WO2014123218A1 - Anti-corrosive coating material and method for producing anti-corrosive coating material - Google Patents

Anti-corrosive coating material and method for producing anti-corrosive coating material Download PDF

Info

Publication number
WO2014123218A1
WO2014123218A1 PCT/JP2014/052892 JP2014052892W WO2014123218A1 WO 2014123218 A1 WO2014123218 A1 WO 2014123218A1 JP 2014052892 W JP2014052892 W JP 2014052892W WO 2014123218 A1 WO2014123218 A1 WO 2014123218A1
Authority
WO
WIPO (PCT)
Prior art keywords
flake pigment
mass
alkyd resin
anticorrosion
acid
Prior art date
Application number
PCT/JP2014/052892
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 井合
健一 赤嶺
麻里 福岡
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2014560817A priority Critical patent/JP6040999B2/en
Publication of WO2014123218A1 publication Critical patent/WO2014123218A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to an anticorrosion paint for preventing corrosion of metals and the like and a method for producing the anticorrosion paint.
  • an anticorrosion paint is applied to the surface of the steel structure.
  • a paint JIS K 5621: 2008-1 in which a long oil phthalic resin and a spherical bengara pigment (Fe 2 O 3 ) are dispersed in a thinner is generally used.
  • an anticorrosion paint in which glass flakes are added in an amount of 10% by mass to 150% by mass is disclosed (Patent Document 1). .
  • the glass flakes are obtained by making molten colored glass into a hollow sphere, pulverizing and classifying after cooling, and are flat with an average thickness of 0.5 to 10 ⁇ m and an average size of 100 to 400 ⁇ m, and uniformly colored throughout Has been.
  • an object of the present invention is to provide an anticorrosion paint capable of improving the anticorrosion performance without causing the above-mentioned problems.
  • the present invention includes an alkyd resin and a flake pigment composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide, The content is 5 to 75% by mass of the total mass of the alkyd resin and the flake pigment.
  • the flake pigment has an average thickness of 0.1 to 0.5 ⁇ m and an average particle diameter (D 50 ) of 1 to 100 ⁇ m.
  • the anticorrosion paint further includes a metal salt of at least one acid selected from the group consisting of octylic acid, naphthenic acid, rosin acid, tan oil fatty acid, soybean oil fatty acid, and tall oil acid, It is preferably at least one metal selected from the group consisting of cobalt, manganese, cerium, lead, calcium, zinc, iron, and zirconium.
  • the content of the metal salt is preferably 0.001% by mass to 3% by mass of the anticorrosion paint.
  • the alkyd resin is preferably a long oil phthalic resin.
  • the present invention also includes a step of preparing a flake pigment dispersion by dispersing a flake pigment in a first organic solvent, and a step of preparing an alkyd resin solution by dissolving an alkyd resin in a second organic solvent.
  • the anticorrosion paint of the present invention exhibits excellent anticorrosion performance by containing a predetermined amount of a predetermined flake pigment.
  • the anticorrosion paint can be designed according to the target anticorrosion performance using a simple theoretical model proposed in the present invention. Furthermore, according to the method for producing an anticorrosive paint of the present invention, it is possible to produce an anticorrosive paint that provides a coating film with excellent anticorrosion properties in which flake pigments are uniformly dispersed.
  • FIG. 1 is a conceptual diagram for explaining the improvement of anticorrosion performance by addition of flake pigments.
  • FIG. 2 is a graph showing the theoretical value of the anticorrosion performance with respect to the content of the flake pigment in the anticorrosion paint of the present invention.
  • FIG. 3 is a diagram showing photographs taken before and after the salt spray test of each test piece to which the comparative paint 1 and the anticorrosion paints A-1 to A-5 were applied.
  • FIG. 4 is a diagram showing photographs taken before and after the salt spray test of each test piece to which the comparative paint 2 and the anticorrosion paints B-1 to B-7 were applied.
  • FIG. 1 is a conceptual diagram for explaining the improvement of anticorrosion performance by addition of flake pigments.
  • FIG. 2 is a graph showing the theoretical value of the anticorrosion performance with respect to the content of the flake pigment in the anticorrosion paint of the present invention.
  • FIG. 3 is a diagram showing photographs taken before and after the salt spray test of each test piece to which the comparative paint 1 and the
  • FIG. 5 is a diagram showing photographs taken before and after the outdoor exposure test for each test piece to which the comparative paint 2 and the anticorrosion paints B-1 to B-4 and B-7 were applied.
  • FIG. 6 is a graph showing a comparison between a theoretical value and an actual measurement value.
  • FIG. 7 is a flowchart for explaining the flow of steps of the method of manufacturing the anticorrosion paint.
  • 8A to 8C are diagrams showing details of the theoretical model proposed in the present invention.
  • the anticorrosive paint of the present invention comprises an alkyd resin and a predetermined flake pigment.
  • the alkyd resin it is possible to use at least one of a pure oil-modified alkyd resin obtained by modifying a condensate of a polybasic acid and a polyhydric alcohol with fat or fatty acid, and a modified alkyd resin modified with a resin or the like.
  • polybasic acids include phthalic acid, terephthalic acid, isophthalic acid, maleic acid, fumaric acid, succinic acid, adipic acid, sebacic acid, azelaic acid, trimellitic acid, and the like.
  • polyhydric alcohols examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, hexamethylene glycol, deca
  • examples include methylene glycol, trimethylolethane, trimethylolpropane, hexanetriol, glycerin, and pentaerythritol.
  • fatty acids examples include saturated fatty acids such as octylic acid, lauric acid, and stearic acid, unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and ricinoleic acid, tall oil, soybean oil, linseed oil, safflower oil And (semi) dry oils such as sesame oil, and non-dry oils such as olive oil, coconut oil, and rapeseed oil.
  • saturated fatty acids such as octylic acid, lauric acid, and stearic acid
  • unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and ricinoleic acid
  • tall oil soybean oil, linseed oil, safflower oil And (semi) dry oils such as sesame oil, and non-dry oils such as olive oil, coconut oil, and rapeseed oil.
  • modified alkyd resin examples include phenol-modified alkyd resin, rosin-modified alkyd resin, urethane-modified alkyd resin, styrene-modified alkyd resin, acrylic-modified alkyd resin, and vinyltoluene-modified alkyd resin.
  • a pure oil-modified alkyd resin is preferable, and an oxidized long oily phthalic acid resin having an oil length (mass% of fatty acid) of 58 to 75% and undergoing oxidative polymerization even at room temperature is more preferable.
  • the flake pigment is a flake or scaly irregular or substantially oval pigment.
  • the flake pigment preferably has an average thickness, that is, an average thickness of 0.1 to 0.5 ⁇ m, and more preferably 0.2 to 0.3 ⁇ m. Further, the average value in the longitudinal direction (average particle diameter D 50 ) is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the average thickness and an average particle diameter D 50 of the flakes can be measured, for example, by electron microscopy.
  • the flake pigment is composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide, and is preferably aluminum, mica-like iron oxide, or iron oxide. Most preferably, it is aluminum.
  • “composed” may be substantially composed of the substance, and does not exclude the inclusion of a trace amount of a substance such as a surface treatment agent and metal soap used during metal grinding. Absent.
  • FIG. 1 is a conceptual diagram showing a model for theoretically explaining the improvement of anticorrosion performance by addition of flake pigments.
  • the coating film spreads in the XY plane direction, and the Z-axis direction is the coating film cross-sectional direction.
  • a coating film 10 composed only of an alkyd resin and a coating film 100 composed of an alkyd resin and a flake pigment 112 are compared.
  • corrosion factors for example, water and air
  • the corrosion factors for example, water and air
  • the corrosion factor that has entered from the surface bypasses the flake pigment 112 and reaches the object to be coated, as indicated by the broken arrow in FIG. 1.
  • the coating film 100 of the present invention has a longer moving distance of the corrosion factor from the outside to the coating object, and the time required for the corrosion of the coating object becomes longer. Therefore, the anticorrosion time can be extended (the anticorrosion performance can be improved) by applying the anticorrosion paint of this embodiment.
  • the film thickness of the coating film 100 formed of the anticorrosion paint of the present embodiment is made thinner than the coating film 10. be able to. Therefore, in the anticorrosion paint of this embodiment, it becomes possible to reduce the amount of the organic solvent discharged into the atmosphere (for example, less than 50%).
  • the content of the flake pigment in the anticorrosive coating is 5% by mass to 75% by mass, preferably 20% by mass to 60% by mass, and more preferably 40% by mass to 60% by mass of the total mass of the alkyd resin and the flake pigment. %.
  • the content of the flake pigment is less than the lower limit, it is difficult to obtain a sufficient anticorrosion effect.
  • the content of the flake pigment exceeds the upper limit, the anticorrosion performance tends to decrease. Therefore, it is preferable to set the content of flake pigment in the above range, and for example, the anticorrosion performance can be improved by about 9 times at the maximum.
  • the above range is set in terms of solid content.
  • the anticorrosion paint of the present invention may further contain an alkyd resin desiccant.
  • the desiccant is a metal salt of at least one acid selected from the group consisting of octylic acid, naphthenic acid, rosin acid, sesame oil fatty acid, soybean oil fatty acid, and tall oil acid, and accelerates curing of the alkyd resin.
  • the metal salt is a salt of at least one metal selected from the group consisting of cobalt, manganese, cerium, lead, calcium, zinc, iron and zirconium. Of these, metal salts of octylic acid or naphthenic acid are preferably used.
  • the metal salt which is at least one selected from the first metal element group consisting of cobalt, manganese and cerium as a metal mainly oxidizes and dries the surface of the coating film formed when the anticorrosion paint is applied.
  • the content of the desiccant in the anticorrosive paint is 0.001% to 3% by mass, preferably 0.1% to 1.5% by mass, more preferably 0.00% by mass, based on the mass of the anticorrosive paint. It is 25% by mass to 1% by mass.
  • the content of the desiccant is less than the lower limit, it is difficult to obtain a satisfactory drying time shortening effect.
  • the content of the desiccant exceeds the upper limit, the anticorrosion performance tends to decrease due to, for example, cracking of the coating film.
  • the content of the desiccant is within the above range, and the drying time is, for example, up to 1/120 (when 1% by mass of cobalt octylate is contained) as compared with the case where no desiccant is added. Can be shortened.
  • the anticorrosion paint of the present invention may contain a conventional paint additive such as a heat stabilizer, a tackifier resin, a plasticizer, an antifoaming agent, a leveling regulator, and an ion scavenger.
  • a conventional paint additive such as a heat stabilizer, a tackifier resin, a plasticizer, an antifoaming agent, a leveling regulator, and an ion scavenger.
  • FIG. 7 is a flowchart for explaining the flow of processing of the method of manufacturing the anticorrosive paint according to the present embodiment.
  • a flake pigment is dispersed in a first organic solvent to produce a flake pigment dispersion
  • an alkyd resin is dissolved in a second organic solvent to prepare an alkyd resin solution.
  • Raw material liquid preparation step S110 Regardless of the order of preparation of the flake pigment dispersion and preparation of the alkyd resin solution, both may be performed in parallel.
  • the concentration of the flake pigment in the flake pigment dispersion varies depending on the flake pigment used, but is preferably 30 to 90% by mass, and preferably 40 to 80% by mass from the viewpoint of good dispersibility of the flake pigment. % Is more preferable.
  • the concentration of the alkyd resin in the alkyd resin solution is preferably 50 to 90% by mass, and more preferably 60 to 90% by mass.
  • mixing step S120 the alkyd resin solution, the flake pigment dispersion, and, if desired, a desiccant and other paint additives are mixed (mixing step S120).
  • Mixing may be performed by a known means, and for example, a super mixer, a planetary mixer or the like can be used.
  • the flake pigment can be substantially uniformly dispersed in the alkyd resin by preparing the flake pigment dispersion and mixing it with the alkyd resin solution. Thereby, it becomes possible to improve the anticorrosion performance of the anticorrosion paint.
  • the viscosity of the resulting anticorrosion paint is preferably prepared according to the use, but is typically 40 to 60 cP.
  • the paint can be applied directly to the object to be painted by brushing, spraying, dipping or the like. Alternatively, it may be applied on an undercoat paint or an intermediate coat paint according to a conventional method.
  • the object to be painted is suitable for steel members such as steel buildings, vehicles, industrial plants, machines, ships, etc., but can also be used for corrosion protection of wooden members.
  • Vp (1/4) ⁇ ⁇ ⁇ D 2 ⁇ L (1)
  • the mass Wp of the alkyd resin when the coating film is composed only of the alkyd resin can be expressed by the following mathematical formula (2).
  • Wp (1/4) ⁇ ⁇ ⁇ D 2 ⁇ L ⁇ ⁇ p (2)
  • the mass WAl of the flake pigment can be expressed by the following mathematical formula (3).
  • volume VAl of the flake pigment per piece can be represented by the following mathematical formula (4).
  • VAl (m 3 ) (1/4) ⁇ ⁇ ⁇ D 2 ⁇ H (4)
  • the mass W′Al of the flake pigment per piece can be expressed by the following formula (5).
  • W′Al (kg) (1/4) ⁇ ⁇ ⁇ D 2 ⁇ H ⁇ ⁇ Al (5)
  • the movement distance in the Z-axis direction in FIG. 8C is L ⁇ ⁇ ( ⁇ is the mass ratio of the alkyd resin in the alkyd resin solution),
  • the movement distance in the X-axis direction in FIG. 8 (c) is (1/2) ⁇ D ⁇ NAl, the corrosion to the steel structure due to the inclusion of the flake pigment.
  • the moving distance L ′ ⁇ ⁇ of the factor can be expressed by the following mathematical formula (7).
  • Example 1 Long-oil phthalic acid resin (Beccosol P-470-70, manufactured by DIC Corporation) solution (alkyd resin 70% by mass) as an alkyd resin, aluminum in an organic solvent (paint thinner A, manufactured by Kansai Paint Co., Ltd.)
  • paint thinner A manufactured by Kansai Paint Co., Ltd.
  • Add a dispersion containing a paste containing flake pigment (aluminum paste 0100M, manufactured by Toyo Aluminum Co., Ltd., average thickness of aluminum flake pigment 0.3 ⁇ m, average particle size 10 ⁇ m) so that the aluminum flake pigment is 70% by mass
  • the anticorrosion paint A was prepared by sufficiently stirring.
  • a comparative paint 1 having a content of 0% by mass with respect to the total mass of the alkyd resin and flake pigment of the flake pigment was also produced.
  • Anticorrosion paints A-1 to A-5 having a flake pigment concentration of 10% by mass, 20% by mass, 40% by mass, 60% by mass, and 80% by mass were prepared.
  • Each test piece was prepared by spraying and drying at room temperature for 7 to 10 days.
  • a salt spray test was performed on each test piece based on JIS Z 2371. Here, it was confirmed that the increase in the hardness of the coating film was no longer recognized by a pencil hardness test (JIS K5400) or the like.
  • FIG. 3 is a view showing photographs taken for each test piece before starting the salt spray test, 168 hours after the start of the test, and 500 hours after that.
  • the comparative paint 1 having a flake pigment content of 0% by mass was applied, it was confirmed that most of the test piece was corroded after 168 hours (one week). It was done. Further, it was found that when the flake pigment content was increased, the progress of corrosion gradually slowed, and the corrosion protection coating A-4 having a content of 60% by mass slowed the slowest. Further, when the content of the flake pigment was further increased to 80% by mass (A-5), it was confirmed that the progress of corrosion was accelerated compared to 60% by mass of the anticorrosive paint.
  • Example 2 1% by weight of cobalt octylate (manufactured by Toei Chemical Co., Ltd.) is added to the weight of the paint, and the content of aluminum flake pigment is 0% by weight (comparative paint 2), 10% by weight, 20% by weight, 40% by weight. Comparative paint 2 and anticorrosive paints B-1 to B-7 were prepared in the same manner as in Example 1 except that the content was 60% by weight, 60% by weight, 70% by weight, 75% by weight, and 80% by weight.
  • cobalt octylate manufactured by Toei Chemical Co., Ltd.
  • each of the comparative paint 2 and each of the anticorrosion paints B-1 to B-7 produced on the SS400 mil scale steel plate (150 mm ⁇ 75 mm ⁇ 3.2 mm ( ⁇ 12 mm hole)) was dried in the same manner as in Example 1.
  • a salt spray test was performed based on JIS Z 2371 on each test piece prepared by spraying so that the average film thickness was 35 ⁇ m and drying at room temperature for 2 to 3 days.
  • FIG. 4 is a view showing a photograph taken for each test piece before starting the salt spray test, 168 hours after the start of the test, and 250 hours after that.
  • the test piece to which the comparative paint 2 having a flake pigment content of 0% by mass was applied most of the test piece was corroded after 168 hours.
  • the flake pigment content was increased, the progress of corrosion gradually slowed, and the corrosion was slowest in the anticorrosive paint B-4 having a content of 60% by mass.
  • the content rate of the flake pigment was further increased to 70% by mass or more, it was confirmed that the progress of corrosion was accelerated as compared with 60% by mass of the anticorrosive paint.
  • FIG. 5 shows photographs of the comparative paint 2, anticorrosive paints B-1 to B-4 and B-7 after being exposed outdoors for 6 months and 16 months.
  • Comparative Paint 2 rust was observed on the entire surface after 6 months.
  • the anticorrosion paints B-1 to B-4 and B-7 did not corrode even after 16 months.
  • FIG. 6 is a graph in which theoretical values obtained using the above-described model and measured values of Examples 1 and 2 are plotted side by side.
  • comparative paint 1 and anticorrosion paint A-1 to A-5 are indicated by black circles
  • comparative paint 2 and anticorrosion paint B-1 to B-7 are indicated by solid white circles.
  • up to 40% by mass of the flake pigment is in good agreement with the theoretical value regardless of whether the anticorrosive paint A or the anticorrosive paint B is added, that is, whether or not a desiccant is added.
  • the above-mentioned model can be used for designing the paint if the flake pigment is up to about 50% by mass.
  • the present invention can be used in an anticorrosion paint for preventing metal corrosion and a method for producing an anticorrosion paint.
  • the model proposed in the present invention is useful for designing the anticorrosion paint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Provided is an anti-corrosive coating material containing an alkyd resin and a flake pigment constituted from at least one type of substance selected from the group consisting of aluminum, iron, copper, brass, micaceous iron oxide and iron oxide. The anti-corrosive coating material is characterized in that the content of the flake pigment is 5-75 mass% of the total mass of the alkyd resin and the flake pigment.

Description

防食塗料および防食塗料の製造方法Anticorrosion paint and method for producing anticorrosion paint
 本発明は、金属等の腐食を防止する防食塗料および防食塗料の製造方法に関する。 The present invention relates to an anticorrosion paint for preventing corrosion of metals and the like and a method for producing the anticorrosion paint.
 ボイラの配管、鉄骨部品等の鉄鋼構造物の防食を目的として、鉄鋼構造物の表面に防食塗料が塗布されている。防食塗料としては、長油性フタル酸樹脂と球状のベンガラ顔料(Fe)とがシンナーに分散された塗料(JIS K 5621:2008-1種)が一般的に用いられている。 In order to prevent corrosion of steel structures such as boiler piping and steel parts, an anticorrosion paint is applied to the surface of the steel structure. As an anticorrosion paint, a paint (JIS K 5621: 2008-1) in which a long oil phthalic resin and a spherical bengara pigment (Fe 2 O 3 ) are dispersed in a thinner is generally used.
 防食性能を高めるために、フレーク状もしくは鱗片状の顔料を用いることが提案されており、例えばガラスフレークを樹脂の10質量%~150質量%添加した防食塗料が開示されている(特許文献1)。該ガラスフレークは、溶融着色ガラスを中空球状とし、冷却後粉砕、分級して得られ、平均厚さ0.5~10μm、平均大きさ100~400μmの偏平状であり、かつ全体に均一に着色されている。 In order to enhance the anticorrosion performance, it has been proposed to use flake-like or scale-like pigments. For example, an anticorrosion paint in which glass flakes are added in an amount of 10% by mass to 150% by mass is disclosed (Patent Document 1). . The glass flakes are obtained by making molten colored glass into a hollow sphere, pulverizing and classifying after cooling, and are flat with an average thickness of 0.5 to 10 μm and an average size of 100 to 400 μm, and uniformly colored throughout Has been.
特公平1-54389号公報Japanese Patent Publication No. 1-54389
 しかし、上記ガラスフレークを作るのは容易ではなく、また、塵肺の危険性も否定できない。
 そこで、本発明は上記問題を起こすことなく防食性能を高めることができる防食塗料を提供することを目的とする。
However, it is not easy to make the glass flakes, and the risk of pneumoconiosis cannot be denied.
Therefore, an object of the present invention is to provide an anticorrosion paint capable of improving the anticorrosion performance without causing the above-mentioned problems.
 本発明は、アルキド樹脂と、アルミニウム、鉄、銅、真鍮、雲母状酸化鉄、及び酸化鉄からなる群より選択される少なくとも一種の物質で構成されるフレーク顔料と、を含み、前記フレーク顔料の含有率は、前記アルキド樹脂と前記フレーク顔料の合計質量の5質量%~75質量%であることを特徴とする防食塗料である。 The present invention includes an alkyd resin and a flake pigment composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide, The content is 5 to 75% by mass of the total mass of the alkyd resin and the flake pigment.
 好ましくは、前記フレーク顔料が、0.1~0.5μmの平均厚みと1~100μmの平均粒子径(D50)を有する。
 また、上記防食塗料は、オクチル酸、ナフテン酸、ロジン酸、あまに油脂肪酸、大豆油脂肪酸、及びトール油酸からなる群より選択される少なくとも一種の酸の金属塩をさらに含み、前記金属が、コバルト、マンガン、セリウム、鉛、カルシウム、亜鉛、鉄、及びジルコニウムからなる群より選択される少なくとも一種の金属であることが好ましい。
Preferably, the flake pigment has an average thickness of 0.1 to 0.5 μm and an average particle diameter (D 50 ) of 1 to 100 μm.
The anticorrosion paint further includes a metal salt of at least one acid selected from the group consisting of octylic acid, naphthenic acid, rosin acid, tan oil fatty acid, soybean oil fatty acid, and tall oil acid, It is preferably at least one metal selected from the group consisting of cobalt, manganese, cerium, lead, calcium, zinc, iron, and zirconium.
 前記金属塩の含有率は、防食塗料の0.001質量%~3質量%であることが好ましい。また、前記アルキド樹脂が、長油性フタル酸樹脂であることが好ましい。 The content of the metal salt is preferably 0.001% by mass to 3% by mass of the anticorrosion paint. The alkyd resin is preferably a long oil phthalic resin.
 また、本発明は、フレーク顔料を第一有機溶媒中に分散させて、フレーク顔料分散液を調製する工程と、アルキド樹脂を第二有機溶媒中に溶解させて、アルキド樹脂溶液を調製する工程と、前記フレーク顔料分散液と前記アルキド樹脂溶液とを混合する工程と、を含み、前記フレーク顔料は、アルミニウム、鉄、銅、真鍮、雲母状酸化鉄、及び酸化鉄からなる群より選択される少なくとも一種の物質で構成され、前記フレーク顔料の含有率は、前記アルキド樹脂と前記フレーク顔料の合計質量の5質量%~75質量%であることを特徴とする防食塗料の製造方法である。 The present invention also includes a step of preparing a flake pigment dispersion by dispersing a flake pigment in a first organic solvent, and a step of preparing an alkyd resin solution by dissolving an alkyd resin in a second organic solvent. Mixing the flake pigment dispersion and the alkyd resin solution, wherein the flake pigment is at least selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide The anti-corrosion coating material manufacturing method according to claim 1, wherein the anti-corrosion coating material is composed of a kind of substance, and the content of the flake pigment is 5 mass% to 75 mass% of the total mass of the alkyd resin and the flake pigment.
 本発明の防食塗料は、所定のフレーク顔料を所定量含むことによって、優れた防食性能を示す。該防食塗料は、本発明で提案する簡易な理論モデルを用いて、目標とする防食性能に応じて設計することができる。さらに、本発明の防食塗料の製造方法によれば、フレーク顔料が均一に分散された、防食性に優れた塗膜を与える防食塗料を作ることができる。 The anticorrosion paint of the present invention exhibits excellent anticorrosion performance by containing a predetermined amount of a predetermined flake pigment. The anticorrosion paint can be designed according to the target anticorrosion performance using a simple theoretical model proposed in the present invention. Furthermore, according to the method for producing an anticorrosive paint of the present invention, it is possible to produce an anticorrosive paint that provides a coating film with excellent anticorrosion properties in which flake pigments are uniformly dispersed.
図1は、フレーク顔料の添加による防食性能の向上を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining the improvement of anticorrosion performance by addition of flake pigments. 図2は、本発明の防食塗料におけるフレーク顔料の含有率に対する防食性能の理論値を示すグラフである。FIG. 2 is a graph showing the theoretical value of the anticorrosion performance with respect to the content of the flake pigment in the anticorrosion paint of the present invention. 図3は、比較塗料1及び防食塗料A-1~A-5を夫々塗布した各試験片を塩水噴霧試験前後に撮像した写真を示す図である。FIG. 3 is a diagram showing photographs taken before and after the salt spray test of each test piece to which the comparative paint 1 and the anticorrosion paints A-1 to A-5 were applied. 図4は、比較塗料2及び防食塗料B-1~B-7を夫々塗布した各試験片を塩水噴霧試験前後に撮像した写真を示す図である。FIG. 4 is a diagram showing photographs taken before and after the salt spray test of each test piece to which the comparative paint 2 and the anticorrosion paints B-1 to B-7 were applied. 図5は、比較塗料2及び防食塗料B-1~B-4及びB-7を夫々塗布した各試験片を屋外暴露試験前後に撮像した写真を示す図である。FIG. 5 is a diagram showing photographs taken before and after the outdoor exposure test for each test piece to which the comparative paint 2 and the anticorrosion paints B-1 to B-4 and B-7 were applied. 図6は、理論値と実測値との比較を示すグラフである。FIG. 6 is a graph showing a comparison between a theoretical value and an actual measurement value. 図7は、防食塗料の製造方法の工程の流れを説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the flow of steps of the method of manufacturing the anticorrosion paint. 図8(a)~(c)は、本発明で提起する理論モデルの詳細を示す図である。8A to 8C are diagrams showing details of the theoretical model proposed in the present invention.
 以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
(防食塗料)
 本発明の防食塗料は、アルキド樹脂と、所定のフレーク顔料とを含んで構成される。
(Anti-corrosion paint)
The anticorrosive paint of the present invention comprises an alkyd resin and a predetermined flake pigment.
 アルキド樹脂としては、多塩基酸と多価アルコールとの縮合物を油脂又は脂肪酸で変性した純油変性アルキド樹脂、及び、樹脂等で変性した変性アルキド樹脂の少なくとも一種を使用することができる。多塩基酸の例としては、フタル酸、テレフタル酸、イソフタル酸、マレイン酸、フマル酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、及びトリメリット酸等が挙げられる。多価アルコールの例としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、ヘキサメチレングリコール、デカメチレングリコール、トリメチロールエタン、トリメチロールプロパン、ヘキサントリオール、グリセリン、及びペンタエリスリトール等が挙げられる。 As the alkyd resin, it is possible to use at least one of a pure oil-modified alkyd resin obtained by modifying a condensate of a polybasic acid and a polyhydric alcohol with fat or fatty acid, and a modified alkyd resin modified with a resin or the like. Examples of polybasic acids include phthalic acid, terephthalic acid, isophthalic acid, maleic acid, fumaric acid, succinic acid, adipic acid, sebacic acid, azelaic acid, trimellitic acid, and the like. Examples of polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, hexamethylene glycol, deca Examples include methylene glycol, trimethylolethane, trimethylolpropane, hexanetriol, glycerin, and pentaerythritol.
 脂肪酸の例としては、オクチル酸、ラウリン酸、及びステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレイン酸、及びリシノール酸等の不飽和脂肪酸、トール油、大豆油、亜麻仁油、サフラワー油、及び胡麻油等の(半)乾性油、オリーブ油、ヤシ油、菜種油等の不乾性油が挙げられる。 Examples of fatty acids include saturated fatty acids such as octylic acid, lauric acid, and stearic acid, unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and ricinoleic acid, tall oil, soybean oil, linseed oil, safflower oil And (semi) dry oils such as sesame oil, and non-dry oils such as olive oil, coconut oil, and rapeseed oil.
 変性アルキド樹脂の例としては、フェノール変性アルキド樹脂、ロジン変性アルキド樹脂、ウレタン変性アルキド樹脂、スチレン変性アルキド樹脂、アクリル変性アルキド樹脂、及びビニルトルエン変性アルキド樹脂等が挙げられる。 Examples of the modified alkyd resin include phenol-modified alkyd resin, rosin-modified alkyd resin, urethane-modified alkyd resin, styrene-modified alkyd resin, acrylic-modified alkyd resin, and vinyltoluene-modified alkyd resin.
 これらのうち、純油変性アルキド樹脂が好ましく、特に油長(脂肪酸の質量%)が58~75%であり且つ常温でも酸化重合が進む酸化型の長油性フタル酸樹脂がより好ましい。 Of these, a pure oil-modified alkyd resin is preferable, and an oxidized long oily phthalic acid resin having an oil length (mass% of fatty acid) of 58 to 75% and undergoing oxidative polymerization even at room temperature is more preferable.
 フレーク顔料は、薄片もしくは鱗片状の不定形もしくは略長円形状の顔料である。該フレーク顔料は、その厚みの平均値、即ち平均厚みが0.1~0.5μmであることが好ましく、0.2~0.3μmであることがより好ましい。また、長手方向の径の平均値(平均粒子径D50)が1μm~100μmであることが好ましく、5~50μmであることがより好ましい。フレークの平均厚み及び平均粒子径D50は、例えば電子顕微鏡により測定することができる。 The flake pigment is a flake or scaly irregular or substantially oval pigment. The flake pigment preferably has an average thickness, that is, an average thickness of 0.1 to 0.5 μm, and more preferably 0.2 to 0.3 μm. Further, the average value in the longitudinal direction (average particle diameter D 50 ) is preferably 1 μm to 100 μm, more preferably 5 to 50 μm. The average thickness and an average particle diameter D 50 of the flakes can be measured, for example, by electron microscopy.
 該フレーク顔料は、アルミニウム、鉄、銅、真鍮、雲母状酸化鉄、及び酸化鉄からなる群より選択される少なくとも一の物質で構成され、好ましくはアルミニウム、雲母状酸化鉄、又は酸化鉄であり、最も好ましくはアルミニウムである。ここで、「構成」されるとは、実質的にその物質から成ればよく、表面処理剤、及び金属粉砕時に用いられる金属石鹸等の微量な物質が含まれていることを排除するものではない。 The flake pigment is composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide, and is preferably aluminum, mica-like iron oxide, or iron oxide. Most preferably, it is aluminum. Here, “composed” may be substantially composed of the substance, and does not exclude the inclusion of a trace amount of a substance such as a surface treatment agent and metal soap used during metal grinding. Absent.
 図1は、フレーク顔料の添加による防食性能の向上を理論的に説明するためのモデルを示す概念図である。図1では、X-Y平面方向に塗膜が広がっており、Z軸方向が塗膜断面方向である。該モデルでは、図1に示すように、アルキド樹脂のみで構成された塗膜10と、アルキド樹脂とフレーク顔料112で構成された塗膜100とを比較する。塗膜10では、その表面から塗膜10内に侵入した腐食因子(例えば、水や空気)は、図1中実線の矢印で示すように、図1中、Z軸方向に向かって直線的に移動(透過)して塗装対象物に到達する。一方、塗膜100では、その表面から侵入した腐食因子は、図1中破線の矢印で示すように、フレーク顔料112を迂回して、塗装対象物に到達することとなる。 FIG. 1 is a conceptual diagram showing a model for theoretically explaining the improvement of anticorrosion performance by addition of flake pigments. In FIG. 1, the coating film spreads in the XY plane direction, and the Z-axis direction is the coating film cross-sectional direction. In the model, as shown in FIG. 1, a coating film 10 composed only of an alkyd resin and a coating film 100 composed of an alkyd resin and a flake pigment 112 are compared. In the coating film 10, corrosion factors (for example, water and air) that have entered the coating film 10 from the surface linearly move in the Z-axis direction in FIG. 1 as indicated by solid arrows in FIG. 1. Move (permeate) to reach the object to be painted. On the other hand, in the coating film 100, the corrosion factor that has entered from the surface bypasses the flake pigment 112 and reaches the object to be coated, as indicated by the broken arrow in FIG. 1.
 つまり、アルキド樹脂のみの塗膜10と比較して、本発明の塗膜100では、外部から塗装対象物への腐食因子の移動距離が長くなり、塗装対象物の腐食に要する時間が長くなる。したがって、本実施形態の防食塗料を塗布することにより、防食時間を延長する(防食性能を向上する)ことが可能となる。言い換えれば、フレーク顔料を含まない防食塗料で形成される塗膜10と同程度の防食時間とする場合、本実施形態の防食塗料で形成される塗膜100の膜厚を塗膜10より薄くすることができる。したがって、本実施形態の防食塗料では、大気中に排出される有機溶媒の量を低減する(例えば、50%未満にする)ことが可能となる。 That is, as compared with the coating film 10 made of only the alkyd resin, the coating film 100 of the present invention has a longer moving distance of the corrosion factor from the outside to the coating object, and the time required for the corrosion of the coating object becomes longer. Therefore, the anticorrosion time can be extended (the anticorrosion performance can be improved) by applying the anticorrosion paint of this embodiment. In other words, when the anticorrosion time is about the same as that of the coating film 10 formed of the anticorrosion paint that does not contain the flake pigment, the film thickness of the coating film 100 formed of the anticorrosion paint of the present embodiment is made thinner than the coating film 10. be able to. Therefore, in the anticorrosion paint of this embodiment, it becomes possible to reduce the amount of the organic solvent discharged into the atmosphere (for example, less than 50%).
 防食塗料におけるフレーク顔料の含有率は、アルキド樹脂とフレーク顔料の合計質量の5質量%~75質量%であり、好ましくは、20質量%~60質量%であり、より好ましくは、40~60質量%である。フレーク顔料の含有率が前記下限値未満であると、十分は防食向上効果を得ることが難しい。一方、フレーク顔料の含有率が前記上限値を超えると、防食性能が却って低下する傾向が見られる。したがって、フレーク顔料の含有率を前記範囲とすることが好ましく、例えば、防食性能を最大で約9倍向上させることが可能となる。なお、アルキド樹脂及び/又はフレーク顔料が夫々溶剤によって希釈されている場合には、固形分換算で前記範囲となるようにする。 The content of the flake pigment in the anticorrosive coating is 5% by mass to 75% by mass, preferably 20% by mass to 60% by mass, and more preferably 40% by mass to 60% by mass of the total mass of the alkyd resin and the flake pigment. %. When the content of the flake pigment is less than the lower limit, it is difficult to obtain a sufficient anticorrosion effect. On the other hand, when the content of the flake pigment exceeds the upper limit, the anticorrosion performance tends to decrease. Therefore, it is preferable to set the content of flake pigment in the above range, and for example, the anticorrosion performance can be improved by about 9 times at the maximum. In addition, when the alkyd resin and / or the flake pigment is diluted with a solvent, respectively, the above range is set in terms of solid content.
 本発明の防食塗料は、アルキド樹脂の乾燥剤をさらに含んでよい。該乾燥剤は、オクチル酸、ナフテン酸、ロジン酸、あまに油脂肪酸、大豆油脂肪酸、及びトール油酸からなる群より選択される少なくとも一種の酸の金属塩であり、アルキド樹脂の硬化を促進する。該金属塩は、コバルト、マンガン、セリウム、鉛、カルシウム、亜鉛、鉄、ジルコニウムの群から選択される少なくとも一種の金属の塩である。これらのうち、オクチル酸又はナフテン酸の金属塩が好ましく使用される。 The anticorrosion paint of the present invention may further contain an alkyd resin desiccant. The desiccant is a metal salt of at least one acid selected from the group consisting of octylic acid, naphthenic acid, rosin acid, sesame oil fatty acid, soybean oil fatty acid, and tall oil acid, and accelerates curing of the alkyd resin. To do. The metal salt is a salt of at least one metal selected from the group consisting of cobalt, manganese, cerium, lead, calcium, zinc, iron and zirconium. Of these, metal salts of octylic acid or naphthenic acid are preferably used.
 金属がコバルト、マンガン及びセリウムからなる第1金属元素群より選ばれる少なくとも一種である金属塩は、主として防食塗料を塗布した際に形成される塗膜の表面を酸化して乾燥させる。また、金属が鉛、カルシウム、亜鉛、鉄、及びジルコニウムからなる第2金属元素群の少なくとも一種である金属塩は、主として防食塗料を塗布した際に形成される塗膜を重合して乾燥させる。したがって、防食塗料が乾燥剤を含む構成により、防食塗料の乾燥時間を短縮することが可能となる。 The metal salt which is at least one selected from the first metal element group consisting of cobalt, manganese and cerium as a metal mainly oxidizes and dries the surface of the coating film formed when the anticorrosion paint is applied. Moreover, the metal salt which is at least 1 type of the 2nd metal element group which a metal consists of lead, calcium, zinc, iron, and a zirconium superposes | polymerizes and dries mainly the coating film formed when apply | coating an anticorrosion coating material. Therefore, the drying time of the anticorrosive paint can be shortened by the configuration in which the anticorrosive paint contains the desiccant.
 防食塗料における乾燥剤の含有率は、防食塗料の質量の0.001質量%~3質量%であり、好ましくは、0.1質量%~1.5質量%であり、より好ましくは、0.25質量%~1質量%である。乾燥剤の含有率が前記下限値未満であると、満足の行く乾燥時間の短縮効果が得られ難い。一方、乾燥剤の含有率が前記上限値を超えると、塗膜が割れる等により防食性能が低減する傾向が見られる。したがって、乾燥剤の含有率を前記範囲とすることが好ましく、乾燥剤を添加しない場合と比較して、例えば、最大で1/120(オクチル酸コバルトを1質量%含有させた場合)に乾燥時間を短縮することが可能となる。 The content of the desiccant in the anticorrosive paint is 0.001% to 3% by mass, preferably 0.1% to 1.5% by mass, more preferably 0.00% by mass, based on the mass of the anticorrosive paint. It is 25% by mass to 1% by mass. When the content of the desiccant is less than the lower limit, it is difficult to obtain a satisfactory drying time shortening effect. On the other hand, when the content of the desiccant exceeds the upper limit, the anticorrosion performance tends to decrease due to, for example, cracking of the coating film. Therefore, it is preferable that the content of the desiccant is within the above range, and the drying time is, for example, up to 1/120 (when 1% by mass of cobalt octylate is contained) as compared with the case where no desiccant is added. Can be shortened.
 上記成分に加えて、本発明の防食塗料は、慣用の塗料添加剤、例えば耐熱安定剤、粘着付与樹脂、可塑剤、消泡剤、レベリング調整剤、及びイオン捕集剤等を含んでよい。 In addition to the above components, the anticorrosion paint of the present invention may contain a conventional paint additive such as a heat stabilizer, a tackifier resin, a plasticizer, an antifoaming agent, a leveling regulator, and an ion scavenger.
(防食塗料の製造方法)
 続いて、上記防食塗料の製造方法について説明する。図7は、本実施形態にかかる防食塗料の製造方法の処理の流れを説明するためのフローチャートである。図7に示すように、まず、フレーク顔料を第一有機溶媒中に分散させて、フレーク顔料分散液を生成し、別途、アルキド樹脂を第二有機溶媒中に溶解させて、アルキド樹脂溶液を調製する(原料液調製工程S110)。フレーク顔料分散液の調製と、アルキド樹脂溶液の調製の順は問わず、両者を並行して行ってもよい。第一有機溶媒、第二有機溶媒としては、例えば脂肪族炭化水素系、芳香族炭化水素系、エステル系、又はケトン系の溶剤を使用することができ、第一溶媒と第二溶媒とが同一であってもよい。フレーク顔料分散液中のフレーク顔料の濃度は、使用するフレーク顔料にも依存して異なるが、フレーク顔料の良好な分散性の点で、30~90質量%であることが好ましく、40~80質量%であることがより好ましい。また、アルキド樹脂溶液中のアルキド樹脂の濃度は、50~90質量%であることが好ましく、60~90質量%であることがより好ましい。
(Method of manufacturing anticorrosion paint)
Then, the manufacturing method of the said anticorrosion paint is demonstrated. FIG. 7 is a flowchart for explaining the flow of processing of the method of manufacturing the anticorrosive paint according to the present embodiment. As shown in FIG. 7, first, a flake pigment is dispersed in a first organic solvent to produce a flake pigment dispersion, and separately, an alkyd resin is dissolved in a second organic solvent to prepare an alkyd resin solution. (Raw material liquid preparation step S110). Regardless of the order of preparation of the flake pigment dispersion and preparation of the alkyd resin solution, both may be performed in parallel. As the first organic solvent and the second organic solvent, for example, aliphatic hydrocarbon type, aromatic hydrocarbon type, ester type, or ketone type solvent can be used, and the first solvent and the second solvent are the same. It may be. The concentration of the flake pigment in the flake pigment dispersion varies depending on the flake pigment used, but is preferably 30 to 90% by mass, and preferably 40 to 80% by mass from the viewpoint of good dispersibility of the flake pigment. % Is more preferable. The concentration of the alkyd resin in the alkyd resin solution is preferably 50 to 90% by mass, and more preferably 60 to 90% by mass.
 次いで、アルキド樹脂溶液と、フレーク顔料分散液と、所望により乾燥剤、その他の塗料添加剤とを混合する(混合工程S120)。混合は、公知の手段で行ってよく、例えばスーパーミキサー、プラネタリーミキサー等を用いることができる。 Next, the alkyd resin solution, the flake pigment dispersion, and, if desired, a desiccant and other paint additives are mixed (mixing step S120). Mixing may be performed by a known means, and for example, a super mixer, a planetary mixer or the like can be used.
 上述のとおり、フレーク顔料分散液を調製した上で、アルキド樹脂溶液と混合することにより、フレーク顔料をアルキド樹脂に実質的に均一に分散させることができる。これにより、防食塗料の防食性能を向上することが可能となる。 As described above, the flake pigment can be substantially uniformly dispersed in the alkyd resin by preparing the flake pigment dispersion and mixing it with the alkyd resin solution. Thereby, it becomes possible to improve the anticorrosion performance of the anticorrosion paint.
 得られる防食塗料の粘度は、用途に応じて調製することが好ましいが、典型的には40~60cPである。該塗料は、刷毛塗り、噴霧、浸漬等によりに塗装対象物に直接施与することができる。或いは、定法に従い下塗り塗料、中塗り塗料の上に施与してもよい。塗装対象物としては、鉄骨建築物、車両、工業プラント、機械、船舶等の鉄鋼部材等に好適であるが、木製部材等の防食にも使用できる。 The viscosity of the resulting anticorrosion paint is preferably prepared according to the use, but is typically 40 to 60 cP. The paint can be applied directly to the object to be painted by brushing, spraying, dipping or the like. Alternatively, it may be applied on an undercoat paint or an intermediate coat paint according to a conventional method. The object to be painted is suitable for steel members such as steel buildings, vehicles, industrial plants, machines, ships, etc., but can also be used for corrosion protection of wooden members.
(フレーク顔料の含有率と防食性能の理論的検討)
 フレーク顔料を含む塗料を設計するに当たり、フレーク顔料の含有率と防食性能との関係を、図8に示す理論モデルを用いることの可能性について検討した。図8(a)に示すようにアルキド樹脂を直径Dm、高さLmの円柱形状と仮定し、図8(b)に示すようにフレーク顔料を直径Dm、高さHm(L>H)の円柱形状と仮定した。また、下記(A)~(E)の仮定を置いた。
(A)塗膜中においてフレーク顔料は、図8(c)に示すように、すべて均一に分散(図1中、X軸方向にも、Y軸方向にも、Z軸方向にも等間隔で配列)している。
(B)図8(c)に示すように、フレーク顔料はすべて被塗装面に対して平行に配列されている。
(C)腐食因子は、図8(c)中の矢印で示すように移動し、被塗装物に到達する。
(D)フレーク顔料の添加による塗膜の体積増加量は無視する。
(E)塗膜のモデルは三次元とするが、腐食因子の移動経路における計算は二次元のモデルと仮定し計算する。
(Theoretical examination of flake pigment content and anticorrosion performance)
In designing a paint containing flake pigments, the relationship between the content of flake pigments and the anticorrosion performance was examined for the possibility of using the theoretical model shown in FIG. As shown in FIG. 8 (a), the alkyd resin is assumed to be a cylindrical shape having a diameter Dm and a height Lm, and the flake pigment is a cylinder having a diameter Dm and a height Hm (L> H) as shown in FIG. 8 (b). Assumed shape. Further, the following assumptions (A) to (E) were made.
(A) As shown in FIG. 8 (c), the flake pigment is uniformly dispersed in the coating film (in FIG. 1, the X-axis direction, the Y-axis direction, and the Z-axis direction are equally spaced. Array).
(B) As shown in FIG. 8C, all the flake pigments are arranged in parallel to the surface to be coated.
(C) The corrosion factor moves as indicated by an arrow in FIG. 8C and reaches the object to be coated.
(D) The volume increase of the coating film due to the addition of the flake pigment is ignored.
(E) The coating film model is assumed to be three-dimensional, but the calculation in the path of the corrosion factor is assumed to be a two-dimensional model.
 上記仮定を踏まえ、塗膜がアルキド樹脂のみで構成されている場合の体積をVpとすると下記数式(1)が成り立つ。
Vp=(1/4)・π・D・L…数式(1)
Based on the above assumption, the following formula (1) is established when the volume when the coating film is composed of only the alkyd resin is Vp.
Vp = (1/4) · π · D 2 · L (1)
 また、アルキド樹脂の密度をρpとすると塗膜がアルキド樹脂のみで構成されている場合のアルキド樹脂の質量Wpは、下記数式(2)で表すことができる。
Wp=(1/4)・π・D・L・ρp…数式(2)
Further, when the density of the alkyd resin is ρp, the mass Wp of the alkyd resin when the coating film is composed only of the alkyd resin can be expressed by the following mathematical formula (2).
Wp = (1/4) · π · D 2 · L · ρp (2)
 塗膜に対してC質量%のフレーク顔料を添加し、上述のとおり該添加による塗膜の体積増加を無視すると、フレーク顔料の質量WAlは、下記数式(3)で表すことができる。
WAl=0.01・C・(Wp+WAl)=(1/400)・(C/(100-C))・π・D・L・ρp…数式(3)
When a C mass% flake pigment is added to the coating film and the volume increase of the coating film due to the addition is ignored as described above, the mass WAl of the flake pigment can be expressed by the following mathematical formula (3).
WAl = 0.01 · C · (Wp + WAl) = (1/400) · (C / (100−C)) · π · D 2 · L · ρp (3)
 また、1個当たりのフレーク顔料の体積VAlは、下記数式(4)で表すことができる。
VAl(m)=(1/4)・π・D・H…数式(4)
Moreover, the volume VAl of the flake pigment per piece can be represented by the following mathematical formula (4).
VAl (m 3 ) = (1/4) · π · D 2 · H (4)
 ここで、フレーク顔料の密度をρAl(kg/m)とすると、1個当たりのフレーク顔料の質量W’Alは、下記数式(5)で表すことができる。
W’Al(kg)=(1/4)・π・D・H・ρAl…数式(5)
Here, if the density of the flake pigment is ρAl (kg / m 3 ), the mass W′Al of the flake pigment per piece can be expressed by the following formula (5).
W′Al (kg) = (1/4) · π · D 2 · H · ρAl (5)
 そうすると、塗膜中に含まれるフレーク顔料の個数NAlは、下記数式(6)で表すことができる。
NAl=WAl/W’Al
   =C・L・ρp/((100-C)・H・ρAl)…数式(6)
If it does so, the number NAl of the flake pigment contained in a coating film can be represented by following Numerical formula (6).
NAl = WAl / W'Al
= C · L · ρp / ((100-C) · H · ρAl) (6)
 そして、フレーク顔料を塗膜に含有させた場合の腐食因子の、図8(c)中Z軸方向の移動距離をL・η(ηは、アルキド樹脂溶液中のアルキド樹脂の質量比率)とし、フレーク顔料を塗膜に含有させた場合の、図8(c)中X軸方向の移動距離を(1/2)・D・NAlとすると、フレーク顔料を含有させることによる鉄鋼構造物までの腐食因子の移動距離L’・ηは、下記数式(7)で表すことができる。
L’・η=L・η+(1/2)・D・NAl
    =L・η+(1/2)・D・(C・L・ρp/((100-C)・H・ρAl))…数式(7)
And, when the flake pigment is contained in the coating film, the movement distance in the Z-axis direction in FIG. 8C is L · η (η is the mass ratio of the alkyd resin in the alkyd resin solution), When the flake pigment is included in the coating film and the movement distance in the X-axis direction in FIG. 8 (c) is (1/2) · D · NAl, the corrosion to the steel structure due to the inclusion of the flake pigment. The moving distance L ′ · η of the factor can be expressed by the following mathematical formula (7).
L ′ · η = L · η + (1/2) · D · NAl
= L · η + (1/2) · D · (C · L · ρp / ((100−C) · H · ρAl)) (7)
 そして、数式(7)より下記数式(8)が導かれる。
L’/L(倍)=1+(D・C・ρp)/((200-2C)・η・H・ρAl)…数式(8)
Then, the following formula (8) is derived from the formula (7).
L ′ / L (times) = 1 + (D · C · ρp) / ((200−2C) · η · H · ρAl) (8)
 上記数式(8)に、例えばD=10×10-6(m)、ρp=1470(kg/m)、η=0.7、H=0.3×10-6(m)、ρAl=2700(kg/m)を代入して、フレーク顔料の含有率に対する防食性能(L’/L)を導出した。結果を下記表1および図2に示す。
Figure JPOXMLDOC01-appb-T000001
For example, D = 10 × 10 −6 (m), ρp = 1470 (kg / m 3 ), η = 0.7, H = 0.3 × 10 −6 (m), ρAl = By substituting 2700 (kg / m 3 ), the anticorrosion performance (L ′ / L) relative to the flake pigment content was derived. The results are shown in Table 1 below and FIG.
Figure JPOXMLDOC01-appb-T000001
 表1および図2では、フレーク顔料の含有率が0%である場合の防食性能を1として、各含有率の防食性能を示す。図2に示すとおり、フレーク顔料の含有率が多くなるに従い、防食性能がほぼ直線的に高くなることが分かる。該式は、下記実施例で示すとおり、防食性能が低下し始める限界顔料濃度以下においては、実験結果と大変に良い近似を示すことが見出された。 In Table 1 and FIG. 2, the anticorrosion performance of each content rate is shown with the anticorrosion performance when the content rate of the flake pigment is 0%. As shown in FIG. 2, it can be seen that the anticorrosion performance increases substantially linearly as the flake pigment content increases. As shown in the examples below, it has been found that the formula shows a very good approximation to the experimental results below the limit pigment concentration at which the anticorrosion performance begins to decrease.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 アルキド樹脂としての長油性フタル酸樹脂(ベッコゾールP-470-70、DIC株式会社製)溶液(アルキド樹脂70質量%)に対して、有機溶媒(塗料用シンナーA、関西ペイント株式会社製)にアルミニウムフレーク顔料を含むペースト(アルミニウムペースト0100M、東洋アルミニウム株式会社製、アルミニウムフレーク顔料の平均厚み0.3μm、平均粒子径10μm)を、アルミニウムフレーク顔料が70質量%となるように分散した分散液を添加し、十分に攪拌して防食塗料Aを作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
(Example 1)
Long-oil phthalic acid resin (Beccosol P-470-70, manufactured by DIC Corporation) solution (alkyd resin 70% by mass) as an alkyd resin, aluminum in an organic solvent (paint thinner A, manufactured by Kansai Paint Co., Ltd.) Add a dispersion containing a paste containing flake pigment (aluminum paste 0100M, manufactured by Toyo Aluminum Co., Ltd., average thickness of aluminum flake pigment 0.3 μm, average particle size 10 μm) so that the aluminum flake pigment is 70% by mass The anticorrosion paint A was prepared by sufficiently stirring.
 なお、フレーク顔料のアルキド樹脂とフレーク顔料の合計質量に対する含有率が0質量%の比較塗料1も作製した。フレーク顔料の濃度が、夫々、10質量%、20質量%、40質量%、60質量%、80質量%の防食塗料A-1~A-5を作製した。 A comparative paint 1 having a content of 0% by mass with respect to the total mass of the alkyd resin and flake pigment of the flake pigment was also produced. Anticorrosion paints A-1 to A-5 having a flake pigment concentration of 10% by mass, 20% by mass, 40% by mass, 60% by mass, and 80% by mass were prepared.
 そして、SS400ミルスケール鋼板(150mm×75mm×3.2mm(φ12mm穴))に作製した比較塗料1、防食塗料A-1~A-5の各々を乾燥後の平均膜厚が35μmになるようにスプレーにより塗布して室温にて7~10日乾燥させて、各試験片を作製し、各試験片に対して、JIS Z 2371に基づいて塩水噴霧試験を実施した。ここで、塗膜が乾燥したことは、鉛筆硬さ試験(JIS K 5400)等により、該塗膜の硬度の上昇が最早認められなくなったことによって確認した。 Then, each of the comparative paint 1 and the anticorrosion paints A-1 to A-5 prepared on the SS400 mil scale steel plate (150 mm × 75 mm × 3.2 mm (φ12 mm hole)) was dried to have an average film thickness of 35 μm. Each test piece was prepared by spraying and drying at room temperature for 7 to 10 days. A salt spray test was performed on each test piece based on JIS Z 2371. Here, it was confirmed that the increase in the hardness of the coating film was no longer recognized by a pencil hardness test (JIS K5400) or the like.
 図3は、各試験片の塩水噴霧試験開始前、試験開始168時間後、同500時間後撮像した写真を示す図である。図3に示すように、フレーク顔料の含有率が0質量%の比較塗料1を塗布した試験片では、168時間(1週間)後には、該試験片の大部分が腐食されていることが確認された。そして、フレーク顔料の含有率を上げると、腐食の進行具合が徐々に遅くなり、含有率60質量%の防食塗料A-4では、最も腐食が遅くなることが分かった。また、フレーク顔料の含有率をさらに上げて、80質量%とすると(A-5)、60質量%の防食塗料と比較して腐食の進行具合が早くなることが確認された。 FIG. 3 is a view showing photographs taken for each test piece before starting the salt spray test, 168 hours after the start of the test, and 500 hours after that. As shown in FIG. 3, in the test piece to which the comparative paint 1 having a flake pigment content of 0% by mass was applied, it was confirmed that most of the test piece was corroded after 168 hours (one week). It was done. Further, it was found that when the flake pigment content was increased, the progress of corrosion gradually slowed, and the corrosion protection coating A-4 having a content of 60% by mass slowed the slowest. Further, when the content of the flake pigment was further increased to 80% by mass (A-5), it was confirmed that the progress of corrosion was accelerated compared to 60% by mass of the anticorrosive paint.
 また、各試験片の全面腐食に要した時間を測定し、フレーク顔料の含有率が0質量%の比較塗料1を塗布した試験片の全面腐食に要した時間を「1」として、フレーク顔料の含有率10質量%~80質量%の防食性能を計算したところ、下記、表2に示す結果となった。
Figure JPOXMLDOC01-appb-T000002
Further, the time required for the overall corrosion of each test piece was measured, and the time required for the overall corrosion of the test piece coated with the comparative paint 1 having a flake pigment content of 0% by mass was defined as “1”. When the anticorrosion performance with a content of 10% by mass to 80% by mass was calculated, the results shown in Table 2 below were obtained.
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、フレーク顔料の含有率を上げると、全面腐食に要する時間が徐々に長くなり、含有率60質量%の防食塗料A-4では、含有率0質量%の比較塗料1の4.6倍の防食時間を要する(防食性能を有する)ことが分かった。また、フレーク顔料の含有率をさらに上げて、80質量%とすると、比較塗料1の2.1倍の防食性能に減少してしまうことが確認された。 As shown in Table 2, when the content of the flake pigment is increased, the time required for the entire surface corrosion is gradually increased. In the anticorrosion paint A-4 having a content of 60% by mass, 4 of the comparative paint 1 having a content of 0% by mass is obtained. It was found that the anticorrosion time 6 times longer (has anticorrosion performance). Moreover, when the content rate of the flake pigment was further increased to 80% by mass, it was confirmed that the anticorrosion performance was 2.1 times that of the comparative paint 1.
(実施例2)
 塗料質量に対して1質量%のオクチル酸コバルト(東栄化工株式会社製)を添加し、アルミニウムフレーク顔料の含有率を、0質量%(比較塗料2)、10質量%、20質量%、40質量%、60質量%、70質量%、75質量%、80質量%としたことを除き、実施例1と同様にして、比較塗料2及び防食塗料B-1~B-7をそれぞれ調製した。
(Example 2)
1% by weight of cobalt octylate (manufactured by Toei Chemical Co., Ltd.) is added to the weight of the paint, and the content of aluminum flake pigment is 0% by weight (comparative paint 2), 10% by weight, 20% by weight, 40% by weight. Comparative paint 2 and anticorrosive paints B-1 to B-7 were prepared in the same manner as in Example 1 except that the content was 60% by weight, 60% by weight, 70% by weight, 75% by weight, and 80% by weight.
 そして、SS400ミルスケール鋼板(150mm×75mm×3.2mm(φ12mm穴))に作製した比較塗料2及び各防食塗料B-1~B-7の各々を、実施例1と同様に、乾燥後の平均膜厚が35μmになるようにスプレーにより塗布して、室温にて2~3日乾燥させて作製した各試験片に対して、JIS Z 2371に基づいて塩水噴霧試験を実施した。 Then, each of the comparative paint 2 and each of the anticorrosion paints B-1 to B-7 produced on the SS400 mil scale steel plate (150 mm × 75 mm × 3.2 mm (φ12 mm hole)) was dried in the same manner as in Example 1. A salt spray test was performed based on JIS Z 2371 on each test piece prepared by spraying so that the average film thickness was 35 μm and drying at room temperature for 2 to 3 days.
 図4は、各試験片の塩水噴霧試験開始前、試験開始168時間後、同250時間後撮像した写真を示す図である。図4に示すように、フレーク顔料の含有率が0質量%の比較塗料2を塗布した試験片では、168時間後には、該試験片の大部分が腐食されていることが確認された。そして、フレーク顔料の含有率を上げると、腐食の進行具合が徐々に遅くなり、含有率60質量%の防食塗料B-4では、最も腐食が遅くなることが分かった。また、フレーク顔料の含有率をさらに上げて、70質量%以上とすると、60質量%の防食塗料と比較して腐食の進行具合が早くなることが確認された。 FIG. 4 is a view showing a photograph taken for each test piece before starting the salt spray test, 168 hours after the start of the test, and 250 hours after that. As shown in FIG. 4, it was confirmed that in the test piece to which the comparative paint 2 having a flake pigment content of 0% by mass was applied, most of the test piece was corroded after 168 hours. Further, it was found that when the flake pigment content was increased, the progress of corrosion gradually slowed, and the corrosion was slowest in the anticorrosive paint B-4 having a content of 60% by mass. Moreover, when the content rate of the flake pigment was further increased to 70% by mass or more, it was confirmed that the progress of corrosion was accelerated as compared with 60% by mass of the anticorrosive paint.
 また、各試験片の全面腐食に要した時間を測定し、フレーク顔料の含有率が0質量%の比較塗料2を塗布した試験片の全面腐食に要した時間を「1」として、フレーク顔料の含有率10質量%~80質量%の防食性能を計算したところ、下記、表3に示す結果となった。
Figure JPOXMLDOC01-appb-T000003
Further, the time required for the overall corrosion of each test piece was measured, and the time required for the overall corrosion of the test piece coated with the comparative paint 2 having a flake pigment content of 0% by mass was defined as “1”. When the anticorrosion performance with a content of 10% by mass to 80% by mass was calculated, the results shown in Table 3 below were obtained.
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、フレーク顔料の含有率を上げると、全面腐食に要する時間が徐々に長くなり、含有率60質量%の防食塗料B-4では、含有率0質量%の比較塗料2の9.3倍の防食時間を要する、即ち防食性能を有する、ことが分かった。また、フレーク顔料の含有率をさらに上げて、80質量%とすると、比較塗料2の1.9倍の防食性能に減少してしまうことが確認された。 As shown in Table 3, when the content of the flake pigment is increased, the time required for the overall corrosion is gradually increased. In the anticorrosion paint B-4 having a content of 60% by mass, the content of the comparative paint 2 having a content of 0% by mass is 9%. It was found that the anticorrosion time required 3 times, that is, has anticorrosion performance. Moreover, when the content rate of the flake pigment was further increased to 80% by mass, it was confirmed that the anticorrosion performance was reduced to 1.9 times that of the comparative paint 2.
 図5は、比較塗料2、防食塗料B-1~B-4及びB-7について、6ヶ月及び16ヶ月の間、屋外に暴露した後の写真を示す。比較塗料2は6ヶ月経過時点で全面にさびが認められた。これに対して、防食塗料B-1~B-4及びB-7は16ヶ月後であっても腐食が認められなかった。 FIG. 5 shows photographs of the comparative paint 2, anticorrosive paints B-1 to B-4 and B-7 after being exposed outdoors for 6 months and 16 months. In Comparative Paint 2, rust was observed on the entire surface after 6 months. In contrast, the anticorrosion paints B-1 to B-4 and B-7 did not corrode even after 16 months.
(理論的考察)
 図6は、上述したモデルを用いて求めた理論値と実施例1及び2の実測値とを並べてプロットしたグラフである。図6中、比較塗料1及び防食塗料A-1~A-5(乾燥剤なし)を黒丸で、比較塗料2及び防食塗料B-1~B-7(乾燥剤あり)を中白丸で示す。図5から分かるとおり、フレーク顔料が40質量%までは、防食塗料Aであっても防食塗料Bであっても、すなわち、乾燥剤を添加するか否かにかかわらず、理論値と良い一致を示し、フレーク顔料が50質量%程度迄であれば、上記モデルを塗料の設計に用いることができることが確認された。
(Theoretical consideration)
FIG. 6 is a graph in which theoretical values obtained using the above-described model and measured values of Examples 1 and 2 are plotted side by side. In FIG. 6, comparative paint 1 and anticorrosion paint A-1 to A-5 (without desiccant) are indicated by black circles, and comparative paint 2 and anticorrosion paint B-1 to B-7 (with desiccant) are indicated by solid white circles. As can be seen from FIG. 5, up to 40% by mass of the flake pigment is in good agreement with the theoretical value regardless of whether the anticorrosive paint A or the anticorrosive paint B is added, that is, whether or not a desiccant is added. As shown, it was confirmed that the above-mentioned model can be used for designing the paint if the flake pigment is up to about 50% by mass.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
 本発明は、金属の腐食を防止する防食塗料および防食塗料の製造方法に利用することができる。また、本発明において提唱したモデルは、該防食塗料を設計するのに有用である。 The present invention can be used in an anticorrosion paint for preventing metal corrosion and a method for producing an anticorrosion paint. The model proposed in the present invention is useful for designing the anticorrosion paint.
100 …塗膜
110 …アルキド樹脂
112 …フレーク顔料
100 ... coating film 110 ... alkyd resin 112 ... flake pigment

Claims (6)

  1.  アルキド樹脂と、
     アルミニウム、鉄、銅、真鍮、雲母状酸化鉄、及び酸化鉄からなる群より選択される少なくとも一種の物質で構成されるフレーク顔料と、
     を含み、
     前記フレーク顔料の含有率は、前記アルキド樹脂と前記フレーク顔料の合計質量の5質量%~75質量%であることを特徴とする防食塗料。
    Alkyd resin,
    Flake pigment composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide;
    Including
    The anticorrosion paint, wherein the content of the flake pigment is 5% by mass to 75% by mass of the total mass of the alkyd resin and the flake pigment.
  2.  前記フレーク顔料が、0.1~0.5μmの平均厚みと1~100μmの平均粒子径(D50)を有することを特徴とする請求項1記載の防食塗料。 The anticorrosion paint according to claim 1, wherein the flake pigment has an average thickness of 0.1 to 0.5 µm and an average particle diameter (D 50 ) of 1 to 100 µm.
  3.  オクチル酸、ナフテン酸、ロジン酸、あまに油脂肪酸、大豆油脂肪酸、及びトール油酸からなる群より選択される少なくとも一種の酸の金属塩をさらに含み、
     前記金属が、コバルト、マンガン、セリウム、鉛、カルシウム、亜鉛、鉄、及びジルコニウムからなる群より選択される少なくとも一種の金属であることを特徴とする請求項1又は2に記載の防食塗料。
    Further comprising a metal salt of at least one acid selected from the group consisting of octylic acid, naphthenic acid, rosin acid, linseed oil fatty acid, soybean oil fatty acid, and tall oil acid,
    The anticorrosion paint according to claim 1 or 2, wherein the metal is at least one metal selected from the group consisting of cobalt, manganese, cerium, lead, calcium, zinc, iron, and zirconium.
  4.  前記金属塩の含有率が、防食塗料の質量の0.001質量%~3質量%であることを特徴とする請求項3に記載の防食塗料。 The anticorrosion paint according to claim 3, wherein the content of the metal salt is 0.001% by mass to 3% by mass of the mass of the anticorrosion paint.
  5.  前記アルキド樹脂が、長油性フタル酸樹脂であることを特徴とする請求項1~4のいずれか1項に記載の防食塗料。 The anticorrosion paint according to any one of claims 1 to 4, wherein the alkyd resin is a long-oil phthalic acid resin.
  6.  防食塗料の製造方法であって、
     フレーク顔料を第一有機溶媒中に分散させて、フレーク顔料分散液を調製する工程と、
     アルキド樹脂を第二有機溶媒中に溶解させて、アルキド樹脂溶液を調製する工程と、
     前記フレーク顔料分散液と前記アルキド樹脂溶液とを混合する工程と、
    を含み、
     前記フレーク顔料は、アルミニウム、鉄、銅、真鍮、雲母状酸化鉄、及び酸化鉄からなる群より選択される少なくとも一種の物質で構成され、
     前記フレーク顔料の含有率は、前記アルキド樹脂と前記フレーク顔料の合計質量の5質量%~75質量%であることを特徴とする防食塗料の製造方法。
    A method for producing an anticorrosion paint, comprising:
    A step of dispersing a flake pigment in a first organic solvent to prepare a flake pigment dispersion;
    Dissolving an alkyd resin in a second organic solvent to prepare an alkyd resin solution;
    Mixing the flake pigment dispersion and the alkyd resin solution;
    Including
    The flake pigment is composed of at least one substance selected from the group consisting of aluminum, iron, copper, brass, mica-like iron oxide, and iron oxide,
    The method for producing an anticorrosive paint, wherein the content of the flake pigment is 5% by mass to 75% by mass of the total mass of the alkyd resin and the flake pigment.
PCT/JP2014/052892 2013-02-07 2014-02-07 Anti-corrosive coating material and method for producing anti-corrosive coating material WO2014123218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560817A JP6040999B2 (en) 2013-02-07 2014-02-07 Anticorrosion paint and method for producing anticorrosion paint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022244 2013-02-07
JP2013022244 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014123218A1 true WO2014123218A1 (en) 2014-08-14

Family

ID=51299808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052892 WO2014123218A1 (en) 2013-02-07 2014-02-07 Anti-corrosive coating material and method for producing anti-corrosive coating material

Country Status (2)

Country Link
JP (1) JP6040999B2 (en)
WO (1) WO2014123218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058412A1 (en) * 2016-09-29 2018-04-05 张振宾 Metallic paint and preparation method therefor
JP2019189705A (en) * 2018-04-20 2019-10-31 旭化成株式会社 Compound adhered aluminum pigment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102514941B1 (en) * 2021-01-04 2023-03-29 주식회사 케이씨씨 Coating composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11615A (en) * 1997-06-10 1999-01-06 Dainippon Toryo Co Ltd Method for forming anticorrosive coat
JPH11277256A (en) * 1998-03-30 1999-10-12 Dainippon Toryo Co Ltd Method for joining steel and coatings used therefor
JP2012021136A (en) * 2010-06-18 2012-02-02 Nippon Shokubai Co Ltd Aqueous resin composition for rustproof coating material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110567A (en) * 1987-10-23 1989-04-27 Teikoku Kako Co Ltd Rust preventing pigment composition
JP2002307011A (en) * 2001-04-12 2002-10-22 Nippon Paint Co Ltd Coating method of gasoline tank
JP2005097395A (en) * 2003-09-24 2005-04-14 Tayca Corp Pigment composition and aqueous coating composition containing the same
JP2007314633A (en) * 2006-05-24 2007-12-06 Toshiba Corp Normal temperature curing type coating, method for applying the same coating and coated article
JP5292126B2 (en) * 2009-02-20 2013-09-18 株式会社東芝 How to apply alkyd resin red paint
JP2010235827A (en) * 2009-03-31 2010-10-21 Dainippon Toryo Co Ltd Synthetic resin ready-mixed paint
JP2012002113A (en) * 2010-06-16 2012-01-05 Ihi Corp Inlet valve of water lubricated type screw compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11615A (en) * 1997-06-10 1999-01-06 Dainippon Toryo Co Ltd Method for forming anticorrosive coat
JPH11277256A (en) * 1998-03-30 1999-10-12 Dainippon Toryo Co Ltd Method for joining steel and coatings used therefor
JP2012021136A (en) * 2010-06-18 2012-02-02 Nippon Shokubai Co Ltd Aqueous resin composition for rustproof coating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058412A1 (en) * 2016-09-29 2018-04-05 张振宾 Metallic paint and preparation method therefor
JP2019189705A (en) * 2018-04-20 2019-10-31 旭化成株式会社 Compound adhered aluminum pigment
JP7100484B2 (en) 2018-04-20 2022-07-13 旭化成株式会社 Compound-attached aluminum pigment

Also Published As

Publication number Publication date
JP6040999B2 (en) 2016-12-07
JPWO2014123218A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5197377B2 (en) Metal pigment composition
US10706998B2 (en) Electrical steel sheet and method for producing electrical steel sheet
DK2688964T3 (en) Alkyd COATING COMPOSITION
DE112005002448T5 (en) Composition for thermosetting powder coating
CN102876194B (en) Waterborne epoxy coating for containers and preparation method of waterborne epoxy coating
CN110218503B (en) Thick paste type low-VOCs water-based epoxy micaceous iron oxide coating and preparation method thereof
JP6040999B2 (en) Anticorrosion paint and method for producing anticorrosion paint
CN106554696A (en) A kind of Graphene antistatic aqueous epoxy floor paint
CN104530941A (en) Waterborne alcohol acid antirust paint and preparation method thereof
CN104449248A (en) High-solid anti-rust and anti-corrosion coating
Alam et al. Anti-corrosive performance of epoxy coatings containing various nano-particles for splash zone applications
JP2023002735A (en) Dispersion liquid including colloidal silica particle and cyanuric acid zinc particle
JP2008120933A (en) Metal pigment composition
CN114621654A (en) Water-based epoxy zinc-rich primer and preparation method and application thereof
CN106752762A (en) A kind of Graphene zinc oxide Polyester resin lacquer and preparation method thereof
DE102014105434A1 (en) Anti-corrosion coating agent for producing dark surfaces
CN112552796A (en) Metal flake type bi-component heavy-duty anticorrosive paint and preparation method thereof
JP2008120932A (en) Metal pigment composition
CN112457697A (en) Superfine slag micro powder antirust primer and preparation method thereof
CN107090232B (en) Micromolecular organic acid-resistant anticorrosive paint and preparation method thereof
DE102022106446A1 (en) Film-forming compositions containing molybdate-derived coatings
CN105238205A (en) Waterborne epoxy self-leveling floor paint and preparation method therefor
JP2015124234A (en) Aqueous coating composition
DE3223410A1 (en) SOLVENT-BASED VARNISH WITH COLORED PIGMENT
DE102004027650A1 (en) Process for coating electrically conductive substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749256

Country of ref document: EP

Kind code of ref document: A1