WO2014125571A1 - モータ制御装置およびその制御方法 - Google Patents

モータ制御装置およびその制御方法 Download PDF

Info

Publication number
WO2014125571A1
WO2014125571A1 PCT/JP2013/053276 JP2013053276W WO2014125571A1 WO 2014125571 A1 WO2014125571 A1 WO 2014125571A1 JP 2013053276 W JP2013053276 W JP 2013053276W WO 2014125571 A1 WO2014125571 A1 WO 2014125571A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
noise filter
carrier frequency
noise
motor control
Prior art date
Application number
PCT/JP2013/053276
Other languages
English (en)
French (fr)
Inventor
正浩 大坪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/053276 priority Critical patent/WO2014125571A1/ja
Priority to JP2015500022A priority patent/JP5836533B2/ja
Priority to CN201380072757.5A priority patent/CN104995834B/zh
Priority to US14/652,854 priority patent/US9577565B2/en
Publication of WO2014125571A1 publication Critical patent/WO2014125571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Definitions

  • the present invention relates to a motor control device incorporating a noise filter and a control method thereof.
  • a motor control device for driving and controlling an AC motor includes a converter that converts AC power into DC power, and an inverter that switches the DC power generated by the converter and converts it into AC power for driving the motor. Then, noise is generated by the switching operation of the semiconductor switching element. This noise is conductive noise that propagates to the outside via the power supply line and affects peripheral devices.
  • a noise filter is installed at the power supply line connection end of the motor control device to reduce leakage of generated conductive noise to the power supply line (for example, Patent Document 1).
  • the amount of leakage of the conductive noise to the power supply line is often regulated in the band of 150 kHz to 30 MHz.
  • the band is usually a frequency range much higher than the carrier frequency band used for switching the inverter of the motor control device by the PWM signal.
  • the noise filter has a structure of a low-pass filter that passes without being attenuated in a low frequency range, and its cutoff frequency (frequency at which attenuation starts) is usually lower than the carrier frequency of the motor control device.
  • the manufacturer of the noise filter does not care about the cutoff frequency of the noise filter, and designs only by paying attention to the attenuation value near 150 kHz.
  • the attenuation factor and the cut-off frequency of the noise filter differ depending on the manufacturer of the noise filter, the following problems occur when such a noise filter is combined with the settings of the motor control device manufacturer or user.
  • a noise filter having a large noise attenuation rate in a band of 150 kHz or higher may have a cutoff frequency near the carrier frequency of the motor control device.
  • the ferrite core of the common mode coil that functions as an inductor constituting the noise filter is magnetically saturated in the motor control device. The noise attenuation effect cannot be obtained.
  • the ferrite core of the common mode coil is multi-staged, the cross-sectional area of the ferrite core is increased, or a core made of an amorphous material having a high saturation magnetic flux density is used, the inductor becomes larger, Since the material cost becomes high, there has been a problem that the manufacturer and the user of the motor control device that selectively uses such a noise filter have caused an increase in the size and cost of the device.
  • the present invention has been made in view of the above, and even if a noise filter manufactured according to the previous specification is incorporated without requiring special measures on the noise filter manufacturer side, the ferrite core of the common mode coil
  • An object of the present invention is to provide a motor control device and a control method thereof that can be used without causing magnetic saturation.
  • the motor control device incorporates a noise filter for preventing noise generated in the PWM control type inverter from leaking to the AC power supply side.
  • a noise filter for preventing noise generated in the PWM control type inverter from leaking to the AC power supply side.
  • the cutoff frequency of the noise filter overlaps with a carrier frequency that is a frequency of a triangular carrier signal used for generating a PWM signal, or when the cutoff frequency comes close to the carrier frequency, It is characterized by having a control function for changing to a different frequency.
  • the ferrite core of the common mode coil does not cause magnetic saturation. Can be used. Therefore, since the cost of the built-in noise filter can be suppressed, there is an effect that the apparatus cost can be greatly reduced.
  • FIG. 1 is a block diagram showing a main configuration of a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing an example of impedance characteristics of the noise filter shown in FIG.
  • FIG. 3 is a flowchart for explaining the operation according to this embodiment.
  • FIG. 4 is a characteristic diagram showing the relationship between the detected noise current value and the carrier frequency of the motor control device.
  • FIG. 4B shows a case where fc ⁇ fr.
  • FIG. 1 is a block diagram showing a main configuration of a motor control apparatus according to an embodiment of the present invention.
  • a motor control apparatus 1 according to the present embodiment has a configuration related to drive control of a motor 2 (in FIG. 1, “converter 3, capacitor 4, inverter 5, gate signal generation circuit 6 and PWM signal generation circuit in the basic part” 7 ”), a current detector 9, a sample and hold circuit (S / H) 10, and a carrier frequency change necessity determination unit 11 are added when the noise filter 8 is built in. ing.
  • the noise filter 8 is installed between the input end of the converter 3 and the device-side connection end of the power cable 13 to the AC power source 12.
  • the converter 3 is a full-wave rectifier circuit using a diode bridge.
  • the converter 3 generates a predetermined DC voltage by full-wave rectifying the output (three-phase AC voltage in the illustrated example) of the AC power supply 12 input through the noise filter 8.
  • the DC voltage output from the converter 3 is smoothed by the capacitor 4 and becomes a constant voltage, and becomes the bus voltage of the inverter 5.
  • the inverter 5 is composed of a switching circuit composed of a plurality of power transistors (IGBTs in the illustrated example) 5b having diodes 5a connected in antiparallel.
  • the switching circuit includes three arms, in which two diodes 5a and a power transistor 5b are connected in series between the positive and negative buses connected to the positive and negative ends of the capacitor 4. Arranged in parallel, one end of each of the three upper arms connected to the positive electrode bus and the other end of each of the three lower arms connected to the negative electrode bus serve as an output end, The motor 2 is connected.
  • the PWM signal generation circuit 7 is a PWM signal (pulse width modulation) whose pulse width changes based on a comparison between a triangular wave carrier signal having a certain frequency and a speed command voltage signal having a certain slope and intersecting the triangular wave carrier signal. Signal).
  • the gate signal generation circuit 6 individually applies gate signals to be applied to the gates of the power transistors 5b of the three upper arms and the three lower arms of the switching circuit constituting the inverter 5. To generate.
  • the inverter 5 includes a bus formed by the capacitor 4 when the power transistors 5b of the three upper arms and the three lower arms of the switching circuit are individually turned on / off by a gate signal from the gate signal generation circuit 6. The voltage is switched to transform the AC drive voltage to the motor 2.
  • the noise filter 8 is provided in order to prevent conductive noise generated in the inverter 5 from propagating to the outside through the power supply line and affecting peripheral devices.
  • the noise filter 8 includes a common mode coil, an X capacitor disposed between lines, and a Y capacitor disposed between line grounds, although the illustration of the configuration is omitted.
  • the X capacitor is mainly intended to attenuate normal mode noise
  • the Y capacitor is mainly intended to attenuate common mode noise.
  • FIG. 2 is a characteristic diagram showing an example of impedance characteristics of the noise filter shown in FIG.
  • FIG. 3 is a flowchart for explaining the operation according to this embodiment.
  • the vertical axis indicates the logarithm of the noise filter impedance, indicating that the attenuation rate of the noise filter 8 decreases as it goes downward.
  • the frequency fr shown at the lowest point of the valley portion of the impedance characteristic curve 15 is the cutoff frequency (frequency at which attenuation starts) of the noise filter 8.
  • the frequency fc shown at the position where the valley portion of the impedance characteristic curve 15 has risen to the high frequency side is the frequency (carrier frequency) of the triangular carrier signal used for generating the PWM signal in the PWM signal generating circuit 7.
  • the frequency (carrier frequency) fc of the triangular wave carrier signal used for generating the PWM signal is in a higher frequency range than the cutoff frequency fr of the noise filter 8 as shown in FIG.
  • the manufacturer of the noise filter 8 does not consider the cut-off frequency fr so much and designs it by paying attention only to the attenuation value around 150 kHz defined by the international EMI standard.
  • the cutoff frequency fr of the noise filter 8 designed and manufactured by the manufacturer of the noise filter 8 in consideration of the international EMI standard is close to the carrier frequency fc of the motor control device 1.
  • the noise filter 8 in which the cut-off frequency fr is close to the carrier frequency fc of the motor control device 1 is built in the motor control device 1 as described above.
  • conductive noise is generated for each carrier frequency fc or each harmonic thereof, but if the carrier frequency fc overlaps with the cutoff frequency fr of the noise filter 8 or does not overlap, the noise filter 8.
  • the noise current input to the noise filter 8 is amplified by resonance and becomes a large noise current.
  • a large magnetic flux is generated in the common mode coil constituting the noise filter 8 and the ferrite core of the common mode coil is magnetically saturated, and a desired noise reduction effect cannot be obtained.
  • the ferrite core of the common mode coil can be provided even if the noise filter 8 manufactured according to the specifications of the noise filter manufacturer side is incorporated without requiring any special measures from the manufacturer side of the noise filter 8.
  • a current detector 9, an S / H 10, and a carrier frequency change necessity determination unit 11 are added.
  • the carrier frequency fc of the motor control device 1 can be changed by the procedure shown in FIG.
  • step ST1 a noise current flowing from the converter 3 to the noise filter 8 is detected by the current detector 9.
  • step ST2 the noise current detection value input from the current detector 9 is sampled at intervals of the carrier frequency fc in S / H 10, and the sample value is held and output to the carrier frequency change necessity determination unit 11.
  • step ST3 the carrier frequency change necessity determination unit 11 first takes in each sample value held and output by the S / H 10 in order, and whether or not the current sample value is equal to the previous sample value, It is determined whether the sample value is close to the previous sample value.
  • the cutoff frequency fr of the noise filter 8 does not overlap the carrier frequency fc, or the cutoff frequency fr of the noise filter 8 is not close to the carrier frequency fc, so that the noise current flowing into the noise filter 8 is resonant. Not amplified. Therefore, for example, as shown in FIG. 4B, the noise current flowing into the noise filter 8 has a low amplitude that falls within the range of the EMI standard or the like, and the noise reduction effect of the noise filter 8 can be obtained.
  • the cutoff frequency fr of the noise filter 8 is determined. Is overlapped with the carrier frequency fc, or the cutoff frequency fr of the noise filter 8 is considered to be close to the carrier frequency fc, the noise current flowing into the noise filter 8 is resonantly amplified. Then, for example, as shown in FIG. 4A, the noise current flowing into the noise filter 8 has a large amplitude that does not fall within the range of the EMI standard or the like. At this time, if the noise current detection values are sampled at intervals of the carrier frequency fc, each noise current sample value becomes an equal value or a value close to an equal value.
  • the carrier frequency change necessity determination unit 11 confirms that the envelope of each noise current sample value of the specified number of times continuously shows a constant value.
  • the noise filter 8 In the PWM signal generation circuit 7, when the carrier frequency fc is changed to a situation where the cutoff frequency fr of the noise filter 8 does not overlap or is changed to a situation where it is not near the cutoff frequency fr of the noise filter 8, the noise filter The noise current flowing into 8 is not resonantly amplified. Therefore, for example, as shown in FIG. 4B, the noise current flowing into the noise filter 8 has a low amplitude that falls within the range of the EMI standard or the like. In the noise filter 8, since the common mode coil does not saturate the ferrite core and exhibits the original high inductance state, the noise reduction effect in the noise filter 8 can be obtained.
  • the amount of noise current generated in the inverter and flowing into the noise filter is detected, the detected value is sampled at intervals of the carrier frequency, and the envelope of each sample value is constant. It is determined whether or not the situation can be regarded as a value, and when the envelope of each sample value can be regarded as a constant value, the carrier frequency is the situation where the cutoff frequency fr of the noise filter 8 does not overlap, or the noise filter Change to a situation that is not near the cutoff frequency fr of 8.
  • the noise filter built in the motor control device is a noise filter manufactured according to the specifications of the noise filter manufacturer without requiring any special measures from the manufacturer of the noise filter, that is, the cutoff frequency. Even if the noise filter overlaps with the carrier frequency of the motor control device or is close, it can be used without causing magnetic saturation in the ferrite core of the common mode coil, and a desired noise reduction effect can be obtained. Therefore, since the cost of the built-in noise filter can be suppressed, the apparatus cost can be greatly reduced.
  • the motor control device and the control method thereof according to the present invention can be used in the common mode even if the noise filter manufactured according to the previous specification is incorporated without requiring special measures from the noise filter manufacturer side.
  • the present invention is useful as a motor control device that can be used without causing magnetic saturation in the ferrite core of the coil and a control method therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

 インバータにて発生しノイズフィルタに流れ込むノイズ電流の量を検出し、その検出値をキャリア周波数の間隔でサンプリングし、各サンプル値の包絡線が一定値とみなせる状況にあるか否かを判断し、各サンプル値の包絡線が一定値とみなせる状況にあるときは、キャリア周波数を、ノイズフィルタの遮断周波数frが重ならない状況、あるいは、ノイズフィルタの遮断周波数frの近くにない状況に変更する。これによって、モータ制御装置に内蔵したノイズフィルタが、ノイズフィルタのメーカサイドに特別な対策を要求することなく、ノイズフィルタのメーカサイドの仕様で製作されたノイズフィルタであっても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用して、所望のノイズ低減効果を得ることができる。

Description

モータ制御装置およびその制御方法
 本発明は、ノイズフィルタを内蔵したモータ制御装置およびその制御方法に関するものである。
 交流モータを駆動制御するモータ制御装置は、交流電源を直流電源に変換するコンバータと、該コンバータが変換生成した直流電源をスイッチングしてモータ駆動用の交流電源に変換するインバータとを備えるが、インバータでは半導体スイッチング素子のスイッチング動作によりノイズが発生する。このノイズは電源ラインを介して外部へ伝播し周辺機器に影響を与える伝導性ノイズである。
 そのため、従来から、モータ制御装置の電源ライン接続端にノイズフィルタを設置し、発生する伝導性ノイズの電源ラインへの漏洩を低減することが行われている(例えば特許文献1)。
 ここで、このモータ制御装置が発生する伝導性ノイズに関する国際EMI規格では、伝導性ノイズの電源ラインへの漏洩量が、150kHzから30MHzの帯域で規制されることが多いが、この150kHzから30MHzの帯域は、通常、モータ制御装置のインバータをPWM信号によりスイッチング動作させるのに用いるキャリア周波数の帯域よりも遙かに高い周波数域である。
 これに対し、ノイズフィルタは、低周波域では減衰せずに通過させるローパスフィルタの構造をしており、その遮断周波数(減衰が始まる周波数)は、通常、モータ制御装置のキャリア周波数よりも低いが、そのノイズフィルタのメーカでは、ノイズフィルタの遮断周波数は余り気にせずに150kHz付近での減衰値のみに注目して設計を行っている。
 つまり、ノイズフィルタの減衰率および遮断周波数は、ノイズフィルタのメーカによって異なっているので、そのようなノイズフィルタをモータ制御装置のメーカやユーザでの設定と組み合わせると、以下のような問題が起こる。
 すなわち、モータ制御装置のメーカやユーザは、モータ制御装置が発生する伝導性ノイズ量が大きい場合、150kHz以上の帯域でのノイズ減衰率が大きいノイズフィルタを選択使用するが、ノイズフィルタのメーカが設計する150kHz以上の帯域でのノイズ減衰率が大きいノイズフィルタは、その遮断周波数がモータ制御装置のキャリア周波数付近に来ることがある。
 そのようなノイズフィルタを大きな伝導性ノイズを発生するモータ制御装置に装備すると、該モータ制御装置では、ノイズフィルタを構成するインダクタとして機能するコモンモードコイルのフェライトコアが磁気飽和してしまい、所望のノイズ減衰効果が得られないことが起こる。
特開平2-36762号公報
 この問題に対し従来では、ノイズフィルタのメーカサイドにおいて、コモンモードコイルのコアの磁気飽和を回避する方策が採られていた。具体的には、(1)ノイズフィルタのコモンモードコイルのフェライトコアの巻数を減らし、1つのインダクタのインダクタンスを低減するとともに、インダクタの多段化すなわちフェライトコアを多段化すること、(2)コモンモードコイルのコアの断面積を大きくすること、(3)飽和磁束密度の小さいフェライトコアをアモルファスコアに切り換えること、などノイズフィルタの遮断周波数を変化させる方策が採られていた。
 しかし、コモンモードコイルのフェライトコアを多段化したり、フェライトコアの断面積を大きくしたり、高飽和磁束密度の非晶質系材料からなるコアを使用したりすると、インダクタが大型化したり、コアの材料費が高価になったりするので、そのようなノイズフィルタを選択使用するモータ制御装置のメーカやユーザでは、装置の大型化やコストアップなどを招来していたという問題があった。
 本発明は、上記に鑑みてなされたものであり、ノイズフィルタのメーカサイドに特別な対策を要求することなく、従前の仕様で製作されたノイズフィルタを内蔵しても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用できるモータ制御装置およびその制御方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるモータ制御装置は、PWM制御方式インバータにて発生するノイズが交流電源側へ漏洩するのを防止するためのノイズフィルタを内蔵するモータ制御装置において、前記ノイズフィルタの遮断周波数がPWM信号の発生に用いる三角波キャリア信号の周波数であるキャリア周波数に重なる、もしくは、前記遮断周波数が前記キャリア周波数の近傍にくるとき、前記キャリア周波数を他の周波数へ変更する制御機能を備えたことを特徴とする。
 本発明によれば、ノイズフィルタのメーカサイドに特別な対策を要求することなく、従前の仕様で製作されたノイズフィルタを内蔵しても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用できる。したがって、内蔵するノイズフィルタのコストを抑制できるので、装置コストの大幅な低減が可能になるという効果を奏する。
図1は、本発明の一実施の形態によるモータ制御装置の要部構成を示すブロック図である。 図2は、図1に示すノイズフィルタのインピーダンス特性例を示す特性図である。 図3は、本実施の形態による動作を説明するフローチャートである。 図4は、ノイズ電流検出値とモータ制御装置のキャリア周波数との関係を示す特性図であり、(A)はfc=frの場合、(B)はfc≠frの場合を示す図である。
 以下に、本発明にかかるモータ制御装置およびその制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態
 図1は、本発明の一実施の形態によるモータ制御装置の要部構成を示すブロック図である。図1において、本実施の形態によるモータ制御装置1は、モータ2の駆動制御に関わる構成(図1では基本部分の『コンバータ3、コンデンサ4,インバータ5、ゲート信号生成回路6およびPWM信号生成回路7』を示す)に加えて、ノイズフィルタ8が内蔵されている場合に、電流検出器9と、サンプル・ホールド回路(S/H)10と、キャリア周波数変更要否判断部11とが追加されている。ノイズフィルタ8は、図1に示すようにコンバータ3の入力端と交流電源12への電源ケーブル13の装置側接続端との間に設置されている。
 まず、モータ2の駆動制御に関わる構成と動作について簡単に説明する。コンバータ3は、ダイオードブリッジによる全波整流回路である。図1に示す例ではコンバータ3は、ノイズフィルタ8を通して入力される交流電源12の出力(図示例では3相の交流電圧)を全波整流して所定値の直流電圧を生成する。コンバータ3が出力する直流電圧は、脈流成分がコンデンサ4にて平滑化されて一定電圧となり、インバータ5の母線電圧となる。
 インバータ5は、ダイオード5aが逆並列接続されたパワートランジスタ(図示例ではIGBT)5bの複数個によるスイッチング回路で構成される。本実施の形態では、そのスイッチング回路は、コンデンサ4の正極端および負極端に接続される正極母線および負極母線間に、ダイオード5aおよびパワートランジスタ5bの2個を直列に接続したアームの3個を並列に配置し、一端が正極母線に接続される3つの上アームの各他端と、一端が負極母線に接続される3つの下アームの各他端との3つの接続端が出力端となり、モータ2が接続される。
 PWM信号生成回路7は、或る周波数の三角波キャリア信号と、或る傾斜を有して三角波キャリア信号と交差する速度指令電圧信号との比較に基づき、パルス幅が変化するPWM信号(パルス幅変調信号)を生成する。
 ゲート信号生成回路6は、PWM信号生成回路7からのPWM信号に基づき、インバータ5を構成するスイッチング回路の3つの上アームと3つの下アームの各パワートランジスタ5bのゲートに印加するゲート信号を個別に生成する。
 インバータ5は、スイッチング回路の3つの上アームと3つの下アームの各パワートランジスタ5bが、ゲート信号生成回路6からのゲート信号により個別にオン・オフ動作を行うことにより、コンデンサ4が形成する母線電圧をスイッチィングしてモータ2への交流駆動電圧を変成する。
 ここで、インバータ5では、各パワートランジスタ5bのスイッチング動作により伝導性ノイズが発生する。ノイズフィルタ8は、インバータ5にて発生した伝導性ノイズが電源ラインを介して外部へ伝播し周辺機器に影響を与えるのを防止するために設けてある。このノイズフィルタ8は、構成の図示を省略したが、コモンモードコイルと、ライン間に配置されるXコンデンサと、ラインアース間に配置されるYコンデンサとを備えている。
 コモンモードコイルは、フェライトコアに銅線を同相巻きにし、それぞれのコイルに流れる電流の磁束を互いに打ち消してフェライトコアの飽和を防ぐことで、大きなインダクタンスが得られるようにしている。Xコンデンサは、主にノーマルモードノイズを減衰させることを目的とし、Yコンデンサは、主にコモンモードノイズを減衰させることを目的としている。
 以下、図1~図4を参照して、本実施の形態に関わる部分について説明する。なお、図2は、図1に示すノイズフィルタのインピーダンス特性例を示す特性図である。図3は、本実施の形態による動作を説明するフローチャートである。図4は、ノイズ電流検出値とモータ制御装置のキャリア周波数との関係を示す特性図であり、(A)はfc=frの場合、(B)はfc≠frの場合を示す。
 まず、図2では、縦軸はノイズフィルタインピーダンスが対数で表示されており、下方へ行くほどノイズフィルタ8の減衰率が小さいことが示されている。図2において、インピーダンス特性曲線15の谷部分の最下点に示す周波数frは、ノイズフィルタ8の遮断周波数(減衰が始まる周波数)である。そして、インピーダンス特性曲線15の谷部分を高周波数側へ上がっていった所に示す周波数fcは、PWM信号生成回路7においてPWM信号の生成に用いる三角波キャリア信号の周波数(キャリア周波数)である。
 一般に、PWM信号の生成に用いる三角波キャリア信号の周波数(キャリア周波数)fcは、図2に示すように、ノイズフィルタ8の遮断周波数frよりも高い周波数域にある。しかし、ノイズフィルタ8のメーカは、遮断周波数frを余り考慮しないで、国際EMI規格が規定する150kHz付近での減衰値のみに注目して設計している。
 そのため、ノイズフィルタ8のメーカが国際EMI規格を考慮して設計製造したノイズフィルタ8の遮断周波数frがモータ制御装置1のキャリア周波数fcの近くになっていることが起こる。そして、そのように遮断周波数frがモータ制御装置1のキャリア周波数fcの近くになっているノイズフィルタ8がモータ制御装置1に内蔵されてしまうことが起こる。
 この場合、インバータ5では伝導性ノイズがキャリア周波数fc毎に、あるいはその高調波毎に発生するが、キャリア周波数fcが、ノイズフィルタ8の遮断周波数frと重なると、あるいは重ならなくともノイズフィルタ8の遮断周波数frの近傍にあると、ノイズフィルタ8に入力されるノイズ電流が共振により増幅されて大きなノイズ電流となる。その結果、ノイズフィルタ8を構成するコモンモードコイルに大きな磁束が発生し、コモンモードコイルのフェライトコアが磁気飽和を起こし、所望のノイズ低減効果が得られないことが起こる。
 そこで、本実施の形態では、ノイズフィルタ8のメーカサイドに特別な対策を要求することなく、ノイズフィルタのメーカサイドの仕様で製作されたノイズフィルタ8を内蔵しても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用できて所望のノイズ低減効果が得られるようにするため、電流検出器9と、S/H10と、キャリア周波数変更要否判断部11とを追加し、例えば図3に示す手順で、当該モータ制御装置1のキャリア周波数fcを変更できるようにした。
 すなわち、図3において、ステップST1では、電流検出器9にて、コンバータ3からノイズフィルタ8に流れ込むノイズ電流が検出される。ステップST2では、S/H10にて、電流検出器9から入力されるノイズ電流検出値がキャリア周波数fcの間隔でサンプリングされ、そのサンプル値がキャリア周波数変更要否判断部11へ保持出力される。
 ステップST3では、キャリア周波数変更要否判断部11にて、まず、S/H10が保持出力する各サンプル値を順に取り込み、今回のサンプル値が前回のサンプル値と等しいか否か、あるいは、今回のサンプル値が前回のサンプル値に近いか否かを判断する。
 その結果、今回のサンプル値が前回のサンプル値と等しくない場合、あるいは、今回のサンプル値が前回のサンプル値に近くない場合(ST3:No)は、本手順を終了する。但し、運転は継続する。この場合は、ノイズフィルタ8の遮断周波数frがキャリア周波数fcと重ならない、あるいは、ノイズフィルタ8の遮断周波数frがキャリア周波数fcの近くにないと考えられるので、ノイズフィルタ8に流れ込むノイズ電流は共振増幅されない。よって、例えば、図4(B)に示すように、ノイズフィルタ8に流れ込むノイズ電流は、EMI規格等の範囲内に収まる低振幅であり、ノイズフィルタ8でのノイズ低減効果が得られる。
 一方、ステップST3での判断結果、今回のサンプル値が前回のサンプル値と等しい場合、あるいは、今回のサンプル値が前回のサンプル値に近い場合(ST3:Yes)は、ノイズフィルタ8の遮断周波数frがキャリア周波数fcと重なる、あるいは、ノイズフィルタ8の遮断周波数frがキャリア周波数fcの近くにあると考えられるので、ノイズフィルタ8に流れ込むノイズ電流は共振増幅される。そうすると、例えば図4(A)に示すように、ノイズフィルタ8に流れ込むノイズ電流は、EMI規格等の範囲内に収まらない大振幅となる。このとき、ノイズ電流検出値をキャリア周波数fcの間隔でサンプリングすると、各ノイズ電流サンプル値は等値あるいは等値に近い値となる。
 よって、次のステップST4では、キャリア周波数変更要否判断部11にて、規定回数の各ノイズ電流サンプル値の包絡線が連続して一定値を示すことを確認する。ST4:No→ST1→ST2→ST3:Yes→ST4:Noの繰り返しにより確認できると(ST4:Yes)、次のステップST5において、キャリア周波数変更要否判断部11は、PWM信号生成回路7に対して、キャリア周波数fcを変更させる要求を出し本手順を終了する。但し、運転は継続する。
 PWM信号生成回路7において、キャリア周波数fcが、ノイズフィルタ8の遮断周波数frが重ならない状況に変更される、あるいは、ノイズフィルタ8の遮断周波数frの近くにない状況に変更されると、ノイズフィルタ8に流れ込むノイズ電流は共振増幅されない。よって、例えば図4(B)に示すように、ノイズフィルタ8に流れ込むノイズ電流は、EMI規格等の範囲内に収まる低振幅となる。ノイズフィルタ8では、コモンモードコイルはフェライトコアが飽和せず本来の高インダクタンス状態を示すので、ノイズフィルタ8でのノイズ低減効果が得られる。
 以上のように、本実施の形態によれば、インバータにて発生しノイズフィルタに流れ込むノイズ電流の量を検出し、その検出値をキャリア周波数の間隔でサンプリングし、各サンプル値の包絡線が一定値とみなせる状況にあるか否かを判断し、各サンプル値の包絡線が一定値とみなせる状況にあるときは、キャリア周波数を、ノイズフィルタ8の遮断周波数frが重ならない状況、あるいは、ノイズフィルタ8の遮断周波数frの近くにない状況に変更する。
 これによって、モータ制御装置に内蔵したノイズフィルタが、ノイズフィルタのメーカサイドに特別な対策を要求することなく、ノイズフィルタのメーカサイドの仕様で製作されたノイズフィルタであっても、即ち、遮断周波数がモータ制御装置のキャリア周波数と重なる、あるいは、近いノイズフィルタであっても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用して、所望のノイズ低減効果を得ることができる。したがって、内蔵するノイズフィルタのコストを抑制できるので、装置コストの大幅な低減が可能になる。
 以上のように、本発明にかかるモータ制御装置およびその制御方法は、ノイズフィルタのメーカサイドに特別な対策を要求することなく、従前の仕様で製作されたノイズフィルタを内蔵しても、コモンモードコイルのフェライトコアに磁気飽和を起こさせずに使用できるモータ制御装置およびその制御方法として有用である。
 1 モータ制御装置、2 モータ、3 コンバータ、4 コンデンサ、5 インバータ、5b パワートランジスタ、6 ゲート信号生成回路、7 PWM信号生成回路、8 ノイズフィルタ、9 電流検出器、10 サンプル・ホールド回路(S/H)、11 キャリア周波数変更要否判断部、12 交流電源、13 電源ケーブル。

Claims (6)

  1.  PWM制御方式インバータにて発生するノイズが交流電源側へ漏洩するのを防止するためのノイズフィルタを内蔵するモータ制御装置において、
     前記ノイズフィルタの遮断周波数がPWM信号の発生に用いる三角波キャリア信号の周波数であるキャリア周波数に重なる、もしくは、前記遮断周波数が前記キャリア周波数の近傍にくるとき、前記キャリア周波数を他の周波数へ変更する制御機能
     を備えたことを特徴とするモータ制御装置。
  2.  前記制御機能は、
     前記ノイズフィルタに流れるノイズ電流を検出する電流検出器と、
     前記電流検出器が出力するノイズ電流検出値を前記キャリア周波数の周期でサンプリングするサンプリング手段と、
     前記サンプリング手段が出力する今回および前回の各サンプル値を比較して等値か否かまたは等値に近いか否かを判断する判断手段と、
     前記判断手段の判断結果が、等値または等値に近い、であるとき、前記キャリア周波数を他の周波数へ変更するキャリア周波数変更手段と
     を備えたことを特徴とする請求項1に記載のモータ制御装置。
  3.  前記キャリア周波数変更手段は、
     前記判断手段の判断結果が、複数回連続して等値または等値に近い、であるとき、前記キャリア周波数を他の周波数へ変更する
     ことを特徴とする請求項2に記載のモータ制御装置。
  4.  PWM制御方式インバータにて発生するノイズが交流電源側へ漏洩するのを防止するためのノイズフィルタを内蔵するモータ制御装置において、
     前記ノイズフィルタの遮断周波数がPWM信号の発生に用いる三角波キャリア信号の周波数であるキャリア周波数に重なる、もしくは、前記遮断周波数が前記キャリア周波数の近傍にくるとき、前記キャリア周波数を他の周波数へ変更する制御工程
     を含むことを特徴とするモータ制御装置の制御方法。
  5.  前記制御工程は、
     前記ノイズフィルタに流れるノイズ電流を検出する第1の工程と、
     前記第1の工程にて検出されたノイズ電流検出値を前記キャリア周波数の周期でサンプリングする第2の工程と、
     前記第2の工程にて取得された今回および前回の各サンプル値を比較して等値か否かまたは等値に近いか否かを判断する第3の工程と、
     前記第3の工程での判断結果が、等値または等値に近い、であるとき、前記キャリア周波数を他の周波数へ変更する第4の工程と
     を含むことを特徴とする請求項4に記載のモータ制御装置の制御方法。
  6.  前記第4の工程は、
     前記第3の工程での判断結果が、複数回連続して等値または等値に近い、であるとき、前記キャリア周波数を他の周波数へ変更する工程
     を含むことを特徴とする請求項5に記載のモータ制御装置の制御方法。
PCT/JP2013/053276 2013-02-12 2013-02-12 モータ制御装置およびその制御方法 WO2014125571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/053276 WO2014125571A1 (ja) 2013-02-12 2013-02-12 モータ制御装置およびその制御方法
JP2015500022A JP5836533B2 (ja) 2013-02-12 2013-02-12 モータ制御装置およびその制御方法
CN201380072757.5A CN104995834B (zh) 2013-02-12 2013-02-12 电动机控制装置以及其控制方法
US14/652,854 US9577565B2 (en) 2013-02-12 2013-02-12 Motor control device and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053276 WO2014125571A1 (ja) 2013-02-12 2013-02-12 モータ制御装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO2014125571A1 true WO2014125571A1 (ja) 2014-08-21

Family

ID=51353606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053276 WO2014125571A1 (ja) 2013-02-12 2013-02-12 モータ制御装置およびその制御方法

Country Status (4)

Country Link
US (1) US9577565B2 (ja)
JP (1) JP5836533B2 (ja)
CN (1) CN104995834B (ja)
WO (1) WO2014125571A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426664B (zh) * 2015-11-03 2018-03-02 南车株洲电力机车研究所有限公司 Pwm整流变频***中载波频率计算方法及装置
JP6944646B2 (ja) * 2017-11-16 2021-10-06 株式会社ジェイテクト モータ制御装置
US11482917B2 (en) * 2018-09-28 2022-10-25 Mitsubishi Electric Corporation Power conversion device
CN113300588B (zh) * 2021-05-25 2022-08-09 重庆金康动力新能源有限公司 一种高压滤波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032938A (ja) * 2002-06-27 2004-01-29 Mitsubishi Electric Corp インバータ装置用ノイズフィルタ
JP2004260963A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236762A (ja) 1988-07-27 1990-02-06 Hitachi Ltd Pwm電力変換器の制御方法
JP2000270559A (ja) 1999-03-18 2000-09-29 Mitsubishi Electric Corp 可変速装置
JP5401965B2 (ja) * 2008-12-16 2014-01-29 株式会社明電舎 Pwmインバータの出力電流検出方法
WO2011021485A1 (ja) * 2009-08-19 2011-02-24 株式会社安川電機 出力フィルタとそれを備えた電動機駆動システム
US9893602B2 (en) * 2014-02-26 2018-02-13 Infineon Technologies Austria Ag Switched-mode power converter with sampled feedback signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032938A (ja) * 2002-06-27 2004-01-29 Mitsubishi Electric Corp インバータ装置用ノイズフィルタ
JP2004260963A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 電力変換装置

Also Published As

Publication number Publication date
CN104995834B (zh) 2017-07-21
JPWO2014125571A1 (ja) 2017-02-02
JP5836533B2 (ja) 2015-12-24
US9577565B2 (en) 2017-02-21
US20150333688A1 (en) 2015-11-19
CN104995834A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
JP3836689B2 (ja) グラウンド漏れ電流検知によるモータ絶縁フォールト検知方法
TWI343586B (en) Power source transforming device and transformer thereof
JP5836533B2 (ja) モータ制御装置およびその制御方法
JP5090068B2 (ja) 可変速駆動装置用emcフィルタ装置
US8649193B2 (en) Leakage current reducing apparatus
JP6858070B2 (ja) 伝導性ノイズ抑制装置、電力変換装置及びモータ装置
JP6207751B2 (ja) 電力変換装置
JP6350753B2 (ja) 電源回路
US10186977B2 (en) Resonant power converter
JP2016197821A (ja) ゲート駆動回路
JPH08237936A (ja) 電圧形インバータのノイズフィルタ
JP6120544B2 (ja) 点灯装置及び照明器具
JP6239468B2 (ja) 医療装置
JP2004260963A (ja) 電力変換装置
JP5933418B2 (ja) 電力変換装置
JP2013038829A (ja) 計器用変成器及び鉄共振抑制回路
JP2010232196A (ja) 誘導加熱調理器
JP2001244770A (ja) ノイズフィルター
US20200083836A1 (en) Method for adjusting an inverter connected to an electric motor via a du/dt filter
JP5649040B2 (ja) 炊飯器
JPH0723562A (ja) スイッチング電源
JP6847622B2 (ja) 電気車用電力変換装置及び電気車用電力変換方法
JP2006238582A (ja) 電力変換装置
JP2001230650A (ja) ノイズフィルター
JP2017092670A (ja) パルス発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875006

Country of ref document: EP

Kind code of ref document: A1