WO2014136720A1 - Semiconductor device manufacturing method and thermosetting resin sheet - Google Patents

Semiconductor device manufacturing method and thermosetting resin sheet Download PDF

Info

Publication number
WO2014136720A1
WO2014136720A1 PCT/JP2014/055271 JP2014055271W WO2014136720A1 WO 2014136720 A1 WO2014136720 A1 WO 2014136720A1 JP 2014055271 W JP2014055271 W JP 2014055271W WO 2014136720 A1 WO2014136720 A1 WO 2014136720A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin sheet
semiconductor device
weight
manufacturing
Prior art date
Application number
PCT/JP2014/055271
Other languages
French (fr)
Japanese (ja)
Inventor
剛 鳥成
豊田 英志
祐作 清水
松村 健
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480012499.6A priority Critical patent/CN105009265A/en
Priority to KR1020157024640A priority patent/KR20150126852A/en
Publication of WO2014136720A1 publication Critical patent/WO2014136720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a thermosetting resin sheet.
  • thermosetting resin sheet As a method for sealing a semiconductor with a resin, a method using a liquid resin or a molding compound resin is known (Patent Document 1). These methods require dedicated dies and frame jigs and are expensive. Therefore, in recent years, a method of resin sealing using a thermosetting resin sheet has been proposed. The use of the thermosetting resin sheet eliminates the need for a dedicated mold or frame jig, so that cost reduction can be expected, and the semiconductor device manufacturing time can be expected to be shortened.
  • a plurality of electronic components for example, semiconductor chips
  • the electronic components may be displaced due to pressure, resistance, and the like accompanying the flow of the resin during sealing.
  • the form to be sealed for example, a component mounted on a support plate
  • the resin composition tends to deviate depending on the shape, size, mounting position, and the like.
  • the inorganic filler is easily segregated, and the amount of warpage may be extremely large because the amount of the inorganic filler in the resin composition after molding varies depending on the location. An increase in the amount of local warpage is a problem because it leads to defects in the process and a decrease in manufacturing yield.
  • the present invention has been made in view of the above-described problems, and a semiconductor device manufacturing method and a thermosetting resin sheet that can prevent positional displacement of electronic components during sealing and suppress local warping of a sealing body.
  • the purpose is to provide.
  • thermosetting resin sheet having a specific composition and a specific minimum viscosity, so that the positional deviation of the electronic component at the time of sealing is achieved. It was found that the local warpage of the sealing body can be suppressed, and the present invention has been completed.
  • the present invention uses a thermosetting resin sheet containing 65 to 93% by weight of an inorganic filler and having a minimum viscosity of 30 to 3000 Pa ⁇ s in a temperature rise measurement using a viscoelastic spectrometer.
  • the present invention relates to a method for manufacturing a semiconductor device, which includes a step (A) of collectively sealing a plurality of electronic components arranged on the substrate.
  • thermosetting resin sheet having a minimum viscosity of 30 Pa ⁇ s or more in the temperature rise measurement using a viscoelastic spectrometer, Resin flow during sealing can be suppressed, and displacement of electronic components can be prevented.
  • thermosetting resin sheet has an inorganic filler content of 93% by weight or less and a minimum viscosity of 3000 Pa ⁇ s or less in a temperature rise measurement using a viscoelastic spectrometer.
  • thermosetting resin sheet having a specific viscosity since the thermosetting resin sheet having a specific viscosity is used, deviation of the resin composition can be prevented, and local warping of the encapsulant can be suppressed. As a result, a stable quality semiconductor device can be provided.
  • the support plate may have any one of a substantially rectangular shape having at least one side of 300 mm or more, a substantially square shape having at least one side of 300 mm or more, and a substantially circular shape having a diameter or minor axis of 12 inches or more. preferable. Since the manufacturing method of the semiconductor device of the present invention uses a specific thermosetting resin sheet, the electronic components arranged on these large-area supports can be sealed together in a good manner.
  • the electronic component is preferably a semiconductor chip.
  • the step (A) includes a step (A-1) of forming a laminate by disposing a thermosetting resin sheet on a chip mounting plate, and a step (A-) of pressing the laminate under reduced pressure. 2). Thereby, voids can be reduced.
  • the pressure pressing in the step (A-2) is preferably performed using a parallel plate press. This eliminates the need for a dedicated mold or frame jig required when using a compression molding machine or a transfer molding machine, thereby reducing the manufacturing cost. In addition, deviation of the resin composition can be prevented, and a semiconductor device with stable quality can be provided.
  • the present invention also relates to a thermosetting resin sheet for use in a method for manufacturing a semiconductor device including a step (A) of collectively sealing a plurality of electronic components arranged on a support plate.
  • thermosetting resin sheet The thermosetting resin sheet of the present invention will be described.
  • the thermosetting resin sheet has a minimum viscosity of 30 Pa ⁇ s or higher, preferably 100 Pa ⁇ s or higher, in a temperature rise measurement using a viscoelastic spectrometer. Since it is 30 Pa ⁇ s or more, the flow of the resin at the time of sealing can be suppressed, and the protrusion of the resin to the outside of the sealing area can be prevented.
  • the minimum viscosity is 3000 Pa ⁇ s or less, preferably 2000 Pa ⁇ s or less. Since it is 3000 Pa ⁇ s or less, good embeddability can be obtained, gaps between a plurality of electronic components arranged on the support plate can be filled well, and at the same time, chip displacement during sealing is prevented. it can.
  • the minimum viscosity in the temperature rise measurement using a viscoelastic spectrometer can be measured by the method described in the Examples.
  • the minimum viscosity in the temperature rise measurement using a viscoelastic spectrometer can be controlled by the content of the silica filler.
  • the minimum viscosity can be increased by increasing the content of silica filler.
  • the temperature showing the lowest viscosity is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. When the temperature is 80 ° C. or higher, the handling property of the thermosetting resin sheet is good, and air entrapment during molding can be prevented.
  • the temperature showing the minimum viscosity is preferably 140 ° C. or lower, more preferably 130 ° C. or lower. When the temperature is 140 ° C. or lower, the followability to unevenness during molding is good.
  • the temperature showing the minimum viscosity can be controlled by the type of curing accelerator.
  • the minimum viscosity can be set in the above range by blending a curing accelerator having a reaction activation temperature of 80 ° C. or higher and 140 ° C. or lower.
  • the thermosetting resin sheet preferably contains a thermosetting resin.
  • a thermosetting resin an epoxy resin and a phenol resin are preferable.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin is solid at room temperature with an epoxy equivalent of 100 to 250 and a softening point or melting point of 50 to 130 ° C.
  • bisphenol type epoxy resin, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin and the like are preferable.
  • bisphenol F type epoxy resin is preferred.
  • the softening point or melting point is more preferably 60 to 100 ° C.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenolic resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably.
  • a low hygroscopic material such as a phenol aralkyl resin or a biphenyl aralkyl resin can be suitably used.
  • the mixing ratio of epoxy resin and phenol resin is such that the total of hydroxyl groups in phenol resin is 0.7 to 1.5 equivalents per 1 equivalent of epoxy groups in epoxy resin. It is preferable to use 0.9 to 1.2 equivalents.
  • the total content of epoxy resin and phenol resin in the thermosetting resin sheet is preferably 4% by weight or more. When the content is 4% by weight or more, a cured product having excellent reliability can be obtained.
  • the total content of the epoxy resin and the phenol resin in the thermosetting resin sheet is preferably 18% by weight or less. When the content is 18% by weight or less, a cured product with small warpage can be obtained.
  • thermosetting resin sheet preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it allows curing to proceed. From the viewpoint of curability and storage stability, organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate, and imidazole. System compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
  • 2-phenyl-4,5-dihydroxymethylimidazole 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)] — Ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred.
  • the content of the curing accelerator is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. Hardening is fully accelerated
  • the content of the curing accelerator is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When it is 10 parts by weight or less, good storage stability can be obtained during storage such as refrigeration.
  • thermosetting resin sheet preferably contains an elastomer.
  • the elastomer imparts flexibility necessary for sealing of the electronic component to the thermosetting resin sheet, and the structure is not particularly limited as long as such an effect is exhibited.
  • various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc.
  • SBR styrene-butadiene rubber
  • EVA ethylene-vinyl acetate copolymer
  • isoprene rubber acrylonitrile rubber, etc.
  • Polymers can be used.
  • acrylic, styrene, or butadiene rubber is preferably used from the viewpoint of being easily dispersed in an epoxy resin and improving the heat resistance and strength of the resulting thermosetting resin sheet. These may be used alone or in combination of two or more.
  • the content of the elastomer is preferably 15 parts by weight or more, more preferably 20 parts by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. When it is 15 parts by weight or more, entrainment voids due to a decrease in resin viscosity during molding can be reduced and suppressed, and warping after curing can also be reduced and suppressed.
  • the elastomer content is preferably 200 parts by weight or less, more preferably 100 parts by weight or less. When it is 200 parts by weight or less, it is possible to prevent a decrease in the resin strength after curing, and it is possible to ensure reliability as a semiconductor device.
  • thermosetting resin sheet contains an inorganic filler.
  • the inorganic filler is not particularly limited, and various conventionally known fillers can be used.
  • quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, aluminum nitride, silicon nitride And boron nitride powder may be used alone or in combination of two or more.
  • silica powder from the viewpoint that the coefficient of thermal expansion of the cured body of the thermosetting resin sheet can be reduced and warpage after sealing can be suppressed
  • fused silica powder among the silica powder, it is preferable to use fused silica powder. Is more preferable.
  • the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle diameter in the range of 0.1 to 50 ⁇ m are preferably used, and those having a range of 0.5 to 25 ⁇ m are particularly preferable.
  • the average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • Content of the inorganic filler in a thermosetting resin sheet is 65 weight% or more, Preferably it is 80 weight% or more. Since it is 65 weight% or more, the water absorption of hardened
  • the thermosetting resin sheet preferably contains a colorant.
  • a colorant By containing the colorant, it is possible to ensure the marking property for identifying the semiconductor device after sealing.
  • the method by various laser markings such as a CO2 laser, a YAG laser, a green laser, is used preferably.
  • the colorant is not particularly limited, and for example, a pigment or a dye can be used. Among these, it is preferable to use a pigment from the viewpoint of easy cost and good visibility at the time of marking.
  • the pigment is not particularly limited, and may be an inorganic pigment or an organic pigment.
  • inorganic pigments include ceramic pigments such as glass fine powder, glass balloons, and ceramic beads; metal strip pigments such as aluminum, iron, zirconium, and cobalt; titanium oxide, magnesium oxide, barium oxide, calcium oxide, Metal oxide pigments such as zinc oxide, zirconium oxide, yttrium oxide, indium oxide, sodium titanate, silicon oxide, nickel oxide, manganese oxide, chromium oxide, iron oxide, copper oxide, cerium oxide, aluminum oxide; iron oxide- Complex oxide pigments such as manganese oxide, iron oxide-chromium oxide, copper oxide-magnesium oxide; metal pigments such as Si and Al, Fe, magnesium, manganese, nickel, titanium, chromium, calcium; iron-chromium, bismuth- Manganese, iron-manganese, manganese-yttrium Alloy pigments; mica, silicon nitride, glitter, and barium sulfate.
  • ceramic pigments such as glass fine powder, glass balloons, and ceramic beads
  • metal strip pigments
  • organic pigments examples include azo pigments, azomethine pigments, lake pigments, thioindigo pigments, anthraquinone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, dioxazine pigments, and phthalocyanines.
  • pigments such as pigments, quinphthalone pigments, quinacridone pigments, isoindoline pigments, isoindolinone pigments and carbon pigments.
  • the content of the pigment is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin.
  • the marking property for identifying the semiconductor device after sealing can be secured as it is 0.5 part by weight or more.
  • the pigment content is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When it is 10 parts by weight or less, a necessary resin strength can be secured after curing.
  • thermosetting resin sheet preferably contains a flame retardant.
  • the flame retardant is not particularly limited, and examples thereof include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, and tin hydroxide; phosphazene compounds.
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, and tin hydroxide
  • phosphazene compounds include FP-100 (Fushimi Pharmaceutical).
  • the content of the flame retardant is preferably 5 parts by weight or more, more preferably 15 parts by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. When it is 5 parts by weight or more, necessary flame retardancy can be obtained.
  • the content of the flame retardant is preferably 50 parts by weight or less, more preferably 30 parts by weight or less. When it is 50 parts by weight or less, a decrease in resin strength after curing, a decrease in glass transition temperature, and the like can be minimized, and reliability as a semiconductor package can be secured.
  • thermosetting resin sheet can be appropriately mixed with other additives such as a silane coupling agent as required in addition to the above-described components.
  • thermosetting resin sheet can be manufactured as follows, for example. That is, first, each material for the thermosetting resin sheet described above is uniformly dispersed and mixed to prepare a resin composition. And the prepared resin composition is formed in a sheet form.
  • this forming method for example, a method in which the prepared resin composition is extruded to form a sheet (kneading extrusion), or a varnish is prepared by dissolving or dispersing the prepared resin composition in an organic solvent or the like. And the method (solvent coating) etc. which manufacture this thermosetting resin sheet by apply
  • the solvent coating usually, a plurality of the obtained thermosetting resin sheets are laminated as necessary to adjust the thickness.
  • methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, ethyl acetate etc. can be used, for example. These may be used alone or in combination of two or more. In general, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 60 to 90% by weight.
  • thermosetting resin sheet By producing a thermosetting resin sheet by kneading extrusion, it can be easily formed into a sheet shape, and a uniform sheet with few voids (bubbles) can be obtained.
  • a method for producing by kneading extrusion for example, a method of preparing a kneaded product by kneading the above-described components with a kneader or the like, and processing the obtained kneaded product into a sheet by a pressing method or an extrusion method is preferable. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the thermosetting resin sheet.
  • the thickness of the thermosetting resin sheet is not particularly limited, but is usually preferably set to 50 to 2000 ⁇ m, more preferably 100 to 1000 ⁇ m from the viewpoint of uniformity of thickness.
  • the method for manufacturing a semiconductor device of the present invention is not particularly limited as long as it includes a step (A) of collectively sealing a plurality of electronic components arranged on a support plate using a thermosetting resin sheet.
  • a method including a step (A-1) of forming a laminate by disposing a thermosetting resin sheet on a chip mounting plate, and a step (A-2) of pressing the laminate under a reduced pressure.
  • Step (A-1) In step (A-1), a thermosetting resin sheet is placed on the chip mounting plate.
  • the chip mounting plate includes a support plate and a plurality of electronic components arranged on the support plate.
  • the electronic component is not particularly limited, and examples thereof include a semiconductor, a capacitor, a sensor device, a light emitting element, and a vibration element.
  • a semiconductor chip is preferable because it is easy to obtain the merit of high-efficiency production by large-format molding using a thermosetting resin sheet.
  • the number of electronic components arranged on the support plate is not particularly limited as long as it is two or more. For example, it is 100 or more.
  • the upper limit of the number of electronic components is not particularly limited, but is usually 10,000 or less.
  • the layout of the electronic component is not particularly limited.
  • the support plate is not particularly limited, and a substantially polygonal shape or a substantially circular shape can be used.
  • the substantially polygonal shape and the substantially circular shape are shapes when the support plate is viewed in plan.
  • the substantially polygonal shape includes not only a polygonal shape but also a polygon-like shape. Specifically, the substantially polygonal shape includes a polygonal shape, a polygonal similar shape with at least some rounded corners, a polygonal similar shape with at least a part of the side or a part of the side being a curved line, etc. Is included.
  • the substantially polygonal shape is preferably a substantially rectangular shape or a substantially square shape.
  • Such a substantially polygonal support plate preferably has a length of at least one side of 300 mm or more.
  • the upper limit of the length of one side is not specifically limited, For example, it is 700 mm or less.
  • the substantially circular shape includes not only a circular shape but also a circular similar shape. Specifically, in a substantially circular shape, in addition to a perfect circular shape, an elliptical shape, a circular similar shape in which an uneven portion is formed on at least a part of the circumference, and a linear part (a linear part) on at least a part of the circumference And a circular similar shape in which a wavy line portion is formed on at least a part of the circumference.
  • Such a substantially circular support plate preferably has a diameter or minor axis of 12 inches or more.
  • the upper limit of a diameter or a short axis is not specifically limited, For example, it is 16 inches or less.
  • a support plate examples include a temporary fixing material, a glass plate, a transparent plastic plate, a printed wiring board, and a silicon wafer.
  • the temporary fixing material includes a support and a pressure-sensitive adhesive layer laminated on the support.
  • the laminate obtained by the step (A-1) includes a chip mounting plate and a thermosetting resin sheet disposed on the chip mounting plate.
  • Step (A-2) In step (A-2), the laminate obtained in step (A-1) is pressed under reduced pressure.
  • the decompression can be performed by a conventionally known method.
  • the post-decompression pressure i.e. atmospheric pressure under reduced pressure, preferably 0.1 kg / cm 2 or less, more preferably 0.01 kg / cm 2 or less.
  • molding can be reduced favorably as it is 0.1 kg / cm ⁇ 2 > or less.
  • the minimum of the pressure after pressure reduction is not specifically limited, For example, it is 0.0001 kg / cm ⁇ 2 > or more.
  • the pressing temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 90 ° C. or higher.
  • the pressing temperature is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
  • the pressure press is preferably a parallel plate press.
  • a conventionally well-known thing can be used as a parallel plate press.
  • the pressing pressure is preferably 5 kg / cm 2 or more. If it is 5 kg / cm 2 or more, gaps between the plurality of electronic components arranged on the support plate can be satisfactorily filled.
  • the press pressure is preferably 60 kg / cm 2 or less. When it is 60 kg / cm 2 or less, it is possible to prevent the components on the substrate, the wafer substrate, and the like from being damaged.
  • the pressing time is not particularly limited, but is usually 0.5 to 30 minutes.
  • temperature distribution and pressure distribution are important. It is also important to adjust the parallel accuracy of the press plate. These may be set as appropriate.
  • the sealing body obtained by the step (A-2) includes an electronic component and a thermosetting resin sheet that covers the electronic component.
  • the other process sealing body is heated to cure the thermosetting resin sheet.
  • the temperature for heating the sealing body is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 110 ° C. or higher. Moreover, the temperature which heats a sealing body becomes like this. Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less, More preferably, it is 140 degrees C or less.
  • the time for heating the sealing body is not particularly limited, and is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • Temporary fixing material preparation step In the temporary fixing material preparation step, a temporary fixing material 3 is prepared (see FIG. 1).
  • the temporarily fixing material 3 includes a support 3b and an adhesive layer 3a laminated on the support 3b.
  • a heat-peelable adhesive layer, a radiation-curing-type adhesive layer, etc. are used from the reason that it can peel easily in the below-mentioned adhesive layer peeling process. It does not specifically limit as a material of the support body 3b.
  • metal materials such as SUS
  • plastic materials such as polyimide, polyamideimide, polyetheretherketone, and polyethersulfone.
  • the chip mounting temporary fixing material 34 includes the temporary fixing material 3 and a plurality of semiconductor chips 33 arranged on the temporary fixing material 3.
  • a flip chip bonder, a die bonder or the like is used for the placement of the semiconductor chip 33.
  • thermosetting resin sheet 31 is placed on the chip mounting temporary fixing material 34 to form a laminate (not shown).
  • the laminated body is pressed by a parallel plate method to obtain a sealing body 35 (see FIG. 2).
  • the sealing body 35 includes a semiconductor chip 33 and a thermosetting resin sheet 31 that covers the semiconductor chip 33.
  • the sealing body 35 is in contact with the temporary fixing material 3.
  • the pressing conditions the conditions of the above-described step (A-2) are adopted.
  • thermosetting process sealing body 35 is heated and the thermosetting resin sheet 31 is cured.
  • Temporary fixing material peeling step peeling is performed between the pressure-sensitive adhesive layer 3a and the sealing body 35 (see FIG. 3). Peeling is preferably performed after reducing the adhesive strength of the pressure-sensitive adhesive layer 3a. For example, when the pressure-sensitive adhesive layer 3a is a heat-peelable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer 3a is heated and peeled after the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer 3a is reduced. The semiconductor chip 33 of the sealing body 35 is exposed by peeling.
  • the sealing body 35 is ground to form a ground body 36 (see FIG. 4).
  • the surface on the side where the adhesive layer 3a of the grinding body 36 is formed is cleaned by plasma treatment or the like.
  • Rewiring formation process In the rewiring formation process, a rewiring 39 connected to the semiconductor chip 33 is formed on the grinding body 36, and then an insulating layer is formed on the rewiring 39 and the grinding body 36 (see FIG. 5).
  • a metal seed layer is formed on the exposed semiconductor chip 33 using a known method such as a vacuum film forming method, and the rewiring 39 is formed by a semi-additive method or the like. Thereafter, an insulating layer such as polyimide or polybenzoxazole (PBO) is formed on the rewiring 39 and the grinding body 36.
  • a known method such as a vacuum film forming method
  • the rewiring 39 is formed by a semi-additive method or the like.
  • an insulating layer such as polyimide or polybenzoxazole (PBO) is formed on the rewiring 39 and the grinding body 36.
  • Bump forming process A bumping process for forming the bump 37 on the rewiring 39 is performed (see FIG. 6).
  • the bumping process is performed by a known method such as solder ball or solder plating.
  • the material of the bump 37 is not particularly limited.
  • a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, a tin-zinc-bismuth metal material Such as solders (alloys), gold-based metal materials, copper-based metal materials, and the like.
  • Dicing process Dicing of the laminated body which consists of elements, such as the semiconductor chip 33, the thermosetting resin sheet 31, and the rewiring 39, is performed (refer FIG. 7). Thereby, the semiconductor device 38 separated into pieces is obtained.
  • Epoxy resin 1 YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epoxy equivalent 180-210 g / eq. Melting point 75-85 ° C.)
  • Epoxy resin 2 EXA-4850-150 (liquid epoxy resin) manufactured by Dainippon Ink & Chemicals, Inc.
  • Epoxy resin 3 EPPN-501-HY (solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Phenol resin MEH-7851SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq.
  • Elastomer 1 SIBSTAR 102T (styrene-isobutylene-styrene block copolymer) manufactured by Kaneka Corporation
  • Elastomer 2 Acrylic copolymer curing accelerator obtained in Production Example 1 below: Curazole 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Co., Ltd.
  • Curing accelerator 2 Curezol 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole) manufactured by Shikoku Kasei Pigment 1: Carbon black # 20 manufactured by Mitsubishi Chemical Corporation Pigment 2: Carbon black MA600 manufactured by Mitsubishi Chemical Corporation Flame retardant: Raptor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd.
  • Inorganic filler FB-9454FC manufactured by Denki Kagaku Kogyo Co., Ltd. (fused spherical silica, average particle size 20 ⁇ m)
  • thermosetting resin sheet According to the mixing ratio described in Table 1, each component was blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to obtain a thickness. A thermosetting resin sheet having a thickness of 500 ⁇ m was produced.
  • thermosetting resin sheet The following evaluation was performed using the obtained thermosetting resin sheet.
  • Chip shift 100 semiconductor chips using a die bonder SPA-300 (manufactured by Shinkawa Co., Ltd.) on a pressure-sensitive adhesive layer (Riva Alpha manufactured by Nitto Denko Co., Ltd.) placed on a circular SUS plate having a diameter of 300 mm (Semiconductor chip size: 5 mm ⁇ (thickness 300 ⁇ m)) were arranged at equal intervals. After the placement, the position of each semiconductor chip placed on the pressure sensitive adhesive layer (the position of the semiconductor chip before molding) was measured using a smart scope CNC500 manufactured by OGP.
  • thermosetting resin sheet is stacked on the semiconductor chip arrangement surface, and then pressed under a reduced pressure (0.006 kg / cm 2 ) at 100 ° C., 15 kg / cm 2 for 2 minutes using a parallel plate press.
  • a sealed body 1 was obtained.
  • the sealing body 1 includes a circular SUS plate, a pressure-sensitive adhesive layer disposed on the circular SUS plate, a semiconductor chip disposed on the pressure-sensitive adhesive layer, a thermosetting resin sheet covering the semiconductor chip, Is provided.
  • the sealing body 1 was a circle having a diameter of 300 mm in plan view.
  • the sealing body 1 was heated at 120 ° C. for 3 hours to cure the thermosetting resin sheet. Thereafter, the sealing body 1 was heated at 180 ° C.
  • the sealing body 2 provided with the semiconductor chip and the sealing resin which covers the semiconductor chip was obtained.
  • the sealing resin is derived from a thermosetting resin sheet.
  • the semiconductor chip position semiconductor chip position after molding
  • the shift (deviation width) of the semiconductor chip was determined. The results are shown in Table 2.
  • the X direction is a direction of a straight line connecting the fourth measurement point 54 and the fifth measurement point 55.
  • the Y direction is the direction of a straight line connecting the first measurement point 51 and the eighth measurement point 58.
  • warp The four measurement points (first measurement point 51, fourth measurement point 54, fifth measurement point 55, and eighth measurement point 58) shown in FIG. 8 using the warpage measuring device (Thermo Ray PS400) manufactured by Thermotronics Trading Co., Ltd. ) was measured. The results are shown in Table 2.
  • Example 2 According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 ⁇ m was produced in the same manner as in Example 1. Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet. The maximum value of chip shift was 5 ⁇ m. The maximum value of warpage was 2.8 mm. The maximum value of the surface step was 6.5 ⁇ m. Other evaluation results are shown in Table 1.
  • Example 3 According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 ⁇ m was produced in the same manner as in Example 1. Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet. The maximum value of chip shift was 13 ⁇ m. The maximum value of warpage was 1.4 mm. The maximum value of the surface step was 4.2 ⁇ m. Other evaluation results are shown in Table 1.
  • thermosetting resin sheet Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
  • the maximum value of the chip shift was 120 ⁇ m.
  • the maximum value of warpage was 4.5 mm.
  • the maximum value of the surface step was 25 ⁇ m.
  • Other evaluation results are shown in Table 1.
  • thermosetting resin sheet having a thickness of 500 ⁇ m was produced in the same manner as in Example 1. Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet. The maximum value of chip shift was 25 ⁇ m. The maximum value of warpage was 3.1 mm. The maximum value of the surface step was 10.5 ⁇ m. Other evaluation results are shown in Table 1.
  • thermosetting resin sheet having a thickness of 500 ⁇ m was produced in the same manner as in Example 1. Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet. The maximum value of the chip shift was 19 ⁇ m. The maximum value of warpage was 1.3 mm. The maximum value of the surface step was 4.1 ⁇ m. Other evaluation results are shown in Table 1.
  • Example 4 According to the blending ratio shown in Table 1, each component was mixed with a mixed solution containing methyl ethyl ketone and toluene in a ratio of 5: 5 to prepare a mixture having a component concentration of 90% by weight.
  • a varnish for coating was obtained by stirring the mixture for 10 minutes at 2000 rpm using a rotation and revolution mixer (Shinki Co., Ltd., Nertaro Awatori).
  • the coating varnish was coated on a 50 ⁇ m thick silicone-treated PET (Mitsubishi Chemical: MRF50) and then dried at 110 ° C. for 10 minutes with a hot air dryer to obtain a resin sheet having a thickness of 50 ⁇ m.
  • the obtained resin sheet was laminated
  • the reason why the mixed solution containing methyl ethyl ketone and toluene was used is that SIBSTAR 072T, which is an elastomer, is difficult to dissolve in methyl ethyl ketone.
  • Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
  • the maximum value of the chip shift was 9 ⁇ m.
  • the maximum value of warpage was 1.9 mm.
  • the maximum value of the surface step was 5.0 ⁇ m.
  • Other evaluation results are shown in Table 1.
  • Temporary Fixing Material 3a Adhesive Layer 3b Support 31 Thermosetting Resin Sheet 33 Semiconductor Chip 34 Chip Mounted Temporary Fixing Material 35 Sealing Body 36 Grinding Body 37 Bump 38 Semiconductor Device 39 Rewiring 50 0th Measurement Point 51 First Measurement Point 52 second measurement point 53 third measurement point 54 fourth measurement point 55 fifth measurement point 56 sixth measurement point 57 seventh measurement point 58 eighth measurement point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided are a semiconductor device manufacturing method and thermosetting resin sheet capable of preventing misalignment of electronic components during sealing and capable of suppressing local warping of the sealing body. This thermosetting resin sheet has a 65-93wt% inorganic filler content and has a 30-3000Pa*s minimum viscosity during rising temperature measurement using a viscoelasticity spectrometer. This semiconductor device manufacturing method involves a step (A) for using this thermosetting resin sheet to collectively seal multiple electronic components arranged on a support plate.

Description

半導体装置の製造方法及び熱硬化性樹脂シートSemiconductor device manufacturing method and thermosetting resin sheet
本発明は半導体装置の製造方法及び熱硬化性樹脂シートに関する。 The present invention relates to a semiconductor device manufacturing method and a thermosetting resin sheet.
半導体を樹脂封止する方法として、液状樹脂やモールディングコンパウンド樹脂を用いる方法が知られている(特許文献1)。これらの方法は、専用の金型や、枠ジグが必要であり、コストが高い。そこで、近年では、熱硬化性樹脂シートを用いて樹脂封止する方法が提案されている。熱硬化性樹脂シートを用いることで、専用の金型や、枠ジグが不要となるため、コストの低減が期待でき、また、半導体装置の製造時間の短縮も期待できる。 As a method for sealing a semiconductor with a resin, a method using a liquid resin or a molding compound resin is known (Patent Document 1). These methods require dedicated dies and frame jigs and are expensive. Therefore, in recent years, a method of resin sealing using a thermosetting resin sheet has been proposed. The use of the thermosetting resin sheet eliminates the need for a dedicated mold or frame jig, so that cost reduction can be expected, and the semiconductor device manufacturing time can be expected to be shortened.
特開2001-308116号公報JP 2001-308116 A
ところで、ファンアウト型ウェハレベルチップサイズパッケージの製造において、支持板上に配置された複数の電子部品(例えば半導体チップ)を一括して封止する場合がある。しかしながら、封止時の樹脂の流動に伴う圧力、抵抗などにより電子部品の位置ずれが生じてしまうことがある。 By the way, in the manufacture of a fan-out type wafer level chip size package, a plurality of electronic components (for example, semiconductor chips) arranged on a support plate may be collectively sealed. However, the electronic components may be displaced due to pressure, resistance, and the like accompanying the flow of the resin during sealing.
また、液状樹脂や固形のトランスファー封止材を用いる従来の方法では、成型時の樹脂の移動量、流動量が大きいことから、封止対象の形態、例えば、支持板上に実装されている部品の形状、大きさ、及び実装位置等により樹脂配合組成の偏斥が発生し易い。特に無機充填剤は偏析しやすく、成形後の樹脂組成物中の無機充填剤量が場所によって変わってしまうことから極所的に反り量が大きくなることがある。局所的な反り量の増大は、工程での不具合および製造歩留まり低下につながるため問題となる。 Further, in the conventional method using a liquid resin or a solid transfer sealing material, since the amount of movement and flow of the resin during molding is large, the form to be sealed, for example, a component mounted on a support plate The resin composition tends to deviate depending on the shape, size, mounting position, and the like. In particular, the inorganic filler is easily segregated, and the amount of warpage may be extremely large because the amount of the inorganic filler in the resin composition after molding varies depending on the location. An increase in the amount of local warpage is a problem because it leads to defects in the process and a decrease in manufacturing yield.
本発明は前記問題点に鑑みなされたものであり、封止時における電子部品の位置ずれを防止できるとともに、封止体の局所的な反りを抑制できる半導体装置の製造方法及び熱硬化性樹脂シートを提供することを目的とする。 The present invention has been made in view of the above-described problems, and a semiconductor device manufacturing method and a thermosetting resin sheet that can prevent positional displacement of electronic components during sealing and suppress local warping of a sealing body. The purpose is to provide.
本願発明者は、上記従来の問題点を解決すべく検討した結果、特定の組成を有し、特定の最低粘度を有する熱硬化性樹脂シートを用いることにより、封止時における電子部品の位置ずれを防止できるとともに、封止体の局所的な反りを抑制できることを見出し、本発明を完成させた。 As a result of studying to solve the above-mentioned conventional problems, the inventor of the present application uses a thermosetting resin sheet having a specific composition and a specific minimum viscosity, so that the positional deviation of the electronic component at the time of sealing is achieved. It was found that the local warpage of the sealing body can be suppressed, and the present invention has been completed.
すなわち、本発明は、無機充填剤を65~93重量%含み、粘弾性スペクトロメーターを用いた昇温測定における最低粘度が30~3000Pa・sである熱硬化性樹脂シートを用いて、支持板上に配置された複数の電子部品を一括封止する工程(A)を含む半導体装置の製造方法に関する。 That is, the present invention uses a thermosetting resin sheet containing 65 to 93% by weight of an inorganic filler and having a minimum viscosity of 30 to 3000 Pa · s in a temperature rise measurement using a viscoelastic spectrometer. The present invention relates to a method for manufacturing a semiconductor device, which includes a step (A) of collectively sealing a plurality of electronic components arranged on the substrate.
無機充填剤の含有量が65重量%以上であり、粘弾性スペクトロメーターを用いた昇温測定における最低粘度が30Pa・s以上の熱硬化性樹脂シートを用いて電子部品を一括封止するので、封止時における樹脂の流動を抑制でき、電子部品の位置ずれを防止できる。
一方、熱硬化性樹脂シートは、無機充填剤の含有量が93重量%以下であり、粘弾性スペクトロメーターを用いた昇温測定における最低粘度が3000Pa・s以下であるので、複数の電子部品を一括封止する際に、電子部品間を隙間なく埋めることができる。
Since the content of the inorganic filler is 65% by weight or more and the electronic components are collectively sealed using a thermosetting resin sheet having a minimum viscosity of 30 Pa · s or more in the temperature rise measurement using a viscoelastic spectrometer, Resin flow during sealing can be suppressed, and displacement of electronic components can be prevented.
On the other hand, the thermosetting resin sheet has an inorganic filler content of 93% by weight or less and a minimum viscosity of 3000 Pa · s or less in a temperature rise measurement using a viscoelastic spectrometer. When collectively sealing, the electronic components can be filled without gaps.
また、特定粘度の熱硬化性樹脂シートを用いるので、樹脂配合組成の偏斥を防止でき、封止体の局所的な反りを抑制できる。結果として、安定した品質の半導体装置を提供できる。 Moreover, since the thermosetting resin sheet having a specific viscosity is used, deviation of the resin composition can be prevented, and local warping of the encapsulant can be suppressed. As a result, a stable quality semiconductor device can be provided.
支持板は、少なくとも1辺が300mm以上の略矩形状、少なくとも1辺が300mm以上の略正方形状、及び直径又は短径が12インチ以上の略円形状のうちのいずれかの形状であることが好ましい。本発明の半導体装置の製造方法は、特定の熱硬化性樹脂シートを用いるため、これらの大面積の支持体に配置された電子部品を良好に一括封止できる。 The support plate may have any one of a substantially rectangular shape having at least one side of 300 mm or more, a substantially square shape having at least one side of 300 mm or more, and a substantially circular shape having a diameter or minor axis of 12 inches or more. preferable. Since the manufacturing method of the semiconductor device of the present invention uses a specific thermosetting resin sheet, the electronic components arranged on these large-area supports can be sealed together in a good manner.
電子部品は半導体チップであることが好ましい。 The electronic component is preferably a semiconductor chip.
例えば、工程(A)は、チップ搭載板上に、熱硬化性樹脂シートを配置して積層体を形成する工程(A-1)と、積層体を減圧下で加圧プレスする工程(A-2)とを含む。これにより、ボイドを減らすことができる。 For example, the step (A) includes a step (A-1) of forming a laminate by disposing a thermosetting resin sheet on a chip mounting plate, and a step (A-) of pressing the laminate under reduced pressure. 2). Thereby, voids can be reduced.
工程(A-2)の加圧プレスは、平行平板プレス機を用いて行うことが好ましい。これにより、圧縮成型機、トランスファー成型機を用いる場合に必要とされる専用の金型や枠ジグが不要となり、製造コストを低減できる。また、樹脂配合組成の偏斥を防止でき、安定した品質の半導体装置を提供できる。 The pressure pressing in the step (A-2) is preferably performed using a parallel plate press. This eliminates the need for a dedicated mold or frame jig required when using a compression molding machine or a transfer molding machine, thereby reducing the manufacturing cost. In addition, deviation of the resin composition can be prevented, and a semiconductor device with stable quality can be provided.
本発明はまた、支持板上に配置された複数の電子部品を一括封止する工程(A)を含む半導体装置の製造方法に使用するための熱硬化性樹脂シートに関する。 The present invention also relates to a thermosetting resin sheet for use in a method for manufacturing a semiconductor device including a step (A) of collectively sealing a plurality of electronic components arranged on a support plate.
本発明によれば、封止時における電子部品の位置ずれを防止できるとともに、封止体の局所的な反りを抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to prevent the position shift of the electronic component at the time of sealing, the local curvature of a sealing body can be suppressed.
本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor device of this invention. 実施例で得られた封止体2の平面図である。It is a top view of the sealing body 2 obtained in the Example.
[熱硬化性樹脂シート]
本発明の熱硬化性樹脂シートについて説明する。
[Thermosetting resin sheet]
The thermosetting resin sheet of the present invention will be described.
熱硬化性樹脂シートは、粘弾性スペクトロメーターを用いた昇温測定における最低粘度が30Pa・s以上であり、好ましくは100Pa・s以上である。30Pa・s以上であるので、封止時における樹脂の流動を抑制でき、封止エリア外部への樹脂のはみ出しを防止できる。
また、最低粘度が3000Pa・s以下であり、好ましくは2000Pa・s以下である。3000Pa・s以下であるので、良好な埋め込み性が得られ、支持板上に配置された複数の電子部品間の隙間を良好に埋めることができると同時に、封止時のチップの位置ずれを防止できる。
粘弾性スペクトロメーターを用いた昇温測定における最低粘度は実施例に記載の方法で測定できる。
The thermosetting resin sheet has a minimum viscosity of 30 Pa · s or higher, preferably 100 Pa · s or higher, in a temperature rise measurement using a viscoelastic spectrometer. Since it is 30 Pa · s or more, the flow of the resin at the time of sealing can be suppressed, and the protrusion of the resin to the outside of the sealing area can be prevented.
The minimum viscosity is 3000 Pa · s or less, preferably 2000 Pa · s or less. Since it is 3000 Pa · s or less, good embeddability can be obtained, gaps between a plurality of electronic components arranged on the support plate can be filled well, and at the same time, chip displacement during sealing is prevented. it can.
The minimum viscosity in the temperature rise measurement using a viscoelastic spectrometer can be measured by the method described in the Examples.
粘弾性スペクトロメーターを用いた昇温測定における最低粘度は、シリカフィラーの含有量によりコントロールできる。例えば、シリカフィラーの含有量を増大させることにより、最低粘度を高められる。 The minimum viscosity in the temperature rise measurement using a viscoelastic spectrometer can be controlled by the content of the silica filler. For example, the minimum viscosity can be increased by increasing the content of silica filler.
最低粘度を示す温度は、好ましくは80℃以上、より好ましくは90℃以上である。80℃以上であると、熱硬化性樹脂シートのハンドリング性が良好であり、また成型時のエアーの抱き込みを防ぐことができる。最低粘度を示す温度は、好ましくは140℃以下、より好ましくは130℃以下である。140℃以下であると、成形時の凹凸への追従性が良好である。 The temperature showing the lowest viscosity is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. When the temperature is 80 ° C. or higher, the handling property of the thermosetting resin sheet is good, and air entrapment during molding can be prevented. The temperature showing the minimum viscosity is preferably 140 ° C. or lower, more preferably 130 ° C. or lower. When the temperature is 140 ° C. or lower, the followability to unevenness during molding is good.
最低粘度を示す温度は、硬化促進剤の種類によりコントロールできる。例えば、反応活性温度が80℃以上140℃以下の硬化促進剤を配合することにより、最低粘度を上述の範囲に設定できる。 The temperature showing the minimum viscosity can be controlled by the type of curing accelerator. For example, the minimum viscosity can be set in the above range by blending a curing accelerator having a reaction activation temperature of 80 ° C. or higher and 140 ° C. or lower.
熱硬化性樹脂シートは、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂が好ましい。 The thermosetting resin sheet preferably contains a thermosetting resin. As the thermosetting resin, an epoxy resin and a phenol resin are preferable.
エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量100~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、なかでも、信頼性の観点から、ビスフェノール型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂などが好ましい。柔軟性に優れるという点から、ビスフェノールF型エポキシ樹脂が好ましい。軟化点もしくは融点は60~100℃がより好ましい。 From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, it is preferable that the epoxy resin is solid at room temperature with an epoxy equivalent of 100 to 250 and a softening point or melting point of 50 to 130 ° C. From the viewpoint, bisphenol type epoxy resin, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin and the like are preferable. From the viewpoint of excellent flexibility, bisphenol F type epoxy resin is preferred. The softening point or melting point is more preferably 60 to 100 ° C.
フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性および低反り性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenolic resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. In addition, from the viewpoint of reliability and low warpage, a low hygroscopic material such as a phenol aralkyl resin or a biphenyl aralkyl resin can be suitably used.
エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 From the viewpoint of curing reactivity, the mixing ratio of epoxy resin and phenol resin is such that the total of hydroxyl groups in phenol resin is 0.7 to 1.5 equivalents per 1 equivalent of epoxy groups in epoxy resin. It is preferable to use 0.9 to 1.2 equivalents.
熱硬化性樹脂シート中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは4重量%以上である。4重量%以上であると、信頼性に優れた硬化物が得られる。熱硬化性樹脂シート中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは18重量%以下である。18重量%以下であると、反りの小さい硬化物が得られる。 The total content of epoxy resin and phenol resin in the thermosetting resin sheet is preferably 4% by weight or more. When the content is 4% by weight or more, a cured product having excellent reliability can be obtained. The total content of the epoxy resin and the phenol resin in the thermosetting resin sheet is preferably 18% by weight or less. When the content is 18% by weight or less, a cured product with small warpage can be obtained.
熱硬化性樹脂シートは硬化促進剤を含むことが好ましい。 The thermosetting resin sheet preferably contains a curing accelerator.
硬化促進剤は、硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。なかでも、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。 The curing accelerator is not particularly limited as long as it allows curing to proceed. From the viewpoint of curability and storage stability, organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate, and imidazole. System compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators. Among them, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)] — Ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred.
硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計含有量100重量部に対して、好ましくは0.5重量部以上、より好ましくは1重量部以上である。0.5重量部以上であると、十分に硬化が促進される。また、硬化促進剤の含有量は、好ましくは10重量部以下、より好ましくは5重量部以下である。10重量部以下であると、冷蔵等の保管時において良好な保存性を得ることが出来る。 The content of the curing accelerator is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. Hardening is fully accelerated | stimulated as it is 0.5 weight part or more. The content of the curing accelerator is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When it is 10 parts by weight or less, good storage stability can be obtained during storage such as refrigeration.
熱硬化性樹脂シートはエラストマーを含むことが好ましい。 The thermosetting resin sheet preferably contains an elastomer.
エラストマーは、電子部品の封止に必要な可撓性を熱硬化性樹脂シートに付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。なかでも、エポキシ樹脂へ分散させやすく、また得られる熱硬化性樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系、スチレン系もしくはブタジエン系ゴムを用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。 The elastomer imparts flexibility necessary for sealing of the electronic component to the thermosetting resin sheet, and the structure is not particularly limited as long as such an effect is exhibited. For example, various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used. Among these, acrylic, styrene, or butadiene rubber is preferably used from the viewpoint of being easily dispersed in an epoxy resin and improving the heat resistance and strength of the resulting thermosetting resin sheet. These may be used alone or in combination of two or more.
エラストマーの含有量は、エポキシ樹脂及びフェノール樹脂の合計含有量100重量部に対して、好ましくは15重量部以上、より好ましくは20重量部以上である。15重量部以上であると、成型時の樹脂粘度低下による巻き込みボイドを低減、抑制でき、硬化後の反りも低減、抑制できる。
また、エラストマーの含有量は、好ましくは200重量部以下、より好ましくは100重量部以下である。200重量部以下であると、硬化後の樹脂強度の低下を防ぐ事ができ、半導体装置としての信頼性を確保することができる。
The content of the elastomer is preferably 15 parts by weight or more, more preferably 20 parts by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. When it is 15 parts by weight or more, entrainment voids due to a decrease in resin viscosity during molding can be reduced and suppressed, and warping after curing can also be reduced and suppressed.
The elastomer content is preferably 200 parts by weight or less, more preferably 100 parts by weight or less. When it is 200 parts by weight or less, it is possible to prevent a decrease in the resin strength after curing, and it is possible to ensure reliability as a semiconductor device.
熱硬化性樹脂シートは無機充填剤を含む。 The thermosetting resin sheet contains an inorganic filler.
無機充填剤は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。 The inorganic filler is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, aluminum nitride, silicon nitride And boron nitride powder. These may be used alone or in combination of two or more.
なかでも、熱硬化性樹脂シートの硬化体の熱線膨張係数を低減し、封止後の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末のなかでも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。なかでも、平均粒径が0.1~50μmの範囲のものを用いることが好ましく、0.5~25μmの範囲のものを用いることが特に好ましい。 Among these, it is preferable to use silica powder from the viewpoint that the coefficient of thermal expansion of the cured body of the thermosetting resin sheet can be reduced and warpage after sealing can be suppressed, and among the silica powder, it is preferable to use fused silica powder. Is more preferable. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle diameter in the range of 0.1 to 50 μm are preferably used, and those having a range of 0.5 to 25 μm are particularly preferable.
なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。 The average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
熱硬化性樹脂シート中の無機充填剤の含有量は、65重量%以上であり、好ましくは80重量%以上である。65重量%以上であるので、硬化物の吸水性を低減でき、信頼性の良好な半導体パッケージを得ることができる。また、熱硬化性樹脂シート中の無機充填剤の含有量は、93重量%以下であり、好ましくは91重量%以下である。93重量%以下であるので、熱硬化性樹脂シートとして可とう性を維持し、取扱い時の割れ欠けを防止できる。 Content of the inorganic filler in a thermosetting resin sheet is 65 weight% or more, Preferably it is 80 weight% or more. Since it is 65 weight% or more, the water absorption of hardened | cured material can be reduced and a reliable semiconductor package can be obtained. Moreover, content of the inorganic filler in a thermosetting resin sheet is 93 weight% or less, Preferably it is 91 weight% or less. Since it is 93 weight% or less, the flexibility as a thermosetting resin sheet is maintained, and the cracking at the time of handling can be prevented.
熱硬化性樹脂シートは、着色剤を含むことが好ましい。着色剤を含有することにより、封止後の半導体装置を識別する為のマーキング性を確保できる。なお、マーキング方法としては特に限定しないが、CO2レーザー、YAGレーザー、グリーンレーザーなどの各種レーザーマーキングによる方法が好ましく用いられる。 The thermosetting resin sheet preferably contains a colorant. By containing the colorant, it is possible to ensure the marking property for identifying the semiconductor device after sealing. In addition, although it does not specifically limit as a marking method, The method by various laser markings, such as a CO2 laser, a YAG laser, a green laser, is used preferably.
着色剤としては特に限定されず、例えば、顔料もしくは染料を用いることができる。なかでも、コストおよびマーキング時に良好な視認性が得やすいとの観点から顔料を用いることが好ましい。顔料としては特に限定されず、無機系顔料であってもよいし、有機系顔料であってもよい。 The colorant is not particularly limited, and for example, a pigment or a dye can be used. Among these, it is preferable to use a pigment from the viewpoint of easy cost and good visibility at the time of marking. The pigment is not particularly limited, and may be an inorganic pigment or an organic pigment.
無機系顔料としては、例えば、ガラス微粉末、ガラスバルーン、セラミックビーズ等のセラミック系顔料;アルミニウム、鉄、ジルコニウム、コバルト等の金属細片系顔料;酸化チタン、酸化マグネシウム、酸化バリウム、酸化カルシウム、酸化亜鉛、酸化ジルコニウム、酸化イットリウム、酸化インジウム、チタン酸ナトリウム、酸化ケイ素、酸化ニッケル、酸化マンガン、酸化クロム、酸化鉄、酸化銅、酸化セリウム、酸化アルミニウム等の金属酸化物系顔料;酸化鉄-酸化マンガン、酸化鉄-酸化クロム、酸化銅-酸化マグネシウム等の複合酸化物顔料;SiとAlやFe、マグネシウム、マンガン、ニッケル、チタン、クロム、カルシウム等の金属系顔料;鉄-クロム、ビスマス-マンガン、鉄-マンガン、マンガン-イットリウム等の合金系顔料;マイカ、窒化ケイ素、光輝顔料、硫酸バリウム等が挙げられる。 Examples of inorganic pigments include ceramic pigments such as glass fine powder, glass balloons, and ceramic beads; metal strip pigments such as aluminum, iron, zirconium, and cobalt; titanium oxide, magnesium oxide, barium oxide, calcium oxide, Metal oxide pigments such as zinc oxide, zirconium oxide, yttrium oxide, indium oxide, sodium titanate, silicon oxide, nickel oxide, manganese oxide, chromium oxide, iron oxide, copper oxide, cerium oxide, aluminum oxide; iron oxide- Complex oxide pigments such as manganese oxide, iron oxide-chromium oxide, copper oxide-magnesium oxide; metal pigments such as Si and Al, Fe, magnesium, manganese, nickel, titanium, chromium, calcium; iron-chromium, bismuth- Manganese, iron-manganese, manganese-yttrium Alloy pigments; mica, silicon nitride, glitter, and barium sulfate.
有機系顔料としては、例えば、アゾ系顔料、アゾメチン系顔料、レーキ系顔料、チオインジゴ系顔料、アントラキノン系顔料、ぺリレン系顔料、ぺリノン系顔料、ジケトピロロピロール系顔料、ジオキサジン系顔料、フタロシアニン系顔料、キニフタロン系顔料、キナクリドン系顔料、イソインドリン系顔料、イソインドリノン系顔料、カーボン系顔料等が挙げられる。 Examples of organic pigments include azo pigments, azomethine pigments, lake pigments, thioindigo pigments, anthraquinone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, dioxazine pigments, and phthalocyanines. And pigments such as pigments, quinphthalone pigments, quinacridone pigments, isoindoline pigments, isoindolinone pigments and carbon pigments.
顔料の含有量は、エポキシ樹脂及びフェノール樹脂の合計含有量100重量部に対して、好ましくは0.5重量部以上、より好ましくは1重量部以上である。0.5重量部以上であると、封止後の半導体装置を識別する為のマーキング性を確保できる。
また、顔料の含有量は、好ましくは10重量部以下、より好ましくは5重量部以下である。10重量部以下であると、硬化後に必要な樹脂強度を確保できる。
The content of the pigment is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. The marking property for identifying the semiconductor device after sealing can be secured as it is 0.5 part by weight or more.
The pigment content is preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When it is 10 parts by weight or less, a necessary resin strength can be secured after curing.
熱硬化性樹脂シートは難燃剤を含むことが好ましい。 The thermosetting resin sheet preferably contains a flame retardant.
難燃剤としては特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ等の金属水酸化物;ホスファゼン化合物;等が挙げられる。なかでも、成型時の樹脂粘度および硬化後の強度を特定範囲に良好に調整できるという理由から、ホスファゼン化合物が好ましい。ホスファゼン化合物としては、例えば、FP-100(伏見製薬所製)等が挙げられる。 The flame retardant is not particularly limited, and examples thereof include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, and tin hydroxide; phosphazene compounds. Among these, a phosphazene compound is preferable because the resin viscosity at the time of molding and the strength after curing can be well adjusted within a specific range. Examples of the phosphazene compound include FP-100 (Fushimi Pharmaceutical).
難燃剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計含有量100重量部に対して、好ましくは5重量部以上、より好ましくは15重量部以上である。5重量部以上であると、必要な難燃性を得ることができる。また、難燃剤の含有量は、好ましくは50重量部以下、より好ましくは30重量部以下である。50重量部以下であると、硬化後の樹脂強度低下やガラス転移温度の低下などを最小限に留め、半導体パッケージとしての信頼性を確保できる。 The content of the flame retardant is preferably 5 parts by weight or more, more preferably 15 parts by weight or more with respect to 100 parts by weight of the total content of the epoxy resin and the phenol resin. When it is 5 parts by weight or more, necessary flame retardancy can be obtained. The content of the flame retardant is preferably 50 parts by weight or less, more preferably 30 parts by weight or less. When it is 50 parts by weight or less, a decrease in resin strength after curing, a decrease in glass transition temperature, and the like can be minimized, and reliability as a semiconductor package can be secured.
なお、熱硬化性樹脂シートは、上記の各成分以外に必要に応じて、シランカップリング剤等他の添加剤を適宜配合できる。 The thermosetting resin sheet can be appropriately mixed with other additives such as a silane coupling agent as required in addition to the above-described components.
熱硬化性樹脂シートは、例えば、つぎのようにして製造することができる。
すなわち、まず、先に述べた熱硬化性樹脂シート用の各材料を均一に分散混合し、樹脂組成物を調製する。そして、調製された樹脂組成物を、シート状に形成する。この形成方法としては、例えば、調製された樹脂組成物を押出成形してシート状に形成する方法(混練押出)や、調製された樹脂組成物を有機溶剤等に溶解または分散してワニスを調製し、このワニスを、ポリエステル等の基材上に塗工し乾燥させることにより熱硬化性樹脂シートを製造する方法(溶剤塗工)等があげられる。溶剤塗工では、通常、得られた熱硬化性樹脂シートを必要に応じて複数積層して、厚みを調整する。なお、熱硬化性樹脂シートには、必要に応じ、熱硬化性樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせ、封止時に剥離するようにしてもよい。
A thermosetting resin sheet can be manufactured as follows, for example.
That is, first, each material for the thermosetting resin sheet described above is uniformly dispersed and mixed to prepare a resin composition. And the prepared resin composition is formed in a sheet form. As this forming method, for example, a method in which the prepared resin composition is extruded to form a sheet (kneading extrusion), or a varnish is prepared by dissolving or dispersing the prepared resin composition in an organic solvent or the like. And the method (solvent coating) etc. which manufacture this thermosetting resin sheet by apply | coating this varnish on base materials, such as polyester, and drying are mention | raise | lifted. In the solvent coating, usually, a plurality of the obtained thermosetting resin sheets are laminated as necessary to adjust the thickness. In addition, in order to protect the surface of a thermosetting resin sheet, you may make it peel at the time of sealing, bonding a peeling sheet, such as a polyester film, to a thermosetting resin sheet as needed.
ワニスを調製する際に用いる有機溶剤としては、例えば、メチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独でもしくは二種以上併せて用いられる。また、通常、ワニスの固形分濃度が60~90重量%の範囲となるように有機溶剤を用いることが好ましい。 As an organic solvent used when preparing a varnish, methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, ethyl acetate etc. can be used, for example. These may be used alone or in combination of two or more. In general, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 60 to 90% by weight.
熱硬化性樹脂シートを混練押出により製造することにより、シート状に容易に成形でき、ボイド(気泡)などの少ない均一なシートとすることができる。混練押出により製造する方法としては、例えば、上述の各成分をニーダーなどで混練することにより混練物を調製し、得られた混練物をプレス法又は押し出し法によりシート状に加工する方法が好ましい。必要に応じて、熱硬化性樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。 By producing a thermosetting resin sheet by kneading extrusion, it can be easily formed into a sheet shape, and a uniform sheet with few voids (bubbles) can be obtained. As a method for producing by kneading extrusion, for example, a method of preparing a kneaded product by kneading the above-described components with a kneader or the like, and processing the obtained kneaded product into a sheet by a pressing method or an extrusion method is preferable. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the thermosetting resin sheet.
熱硬化性樹脂シートの厚みは、特に制限されるものではないが、厚みの均一性の観点から、通常、50~2000μmに設定することが好ましく、より好ましくは100~1000μmである。 The thickness of the thermosetting resin sheet is not particularly limited, but is usually preferably set to 50 to 2000 μm, more preferably 100 to 1000 μm from the viewpoint of uniformity of thickness.
[半導体装置の製造方法の要旨]
本発明の半導体装置の製造方法は、熱硬化性樹脂シートを用いて、支持板上に配置された複数の電子部品を一括封止する工程(A)を含む限り、特に限定されない。例えば、チップ搭載板上に、熱硬化性樹脂シートを配置して積層体を形成する工程(A-1)と、積層体を減圧下で加圧プレスする工程(A-2)とを含む方法が挙げられる。これにより、電子部品を良好に一括封止できるとともに、ボイドを減らすことができる。
[Summary of Manufacturing Method of Semiconductor Device]
The method for manufacturing a semiconductor device of the present invention is not particularly limited as long as it includes a step (A) of collectively sealing a plurality of electronic components arranged on a support plate using a thermosetting resin sheet. For example, a method including a step (A-1) of forming a laminate by disposing a thermosetting resin sheet on a chip mounting plate, and a step (A-2) of pressing the laminate under a reduced pressure. Is mentioned. Thereby, while being able to seal an electronic component favorably, a void can be reduced.
工程(A-1)
工程(A-1)では、熱硬化性樹脂シートをチップ搭載板上に配置する。チップ搭載板は、支持板と支持板上に配置された複数の電子部品とを備える。
Step (A-1)
In step (A-1), a thermosetting resin sheet is placed on the chip mounting plate. The chip mounting plate includes a support plate and a plurality of electronic components arranged on the support plate.
電子部品としては特に限定されず、半導体、コンデンサ、センサデバイス、発光素子、振動素子等が挙げられる。なかでも、熱硬化性樹脂シートによる大判成型による高効率生産のメリットを得やすいことから、半導体チップが好ましい。 The electronic component is not particularly limited, and examples thereof include a semiconductor, a capacitor, a sensor device, a light emitting element, and a vibration element. Among these, a semiconductor chip is preferable because it is easy to obtain the merit of high-efficiency production by large-format molding using a thermosetting resin sheet.
支持板上に配置する電子部品数は、2個以上であれば特に限定されない。例えば、100個以上である。また、電子部品数の上限は特に限定されないが、通常、10000個以下である。電子部品のレイアウトは特に限定されない。 The number of electronic components arranged on the support plate is not particularly limited as long as it is two or more. For example, it is 100 or more. The upper limit of the number of electronic components is not particularly limited, but is usually 10,000 or less. The layout of the electronic component is not particularly limited.
支持板としては特に限定されず、略多角形状、略円形状のものなどを使用できる。なお、略多角形状、略円形状とは、支持板を平面視したときの形状である。 The support plate is not particularly limited, and a substantially polygonal shape or a substantially circular shape can be used. The substantially polygonal shape and the substantially circular shape are shapes when the support plate is viewed in plan.
略多角形状には、多角形状のみならず、多角形類似形状も含まれる。具体的には、略多角形状には、多角形状の他、少なくとも一部の角が丸みを帯びた多角形類似形状、少なくとも一部の辺又はその辺の一部が曲線の多角形類似形状などが含まれる。略多角形状としては、略矩形状、略正方形状が好ましい。 The substantially polygonal shape includes not only a polygonal shape but also a polygon-like shape. Specifically, the substantially polygonal shape includes a polygonal shape, a polygonal similar shape with at least some rounded corners, a polygonal similar shape with at least a part of the side or a part of the side being a curved line, etc. Is included. The substantially polygonal shape is preferably a substantially rectangular shape or a substantially square shape.
このような略多角形状の支持板としては、少なくとも1辺の長さが300mm以上であることが好ましい。1辺の長さの上限は特に限定されないが、例えば、700mm以下である。 Such a substantially polygonal support plate preferably has a length of at least one side of 300 mm or more. Although the upper limit of the length of one side is not specifically limited, For example, it is 700 mm or less.
略円形状には、円形状のみならず、円形類似形状も含まれる。具体的には、略円形状には、真円形状の他、楕円形状、周の少なくとも一部に凹凸部が形成された円形類似形状、周の少なくとも一部に線状部(直線状部)が形成された円形類似形状、周の少なくとも一部に波線状部が形成された円形類似形状などが含まれる。 The substantially circular shape includes not only a circular shape but also a circular similar shape. Specifically, in a substantially circular shape, in addition to a perfect circular shape, an elliptical shape, a circular similar shape in which an uneven portion is formed on at least a part of the circumference, and a linear part (a linear part) on at least a part of the circumference And a circular similar shape in which a wavy line portion is formed on at least a part of the circumference.
このような略円形状の支持板としては、直径又は短径が12インチ以上であることが好ましい。直径又は短径の上限は特に限定されないが、例えば、16インチ以下である。 Such a substantially circular support plate preferably has a diameter or minor axis of 12 inches or more. Although the upper limit of a diameter or a short axis is not specifically limited, For example, it is 16 inches or less.
このような支持板としては、例えば、仮固定材、ガラスプレート、透明プラスティックプレート、プリント配線基板、シリコンウェハ等が挙げられる。仮固定材は、後で詳細に説明するが、支持体と、支持体上に積層された粘着剤層とを備えるものである。 Examples of such a support plate include a temporary fixing material, a glass plate, a transparent plastic plate, a printed wiring board, and a silicon wafer. Although described in detail later, the temporary fixing material includes a support and a pressure-sensitive adhesive layer laminated on the support.
工程(A-1)により得られた積層体は、チップ搭載板と、チップ搭載板上に配置された熱硬化性樹脂シートとを備える。 The laminate obtained by the step (A-1) includes a chip mounting plate and a thermosetting resin sheet disposed on the chip mounting plate.
工程(A-2)
工程(A-2)では、工程(A-1)により得られた積層体を減圧下で、加圧プレスする。減圧は従来公知の方法で行うことができる。
Step (A-2)
In step (A-2), the laminate obtained in step (A-1) is pressed under reduced pressure. The decompression can be performed by a conventionally known method.
減圧後の圧力、すなわち減圧下の雰囲気圧力は、好ましくは0.1kg/cm以下、より好ましくは0.01kg/cm以下である。0.1kg/cm以下であると、成形時のボイドを良好に減らすことができる。減圧後の圧力の下限は特に限定されないが、例えば、0.0001kg/cm以上である。 The post-decompression pressure, i.e. atmospheric pressure under reduced pressure, preferably 0.1 kg / cm 2 or less, more preferably 0.01 kg / cm 2 or less. The void at the time of shaping | molding can be reduced favorably as it is 0.1 kg / cm < 2 > or less. Although the minimum of the pressure after pressure reduction is not specifically limited, For example, it is 0.0001 kg / cm < 2 > or more.
プレス温度は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは90℃以上である。また、プレス温度は、好ましくは130℃以下、より好ましくは120℃以下、さらに好ましくは110℃以下である。 The pressing temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 90 ° C. or higher. The pressing temperature is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
加圧プレスは、平行平板プレス機を用いることが好ましい。平行平板プレス機としては、従来公知のものを使用できる。 The pressure press is preferably a parallel plate press. A conventionally well-known thing can be used as a parallel plate press.
プレス圧力は、好ましくは5kg/cm以上である。5kg/cm以上であると、支持板上に配置された複数の電子部品間の隙間を良好に埋めることができる。
一方、プレス圧力は、好ましくは60kg/cm以下である。60kg/cm以下であると、基板上の部品やウエハ基板等が破損することを防ぐことができる。
The pressing pressure is preferably 5 kg / cm 2 or more. If it is 5 kg / cm 2 or more, gaps between the plurality of electronic components arranged on the support plate can be satisfactorily filled.
On the other hand, the press pressure is preferably 60 kg / cm 2 or less. When it is 60 kg / cm 2 or less, it is possible to prevent the components on the substrate, the wafer substrate, and the like from being damaged.
プレス時間は特に限定されないが、通常0.5~30分である。なお、平行平板プレス機を用いる場合、温度分布、圧力分布が重要である。また、プレス板の平行精度を調整することも重要である。これらは適宜設定すればよい。 The pressing time is not particularly limited, but is usually 0.5 to 30 minutes. In addition, when using a parallel plate press, temperature distribution and pressure distribution are important. It is also important to adjust the parallel accuracy of the press plate. These may be set as appropriate.
工程(A-2)により得られた封止体は、電子部品と電子部品を覆う熱硬化性樹脂シートとを備える。 The sealing body obtained by the step (A-2) includes an electronic component and a thermosetting resin sheet that covers the electronic component.
その他の工程
封止体を加熱して、熱硬化性樹脂シートを硬化させる。封止体を加熱する温度は、好ましくは90℃以上、より好ましくは100℃以上、さらに好ましくは110℃以上である。また、封止体を加熱する温度は、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは140℃以下である。
The other process sealing body is heated to cure the thermosetting resin sheet. The temperature for heating the sealing body is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 110 ° C. or higher. Moreover, the temperature which heats a sealing body becomes like this. Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less, More preferably, it is 140 degrees C or less.
封止体を加熱する時間は特に限定されず、好ましくは10分以上、より好ましくは30分以上である。一方、加熱する時間の上限は、好ましくは180分以下、より好ましくは120分以下である。 The time for heating the sealing body is not particularly limited, and is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
以上説明した半導体装置の製造方法によれば、封止時における電子部品の位置ずれを防止できるとともに、封止体の局所的な反りを抑制できる。 According to the manufacturing method of the semiconductor device described above, it is possible to prevent displacement of the electronic component during sealing and to suppress local warping of the sealing body.
[半導体装置の製造方法の具体例]
以下、本発明の半導体装置の製造方法の一例を詳細に説明する。以下の例では、図1~2に示すように、仮固定材3上に配置された複数の半導体チップ33を、熱硬化性樹脂シート31を用いて一括封止する。
[Specific Example of Manufacturing Method of Semiconductor Device]
Hereinafter, an example of a method for manufacturing a semiconductor device of the present invention will be described in detail. In the following example, as shown in FIGS. 1 and 2, a plurality of semiconductor chips 33 arranged on the temporary fixing material 3 are collectively sealed using a thermosetting resin sheet 31.
仮固定材準備工程
仮固定材準備工程では、仮固定材3を準備する(図1参照)。仮固定材3は、支持体3bと、支持体3b上に積層された粘着剤層3aとを備える。
Temporary fixing material preparation step In the temporary fixing material preparation step, a temporary fixing material 3 is prepared (see FIG. 1). The temporarily fixing material 3 includes a support 3b and an adhesive layer 3a laminated on the support 3b.
粘着剤層3aとしては特に限定されないが、後述の粘着剤層剥離工程で容易に剥離できるという理由から、熱剥離性粘着剤層、放射線硬化型粘着剤層等を使用する。
支持体3bの材料としては特に限定されない。例えば、SUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料等である。
Although it does not specifically limit as the adhesive layer 3a, A heat-peelable adhesive layer, a radiation-curing-type adhesive layer, etc. are used from the reason that it can peel easily in the below-mentioned adhesive layer peeling process.
It does not specifically limit as a material of the support body 3b. For example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyetheretherketone, and polyethersulfone.
半導体チップ配置工程
半導体チップ配置工程では、仮固定材3上に複数の半導体チップ33を配置する(図1参照)。これにより、チップ搭載仮固定材34を得る。チップ搭載仮固定材34は、仮固定材3と、仮固定材3上に配置された複数の半導体チップ33とを備える。半導体チップ33の配置には、フリップチップボンダーやダイボンダー等を用いる。
Semiconductor Chip Arrangement Step In the semiconductor chip arrangement step, a plurality of semiconductor chips 33 are arranged on the temporary fixing material 3 (see FIG. 1). Thereby, the chip mounting temporary fixing material 34 is obtained. The chip mounting temporary fixing material 34 includes the temporary fixing material 3 and a plurality of semiconductor chips 33 arranged on the temporary fixing material 3. For the placement of the semiconductor chip 33, a flip chip bonder, a die bonder or the like is used.
封止工程
封止工程では、熱硬化性樹脂シート31をチップ搭載仮固定材34上に配置して積層体を形成する(図示せず)。次いで、積層体を平行平板方式でプレスして、封止体35を得る(図2参照)。封止体35は、半導体チップ33と、半導体チップ33を覆う熱硬化性樹脂シート31とを備える。封止体35は、仮固定材3と接している。プレス条件は、前述の工程(A-2)の条件を採用する。
Sealing Step In the sealing step, the thermosetting resin sheet 31 is placed on the chip mounting temporary fixing material 34 to form a laminate (not shown). Next, the laminated body is pressed by a parallel plate method to obtain a sealing body 35 (see FIG. 2). The sealing body 35 includes a semiconductor chip 33 and a thermosetting resin sheet 31 that covers the semiconductor chip 33. The sealing body 35 is in contact with the temporary fixing material 3. As the pressing conditions, the conditions of the above-described step (A-2) are adopted.
熱硬化工程
封止体35を加熱して、熱硬化性樹脂シート31を硬化させる。
The thermosetting process sealing body 35 is heated and the thermosetting resin sheet 31 is cured.
仮固定材剥離工程
仮固定材剥離工程では、粘着剤層3aと封止体35との間で剥離を行う(図3参照)。粘着剤層3aの粘着力を低下させた後に剥離を行うことが好ましい。例えば、粘着剤層3aが熱剥離性粘着剤層である場合、粘着剤層3aを加熱し、粘着剤層3aの粘着力を低下させた後に剥離する。剥離により、封止体35の半導体チップ33が露出する。
Temporary fixing material peeling step In the temporary fixing material peeling step, peeling is performed between the pressure-sensitive adhesive layer 3a and the sealing body 35 (see FIG. 3). Peeling is preferably performed after reducing the adhesive strength of the pressure-sensitive adhesive layer 3a. For example, when the pressure-sensitive adhesive layer 3a is a heat-peelable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer 3a is heated and peeled after the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer 3a is reduced. The semiconductor chip 33 of the sealing body 35 is exposed by peeling.
研削工程
研削工程では、封止体35を研削して研削体36を形成する(図4参照)。
Grinding process In the grinding process, the sealing body 35 is ground to form a ground body 36 (see FIG. 4).
研削後、プラズマ処理等により研削体36の粘着剤層3aが形成されていた側の表面をクリーニングする。 After grinding, the surface on the side where the adhesive layer 3a of the grinding body 36 is formed is cleaned by plasma treatment or the like.
再配線形成工程
再配線形成工程では、研削体36上に、半導体チップ33と接続する再配線39を形成し、次いで再配線39及び研削体36上に絶縁層を形成する(図5参照)。
Rewiring formation process In the rewiring formation process, a rewiring 39 connected to the semiconductor chip 33 is formed on the grinding body 36, and then an insulating layer is formed on the rewiring 39 and the grinding body 36 (see FIG. 5).
具体的には、露出している半導体チップ33上へ真空成膜法等の公知の方法を利用して金属シード層を形成し、セミアディティブ法等により、再配線39を形成する。その後、再配線39及び研削体36上にポリイミドやポリベンゾオキサゾール(PBO)等の絶縁層を形成する。 Specifically, a metal seed layer is formed on the exposed semiconductor chip 33 using a known method such as a vacuum film forming method, and the rewiring 39 is formed by a semi-additive method or the like. Thereafter, an insulating layer such as polyimide or polybenzoxazole (PBO) is formed on the rewiring 39 and the grinding body 36.
バンプ形成工程
再配線39上にバンプ37を形成するバンピング加工を行う(図6参照)。バンピング加工は、半田ボールや半田メッキ等公知の方法で行う。バンプ37の材質は特に限定されないが、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材等である。
Bump forming process A bumping process for forming the bump 37 on the rewiring 39 is performed (see FIG. 6). The bumping process is performed by a known method such as solder ball or solder plating. The material of the bump 37 is not particularly limited. For example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, a tin-zinc-bismuth metal material Such as solders (alloys), gold-based metal materials, copper-based metal materials, and the like.
ダイシング工程
半導体チップ33、熱硬化性樹脂シート31及び再配線39等の要素からなる積層体のダイシングを行う(図7参照)。これにより、個片化された半導体装置38を得る。
Dicing process Dicing of the laminated body which consists of elements, such as the semiconductor chip 33, the thermosetting resin sheet 31, and the rewiring 39, is performed (refer FIG. 7). Thereby, the semiconductor device 38 separated into pieces is obtained.
以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、各例中、部は特記がない限りいずれも重量基準である。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded. In each example, all parts are based on weight unless otherwise specified.
実施例で使用した成分について説明する。
エポキシ樹脂1:新日鐵化学社製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキシ当量180~210g/eq.融点75~85℃)
エポキシ樹脂2:大日本インキ化学工業(株)製のEXA-4850-150(液状エポキシ樹脂)
エポキシ樹脂3:日本化薬(株)製のEPPN-501-HY(固形エポキシ樹脂)
フェノール樹脂:明和化成社製のMEH-7851SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.軟化点67℃)
エラストマー1:カネカ社製のSIBSTAR 102T(スチレン-イソブチレン-スチレンブロック共重合体)
エラストマー2:下記製造例1で得られたアクリル共重合体
硬化促進剤1:四国化成社製のキュアゾール2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
硬化促進剤2:四国化成社製のキュアゾール2P4MHZ-PW(2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール)
顔料1:三菱化学社製のカーボンブラック#20
顔料2:三菱化学社製のカーボンブラックMA600
難燃剤:伏見製薬社製のラピトルFP-100
無機充填剤:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均粒子径20μm)
The components used in the examples will be described.
Epoxy resin 1: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epoxy equivalent 180-210 g / eq. Melting point 75-85 ° C.)
Epoxy resin 2: EXA-4850-150 (liquid epoxy resin) manufactured by Dainippon Ink & Chemicals, Inc.
Epoxy resin 3: EPPN-501-HY (solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
Phenol resin: MEH-7851SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.)
Elastomer 1: SIBSTAR 102T (styrene-isobutylene-styrene block copolymer) manufactured by Kaneka Corporation
Elastomer 2: Acrylic copolymer curing accelerator obtained in Production Example 1 below: Curazole 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Co., Ltd.
Curing accelerator 2: Curezol 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole) manufactured by Shikoku Kasei
Pigment 1: Carbon black # 20 manufactured by Mitsubishi Chemical Corporation
Pigment 2: Carbon black MA600 manufactured by Mitsubishi Chemical Corporation
Flame retardant: Raptor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd.
Inorganic filler: FB-9454FC manufactured by Denki Kagaku Kogyo Co., Ltd. (fused spherical silica, average particle size 20 μm)
製造例1
ブチルアクリレート、アクリロニトリル、グリシジルメタクリレートを85:8:7の仕込み重量比率にて、2,2’-アゾビスイソブチロニトリルを重合開始剤に用い、メチルエチルケトン中で窒素気流下、70℃で5時間と80℃で1時間のラジカル重合を行うことにより、重量平均分子量80万のアクリル共重合体を得た。
Production Example 1
Butyl acrylate, acrylonitrile, and glycidyl methacrylate were charged at a weight ratio of 85: 8: 7, and 2,2′-azobisisobutyronitrile was used as a polymerization initiator in methyl ethyl ketone at 70 ° C. for 5 hours in a nitrogen stream. And an acrylic copolymer having a weight average molecular weight of 800,000 was obtained by performing radical polymerization at 80 ° C. for 1 hour.
[実施例1]
熱硬化性樹脂シートの作製
表1に記載の配合比に従い、各成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの熱硬化性樹脂シートを作製した。
[Example 1]
Preparation of thermosetting resin sheet According to the mixing ratio described in Table 1, each component was blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to obtain a thickness. A thermosetting resin sheet having a thickness of 500 μm was produced.
得られた熱硬化性樹脂シートを用いて、以下の評価を行った。 The following evaluation was performed using the obtained thermosetting resin sheet.
(粘弾性スペクトロメーターを用いた昇温測定における最低粘度)
熱硬化性樹脂シートから厚さ500μm、直径8mmのサンプルを切り出した。サンプルについて、ティーエーインスツルメント社製粘弾性測定装置ARESを用いて、昇温速度10℃、測定周波数1Hzにて最低粘度を測定した。
その結果、最低粘度は1200Pa・sであった。この時の温度(最低粘度1200Pa・sを示した温度)は110℃であった。結果は表1にも示す。
(Minimum viscosity in temperature measurement using a viscoelastic spectrometer)
A sample having a thickness of 500 μm and a diameter of 8 mm was cut out from the thermosetting resin sheet. About the sample, the minimum viscosity was measured at a temperature increase rate of 10 ° C. and a measurement frequency of 1 Hz using a viscoelasticity measuring device ARES manufactured by TA Instruments.
As a result, the minimum viscosity was 1200 Pa · s. The temperature at this time (the temperature at which the minimum viscosity was 1200 Pa · s) was 110 ° C. The results are also shown in Table 1.
(チップシフト)
直径300mmの円形SUS板上に配置された感圧粘着剤層(日東電工(株)製のリバアルファ)の上に、ダイボンダーSPA-300((株)新川製)を用い、100個の半導体チップ(半導体チップサイズ:5mm□(厚さ300μm))を等間隔に配置した。配置後、感圧粘着剤層上に配置された各半導体チップの位置(成型前半導体チップ位置)を、OGP社製のスマートスコープ CNC500を用いて測定した。
次いで、半導体チップ配置面に熱硬化性樹脂シートを重ね、次いで平行平板プレス機を用いて、減圧下(0.006kg/cm)、100℃、15kg/cm、2分間の条件でプレスして、封止体1を得た。封止体1は、円形SUS板と、円形SUS板上に配置された感圧粘着剤層と、感圧粘着剤層上に配置された半導体チップと、半導体チップを覆う熱硬化性樹脂シートとを備えるものである。封止体1は、平面視で直径300mmの円形であった。
封止体1を120℃、3時間で加熱し、熱硬化性樹脂シートを硬化させた。その後、封止体1を180℃、2分間加熱することで、感圧粘着剤層の粘着力を低下させ、円形SUS板を剥離した。その後、常温にてピールによって感圧粘着剤層を引き剥がした。これにより、半導体チップと半導体チップを覆う封止樹脂とを備える封止体2を得た。なお、封止樹脂は、熱硬化性樹脂シートに由来するものである。
封止体2について、半導体チップ位置(成型後半導体チップ位置)を測定した。
成型後半導体チップ位置と成型前半導体チップ位置を比較することにより、半導体チップのシフト(ずれ幅)を求めた。結果を表2に示す。
(Chip shift)
100 semiconductor chips using a die bonder SPA-300 (manufactured by Shinkawa Co., Ltd.) on a pressure-sensitive adhesive layer (Riva Alpha manufactured by Nitto Denko Co., Ltd.) placed on a circular SUS plate having a diameter of 300 mm (Semiconductor chip size: 5 mm □ (thickness 300 μm)) were arranged at equal intervals. After the placement, the position of each semiconductor chip placed on the pressure sensitive adhesive layer (the position of the semiconductor chip before molding) was measured using a smart scope CNC500 manufactured by OGP.
Next, a thermosetting resin sheet is stacked on the semiconductor chip arrangement surface, and then pressed under a reduced pressure (0.006 kg / cm 2 ) at 100 ° C., 15 kg / cm 2 for 2 minutes using a parallel plate press. Thus, a sealed body 1 was obtained. The sealing body 1 includes a circular SUS plate, a pressure-sensitive adhesive layer disposed on the circular SUS plate, a semiconductor chip disposed on the pressure-sensitive adhesive layer, a thermosetting resin sheet covering the semiconductor chip, Is provided. The sealing body 1 was a circle having a diameter of 300 mm in plan view.
The sealing body 1 was heated at 120 ° C. for 3 hours to cure the thermosetting resin sheet. Thereafter, the sealing body 1 was heated at 180 ° C. for 2 minutes to reduce the adhesive strength of the pressure-sensitive adhesive layer, and the circular SUS plate was peeled off. Thereafter, the pressure-sensitive adhesive layer was peeled off by peeling at room temperature. Thereby, the sealing body 2 provided with the semiconductor chip and the sealing resin which covers the semiconductor chip was obtained. The sealing resin is derived from a thermosetting resin sheet.
About the sealing body 2, the semiconductor chip position (semiconductor chip position after molding) was measured.
By comparing the post-molding semiconductor chip position with the pre-molding semiconductor chip position, the shift (deviation width) of the semiconductor chip was determined. The results are shown in Table 2.
なお、図8に示すように、X方向とは、第4測定点54と第5測定点55を結ぶ直線の方向である。Y方向とは、第1測定点51と第8測定点58を結ぶ直線の方向である。 As shown in FIG. 8, the X direction is a direction of a straight line connecting the fourth measurement point 54 and the fifth measurement point 55. The Y direction is the direction of a straight line connecting the first measurement point 51 and the eighth measurement point 58.
(樹脂厚)
Veeco社製の表面形状測定装置(Dektak8M)を用いて、図8に示す8つの測定点(第1測定点51、第2測定点52、第3測定点53、第4測定点54、第5測定点55、第6測定点56、第7測定点57、及び第8測定点58)の厚さを測定した。結果を表2に示す。
(Resin thickness)
Using a surface shape measuring device (Dektak 8M) manufactured by Veeco, eight measurement points (first measurement point 51, second measurement point 52, third measurement point 53, fourth measurement point 54, fifth) shown in FIG. The thicknesses of the measurement point 55, the sixth measurement point 56, the seventh measurement point 57, and the eighth measurement point 58) were measured. The results are shown in Table 2.
(表面段差)
封止体2の半導体チップが露出した側の面において、図8に示す9つの測定点における半導体チップと熱硬化性樹脂シートの段差を測定した。測定には、Veeco社製表面形状測定装置(Dektak8M)を用いた。結果を表2に示す。
(Surface difference)
On the surface of the sealing body 2 on which the semiconductor chip was exposed, the level difference between the semiconductor chip and the thermosetting resin sheet at the nine measurement points shown in FIG. 8 was measured. For the measurement, a surface shape measuring device (Dektak8M) manufactured by Veeco was used. The results are shown in Table 2.
(反り)
サーマトロニクス貿易社製の反り測定装置(サーモレイ PS400)を用いて、図8に示す4つの測定点(第1測定点51、第4測定点54、第5測定点55、及び第8測定点58)の反り量を測定した。結果を表2に示す。
(warp)
The four measurement points (first measurement point 51, fourth measurement point 54, fifth measurement point 55, and eighth measurement point 58) shown in FIG. 8 using the warpage measuring device (Thermo Ray PS400) manufactured by Thermotronics Trading Co., Ltd. ) Was measured. The results are shown in Table 2.
(ボイド)
封止体2の断面(観察面積100cm)を実体顕微鏡(倍率100倍)で観察した。直径20um以上のボイドが観察されなかった場合を+と判定し、観察された場合を-と判定した。結果を表1に示す。
(void)
The cross section (observation area: 100 cm 2 ) of the sealing body 2 was observed with a stereomicroscope (magnification 100 times). A case where a void having a diameter of 20 μm or more was not observed was determined as +, and a case where a void was observed was determined as −. The results are shown in Table 1.
(糊残り)
封止体2の感圧粘着剤層が剥離された側の面を100倍の実体顕微鏡で観察し、粘着剤残渣物の有無を確認した(観察面積100cm)。粘着剤残渣物が確認されなかった場合を+と判定し、確認された場合を-と判定した。結果を表1に示す。
(Adhesive residue)
The surface of the sealing body 2 from which the pressure-sensitive adhesive layer was peeled was observed with a 100-fold stereomicroscope to confirm the presence or absence of an adhesive residue (observation area 100 cm 2 ). The case where no adhesive residue was confirmed was judged as +, and the case where it was confirmed was judged as-. The results are shown in Table 1.
[実施例2]
表1に記載の配合比に従い、実施例1と同様の方法で、厚さ500μmの熱硬化性樹脂シートを作製した。
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は5μmであった。反りの最大値は2.8mmであった。
表面段差の最大値は6.5μmであった。他の評価結果は表1に示す。
[Example 2]
According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 μm was produced in the same manner as in Example 1.
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of chip shift was 5 μm. The maximum value of warpage was 2.8 mm.
The maximum value of the surface step was 6.5 μm. Other evaluation results are shown in Table 1.
[実施例3]
表1に記載の配合比に従い、実施例1と同様の方法で、厚さ500μmの熱硬化性樹脂シートを作製した。
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は13μmであった。反りの最大値は1.4mmであった。
表面段差の最大値は4.2μmであった。他の評価結果は表1に示す。
[Example 3]
According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 μm was produced in the same manner as in Example 1.
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of chip shift was 13 μm. The maximum value of warpage was 1.4 mm.
The maximum value of the surface step was 4.2 μm. Other evaluation results are shown in Table 1.
[比較例1]
熱硬化性樹脂シートの作製
表1に記載の配合比に従い、各成分をメチルエチルケトンに溶解ないし分散し、固形分40重量%のワニスを作製した。離型処理を施したPETフィルム上に、溶剤乾燥後の塗膜の厚さが50μmになるようにワニスを塗工し、次いで乾燥条件を120℃、3分として塗膜を乾燥させて、厚さ50μmの樹脂シートを得た。得られた樹脂シートを、ラミネータを用いて厚み500μmになるまで積層し、厚さ500μmの熱硬化性樹脂シートを作製した。
[Comparative Example 1]
Production of Thermosetting Resin Sheet According to the blending ratio shown in Table 1, each component was dissolved or dispersed in methyl ethyl ketone to produce a varnish having a solid content of 40% by weight. On the PET film subjected to the mold release treatment, the varnish was applied so that the thickness of the coating film after drying the solvent was 50 μm, and then the drying condition was 120 ° C. for 3 minutes to dry the coating film. A resin sheet having a thickness of 50 μm was obtained. The obtained resin sheet was laminated | stacked until it became thickness of 500 micrometers using the laminator, and the thermosetting resin sheet of thickness 500 micrometers was produced.
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は120μmであった。反りの最大値は4.5mmであった。
表面段差の最大値は25μmであった。他の評価結果は表1に示す。
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of the chip shift was 120 μm. The maximum value of warpage was 4.5 mm.
The maximum value of the surface step was 25 μm. Other evaluation results are shown in Table 1.
[比較例2]
表1に記載の配合比に従い、実施例1と同様の方法で、厚さ500μmの熱硬化性樹脂シートを作製した。
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は25μmであった。反りの最大値は3.1mmであった。
表面段差の最大値は10.5μmであった。他の評価結果は表1に示す。
[Comparative Example 2]
According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 μm was produced in the same manner as in Example 1.
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of chip shift was 25 μm. The maximum value of warpage was 3.1 mm.
The maximum value of the surface step was 10.5 μm. Other evaluation results are shown in Table 1.
[比較例3]
表1に記載の配合比に従い、実施例1と同様の方法で、厚さ500μmの熱硬化性樹脂シートを作製した。
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は19μmであった。反りの最大値は1.3mmであった。
表面段差の最大値は4.1μmであった。他の評価結果は表1に示す。
[Comparative Example 3]
According to the blending ratio shown in Table 1, a thermosetting resin sheet having a thickness of 500 μm was produced in the same manner as in Example 1.
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of the chip shift was 19 μm. The maximum value of warpage was 1.3 mm.
The maximum value of the surface step was 4.1 μm. Other evaluation results are shown in Table 1.
[実施例4]
表1に記載の配合比に従い、各成分をメチルエチルケトンとトルエンを5:5で含む混合液と混合し、成分濃度90重量%の混合物を作製した。混合物を自転公転式ミキサー(シンキ―社製、あわとり練太郎)を用いて、2000rpmで10分間撹拌することで、塗工用ワニスを得た。塗工用ワニスを厚み50μmのシリコーン処理PET(三菱化学製:MRF50)上に塗工し、次いで熱風乾燥機で110℃10分間乾燥させることにより、厚さ50μmの樹脂シートを得た。得られた樹脂シートを、ラミネータを用いて厚み500μmになるまで積層し、厚さ500μmの熱硬化性樹脂シートを作製した。なお、メチルエチルケトンとトルエンを含む混合液を使用したのは、エラストマーであるSIBSTAR 072Tがメチルエチルケトンに溶解しにくいためである。
得られた熱硬化性樹脂シートを用いて、実施例1と同様の評価を行った。
チップシフトの最大値は9μmであった。反りの最大値は1.9mmであった。
表面段差の最大値は5.0μmであった。他の評価結果は表1に示す。
[Example 4]
According to the blending ratio shown in Table 1, each component was mixed with a mixed solution containing methyl ethyl ketone and toluene in a ratio of 5: 5 to prepare a mixture having a component concentration of 90% by weight. A varnish for coating was obtained by stirring the mixture for 10 minutes at 2000 rpm using a rotation and revolution mixer (Shinki Co., Ltd., Nertaro Awatori). The coating varnish was coated on a 50 μm thick silicone-treated PET (Mitsubishi Chemical: MRF50) and then dried at 110 ° C. for 10 minutes with a hot air dryer to obtain a resin sheet having a thickness of 50 μm. The obtained resin sheet was laminated | stacked until it became thickness of 500 micrometers using the laminator, and the thermosetting resin sheet of thickness 500 micrometers was produced. The reason why the mixed solution containing methyl ethyl ketone and toluene was used is that SIBSTAR 072T, which is an elastomer, is difficult to dissolve in methyl ethyl ketone.
Evaluation similar to Example 1 was performed using the obtained thermosetting resin sheet.
The maximum value of the chip shift was 9 μm. The maximum value of warpage was 1.9 mm.
The maximum value of the surface step was 5.0 μm. Other evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
3   仮固定材
3a  粘着剤層
3b  支持体
31  熱硬化性樹脂シート
33  半導体チップ
34  チップ搭載仮固定材
35  封止体
36  研削体
37  バンプ
38  半導体装置
39  再配線
50  第0測定点
51  第1測定点
52  第2測定点
53  第3測定点
54  第4測定点
55  第5測定点
56  第6測定点
57  第7測定点
58  第8測定点
3 Temporary Fixing Material 3a Adhesive Layer 3b Support 31 Thermosetting Resin Sheet 33 Semiconductor Chip 34 Chip Mounted Temporary Fixing Material 35 Sealing Body 36 Grinding Body 37 Bump 38 Semiconductor Device 39 Rewiring 50 0th Measurement Point 51 First Measurement Point 52 second measurement point 53 third measurement point 54 fourth measurement point 55 fifth measurement point 56 sixth measurement point 57 seventh measurement point 58 eighth measurement point

Claims (6)

  1. 無機充填剤を65~93重量%含み、粘弾性スペクトロメーターを用いた昇温測定における最低粘度が30~3000Pa・sである熱硬化性樹脂シートを用いて、
    支持板上に配置された複数の電子部品を一括封止する工程(A)を含む半導体装置の製造方法。
    Using a thermosetting resin sheet containing 65 to 93% by weight of an inorganic filler and having a minimum viscosity of 30 to 3000 Pa · s in a temperature rise measurement using a viscoelastic spectrometer,
    A manufacturing method of a semiconductor device including a step (A) of collectively sealing a plurality of electronic components arranged on a support plate.
  2. 前記支持板は、少なくとも1辺が300mm以上の略矩形状、少なくとも1辺が300mm以上の略正方形状、及び直径又は短径が12インチ以上の略円形状のうちのいずれかの形状である請求項1に記載の半導体装置の製造方法。 The support plate has any one of a substantially rectangular shape having at least one side of 300 mm or more, a substantially square shape having at least one side of 300 mm or more, and a substantially circular shape having a diameter or minor axis of 12 inches or more. Item 14. A method for manufacturing a semiconductor device according to Item 1.
  3. 前記電子部品は半導体チップである請求項1又は2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the electronic component is a semiconductor chip.
  4. 前記工程(A)は、
    前記支持板及び前記支持板上に配置された前記複数の電子部品を備えるチップ搭載板上に、前記熱硬化性樹脂シートを配置して積層体を形成する工程(A-1)と、
    前記積層体を減圧下で加圧プレスする工程(A-2)とを含む請求項1~3のいずれかに記載の半導体装置の製造方法。
    The step (A)
    A step (A-1) of forming a laminate by disposing the thermosetting resin sheet on a chip mounting plate including the support plate and the plurality of electronic components disposed on the support plate;
    The method for manufacturing a semiconductor device according to any one of claims 1 to 3, further comprising a step (A-2) of pressing the laminated body under reduced pressure.
  5. 前記工程(A-2)の加圧プレスは、平行平板プレス機を用いて行う請求項4に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 4, wherein the pressure pressing in the step (A-2) is performed using a parallel plate press.
  6. 無機充填剤を65~93重量%含み、
    粘弾性スペクトロメーターを用いた昇温測定における最低粘度が30~3000Pa・sであり、
    支持板上に配置された複数の電子部品を一括封止する工程(A)を含む半導体装置の製造方法に使用するための熱硬化性樹脂シート。
     
    Containing 65 to 93% by weight of inorganic filler,
    The minimum viscosity in the temperature rise measurement using a viscoelastic spectrometer is 30 to 3000 Pa · s,
    A thermosetting resin sheet for use in a manufacturing method of a semiconductor device including a step (A) of collectively sealing a plurality of electronic components arranged on a support plate.
PCT/JP2014/055271 2013-03-07 2014-03-03 Semiconductor device manufacturing method and thermosetting resin sheet WO2014136720A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480012499.6A CN105009265A (en) 2013-03-07 2014-03-03 Semiconductor device manufacturing method and thermosetting resin sheet
KR1020157024640A KR20150126852A (en) 2013-03-07 2014-03-03 Semiconductor device manufacturing method and thermosetting resin sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-045720 2013-03-07
JP2013045720 2013-03-07
JP2014-022335 2014-02-07
JP2014022335A JP2014197670A (en) 2013-03-07 2014-02-07 Semiconductor device manufacturing method and thermosetting resin sheet

Publications (1)

Publication Number Publication Date
WO2014136720A1 true WO2014136720A1 (en) 2014-09-12

Family

ID=51491237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055271 WO2014136720A1 (en) 2013-03-07 2014-03-03 Semiconductor device manufacturing method and thermosetting resin sheet

Country Status (5)

Country Link
JP (1) JP2014197670A (en)
KR (1) KR20150126852A (en)
CN (1) CN105009265A (en)
TW (1) TW201445648A (en)
WO (1) WO2014136720A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019817A1 (en) * 2013-08-07 2015-02-12 日東電工株式会社 Method for producing semiconductor package
JP2018527425A (en) * 2015-06-29 2018-09-20 テーザ・ソシエタス・ヨーロピア Adhesives especially for the encapsulation of electronic devices
KR20200081336A (en) 2017-11-17 2020-07-07 린텍 가부시키가이샤 Resin sheet
NL2029703A (en) * 2020-12-21 2022-07-15 Intel Corp Microelectronic structures including bridges

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603174B2 (en) 2016-05-11 2019-11-06 信越化学工業株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6224188B1 (en) 2016-08-08 2017-11-01 太陽インキ製造株式会社 Semiconductor encapsulant
JP7070559B2 (en) 2017-04-28 2022-05-18 昭和電工マテリアルズ株式会社 Encapsulating film and encapsulation structure, and methods for manufacturing these
KR102445450B1 (en) * 2017-06-12 2022-09-20 쿨리케 & 소파 네덜란드 비.브이. Parallel assembly of discrete components onto a substrate
JP6780675B2 (en) * 2017-07-24 2020-11-04 株式会社デンソー Semiconductor devices and methods for manufacturing semiconductor devices
WO2019021766A1 (en) * 2017-07-24 2019-01-31 株式会社デンソー Semiconductor device and method for producing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263199A (en) * 2009-04-07 2010-11-18 Furukawa Electric Co Ltd:The Manufacturing method of semiconductor device, and semiconductor device
JP2011211242A (en) * 2009-12-14 2011-10-20 Sumitomo Bakelite Co Ltd Method for producing electronic device, electronic device, method for producing electronic device package, and electronic device package
WO2012026091A1 (en) * 2010-08-24 2012-03-01 住友ベークライト株式会社 Method for manufacturing electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263199A (en) * 2009-04-07 2010-11-18 Furukawa Electric Co Ltd:The Manufacturing method of semiconductor device, and semiconductor device
JP2011211242A (en) * 2009-12-14 2011-10-20 Sumitomo Bakelite Co Ltd Method for producing electronic device, electronic device, method for producing electronic device package, and electronic device package
WO2012026091A1 (en) * 2010-08-24 2012-03-01 住友ベークライト株式会社 Method for manufacturing electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019817A1 (en) * 2013-08-07 2015-02-12 日東電工株式会社 Method for producing semiconductor package
JP2018527425A (en) * 2015-06-29 2018-09-20 テーザ・ソシエタス・ヨーロピア Adhesives especially for the encapsulation of electronic devices
KR20200081336A (en) 2017-11-17 2020-07-07 린텍 가부시키가이샤 Resin sheet
NL2029703A (en) * 2020-12-21 2022-07-15 Intel Corp Microelectronic structures including bridges
NL2034818A (en) * 2020-12-21 2023-07-11 Intel Corp Microelectronic structures including bridges

Also Published As

Publication number Publication date
TW201445648A (en) 2014-12-01
JP2014197670A (en) 2014-10-16
CN105009265A (en) 2015-10-28
KR20150126852A (en) 2015-11-13

Similar Documents

Publication Publication Date Title
WO2014136720A1 (en) Semiconductor device manufacturing method and thermosetting resin sheet
US9659883B2 (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
JP5349432B2 (en) Manufacturing method of electronic component device and resin composition sheet for sealing electronic component used therefor
WO2014162951A1 (en) Semiconductor device manufacturing method
TWI621225B (en) Hollow sealing resin sheet and manufacturing method of hollow package
WO2015104917A1 (en) Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
WO2014126150A1 (en) Sealing sheet for semiconductor element, semiconductor device, and semiconductor-device production method
WO2015098833A1 (en) Production method for semiconductor package
TW201532151A (en) Production method for semiconductor package
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
TW201532211A (en) Method for producing semiconductor package
JP2006303119A (en) Method of manufacturing semiconductor device and semiconductor sealing resin sheet
KR20180048674A (en) Resin composition, cured product, sealing film and sealing structure
WO2016072236A1 (en) Resin composition, semiconductor device manufacturing method and semiconductor device
JP2015082606A (en) Semiconductor package manufacturing method
WO2014156833A1 (en) Hollow sealing resin sheet and production method for hollow package
JP7142233B2 (en) EPOXY RESIN COMPOSITION FOR ENCAPSULATION, CURED PRODUCT AND SEMICONDUCTOR DEVICE
JP6302801B2 (en) Sealing sheet
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
JP2015220400A (en) Method for manufacturing electronic device package and method for sealing electronic device
JP2015126129A (en) Method of manufacturing electronic component package
TW202032674A (en) Method of manufacturing semiconductor device, film-like adhesive, and dicing/die-bonding integrated film
JP2015220401A (en) Method for manufacturing electronic device package and method for sealing electronic device
JP2019083342A (en) Sealing sheet with separator, and manufacturing method of semiconductor device
JP2007238757A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024640

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14761255

Country of ref document: EP

Kind code of ref document: A1