃から220℃まで昇温して樹脂を融解し、その後10℃/分の降温速度で220℃から40℃まで降温することにより結晶化させた後に、再度10℃/分の昇温速度で40℃から220℃まで昇温し、このような一連の温度履歴を与えた時に得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点とする(図2のTm)。
 本発明で用いられるポリプロピレン系ランダム共重合体のメルトフローレート(以降、「MFR」と称する。)には、特に制限は無いが、0.5g/10分以上100g/10分以下が好ましく、2g/10分以上50g/10分以下がより好ましく、3g/10分以上20g/10分以下がさらに好ましい。ポリプロピレン系ランダム共重合体のMFRが上記範囲にあると、比較的大きな発泡倍率のポリプロピレン系樹脂発泡粒子が得られやすく、それを型内発泡成形して得られた型内発泡成形体の表面美麗性が優れ、寸法収縮率が小さいものを得ることができる。
 ここで、MFRの値は、JIS-K7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定した時の値である。なお、ポリプロピレン系ランダム共重合体が後述する熱線輻射抑制剤やその他の添加剤を含有する場合は、熱線輻射抑制剤やその他の添加剤を含んだポリプロピレン系ランダム共重合体のMFRを、本発明におけるポリプロピレン系ランダム共重合体のMFRとする。
 本発明で用いられるポリプロピレン系樹脂発泡粒子は、上述したポリプロピレン系ランダム共重合体をポリプロピレン系樹脂粒子に加工した後、発泡させることで得ることができる。
 本発明で用いられるポリプロピレン系樹脂粒子は、例えば、ポリプロピレン系ランダム共重合体を押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融し、例えばストランド状に押出し、冷却前あるいは冷却後に、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状に成形加工されて、ポリプロピレン系樹脂粒子となる。
 また、本発明では、基材樹脂であるポリプロピレン系樹脂中にポリエチレングリコール及び/又はグリセリンを含有する。ポリエチレングリコール及び/又はグリセリンは、ポリプロピレン系樹脂粒子を水と接触させる或いは水分散系で発泡剤含浸をする際に、ポリプロピレン系樹脂粒子内に水を含有させ、これにより、発泡性を向上させ、低い成形加熱蒸気圧でも成形が可能となり、成形加熱条件幅の広いポリプロピレン系樹脂発泡粒子が得られる。
 前記ポリエチレングリコール及び/又はグリセリンの含有量は、ポリプロピレン系樹脂100重量%中、0.01重量%以上2重量%以下であることが好ましく、0.1重量%以上1重量%以下がより好ましい。
 また、本発明では、発泡剤として炭酸ガスを用いることから、発泡性を向上させることのできる無機造核剤を添加することが好ましい。
 本発明で用いられる無機造核剤は、発泡の起点となる気泡核の形成を促し、発泡倍率の向上に寄与すると共に、均一な気泡形成にも寄与する。無機造核剤としては、例えば、タルク、シリカ、炭酸カルシウムなどが挙げられる。
 本発明における無機造核剤の含有量は、ポリプロピレン系樹脂粒子100重量%中、0.005重量%以上0.5重量%以下となるよう添加することが好ましい。
 本発明のポリプロピン系樹脂粒子中には、熱線輻射抑制剤、酸化防止剤、耐光性改良剤、帯電防止剤、着色剤、難燃性改良剤、導電性改良剤等の添加剤を必要により加えて、ポリプロピレン系樹脂粒子としても良い。また、発泡性を向上させることのできる吸水物質を添加してもよい。その場合は、これらの添加剤は、通常、ポリプロピレン系樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。
 本発明で用いられる熱線輻射抑制剤は、輻射による熱伝導を抑制する物質であれば、特に制限はなく、例えば、カーボンブラック、グラファイト、活性炭、酸化チタン、硫酸バリウム、などが挙げられる。これらは単独で用いても良いし、複数を組み合わせて用いても良い。これらのうちでも、輻射抑制効果の観点からは、カーボンブラック、グラファイト、活性炭、酸化チタンが好ましく、カーボンブラック、活性炭がより好ましい。
 本発明で用いられるカーボンブラックとしては、特に制限がなく、着色用カーボンブラックや導電性カーボンブラックなどを用いることができる。
 本発明で用いられる活性炭としては、特に制限はないが、樹脂への分散性の観点から、粉末状の活性炭であることが好ましい。具体的には、粒子径が0.1μm以上150μm以下であり、BET比表面積が500m2/g以上2000m2/g以下である粉末状の活性炭が、好適に用いられる。
 本発明における熱線輻射抑制剤の含有量は、特に制限はないが、ポリプロピレン系樹脂粒子100重量%中、0.1重量%以上20重量%以下となるよう添加することが好ましい。熱線輻射抑制剤の添加量が0.1重量%未満では、輻射抑制効果が小さくなる傾向があり、20重量%を超えると、発泡倍率を高くし難くなる傾向がある。
 本発明で用いられる吸水物質とは、当該物質をポリプロピレン系樹脂粒子中に添加し、該ポリプロピレン系樹脂粒子を水と接触させる或いは水分散系で発泡剤含浸をする際に、ポリプロピレン系樹脂粒子内に水を含有させうる物質をいう。
 本発明で用いられる吸水物質としては、例えば、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物、ポリエーテルを親水性セグメントとした特殊ブロック型ポリマー(商品名:ペレスタット;三洋化成(株)製)、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン-無水マレイン酸共重合体のアルカリ金属塩及びポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマー、エチレングリコール、ペンタエリスリトール等の多価アルコール類、メラミン、イソシアヌル酸等のトリアジン類、等が挙げられる。
 本発明における吸水物質の含有量は、目的とする発泡倍率、使用する発泡剤、使用する吸水物質の種類によって異なり一概に記載することはできないが、水溶性無機物、多価アルコール類を使用する場合、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることが好ましく、親水性ポリマーを使用する場合、ポリプロピレン系樹脂粒子100重量%中、0.05重量%以上5重量%以下であることが好ましい。
 本発明において着色剤の添加に制限はなく、着色剤を添加せずにナチュラル色とすることもできるし、青、赤、黒など着色剤を添加して所望の色とすることもできる。着色剤としては、例えば、ペリレン系有機顔料、アゾ系有機顔料、キナクリドン系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、ジオキサジン系有機顔料、イソインドリン系有機顔料、カーボンブラックなどが挙げられる。
 本発明におけるポリプロピレン系樹脂発泡粒子は、ポリプロピレン系樹脂粒子と水を含んでなる分散液を耐圧容器中に収容した後、攪拌条件下に分散させると共に、発泡剤の存在下、前記ポリプロピレン系樹脂粒子の軟化温度以上に昇温し、加圧条件下で発泡剤をポリプロピレン系樹脂に含浸し、次いで、耐圧容器の内圧よりも低い圧力域に耐圧容器中の分散液を放出して、ポリプロピレン系樹脂粒子を発泡させ製造することができる。なお、本発明では、この工程を「一段発泡工程」と称する場合があり、この工程で得られるポリプロピレン系樹脂粒子を「一段発泡粒子」と称する場合がある。
 より具体的には、例えば、次の方法が挙げられる。
(1)耐圧容器内に、ポリプロピレン系樹脂粒子および水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、耐圧容器内を真空引きした後、1MPa・G以上2MPa・G以下の発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱する。加熱することによって、耐圧容器内の圧力が約2MPa・G以上5MPa・G以下まで上がる。必要に応じて、発泡温度付近にて、さらに発泡剤を追加して所望の発泡圧力に調整、さらに温度調整を行った後、必要に応じて該発泡圧力および温度で所定時間保持し、次いで、耐圧容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることができる。
(2)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて耐圧容器内を真空引きした後、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱しながら、発泡剤を導入し、次いで、耐圧容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることもできる。
(3)耐圧容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱し、さらに発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度とし、耐圧容器の内圧よりも低い圧力域に放出してポリプロピレン系樹脂発泡粒子を得ることもできる。
 なお、低圧域に放出する前に、発泡剤として用いた炭酸ガス、その他、窒素、空気などを圧入することにより、耐圧容器内の内圧を高め、発泡時の圧力開放速度を調節し、更には、低圧域への放出中にも発泡剤として用いた炭酸ガス、その他、窒素、空気などを耐圧容器内に導入して圧力を制御することにより、発泡倍率の調整を行うこともできる。
 ここで、耐圧容器の内圧よりも低い圧力域としては、大気圧であることが好ましい。この場合、設備が複雑なものとならず、また、低圧域の特別な圧力調節も不要となる。
 本発明では、前記低い圧力域の雰囲気温度としては、80℃超、110℃以下、より好ましくは90℃以上100℃以下であり、これにより、発泡粒子の加熱変形率を小さくすることができるとともに、加熱水蒸気で加熱する場合、発泡粒子の発泡性を向上させることも可能となり、更には型内発泡成形時の加熱水蒸気圧を低くすることができる。
 前記耐圧容器の内圧よりも低い圧力域に分散液を放出して、ポリプロピレン系樹脂粒子を発泡させ製造する場合、該圧力域の雰囲気温度が80℃以下では、発泡粒子の加熱変形率が-2%よりも大きな収縮となり易く、型内成形時の加熱水蒸気圧を低くする効果が得られにくくなる。また、該雰囲気温度が110℃超では、発泡粒子の表面のセル膜が薄くなる部分が生じ、型内成形時の発泡性が維持できずに成形加熱水蒸気圧を低くできなくなる傾向にある。
 本発明における加熱水蒸気で加温している圧力域としては、例えば、図3に示すような、耐圧容器3の下部に設けられたオリフィス5を介して配置される発泡槽9等があげられる。
 発泡槽9は、蒸気吹込口8より蒸気を予め吹き込むことにより、槽内温度を維持されている。そして、耐圧容器3内にて、発泡温度まで加熱されて発泡適正圧力に保持された、ポリプロピレン系樹脂粒子1、分散媒としての水2からなる内容物を、耐圧容器3下部のバルブ4を開き、オリフィス5を通して、発泡槽9内に放出させることにより、ポリプロピレン系樹脂発泡粒子7が得られる。この際、発泡粒子7は、発泡槽9内にて、80℃超、110℃以下の高温域に5分間以上接触することが好ましい。
 ポリプロピレン系樹脂発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。
 本発明では、発泡剤として炭酸ガスを用いる。なお、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;シクロペンタン、シクロブタン等の脂肪式環化水素類;空気、窒素、水等を発泡剤として炭酸ガスと併用してもよい。これらの中でも、水を併用することが特に好ましい。発泡剤として水を併用する場合、後述する水系分散媒として用いる水を利用することができる。
 本発明における発泡剤の使用量は特に限定はなく、ポリプロピレン系樹脂発泡粒子の所望の発泡倍率に応じて適宣使用すれば良い。発泡剤の使用量は、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下であることが好ましい。
 本発明で用いる水系分散媒としては、水が好ましいが、メタノール、エタノール等を添加した分散媒も水系分散媒として使用できる。
 本発明では、ポリプロピレン系樹脂発泡粒子製造時の分散液の分散性を高め、ポリプロピレン系樹脂発泡粒子どうしの凝着を防ぐ観点から無機分散剤を用いることが好ましい。このような無機分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、カオリン、硫酸バリウム等が挙げられる。
 本発明においては、より分散性を高めるために分散助剤を併用することが好ましい。このような分散助剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、α-プロピレンスルホン酸ナトリウム等が挙げられる。これらの中でも、無機分散剤と分散助剤の組み合わせとしては、第三リン酸カルシウムとアルキルスルホン酸ナトリウムの組み合わせが好ましい。
 本発明における無機分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して、無機分散剤0.2重量部以上3重量部以下であることが好ましく、分散助剤0.001重量部以上0.1重量部以下であることが好ましい。
 本発明においては、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下で使用することが好ましい。
 本発明のポリプロピレン系樹脂発泡粒子の発泡倍率は、15倍以上45倍以下が好ましく、15倍以上40倍以下がより好ましく、18倍以上25倍以下がさらに好ましい。ポリプロピレン系樹脂発泡粒子の発泡倍率が15倍未満では、特段本発明の技術を用いる必要はなく、45倍を超えると、ポリプロピレン系樹脂発泡粒子の製造時にブロッキングしやすい傾向や、型内発泡成形により得られる発泡成形体が収縮しやすい傾向がある。
 ここで、ポリプロピレン系樹脂発泡粒子の発泡倍率は、ポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前のポリプロピレン系樹脂粒子の密度ρrとの比から、発泡倍率K=ρr/ρbを算出した値である。
 本発明のポリプロピレン系樹脂発泡粒子の加熱変形率は、-2%以上、+2%以下であることが好ましい。ポリプロピレン発泡粒子の加熱変形率が±2%超の場合は、型内成形時の成形加熱水蒸気圧を低くする効果が得られにくくなる傾向があり、また、型内成形体の部分によって発泡粒子どうしの融着の良い部分と、悪い部分が発生し易くなり、全体を良好にしようとすると、高い成形加熱水蒸気圧が必要となることや、成形体の表面に粒間が発生し易くなる場合もある。
 ここで、ポリプロピレン系樹脂発泡粒子の加熱変形率は、発泡粒子を23℃の標準状態で16時間以上状態調節した後、加熱前の発泡粒子の見掛けのかさ密度を測定する。そのかさ密度の測定は、250ccのメスシリンダー(耐熱ガラス製)を用いて、約200ccの重量を測定した発泡粒子をメスシリンダーに投入し、発泡粒子間のゆるみがないように、メスシリンダーを約20回タップしてから、メスシリンダーの目盛りを用いて体積を測定し、前記重量を体積で除して加熱前のかさ密度(g/cc)を求めておく。次にその発泡粒子をメスシリンダーに入れたものを、樹脂の融点-15℃の温度に調節した熱風循環式乾燥機内に入れて、1時間加熱を行った後、取り出す。発泡粒子どうしがブロッキングしている場合がある為、一度、メスシリンダー内の発泡粒子をほぐした後、23℃の標準状態の試験場所に1時間放置し、前記と同様に発泡粒子のかさ密度を求め、加熱後の発泡粒子のかさ密度とする。
 加熱変形率は、次の式によって算出する。
 加熱変形率(%)=〔(加熱前の発泡粒子のかさ密度-加熱後の発泡粒子のかさ密度)/加熱前の発泡粒子のかさ密度〕×100
 本発明のポリプロピレン系樹脂発泡粒子の表面に付着した無機分散剤量は、2000ppm以下が好ましく、1300ppm以下がより好ましく、800ppm以下がさらに好ましい。ポリプロピレン系樹脂発泡粒子の表面に付着した無機分散剤量が2000ppmを超えると、型内発泡成形する際の融着性が低下する傾向にある。
 本発明のポリプロピレン系樹脂発泡粒子は、図1に示すように、示差走査熱量測定によって得られるDSC曲線において、2つの融解ピークを有するものが好ましい。2つの融解ピークを有する発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好なポリプロピレン系樹脂型内発泡成形体が得られる傾向がある。
 ここで、ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、発泡粒子3~6mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。
 前記のごとく、2つの融解ピークを有するポリプロピレン系樹脂発泡粒子は、発泡時の耐圧容器内の温度を適切な値に設定することにより容易に得られる。すなわち本発明の場合、前記耐圧容器内の温度を、通常、基材となるポリプロピレン系樹脂の軟化温度以上、好ましくは融点以上、より好ましくは融点+5℃以上であって、融解終了温度未満、好ましくは融解終了温度-2℃以下の温度にすることにより、2つの融解ピークを有するポリプロピレン系樹脂発泡粒子が得られる傾向にある。
 なお、前記融解終了温度とは、示差走査熱量計によってポリプロピレン系樹脂粒子3~6mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピークのすそが高温側でベースラインの位置に戻ったときの温度である。
 また、2つの融解ピークのうち高温側の融解ピーク熱量(以下、Qhと表記する場合がある)は、5~40J/gが好ましく、より好ましくは、7~30J/gである。Qhが5J/g未満では、ポリプロピレン系樹脂発泡粒子の独立気泡率(JIS K7138:2006により求められる独立気泡率)が低くなる傾向にあり、40J/gを超えるとポリプロピレン系樹脂型内発泡成形体を得る際の融着性が低下する傾向にある。
 なお、高温側の融解ピーク熱量Qhは図1に示すように、DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点をAとし、点AからDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた部分(図1の斜線部分)について、高温側を高温側の融解ピーク熱量Qh、低温側を低温側の融解ピーク熱量Qlとする。
 本発明における高温熱量比(以下、DSCピーク比ともいう。)は、高温側の融解ピーク熱量Qhと低温側の融解ピーク熱量Qlの合計熱量に対する高温側の融解ピーク熱量Qhの比率(高温熱量比(%)=(Qh/(Qh+Ql)×100)である。高温熱量比としては、10%以上40%以下が好ましく、15%以上30%以下がより好ましい。高温熱量比が当該範囲であれば、得られるポリプロピレン系樹脂発泡粒子がブロッキングすることなく、かつ、1回の発泡工程で発泡倍率の高いポリプロピレン系樹脂発泡粒子を得やすくなる。
 なお、高温熱量比や高温側融解熱量は、例えば、一段発泡工程における昇温後から発泡までの保持時間(概ね発泡温度に達した後から発泡するまでの保持時間)、発泡温度(発泡時の温度)、発泡圧力(発泡時の圧力)等により適宜調整することができる。一般的には、保持時間を長くする、発泡温度を低くする、発泡圧力を低くすることにより、高温熱量比あるいは高温側融解熱量が大きくなる傾向がある。以上のことから、保持時間、発泡温度、発泡圧力を系統的に適宜変化させた実験を何回か試行することにより、所望の高温熱量比や高温側融解ピーク熱量となる条件を容易に見出すことができる。なお、発泡圧力の調節は、発泡剤の量により調節することできる。
 本発明における、発泡粒子の加熱変形率が-2%以上、+2%以下の範囲となるポリプロピレン発泡粒子は、例えば、以下の製造条件の組み合わせによって、容易に得ることができる。
(1)一段発泡工程において、発泡剤を含浸したポリプロピレン系樹脂粒子を、加熱水蒸気中などの加温低圧域で発泡させる。
(2)ポリプロピレン系樹脂粒子100重量%中、ポリエチレングリコール及び/又はグリセリンを0.01重量%以上2重量%以下含有させる。
(3)発泡剤として、ポリプロピレン系樹脂100重量部に対して3重量部以上60重量部以下の炭酸ガスを使用する。
(4)加温低圧域の雰囲気温度を80℃超、110℃以下とする。
 本発明のポリプロピレン系樹脂発泡粒子の平均気泡径は、50μm以上400μm以下であることが好ましく、90μm以上300μm以下であることがより好ましい。ポリプロピレン系樹脂発泡粒子の平均気泡径が50μm未満では、型内発泡成形体の表面の外観が不良となる傾向があり、400μmを超えると、強度の低下を招くことがある。
 本発明のポリプロピレン系樹脂発泡粒子の粒重量は、0.5mg/粒以上、1.8mg/粒以下であることが好ましく、0.7mg/粒以上、1.2mg/粒以下であることがより好ましい。なお、ポリプロピレン系樹脂発泡粒子の粒重量は、ポリプロピレン系樹脂粒子の粒重量を0.5mg/粒以上、1.8mg/粒以下とすることで容易に前記範囲内とすることができる。
 本発明におけるポリプロピレン系樹脂粒子は、前述したとおり、一旦溶融した樹脂をストランド状に押出し、冷却前あるいは冷却後に、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状に成形加工することで得られるが、粒重量を0.5mg/粒未満にする場合、粒重量のばらつきが大きくなり、発泡倍率ばらつきの大きなポリプロピレン系樹脂発泡粒子となる傾向がある。一方、粒重量が1.8mg/粒を超えると、細部に発泡粒子が充填されなくなる傾向となる。
 本発明のポリプロピレン系樹脂発泡粒子を型内発泡成形して得られる型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いることができる。
 以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるものではない。
 実施例および比較例において用いた物質は、以下のとおりである。
ポリプロピレン系樹脂:
 ●ポリプロピレン系樹脂A[プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃]
 ●ポリプロピレン系樹脂B[プロピレン/エチレンランダム共重合体中のエチレン含有率3.6重量%、メルトインデックス7g/10分、融点139℃]
セル造核剤:
 ●タルク[林化成(株)製、PK-S]
その他:
 ●ポリエチレングリコール[ライオン(株)製、PEG#300]
 ●メラミン[三井化学(株)製]
 本実施例における測定および評価は、以下のように行った。
 <示差走査熱量計によるポリプロピレン系樹脂の融点測定>
 示差走査熱量計(DSC)[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂粒子3~6mgを10℃/分の昇温速度で20℃から220℃まで昇温した後、10℃/分で220℃から20℃まで降温し、さらに10℃/分で20℃から220℃まで昇温した際に得られる、2回目の昇温時のDSC曲線の融解ピーク温度を融点とした(図2参照。)。
 <ポリプロピレン系樹脂発泡粒子のDSC測定>
 示差走査熱量計(DSC)[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂発泡粒子3~6mgを10℃/分の昇温速度で20℃から220℃まで昇温したときに得られる、1回目の昇温時のDSC曲線より、各融解ピーク温度、あるいは融解熱量を求めた(図1参照。)。
 <発泡粒子の発泡倍率>
 嵩体積約50cm3のポリプロピレン系樹脂発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリプロピレン系樹脂粒子の密度d=0.9(g/cm3)から、次式により求めた。
  発泡倍率=d×v÷w
 <発泡粒子の平均気泡径>
 発泡粒子から任意に10個を取り出し、セル膜が破壊されないように充分注意して切断したそれぞれのサンプルの切断面について、マイクロスコープで観察し、表層部を除く部分に長さ1mmに相当する線分を引き、該線分が通る気泡数を測定し、以後はASTM D3576に準拠して平均気泡径を測定した。
 <発泡粒子の加熱変形率>
 得られた発泡粒子を、23℃の標準状態で16時間以上状態調節した後、加熱前の発泡粒子の見掛けのかさ密度を測定する。
 かさ密度の測定は、250ccのメスシリンダー[SCHOTT社、DURAN硼珪酸ガラス製]を用いて、約200ccの重量を測定した発泡粒子をメスシリンダーに投入し、発泡粒子間のゆるみがないように、メスシリンダーを約20回タップしてから、メスシリンダーの目盛りを用いて体積を測定し、前記重量を体積で除して加熱前のかさ密度(g/cc)を求める。
 その発泡粒子をメスシリンダーに入れたものを、樹脂の融点-15℃の温度に調節した熱風循環式乾燥機[ナガノ科学機械製作所製、CH40-15P]内に入れて、1時間加熱を行った後、取り出す。発泡粒子どうしがブロッキングしている場合がある為、一度、メスシリンダー内の発泡粒子をほぐした後、23℃の標準状態の試験場所に1時間放置し、前記と同様に発泡粒子のかさ密度を求め、加熱後の発泡粒子のかさ密度とする。
加熱変形率は、次の式によって算出する。
 加熱変形率(%)=〔(加熱前の発泡粒子のかさ密度-加熱後の発泡粒子のかさ密度)/加熱前の発泡粒子のかさ密度〕×100
 <成形体評価>
 ポリプロピレン発泡成形機[ダイセン株式会社製、KD-345]および、縦400mm×横300mm×厚み50mmの金型を用いて、成形加熱水蒸気圧を0.16MPa・G~0.32MPa・Gの間で0.01MPa・Gずつ変化させて、型内発泡成形を実施した。得られたポリプロピレン系樹脂型内発泡成形体を、1時間室温で放置した後、75℃の恒温室内で15時間養生乾燥を行い、再び室温に取出し、室温で4時間放置した後、下記の発泡粒子間の融着性、型内発泡成形体の表面性、成形体密度および50%圧縮強度を評価し、前記融着性、表面性および50%圧縮強度の全てが合格する(評価が「○」となるる。)型内発泡成形体が得られる、型内発泡成形時の最低の成形加熱蒸気圧を最低成形加熱水蒸気圧とした。
(1)融着性評価
 得られたポリプロピレン系樹脂型内発泡成形体を、カッターナイフで型内発泡成形体の厚み方向に約5~10mmの切り込みを入れた後、手で切り込み部から型内発泡成形体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
 合格 「○」:粒子破断の割合が60%以上。
 不合格「×」:粒子破断の割合が60%未満。
(2)表面性評価
 得られたポリプロピレン系樹脂型内発泡成形体の表面状態を目視観察し、以下の基準にて表面性を評価した。
 合格 「○」:しわ、粒間少なく、美麗。
 不合格「×」:しわ、ヒケがあり、外観不良。
(3)型内発泡成形体密度
 得られたポリプロピレン系樹脂型内発泡成形体から、縦50mm×横50mm×厚み25mmの試験体を切り出し、試験体の密度ρを、試験体の重量W(g)と体積V(cm3)から、次式により求めた。
  型内発泡成形体の密度ρ(g/L)=(W/V)×1000
(4)50%圧縮強度
 得られたポリプロピレン系樹脂型内発泡成形体から、縦50mm×横50mm×厚み25mmの試験体を切り出し、NDA-Z0504に準拠し、10mm/分の速度で圧縮した際の50%圧縮時の圧縮応力(MPa)を測定した。
 型内発泡成形体の密度ρに対し、次の基準にて評価した。
 合格 「○」:50%圧縮強度が0.0069×ρ+0.0162MPa以上。
 不合格「×」:50%圧縮強度が0.0069×ρ+0.0162MPa未満。
 (実施例1)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂A(プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃)100重量部に対して、セル造核剤としてタルク0.05重量部、吸水剤としてポリエチレングリコール0.50重量部をブレンドした後、φ50mm単軸押出機[大阪精機工作(株)製、20VSE-50-28型]内で樹脂温度220℃にて溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、円筒状で一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
 容量10Lの耐圧オートクレーブ(耐圧容器3)の下部に、オリフィス5を介して、図3に示すような発泡槽9が配置された装置を用いて、ポリプロピレン系樹脂発泡粒子の製造を行った。
 容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、発泡剤として炭酸ガスを6.0重量部添加した。オートクレーブ内容物を昇温し、150℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa・Gとした。その後、30分間保持した後、オートクレーブ下部のバルブ4を開き、3.6mmφの開口オリフィス5を通して、オートクレーブ内容物を大気圧下の発泡槽9内に放出して、一段発泡粒子を得た。なお、発泡槽9内のオリフィス5の直後の位置には蒸気吹込口8が設けられ、蒸気加熱により、発泡槽9内の雰囲気温度は98℃とし、発泡粒子が5分間接触するように設定されていた。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は19%であり、樹脂の融点144-15=129℃での加熱変形率は、-0.1%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 得られたポリプロピレン系樹脂発泡粒子を、pH=1の塩酸水溶液で洗浄した後水洗し、75℃で乾燥し、前記耐圧オートクレーブとは異なる二段発泡用の耐圧容器にて加圧空気を含浸して粒子内圧を0.2MPa・Gとした後、ポリプロピレン発泡成形機[ダイセン(株)製、KD-345]および、縦400mm×横300mm×厚み50mmの金型を用いて、加熱水蒸気圧力を0.16~0.32MPa・Gの間で0.01MPa・Gずつ変化させて、型内発泡成形を実施した。なお、この時の成形加熱時間は22秒(一方加熱/逆一方加熱/本加熱=5秒/5秒/12秒)とした。得られた型内発泡成形体は1時間室温で放置した後、75℃の恒温室内で15時間養生乾燥を行い、再び室温に取出してから室温で4時間放置した後の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧は0.21MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
 (実施例2)
 [ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を149℃に変更した以外は、実施例1と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は18倍、DSCピーク比は29%、加熱変形率は、0.0%であった。最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
 (実施例3)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂B(プロピレン/エチレンランダム共重合体中のエチレン含有率3.6重量%、メルトインデックス7g/10分、融点139℃)100重量部に対して、セル造核剤としてタルク0.10重量部、吸水剤としてポリエチレングリコール0.50重量部をブレンドした以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
 得られたポリプロピレン系樹脂粒子を用い、オートクレーブ内容物の昇温温度(発泡温度)を136℃に変更した以外は、実施例1と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は20%、樹脂の融点139-15=124℃での加熱変形率は、-1.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。最低成形加熱水蒸気圧は0.18MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
 (実施例4)
 [ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を135℃に変更した以外は、実施例3と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は19倍、DSCピーク比は28%、加熱変形率は、1.6%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.19MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
 (実施例5)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂A(プロピレン/エチレンランダム共重合体中のエチレン含有率2.9重量%、メルトインデックス7g/10分、融点144℃)100重量部に対して、セル造核剤としてタルク0.05重量部、吸水剤としてグリセリン0.20重量部をブレンドした以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は19倍、DSCピーク比は22%、加熱変形率は、-0.2%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
(実施例6)
 [ポリプロピレン系樹脂発泡粒子の製造]での、オートクレーブ内容物の昇温温度(発泡温度)を149℃に変更した以外は、実施例5と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は18倍、DSCピーク比は29%、加熱変形率は、0%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
(実施例7)
 [ポリプロピレン系樹脂発泡粒子の製造]において、炭酸ガスを追加した際のオートクレーブ内圧を3.5MPa・Gとした以外は、実施例5と同様の操作により、一段発泡粒子、型内発泡成形体を得た。得られた一段発泡粒子の発泡倍率は25倍、DSCピーク比は17%、加熱変形率は、-1.1%であった。型内発泡成形体を得る際の最低成形加熱水蒸気圧は0.22MPa・Gであり、そこから0.32MPa・Gの高加熱水蒸気圧までの全加熱水蒸気圧の範囲において融着性、表面性、50%圧縮強度は合格であった。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 [ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例1と同様の操作により、一段発泡粒子を得た。
得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は21%であった。
得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率21倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-15.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例1-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ、0.25MPa・Gであった。ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例1-2に示した。融着率、表面性の点で不合格であった。
実施例1では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
 (比較例2)
 [ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例2と同様の操作により、一段発泡粒子を得た。
得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は30%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率18倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-9.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例2-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例2での最低成形加熱水蒸気圧0.22MPa・Gにおける評価結果を、比較例2-2に示した。融着率、表面性及び50%圧縮強度の全ての点で不合格であり、実施例2では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
 (比較例3)
 [ポリプロピレン系樹脂発泡粒子の製造]において、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例3と同様の操作により、一段発泡粒子を得た。得られた一段発泡粒子の発泡倍率は14倍、DSCピーク比は21%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率20倍の発泡粒子を得た。樹脂の融点139-15=124℃での加熱変形率は、-7.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例3-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.22MPa・Gであった。
 ちなみに、実施例3での最低成形加熱水蒸気圧0.18MPa・Gでの結果を比較例3-2に示した。融着率、表面性、50%圧縮強度の点で不合格であり、実施例3では、発泡粒子の加熱変形率が0に近いものを使用したことで、最低成形加熱水蒸気圧を低下させることができていることがわかる。
 (比較例4)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部のみをブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
 容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、発泡剤としてイソブタンを添加した。オートクレーブ内容物を昇温し、135℃の発泡温度まで加熱した後、さらにイソブタンを追加してオートクレーブ内圧を2.4MPa・Gとした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、3.6mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下で蒸気加熱していない雰囲気下に放出し、一段発泡粒子を得た。得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は19%であった。樹脂の融点144-15=129℃での加熱変形率は、-4.5%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例4-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例4-2に示した。融着率、表面性の点で不合格であった。実施例1では、発泡粒子の加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
 (比較例5)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部、メラミン[三井化学(株)製]0.5重量部をブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
 得られたポリプロピレン系樹脂粒子を用い、オートクレーブ内容物の昇温温度(発泡温度)を152℃に変更し、開口オリフィスを通じてオートクレーブ内容物を放出する際、発泡槽9内の蒸気加熱を行わずに放出した(発泡槽9内の温度は45℃となった)以外は、実施例1と同様の操作により、一段発泡粒子を得た。
 得られた一段発泡粒子の発泡倍率は15倍、DSCピーク比は22%であった。得られた一段発泡粒子内に、空気含浸により0.28MPa・Gの内圧を付与し、0.02MPa・Gの蒸気により加熱し、発泡倍率19倍の発泡粒子を得た。樹脂の融点144-15=129℃での加熱変形率は、-12.0%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例5-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例5-2に示した。融着率、表面性の点で不合格であった。実施例1では、発泡剤に炭酸ガス用いて得た発泡粒子で加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
 (比較例6)
[ポリプロピレン系樹脂粒子の製造]
 ポリプロピレン系樹脂A100重量部に対して、セル造核剤としてタルク[林化成(株)製、PK-S]0.5重量部、メラミン[三井化学(株)製]0.5重量部をブレンドした以外は、実施例1と同様の操作によりポリプロピレン系樹脂粒子を得た。
[ポリプロピレン系樹脂発泡粒子の製造]
 容量10Lの耐圧オートクレーブ中に、得られたポリプロピレン系樹脂粒子100重量部、水170重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてn-パラフィンスルホン酸ナトリウム0.07重量部を仕込み、撹拌下、オートクレーブ内容物を154℃まで加熱した。その後、オートクレーブ内圧を圧縮空気で2.8MPa・G容器内圧力まで昇圧し、該容器内温度で30分間保持した後、オートクレーブ下部のバルブ4を開き、3.6mmφの開口オリフィス5を通して、オートクレーブ内容物を大気圧下の発泡槽9内に放出して、一段発泡粒子を得た。なお、発泡槽9内のオリフィス5の直後の位置には蒸気吹込口8が設けられ、蒸気加熱により、発泡槽9内の雰囲気温度は98℃とし、発泡粒子が5分間接触するように設定されていた。比較例6は、特開2004-67768号公報記載の、発泡剤として水を用いる技術に関する。
 得られた一段発泡粒子の発泡倍率は20倍、DSCピーク比は21%であり、樹脂の融点144-15=129℃での加熱変形率は-6.7%であった。
[ポリプロピレン系樹脂型内発泡成形体の製造]
 実施例1と同様の操作にて型内発泡成形を行い、成形性、得られた成形体の評価を行った。その結果を、表2中の比較例6-1として示す。成形体の粒子間の融着性、表面性、50%圧縮強度から、最低成形加熱水蒸気圧を求めたところ0.26MPa・Gであった。
ちなみに、実施例1での最低成形加熱水蒸気圧0.21MPa・Gにおける評価結果を、比較例6-2に示した。融着率、表面性の点で不合格であった。
 実施例1では、発泡剤に炭酸ガス用いて得た発泡粒子で加熱変形率が0に近いものを使用したことにより、最低成形加熱水蒸気圧を低下させることができていることが判る。
Figure JPOXMLDOC01-appb-T000002
1.ポリプロピレン系樹脂粒子
2.水系分散媒
3.耐圧容器(オートクレーブ)
4.バルブ
5.オリフィス
6.温度記録計
7.発泡粒子
8.蒸気吹込口
9.発泡槽

Claims (9)

  1.  基材樹脂であるポリプロピレン系樹脂の融点-15℃の温度で加熱した前後での見掛けのかさ密度の変化率である加熱変形率が-2%以上、+2%以下であり、発泡倍率が15倍以上45倍以下であるポリプロピレン系樹脂発泡粒子を1回の発泡工程で製造する方法であり、
     耐圧容器内に、ポリエチレングリコール及び/又はグリセリンを含有するポリプロピレン系樹脂粒子を水系分散媒とともに分散させ、該耐圧容器内に発泡剤として炭酸ガスを導入し、加熱、加圧条件下でポリプロピレン系樹脂粒子に発泡剤を含浸させた後、前記耐圧容器の内圧よりも低い圧力域で、かつ、80℃超、110℃以下の雰囲気温度とした圧力域へ放出させることにより前記ポリプロピレン系樹脂粒子を発泡させることを特徴とする、ポリプロピレン系樹脂発泡粒子の製造方法。
  2.  前記ポリプロピレン系樹脂発泡粒子の発泡倍率が18倍以上25倍以下である請求項1に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  3.  前記ポリプロピレン系樹脂が、コモノマーとして1-ブテンおよび/またはエチレンを含むポリプロピレン系ランダム共重合体である請求項1または2に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  4.  前記ポリプロピレン系ランダム共重合体の融点が、125℃以上155℃以下である請求項3に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  5.  前記ポリエチレングリコール及び/又はグリセリンの含有量が、ポリプロピレン系樹脂粒子100重量%中、0.01重量%以上2重量%以下であることを特徴とする請求項1~4のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  6.  前記ポリプロピレン系樹脂が、無機造核剤を含有してなる請求項1~5のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  7.  前記発泡剤の使用量が、ポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下である請求項1~6のいずれか一項に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  8.  請求項1~7のいずれか一項に記載の方法により製造されるポリプロピレン系樹脂一段発泡粒子。
  9.  請求項8に記載のポリプロピレン系樹脂一段発泡粒子を型内発泡成形してなる型内発泡成形体。
PCT/JP2014/055944 2013-03-08 2014-03-07 ポリプロピレン系樹脂発泡粒子の製造方法 WO2014136933A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015504412A JP6447494B2 (ja) 2013-03-08 2014-03-07 ポリプロピレン系樹脂発泡粒子の製造方法
EP14760548.9A EP2966119B9 (en) 2013-03-08 2014-03-07 Method for manufacturing foamed polypropylene-resin particles
ES14760548.9T ES2687099T3 (es) 2013-03-08 2014-03-07 Método para la fabricación de partículas de resina de polipropileno expandido
US14/773,204 US20160009887A1 (en) 2013-03-08 2014-03-07 Method for manufacturing foamed polypropylene-resin particles
CN201480013100.6A CN105008443B (zh) 2013-03-08 2014-03-07 聚丙烯系树脂发泡粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013046547 2013-03-08
JP2013-046547 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136933A1 true WO2014136933A1 (ja) 2014-09-12

Family

ID=51491440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055944 WO2014136933A1 (ja) 2013-03-08 2014-03-07 ポリプロピレン系樹脂発泡粒子の製造方法

Country Status (6)

Country Link
US (1) US20160009887A1 (ja)
EP (1) EP2966119B9 (ja)
JP (1) JP6447494B2 (ja)
CN (1) CN105008443B (ja)
ES (1) ES2687099T3 (ja)
WO (1) WO2014136933A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090432A1 (ja) * 2015-11-26 2017-06-01 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
JPWO2016136875A1 (ja) * 2015-02-26 2017-12-07 株式会社カネカ ポリオレフィン系樹脂発泡粒子及びその製造方法
JP2018162371A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JP2018162369A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JP2018162370A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JPWO2019187986A1 (ja) * 2018-03-26 2021-03-18 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法および製造装置
WO2023010842A1 (zh) * 2021-08-05 2023-02-09 江苏大毛牛新材料有限公司 一种环保型高效低成本制备物理发泡材料的方法
CN115850783A (zh) * 2021-09-24 2023-03-28 中国石油化工股份有限公司 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882968B2 (en) 2016-08-30 2021-01-05 Lcy Chemical Corporation Polypropylene foams and processes of making
CN107857891A (zh) * 2017-09-30 2018-03-30 中国科学院长春应用化学研究所 聚合物泡沫材料的制备方法
CN107674234B (zh) * 2017-09-30 2020-11-03 中国科学院长春应用化学研究所 聚丙烯系树脂发泡粒子的制备方法
US11780981B2 (en) 2018-12-06 2023-10-10 Exxonmobil Chemical Patents Inc. Foam beads and method of making the same
WO2021081660A1 (en) * 2019-10-31 2021-05-06 Exxonmobil Chemical Patents Inc. Polymeric foams, methods, and articles thereof
EP4067420A4 (en) * 2019-11-29 2023-12-20 Kaneka Corporation DEVICE AND METHOD FOR PRODUCING EXPANDED PARTICLES
JP2021146679A (ja) 2020-03-23 2021-09-27 株式会社リコー 樹脂粉末、立体造形用樹脂粉末、立体造形物の製造方法、及び立体造形物の製造装置
JP7254308B2 (ja) * 2021-02-01 2023-04-10 プライムプラネットエナジー&ソリューションズ株式会社 オレフィン系樹脂多孔質体の製造方法
CN113831647B (zh) * 2021-09-18 2023-01-20 无锡会通轻质材料股份有限公司 一种发泡聚丙烯珠粒的制备方法
JP2023083018A (ja) * 2021-12-03 2023-06-15 トヨタ自動車株式会社 オレフィン系樹脂多孔質体の製造方法、電池用セパレータの製造方法、および製造装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242638A (ja) 1988-03-24 1989-09-27 Mitsubishi Yuka Badische Co Ltd プロピレン系樹脂発泡粒子および発泡成形体
JPH07258455A (ja) 1994-03-23 1995-10-09 Jsp Corp ポリプロピレン系樹脂発泡粒子成形体
JP2001151928A (ja) 1999-12-01 2001-06-05 Jsp Corp 成型用ポリプロピレン系樹脂発泡粒子
JP2004067768A (ja) 2002-08-02 2004-03-04 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂予備発泡粒子
WO2008139822A1 (ja) 2007-05-09 2008-11-20 Jsp Corporation ポリプロピレン系樹脂発泡粒子およびその成形体
JP2009030048A (ja) * 2007-07-03 2009-02-12 Kaneka Corp 付着分散剤量が低減されたポリオレフィン系樹脂予備発泡粒子の製造方法
JP2010090232A (ja) * 2008-10-07 2010-04-22 Kaneka Corp 金型充填性に優れたポリオレフィン系樹脂発泡粒子の製造方法
JP2010106238A (ja) * 2008-09-30 2010-05-13 Kaneka Corp 金型充填性に優れたポリオレフィン系樹脂多段発泡粒子
JP2012201861A (ja) * 2011-03-28 2012-10-22 Sekisui Plastics Co Ltd ポリプロピレン系樹脂を含む予備発泡樹脂粒子とその製造方法および発泡成形体
WO2013011951A1 (ja) * 2011-07-15 2013-01-24 株式会社カネカ 帯電防止性能を有する無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体
WO2013031745A1 (ja) * 2011-08-29 2013-03-07 株式会社カネカ ポリエチレン系樹脂発泡粒子及びその成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2688659T3 (es) * 2007-12-11 2018-11-06 Kaneka Corporation Proceso para producir partículas de resina de poliolefina expandida y partículas de resina de poliolefina expandida
JP5487558B2 (ja) * 2008-02-21 2014-05-07 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法
CN102070841B (zh) * 2011-01-21 2012-07-25 北京工商大学 采用复合发泡剂的聚丙烯泡沫片材及其生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242638A (ja) 1988-03-24 1989-09-27 Mitsubishi Yuka Badische Co Ltd プロピレン系樹脂発泡粒子および発泡成形体
JPH07258455A (ja) 1994-03-23 1995-10-09 Jsp Corp ポリプロピレン系樹脂発泡粒子成形体
JP2001151928A (ja) 1999-12-01 2001-06-05 Jsp Corp 成型用ポリプロピレン系樹脂発泡粒子
JP2004067768A (ja) 2002-08-02 2004-03-04 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂予備発泡粒子
WO2008139822A1 (ja) 2007-05-09 2008-11-20 Jsp Corporation ポリプロピレン系樹脂発泡粒子およびその成形体
JP2009030048A (ja) * 2007-07-03 2009-02-12 Kaneka Corp 付着分散剤量が低減されたポリオレフィン系樹脂予備発泡粒子の製造方法
JP2010106238A (ja) * 2008-09-30 2010-05-13 Kaneka Corp 金型充填性に優れたポリオレフィン系樹脂多段発泡粒子
JP2010090232A (ja) * 2008-10-07 2010-04-22 Kaneka Corp 金型充填性に優れたポリオレフィン系樹脂発泡粒子の製造方法
JP2012201861A (ja) * 2011-03-28 2012-10-22 Sekisui Plastics Co Ltd ポリプロピレン系樹脂を含む予備発泡樹脂粒子とその製造方法および発泡成形体
WO2013011951A1 (ja) * 2011-07-15 2013-01-24 株式会社カネカ 帯電防止性能を有する無架橋ポリエチレン系樹脂発泡粒子及び無架橋ポリエチレン系樹脂発泡成形体
WO2013031745A1 (ja) * 2011-08-29 2013-03-07 株式会社カネカ ポリエチレン系樹脂発泡粒子及びその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966119A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136875A1 (ja) * 2015-02-26 2017-12-07 株式会社カネカ ポリオレフィン系樹脂発泡粒子及びその製造方法
EP3263638A4 (en) * 2015-02-26 2018-10-03 Kaneka Corporation Polyolefin resin foam particles and production method for same
WO2017090432A1 (ja) * 2015-11-26 2017-06-01 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
JPWO2017090432A1 (ja) * 2015-11-26 2018-08-23 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
US20180273719A1 (en) * 2015-11-26 2018-09-27 Kaneka Corporation Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
JP2018162369A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JP2018162371A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JP2018162370A (ja) * 2017-03-24 2018-10-18 株式会社カネカ ポリプロピレン系樹脂黒色発泡粒子の製造方法
JPWO2019187986A1 (ja) * 2018-03-26 2021-03-18 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法および製造装置
JP7324189B2 (ja) 2018-03-26 2023-08-09 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法および製造装置
WO2023010842A1 (zh) * 2021-08-05 2023-02-09 江苏大毛牛新材料有限公司 一种环保型高效低成本制备物理发泡材料的方法
CN115960383A (zh) * 2021-08-05 2023-04-14 江苏大毛牛新材料有限公司 一种环保型高效低成本制备物理发泡材料的方法
CN115850783A (zh) * 2021-09-24 2023-03-28 中国石油化工股份有限公司 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法
CN115850783B (zh) * 2021-09-24 2024-03-22 中国石油化工股份有限公司 低密度增韧聚丙烯发泡材料组合物以及低密度增韧聚丙烯发泡材料及其制备方法

Also Published As

Publication number Publication date
CN105008443A (zh) 2015-10-28
EP2966119B1 (en) 2018-07-11
CN105008443B (zh) 2019-03-01
JPWO2014136933A1 (ja) 2017-02-16
US20160009887A1 (en) 2016-01-14
EP2966119A4 (en) 2016-10-26
JP6447494B2 (ja) 2019-01-09
EP2966119B9 (en) 2019-01-16
EP2966119A1 (en) 2016-01-13
ES2687099T3 (es) 2018-10-23

Similar Documents

Publication Publication Date Title
JP6447494B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法
JP6421165B2 (ja) ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂発泡粒子の製造方法
CN105849167B (zh) 聚烯烃系树脂发泡粒子及聚烯烃系树脂模内发泡成型体
US8598241B2 (en) Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article
WO2017030124A1 (ja) ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂型内発泡成形体の製造方法およびポリプロピレン系樹脂型内発泡成形体
JP5587867B2 (ja) ポリプロピレン系共重合体樹脂発泡粒子
JPWO2006075491A1 (ja) ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体
JP5365901B2 (ja) ポリプロピレン系樹脂予備発泡粒子、及び型内発泡成形体
JP6637903B2 (ja) ポリプロピレン系樹脂発泡粒子
JP6730979B2 (ja) ポリプロピレン系樹脂発泡粒子およびその製造方法
JP2014098161A (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP2013100554A (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP6670850B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
JP5841076B2 (ja) ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂型内発泡成形体
CN112189032B (zh) 聚丙烯系树脂发泡粒子、聚丙烯系树脂模内发泡成型体和聚丙烯系树脂发泡粒子的制造方法
JP5460227B2 (ja) ポリプロピレン系樹脂型内発泡成形体
JP5248939B2 (ja) ポリプロピレン系樹脂発泡粒子
JP2010173146A (ja) ポリプロピレン系樹脂型内発泡成形体の製造方法
JP5161593B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法
JP5331344B2 (ja) ポリプロピレン系樹脂予備発泡粒子
JP2010013606A (ja) ポリプロピレン系樹脂予備発泡粒子、及びポリプロピレン系樹脂型内発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760548

Country of ref document: EP