WO2014126185A1 - Pressure-sensing element, and blood circuit and blood purification apparatus provided with same - Google Patents

Pressure-sensing element, and blood circuit and blood purification apparatus provided with same Download PDF

Info

Publication number
WO2014126185A1
WO2014126185A1 PCT/JP2014/053421 JP2014053421W WO2014126185A1 WO 2014126185 A1 WO2014126185 A1 WO 2014126185A1 JP 2014053421 W JP2014053421 W JP 2014053421W WO 2014126185 A1 WO2014126185 A1 WO 2014126185A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
blood
pressure
chamber
liquid chamber
Prior art date
Application number
PCT/JP2014/053421
Other languages
French (fr)
Japanese (ja)
Inventor
真也 竹内
松本 宏
三喜子 池田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014508210A priority Critical patent/JPWO2014126185A1/en
Publication of WO2014126185A1 publication Critical patent/WO2014126185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0023Fluidic connecting means for flowthrough systems having a flexible pressure transmitting element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • A61M1/3641Pressure isolators

Definitions

  • the present invention relates to a pressure detector and a blood circuit and a blood purification apparatus provided with the pressure detector.
  • Extracorporeal circulation therapy is a treatment method in which blood is removed from a patient's body, blood is treated outside the body using a blood purification device, and the treated blood is returned to the body to purify the blood.
  • a pressure detector that measures the pressure is disposed in the extracorporeal circuit.
  • the following two examples are generally used as pressure detectors arranged in the extracorporeal circuit (Patent Documents 1 and 2).
  • Patent Document 1 a casing (pressure detection) whose interior is separated into a blood chamber and an air chamber by a diaphragm (a membrane deformed by the pressure in the body fluid circulation circuit), which is a flexible sheet, so that blood does not come into contact with air.
  • a pressure measuring device having a body is disclosed.
  • the casing at least a part of the diaphragm is deformed by the pressure of blood filling the blood chamber, and the pressure in the extracorporeal circuit is measured by measuring the deformation amount of the diaphragm.
  • Patent Document 2 paying attention to coagulation associated with the retention of blood, the arrangement of a liquid outlet and a liquid inlet, which are flow paths for introducing liquid into a casing (pressure detector), is used, and the liquid outlet is a liquid inlet.
  • a pressure sensor is disclosed that is arranged at a position that is at least 1/2 turn and less than 1 turn away from the center.
  • the liquid outlet is arranged at a position separated from the liquid inlet by a half or more and less than one round, so that the liquid introduced into the casing flows in along the inner periphery of the side surface of the liquid chamber.
  • circulation is generated, and retention due to rapid expansion of the flow path is eliminated to suppress blood coagulation.
  • the present invention provides a pressure detector that measures the pressure in the extracorporeal circuit without contact between blood and air, and suppresses the retention of blood by improving the flow of blood inside the pressure detector.
  • An object of the present invention is to provide a pressure detector having a novel structure that further suppresses coagulation.
  • the present invention provides the following pressure detectors (1) to (5), the blood circuit (7), and the blood purification device (8).
  • a pressure detecting body for measuring a pressure in an extracorporeal circuit for performing extracorporeal processing of blood having a deformed surface deformed by the pressure in the extracorporeal circuit, a liquid inlet and a liquid outlet.
  • a chamber member having a liquid chamber for allowing the blood to flow in and out, a liquid inlet joint for connecting the liquid inlet and the extracorporeal circulation circuit with a pipe, the liquid outlet and the extracorporeal circuit.
  • a liquid outlet joint for communicating with a pipe, and the flow path inside the liquid inlet joint and the liquid outlet joint extends in a frustum shape toward the liquid chamber.
  • Circuit pressure detector (2) The pressure detector for the extracorporeal circuit according to (1), wherein the liquid chamber has a cylindrical shape, and the liquid inlet and the liquid outlet are arranged on a cylindrical side surface of the liquid chamber. .
  • a blood circuit comprising the extracorporeal circuit pressure detector according to any one of (1) to (6) and an extracorporeal circuit.
  • a blood purification apparatus comprising the blood circuit according to (7).
  • the blood flowing from the extracorporeal circuit into the liquid chamber constituting the chamber member passes through the liquid inlet joint spreading in a frustum shape toward the liquid chamber. Therefore, the blood stay can be suppressed regardless of the blood viscosity and the treatment flow rate, and as a result, blood coagulation can be suppressed.
  • FIG. 1 It is a schematic diagram which shows the embodiment of the pressure detection body of this invention from a side surface. It is a schematic diagram which shows the embodiment of the pressure detection body of this invention from the upper surface. It is a schematic diagram which shows another embodiment of the pressure detection body of this invention. It is a schematic diagram which shows the embodiment of the blood circuit which has a pressure detection body of this invention. It is a schematic diagram which shows the embodiment of the blood purification apparatus which has a pressure detection body of this invention. It is the schematic diagram which shows the component of the pressure detection body of this invention used for Example 1 from the upper surface. It is a figure which shows each flow state of (a) before flowing ink, and after flowing ink (b) with respect to the pressure detection body of this invention used for Example 1.
  • FIG. 1 It is a schematic diagram which shows the component of the conventional pressure detection body used for the comparative example 1 from the upper surface. It is a figure which shows the confirmation result of each flow state of (a) before flowing ink, and after flowing ink (b) with respect to the conventional pressure detection body used for the comparative example 1.
  • FIG. It is a schematic diagram which shows the component of the pressure detection body used for the comparative example 2 from the upper surface.
  • the pressure detector for the extracorporeal circuit is a pressure detector for measuring the pressure in the extracorporeal circuit for performing extracorporeal processing of blood.
  • the deformed surface deformed by the pressure in the extracorporeal circuit and the liquid flow A chamber member having an inlet and a liquid outlet and having a liquid chamber for allowing the blood to flow in and out; a liquid inlet joint for connecting the liquid inlet and the extracorporeal circuit through a pipe; and the liquid A liquid outlet joint for connecting the outlet and the extracorporeal circuit with a pipe, and the flow path inside the liquid inlet joint and the liquid outlet joint is conical toward the liquid chamber. It features a trapezoidal shape.
  • Extracorporeal circuit is a tubular channel through which blood extracted from the human body circulates.
  • the “deformation surface” is a partial surface constituting the chamber member that is at least partially deformed by the pressure in the extracorporeal circuit.
  • the “liquid inlet” is an inlet through which blood flows into the liquid chamber in the chamber member, and the “liquid outlet” is an outlet through which blood is discharged from the liquid chamber within the chamber member.
  • the “liquid inlet joint” is a flow path that connects the extracorporeal circuit and the liquid inlet, and the “liquid outlet joint” is a flow path that connects the extracorporeal circuit and the liquid outlet.
  • FIG. 1 and 2 are schematic views showing an embodiment of the pressure detector for the extracorporeal circuit.
  • a pressure detection body 1 is connected to an extracorporeal circuit 2 and has a deformed surface 8 deformed by the pressure in the extracorporeal circuit, a liquid inlet 3 and a liquid outlet 4, and allows blood to flow in and out.
  • a chamber member 9 including a liquid chamber 5 to be discharged and an air chamber 7 adjacent to the liquid chamber 5 and disposed so as to sandwich the deformation surface 8 is provided.
  • the air chamber 7 is connected to the pressure measuring device 6.
  • the diameter of the liquid inlet in the circumferential direction of the liquid chamber is the diameter 24 in the circumferential direction of the liquid inlet.
  • the shapes of the liquid inlet joint 10 and the liquid outlet joint 11 are the liquid inlet 3, the liquid outlet 4, and the liquid chamber. It is preferable that the shape is a smooth connection.
  • the specific shape can be appropriately designed according to the flow velocity and viscosity of the liquid, but the flow paths inside the liquid inlet joint 10 and the liquid outlet joint 11 are frustum-shaped toward the liquid chamber 5 side. More preferably, it is configured to spread.
  • the means for measuring the pressure is that the deformation surface 8 arranged so as to sandwich the liquid chamber 5 and the air chamber 7 is deformed by the pressure of blood flowing in the liquid chamber 5 and indirectly detects the deformation amount.
  • the pressure in the extracorporeal circuit 2 is measured. Specifically, in the air chamber 7 which is an airtight space between the deformation surface 8 and the pressure measuring device 6, a pressure change accompanying the deformation of the deformation surface 8 is generated in the air chamber 7, and the pressure change Is measured using the pressure measuring device 6 to indirectly measure the pressure in the extracorporeal circuit 2.
  • a method of measuring the pressure in the extracorporeal circuit 2 by directly measuring the deformation amount of the deformation surface 8 with a load sensor, a strain gauge or the like may be used.
  • the pressure measuring method is not particularly limited as long as it can correctly measure the pressure in the extracorporeal circuit, and is not particularly limited.
  • the liquid chamber 5 has a cylindrical shape, but the shape of the liquid chamber 5 is not limited, and may be a polygonal column such as a hexagonal column. Further, there is no particular problem even if the arbitrary cross-sectional shape of the liquid chamber 5 parallel to the deformation surface 8 and the deformation surface 8 have different shapes and sizes. However, in order to form a smooth flow without generating blood stagnation, the liquid chamber 5 has a cylindrical shape and the deformation surface 8 is a circular film having the same radius as the liquid chamber 5. Preferably there is.
  • the side surface of the liquid chamber 5 is linear as viewed from the cross section, but there is no problem even if it is inclined at an arbitrary angle.
  • the liquid chamber side corners 12, 13, and 14 which are corners inside the liquid chamber 5 are perpendicular, but the corners may be rounded.
  • the inner corner of the liquid chamber 5 is preferably rounded to some extent.
  • the shape of the deformation surface 8 is a flat plate-like film, but there is no problem even if it has a corrugated shape as seen from the cross section. Further, the deformation surface 8 does not necessarily have to be a portion where the entire surface is deformed, and the area and shape of the deformation portion of the deformation surface 8 can be any ratio or shape as long as the pressure can be measured correctly. There is no particular limitation.
  • the flow paths of the liquid inlet joint 10 and the liquid outlet joint 11 having a truncated cone shape flow in parallel to the deformation surface 8 toward the liquid inlet 3 and the liquid outlet 4.
  • an angle with respect to the deformation surface 8 may be provided.
  • the liquid inlet joint 10 and the liquid outlet joint 11 that are frustum-shaped have the blood within an angle range of 0 to 30 degrees with respect to the deformation surface 8. It is preferably arranged so as to flow into the chamber member 9, more preferably within a range of 0 to 15 degrees, most preferably parallel.
  • the liquid inlet 3 and the liquid outlet 4 are provided at intermediate positions with respect to the height direction of the side surface of the liquid chamber 5, but the position of the liquid inlet is the height of the side surface. It may deviate from an intermediate position with respect to the direction. Further, the positions of the liquid inlet 3 and the liquid outlet 4 may be shifted from the same axis on the side of the liquid chamber 5 with respect to the height direction of the side of the liquid chamber 5. However, in order to form a smoother liquid flow, the liquid inlet 3 and the liquid outlet 4 are preferably in an intermediate position with respect to the height direction of the side surface of the liquid chamber 5. The positions of the liquid inlet 3 and the liquid outlet 4 are preferably on the same axis on the side surface of the liquid chamber 5 with respect to the height direction of the chamber 5.
  • the liquid inlet joint 10 for connecting the liquid inlet 3 and the extracorporeal circuit 2 with a pipe has a flow path in the shape of a frustum in the direction of the liquid chamber 5. It has spread.
  • the portion where the liquid inlet joint 10 and the liquid chamber 5 are connected that is, the diameter 24 in the circumferential direction of the liquid inlet 3 is preferably wider than that of the extracorporeal circuit 2.
  • De 4 Af / Wp (Formula 1)
  • De is an internal circulation circuit inner diameter
  • Af is a cross-sectional area at an arbitrary position of the liquid inlet joint
  • Wp is a cross-sectional circumference at an arbitrary position of the liquid inlet joint.
  • the liquid inlet 3 is constituted by a connection surface between the liquid inlet joint 10 and the liquid chamber 5, and the connection surface, that is, the diameter 24 in the circumferential direction of the liquid inlet 3 satisfies the relationship of Equation 1. I just need it. However, in order to form a smoother and smoother flow in the liquid chamber 5, the diameter 24 in the circumferential direction of the liquid inlet 3 is 13.9% or more of the circumferential length of the liquid chamber 5. It is preferable. On the other hand, when the diameter 24 in the circumferential direction of the liquid inlet 3 is 50% or more with respect to the circumferential length of the liquid chamber 5, the fluid inlet joint 10 cannot have a frustum shape. That is, the diameter 24 in the circumferential direction of the liquid inlet 3 is most preferably in the range of 13.9% to 50% of the circumferential length of the liquid chamber 5.
  • the liquid inlet 3 and the liquid outlet 4 are installed at opposite positions with the chamber member 9 in between, but may be shifted from the opposite positions.
  • the opposite position is most preferable.
  • the facing position means that the liquid chamber 5 has a symmetrical relationship with the center of the liquid chamber 5 as an axis.
  • the liquid inlet 3 and the liquid outlet 4 have the same shape, but the liquid outlet 4 has a smaller installation area with the liquid chamber 5 than the liquid inlet 3.
  • the effect of the invention is not reduced.
  • the fluid inlet 3 and the liquid outlet 4 have the same shape in order to form a liquid flow that is smoother and more uniform in terms of formability of the pressure detector 1 and prevention of incorrect attachment of the extracorporeal circuit 2. Most preferably.
  • the material of the liquid chamber 5 and the air chamber 7 is not particularly limited as being hard or soft.
  • the liquid chamber 5 is affected by environmental factors such as liquid temperature and temperature, and external force that deforms the liquid chamber 5 and the air chamber 7. If the shape of the air chamber 7 changes, it becomes difficult to correctly measure the pressure in the extracorporeal circuit 2. Therefore, the material of the liquid chamber 5 and the air chamber 7 is preferably hard, and moreover, a material having biocompatibility is preferable in order to directly or indirectly touch the patient's blood.
  • vinyl chloride, polycarbonate, polypropylene, polyethylene, polyurethane and the like can be mentioned, and any of them can be suitably used.
  • the manufacturing method is not particularly limited, and examples thereof include injection molding, blow molding, and molding by cutting.
  • the material of the deformable surface 8 is hard, the amount of deformation due to pressure becomes small, and it becomes difficult to accurately measure the pressure in the extracorporeal circuit 2, so that it is a soft material that deforms flexibly with respect to the pressure. It is preferable that Furthermore, a material having biocompatibility is preferable because it directly or indirectly contacts the patient's blood.
  • a material having biocompatibility is preferable because it directly or indirectly contacts the patient's blood.
  • polyvinyl chloride, silicone resin, styrene thermoplastic elastomer, styrene thermoplastic elastomer compound, etc. can be used, but not limited to this, any material having biocompatibility is suitable. Can be used.
  • the material of the extracorporeal circuit 2 may be any material such as synthetic resin, metal and glass, but a synthetic resin, particularly a thermoplastic resin is preferable from the viewpoint of manufacturing cost, workability and operability.
  • a synthetic resin particularly a thermoplastic resin is preferable from the viewpoint of manufacturing cost, workability and operability.
  • the thermoplastic resin include polyolefin resins, polyamide resins, polyester resins, polyurethane resins, fluorine resins, silicon resins, ABS resins, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, Polyacetal or the like can be used.
  • the soft material is preferable because it is strong against bending and cracking and has excellent flexibility during operation, and soft vinyl chloride is particularly preferable from the viewpoint of assembly.
  • the material of the liquid inlet joint 10 and the liquid outlet joint 11 is not particularly hard or soft, and any of synthetic resin, metal, glass, etc. may be used, but in order to directly or indirectly touch the patient's blood, A material having biocompatibility is preferred. Moreover, it is preferable that it is the same material as the liquid chamber 5 and the air chamber 7 from a viewpoint of manufacturing cost, workability, and assemblability. For example, vinyl chloride, polycarbonate, polypropylene, polyethylene, polyurethane, or the like can be used. Moreover, the manufacturing method is not particularly limited, and specifically, injection molding, blow molding, molding by cutting, or the like can be used. Further, the extracorporeal circuit 2, the liquid inlet joint 10 and the liquid outlet joint 11 may be integrally molded.
  • the joining method of the liquid chamber 5, the air chamber 7, the deformed surface 8, the liquid inlet joint 10, the liquid outlet joint 11 and the extracorporeal circulation circuit 2 is not particularly limited. Joining and adhesion can be mentioned. For example, in hot melt bonding, high frequency welding, induction heating welding, ultrasonic welding, friction welding, spin welding, hot plate welding, hot wire welding and the like can be mentioned, and in bonding, cyanoacrylate, epoxy, polyurethane, Examples include adhesion using a synthetic rubber type, an ultraviolet curable type, a modified acrylic resin, a hot melt type, and the like.
  • bonding of a hard material and a soft material can include a mechanical seal that seals a soft material by pressing the hard material, and a hot-melt bonding or bonding as described above. .
  • Such a pressure detector 1 may be used as it is after being molded and joined, but it is sterilized and used particularly in medical applications for extracorporeal circulation therapy.
  • the sterilization method may be in accordance with a normal medical device sterilization method, and may be sterilized by a chemical solution, gas, radiation, high-pressure steam, heating or the like.
  • the size of the liquid chamber 5 is preferably about 1 to 10 cm 3 in volume, more preferably about 1 to 5 cm 3 , and most preferably 1 to 3 cm 3 .
  • the size of the air chamber 7 is preferably 0.2 to 1.0 cm 3 in volume, more preferably 0.3 to 0.8 cm 3 .
  • the blood circuit of the present invention is characterized by comprising the above-mentioned pressure detecting body for extracorporeal circuit and the extracorporeal circuit.
  • FIG. 15 As an embodiment of the above blood circuit, a blood circuit 15 having a pressure detector 1 and an extracorporeal circuit 2 is shown in FIG.
  • the blood circuit 15 has a configuration in which the pressure detector 1, the drip chamber 16, and the like are connected by the extracorporeal circuit 2.
  • the term “continuous” means that each of them is simply connected, or the pressure detector 1, the drip chamber 16, and the extracorporeal circulation at a predetermined position with respect to the substrate 17 made of a hard or soft material.
  • the circuit 2 or the like may be attached.
  • substrate 17 it is preferable that it is a hard material from a viewpoint of attaching / detaching to the blood purification apparatus, and attaching / detaching the pressure detection body 1, the extracorporeal circulation circuit 2, etc.
  • FIG. Specifically, ABS resin, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyethersulfone, polyethylene terephthalate, or the like can be used.
  • the blood purification apparatus of the present invention is characterized by comprising the above-described blood circuit.
  • a blood purification device 18 having a blood circuit 15 is shown in FIG.
  • the blood purification apparatus 18 has a configuration in which an operation panel 19, a module holder 20, a blood pump 21, a chemical liquid holder 22, and the like are arranged at predetermined positions, and a blood circuit 15, a blood purification module 23, and the like are installed therein. Are connected to each other.
  • the blood purification device 18 is used for blood purification therapy after setting according to the blood purification module 23 to be used.
  • Example 1 The flow state of the liquid was confirmed by the following methods 1) to 5) using the pressure detector having the configuration shown in FIG. 1)
  • the first liquid to be circulated as simulated blood to the extracorporeal circuit and pressure detector is an xanthan gum aqueous solution (concentration 750 mg / L), and the solution is fed at a flow rate of 30 ml / min using a feed pump, and is extracorporeally circulated.
  • the circuit and pressure detector were filled.
  • an appropriate amount of ink was poured from the extracorporeal circuit on the liquid inlet side of the pressure detector while the liquid feed pump was still running (30 ml / min).
  • the flow state of the ink in the liquid chamber in the pressure detector was visually confirmed.
  • a soft polyvinyl chloride tube having an inner diameter of about 3.0 mm was connected to the liquid inlet and the liquid outlet, and the liquid feed pump was installed on the extracorporeal circuit on the liquid inlet side.
  • the volume of the blood chamber of the pressure detection body is approximately 2.3 cm 3
  • the flow path connecting the extracorporeal circuit and the liquid chamber is a frustum shape
  • the diameter A in the circumferential direction of the liquid inlet is
  • the pressure detection body was 33.3% with respect to the circumference, and the liquid inlet and the liquid outlet were arranged at opposite positions with the chamber member interposed therebetween.
  • the pressure detector of this example is for the purpose of confirming the flow state of the liquid chamber, and pressure measurement is not performed, so only the liquid chamber was made of polycarbonate.
  • Comparative Example 1 On the other hand, as Comparative Example 1, the flow state was confirmed by the following method using a pressure detector having the configuration shown in FIG.
  • the liquid chamber has the same dimensions as in the first embodiment, and the extracorporeal circulation circuit having an inner diameter of about 3.0 mm is directly connected to the liquid inlet and the liquid outlet, and as shown in FIG. The outlets are arranged in the vicinity.
  • the pressure detector of this comparative example was intended to confirm the flow state of the liquid chamber, and no pressure measurement was performed. Therefore, only the liquid chamber was made of polycarbonate.
  • the liquid chamber with a liquid inlet joint and a liquid outlet joint that communicate with the blood circulation circuit and the liquid chamber in the shape of a frustum. As a result, the coagulation of blood is suppressed.
  • Example 2 Next, the effect of changing the diameter A in the circumferential direction of the liquid chamber at the liquid inlet shown in FIG. 6 was confirmed.
  • the flow velocity distribution of the liquid chamber was compared using the result obtained by computer simulation.
  • the standard deviation in the flow velocity distribution in the liquid chamber for each example is shown in Table 1.
  • the computer simulation was performed using fluid analysis software “STAR-CD” manufactured by IDAJ.
  • This simulation model since pressure evaluation is not performed, only the liquid chamber is modeled, and the diameter A in the circumferential direction of the liquid chamber at the liquid inlet is 8.3% of the circumferential length of the liquid chamber.
  • the model was configured to flow from the liquid inlet to the liquid chamber at a flow rate of 30 ml / min and to discharge from the liquid outlet.
  • Example 3 Next, the effect was confirmed by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to 16.7% of the circumferential length of the liquid chamber. As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution in the liquid chamber was 0.003468 (m / s).
  • Example 4 Next, the effect was confirmed by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to 25% of the circumferential length of the liquid chamber. As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution of the liquid chamber was 0.002608 (m / s).
  • Comparative Example 2 On the other hand, as Comparative Example 2, the flow state was confirmed by the following method using a pressure detector having the configuration shown in FIG.
  • the liquid chamber has the same dimensions as the first embodiment, and an extracorporeal circuit having an inner diameter of about 3.0 mm is directly connected to the liquid inlet and the liquid outlet without passing through the frustum-shaped liquid inlet joint and the liquid outlet joint.
  • the liquid inlet and the liquid outlet are arranged to face each other across the liquid chamber.
  • the flow velocity distribution in the liquid chamber was confirmed as a model in which this was introduced into the liquid chamber from the liquid inlet and discharged from the liquid outlet by the same method as in Examples 2-4.
  • the diameter A in the circumferential direction of the liquid chamber at the liquid inlet is 13.9% to 50% of the circumferential length of the liquid chamber, blood retention is improved without causing a short path.
  • the blood flow disturbance can be reduced by suppressing the standard deviation of the flow velocity distribution, and blood coagulation can be further suppressed.
  • the pressure detector of the present invention and the blood circuit and blood purification apparatus provided with the pressure detector can suppress the coagulation of blood more than conventional pressure detectors. Therefore, the pressure in the extracorporeal circuit can be measured safely and can be usefully used for extracorporeal circulation treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The purpose of the present invention is to provide: a pressure-sensing element with a novel structure, said pressure-sensing element measuring the pressure inside an extracorporeal circulation circuit without coming into contact with blood or air, wherein coagulation of blood is better suppressed by minimizing the retention of blood as a result of improving the flow of blood inside the pressure-sensing element; and a blood circuit and a blood purification apparatus provided with the pressure-sensing element. The present invention provides a pressure-sensing element for an extracorporeal circulation circuit for measuring pressure inside an extracorporeal circulation circuit that performs extracorporeal treatment of blood, and is provided with: a chamber member provided with a fluid chamber that has a deforming surface deformed by the pressure inside the extracorporeal circulation circuit, a fluid inlet, and a fluid outlet, and that allows the blood to flow in and out; a fluid inlet joint for linking the fluid inlet to the extracorporeal circulation circuit; and a fluid outlet joint for linking the fluid outlet to the extracorporeal circulation circuit. Flow passages inside the fluid inlet joint and the fluid outlet joint widen in a cone shape toward the fluid chamber.

Description

圧力検出体並びにこれを備えた血液回路及び血液浄化装置Pressure detector and blood circuit and blood purification apparatus provided with the same
 本発明は、圧力検出体並びにこれを備えた血液回路及び血液浄化装置に関する。 The present invention relates to a pressure detector and a blood circuit and a blood purification apparatus provided with the pressure detector.
 体外循環療法とは、患者の体内から血液を取り出し、血液浄化装置を用いて血液の体外処理を行い、処理された血液を体内に戻すことにより血液の浄化を行う治療法である。この体外循環療法では、体外循環中の血液の圧力を正確に把握する必要がある。そのため、体外循環回路内に圧力を測定する圧力検出体が配置される。体外循環回路内に配置される圧力検出体としては、以下の2つの例が一般的に使用されている(特許文献1及び2)。 Extracorporeal circulation therapy is a treatment method in which blood is removed from a patient's body, blood is treated outside the body using a blood purification device, and the treated blood is returned to the body to purify the blood. In this extracorporeal circulation therapy, it is necessary to accurately grasp the blood pressure during extracorporeal circulation. Therefore, a pressure detector that measures the pressure is disposed in the extracorporeal circuit. The following two examples are generally used as pressure detectors arranged in the extracorporeal circuit (Patent Documents 1 and 2).
 特許文献1では、血液が空気に接触しないように、可撓性シートであるダイヤフラム(体液循環回路内圧力により変形する膜)によって、内部が血液チャンバと空気チャンバとに分離されたケーシング(圧力検出体)を有する圧力測定装置が開示されている。このケーシング内では、血液チャンバ内を満たす血液の圧力によってダイヤフラムの少なくとも一部が変形し、このダイヤフラムの変形量を測定することで体外循環回路内の圧力を測定している。 In Patent Document 1, a casing (pressure detection) whose interior is separated into a blood chamber and an air chamber by a diaphragm (a membrane deformed by the pressure in the body fluid circulation circuit), which is a flexible sheet, so that blood does not come into contact with air. A pressure measuring device having a body is disclosed. In the casing, at least a part of the diaphragm is deformed by the pressure of blood filling the blood chamber, and the pressure in the extracorporeal circuit is measured by measuring the deformation amount of the diaphragm.
 特許文献2では、血液の滞留に伴う凝固に着目し、ケーシング(圧力検出体)に液体を導入するための流路である液体流出口及び液体流入口の配置を、液体流出口を液体流入口から1/2周以上1周未満離れた位置に配置するようにした圧力センサが開示されている。この圧力センサでは、液体流出口を液体流入口から1/2周以上1周未満離れた位置に配置していることにより、ケーシング内に導入された液体が液体室の側面内周に沿って流入し、液体室と同心円状の流れを作ることで循環を生じさせ、流路の急拡大による滞留を解消させて血液の凝固を抑制している。 In Patent Document 2, paying attention to coagulation associated with the retention of blood, the arrangement of a liquid outlet and a liquid inlet, which are flow paths for introducing liquid into a casing (pressure detector), is used, and the liquid outlet is a liquid inlet. A pressure sensor is disclosed that is arranged at a position that is at least 1/2 turn and less than 1 turn away from the center. In this pressure sensor, the liquid outlet is arranged at a position separated from the liquid inlet by a half or more and less than one round, so that the liquid introduced into the casing flows in along the inner periphery of the side surface of the liquid chamber. However, by creating a flow concentric with the liquid chamber, circulation is generated, and retention due to rapid expansion of the flow path is eliminated to suppress blood coagulation.
特開平09-024026号公報Japanese Patent Application Laid-Open No. 09-024026 特開2007-282996号公報JP 2007-282996 A
 しかしながら、特許文献1に記載の圧力検出体では血液が圧力検出体内に入る際、入口で流路が急に拡大することにより、血液チャンバの入口近傍において滞留が生じる。そのため、血液の流れに淀みが発生して、血液が一定の場所に滞留することから血液の凝固が生じやすい問題がある。また、特許文献2の圧力センサでは、循環させる血液の粘度や処理流量によっては想定するような血液の循環が生じず、血液が滞留することにより、血液の凝固が生じやすい問題がある。 However, in the pressure detection body described in Patent Document 1, when blood enters the pressure detection body, the flow path suddenly expands at the inlet, so that stagnation occurs near the inlet of the blood chamber. As a result, stagnation occurs in the blood flow and the blood stays in a certain place, which causes a problem of blood coagulation. In addition, the pressure sensor disclosed in Patent Document 2 has a problem that blood does not circulate as expected depending on the viscosity of blood to be circulated and the treatment flow rate, and blood tends to coagulate due to the retention of blood.
 そこで本発明は、血液と空気が接触することなく体外循環回路内の圧力を測定する圧力検出体において、圧力検出体内部の血液の流れを改善することにより血液の滞留を抑制して、血液の凝固をより抑える新規構造の圧力検出体を提供することを目的とする。 Accordingly, the present invention provides a pressure detector that measures the pressure in the extracorporeal circuit without contact between blood and air, and suppresses the retention of blood by improving the flow of blood inside the pressure detector. An object of the present invention is to provide a pressure detector having a novel structure that further suppresses coagulation.
 本願発明者らは、鋭意研究を重ね、従来の圧力検出体よりも血液の流れを改善し、血液の凝固をより抑える圧力検出体の構造を見出すことに成功し、本願発明を完成した。すなわち、本発明は、以下の(1)~(5)の圧力検出体、(7)の血液回路及び(8)の血液浄化装置を提供するものである。
(1) 血液の体外処理を行う体外循環回路内の圧力を測定するための圧力検出体であり、上記体外循環回路内の圧力によって変形する変形面並びに液体流入口及び液体流出口を有して上記血液を流入及び排出させる液体室を備えたチャンバ部材と、上記液体流入口と上記体外循環回路とを管で連通するための液体流入口継手と、上記液体流出口と上記体外循環回路とを管で連通するための液体流出口継手と、を備え、上記液体流入口継手及び上記液体流出口継手の内部の流路が上記液体室の方向に向かって錐台形状に広がっている、体外循環回路用圧力検出体。
(2) 上記液体室は、円柱形状であり、上記液体流入口及び上記液体流出口は、上記液体室の円柱側面に配置されている、上記(1)に記載の体外循環回路用圧力検出体。
(3) 上記液体流入口の円周方向の口径は、上記液体室の円周長の13.9%以上50%以下である、上記(2)に記載の体外循環回路用圧力検出体。
(4) 上記液体流入口及び上記液体流出口は、上記液体室を挟んで対向配置されている、上記(1)~(3)のいずれかに記載の体外循環回路用圧力検出体。
(5) 上記液体流入口継手及び上記液体流出口継手の形状は、錐台形状であり、前記錐台形状の広い方の底面で上記液体室と連結される、上記(1)~(4)のいずれかに記載の体外循環回路用圧力検出体。
(6) 上記液体流入口継手及び上記流出口継手の内部の流路は、同一の形状である、上記(1)~(5)のいずれかに記載の体外循環回路用圧力検出体。
(7) 上記(1)~(6)のいずれかに記載の体外循環回路用圧力検出体と、体外循環回路とを備える、血液回路。
(8) 上記(7)に記載の血液回路を備える、血液浄化装置。
The inventors of the present application have conducted extensive research and succeeded in finding a structure of a pressure detector that improves blood flow and suppresses blood coagulation more than the conventional pressure detector, thereby completing the present invention. That is, the present invention provides the following pressure detectors (1) to (5), the blood circuit (7), and the blood purification device (8).
(1) A pressure detecting body for measuring a pressure in an extracorporeal circuit for performing extracorporeal processing of blood, having a deformed surface deformed by the pressure in the extracorporeal circuit, a liquid inlet and a liquid outlet. A chamber member having a liquid chamber for allowing the blood to flow in and out, a liquid inlet joint for connecting the liquid inlet and the extracorporeal circulation circuit with a pipe, the liquid outlet and the extracorporeal circuit. A liquid outlet joint for communicating with a pipe, and the flow path inside the liquid inlet joint and the liquid outlet joint extends in a frustum shape toward the liquid chamber. Circuit pressure detector.
(2) The pressure detector for the extracorporeal circuit according to (1), wherein the liquid chamber has a cylindrical shape, and the liquid inlet and the liquid outlet are arranged on a cylindrical side surface of the liquid chamber. .
(3) The pressure detector for the extracorporeal circuit according to (2), wherein the diameter of the liquid inlet in the circumferential direction is 13.9% to 50% of the circumferential length of the liquid chamber.
(4) The extracorporeal circuit pressure detector according to any one of (1) to (3), wherein the liquid inflow port and the liquid outflow port are arranged to face each other with the liquid chamber interposed therebetween.
(5) The shapes of the liquid inlet joint and the liquid outlet joint are frustum shapes, and are connected to the liquid chamber at the wider bottom surface of the frustum shape. The pressure detector for an extracorporeal circuit according to any one of the above.
(6) The pressure detector for the extracorporeal circuit according to any one of (1) to (5), wherein the flow paths inside the liquid inlet joint and the outlet joint have the same shape.
(7) A blood circuit comprising the extracorporeal circuit pressure detector according to any one of (1) to (6) and an extracorporeal circuit.
(8) A blood purification apparatus comprising the blood circuit according to (7).
 本発明の圧力検出体によれば、体外循環回路からチャンバ部材を構成する液体室に流れ込む血液が、液体室の方向に向かって錐台形状に広がっている液体流入口継手を経由することで血液の流速が均一になるため、血液粘度や処理流量によらずに血液の滞留を抑え、結果、血液の凝固を抑制することができる。 According to the pressure detector of the present invention, the blood flowing from the extracorporeal circuit into the liquid chamber constituting the chamber member passes through the liquid inlet joint spreading in a frustum shape toward the liquid chamber. Therefore, the blood stay can be suppressed regardless of the blood viscosity and the treatment flow rate, and as a result, blood coagulation can be suppressed.
本発明の圧力検出体の実施態様を側面から示す模式図である。It is a schematic diagram which shows the embodiment of the pressure detection body of this invention from a side surface. 本発明の圧力検出体の実施態様を上面から示す模式図である。It is a schematic diagram which shows the embodiment of the pressure detection body of this invention from the upper surface. 本発明の圧力検出体の別の実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the pressure detection body of this invention. 本発明の圧力検出体を有する血液回路の実施態様を示す模式図である。It is a schematic diagram which shows the embodiment of the blood circuit which has a pressure detection body of this invention. 本発明の圧力検出体を有する血液浄化装置の実施態様を示す模式図である。It is a schematic diagram which shows the embodiment of the blood purification apparatus which has a pressure detection body of this invention. 実施例1に用いた本発明の圧力検出体の構成要素を上面から示す模式図である。It is the schematic diagram which shows the component of the pressure detection body of this invention used for Example 1 from the upper surface. 実施例1に用いた本発明の圧力検出体に対し(a)墨汁を流す前、(b)墨汁を流した後、のそれぞれの流動状態を示す図である。It is a figure which shows each flow state of (a) before flowing ink, and after flowing ink (b) with respect to the pressure detection body of this invention used for Example 1. FIG. 比較例1に用いた従来の圧力検出体の構成要素を上面から示す模式図である。It is a schematic diagram which shows the component of the conventional pressure detection body used for the comparative example 1 from the upper surface. 比較例1に用いた従来の圧力検出体に対し(a)墨汁を流す前、(b)墨汁を流した後、のそれぞれの流動状態の確認結果を示す図である。It is a figure which shows the confirmation result of each flow state of (a) before flowing ink, and after flowing ink (b) with respect to the conventional pressure detection body used for the comparative example 1. FIG. 比較例2に用いた圧力検出体の構成要素を上面から示す模式図である。It is a schematic diagram which shows the component of the pressure detection body used for the comparative example 2 from the upper surface.
 本発明の体外循環回路用圧力検出体は、血液の体外処理を行う体外循環回路内の圧力を測定するための圧力検出体であり、上記体外循環回路内の圧力によって変形する変形面並びに液体流入口及び液体流出口を有して上記血液を流入及び排出させる液体室を備えたチャンバ部材と、上記液体流入口と上記体外循環回路とを管で連通するための液体流入口継手と、上記液体流出口と上記体外循環回路とを管で連通するための液体流出口継手と、を備え、上記液体流入口継手及び上記液体流出口継手の内部の流路が上記液体室の方向に向かって錐台形状に広がっていることを特徴としている。 The pressure detector for the extracorporeal circuit according to the present invention is a pressure detector for measuring the pressure in the extracorporeal circuit for performing extracorporeal processing of blood. The deformed surface deformed by the pressure in the extracorporeal circuit and the liquid flow A chamber member having an inlet and a liquid outlet and having a liquid chamber for allowing the blood to flow in and out; a liquid inlet joint for connecting the liquid inlet and the extracorporeal circuit through a pipe; and the liquid A liquid outlet joint for connecting the outlet and the extracorporeal circuit with a pipe, and the flow path inside the liquid inlet joint and the liquid outlet joint is conical toward the liquid chamber. It features a trapezoidal shape.
 「体外循環回路」とは、人体から抜き出された血液が流通する管状の流路である。「変形面」とは、体外循環回路内圧力によって少なくとも一部が変形するようになっている、チャンバ部材を構成する一部の面である。「液体流入口」とは、血液がチャンバ部材内の液体室に流入するための入口であり、「液体流出口」とは血液がチャンバ部材内の液体室から排出されるための出口である。「液体流入口継手」とは、体外循環回路と液体流入口を連通する流路であり、「液体流出口継手」とは、体外循環回路と液体流出口を連通する流路である。 “Extracorporeal circuit” is a tubular channel through which blood extracted from the human body circulates. The “deformation surface” is a partial surface constituting the chamber member that is at least partially deformed by the pressure in the extracorporeal circuit. The “liquid inlet” is an inlet through which blood flows into the liquid chamber in the chamber member, and the “liquid outlet” is an outlet through which blood is discharged from the liquid chamber within the chamber member. The “liquid inlet joint” is a flow path that connects the extracorporeal circuit and the liquid inlet, and the “liquid outlet joint” is a flow path that connects the extracorporeal circuit and the liquid outlet.
 以下に、上記の体外循環回路用圧力検出体の望ましい実施形態を、図面を参照して説明する。図1及び2は、上記の体外循環回路用圧力検出体の実施形態を示す模式図である。 Hereinafter, preferred embodiments of the pressure detector for the extracorporeal circuit will be described with reference to the drawings. 1 and 2 are schematic views showing an embodiment of the pressure detector for the extracorporeal circuit.
 図1及び2において、圧力検出体1は、体外循環回路2に接続され、体外循環回路内の圧力によって変形する変形面8並びに液体流入口3及び液体流出口4を有して血液を流入及び排出させる液体室5と、液体室5に隣接し、上記変形面8を挟みこむようにして配置された空気室7と、を備えたチャンバ部材9を備える。空気室7は圧力測定装置6と接続される。そして、チャンバ部材9と、液体流入口3と体外循環回路2とを連通するための液体流入口継手10と、液体流出口4と体外循環回路2とを連通するための液体流出口継手11と、を備える。ここで、液体室5の流路と液体流入口継手10の流路が接続する面において、液体室の円周方向における液体流入口の口径を、液体流入口の円周方向の口径24とする。また、圧力検出体1を流れる液体が液体室5において滞留することを抑制するために、液体流入口継手10及び液体流出口継手11の形状は、液体流入口3及び液体流出口4と液体室5とを滑らかに接続するような形状であることが好ましい。具体的形状は、液体の流速や粘度に応じて適宜設計され得るが、液体流入口継手10及び液体流出口継手11の内部の流路が、液体室5側の方向に向かって錐台形状に広がるように構成されていることがより好ましい。 1 and 2, a pressure detection body 1 is connected to an extracorporeal circuit 2 and has a deformed surface 8 deformed by the pressure in the extracorporeal circuit, a liquid inlet 3 and a liquid outlet 4, and allows blood to flow in and out. A chamber member 9 including a liquid chamber 5 to be discharged and an air chamber 7 adjacent to the liquid chamber 5 and disposed so as to sandwich the deformation surface 8 is provided. The air chamber 7 is connected to the pressure measuring device 6. The chamber member 9, the liquid inlet joint 10 for communicating the liquid inlet 3 and the extracorporeal circuit 2, and the liquid outlet joint 11 for communicating the liquid outlet 4 and the extracorporeal circuit 2, . Here, on the surface where the flow path of the liquid chamber 5 and the flow path of the liquid inlet joint 10 are connected, the diameter of the liquid inlet in the circumferential direction of the liquid chamber is the diameter 24 in the circumferential direction of the liquid inlet. . In order to prevent the liquid flowing through the pressure detector 1 from staying in the liquid chamber 5, the shapes of the liquid inlet joint 10 and the liquid outlet joint 11 are the liquid inlet 3, the liquid outlet 4, and the liquid chamber. It is preferable that the shape is a smooth connection. The specific shape can be appropriately designed according to the flow velocity and viscosity of the liquid, but the flow paths inside the liquid inlet joint 10 and the liquid outlet joint 11 are frustum-shaped toward the liquid chamber 5 side. More preferably, it is configured to spread.
 圧力を測定する手段は、液体室5と空気室7とを挟み込むように配置された変形面8が、液体室5を流れる血液の圧力によって変形し、その変形量を間接的に検知することによって、体外循環回路2内の圧力を測定する。具体的には、変形面8と圧力測定装置6との間の気密な空間となっている空気室7において、変形面8の変形に伴う圧力変化が空気室7内で生じ、その圧力の変化を圧力測定装置6を用いて測定することで、体外循環回路2内の圧力を間接的に測定する。 The means for measuring the pressure is that the deformation surface 8 arranged so as to sandwich the liquid chamber 5 and the air chamber 7 is deformed by the pressure of blood flowing in the liquid chamber 5 and indirectly detects the deformation amount. The pressure in the extracorporeal circuit 2 is measured. Specifically, in the air chamber 7 which is an airtight space between the deformation surface 8 and the pressure measuring device 6, a pressure change accompanying the deformation of the deformation surface 8 is generated in the air chamber 7, and the pressure change Is measured using the pressure measuring device 6 to indirectly measure the pressure in the extracorporeal circuit 2.
 圧力測定方法として、図3に示すように、変形面8の変形量をロードセンサやひずみゲージ等で直接測定することで、体外循環回路2内の圧力を測定する方法を用いてもよい。圧力測定方法は、体外循環回路内の圧力を正しく測定できるものであれば問題はなく、特に限定されるものではない。 As a pressure measurement method, as shown in FIG. 3, a method of measuring the pressure in the extracorporeal circuit 2 by directly measuring the deformation amount of the deformation surface 8 with a load sensor, a strain gauge or the like may be used. The pressure measuring method is not particularly limited as long as it can correctly measure the pressure in the extracorporeal circuit, and is not particularly limited.
 図2において、液体室5は円柱の形状をしているが、液体室5の形状は限定されるものではなく、例えば六角柱の液体室のような多角柱の形状であってもよい。また、変形面8と平行した液体室5の任意の断面形状と変形面8は、異なる形状・大きさであっても特に問題はない。しかしながら、血液の滞留の発生をより行わせず、スムーズな流れを形成するためには、液体室5が円柱形状であると共に変形面8は液体室5と同じ円の半径を有する円形の膜であることが好ましい。 In FIG. 2, the liquid chamber 5 has a cylindrical shape, but the shape of the liquid chamber 5 is not limited, and may be a polygonal column such as a hexagonal column. Further, there is no particular problem even if the arbitrary cross-sectional shape of the liquid chamber 5 parallel to the deformation surface 8 and the deformation surface 8 have different shapes and sizes. However, in order to form a smooth flow without generating blood stagnation, the liquid chamber 5 has a cylindrical shape and the deformation surface 8 is a circular film having the same radius as the liquid chamber 5. Preferably there is.
 また、図1において、液体室5の側面は、横断面から見て直線状であるが、任意の角度をもって傾斜していても問題はない。 In FIG. 1, the side surface of the liquid chamber 5 is linear as viewed from the cross section, but there is no problem even if it is inclined at an arbitrary angle.
 また、図1に示すように、液体室5の内部の隅部である液体室内側隅部12、13、14は直角であるが、隅部は丸みを持っていてもよい。よりスムーズな液体の流れを形成するには、液体室5の内側の隅部がある程度丸みをもっていることが好ましい。 Further, as shown in FIG. 1, the liquid chamber side corners 12, 13, and 14 which are corners inside the liquid chamber 5 are perpendicular, but the corners may be rounded. In order to form a smoother liquid flow, the inner corner of the liquid chamber 5 is preferably rounded to some extent.
 さらに、図1において、変形面8の形状は、平板形状の膜となっているが、横断面から見て波型形状等をしていても問題はない。また、変形面8は必ずしも面全体が変形する部分である必要はなく、変形面8の変形する部分の面積や形状は、圧力を正しく測定できるものであれば、どのような割合の面積あるいは形状であっても良く、特に限定するものではない。 Further, in FIG. 1, the shape of the deformation surface 8 is a flat plate-like film, but there is no problem even if it has a corrugated shape as seen from the cross section. Further, the deformation surface 8 does not necessarily have to be a portion where the entire surface is deformed, and the area and shape of the deformation portion of the deformation surface 8 can be any ratio or shape as long as the pressure can be measured correctly. There is no particular limitation.
 また、図2において、液体流入口3及び液体流出口4に向けて、錐台形状である液体流入口継手10及び液体流出口継手11の流路は、変形面8に対して平行に流入しているが、変形面8に対して角度が付いていてもよい。しかしながら、よりスムーズな血液の流れを形成するには、錐台形状である液体流入口継手10及び液体流出口継手11は、変形面8に対して0~30度の角度の範囲内で血液がチャンバ部材9に流入するように配置されていること、さらに好ましくは0~15度の範囲内、最も好ましくは平行に流入するように配置されていることが好ましい。 Further, in FIG. 2, the flow paths of the liquid inlet joint 10 and the liquid outlet joint 11 having a truncated cone shape flow in parallel to the deformation surface 8 toward the liquid inlet 3 and the liquid outlet 4. However, an angle with respect to the deformation surface 8 may be provided. However, in order to form a smoother blood flow, the liquid inlet joint 10 and the liquid outlet joint 11 that are frustum-shaped have the blood within an angle range of 0 to 30 degrees with respect to the deformation surface 8. It is preferably arranged so as to flow into the chamber member 9, more preferably within a range of 0 to 15 degrees, most preferably parallel.
 図1に示すように、液体流入口3及び液体流出口4は、液体室5の側面の高さ方向に対して中間の位置に設けられているが、液体流入口の位置が側面の高さ方向に対して中間の位置から外れていてもよい。また、液体室5の側面の高さ方向に対して、液体流入口3と液体流出口4の位置が液体室5の側面において同一軸上からずれていてもよい。しかしながら、よりスムーズな液体流れを形成するためには、液体流入口3及び液体流出口4は、液体室5の側面の高さ方向に対して、中間の位置にあることが好ましく、また、液体室5の高さ方向に対して、液体流入口3と液体流出口4の位置が液体室5の側面において同一軸上にあることが好ましい。 As shown in FIG. 1, the liquid inlet 3 and the liquid outlet 4 are provided at intermediate positions with respect to the height direction of the side surface of the liquid chamber 5, but the position of the liquid inlet is the height of the side surface. It may deviate from an intermediate position with respect to the direction. Further, the positions of the liquid inlet 3 and the liquid outlet 4 may be shifted from the same axis on the side of the liquid chamber 5 with respect to the height direction of the side of the liquid chamber 5. However, in order to form a smoother liquid flow, the liquid inlet 3 and the liquid outlet 4 are preferably in an intermediate position with respect to the height direction of the side surface of the liquid chamber 5. The positions of the liquid inlet 3 and the liquid outlet 4 are preferably on the same axis on the side surface of the liquid chamber 5 with respect to the height direction of the chamber 5.
 図2に示すように、液体流入口3と体外循環回路2とを管で連通するための液体流入口継手10は、その内部の流路が、液体室5の方向に向かって錐台形状に広がっている。このように、液体流入口継手10と液体室5とが接続している部分、即ち、液体流入口3の円周方向の口径24は、体外循環回路2よりも広くなっていることが好ましい。また、錐台形状を成す液体流入口継手10の任意の断面が、体外循環回路2と等価な流動抵抗を成すためには以下の式1の関係を満たすことが最も好ましい。
  De=4Af/Wp ・・・(式1)
 ここでDeは体外循環回路内径、Afは液体流入口継手の任意の位置における断面積、Wpは液体流入口継手の任意の位置における断面周長を表す。
As shown in FIG. 2, the liquid inlet joint 10 for connecting the liquid inlet 3 and the extracorporeal circuit 2 with a pipe has a flow path in the shape of a frustum in the direction of the liquid chamber 5. It has spread. Thus, the portion where the liquid inlet joint 10 and the liquid chamber 5 are connected, that is, the diameter 24 in the circumferential direction of the liquid inlet 3 is preferably wider than that of the extracorporeal circuit 2. Further, in order for an arbitrary cross section of the liquid inlet joint 10 having a frustum shape to have a flow resistance equivalent to that of the extracorporeal circulation circuit 2, it is most preferable to satisfy the relationship of the following formula 1.
De = 4 Af / Wp (Formula 1)
Here, De is an internal circulation circuit inner diameter, Af is a cross-sectional area at an arbitrary position of the liquid inlet joint, and Wp is a cross-sectional circumference at an arbitrary position of the liquid inlet joint.
 液体流入口3は液体流入口継手10と液体室5の接続面により構成されるが、その接続面、即ち、液体流入口3における円周方向の口径24は、式1の関係を満たすものであればよい。しかしながら、液体室5内で、よりムラ無く、スムーズな流れを形成するためには、液体流入口3の円周方向の口径24が、液体室5の円周長の13.9%以上であることが好ましい。一方、液体流入口3の円周方向の口径24が、液体室5の円周長に対して50%以上となると、流体流入口継手10が錐台形状となり得ない。則ち、液体流入口3の円周方向の口径24は、液体室5の円周長の13.9%以上50%以下の範囲内であることが最も好ましい。 The liquid inlet 3 is constituted by a connection surface between the liquid inlet joint 10 and the liquid chamber 5, and the connection surface, that is, the diameter 24 in the circumferential direction of the liquid inlet 3 satisfies the relationship of Equation 1. I just need it. However, in order to form a smoother and smoother flow in the liquid chamber 5, the diameter 24 in the circumferential direction of the liquid inlet 3 is 13.9% or more of the circumferential length of the liquid chamber 5. It is preferable. On the other hand, when the diameter 24 in the circumferential direction of the liquid inlet 3 is 50% or more with respect to the circumferential length of the liquid chamber 5, the fluid inlet joint 10 cannot have a frustum shape. That is, the diameter 24 in the circumferential direction of the liquid inlet 3 is most preferably in the range of 13.9% to 50% of the circumferential length of the liquid chamber 5.
 図2に示すように、液体流入口3と液体流出口4はチャンバ部材9を挟んで、対向位置に設置されているが、対向位置からずれていてもよい。しかしながら、よりスムーズな流れを形成するためには、対向位置であることが最も好ましい。ここで対向位置とは、液体室5の中心を軸として、対称関係にあることを意味する。 As shown in FIG. 2, the liquid inlet 3 and the liquid outlet 4 are installed at opposite positions with the chamber member 9 in between, but may be shifted from the opposite positions. However, in order to form a smoother flow, the opposite position is most preferable. Here, the facing position means that the liquid chamber 5 has a symmetrical relationship with the center of the liquid chamber 5 as an axis.
 また、図2に示すように、液体流入口3及び液体流出口4は同一形状としてはいるが、液体流出口4が液体流入口3よりも液体室5との設置面積が小さくなっていても、上記発明の効果を低下させるものではない。しかしながら、圧力検出体1の成形性、体外循環回路2の取り付け間違い防止といった点、また、よりスムーズで、ムラの無い液体流れを形成するために、流体流入口3及び液体流出口4は同一形状であることが最も好ましい。 As shown in FIG. 2, the liquid inlet 3 and the liquid outlet 4 have the same shape, but the liquid outlet 4 has a smaller installation area with the liquid chamber 5 than the liquid inlet 3. The effect of the invention is not reduced. However, the fluid inlet 3 and the liquid outlet 4 have the same shape in order to form a liquid flow that is smoother and more uniform in terms of formability of the pressure detector 1 and prevention of incorrect attachment of the extracorporeal circuit 2. Most preferably.
 液体室5並びに空気室7の材質は、硬質・軟質は特に問わないが、液温や気温、液体室5や空気室7を変形させるような外的な力などの環境要因により、液体室5及び空気室7の形状に変化が生じてしまうと、正しく体外循環回路2内の圧力を測定することが難しくなる。そのため、液体室5及び空気室7の材質は硬質であることが好ましく、さらには患者の血液に直接または間接的に触れるため、生体適合性を有している材質が好ましい。例えば、塩化ビニル、ポリカーボネイト、ポリプロピレン、ポリエチレン、ポリウレタン等を挙げることができ、いずれにおいても好適に用いることができる。また、その製造方法は特に限定するものではないが、射出成形、ブロー成形、切削加工による成形などが例示できる。 The material of the liquid chamber 5 and the air chamber 7 is not particularly limited as being hard or soft. However, the liquid chamber 5 is affected by environmental factors such as liquid temperature and temperature, and external force that deforms the liquid chamber 5 and the air chamber 7. If the shape of the air chamber 7 changes, it becomes difficult to correctly measure the pressure in the extracorporeal circuit 2. Therefore, the material of the liquid chamber 5 and the air chamber 7 is preferably hard, and moreover, a material having biocompatibility is preferable in order to directly or indirectly touch the patient's blood. For example, vinyl chloride, polycarbonate, polypropylene, polyethylene, polyurethane and the like can be mentioned, and any of them can be suitably used. Moreover, the manufacturing method is not particularly limited, and examples thereof include injection molding, blow molding, and molding by cutting.
 変形面8の材質は、硬質であると、圧力による変形量が小さくなり、体外循環回路2内の圧力を正確に測定することが難しくなることから、圧力に対して柔軟に変形する軟質な材質であることが好ましい。さらには患者の血液に直接または間接的に触れるため、生体適合性を有している材質が好ましい。例えば、ポリ塩化ビニル、シリコン系樹脂、スチレン系熱可塑性エラストマー、スチレン系熱可塑性エラストマーコンパウンド等を用いることができるが、これに限らず、生体適合性を有する素材であればどのような材質でも好適に用いることができる。 If the material of the deformable surface 8 is hard, the amount of deformation due to pressure becomes small, and it becomes difficult to accurately measure the pressure in the extracorporeal circuit 2, so that it is a soft material that deforms flexibly with respect to the pressure. It is preferable that Furthermore, a material having biocompatibility is preferable because it directly or indirectly contacts the patient's blood. For example, polyvinyl chloride, silicone resin, styrene thermoplastic elastomer, styrene thermoplastic elastomer compound, etc. can be used, but not limited to this, any material having biocompatibility is suitable. Can be used.
 体外循環回路2の材質は、合成樹脂、金属及びガラス等の材質のいずれを用いてもよいが、製造コスト、加工性及び操作性の観点から合成樹脂、特に熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリオフィレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、フッ素系樹脂、シリコン系樹脂等、さらにはABS樹脂、ポリ塩化ビニル、ポリカーボネイト、ポリスチレン、ポリアクリレート、ポリアセタール等を用いることができる。なかでも、軟質材は折れ曲がりや割れ等に強く、操作時の柔軟性に優れているため好ましく、組立性の観点から軟質塩化ビニルが特に好ましい。 The material of the extracorporeal circuit 2 may be any material such as synthetic resin, metal and glass, but a synthetic resin, particularly a thermoplastic resin is preferable from the viewpoint of manufacturing cost, workability and operability. Examples of the thermoplastic resin include polyolefin resins, polyamide resins, polyester resins, polyurethane resins, fluorine resins, silicon resins, ABS resins, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, Polyacetal or the like can be used. Among them, the soft material is preferable because it is strong against bending and cracking and has excellent flexibility during operation, and soft vinyl chloride is particularly preferable from the viewpoint of assembly.
 液体流入口継手10及び液体流出口継手11の材質は硬質・軟質は特に問わず、合成樹脂、金属及びガラス等のいずれを用いてもよいが、患者の血液に直接または間接的に触れるため、生体適合性を有している材質が好ましい。また、製造コスト、加工性、組立性の観点から液体室5並びに空気室7と同じ材質であることが好ましい。例えば、塩化ビニル、ポリカーボネイト、ポリプロピレン、ポリエチレン、ポリウレタン等を用いることができる。また、その製造方法は特に限定するものではないが、具体的には射出成形、ブロー成形、切削加工による成形等を用いることができる。また、体外循環回路2と液体流入口継手10及び液体流出口継手11は、一体に成型されていてもよい。 The material of the liquid inlet joint 10 and the liquid outlet joint 11 is not particularly hard or soft, and any of synthetic resin, metal, glass, etc. may be used, but in order to directly or indirectly touch the patient's blood, A material having biocompatibility is preferred. Moreover, it is preferable that it is the same material as the liquid chamber 5 and the air chamber 7 from a viewpoint of manufacturing cost, workability, and assemblability. For example, vinyl chloride, polycarbonate, polypropylene, polyethylene, polyurethane, or the like can be used. Moreover, the manufacturing method is not particularly limited, and specifically, injection molding, blow molding, molding by cutting, or the like can be used. Further, the extracorporeal circuit 2, the liquid inlet joint 10 and the liquid outlet joint 11 may be integrally molded.
 液体室5、空気室7、変形面8、液体流入口継手10、液体流出口継手11及び体外循環回路2のそれぞれの接合方法は、特に限定はしないが、一般に合成樹脂の接合は、熱溶融接合や接着が挙げられる。例えば、熱溶融接合においては、高周波溶接、誘導加熱溶接、超音波溶接、摩擦溶接、スピン溶接、熱板溶接、熱線溶接などが挙げられ、接着においては、シアノアクリレート系、エポキシ系、ポリウレタン系、合成ゴム系、紫外線硬化型、変性アクリル系樹脂、ホットメルトタイプ等を用いた接着を挙げることができる。 The joining method of the liquid chamber 5, the air chamber 7, the deformed surface 8, the liquid inlet joint 10, the liquid outlet joint 11 and the extracorporeal circulation circuit 2 is not particularly limited. Joining and adhesion can be mentioned. For example, in hot melt bonding, high frequency welding, induction heating welding, ultrasonic welding, friction welding, spin welding, hot plate welding, hot wire welding and the like can be mentioned, and in bonding, cyanoacrylate, epoxy, polyurethane, Examples include adhesion using a synthetic rubber type, an ultraviolet curable type, a modified acrylic resin, a hot melt type, and the like.
 また、一般に硬質な材質と軟質な材質の接合には、軟質な材質を硬質な材質が押さえ込むことによりシールする機械的シールや、上記に示したような熱溶融接合や接着などを挙げることができる。 Further, in general, bonding of a hard material and a soft material can include a mechanical seal that seals a soft material by pressing the hard material, and a hot-melt bonding or bonding as described above. .
 このような圧力検出体1は成型、接合後そのままの状態で使用してもよいが、特に体外循環療法の医療用途においては、滅菌して利用する。滅菌方法は通常の医療用具の滅菌方法に準じるとよく、薬液、ガス、放射線、高圧蒸気、加熱等によって滅菌すればよい。 Such a pressure detector 1 may be used as it is after being molded and joined, but it is sterilized and used particularly in medical applications for extracorporeal circulation therapy. The sterilization method may be in accordance with a normal medical device sterilization method, and may be sterilized by a chemical solution, gas, radiation, high-pressure steam, heating or the like.
 圧力検出体1における液体室5、空気室7、変形面8の大きさは、あまり大きいと、容積が増大し、その結果、プライミングボリュームが増大するという問題が生じ、逆に、あまりに小さいと、体外循環回路内の圧力が陰圧となることにより変形面8が液体室側に膨らむことで、変形面8が液体流入口3や液体流出口4を塞いでしまい、血液が流通しなくなるという問題が生じる。そのため、液体室5の大きさは、容積にして1~10cm程度であることが好ましく、さらに好ましくは1~5cm程度であり、最も好ましくは1~3cmである。空気室7の大きさは、あまり大きいと、陰圧時に変形面8が液体室側に大きく変形することで、変形面8が液体流入口3や液体流出口4を塞いでしまい、血液が流通しなくなるという問題が生じる。また、逆に、あまり小さいと陽圧時に変形面8が空気室内壁面に接触しやすくなり、圧力測定精度が低下する。そのため、空気室7の大きさは、容積にして、0.2~1.0cmであることが好ましく、さらに好ましくは0.3~0.8cmである。 If the size of the liquid chamber 5, the air chamber 7, and the deformation surface 8 in the pressure detector 1 is too large, the volume increases, resulting in a problem that the priming volume increases. Conversely, if the size is too small, A problem that the deformed surface 8 swells to the liquid chamber side due to the negative pressure in the extracorporeal circulation circuit, and the deformed surface 8 blocks the liquid inlet 3 and the liquid outlet 4 so that blood does not circulate. Occurs. Therefore, the size of the liquid chamber 5 is preferably about 1 to 10 cm 3 in volume, more preferably about 1 to 5 cm 3 , and most preferably 1 to 3 cm 3 . If the size of the air chamber 7 is too large, the deformed surface 8 is greatly deformed toward the liquid chamber at the time of negative pressure, so that the deformed surface 8 blocks the liquid inlet 3 and the liquid outlet 4, and blood flows. There arises a problem that it will not. On the other hand, if it is too small, the deformed surface 8 tends to come into contact with the wall surface of the air chamber during positive pressure, and the pressure measurement accuracy decreases. Therefore, the size of the air chamber 7 is preferably 0.2 to 1.0 cm 3 in volume, more preferably 0.3 to 0.8 cm 3 .
 また、本発明の血液回路は、上記の体外循環回路用圧力検出体と、上記の体外循環回路とを備えることを特徴としている。 The blood circuit of the present invention is characterized by comprising the above-mentioned pressure detecting body for extracorporeal circuit and the extracorporeal circuit.
 上記の血液回路の実施形態として、圧力検出体1と、体外循環回路2を有する血液回路15を図4に示した。血液回路15は、圧力検出体1やドリップチャンバ16等が体外循環回路2によって連なった構成となっている。ここで、連なっているとは、単にそれぞれが繋がっているだけでもよいし、硬質または軟質の素材で出来た基板17に対して、所定の位置に圧力検出体1や、ドリップチャンバ16、体外循環回路2等が取り付けられた構成となっていてもよい。基板17を用いる場合は、血液浄化装置への取り付け、取り外し、また、圧力検出体1や体外循環回路2などの取り付け、取り外しを行うといった観点から、硬質な素材であることが好ましい。具体的には、ABS樹脂、ポリプロピレン、ナイロン、ポリ塩化ビニル、ポリカーボネイト、ポリエーテルスルホン、ポリエチレンテレフタレート等を用いることができる。 As an embodiment of the above blood circuit, a blood circuit 15 having a pressure detector 1 and an extracorporeal circuit 2 is shown in FIG. The blood circuit 15 has a configuration in which the pressure detector 1, the drip chamber 16, and the like are connected by the extracorporeal circuit 2. Here, the term “continuous” means that each of them is simply connected, or the pressure detector 1, the drip chamber 16, and the extracorporeal circulation at a predetermined position with respect to the substrate 17 made of a hard or soft material. The circuit 2 or the like may be attached. When using the board | substrate 17, it is preferable that it is a hard material from a viewpoint of attaching / detaching to the blood purification apparatus, and attaching / detaching the pressure detection body 1, the extracorporeal circulation circuit 2, etc. FIG. Specifically, ABS resin, polypropylene, nylon, polyvinyl chloride, polycarbonate, polyethersulfone, polyethylene terephthalate, or the like can be used.
 また、本発明の血液浄化装置は、上記の血液回路を備えることを特徴としている。 The blood purification apparatus of the present invention is characterized by comprising the above-described blood circuit.
 上記の血液回路の実施形態として、血液回路15を有する血液浄化装置18を図5に示した。血液浄化装置18は、操作パネル19、モジュールホルダー20、血液ポンプ21、薬液ホルダー22等が所定の位置に配置された構成となっており、そこへ血液回路15や血液浄化用モジュール23等を設置し、各々を接続している。血液浄化装置18は、用いられる血液浄化用モジュール23に合わせた設定を行った上で、血液浄化療法に使用される。 As an embodiment of the above blood circuit, a blood purification device 18 having a blood circuit 15 is shown in FIG. The blood purification apparatus 18 has a configuration in which an operation panel 19, a module holder 20, a blood pump 21, a chemical liquid holder 22, and the like are arranged at predetermined positions, and a blood circuit 15, a blood purification module 23, and the like are installed therein. Are connected to each other. The blood purification device 18 is used for blood purification therapy after setting according to the blood purification module 23 to be used.
 以下、実施例により上記の圧力検出体の効果を確認したので具体的に説明する。 Hereinafter, since the effect of the above-described pressure detector was confirmed by an example, a specific description will be given.
(実施例1)
 図6に示す構成の圧力検出体を用いて、下記の1)~5)の方法で液体の流動状況の確認を行った。
1) 体外循環回路及び圧力検出体に、擬似血液として流通させる第一の液体をキサンタンガム水溶液(濃度750mg/L)とし、送液ポンプを用いて、30ml/分の流量で送液し、体外循環回路及び圧力検出体を充填した。
2) キサンタンガム水溶液が充分充填した状態を確認した後、送液ポンプは稼動(30ml/分)させたままの状態で、圧力検出体の液体流入口側の体外循環回路から墨汁を適量流し込んだ。
3) 上記1)及び2)を実施した上で、圧力検出体における液体室内での墨汁の流動状態を目視確認した。
4) 体外循環回路としては液体流入口及び液体流出口に内径3.0mm程度の軟質塩化ビニルチューブを接続し、送液ポンプは液体流入口側の体外循環回路上に設置した。
5) 圧力検出体の血液室の容積は凡そ2.3cmとし、体外循環回路と液体室を連通する流路を錐台形状とし、液体流入口の円周方向の口径Aは、液体室の円周に対して33.3%とし、液体流入口と液体流出口はチャンバ部材を挟んで対向位置に配した圧力検出体とした。尚、本実施例の圧力検出体は液体室の流動状態を確認することを目的とし、圧力測定は行わないため、液体室のみをポリカーボネイトで作成した。
(Example 1)
The flow state of the liquid was confirmed by the following methods 1) to 5) using the pressure detector having the configuration shown in FIG.
1) The first liquid to be circulated as simulated blood to the extracorporeal circuit and pressure detector is an xanthan gum aqueous solution (concentration 750 mg / L), and the solution is fed at a flow rate of 30 ml / min using a feed pump, and is extracorporeally circulated. The circuit and pressure detector were filled.
2) After confirming that the xanthan gum aqueous solution was sufficiently filled, an appropriate amount of ink was poured from the extracorporeal circuit on the liquid inlet side of the pressure detector while the liquid feed pump was still running (30 ml / min).
3) After performing the above 1) and 2), the flow state of the ink in the liquid chamber in the pressure detector was visually confirmed.
4) As the extracorporeal circuit, a soft polyvinyl chloride tube having an inner diameter of about 3.0 mm was connected to the liquid inlet and the liquid outlet, and the liquid feed pump was installed on the extracorporeal circuit on the liquid inlet side.
5) The volume of the blood chamber of the pressure detection body is approximately 2.3 cm 3 , the flow path connecting the extracorporeal circuit and the liquid chamber is a frustum shape, and the diameter A in the circumferential direction of the liquid inlet is The pressure detection body was 33.3% with respect to the circumference, and the liquid inlet and the liquid outlet were arranged at opposite positions with the chamber member interposed therebetween. Note that the pressure detector of this example is for the purpose of confirming the flow state of the liquid chamber, and pressure measurement is not performed, so only the liquid chamber was made of polycarbonate.
 テストの結果、図7(a)に示すキサンタンガム水溶液で満たされた液体室に墨汁を流し込むと、図7(b)に示すように、墨汁が液体流入口から液体流出口にかけて、ムラなく充填し、循環することが確認できた。 As a result of the test, when the ink was poured into the liquid chamber filled with the xanthan gum aqueous solution shown in FIG. 7 (a), the ink was filled evenly from the liquid inlet to the liquid outlet as shown in FIG. 7 (b). It was confirmed that it circulates.
(比較例1)
 一方、比較例1として、図8に示す構成の圧力検出体を用いて、下記の方法で流動状態の確認を行った。液体室は実施例1と同寸法で、液体流入口と液体流出口を内径3.0mm程度の体外循環回路がそのまま接続される構成とし、かつ、図8に示すように、液体流入口及び液体流出口同士が近傍に配置される構成とした。尚、本比較例の圧力検出体は、液体室の流動状態を確認することを目的とし、圧力測定は行わないため、液体室のみをポリカーボネイトで作成した。
(Comparative Example 1)
On the other hand, as Comparative Example 1, the flow state was confirmed by the following method using a pressure detector having the configuration shown in FIG. The liquid chamber has the same dimensions as in the first embodiment, and the extracorporeal circulation circuit having an inner diameter of about 3.0 mm is directly connected to the liquid inlet and the liquid outlet, and as shown in FIG. The outlets are arranged in the vicinity. Note that the pressure detector of this comparative example was intended to confirm the flow state of the liquid chamber, and no pressure measurement was performed. Therefore, only the liquid chamber was made of polycarbonate.
 テストの結果、図9(a)に示すキサンタンガム水溶液で満たされた液体室に墨汁を流し込むと、図9(b)に示すように、墨汁は液体室側面内周に即した流れとはならず、液体流入口から液体流出口へ直接的に向かう流れ(ショートパス)が発生した。則ち、液体室において、液体流入口及び液体流出口から離れた地点まで墨汁が流れ込むことはなかった。 As a result of the test, when the ink is poured into the liquid chamber filled with the xanthan gum aqueous solution shown in FIG. 9A, the ink does not flow along the inner periphery of the side of the liquid chamber as shown in FIG. 9B. Then, a flow (short path) directed directly from the liquid inlet to the liquid outlet occurred. In other words, in the liquid chamber, the ink does not flow to a point away from the liquid inlet and the liquid outlet.
 以上の結果から、液体室に対して、血液循環回路と液体室を連通する液体流入口継手及び液体流出口継手を錐台形状として設けることで、ショートパスを起こすことなく、液体室内での血液の滞留が改善されることとなり、結果、血液の凝固抑制に繋がる。 From the above results, it is possible to provide the liquid chamber with a liquid inlet joint and a liquid outlet joint that communicate with the blood circulation circuit and the liquid chamber in the shape of a frustum. As a result, the coagulation of blood is suppressed.
(実施例2)
 次に、図6に示す液体流入口における液体室の円周方向の口径Aを変更させた場合の効果の確認を行った。
1) 本実施例については、コンピュータシミュレーションによって得られる結果を用いて、液体室の流速分布の比較を行った。なお、実施例ごとの液体室内の流速分布における標準偏差を表1に示す。
(Example 2)
Next, the effect of changing the diameter A in the circumferential direction of the liquid chamber at the liquid inlet shown in FIG. 6 was confirmed.
1) About the present Example, the flow velocity distribution of the liquid chamber was compared using the result obtained by computer simulation. The standard deviation in the flow velocity distribution in the liquid chamber for each example is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 コンピュータシミュレーションは株式会社IDAJ社の流体解析ソフト「STAR-CD」を用いて行った。尚、本シミュレーションモデルに関しては、圧力評価は行わないことから、液体室のみをモデル化し、液体流入口における液体室の円周方向の口径Aを液体室の円周長の8.3%となるように設定した。その上で、流量30ml/分として液体流入口から液体室に流入し、液体流出口から排出するモデルとした。 The computer simulation was performed using fluid analysis software “STAR-CD” manufactured by IDAJ. In this simulation model, since pressure evaluation is not performed, only the liquid chamber is modeled, and the diameter A in the circumferential direction of the liquid chamber at the liquid inlet is 8.3% of the circumferential length of the liquid chamber. Was set as follows. In addition, the model was configured to flow from the liquid inlet to the liquid chamber at a flow rate of 30 ml / min and to discharge from the liquid outlet.
 シミュレーションの結果、表1に示すとおり、液体室内の流速分布における標準偏差は0.004903(m/s)であった。 As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution in the liquid chamber was 0.004903 (m / s).
(実施例3)
 次に、液体流入口における液体室の円周方向の口径Aを液体室の円周長の16.7%として効果を確認した。シミュレーションの結果、表1に示すとおり液体室内の流速分布における標準偏差は0.003468(m/s)であった。
(Example 3)
Next, the effect was confirmed by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to 16.7% of the circumferential length of the liquid chamber. As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution in the liquid chamber was 0.003468 (m / s).
(実施例4)
 次に、液体流入口における液体室の円周方向の口径Aを液体室の円周長の25%として効果を確認した。シミュレーションの結果、表1に示すとおり、液体室の流速分布における標準偏差は0.002608(m/s)であった。
Example 4
Next, the effect was confirmed by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to 25% of the circumferential length of the liquid chamber. As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution of the liquid chamber was 0.002608 (m / s).
(比較例2)
 一方、比較例2として、図10に示す構成の圧力検出体を用いて、下記の方法で流動状態の確認を行った。液体室は実施例1と同寸法で、錐台形状の液体流入口継手及び液体流出口継手を通さずに液体流入口及び液体流出口に内径3.0mm程度の体外循環回路が直接接続される構成とし、かつ、液体流入口及び液体流出口が液体室を挟んで対向して配置される構成とした。これを実施例2~4と同様の方法により、液体流入口から液体室に流入し、液体流出口から排出するモデルとして液体室の流速分布を確認した。
(Comparative Example 2)
On the other hand, as Comparative Example 2, the flow state was confirmed by the following method using a pressure detector having the configuration shown in FIG. The liquid chamber has the same dimensions as the first embodiment, and an extracorporeal circuit having an inner diameter of about 3.0 mm is directly connected to the liquid inlet and the liquid outlet without passing through the frustum-shaped liquid inlet joint and the liquid outlet joint. The liquid inlet and the liquid outlet are arranged to face each other across the liquid chamber. The flow velocity distribution in the liquid chamber was confirmed as a model in which this was introduced into the liquid chamber from the liquid inlet and discharged from the liquid outlet by the same method as in Examples 2-4.
 シミュレーションの結果、表1に示すとおり、比較例2における液体室の流速分布における標準偏差は0.007163(m/s)であった。以上より、液体流入口継手及び液体流出口継手を錐台形状とすることで液体室の流速分布(速度ムラ)が小さくなることが分かった。 As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution of the liquid chamber in Comparative Example 2 was 0.007163 (m / s). From the above, it has been found that the flow velocity distribution (velocity unevenness) of the liquid chamber is reduced by making the liquid inlet joint and the liquid outlet joint into a frustum shape.
(比較例3)
 次に、図8で示した構成をもつモデルを作成し、実施例2~4と同様の方法により、液体室の流速分布を確認した。シミュレーションの結果、表1に示すとおり液体室の流速分布における標準偏差は0.003967(m/s)であった。
(Comparative Example 3)
Next, a model having the configuration shown in FIG. 8 was created, and the flow velocity distribution in the liquid chamber was confirmed by the same method as in Examples 2-4. As a result of the simulation, as shown in Table 1, the standard deviation in the flow velocity distribution of the liquid chamber was 0.003967 (m / s).
 実施例2~4で得られた結果から導かれる液体室の流速分布の標準偏差と、液体流入口における液体室の円周方向の口径と液体室の円周長の割合との関係より、液体室の流速分布の標準偏差をY、液体流入口における液体室の円周方向の口径と液体室の円周長の割合をXとすると、XYの関係は以下の式2で示される。
  Y=0.0311X-0.0243X+0.0067 ・・・(式2)
From the relationship between the standard deviation of the flow velocity distribution of the liquid chamber derived from the results obtained in Examples 2 to 4, the ratio of the circumferential diameter of the liquid chamber at the liquid inlet and the circumferential length of the liquid chamber, When the standard deviation of the flow velocity distribution of the chamber is Y and the ratio of the circumferential diameter of the liquid chamber and the circumferential length of the liquid chamber at the liquid inlet is X, the relationship of XY is expressed by the following equation (2).
Y = 0.0311X 2 −0.0243X + 0.0067 (Formula 2)
 式2より、液体流入口における液体室の円周方向の口径Aを液体室の円周長の13.9%とすれば、液体室の流速分布の標準偏差は比較例2よりも小さくなることから、液体流入口における液体室の円周方向の口径Aを液体室の円周長の13.9%以上とすることで更なる効果が得られる。 From Equation 2, if the diameter A in the circumferential direction of the liquid chamber at the liquid inlet is 13.9% of the circumferential length of the liquid chamber, the standard deviation of the flow velocity distribution in the liquid chamber will be smaller than that in Comparative Example 2. Therefore, a further effect can be obtained by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to 13.9% or more of the circumferential length of the liquid chamber.
 このように、液体流入口における液体室の円周方向の口径Aを液体室の円周長の13.9%以上50%以下とすることにより、ショートパスを起こすことなく血液の滞留改善を行うことができるだけでなく、流速分布の標準偏差を抑えて血流の乱れを減らし、更なる血液の凝固抑制ができる。 In this way, by setting the diameter A in the circumferential direction of the liquid chamber at the liquid inlet to be 13.9% to 50% of the circumferential length of the liquid chamber, blood retention is improved without causing a short path. In addition, the blood flow disturbance can be reduced by suppressing the standard deviation of the flow velocity distribution, and blood coagulation can be further suppressed.
 本発明の圧力検出体並びにこれを備えた血液回路及び血液浄化装置は、従来の圧力検出体よりも血液の凝固を抑えることができる。そのため、安全に体外循環回路内の圧力を測定でき、体外循環治療に有用に用いることができる。 The pressure detector of the present invention and the blood circuit and blood purification apparatus provided with the pressure detector can suppress the coagulation of blood more than conventional pressure detectors. Therefore, the pressure in the extracorporeal circuit can be measured safely and can be usefully used for extracorporeal circulation treatment.
 1・・・圧力検出体、2・・・体外循環回路、3・・・液体流入口、4・・・液体流出口、5・・・液体室、6・・・圧力測定装置、7・・・空気室、8・・・変形面、9・・・チャンバ部材、10・・・液体流入口継手、11・・・液体流出口継手、12・・・液体室内側隅部、13・・・液体室内側隅部、14・・・液体室内側隅部、15・・・血液回路、16・・・ドリップチャンバ、17・・・基板、18・・・血液浄化装置、19・・・操作パネル、20・・・モジュールホルダー、21・・・血液ポンプ、22・・・薬液ホルダー、23・・・血液浄化用モジュール、24・・・液体流入口の円周方向の口径
 
DESCRIPTION OF SYMBOLS 1 ... Pressure detection body, 2 ... Extracorporeal circulation circuit, 3 ... Liquid inflow port, 4 ... Liquid outflow port, 5 ... Liquid chamber, 6 ... Pressure measuring device, 7 ... Air chamber, 8 ... deformed surface, 9 ... chamber member, 10 ... liquid inlet joint, 11 ... liquid outlet joint, 12 ... liquid chamber side corner, 13 ... Liquid chamber side corner, 14 ... Liquid chamber side corner, 15 ... Blood circuit, 16 ... Drip chamber, 17 ... Substrate, 18 ... Blood purification device, 19 ... Operation panel , 20 ... Module holder, 21 ... Blood pump, 22 ... Chemical solution holder, 23 ... Blood purification module, 24 ... Diameter of the liquid inflow port in the circumferential direction

Claims (8)

  1.  血液の体外処理を行う体外循環回路内の圧力を測定するための圧力検出体であり、
     前記体外循環回路内の圧力によって変形する変形面並びに液体流入口及び液体流出口を有して前記血液を流入及び排出させる液体室を備えたチャンバ部材と、
     前記液体流入口と前記体外循環回路とを管で連通するための液体流入口継手と、
     前記液体流出口と前記体外循環回路とを管で連通するための液体流出口継手と、
    を備え、前記液体流入口継手及び前記液体流出口継手の内部の流路が前記液体室の方向に向かって錐台形状に広がっている、体外循環回路用圧力検出体。
    A pressure detector for measuring the pressure in the extracorporeal circuit that performs extracorporeal processing of blood,
    A chamber member having a deformation surface deformed by pressure in the extracorporeal circulation circuit, and a liquid chamber having a liquid inlet and a liquid outlet and allowing the blood to flow in and out;
    A liquid inlet joint for connecting the liquid inlet and the extracorporeal circuit with a pipe;
    A liquid outlet joint for connecting the liquid outlet and the extracorporeal circuit with a pipe;
    And a flow detector inside the liquid inlet joint and the liquid outlet joint is expanded in a frustum shape toward the liquid chamber.
  2.  前記液体室は、円柱形状であり、
     前記液体流入口及び前記液体流出口は、前記液体室の円柱側面に配置されている、請求項1記載の体外循環回路用圧力検出体。
    The liquid chamber has a cylindrical shape,
    The pressure detector for an extracorporeal circuit according to claim 1, wherein the liquid inlet and the liquid outlet are arranged on a cylindrical side surface of the liquid chamber.
  3.  前記液体流入口の円周方向の口径は、前記液体室の円周長の13.9%以上50%以下である、請求項2記載の体外循環回路用圧力検出体。 The pressure detector for an extracorporeal circuit according to claim 2, wherein the diameter of the liquid inlet in the circumferential direction is 13.9% to 50% of the circumferential length of the liquid chamber.
  4.  前記液体流入口及び前記液体流出口は、前記液体室を挟んで対向配置されている、請求項1~3のいずれか一項記載の体外循環回路用圧力検出体。 The pressure detector for the extracorporeal circuit according to any one of claims 1 to 3, wherein the liquid inlet and the liquid outlet are arranged to face each other across the liquid chamber.
  5.  前記液体流入口継手及び前記液体流出口継手の形状は、錐台形状であり、前記錐台形状の広い方の底面で前記液体室と連結される、請求項1~4のいずれか一項記載の体外循環回路用圧力検出体。 The shape of each of the liquid inlet joint and the liquid outlet joint is a frustum shape, and is connected to the liquid chamber at the wider bottom surface of the frustum shape. Pressure detector for extracorporeal circulation circuit.
  6.  前記液体流入口継手及び前記流出口継手の内部の流路は、同一の形状である、請求項1~5のいずれか一項記載の体外循環回路用圧力検出体。 The pressure detector for the extracorporeal circuit according to any one of claims 1 to 5, wherein the flow paths inside the liquid inlet joint and the outlet joint have the same shape.
  7.  請求項1~6のいずれか一項記載の体外循環回路用圧力検出体と、体外循環回路とを備える、血液回路。 A blood circuit comprising the extracorporeal circuit pressure detector according to any one of claims 1 to 6 and an extracorporeal circuit.
  8.  請求項7記載の血液回路を備える、血液浄化装置。
     
    A blood purification apparatus comprising the blood circuit according to claim 7.
PCT/JP2014/053421 2013-02-15 2014-02-14 Pressure-sensing element, and blood circuit and blood purification apparatus provided with same WO2014126185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014508210A JPWO2014126185A1 (en) 2013-02-15 2014-02-14 Pressure detector and blood circuit and blood purification apparatus provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027877 2013-02-15
JP2013-027877 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126185A1 true WO2014126185A1 (en) 2014-08-21

Family

ID=51354184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053421 WO2014126185A1 (en) 2013-02-15 2014-02-14 Pressure-sensing element, and blood circuit and blood purification apparatus provided with same

Country Status (3)

Country Link
JP (1) JPWO2014126185A1 (en)
TW (1) TW201440824A (en)
WO (1) WO2014126185A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077406A (en) * 2014-10-14 2016-05-16 ニプロ株式会社 Blood circuit having pressure measurement part
JP2017038803A (en) * 2015-08-20 2017-02-23 ニプロ株式会社 Blood circuit having pressure measurement part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323083A (en) * 1994-05-31 1995-12-12 Terumo Corp Adaptor for blood circuit
JP2007222490A (en) * 2006-02-24 2007-09-06 Jms Co Ltd Detection unit for circuit internal pressure sensor and circuit internal pressure sensor
JP2008051663A (en) * 2006-08-24 2008-03-06 Asahi Kasei Kuraray Medical Co Ltd Pressure sensor
JP2011212174A (en) * 2010-03-31 2011-10-27 Toray Medical Co Ltd Blood purifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323083A (en) * 1994-05-31 1995-12-12 Terumo Corp Adaptor for blood circuit
JP2007222490A (en) * 2006-02-24 2007-09-06 Jms Co Ltd Detection unit for circuit internal pressure sensor and circuit internal pressure sensor
JP2008051663A (en) * 2006-08-24 2008-03-06 Asahi Kasei Kuraray Medical Co Ltd Pressure sensor
JP2011212174A (en) * 2010-03-31 2011-10-27 Toray Medical Co Ltd Blood purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077406A (en) * 2014-10-14 2016-05-16 ニプロ株式会社 Blood circuit having pressure measurement part
JP2017038803A (en) * 2015-08-20 2017-02-23 ニプロ株式会社 Blood circuit having pressure measurement part

Also Published As

Publication number Publication date
JPWO2014126185A1 (en) 2017-02-02
TW201440824A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
WO2007123156A1 (en) Pressure sensor for extracorporeal circulating circuit
CN107614032B (en) Medical hydraulic pressure detection device
US9808567B2 (en) Diaphragm repositioning for pressure pod using position sensing
US9844620B2 (en) Blood set component connection detection
JP5594541B2 (en) Pressure detector
EP2583715A1 (en) Infusion tube system and method for manufacture
JP5007410B2 (en) Pressure sensor
JPWO2009072390A1 (en) How to calibrate the pressure measurement unit
CN111032116B (en) Fluid management and measurement systems, devices, and methods
US20130180339A1 (en) Pressure sensing methods, devices, and systems
WO2014126185A1 (en) Pressure-sensing element, and blood circuit and blood purification apparatus provided with same
JP2008259553A (en) Pressure sensor
JP2008051663A (en) Pressure sensor
JP4869133B2 (en) Method for detecting breakage of flexible diaphragm and pressure sensor used therefor
JP5650881B2 (en) How to use the pressure sensor
JP6636943B2 (en) Medical technical measuring device and measuring method
US20140069857A1 (en) Pressure converter-protective device for blood tubing systems
JP2015215073A (en) Hub with valve
JP2017012269A (en) Pressure detection body and extracorporeal circulation circuit equipped with the pressure detection body
JP6423664B2 (en) Blood purifier and internal pressure measuring device for blood purifier
JP6772447B2 (en) Blood circuit with pressure measuring unit
KR101474972B1 (en) A coupling device for a biochip
JP2016112089A (en) Blood purification system and blood purifier
JP2005095230A (en) Drip chamber for pressure monitoring
WO2008035422A1 (en) Joint for medical tools and medical instrument

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014508210

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751718

Country of ref document: EP

Kind code of ref document: A1