WO2014115720A1 - Method for correcting defect location - Google Patents

Method for correcting defect location Download PDF

Info

Publication number
WO2014115720A1
WO2014115720A1 PCT/JP2014/051101 JP2014051101W WO2014115720A1 WO 2014115720 A1 WO2014115720 A1 WO 2014115720A1 JP 2014051101 W JP2014051101 W JP 2014051101W WO 2014115720 A1 WO2014115720 A1 WO 2014115720A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
steel plate
data
flaw detection
probe
Prior art date
Application number
PCT/JP2014/051101
Other languages
French (fr)
Japanese (ja)
Inventor
隆弘 田坂
允規 飯星
佳士郎 池田
繁 小野田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to RU2015125916/28A priority Critical patent/RU2598777C1/en
Priority to CN201480004034.6A priority patent/CN104903719B/en
Priority to KR1020157016947A priority patent/KR101580083B1/en
Priority to JP2014536040A priority patent/JP5692475B2/en
Publication of WO2014115720A1 publication Critical patent/WO2014115720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to a defect position correction method.
  • Patent Document 1 describes an electromagnetic ultrasonic probe (EMAT) including a permanent magnet and an inductance coil adapted to form a flaw detection pulse and receive a reflected pulse.
  • Patent Document 2 discloses a magnetizer for applying a bias magnetic field to a test material, a plurality of sensor coils for transmitting ultrasonic waves to the test material and receiving ultrasonic waves reflected by the test material, and An array-type electromagnetic ultrasonic probe (EMAT) is described.
  • EMAT electromagnetic ultrasonic probe
  • the electromagnetic ultrasonic probes When inspecting internal defects such as steel materials using such an electromagnetic ultrasonic probe (EMAT), the electromagnetic ultrasonic probes are arranged in a plurality of rows along the conveyance direction of the inspection object. Deploy. At this time, a predetermined interval (for example, 0.5 to 1.5 m) exists between the columns.
  • the position of the internal defect detected in each row in the transport direction is determined by linking with the value of a measuring roll that measures the length of the inspection object in the transport direction. For this reason, the position of the internal defect detected in each column in the transport direction may not necessarily match due to factors such as measurement error, data transfer delay, and transport speed change. In such a case, even if one serious defect occurs in the inspection object, it is recognized as a plurality of light defects as a result of the inspection, so that the inspection (evaluation) of the internal defect cannot be performed correctly. There's a problem.
  • an artificial defect plate prepared by processing an artificial defect is detected, and the positional deviation is corrected by comparing the artificial defect on the artificial defect plate with the artificial defect detected by the electromagnetic ultrasonic probe.
  • a method is conceivable.
  • the method using the artificial defect plate has a problem that a cost for manufacturing the artificial defect plate is necessary and a space for placing the artificial defect plate is necessary.
  • this method requires an operation of placing the artificial defect plate on the inspection line. And since this operation
  • the present invention has been made in view of the above problems, and it is possible to improve the accuracy of position information of internal defects detected by an electromagnetic ultrasonic probe and improve the reliability of inspection.
  • An object is to provide a correction method.
  • the present invention employs the following means. (1) In the defect position correcting method according to the first aspect of the present invention, a high-frequency signal is given to an electromagnetic ultrasonic probe arranged in a plurality of rows along the conveyance direction of the inspection object, A step of generating ultrasonic vibrations on the surface of the inspection object, wherein a conductor tape is attached so as to straddle a plurality of the electromagnetic ultrasonic probes along a direction orthogonal to the transport direction; Detecting F and B echoes of the ultrasonic vibration with the electromagnetic ultrasonic probes in a row; and detecting a pseudo defect due to the conductive tape based on the detected values of the F and B echoes.
  • the method may further include a step of changing a conveyance speed of the inspection object when the conductor tape passes through the rows of the electromagnetic ultrasonic probes.
  • the conductivity of the conductor tape may be larger than the conductivity of the inspection object.
  • the material of the conductor tape may be aluminum or copper, and the inspection object may be iron.
  • the conductor tape is attached to the inspection object in a range of 0 ° to 60 ° with respect to the width direction of the inspection object. May be.
  • the accuracy of the position information of the internal defect detected by the electromagnetic ultrasonic probe can be improved, and as a result, the reliability of the inspection (evaluation) of the internal defect can be improved.
  • FIG. 1 shows typically operation
  • FIG. 2 shows typically operation
  • FIG. 1 which shows typically operation
  • FIG. 2 which shows typically operation
  • FIG. 3 which shows typically operation
  • FIG. 4 shows typically operation
  • FIG. 1 shows typically operation
  • FIG. 1 shows typically operation
  • FIG. 2 shows typically operation
  • FIG. 3 shows typically operation
  • FIG. 7 is a fifth diagram schematically showing the operation of the arithmetic unit of the signal processing device. It is FIG. 6 which shows typically operation
  • FIG. 1 is a schematic diagram showing the configuration of the electromagnetic ultrasonic flaw detector 100.
  • an electromagnetic ultrasonic flaw detector 100 includes an electromagnetic ultrasonic probe 102, an amplifier 104 (not shown in FIG. 1), a measuring roll 106, a tip detection sensor 108, a signal processing device 110, and a display device. 120 and an alarm device 130 are provided.
  • a steel plate 200 as an inspection object is placed on a passing plate table (not shown), and is conveyed (passed) in the X direction of FIG. 1 by driving a roller of the passing plate table.
  • a plurality of electromagnetic ultrasonic probes 102 are arranged on the upper portion of the steel plate 200 along the width direction Y (direction orthogonal to the transport direction X: see FIG. 1).
  • An internal defect 202 is detected. As shown in FIG.
  • the electromagnetic ultrasonic probes 102 are arranged in two rows in the conveyance direction X of the steel plate 200, and the front (downstream) row (front row) in the conveyance direction X and the conveyance Eight electromagnetic ultrasonic probes 102 are arranged in the rear (upstream) row (rear row) in the direction X, respectively.
  • the eight electromagnetic ultrasonic probes 102 in the front row and the rear row are arranged so that the positions in the width direction Y of the steel plate 200 are different from each other, and in the middle of the adjacent electromagnetic ultrasonic probes 102 in the front row.
  • the electromagnetic ultrasonic probe 102 is located.
  • the front row electromagnetic ultrasonic probes 102 and the rear row electromagnetic ultrasonic probes 102 are arranged in a staggered arrangement, so that the space between the front row electromagnetic ultrasonic probes 102 is reduced.
  • the internal defect 202 that is located in the position and cannot be detected by the front row electromagnetic ultrasonic probe 102 can be reliably detected by the back row electromagnetic ultrasonic probe 102.
  • the row of the electromagnetic ultrasonic probes 102 arranged on the upstream side in the transport direction X will be referred to as a first probe row BTS1
  • the electromagnetic ultrasonic probe arranged on the downstream side in the transport direction X will be referred to.
  • the row of the contacts 102 is referred to as a second probe row BTS2 (see FIG. 1).
  • FIG. 2 is a schematic diagram showing the configuration of the electromagnetic ultrasonic flaw detector 100 viewed from the Y direction in FIG.
  • the electromagnetic ultrasonic probe 102 is disposed close to the upper part of the steel plate 200.
  • air is supplied from the bottom surface of the electromagnetic ultrasonic probe 102 toward the steel plate 200, and a gap (distance) between the bottom surface of the electromagnetic ultrasonic probe 102 and the surface 200a of the steel plate 200 due to this air. Is adjusted to about 0.5 mm.
  • the amplifier 104 is disposed above the electromagnetic ultrasonic probe 102 and amplifies the detection signal of the electromagnetic ultrasonic probe 102. In FIG. 1, the amplifier 104 is not shown.
  • FIG. 26 is a side view of the electromagnetic ultrasonic flaw detector 100 viewed from the Y direction in FIG. 1, and the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic of the second probe row BTS2.
  • One ultrasonic probe 102 is shown.
  • an arm 109 is connected to the electromagnetic ultrasonic probe 102.
  • a distance d exists between the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic ultrasonic probe 102 of the second probe row BTS2.
  • the distance d needs to be 0.5 to 1.5 m, for example, and the reason will be described below.
  • the electromagnetic ultrasonic probe 102 is disposed at a position about 0.5 mm away from the surface 200a of the steel plate 200 as described above.
  • the electromagnetic ultrasonic probe 102 includes the permanent magnet 102a (see FIG. 19)
  • a force for approaching the surface 200a of the steel plate 200 acts on the electromagnetic ultrasonic probe 102. Due to this force, the electromagnetic ultrasonic probe 102 may interfere with the surface 200 a of the steel plate 200.
  • the electromagnetic ultrasonic probe 102 is arranged on the upper surface 200a of the steel plate 200 by rotating the arm 109 about the central axis 107. Yes. Therefore, in order to avoid interference between the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic ultrasonic probe 102 of the second probe row BTS2 in the transport direction X, the first A distance d is required between the first probe row BTS1 and the second probe row BTS2.
  • the distance d is set depending on the length of the arm 109, and is preferably 0.5 to 1.5 m, for example.
  • the electromagnetic ultrasonic probe 102 generates ultrasonic vibrations on the surface 200a (first surface) of the steel plate 200, and the ultrasonic waves (reflected waves) reflected by the bottom surface 200b (second surface) of the steel plate 200 are static.
  • An eddy current generated by vibrating in a magnetic field is detected by a coil.
  • the echo level (B echo) of the ultrasonic vibration reflected by the bottom surface 200b is detected.
  • the internal defect 202 shown in FIG. 1 occurs in the steel plate 200
  • the ultrasonic vibration is reflected by the internal defect 202
  • the echo level (F echo) of the ultrasonic vibration reflected by the internal defect 202 is the electromagnetic supersonic wave. Detected by the acoustic probe 102.
  • the echo level of the ultrasonic vibration is changed as compared with the case where the internal defect 202 is not generated, and therefore the ratio of the F echo to the B echo (F / B ratio). From this, the level of the internal defect 202 can be evaluated.
  • F / B ratio B means the value of B echo (signal intensity)
  • F means the value of F echo (signal intensity).
  • the signal processing device 110 evaluates (classifies) the internal defect 202 based on the ratio of F echo to B echo (F / B ratio).
  • the display device 120 displays the level of the internal defect 202 and the position of the internal defect 202 as the evaluation result of the internal defect 202.
  • the alarm device 130 issues an alarm when the level of the internal defect 202 exceeds the reference level.
  • the steel plate 200 in which the internal defect 202 exceeding the reference level is detected leaves the normal conveyance path and is subjected to further detailed inspection. The configuration of the signal processing device 110 will be described later.
  • FIG. 3A is a characteristic diagram showing the flaw detection position in the longitudinal direction (conveying direction X) of the steel plate 200 and the signal intensities of the F echo and the B echo obtained by the electromagnetic ultrasonic probe 102.
  • FIG. 3B is a characteristic diagram showing the flaw detection position in the longitudinal direction (conveying direction X) of the steel plate 200 and the signal intensity of the F / B ratio.
  • FIG. 3A when the internal defect 202 occurs in the steel plate 200, the value of the F echo increases according to the size of the internal defect 202, and the value of the B echo decreases. Therefore, as shown in FIG.
  • the value of the F / B ratio increases at the flaw detection position where the internal defect 202 occurs, compared to the flaw detection position where the internal defect 202 does not occur.
  • the larger the internal defect 202 the larger the F echo rise amount and the B echo fall amount, and the larger the F / B ratio value. Therefore, it is possible to detect whether or not the internal defect 202 has occurred based on the value of the F / B ratio, and to evaluate the size and position of the internal defect 202.
  • the gap between the electromagnetic ultrasonic probe 102 and the surface 200a of the steel plate 200 changes, the values of the B echo and the F echo change, but by calculating the F / B ratio, The change amount of the F echo can be canceled.
  • by evaluating the internal defect 202 based on the value of the F / B ratio even if the F echo and the B echo include noise, the noise component can be canceled. 202 can be evaluated with high accuracy.
  • Detection signals from the plurality of electromagnetic ultrasonic probes 102 arranged in the width direction Y of the steel plate 200 are transmitted to the signal processing device 110 together with a position signal from the measuring roll 106 that measures the position from the tip of the steel plate 200. Is done.
  • the tip detection sensor 108 detects the tip position of the steel plate 200, and the tip position serves as a reference when the measuring roll 106 detects the position of the steel plate 200.
  • the signal processing device 110 synchronizes the detection signal from the electromagnetic ultrasonic probe 102 and the position signal from the measuring roll 106, and the internal defect 202 occurring in the steel plate 200 as shown in FIG. Create a defect map that displays the location.
  • the length (width) of one electromagnetic ultrasonic probe 102 in the steel plate width direction Y is about 100 mm, and the distance between the electromagnetic ultrasonic probes 102 adjacent in the steel plate width direction Y is set to zero. I can't. Therefore, in order to eliminate the undetected region, the electromagnetic ultrasonic probes 102 are arranged in two rows in the steel plate conveyance direction X as described above, and the positions of the electromagnetic ultrasonic probes 102 in the width direction Y of the steel plate 200 are determined. Two rows are arranged so as to be different from each other (so-called staggered arrangement).
  • the electromagnetic ultrasonic probes 102 are desirably arranged in two rows in the steel plate conveyance direction X, but may be arranged in three or more rows.
  • the signal processing device 110 synchronizes the detection signals from the plurality of electromagnetic ultrasonic probes 102 arranged in this way with the position signal of the steel plate 200 moving on the sheet passing table, so that an accurate defect position can be obtained. And a defect map as shown in FIG. 4 is created. Thereby, the position where the internal defect 202 of the steel plate 200 is generated and the size of the internal defect 202 can be grasped instantaneously.
  • the signal processing device 110 includes a remote I / O 111, a control device 112, a synchronization signal generation device 113, an ultrasonic generator 114, an A / D conversion control device 115, and a calculation device 116. And. Although not shown in FIG. 5, the alarm device 130 and the display device 140 are connected to the arithmetic device 116.
  • the remote I / O 111 transmits a position signal output from the measuring roll 106 (specifically, a rotary encoder attached to the measuring roll 106) and a tip detection signal output from the tip detection sensor 108 to a remote position. It is an interface for transmitting to the control apparatus 112 arrange
  • the tip detection signal output from the tip detection sensor 108 is a signal whose potential level is inverted when the tip detection sensor 108 detects the tip of the steel plate 200.
  • the position signal output from the measuring roll 106 (rotary encoder) is a pulse signal having one cycle as the time required for the measuring roll 106 in contact with the steel plate 200 to rotate by a certain angle. That is, after the potential level of the tip detection signal is inverted, the conveyance distance of the steel plate 200 (the position of the steel plate 200 in the X direction) can be measured by counting the number of pulses of the position signal (pulse signal).
  • the control device 112 Based on the position signal and the tip detection signal input via the remote I / O 111, the control device 112 corresponds to the variable called “INDEX” as the transport distance of the steel plate 200 (the position in the X direction of the steel plate 200). And measure in real time. Specifically, as shown in the timing chart of FIG. 6, when the control device 112 detects that the potential level of the tip detection signal is inverted, it starts counting the number of pulses of the position signal (time t0 in FIG. 6). reference). Further, when detecting that the potential level of the tip detection signal is inverted, the control device 112 increments “INDEX” at a constant cycle (for example, 16 ms ⁇ 60 Hz) (increases the value of “INDEX” by one).
  • a constant cycle for example, 16 ms ⁇ 60 Hz
  • the control device 112 calculates the current position (current position in the X direction of the steel plate 200) based on the count value of the number of pulses at the timing of incrementing “INDEX” (that is, a cycle of 16 ms). Then, the control device 112 outputs “INDEX” to the synchronization signal generating device 113 in a cycle of 16 ms, and also includes data including “INDEX” and corresponding position data (hereinafter referred to as position packet data) for 16 ms. It outputs to the arithmetic unit 116 with a period.
  • the position packet data is output to the arithmetic unit 116.
  • control device 112 outputs “INDEX” to the synchronization signal generation device 113 at a cycle of 16 ms, and outputs position packet data including “INDEX” and position data to the arithmetic device 116 at a cycle of 16 ms.
  • “INDEX” is transmitted to the A / D conversion controller 115 via the synchronization signal generator 113.
  • the ultrasonic generator 114 supplies a high-frequency current (high-frequency signal) to each probe 102 in the first probe row BTS1 and each probe 102 in the second probe row BTS2. As a result, a high-frequency current flows through the coils provided in each probe 102, and ultrasonic vibration is generated on the surface 200a of the steel plate 200. As described above, an induced current is generated in the coil of each probe 102 in accordance with the intensity of the ultrasonic wave (B echo) reflected by the bottom surface 200b of the steel plate 200, and the ultrasonic wave (F echo) reflected by the internal defect 202 is generated. An induced current is generated in the coil of each probe 102 in accordance with the strength. Thus, the induced current generated in the coil of each probe 102 in accordance with the level (intensity) of the F echo and the B echo is transmitted to the A / D conversion control device 115 via the ultrasonic generator 114.
  • the A / D conversion control device 115 performs A / D conversion on the induced current corresponding to the levels of the F echo and the B echo, which are input from each probe 102 via the ultrasonic generator 114, thereby obtaining an F echo. And B echo digital data (F echo and B echo intensity data).
  • the A / D conversion control device 115 calculates an F / B ratio (hereinafter referred to as flaw detection data) for each coil of each probe 102 based on the intensity data of the F echo and the B echo. .
  • the A / D conversion control device 115 acquires F echo and B echo intensity data at a constant frequency (for example, 2.5 kHz). That is, the flaw detection data (F / B ratio) is also calculated at 2.5 kHz (0.4 ms cycle).
  • the A / D conversion control device 115 converts flaw detection data with a relatively high frequency of 2.5 kHz into flaw detection data with a relatively low frequency of 1 kHz, for example.
  • the A / D conversion control device 115 calculates a moving average value of four flaw detection data obtained in time series for each coil. For example, as shown in FIG. 7, it is assumed that flaw detection data d1, d2, d3,... D13 are obtained in time series for a certain coil. In this case, the A / D conversion control device 115 calculates the moving average value d1ave of the flaw detection data d1 to d4, calculates the moving average value d2ave of the flaw detection data d2 to d5, and the moving average value d3ave of the flaw detection data d3 to d6. Is calculated. The A / D conversion control device 115 calculates the remaining moving average values d4ave to d10ave similarly to the above.
  • the A / D conversion control device 115 obtains 1 kHz flaw detection data by repeating the process of extracting the maximum value of the three moving average values and extracting the maximum value of the next two moving average values. For example, as shown in FIG. 7, the maximum value of the moving average values d1ave to d3ave is extracted as the flaw detection data D1, and the maximum value of the moving average values d4ave and d5ave is extracted as the flaw detection data D2. Similarly, the maximum value of the moving average values d6ave to d8ave is extracted as the flaw detection data D3, and the maximum value of the moving average values d9ave and d10ave is extracted as the flaw detection data D4. The A / D conversion control device 115 converts the flaw detection data of 2.5 kHz into flaw detection data of 1 kHz by performing the processing as described above.
  • the A / D conversion control device 115 creates flaw detection packet data by combining “INDEX” obtained through the synchronization signal generation device 113 and flaw detection data of 1 kHz, and generates the flaw detection packet data at a frequency of 1 kHz. It outputs to the arithmetic unit 116.
  • flaw detection packet data obtained by combining “INDEX” and 1 kHz flaw detection data is transmitted from the A / D conversion control device 115 to the arithmetic device 116 at a frequency of 1 kHz (1 ms period).
  • position packet data in which “INDEX” and position data are combined is input to arithmetic device 116 at a frequency of 60 Hz (16 ms period), and “INDEX” and flaw detection data are combined. Flaw detection packet data is input at a frequency of 1 kHz (1 ms period).
  • the arithmetic unit 116 combines the position data and the flaw detection data based on the “INDEX” value of the position packet data and the flaw detection packet data. Basically, it is only necessary to combine position data and flaw detection data having the same “INDEX” value, but the position packet data is transmitted to the arithmetic unit 116 later than the flaw detection packet data. Therefore, as shown in FIG. 10, for example, it is preferable to combine flaw detection data whose “INDEX” value is “200” and position data whose “INDEX” value is “200 + ⁇ ”. The value of “ ⁇ ” may be set based on the result of measuring the delay amount of the position packet data in advance.
  • the arithmetic unit 116 converts the 16 data packages P1 to P16 into, for example, a 4 mm pitch data package according to the distance that the steel plate 200 has moved during the update period of “INDEX”, that is, a period of 16 ms.
  • a method for converting the 16 data packages P1 to P16 into a 4 mm pitch data package will be described.
  • the pitch does not necessarily have to be 4 mm, and the pitch may be set according to the required resolution.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7 and P8 as flaw detection data at the position 112 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P9 and P10 as flaw detection data at a position 116 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P11 and P12 as flaw detection data at a position of 120 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P13 and P14 as flaw detection data at a position of 124 mm. Furthermore, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 128 mm.
  • the steel plate 200 has moved 28 mm in a period of 16 ms.
  • 28 is divided by 4
  • 7 is obtained. Therefore, by dividing the 16 data packages P1 to P16 into 7, the data package can be converted to a 4 mm pitch data package.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7, P8, and P9 as flaw detection data at the position 112 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P10 and P11 as flaw detection data at the position 116 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P12, P13, and P14 as flaw detection data at a position of 120 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 124 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7 and P8 as flaw detection data at the position 112 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P9 and P10 as flaw detection data at a position 116 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P11 and P12 as flaw detection data at a position of 120 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P13 and P14 as flaw detection data at a position of 124 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 128 mm. In this case, the arithmetic unit 116 changes the position data of the data package P1 ′ obtained at the beginning of the next 16 ms period from 131 mm to 132 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm. Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7, P8, and P9 as flaw detection data at the position 112 mm.
  • the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P10 and P11 as flaw detection data at the position 116 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P12, P13, and P14 as flaw detection data at a position of 120 mm. Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 124 mm. In this case, the arithmetic unit 116 changes the position data of the data package P1 ′ obtained at the beginning of the next 16 ms period from 129 mm to 128 mm.
  • the arithmetic device 116 performs the above-described processing, thereby obtaining flaw detection data with a pitch of 4 mm for each coil included in the first probe row BTS1 and each coil included in the second probe row BTS2. Get for each.
  • the arithmetic device 116 uses the 4 mm pitch flaw detection data of each coil obtained as described above, the horizontal axis as the position in the longitudinal direction of the steel sheet (position in the X direction), and the vertical axis as the position in the steel sheet width direction (in the Y direction).
  • a defect map as shown in FIG. 4 is created by developing in a two-dimensional coordinate system as a position.
  • the above is the basic operation (defect map creation operation) of the signal processing apparatus 110.
  • the internal defect 202 extends in the width direction Y of the steel plate 200 and is detected by a plurality of electromagnetic ultrasonic probes 102 arranged in the width direction Y
  • the internal defect 202 is detected in the first probe row. It is detected across BTS1 and the second probe row BTS2.
  • the conveying speed of the steel plate 200 when passing through the first probe row BTS1 hereinafter referred to as the first passing velocity
  • the steel plate 200 when passing through the second probe row BTS2 are as follows.
  • the position data and the flaw detection data are combined on the basis of the value of “INDEX”, and such connection is performed by using the first probe row BTS1 and the second probe row. The same is done for both BTS2. Therefore, even if the position data is transmitted to the arithmetic unit 116 later than the flaw detection data, if the first passage speed and the second passage speed are equal, the coupling relationship between the position data and the flaw detection data is the first probe. The same applies to the row BTS1 and the second probe row BTS2.
  • the second passage speed is faster than the first passage speed.
  • the position data of 132 mm as shown in FIG. 10 is combined with the flaw detection data of the internal defect 202 detected by the first probe row BTS1, it is detected by the second probe row BTS2.
  • the position data having a value larger than 132 mm is combined with the flaw detection data of the internal defect 202. That is, when there is a speed difference between the first passage speed and the second passage speed (when the conveyance speed of the steel plate 200 fluctuates), the position data of the internal defect 202 detected by the first probe row BTS1 and Therefore, there is a difference between the position data of the internal defects 202 detected by the second probe row BTS2.
  • one internal defect 202 as shown in FIG. Appears in the defect map as internal defects 202 (202a, 202b) that are displaced in the transport direction X.
  • the accurate position of the internal defect 202 cannot be grasped, and the internal defect 202 is recognized in a state of being divided into a plurality of parts. It may be judged as a defect. Accordingly, accurate evaluation of the internal defect 202 becomes difficult.
  • FIG. 17 shows an artificial defect plate 300 used for this inspection.
  • the artificial defect plate 300 is provided with an internal defect (artificial defect 302) extending in a straight line along the width direction Y in advance.
  • the above-described inspection is performed by placing the artificial defect plate 300 on a plate table and actually passing the plate. Specifically, the artificial defect plate 300 is passed, a defect map is created by the above-described process, and if a linear internal defect is detected in the width direction Y, similar to the artificial defect 302, the device is normal.
  • the shape of the artificial defect 302 shown in the created defect map is separated in the transport direction X, similarly to the shape of the internal defect 202 shown in FIG. 16, the artificial defect detected by the first probe row BTS1. It can be determined that there is a gap between the position data of the defect 302 and the position data of the artificial defect 302 detected by the second probe row BTS2.
  • the conductive tape 400 that has higher conductivity than the steel plate 200 and adheres (adheres) to the steel plate 200 is attached to the surface of the steel plate 200.
  • the conductive tape 400 is made of, for example, aluminum and has a thickness of about 0.1 mm.
  • the thickness of the conductor tape 400 is preferably 0.5 mm or less. .
  • the surface of the conductor tape 400 is pasted on the surface 200a with a gum tape or the like.
  • the conductor tape 400 is attached to the surface 200a of the steel plate 200 so as to extend along the width direction Y of the steel plate 200 (see FIG. 18). That is, the conductor tape 400 is affixed along the row direction of the electromagnetic ultrasonic probe 102.
  • the length (the length in the Y direction) of the conductor tape 400 attached to the surface 200a is the flaw detection width of one electromagnetic ultrasonic probe 102 (the length of the electromagnetic ultrasonic probe 102 in the width direction Y). Is larger than In other words, the conductor tape 400 is affixed with a length straddling the plurality of electromagnetic ultrasonic probes 102 in the width direction Y of the steel plate 200.
  • the conductor tape 400 By pasting 400 with a length across the plurality of electromagnetic ultrasonic probes 102 in the steel sheet width direction Y, the positional data shift between the first probe row BTS1 and the second probe row BTS2 is shifted. Can be detected. Therefore, for example, when the length of the electromagnetic ultrasonic probe 102 in the width direction Y is 100 mm, the length of the conductor tape 400 is preferably at least about 200 mm.
  • the width of the conductor tape 400 (the length in the X direction in FIG. 18) is not less than the width of the actual internal defect 202 to be detected, and is, for example, about 10 to 20 mm.
  • the material of the conductor tape 400 has a higher conductivity than the material of the steel plate 200 that is the target of internal flaw detection.
  • the material of the conductor tape 400 is aluminum, copper, or the like having a higher conductivity than iron.
  • the plate table There is no need to carry it through the plate table. That is, it is possible to easily inspect whether or not a positional deviation has occurred in the flaw detection result by simply attaching the conductive tape 400 to the steel plate 200 in operation. Therefore, when the artificial defect plate 300 is used, an operation of about several hours is required. However, when the conductive tape 400 of the present embodiment is used, the positional deviation can be inspected with an operation of about several minutes. it can. Furthermore, since the artificial defect plate 300 can be substituted by the conductor tape 400, it is not necessary to produce the artificial defect plate 300, and the cost can be reduced.
  • FIG. 19 is a schematic diagram showing in detail a region where the electromagnetic ultrasonic probe 102 and the steel plate 200 are close to each other, and shows a state where the conductor tape 400 is not attached.
  • the electromagnetic ultrasonic probe 102 is provided with a permanent magnet 102a and a coil 102b.
  • FIG. 19 shows one permanent magnet 102a and one coil 102b, but one electromagnetic ultrasonic probe 102 is provided with a plurality of permanent magnets 102a and a plurality of coils 102b.
  • the plurality of coils 102b transmit and receive ultrasonic waves simultaneously in synchronization.
  • the plurality of permanent magnets 102a are provided corresponding to each of the plurality of coils 102b.
  • a magnetic field M1 that fluctuates at a high frequency is generated on the surface 200a of the steel plate 200.
  • an induced current I1 is generated on the surface 200a of the steel plate 200 in a direction to cancel the magnetic field M1.
  • This Lorentz force F fluctuates in synchronization with the high-frequency current flowing through the coil 102b. Due to the Lorentz force F, the surface 200a of the steel plate 200 vibrates and an ultrasonic wave 600 is generated.
  • FIG. 20 shows a case where the conductor tape 400 is affixed to the surface 200a of the steel plate 200, and shows a range corresponding to a region R indicated by a one-dot chain line in FIG.
  • the conductor tape 400 since the conductivity of the conductor tape 400 is larger than the conductivity of the steel plate 200, when a high frequency current is passed through the coil 102b, the conductor tape 400 has an induced current I2 larger than the induced current I1 generated on the surface 200a. appear.
  • the induced current I2 induced in the conductor tape 400 generates a magnetic field M3 on the surface 200a, and an induced current I3 is generated on the surface 200a in a direction to cancel the magnetic field M3.
  • the induced current I4 flowing through the surface 200a is generally smaller than the induced current I1 in FIG. 19, and the Lorentz force F generated by the induced current I4 is larger than the Lorentz force F generated by the induced current I1 in FIG. Get smaller.
  • the ultrasonic wave 600 generated in the steel plate 200 is attenuated compared to the case where the conductive tape 400 is not applied to the surface 200a. To do.
  • the conductor tape 400 has a pseudo internal defect (a pseudo-fault). Recognized as a defect).
  • the conductor tape 400 has a higher electrical conductivity than the material of the steel plate 200 that is the subject of internal flaw detection.
  • the conductive tape 400 has a resistivity lower than that of the material of the steel plate 200 that is an object of internal flaw detection.
  • the electrical conductivity of the steel plate 200 (iron) is 9.9 ⁇ 10 6 S (Siemens) / m
  • the electrical conductivity of the conductive tape 400 (aluminum) is 37.4 ⁇ 10 6 S / m.
  • the B echo attenuation of about 10 dB occurs at the location where the conductive tape 400 is affixed, compared to the location where the conductive tape 400 is not affixed.
  • This attenuation amount corresponds to a case where an internal defect having a heavy defect level is generated on the surface 200a of the steel plate 200 on the basis of JIS G 0801. Therefore, by attaching the aluminum conductor tape 400 to the iron steel plate 200, pseudo defects of a heavy defect level can be generated.
  • the object (inspection object) of internal flaw detection is iron
  • copper (Cu: conductivity: 59.0 ⁇ 10 6 S / m) having higher conductivity than aluminum can be used as the conductor tape 400.
  • the attenuation amount of the ultrasonic wave can be increased as compared with the case where aluminum is used as the conductor tape 400, a pseudo defect having a higher defect level can be generated.
  • the material such as 6 S / m) can be appropriately selected according to the material of the object for internal flaw detection, and can be suitably used as the material for the conductor tape 400. In either case, a material having a conductivity larger than that of the object for internal flaw detection is selected as the conductor tape 400. If the electrical conductivity of the conductor tape 400 is about twice the electrical conductivity of the object for internal flaw detection, it is possible to generate a pseudo defect with a medium to heavy defect level on the basis of JIS G 0801. .
  • the electrical conductivity of the conductor tape 400 is twice or more than the electrical conductivity of the object for internal flaw detection.
  • the material of the conductor tape 400 is aluminum in consideration of conductivity and cost.
  • the internal defect 202a is detected by the first probe row BTS1
  • the internal defect 202b is the first defect. This is detected by the two probe rows BTS2, and there is a deviation between the position data of the internal defect 202a and the position data of the internal defect 202b.
  • the arithmetic unit 116 matches the position data of the internal defects detected in the first probe row BTS1 with the position data of the internal defects detected in the second probe row BTS2. Therefore, a position information acquisition unit 116a, a difference acquisition unit 116b, a correction execution unit 116c, and a correction value recording unit 116d are provided.
  • a flaw detection inspection is performed on the steel plate 200 to which the conductor tape 400 is attached and a defect map as shown in FIG. 16 is obtained, the conductor tape 400 detected by the first probe row BTS1 as described above. This means that there is a deviation between the position data of the pseudo defect due to the above and the position data of the pseudo defect due to the conductor tape 400 detected by the second probe row BTS2.
  • the position information acquisition unit 116a of the arithmetic device 116 includes the position data of the pseudo defect by the conductor tape 400 detected by the first probe row BTS1 and the conductor tape 400 detected by the second probe row BTS2.
  • the difference acquisition unit 116b includes the position data of the pseudo defects by the conductor tape 400 detected by the first probe row BTS1 and the position data of the pseudo defects by the conductor tape 400 detected by the second probe row BTS2. Get the difference.
  • the correction execution unit 116c determines the position data of the internal defect 202 detected by the first probe row BTS1, and the position data of the internal defect 202 detected by the second probe row BTS2.
  • the position data of the internal defect 202 is corrected so as to match.
  • the correction value recording unit 116d stores the difference value and the correction algorithm based on the difference. Thereby, in the internal flaw detection after the difference is detected, the position data of the internal defect 202 detected by the first probe row BTS1 and the internal defect 202 detected by the second probe row BTS2. Will coincide with the position data. As a result, the creation of a defect map as shown in FIG. 16 can be reliably prevented.
  • the conductor tape 400 is affixed to a part of the steel plate 200 in the width direction Y, but when the conductor tape 400 is affixed, the first probe row BTS1 and the second probe. It is considered that the difference (error) between the position data detected in the row BTS2 occurs in the entire area in the width direction Y of the steel plate 200. Therefore, when the difference is detected, the position data is corrected in the entire width direction Y of the steel plate 200. Thereby, the error of position data can be eliminated in the whole area of the steel plate 200 in the width direction.
  • FIG. 22 is a flowchart showing a method of correcting the defect map creation algorithm.
  • step S10 the steel plate 200 to which the conductive tape 400 is attached is inspected.
  • the conveyance speed when the conductor tape 400 passes the first probe row BTS1 that is, the first passage speed
  • the conveyance speed when the conductor tape 400 passes the second probe row BTS2 that is, the first probe row BTS2.
  • the steel plate 200 is accelerated and decelerated so that the (second passing speed) changes. Thereby, a speed difference arises between the 1st passage speed and the 2nd passage speed.
  • step S11 the position data of the pseudo defect due to the conductor tape 400 is acquired from the flaw detection result.
  • the speed difference between 1st passage speed and 2nd passage speed it is desirable that it is 10% or more of 1st passage speed, for example.
  • the second passing speed is desirably 90 mm / s or less or 110 mm / s or more.
  • step S12 it is determined whether or not there is a difference in the position data of the pseudo defect between the first probe row BTS1 and the second probe row BTS2. If there is a difference in the position data of the pseudo defect, the process proceeds to step S13, and the defect map creation algorithm is corrected based on the difference. On the other hand, if there is no difference in step S12, the process proceeds from step S12 to step S14.
  • step S14 the steel plate 200 to which the conductor tape 400 is not attached is inspected.
  • step S15 the internal defect 202 is detected and its position data is acquired.
  • step S16 a defect map is created by a defect map creation algorithm.
  • a defect map as shown in FIG. 4 is created based on the flaw detection data and the position data.
  • a defect map is created in step S16 using the corrected algorithm. Specifically, the position data of the internal defect 202 detected by the first probe row BTS1 and the position data of the internal defect 202 detected by the first probe row BTS2 are corrected by the difference detected in step S12. The defect map is created by matching the position data of the internal defect 202 detected by the first probe row BTS1 and the second probe row BTS2.
  • the present embodiment it is possible to correct the position data of the internal defect 202 based on the result of detecting the pseudo defect by attaching the conductive tape 400 to generate the pseudo defect. Therefore, the internal defect 202 existing at the same position in the steel plate conveyance direction X is not recognized as the internal defect 202 at a different position in the conveyance direction X, and the internal defect 202 can be detected with higher accuracy. .
  • the work of attaching the conductive tape 400 to the steel plate 200 can be performed during a short pause (about several minutes) during operation, it is not necessary to perform plate passing using the artificial defect plate 300. Therefore, it is possible to reduce the operation stop time and the preparation time by the crane or the like that have occurred when the artificial defect plate 300 is used. Moreover, since it is not necessary to prepare the artificial defect plate 300, the cost related to the artificial defect plate 300 can be reduced.
  • the distance between the first probe row BTS1 and the second probe row BTS2 is 0.5 m to 1.5 m, it is necessary for the operator to visually perform the above-described test operation (acceleration / deceleration of the steel plate 200). It is a burden for me.
  • the conductor tape 400 may be attached to the steel plate 200 so as to be inclined with respect to the width direction (Y direction) of the steel plate 200.
  • the conductor tape 400 overlaps the first probe row BTS1 and the second probe row BTS2
  • the first probe row BTS1 no matter which section the steel plate 200 is accelerated or decelerated.
  • the burden on the operator during the trial operation (during acceleration / deceleration of the steel plate 200) can be reduced.
  • the inclination angle ⁇ (see FIG. 24) of the conductor tape 400 is preferably set in the range of 0 ° to 60 °.
  • FIG. 25A shows a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle ⁇ of the conductor tape 400 is 0 ° (a pseudo defect corresponding to the conductor tape 400 appearing in the defect map).
  • FIG. FIG. 25B is a diagram schematically showing a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle ⁇ of the conductor tape 400 is 45 °.
  • FIG. 25C is a diagram schematically showing a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle ⁇ of the conductor tape 400 is 70 °.
  • Electromagnetic ultrasonic flaw detector 106 Measuring roll 108 Tip detection sensor 110 Signal processor 111 Remote I / O 112 control device 113 synchronization signal generator 114 ultrasonic generator 115 A / D conversion control device 116 arithmetic device 116a position information acquisition unit 116b difference acquisition unit 116c correction execution unit 116d correction value recording unit 200 steel plate

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This method for correcting a defect location includes: a step for producing ultrasonic vibration at the surface of an article under inspection, to which a conductor tape has been adhered; a step for detecting the F echo and B echo of the ultrasonic vibration; a step for detecting a suspected defect due to the conductor tape, on the basis of the detected values of the F echo and B echo; a step for acquiring location information for the suspected defect; a step for acquiring a differential of the location information for the suspected defect, on the basis of the location information for the suspected defect; and a step for correcting location information for an internal defect, on the basis of the differential.

Description

欠陥位置補正方法Defect position correction method
 本発明は、欠陥位置補正方法に関する。
 本願は、2013年1月22日に、日本に出願された特願2013-009360号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a defect position correction method.
This application claims priority on January 22, 2013 based on Japanese Patent Application No. 2013-009360 filed in Japan, the contents of which are incorporated herein by reference.
 近時では、鉄鋼材料等の内部欠陥(介在物、内部割れ、水素系欠陥等)を、超音波を用いることにより、非接触で検知する電磁超音波探触子が公知である。例えば、特許文献1には、永久磁石と、探傷パルスの形成及び反射パルスの受信に適合したインダクタンスコイルとを備える電磁超音波探触子(EMAT)が記載されている。また、特許文献2には、被検材にバイアス磁場を与えるための磁化器と、超音波を被検材に送信し、被検材で反射した超音波を受信するための複数のセンサコイルとを備えるアレイ型電磁超音波探触子(EMAT)が記載されている。 Recently, an electromagnetic ultrasonic probe that detects an internal defect (such as an inclusion, an internal crack, or a hydrogen-based defect) of a steel material in a non-contact manner by using an ultrasonic wave is known. For example, Patent Document 1 describes an electromagnetic ultrasonic probe (EMAT) including a permanent magnet and an inductance coil adapted to form a flaw detection pulse and receive a reflected pulse. Patent Document 2 discloses a magnetizer for applying a bias magnetic field to a test material, a plurality of sensor coils for transmitting ultrasonic waves to the test material and receiving ultrasonic waves reflected by the test material, and An array-type electromagnetic ultrasonic probe (EMAT) is described.
日本国特許4842922号公報Japanese Patent No. 4842922 日本国特開2005-214686号公報Japanese Unexamined Patent Publication No. 2005-214686
 このような電磁超音波探触子(EMAT)を用いて、鉄鋼材料等の内部欠陥を検査する場合、電磁超音波探触子を検査対象物の搬送方向に沿って複数の列となるように配置する。このとき、各列の間には、所定の間隔(例えば、0.5~1.5m)が存在する。各列で検出した内部欠陥の、搬送方向における位置は、搬送方向における検査対象物の長さを測長するメジャーリングロールの値とリンクさせて決定される。このため、各列で検出した内部欠陥の、搬送方向の位置は、測定誤差、データ転送の遅延、および搬送速度の変化等の要因により必ずしも一致しない場合がある。このような場合、検査対象物に1つの重欠陥が生じていても、検査の結果、複数の軽欠陥であると認識されてしまうため、内部欠陥の検査(評価)を正しく行うことができないといった問題がある。 When inspecting internal defects such as steel materials using such an electromagnetic ultrasonic probe (EMAT), the electromagnetic ultrasonic probes are arranged in a plurality of rows along the conveyance direction of the inspection object. Deploy. At this time, a predetermined interval (for example, 0.5 to 1.5 m) exists between the columns. The position of the internal defect detected in each row in the transport direction is determined by linking with the value of a measuring roll that measures the length of the inspection object in the transport direction. For this reason, the position of the internal defect detected in each column in the transport direction may not necessarily match due to factors such as measurement error, data transfer delay, and transport speed change. In such a case, even if one serious defect occurs in the inspection object, it is recognized as a plurality of light defects as a result of the inspection, so that the inspection (evaluation) of the internal defect cannot be performed correctly. There's a problem.
 上記の原因により、電磁超音波探触子の各列で検出された内部欠陥の、搬送方向における位置がずれている場合、この位置ずれを補正する必要がある。そこで、例えば、人工欠陥を加工して設けた人工欠陥プレートを探傷し、この人工欠陥プレートの人工欠陥と、電磁超音波探触子により検出した人工欠陥との比較により、この位置ずれを補正する方法が考えられる。
 しかしながら、この人工欠陥プレートを用いる方法では、人工欠陥プレートを製作するためのコストが必要であること、人工欠陥プレートを置くスペースが必要であること、といった課題がある。さらに、この方法では、人工欠陥プレートを検査ライン上に載置する作業が必要になる。そして、この作業は数時間要するため、その間検査ラインを停止する必要があるといった課題がある。
When the position of the internal defect detected in each row of the electromagnetic ultrasonic probe is displaced due to the above cause, it is necessary to correct this displacement. Therefore, for example, an artificial defect plate prepared by processing an artificial defect is detected, and the positional deviation is corrected by comparing the artificial defect on the artificial defect plate with the artificial defect detected by the electromagnetic ultrasonic probe. A method is conceivable.
However, the method using the artificial defect plate has a problem that a cost for manufacturing the artificial defect plate is necessary and a space for placing the artificial defect plate is necessary. Furthermore, this method requires an operation of placing the artificial defect plate on the inspection line. And since this operation | work requires several hours, there exists a subject that it is necessary to stop an inspection line in the meantime.
 そこで、本発明は、上記問題に鑑みてなされたものであり、電磁超音波探触子により検出される内部欠陥の位置情報の精度を高め、検査の信頼性を向上させることが可能な欠陥位置補正方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and it is possible to improve the accuracy of position information of internal defects detected by an electromagnetic ultrasonic probe and improve the reliability of inspection. An object is to provide a correction method.
 上記課題を解決するために、本発明は以下の手段を採用する。
 (1)本発明の第1の態様に係る欠陥位置補正方法は、検査対象物の搬送方向に沿って複数の列を成して配置される電磁超音波探触子に高周波信号を与えて、前記搬送方向と直交する方向に沿ってかつ、複数の前記電磁超音波探触子に跨るように導体テープが貼り付けられた、前記検査対象物の表面に超音波振動を発生させる工程と;各列の前記電磁超音波探触子で、前記超音波振動のFエコー及びBエコーを検出する工程と;前記Fエコー及び前記Bエコーの検出値に基づいて、前記導体テープによる疑似欠陥を検出する工程と;各列ごとに前記疑似欠陥の位置情報を取得する工程と;各列ごとに得られた前記疑似欠陥の位置情報に基づいて、隣り合う列について前記疑似欠陥の位置情報の差分を取得する工程と;前記差分に基づいて、各列の前記電磁超音波探触子によって検出される内部欠陥の位置情報を補正する工程と;を有する。
In order to solve the above problems, the present invention employs the following means.
(1) In the defect position correcting method according to the first aspect of the present invention, a high-frequency signal is given to an electromagnetic ultrasonic probe arranged in a plurality of rows along the conveyance direction of the inspection object, A step of generating ultrasonic vibrations on the surface of the inspection object, wherein a conductor tape is attached so as to straddle a plurality of the electromagnetic ultrasonic probes along a direction orthogonal to the transport direction; Detecting F and B echoes of the ultrasonic vibration with the electromagnetic ultrasonic probes in a row; and detecting a pseudo defect due to the conductive tape based on the detected values of the F and B echoes. Obtaining the position information of the pseudo defect for each column; obtaining the difference in the position information of the pseudo defect for adjacent columns based on the position information of the pseudo defect obtained for each column; And based on the difference, Having; the the step of correcting the position information of the internal defects detected by the electromagnetic ultrasonic probe.
 (2)上記(1)の態様において、前記導体テープが各列の前記電磁超音波探触子を通過する時に前記検査対象物の搬送速度を変化させる工程をさらに有してもよい。 (2) In the aspect of (1), the method may further include a step of changing a conveyance speed of the inspection object when the conductor tape passes through the rows of the electromagnetic ultrasonic probes.
 (3)上記(1)または(2)の態様において、前記導体テープの導電率は、前記検査対象物の導電率よりも大きくてもよい。 (3) In the above aspect (1) or (2), the conductivity of the conductor tape may be larger than the conductivity of the inspection object.
 (4)上記(1)または(2)の態様において、前記導体テープの材質はアルミニウム又は銅であっても良く、前記検査対象物は鉄であっても良い。 (4) In the above aspect (1) or (2), the material of the conductor tape may be aluminum or copper, and the inspection object may be iron.
 (5)上記(1)~(4)のいずれか一つの態様において、前記導体テープが、前記検査対象物の幅方向に対して0°から60°の範囲で前記検査対象物に貼り付けられていても良い。 (5) In any one of the above aspects (1) to (4), the conductor tape is attached to the inspection object in a range of 0 ° to 60 ° with respect to the width direction of the inspection object. May be.
 上記各態様によれば、電磁超音波探触子により検出される内部欠陥の位置情報の精度を高めることができ、その結果、内部欠陥の検査(評価)の信頼性を向上させることができる。 According to each of the above aspects, the accuracy of the position information of the internal defect detected by the electromagnetic ultrasonic probe can be improved, and as a result, the reliability of the inspection (evaluation) of the internal defect can be improved.
本発明の一実施形態に係る電磁超音波探傷装置の構成を示す模式図である。It is a mimetic diagram showing composition of an electromagnetic ultrasonic flaw detector concerning one embodiment of the present invention. 電磁超音波探傷装置の構成を示す模式図であって、図1のY方向から見た模式図である。It is the schematic diagram which shows the structure of an electromagnetic ultrasonic flaw detector, Comprising: It is the schematic diagram seen from the Y direction of FIG. 鋼板の探傷位置と、電磁超音波探触子が検出した信号強度(Fエコー、Bエコー)とを示す特性図である。It is a characteristic view which shows the flaw detection position of a steel plate, and the signal strength (F echo, B echo) which the electromagnetic ultrasonic probe detected. 鋼板の探傷位置と、電磁超音波探触子が検出した信号強度(F/B比)とを示す特性図である。It is a characteristic view which shows the flaw detection position of a steel plate, and the signal strength (F / B ratio) which the electromagnetic ultrasonic probe detected. 鋼板の欠陥マップを示す模式図である。It is a schematic diagram which shows the defect map of a steel plate. 電磁超音波探傷装置に設けられた信号処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the signal processing apparatus provided in the electromagnetic ultrasonic flaw detector. 信号処理装置の制御装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the control apparatus of a signal processing apparatus. 信号処理装置のA/D変換制御装置の動作を模式的に示す第1図である。It is FIG. 1 which shows typically operation | movement of the A / D conversion control apparatus of a signal processing apparatus. 信号処理装置のA/D変換制御装置の動作を模式的に示す第2図である。It is FIG. 2 which shows typically operation | movement of the A / D conversion control apparatus of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第1図である。It is FIG. 1 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第2図である。It is FIG. 2 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第3図である。It is FIG. 3 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第4図である。It is FIG. 4 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第5図である。FIG. 7 is a fifth diagram schematically showing the operation of the arithmetic unit of the signal processing device. 信号処理装置の演算装置の動作を模式的に示す第6図である。It is FIG. 6 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 信号処理装置の演算装置の動作を模式的に示す第7図である。It is FIG. 7 which shows typically operation | movement of the arithmetic unit of a signal processing apparatus. 鋼板の欠陥マップを示す模式図であって、鋼板の長手(搬送)方向にズレが生じた内部欠陥を示す模式図である。It is a schematic diagram which shows the defect map of a steel plate, Comprising: It is a schematic diagram which shows the internal defect which the gap | deviation produced in the longitudinal (conveyance) direction of the steel plate. 検査のために用いる人工欠陥プレートを示す模式図である。It is a schematic diagram which shows the artificial defect plate used for a test | inspection. 鋼板の表面に導体テープが貼り付けられた状態を示す模式図である。It is a schematic diagram which shows the state by which the conductor tape was affixed on the surface of the steel plate. 電磁超音波探触子が鋼板の表面に超音波振動を発生させる状態を示す模式図であって、鋼板の表面に導体テープが貼り付けられていない状態を示す模式図である。It is a schematic diagram which shows the state in which an electromagnetic ultrasonic probe generates ultrasonic vibration on the surface of a steel plate, Comprising: It is a schematic diagram which shows the state by which the conductor tape is not affixed on the surface of a steel plate. 図19の拡大図であって、鋼板の表面に導体テープを貼り付けた状態を示す図である。It is an enlarged view of FIG. 19, Comprising: It is a figure which shows the state which affixed the conductor tape on the surface of the steel plate. 本実施形態に係る欠陥マップの補正方法を実現するために必要な演算装置の構成を示す図である。It is a figure which shows the structure of an arithmetic unit required in order to implement | achieve the defect map correction method which concerns on this embodiment. 欠陥マップを補正する方法を示すフローチャートである。It is a flowchart which shows the method of correct | amending a defect map. 導体テープが鋼板幅方向に平行となるように鋼板に貼り付けられた状態を示す図である。It is a figure which shows the state affixed on the steel plate so that a conductor tape may become parallel to a steel plate width direction. 導体テープが鋼板幅方向に対して傾斜するように鋼板に貼り付けられた状態を示す図である。It is a figure which shows the state affixed on the steel plate so that a conductor tape may incline with respect to the steel plate width direction. 導体テープの傾斜角が0°の場合に、鋼板の加減速を行った時に得られる導体テープの欠陥評価結果(欠陥マップに現れる導体テープに相当する疑似欠陥)を模式的に示す図である。It is a figure which shows typically the defect evaluation result (pseudo defect corresponding to the conductor tape which appears in a defect map) of the conductor tape obtained when the steel tape is accelerated / decelerated when the inclination angle of the conductor tape is 0 °. 導体テープの傾斜角が45°の場合に、鋼板の加減速を行った時に得られる導体テープの欠陥評価結果を模式的に示す図である。It is a figure which shows typically the defect evaluation result of the conductor tape obtained when performing acceleration / deceleration of a steel plate, when the inclination-angle of a conductor tape is 45 degrees. 導体テープの傾斜角が70°の場合に、鋼板の加減速を行った時に得られる導体テープの欠陥評価結果を模式的に示す図である。It is a figure which shows typically the defect evaluation result of the conductor tape obtained when performing acceleration / deceleration of a steel plate, when the inclination-angle of a conductor tape is 70 degrees. 電磁超音波探触子が鋼板の上部に配置される状態を示す模式図である。It is a schematic diagram which shows the state by which an electromagnetic ultrasonic probe is arrange | positioned at the upper part of a steel plate.
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 (電磁超音波探傷装置の構成例)
 まず、図1及び図2を参照して、本発明の一実施形態に係る電磁超音波探傷装置(欠陥検査装置)100の構成について説明する。図1は、電磁超音波探傷装置100の構成を示す模式図である。図1に示すように、電磁超音波探傷装置100は、電磁超音波探触子102、アンプ104(図1において不図示)、メジャーリングロール106、先端検出センサー108、信号処理装置110、表示装置120および警報装置130を備えている。
(Configuration example of electromagnetic ultrasonic flaw detector)
First, the configuration of an electromagnetic ultrasonic flaw detector (defect inspection device) 100 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the configuration of the electromagnetic ultrasonic flaw detector 100. As shown in FIG. 1, an electromagnetic ultrasonic flaw detector 100 includes an electromagnetic ultrasonic probe 102, an amplifier 104 (not shown in FIG. 1), a measuring roll 106, a tip detection sensor 108, a signal processing device 110, and a display device. 120 and an alarm device 130 are provided.
 検査対象物である鋼板200は、通板テーブル(不図示)上に載置されて、通板テーブルのローラの駆動によって図1のX方向に搬送(通板)される。鋼板200の上部には、幅方向Y(搬送方向Xと直交する方向:図1参照)に沿って複数の電磁超音波探触子102が配置され、電磁超音波探触子102は鋼板200の内部欠陥202を検出する。また、図1に示すように、電磁超音波探触子102は、鋼板200の搬送方向Xに2列に配置されており、搬送方向Xにおける前側(下流側)の列(前列)と、搬送方向Xにおける後側(上流側)の列(後列)とにそれぞれ8個の電磁超音波探触子102が配置されている。前列および後列の8個の電磁超音波探触子102は、鋼板200の幅方向Yにおける位置がそれぞれ異なるように配置されており、前列において隣り合う電磁超音波探触子102の中間に、後列の電磁超音波探触子102が位置している。このように、前列の電磁超音波探触子102と、後列の電磁超音波探触子102とが、千鳥配列となるように配置されることで、前列の電磁超音波探触子102の間に位置し、前列の電磁超音波探触子102が検出できない内部欠陥202を、後列の電磁超音波探触子102で確実に検出することができる。
 以下では、搬送方向Xの上流側に配置された電磁超音波探触子102の列を第1探触子列BTS1と呼称し、また、搬送方向Xの下流側に配置された電磁超音波探触子102の列を第2探触子列BTS2と呼称する(図1参照)。
A steel plate 200 as an inspection object is placed on a passing plate table (not shown), and is conveyed (passed) in the X direction of FIG. 1 by driving a roller of the passing plate table. A plurality of electromagnetic ultrasonic probes 102 are arranged on the upper portion of the steel plate 200 along the width direction Y (direction orthogonal to the transport direction X: see FIG. 1). An internal defect 202 is detected. As shown in FIG. 1, the electromagnetic ultrasonic probes 102 are arranged in two rows in the conveyance direction X of the steel plate 200, and the front (downstream) row (front row) in the conveyance direction X and the conveyance Eight electromagnetic ultrasonic probes 102 are arranged in the rear (upstream) row (rear row) in the direction X, respectively. The eight electromagnetic ultrasonic probes 102 in the front row and the rear row are arranged so that the positions in the width direction Y of the steel plate 200 are different from each other, and in the middle of the adjacent electromagnetic ultrasonic probes 102 in the front row. The electromagnetic ultrasonic probe 102 is located. Thus, the front row electromagnetic ultrasonic probes 102 and the rear row electromagnetic ultrasonic probes 102 are arranged in a staggered arrangement, so that the space between the front row electromagnetic ultrasonic probes 102 is reduced. The internal defect 202 that is located in the position and cannot be detected by the front row electromagnetic ultrasonic probe 102 can be reliably detected by the back row electromagnetic ultrasonic probe 102.
Hereinafter, the row of the electromagnetic ultrasonic probes 102 arranged on the upstream side in the transport direction X will be referred to as a first probe row BTS1, and the electromagnetic ultrasonic probe arranged on the downstream side in the transport direction X will be referred to. The row of the contacts 102 is referred to as a second probe row BTS2 (see FIG. 1).
 図2は、図1のY方向から見た電磁超音波探傷装置100の構成を示す模式図である。図2に示すように、電磁超音波探触子102は、鋼板200の上部に近接して配置される。また、電磁超音波探触子102の底面から鋼板200に向けて空気を供給しており、この空気によって電磁超音波探触子102の底面と鋼板200の表面200aとの間のギャップ(距離)が0.5mm程度となるように調整されている。アンプ104は、電磁超音波探触子102の上部に配置され、電磁超音波探触子102の検出信号を増幅する。なお、図1においてはアンプ104の図示を省略している。 FIG. 2 is a schematic diagram showing the configuration of the electromagnetic ultrasonic flaw detector 100 viewed from the Y direction in FIG. As shown in FIG. 2, the electromagnetic ultrasonic probe 102 is disposed close to the upper part of the steel plate 200. In addition, air is supplied from the bottom surface of the electromagnetic ultrasonic probe 102 toward the steel plate 200, and a gap (distance) between the bottom surface of the electromagnetic ultrasonic probe 102 and the surface 200a of the steel plate 200 due to this air. Is adjusted to about 0.5 mm. The amplifier 104 is disposed above the electromagnetic ultrasonic probe 102 and amplifies the detection signal of the electromagnetic ultrasonic probe 102. In FIG. 1, the amplifier 104 is not shown.
 上述したように、電磁超音波探触子102は、鋼板の搬送方向Xに2列で配置され、鋼板の幅方向Yにおける位置がそれぞれ異なるように配置される(図1参照)。図26は、図1のY方向から見た電磁超音波探傷装置100の側面図であり、第1探触子列BTS1の電磁超音波探触子102と、第2探触子列BTS2の電磁超音波探触子102とをそれぞれ1つ示している。図26に示すように、電磁超音波探触子102には、アーム109が接続されている。第1探触子列BTS1の電磁超音波探触子102と、第2探触子列BTS2の電磁超音波探触子102との間には、間隔dが存在する。ここで、間隔dは、例えば、0.5~1.5mとする必要があるが、その理由を以下に述べる。
 鋼板200を探傷する場合、上述のように、電磁超音波探触子102を鋼板200の表面200aから0.5mm程度離した位置に配置する。このとき、電磁超音波探触子102は永久磁石102aを備えているため(図19参照)、電磁超音波探触子102には鋼板200の表面200aに近づこうとする力が働く。この力により、電磁超音波探触子102は鋼板200の表面200aと干渉することがある。この干渉による電磁超音波探触子102への負荷を軽減するため、アーム109を中心軸107回りに回転させることにより、電磁超音波探触子102を鋼板200の表面200aの上部に配置させている。このため、第1探触子列BTS1の電磁超音波探触子102と、第2探触子列BTS2の電磁超音波探触子102とが、搬送方向Xで干渉することを避けるため、第1探触子列BTS1と第2探触子列BTS2との間には間隔dが必要となる。間隔dは、アーム109の長さ等により設定されるが、例えば0.5~1.5mが望ましい。
As described above, the electromagnetic ultrasonic probes 102 are arranged in two rows in the conveyance direction X of the steel plate, and are arranged so that the positions in the width direction Y of the steel plate are different from each other (see FIG. 1). FIG. 26 is a side view of the electromagnetic ultrasonic flaw detector 100 viewed from the Y direction in FIG. 1, and the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic of the second probe row BTS2. One ultrasonic probe 102 is shown. As shown in FIG. 26, an arm 109 is connected to the electromagnetic ultrasonic probe 102. A distance d exists between the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic ultrasonic probe 102 of the second probe row BTS2. Here, the distance d needs to be 0.5 to 1.5 m, for example, and the reason will be described below.
When flaw detection is performed on the steel plate 200, the electromagnetic ultrasonic probe 102 is disposed at a position about 0.5 mm away from the surface 200a of the steel plate 200 as described above. At this time, since the electromagnetic ultrasonic probe 102 includes the permanent magnet 102a (see FIG. 19), a force for approaching the surface 200a of the steel plate 200 acts on the electromagnetic ultrasonic probe 102. Due to this force, the electromagnetic ultrasonic probe 102 may interfere with the surface 200 a of the steel plate 200. In order to reduce the load on the electromagnetic ultrasonic probe 102 due to this interference, the electromagnetic ultrasonic probe 102 is arranged on the upper surface 200a of the steel plate 200 by rotating the arm 109 about the central axis 107. Yes. Therefore, in order to avoid interference between the electromagnetic ultrasonic probe 102 of the first probe row BTS1 and the electromagnetic ultrasonic probe 102 of the second probe row BTS2 in the transport direction X, the first A distance d is required between the first probe row BTS1 and the second probe row BTS2. The distance d is set depending on the length of the arm 109, and is preferably 0.5 to 1.5 m, for example.
 電磁超音波探触子102は、鋼板200の表面200a(第1の面)に超音波振動を発生させ、鋼板200の底面200b(第2の面)で反射した超音波(反射波)が静磁場下で振動することにより発生した渦電流をコイルで検知する。これにより、底面200bで反射した超音波振動のエコーレベル(Bエコー)が検出される。また、図1に示す内部欠陥202が鋼板200に生じている場合は、内部欠陥202において超音波振動が反射し、この内部欠陥202で反射した超音波振動のエコーレベル(Fエコー)が電磁超音波探触子102によって検出される。このように、内部欠陥202が生じている場合は、内部欠陥202が生じていない場合と比べて、超音波振動のエコーレベルが変化するため、Bエコーに対するFエコーの比(F/B比)から内部欠陥202のレベルを評価することができる。なお、上記のF/B比において、BはBエコーの値(信号強度)を意味し、FはFエコーの値(信号強度)を意味する。 The electromagnetic ultrasonic probe 102 generates ultrasonic vibrations on the surface 200a (first surface) of the steel plate 200, and the ultrasonic waves (reflected waves) reflected by the bottom surface 200b (second surface) of the steel plate 200 are static. An eddy current generated by vibrating in a magnetic field is detected by a coil. Thereby, the echo level (B echo) of the ultrasonic vibration reflected by the bottom surface 200b is detected. Further, when the internal defect 202 shown in FIG. 1 occurs in the steel plate 200, the ultrasonic vibration is reflected by the internal defect 202, and the echo level (F echo) of the ultrasonic vibration reflected by the internal defect 202 is the electromagnetic supersonic wave. Detected by the acoustic probe 102. As described above, when the internal defect 202 is generated, the echo level of the ultrasonic vibration is changed as compared with the case where the internal defect 202 is not generated, and therefore the ratio of the F echo to the B echo (F / B ratio). From this, the level of the internal defect 202 can be evaluated. In the above F / B ratio, B means the value of B echo (signal intensity), and F means the value of F echo (signal intensity).
 信号処理装置110は、Bエコーに対するFエコーの比(F/B比)に基づいて内部欠陥202を評価(等級分類)する。表示装置120は、内部欠陥202の評価結果として、内部欠陥202のレベル、および内部欠陥202の位置を表示する。また、警報装置130は、内部欠陥202のレベルが基準レベルを超えた場合に警報を発する。基準レベルを超える内部欠陥202が検出された鋼板200は、通常の搬送経路を離れて、更なる詳細な検査が行われる。なお、信号処理装置110の構成については、後述する。 The signal processing device 110 evaluates (classifies) the internal defect 202 based on the ratio of F echo to B echo (F / B ratio). The display device 120 displays the level of the internal defect 202 and the position of the internal defect 202 as the evaluation result of the internal defect 202. Also, the alarm device 130 issues an alarm when the level of the internal defect 202 exceeds the reference level. The steel plate 200 in which the internal defect 202 exceeding the reference level is detected leaves the normal conveyance path and is subjected to further detailed inspection. The configuration of the signal processing device 110 will be described later.
 図3Aは、鋼板200の長手方向(搬送方向X)における探傷位置と、電磁超音波探触子102によって得られたFエコーおよびBエコーの信号強度を示す特性図である。また、図3Bは、鋼板200の長手方向(搬送方向X)における探傷位置と、F/B比の信号強度とを示す特性図である。図3Aに示すように、鋼板200に内部欠陥202が発生していると、内部欠陥202の大きさに応じてFエコーの値が上昇し、Bエコーの値が低下する。従って、図3Bに示すように、内部欠陥202が発生している探傷位置では、内部欠陥202が発生していない探傷位置に比べて、F/B比の値が増加する。そして、内部欠陥202が大きい程、Fエコーの上昇量およびBエコーの低下量が大きくなるため、F/B比の値が大きくなる。従って、F/B比の値に基づいて、内部欠陥202が発生しているか否かを検知することができ、更に、内部欠陥202の大きさおよび位置を評価することができる。また、電磁超音波探触子102と鋼板200の表面200aとのギャップが変化すると、Bエコー及びFエコーの値は変化するが、F/B比を計算することによってギャップの変化によるBエコー及びFエコーの変化量をキャンセルすることができる。更に、F/B比の値に基づいて内部欠陥202を評価することで、FエコーおよびBエコーにノイズが含まれていた場合であっても、ノイズ分をキャンセルすることができるため、内部欠陥202を高精度に評価することができる。 FIG. 3A is a characteristic diagram showing the flaw detection position in the longitudinal direction (conveying direction X) of the steel plate 200 and the signal intensities of the F echo and the B echo obtained by the electromagnetic ultrasonic probe 102. FIG. 3B is a characteristic diagram showing the flaw detection position in the longitudinal direction (conveying direction X) of the steel plate 200 and the signal intensity of the F / B ratio. As shown in FIG. 3A, when the internal defect 202 occurs in the steel plate 200, the value of the F echo increases according to the size of the internal defect 202, and the value of the B echo decreases. Therefore, as shown in FIG. 3B, the value of the F / B ratio increases at the flaw detection position where the internal defect 202 occurs, compared to the flaw detection position where the internal defect 202 does not occur. The larger the internal defect 202, the larger the F echo rise amount and the B echo fall amount, and the larger the F / B ratio value. Therefore, it is possible to detect whether or not the internal defect 202 has occurred based on the value of the F / B ratio, and to evaluate the size and position of the internal defect 202. In addition, when the gap between the electromagnetic ultrasonic probe 102 and the surface 200a of the steel plate 200 changes, the values of the B echo and the F echo change, but by calculating the F / B ratio, The change amount of the F echo can be canceled. Further, by evaluating the internal defect 202 based on the value of the F / B ratio, even if the F echo and the B echo include noise, the noise component can be canceled. 202 can be evaluated with high accuracy.
 鋼板200の幅方向Yに配置された複数の電磁超音波探触子102からの検出信号は、鋼板200の先端からの位置を計測するメジャーリングロール106からの位置信号とともに信号処理装置110に伝送される。先端検出センサー108は、鋼板200の先端位置を検出し、その先端位置はメジャーリングロール106が鋼板200の位置を検出する際の基準となる。信号処理装置110は、電磁超音波探触子102からの検出信号と、メジャーリングロール106からの位置信号とを同期させ、図4に示すような、鋼板200に発生している内部欠陥202の位置を表示する欠陥マップを作成する。 Detection signals from the plurality of electromagnetic ultrasonic probes 102 arranged in the width direction Y of the steel plate 200 are transmitted to the signal processing device 110 together with a position signal from the measuring roll 106 that measures the position from the tip of the steel plate 200. Is done. The tip detection sensor 108 detects the tip position of the steel plate 200, and the tip position serves as a reference when the measuring roll 106 detects the position of the steel plate 200. The signal processing device 110 synchronizes the detection signal from the electromagnetic ultrasonic probe 102 and the position signal from the measuring roll 106, and the internal defect 202 occurring in the steel plate 200 as shown in FIG. Create a defect map that displays the location.
 1つの電磁超音波探触子102の鋼板幅方向Yにおける長さ(幅)は、100mm程度であり、鋼板幅方向Yに隣り合う電磁超音波探触子102の間の距離をゼロにすることはできない。したがって、未検出領域を無くすために、上述のように電磁超音波探触子102は鋼板搬送方向Xに2列で配置され、鋼板200の幅方向Yにおける電磁超音波探触子102の位置が2列で互いに異なるように配置されている(いわゆる千鳥配列)。電磁超音波探触子102は鋼板搬送方向Xに2列で配置されることが望ましいが、3列以上で配置されてもよい。 The length (width) of one electromagnetic ultrasonic probe 102 in the steel plate width direction Y is about 100 mm, and the distance between the electromagnetic ultrasonic probes 102 adjacent in the steel plate width direction Y is set to zero. I can't. Therefore, in order to eliminate the undetected region, the electromagnetic ultrasonic probes 102 are arranged in two rows in the steel plate conveyance direction X as described above, and the positions of the electromagnetic ultrasonic probes 102 in the width direction Y of the steel plate 200 are determined. Two rows are arranged so as to be different from each other (so-called staggered arrangement). The electromagnetic ultrasonic probes 102 are desirably arranged in two rows in the steel plate conveyance direction X, but may be arranged in three or more rows.
 信号処理装置110は、このように配置された複数の電磁超音波探触子102からの検出信号と、通板テーブル上を移動する鋼板200の位置信号とを同期させることで、正確な欠陥位置を認識し、図4に示すような欠陥マップを作成する。これにより、鋼板200の内部欠陥202が発生している位置と、この内部欠陥202の大きさとを瞬時に把握することができる。 The signal processing device 110 synchronizes the detection signals from the plurality of electromagnetic ultrasonic probes 102 arranged in this way with the position signal of the steel plate 200 moving on the sheet passing table, so that an accurate defect position can be obtained. And a defect map as shown in FIG. 4 is created. Thereby, the position where the internal defect 202 of the steel plate 200 is generated and the size of the internal defect 202 can be grasped instantaneously.
 以下では、信号処理装置110の基本的な動作(欠陥マップの作成動作)について詳細に説明する。
 図5に示すように、信号処理装置110は、リモートI/O111と、制御装置112と、同期信号発生装置113と、超音波発生器114と、A/D変換制御装置115と、演算装置116とを備えている。図5では図示を省略しているが、警報装置130及び表示装置140は、演算装置116に接続されている。
Hereinafter, a basic operation (defect map creation operation) of the signal processing apparatus 110 will be described in detail.
As shown in FIG. 5, the signal processing device 110 includes a remote I / O 111, a control device 112, a synchronization signal generation device 113, an ultrasonic generator 114, an A / D conversion control device 115, and a calculation device 116. And. Although not shown in FIG. 5, the alarm device 130 and the display device 140 are connected to the arithmetic device 116.
 リモートI/O111は、メジャーリングロール106(詳細には、メジャーリングロール106に取付けられたロータリーエンコーダ)から出力される位置信号と、先端検出センサー108から出力される先端検出信号とを、遠隔位置に配置された制御装置112へ伝送するためのインターフェイスである。 The remote I / O 111 transmits a position signal output from the measuring roll 106 (specifically, a rotary encoder attached to the measuring roll 106) and a tip detection signal output from the tip detection sensor 108 to a remote position. It is an interface for transmitting to the control apparatus 112 arrange | positioned.
 ここで、先端検出センサー108から出力される先端検出信号は、先端検出センサー108が鋼板200の先端を検出した時に電位レベルが反転する信号である。また、メジャーリングロール106(ロータリーエンコーダ)から出力される位置信号は、鋼板200に接触するメジャーリングロール106が一定角度回転するのに要した時間を1周期とするパルス信号である。
 つまり、先端検出信号の電位レベルが反転してから、位置信号(パルス信号)のパルス数をカウントすることにより、鋼板200の搬送距離(鋼板200のX方向の位置)を計測することができる。
Here, the tip detection signal output from the tip detection sensor 108 is a signal whose potential level is inverted when the tip detection sensor 108 detects the tip of the steel plate 200. Further, the position signal output from the measuring roll 106 (rotary encoder) is a pulse signal having one cycle as the time required for the measuring roll 106 in contact with the steel plate 200 to rotate by a certain angle.
That is, after the potential level of the tip detection signal is inverted, the conveyance distance of the steel plate 200 (the position of the steel plate 200 in the X direction) can be measured by counting the number of pulses of the position signal (pulse signal).
 制御装置112は、リモートI/O111を介して入力される位置信号及び先端検出信号に基づいて、鋼板200の搬送距離(鋼板200のX方向の位置)を「INDEX」と呼称される変数と対応させながらリアルタイムに計測する。具体的には、図6のタイミングチャートに示すように、制御装置112は、先端検出信号の電位レベルが反転したことを検知すると、位置信号のパルス数のカウントを開始する(図6の時刻t0参照)。また、制御装置112は、先端検出信号の電位レベルが反転したことを検知すると、「INDEX」を一定周期(例えば16ms≒60Hz)でインクリメントする(「INDEX」の値を1ずつ増やす)。 Based on the position signal and the tip detection signal input via the remote I / O 111, the control device 112 corresponds to the variable called “INDEX” as the transport distance of the steel plate 200 (the position in the X direction of the steel plate 200). And measure in real time. Specifically, as shown in the timing chart of FIG. 6, when the control device 112 detects that the potential level of the tip detection signal is inverted, it starts counting the number of pulses of the position signal (time t0 in FIG. 6). reference). Further, when detecting that the potential level of the tip detection signal is inverted, the control device 112 increments “INDEX” at a constant cycle (for example, 16 ms≈60 Hz) (increases the value of “INDEX” by one).
 制御装置112は、「INDEX」をインクリメントするタイミング(つまり16ms周期)で、その時のパルス数のカウント値に基づいて現在位置(現時点における鋼板200のX方向の位置)を算出する。そして、制御装置112は、「INDEX」を16ms周期で同期信号発生装置113へ出力すると共に、「INDEX」とこれに対応する位置データとを含むデータ(以下、位置パケットデータと呼称する)を16ms周期で演算装置116へ出力する。 The control device 112 calculates the current position (current position in the X direction of the steel plate 200) based on the count value of the number of pulses at the timing of incrementing “INDEX” (that is, a cycle of 16 ms). Then, the control device 112 outputs “INDEX” to the synchronization signal generating device 113 in a cycle of 16 ms, and also includes data including “INDEX” and corresponding position data (hereinafter referred to as position packet data) for 16 ms. It outputs to the arithmetic unit 116 with a period.
 例えば、鋼板200の搬送速度が2000mm/s一定であると仮定する。
 図6の時刻t0は、鋼板200の先端が検出された時刻なので、時刻t0における鋼板200の搬送距離(移動距離)はゼロである。従って、時刻t0において、制御装置112は、「INDEX(=0)」を同期信号発生装置113へ出力すると共に、「INDEX(=0)」とこれに対応する位置データ(=0mm)とを含む位置パケットデータを演算装置116へ出力する。
For example, it is assumed that the conveying speed of the steel plate 200 is constant at 2000 mm / s.
Since time t0 in FIG. 6 is the time when the tip of the steel plate 200 is detected, the transport distance (movement distance) of the steel plate 200 at time t0 is zero. Therefore, at time t0, the control device 112 outputs “INDEX (= 0)” to the synchronization signal generation device 113, and includes “INDEX (= 0)” and position data (= 0 mm) corresponding thereto. The position packet data is output to the arithmetic unit 116.
 図6の時刻t1は、時刻t0から16ms経過後の時刻なので、時刻t1における鋼板200の搬送距離は32mmである。従って、時刻t1において、制御装置112は、「INDEX(=1)」を同期信号発生装置113へ出力すると共に、「INDEX(=1)」とこれに対応する位置データ(=32mm)とを含む位置パケットデータを演算装置116へ出力する。 Since time t1 in FIG. 6 is a time 16 ms after time t0, the transport distance of the steel plate 200 at time t1 is 32 mm. Therefore, at time t1, the control device 112 outputs “INDEX (= 1)” to the synchronization signal generation device 113, and includes “INDEX (= 1)” and position data (= 32 mm) corresponding thereto. The position packet data is output to the arithmetic unit 116.
 図6の時刻t2は、時刻t1から16ms経過後の時刻なので、時刻t2における鋼板200の搬送距離は64mmである。従って、時刻t2において、制御装置112は、「INDEX(=2)」を同期信号発生装置113へ出力すると共に、「INDEX(=2)」とこれに対応する位置データ(=64mm)とを含む位置パケットデータを演算装置116へ出力する。 Since the time t2 in FIG. 6 is a time 16 ms after the time t1, the transport distance of the steel plate 200 at the time t2 is 64 mm. Therefore, at time t2, the control device 112 outputs “INDEX (= 2)” to the synchronization signal generating device 113, and includes “INDEX (= 2)” and position data (= 64 mm) corresponding thereto. The position packet data is output to the arithmetic unit 116.
 このように、制御装置112は、「INDEX」を16ms周期で同期信号発生装置113へ出力すると共に、「INDEX」と位置データとを含む位置パケットデータを16ms周期で演算装置116へ出力する。「INDEX」は、同期信号発生装置113を介してA/D変換制御装置115へ伝送される。 As described above, the control device 112 outputs “INDEX” to the synchronization signal generation device 113 at a cycle of 16 ms, and outputs position packet data including “INDEX” and position data to the arithmetic device 116 at a cycle of 16 ms. “INDEX” is transmitted to the A / D conversion controller 115 via the synchronization signal generator 113.
 超音波発生器114は、第1探触子列BTS1の各探触子102と、第2探触子列BTS2の各探触子102とに対して高周波電流(高周波信号)を供給する。これにより、各探触子102に設けられたコイルに高周波電流が流れ、鋼板200の表面200aに超音波振動が発生する。上述したように、鋼板200の底面200bで反射した超音波(Bエコー)の強度に応じて各探触子102のコイルに誘導電流が生じ、内部欠陥202で反射した超音波(Fエコー)の強度に応じて各探触子102のコイルに誘導電流が生じる。このように、Fエコー及びBエコーのレベル(強度)に応じて各探触子102のコイルに生じる誘導電流は、超音波発生器114を介してA/D変換制御装置115へ伝送される。 The ultrasonic generator 114 supplies a high-frequency current (high-frequency signal) to each probe 102 in the first probe row BTS1 and each probe 102 in the second probe row BTS2. As a result, a high-frequency current flows through the coils provided in each probe 102, and ultrasonic vibration is generated on the surface 200a of the steel plate 200. As described above, an induced current is generated in the coil of each probe 102 in accordance with the intensity of the ultrasonic wave (B echo) reflected by the bottom surface 200b of the steel plate 200, and the ultrasonic wave (F echo) reflected by the internal defect 202 is generated. An induced current is generated in the coil of each probe 102 in accordance with the strength. Thus, the induced current generated in the coil of each probe 102 in accordance with the level (intensity) of the F echo and the B echo is transmitted to the A / D conversion control device 115 via the ultrasonic generator 114.
 A/D変換制御装置115は、超音波発生器114を介して各探触子102から入力される、Fエコー及びBエコーのレベルに応じた誘導電流をA/D変換することにより、Fエコー及びBエコーのデジタルデータ(Fエコー及びBエコーの強度データ)を取得する。また、A/D変換制御装置115は、Fエコー及びBエコーの強度データに基づいて、各探触子102の各コイルごとに、F/B比(以下、探傷データと呼称する)を算出する。 The A / D conversion control device 115 performs A / D conversion on the induced current corresponding to the levels of the F echo and the B echo, which are input from each probe 102 via the ultrasonic generator 114, thereby obtaining an F echo. And B echo digital data (F echo and B echo intensity data). The A / D conversion control device 115 calculates an F / B ratio (hereinafter referred to as flaw detection data) for each coil of each probe 102 based on the intensity data of the F echo and the B echo. .
 A/D変換制御装置115は、Fエコー及びBエコーの強度データを一定周波数(例えば2.5kHz)で取得する。つまり、探傷データ(F/B比)も2.5kHz(0.4ms周期)で算出される。A/D変換制御装置115は、2.5kHzという比較的高周波の探傷データを、例えば1kHzという比較的低周波の探傷データに変換する。 The A / D conversion control device 115 acquires F echo and B echo intensity data at a constant frequency (for example, 2.5 kHz). That is, the flaw detection data (F / B ratio) is also calculated at 2.5 kHz (0.4 ms cycle). The A / D conversion control device 115 converts flaw detection data with a relatively high frequency of 2.5 kHz into flaw detection data with a relatively low frequency of 1 kHz, for example.
 具体的には、A/D変換制御装置115は、時系列的に得られた4つの探傷データの移動平均値を各コイルごとに算出する。例えば、図7に示すように、ある1つのコイルについて、時系列的に探傷データd1、d2、d3、…d13が得られたと仮定する。この場合、A/D変換制御装置115は、探傷データd1~d4の移動平均値d1aveを算出し、探傷データd2~d5の移動平均値d2aveを算出し、探傷データd3~d6の移動平均値d3aveを算出する。A/D変換制御装置115は、上記と同様に、残りの移動平均値d4ave~d10aveを算出する。 Specifically, the A / D conversion control device 115 calculates a moving average value of four flaw detection data obtained in time series for each coil. For example, as shown in FIG. 7, it is assumed that flaw detection data d1, d2, d3,... D13 are obtained in time series for a certain coil. In this case, the A / D conversion control device 115 calculates the moving average value d1ave of the flaw detection data d1 to d4, calculates the moving average value d2ave of the flaw detection data d2 to d5, and the moving average value d3ave of the flaw detection data d3 to d6. Is calculated. The A / D conversion control device 115 calculates the remaining moving average values d4ave to d10ave similarly to the above.
 A/D変換制御装置115は、3つの移動平均値の最大値を抽出し、次の2つの移動平均値の最大値を抽出するという処理を繰り返すことにより、1kHzの探傷データを得る。例えば、図7に示すように、移動平均値d1ave~d3aveの最大値が探傷データD1として抽出され、移動平均値d4ave及びd5aveの最大値が探傷データD2として抽出される。以下同様に、移動平均値d6ave~d8aveの最大値が探傷データD3として抽出され、移動平均値d9ave及びd10aveの最大値が探傷データD4として抽出される。
 A/D変換制御装置115は、上記のような処理を行うことにより、2.5kHzの探傷データを、1kHzの探傷データに変換する。
The A / D conversion control device 115 obtains 1 kHz flaw detection data by repeating the process of extracting the maximum value of the three moving average values and extracting the maximum value of the next two moving average values. For example, as shown in FIG. 7, the maximum value of the moving average values d1ave to d3ave is extracted as the flaw detection data D1, and the maximum value of the moving average values d4ave and d5ave is extracted as the flaw detection data D2. Similarly, the maximum value of the moving average values d6ave to d8ave is extracted as the flaw detection data D3, and the maximum value of the moving average values d9ave and d10ave is extracted as the flaw detection data D4.
The A / D conversion control device 115 converts the flaw detection data of 2.5 kHz into flaw detection data of 1 kHz by performing the processing as described above.
 A/D変換制御装置115は、同期信号発生装置113を介して得られた「INDEX」と1kHzの探傷データとを結合することで探傷パケットデータを作成し、この探傷パケットデータを1kHzの周波数で演算装置116へ出力する。探傷データの周波数は1kHzであるが、「INDEX」は60Hz(16ms周期)で更新される(1増える)ので、例えば図8に示すように、16個(=1000Hz/60Hz)の探傷データのそれぞれに、同じ値の「INDEX」が結合される。以上のように、「INDEX」と1kHzの探傷データとを結合することで得られる探傷パケットデータが1kHzの周波数(1ms周期)で、A/D変換制御装置115から演算装置116へ伝送される。 The A / D conversion control device 115 creates flaw detection packet data by combining “INDEX” obtained through the synchronization signal generation device 113 and flaw detection data of 1 kHz, and generates the flaw detection packet data at a frequency of 1 kHz. It outputs to the arithmetic unit 116. The frequency of the flaw detection data is 1 kHz, but “INDEX” is updated (incremented by 1) at 60 Hz (16 ms period). Therefore, for example, as shown in FIG. 8, each of 16 pieces (= 1000 Hz / 60 Hz) of flaw detection data. Are combined with “INDEX” having the same value. As described above, flaw detection packet data obtained by combining “INDEX” and 1 kHz flaw detection data is transmitted from the A / D conversion control device 115 to the arithmetic device 116 at a frequency of 1 kHz (1 ms period).
 演算装置116には、図9に示すように、「INDEX」と位置データとが結合された位置パケットデータが60Hzの周波数(16ms周期)で入力され、「INDEX」と探傷データとが結合された探傷パケットデータが1kHzの周波数(1ms周期)で入力される。 As shown in FIG. 9, position packet data in which “INDEX” and position data are combined is input to arithmetic device 116 at a frequency of 60 Hz (16 ms period), and “INDEX” and flaw detection data are combined. Flaw detection packet data is input at a frequency of 1 kHz (1 ms period).
 演算装置116は、位置パケットデータ及び探傷パケットデータの「INDEX」の値に基づいて、位置データと探傷データとを結合する。基本的には、「INDEX」の値が同じ位置データと探傷データとを結合すればよいが、探傷パケットデータよりも位置パケットデータの方が遅れて演算装置116に伝送される。そこで、図10に示すように、例えば、「INDEX」の値が“200”の探傷データと、「INDEX」の値が“200+α”の位置データとを結合することが好ましい。上記の“α”の値は、予め位置パケットデータの遅延量を測定した結果に基づいて設定すればよい。 The arithmetic unit 116 combines the position data and the flaw detection data based on the “INDEX” value of the position packet data and the flaw detection packet data. Basically, it is only necessary to combine position data and flaw detection data having the same “INDEX” value, but the position packet data is transmitted to the arithmetic unit 116 later than the flaw detection packet data. Therefore, as shown in FIG. 10, for example, it is preferable to combine flaw detection data whose “INDEX” value is “200” and position data whose “INDEX” value is “200 + α”. The value of “α” may be set based on the result of measuring the delay amount of the position packet data in advance.
 上記のように、位置データと探傷データとが結合されて、例えば図11に示すようなデータパッケージP1~P16が16msの期間に得られたと仮定する。16msの期間に、同じ値の「INDEX」に結合された探傷データは16個存在するので(図8参照)、図11に示すように、位置データが同じデータパッケージも16msの期間に16個存在する。 As described above, it is assumed that the position data and the flaw detection data are combined and, for example, data packages P1 to P16 as shown in FIG. 11 are obtained in a period of 16 ms. Since there are 16 flaw detection data linked to the same value “INDEX” in the 16 ms period (see FIG. 8), as shown in FIG. 11, there are 16 data packages with the same position data in the 16 ms period. To do.
 演算装置116は、「INDEX」の更新期間、つまり16msの期間に鋼板200が移動した距離に応じて、16個のデータパッケージP1~P16を例えば4mmピッチのデータパッケージに変換する。以下では、16個のデータパッケージP1~P16を4mmピッチのデータパッケージに変換する手法について説明するが、必ずしも4mmピッチである必要はなく、要求される分解能に応じてピッチを設定すればよい。 The arithmetic unit 116 converts the 16 data packages P1 to P16 into, for example, a 4 mm pitch data package according to the distance that the steel plate 200 has moved during the update period of “INDEX”, that is, a period of 16 ms. In the following, a method for converting the 16 data packages P1 to P16 into a 4 mm pitch data package will be described. However, the pitch does not necessarily have to be 4 mm, and the pitch may be set according to the required resolution.
 (1)16msの期間に鋼板200が移動した距離が4で割り切れる場合
 図11に示すように、例えば16msの期間に鋼板200が32mm移動したと仮定する。この場合、32を4で割ると8が得られるので、16個のデータパッケージP1~P16を8個に分割することにより、4mmピッチのデータパッケージに変換することができる。
(1) When the distance traveled by the steel plate 200 in a period of 16 ms is divisible by 4 As shown in FIG. 11, for example, it is assumed that the steel plate 200 has moved 32 mm in a period of 16 ms. In this case, when 32 is divided by 4, 8 is obtained. Therefore, the 16 data packages P1 to P16 can be divided into 8 and converted into data packages having a pitch of 4 mm.
 具体的には、図12に示すように、演算装置116は、データパッケージP1とP2の探傷データの最大値を、位置100mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP3とP4の探傷データの最大値を、位置104mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP5とP6の探傷データの最大値を、位置108mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP7とP8の探傷データの最大値を、位置112mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP9とP10の探傷データの最大値を、位置116mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP11とP12の探傷データの最大値を、位置120mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP13とP14の探傷データの最大値を、位置124mmの探傷データとして設定する。
 さらに、演算装置116は、データパッケージP15とP16の探傷データの最大値を、位置128mmの探傷データとして設定する。
Specifically, as shown in FIG. 12, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7 and P8 as flaw detection data at the position 112 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P9 and P10 as flaw detection data at a position 116 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P11 and P12 as flaw detection data at a position of 120 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P13 and P14 as flaw detection data at a position of 124 mm.
Furthermore, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 128 mm.
 また、例えば、16msの期間に鋼板200が28mm移動したと仮定する。この場合、28を4で割ると7が得られるので、16個のデータパッケージP1~P16を7個に分割することにより、4mmピッチのデータパッケージに変換することができる。 Also, for example, it is assumed that the steel plate 200 has moved 28 mm in a period of 16 ms. In this case, when 28 is divided by 4, 7 is obtained. Therefore, by dividing the 16 data packages P1 to P16 into 7, the data package can be converted to a 4 mm pitch data package.
 具体的には、図13に示すように、演算装置116は、データパッケージP1とP2の探傷データの最大値を、位置100mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP3とP4の探傷データの最大値を、位置104mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP5とP6の探傷データの最大値を、位置108mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP7、P8及びP9の探傷データの最大値を、位置112mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP10とP11の探傷データの最大値を、位置116mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP12、P13及びP14の探傷データの最大値を、位置120mmの探傷データとして設定する。
 さらに、演算装置116は、データパッケージP15とP16の探傷データの最大値を、位置124mmの探傷データとして設定する。
Specifically, as shown in FIG. 13, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7, P8, and P9 as flaw detection data at the position 112 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P10 and P11 as flaw detection data at the position 116 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P12, P13, and P14 as flaw detection data at a position of 120 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 124 mm.
 (2)16msの期間に鋼板200が移動した距離を4で割った余りが3の場合
 例えば、16msの期間に鋼板200が31mm移動したと仮定する。この場合、31を4で割ると7が得られ、余りとして3が得られるので、16個のデータパッケージP1~P16を8個(=7+1)に分割することにより、4mmピッチのデータパッケージに変換することができる。
(2) When the remainder of dividing the distance traveled by the steel plate 200 in the 16 ms period by 3 is 3, for example, assume that the steel plate 200 has moved 31 mm in the 16 ms period. In this case, when 31 is divided by 4, 7 is obtained, and 3 is obtained as the remainder. Therefore, by dividing 16 data packages P1 to P16 into 8 (= 7 + 1), it is converted into a data package with a pitch of 4 mm. can do.
 具体的には、図14に示すように、演算装置116は、データパッケージP1とP2の探傷データの最大値を、位置100mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP3とP4の探傷データの最大値を、位置104mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP5とP6の探傷データの最大値を、位置108mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP7とP8の探傷データの最大値を、位置112mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP9とP10の探傷データの最大値を、位置116mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP11とP12の探傷データの最大値を、位置120mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP13とP14の探傷データの最大値を、位置124mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP15とP16の探傷データの最大値を、位置128mmの探傷データとして設定する。
 なお、この場合、演算装置116は、次の16ms期間の最初に得られるデータパッケージP1’の位置データを、131mmから132mmに変更する。
Specifically, as shown in FIG. 14, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7 and P8 as flaw detection data at the position 112 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P9 and P10 as flaw detection data at a position 116 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P11 and P12 as flaw detection data at a position of 120 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P13 and P14 as flaw detection data at a position of 124 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 128 mm.
In this case, the arithmetic unit 116 changes the position data of the data package P1 ′ obtained at the beginning of the next 16 ms period from 131 mm to 132 mm.
 (3)16msの期間に鋼板200が移動した距離を4で割った余りが1または2の場合
 例えば、16msの期間に鋼板200が29mm移動したと仮定する。この場合、29を4で割ると7が得られ、余りとして1が得られるので、16個のデータパッケージP1~P16を7個に分割することにより、4mmピッチのデータパッケージに変換することができる。
(3) When the remainder obtained by dividing the distance traveled by the steel plate 200 in the 16 ms period by 4 is 1 or 2. For example, assume that the steel plate 200 has moved 29 mm in the 16 ms period. In this case, when 29 is divided by 4, 7 is obtained, and 1 is obtained as the remainder. Therefore, by dividing the 16 data packages P1 to P16 into 7, the data package can be converted to a 4 mm pitch data package. .
 具体的には、図15に示すように、演算装置116は、データパッケージP1とP2の探傷データの最大値を、位置100mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP3とP4の探傷データの最大値を、位置104mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP5とP6の探傷データの最大値を、位置108mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP7、P8及びP9の探傷データの最大値を、位置112mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP10とP11の探傷データの最大値を、位置116mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP12、P13及びP14の探傷データの最大値を、位置120mmの探傷データとして設定する。
 また、演算装置116は、データパッケージP15とP16の探傷データの最大値を、位置124mmの探傷データとして設定する。
 なお、この場合、演算装置116は、次の16ms期間の最初に得られるデータパッケージP1’の位置データを、129mmから128mmに変更する。
Specifically, as shown in FIG. 15, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P1 and P2 as flaw detection data at a position of 100 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P3 and P4 as flaw detection data at a position of 104 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P5 and P6 as flaw detection data at a position of 108 mm.
Moreover, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P7, P8, and P9 as flaw detection data at the position 112 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P10 and P11 as flaw detection data at the position 116 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P12, P13, and P14 as flaw detection data at a position of 120 mm.
Further, the arithmetic unit 116 sets the maximum value of the flaw detection data of the data packages P15 and P16 as flaw detection data at a position of 124 mm.
In this case, the arithmetic unit 116 changes the position data of the data package P1 ′ obtained at the beginning of the next 16 ms period from 129 mm to 128 mm.
 演算装置116は、上記のような処理を実行することにより、4mmピッチの探傷データを、第1探触子列BTS1に含まれる各コイル、及び第2探触子列BTS2に含まれる各コイルのそれぞれについて取得する。
 演算装置116は、上記のように得られた各コイルの4mmピッチの探傷データを、横軸を鋼板長手方向の位置(X方向の位置)とし、縦軸を鋼板幅方向の位置(Y方向の位置)とする2次元座標系に展開することにより、図4に示すような欠陥マップを作成する。
The arithmetic device 116 performs the above-described processing, thereby obtaining flaw detection data with a pitch of 4 mm for each coil included in the first probe row BTS1 and each coil included in the second probe row BTS2. Get for each.
The arithmetic device 116 uses the 4 mm pitch flaw detection data of each coil obtained as described above, the horizontal axis as the position in the longitudinal direction of the steel sheet (position in the X direction), and the vertical axis as the position in the steel sheet width direction (in the Y direction). A defect map as shown in FIG. 4 is created by developing in a two-dimensional coordinate system as a position.
 以上が、信号処理装置110の基本的な動作(欠陥マップの作成動作)である。
 しかしながら、内部欠陥202が鋼板200の幅方向Yに延在し、幅方向Yに配置される複数の電磁超音波探触子102で検出される場合、内部欠陥202は、第1探触子列BTS1と第2探触子列BTS2とに跨って検出されることになる。
 このようなシステムにおいて、第1探触子列BTS1を通過する時の鋼板200の搬送速度(以下、第1通過速度と呼称する)と、第2探触子列BTS2を通過する時の鋼板200の搬送速度(以下、第2通過速度と呼称する)との間に速度差が存在する場合、第1探触子列BTS1で検出した内部欠陥202の位置データと、第2探触子列BTS2で検出した内部欠陥202の位置データとの間にズレが発生する。
The above is the basic operation (defect map creation operation) of the signal processing apparatus 110.
However, when the internal defect 202 extends in the width direction Y of the steel plate 200 and is detected by a plurality of electromagnetic ultrasonic probes 102 arranged in the width direction Y, the internal defect 202 is detected in the first probe row. It is detected across BTS1 and the second probe row BTS2.
In such a system, the conveying speed of the steel plate 200 when passing through the first probe row BTS1 (hereinafter referred to as the first passing velocity) and the steel plate 200 when passing through the second probe row BTS2 are as follows. When there is a speed difference between the first probe row BTS1 and the second probe row BTS2, when there is a speed difference between the first probe row BTS1 and the second probe row BTS2 There is a deviation from the position data of the internal defect 202 detected in (1).
 例えば図10を用いて説明したように、位置データと探傷データは、「INDEX」の値を基準として結合されるが、このような結合は第1探触子列BTS1と第2探触子列BTS2の両方について同様に行われる。従って、探傷データよりも位置データの方が遅れて演算装置116に伝送されたとしても、第1通過速度と第2通過速度が等しければ、位置データと探傷データの結合関係は第1探触子列BTS1と第2探触子列BTS2とで同じである。
 すなわち、第1通過速度と第2通過速度が等しい場合(鋼板200の搬送速度が一定の場合)、第1探触子列BTS1で検出した内部欠陥202の位置データと、第2探触子列BTS2で検出した内部欠陥202の位置データとの間にズレは生じない。
For example, as described with reference to FIG. 10, the position data and the flaw detection data are combined on the basis of the value of “INDEX”, and such connection is performed by using the first probe row BTS1 and the second probe row. The same is done for both BTS2. Therefore, even if the position data is transmitted to the arithmetic unit 116 later than the flaw detection data, if the first passage speed and the second passage speed are equal, the coupling relationship between the position data and the flaw detection data is the first probe. The same applies to the row BTS1 and the second probe row BTS2.
That is, when the first passage speed and the second passage speed are equal (when the conveyance speed of the steel plate 200 is constant), the position data of the internal defect 202 detected by the first probe row BTS1 and the second probe row There is no deviation from the position data of the internal defect 202 detected by the BTS2.
 一方、例えば、第2通過速度が第1通過速度より速い場合を想定する。この場合、第1探触子列BTS1で検出した内部欠陥202の探傷データに対して、例えば図10に示すような132mmの位置データが結合されたとしても、第2探触子列BTS2で検出した内部欠陥202の探傷データに対しては、132mmより大きな値の位置データが結合されることになる。
 すなわち、第1通過速度と第2通過速度との間に速度差が存在する場合(鋼板200の搬送速度が変動する場合)、第1探触子列BTS1で検出した内部欠陥202の位置データと、第2探触子列BTS2で検出した内部欠陥202の位置データとの間にズレが生じることになる。
On the other hand, for example, a case where the second passage speed is faster than the first passage speed is assumed. In this case, even if the position data of 132 mm as shown in FIG. 10 is combined with the flaw detection data of the internal defect 202 detected by the first probe row BTS1, it is detected by the second probe row BTS2. The position data having a value larger than 132 mm is combined with the flaw detection data of the internal defect 202.
That is, when there is a speed difference between the first passage speed and the second passage speed (when the conveyance speed of the steel plate 200 fluctuates), the position data of the internal defect 202 detected by the first probe row BTS1 and Therefore, there is a difference between the position data of the internal defects 202 detected by the second probe row BTS2.
 上記のように、第1通過速度と第2通過速度との間に速度差が存在する場合には、図4に示すような1つの内部欠陥202が、図16に示すように、鋼板200の搬送方向Xにズレが生じた内部欠陥202(202a、202b)として欠陥マップに現れる。この場合、内部欠陥202の正確な位置が把握できなくなり、また、内部欠陥202が複数に分断された状態で認識されるため、重欠陥であると判断されるべき内部欠陥202が、複数の小欠陥として判断されてしまう可能性がある。したがって、正確な内部欠陥202の評価が困難となる。 As described above, when there is a speed difference between the first passing speed and the second passing speed, one internal defect 202 as shown in FIG. Appears in the defect map as internal defects 202 (202a, 202b) that are displaced in the transport direction X. In this case, the accurate position of the internal defect 202 cannot be grasped, and the internal defect 202 is recognized in a state of being divided into a plurality of parts. It may be judged as a defect. Accordingly, accurate evaluation of the internal defect 202 becomes difficult.
 そこで、第1探触子列BTS1で検出した内部欠陥202の位置データと、第2探触子列BTS2で検出した内部欠陥202の位置データとの間にズレが生じていないか、また、このズレが許容値以下であるか否かを定期的に検査する必要がある。図17は、この検査のために用いる人工欠陥プレート300を示す。人工欠陥プレート300には、予め幅方向Yに沿って直線状に延在する内部欠陥(人工欠陥302)が設けられている。この人工欠陥プレート300を通板テーブル上に置き、実際に通板させることで、上記の検査を行う。具体的には、人工欠陥プレート300を通板させて、上述した処理によって欠陥マップを作成し、人工欠陥302と同様の、幅方向Yに直線状の内部欠陥が検出されれば、機器が正常であると判断できる。一方、作成した欠陥マップに示される人工欠陥302の形状が、図16に示す内部欠陥202の形状と同様に、搬送方向Xに分離している場合、第1探触子列BTS1で検出した人工欠陥302の位置データと、第2探触子列BTS2で検出した人工欠陥302の位置データとの間にズレが生じていると判断できる。従って、鋼板幅方向Yに直線状に形成され、かつ鋼板幅方向Yに位置する複数の電磁超音波探触子102に跨る長さの人工欠陥302を有する人工欠陥プレート300による探傷結果と、人工欠陥302の形状とを比較することで、内部欠陥202の位置が正確に検出されているか否かを確認することができる。 Therefore, whether there is a deviation between the position data of the internal defect 202 detected by the first probe row BTS1 and the position data of the internal defect 202 detected by the second probe row BTS2, It is necessary to periodically check whether the deviation is less than the allowable value. FIG. 17 shows an artificial defect plate 300 used for this inspection. The artificial defect plate 300 is provided with an internal defect (artificial defect 302) extending in a straight line along the width direction Y in advance. The above-described inspection is performed by placing the artificial defect plate 300 on a plate table and actually passing the plate. Specifically, the artificial defect plate 300 is passed, a defect map is created by the above-described process, and if a linear internal defect is detected in the width direction Y, similar to the artificial defect 302, the device is normal. It can be judged that. On the other hand, when the shape of the artificial defect 302 shown in the created defect map is separated in the transport direction X, similarly to the shape of the internal defect 202 shown in FIG. 16, the artificial defect detected by the first probe row BTS1. It can be determined that there is a gap between the position data of the defect 302 and the position data of the artificial defect 302 detected by the second probe row BTS2. Therefore, the flaw detection result by the artificial defect plate 300 having the artificial defect 302 having a length straddling the plurality of electromagnetic ultrasonic probes 102 formed linearly in the steel plate width direction Y and positioned in the steel plate width direction Y, and the artificial By comparing with the shape of the defect 302, it can be confirmed whether or not the position of the internal defect 202 is accurately detected.
 しかしながら、この人工欠陥プレート300を用いる方法では、操業中に上記の検査を行うことができないため、操業を中断するとともに人工欠陥プレート300をクレーンで通板テーブル上に運ぶ必要がある。このため、多大な時間と手間を要するという問題がある。 However, in the method using the artificial defect plate 300, since the above inspection cannot be performed during operation, it is necessary to interrupt the operation and to carry the artificial defect plate 300 onto the passing plate table with a crane. For this reason, there is a problem that it takes a lot of time and labor.
 (本実施形態の構成例)
 以上により、本実施形態では、人工欠陥プレート300を用いる代わりに、図18に示すように、鋼板200よりも導電率が高く、鋼板200に付着(接着)する導体テープ400を、鋼板200の表面200aに貼り付ける。導体テープ400は、例えば、アルミニウム製であり0.1mm程度の厚さを有する。なお、上述したように、電磁超音波探触子102の底面と鋼板200の表面200aとの距離は0.5mm程度であるため、導体テープ400の厚さは0.5mm以下であることが好ましい。また、電磁超音波探触子102と導体テープ400とが干渉する場合を考慮し、導体テープ400の上からガムテープ等で表面200aに貼り付けることが好ましい。
(Configuration example of this embodiment)
As described above, in this embodiment, instead of using the artificial defect plate 300, as shown in FIG. 18, the conductive tape 400 that has higher conductivity than the steel plate 200 and adheres (adheres) to the steel plate 200 is attached to the surface of the steel plate 200. Paste to 200a. The conductive tape 400 is made of, for example, aluminum and has a thickness of about 0.1 mm. As described above, since the distance between the bottom surface of the electromagnetic ultrasonic probe 102 and the surface 200a of the steel plate 200 is about 0.5 mm, the thickness of the conductor tape 400 is preferably 0.5 mm or less. . In consideration of the case where the electromagnetic ultrasonic probe 102 and the conductor tape 400 interfere with each other, it is preferable that the surface of the conductor tape 400 is pasted on the surface 200a with a gum tape or the like.
 上述のように、導体テープ400は、鋼板200の表面200aに、鋼板200の幅方向Yに沿って延在するように貼り付けられる(図18参照)。すなわち、この導体テープ400は、電磁超音波探触子102の列方向に沿って貼り付けられることになる。このとき、表面200aに貼りつけられる導体テープ400の長さ(Y方向における長さ)は、1つの電磁超音波探触子102の探傷幅(幅方向Yにおける電磁超音波探触子102の長さ)よりも大きい。換言すれば、導体テープ400は、鋼板200の幅方向Yにおいて、複数の電磁超音波探触子102に跨る長さで貼りつけられる。上述のように、第1探触子列BTS1と第2探触子列BTS2とで、電磁超音波探触子102が、鋼板200の幅方向Yで異なる位置に配置されているため、導体テープ400を鋼板幅方向Yで複数の電磁超音波探触子102に跨る長さで貼りつけることにより、第1探触子列BTS1と第2探触子列BTS2との間の位置データのズレを検出することができる。したがって、例えば、幅方向Yにおける電磁超音波探触子102の長さが100mmである場合には、導体テープ400の長さは少なくとも200mm程度であることが好ましい。 As described above, the conductor tape 400 is attached to the surface 200a of the steel plate 200 so as to extend along the width direction Y of the steel plate 200 (see FIG. 18). That is, the conductor tape 400 is affixed along the row direction of the electromagnetic ultrasonic probe 102. At this time, the length (the length in the Y direction) of the conductor tape 400 attached to the surface 200a is the flaw detection width of one electromagnetic ultrasonic probe 102 (the length of the electromagnetic ultrasonic probe 102 in the width direction Y). Is larger than In other words, the conductor tape 400 is affixed with a length straddling the plurality of electromagnetic ultrasonic probes 102 in the width direction Y of the steel plate 200. As described above, since the electromagnetic ultrasonic probes 102 are arranged at different positions in the width direction Y of the steel plate 200 in the first probe row BTS1 and the second probe row BTS2, the conductor tape By pasting 400 with a length across the plurality of electromagnetic ultrasonic probes 102 in the steel sheet width direction Y, the positional data shift between the first probe row BTS1 and the second probe row BTS2 is shifted. Can be detected. Therefore, for example, when the length of the electromagnetic ultrasonic probe 102 in the width direction Y is 100 mm, the length of the conductor tape 400 is preferably at least about 200 mm.
 導体テープ400の幅(図18のX方向の長さ)は、検出対象である実際の内部欠陥202の幅以上とし、例えば、10~20mm程度である。また、導体テープ400の材料は、上述したように、内部探傷の対象である鋼板200の材料よりも大きな導電率を有するものとする。例えば、鉄の鋼板200を内部探傷する場合、導体テープ400の材料としては、鉄よりも大きな導電率を有するアルミニウム、銅などを用いる。 The width of the conductor tape 400 (the length in the X direction in FIG. 18) is not less than the width of the actual internal defect 202 to be detected, and is, for example, about 10 to 20 mm. In addition, as described above, the material of the conductor tape 400 has a higher conductivity than the material of the steel plate 200 that is the target of internal flaw detection. For example, when flaw detection is performed on an iron steel plate 200, the material of the conductor tape 400 is aluminum, copper, or the like having a higher conductivity than iron.
 このような導体テープ400を、鋼板200の表面200aに貼り付けると、導体テープ400を貼り付けた部分は超音波が減衰するため、Bエコーの値が減衰する。これにより、F/B比の値に基づいて探傷を行うと、導体テープ400が貼り付けられた位置では、内部欠陥202が生じている場合と同様の探傷信号が得られるため、導体テープ400が疑似欠陥として認識される。従って、人工欠陥プレート300を用いた場合のように、電磁超音波探傷装置100の検査のために操業を中止する必要がなく、また、電磁超音波探傷装置100の検査のために人工欠陥プレート300を通板テーブル上に搬入する必要がない。つまり、操業中の鋼板200に、導体テープ400を貼り付けるだけで、探傷結果に位置ズレが生じているか否かを容易に検査することができる。したがって、人工欠陥プレート300を用いた場合には数時間程度の作業が必要になるが、本実施形態の導体テープ400を用いた場合には数分程度の作業で位置ずれの検査をすることができる。さらに、人工欠陥プレート300を導体テープ400で代用できるため、人工欠陥プレート300を作製する必要がなくなり、コスト低減を図ることができる。 When such a conductor tape 400 is affixed to the surface 200a of the steel plate 200, the ultrasonic wave is attenuated at the portion where the conductor tape 400 is affixed, so the value of the B echo is attenuated. Thus, when flaw detection is performed based on the value of the F / B ratio, a flaw detection signal similar to the case where the internal defect 202 is generated is obtained at the position where the conductive tape 400 is affixed. It is recognized as a pseudo defect. Therefore, unlike the case where the artificial defect plate 300 is used, there is no need to stop the operation for the inspection of the electromagnetic ultrasonic flaw detector 100, and the artificial defect plate 300 for the inspection of the electromagnetic ultrasonic flaw detector 100. There is no need to carry it through the plate table. That is, it is possible to easily inspect whether or not a positional deviation has occurred in the flaw detection result by simply attaching the conductive tape 400 to the steel plate 200 in operation. Therefore, when the artificial defect plate 300 is used, an operation of about several hours is required. However, when the conductive tape 400 of the present embodiment is used, the positional deviation can be inspected with an operation of about several minutes. it can. Furthermore, since the artificial defect plate 300 can be substituted by the conductor tape 400, it is not necessary to produce the artificial defect plate 300, and the cost can be reduced.
 次に、図19および図20に基づいて、導体テープ400を貼り付けることによって超音波が減衰する原理について説明する。図19は、電磁超音波探触子102と鋼板200が近接する領域を詳細に示す模式図であって、導体テープ400が貼り付けられていない状態を示している。図19に示すように、電磁超音波探触子102には、永久磁石102aとコイル102bとが設けられている。なお、図19は、1つの永久磁石102aと1つのコイル102bとを示しているが、1つの電磁超音波探触子102には複数の永久磁石102aと複数のコイル102bが設けられる。複数のコイル102bは、同期をとって超音波の送受信を同時に行っている。複数の永久磁石102aは、複数のコイル102bのそれぞれに対応して設けられる。 Next, based on FIG. 19 and FIG. 20, the principle of ultrasonic wave attenuation by applying the conductive tape 400 will be described. FIG. 19 is a schematic diagram showing in detail a region where the electromagnetic ultrasonic probe 102 and the steel plate 200 are close to each other, and shows a state where the conductor tape 400 is not attached. As shown in FIG. 19, the electromagnetic ultrasonic probe 102 is provided with a permanent magnet 102a and a coil 102b. FIG. 19 shows one permanent magnet 102a and one coil 102b, but one electromagnetic ultrasonic probe 102 is provided with a plurality of permanent magnets 102a and a plurality of coils 102b. The plurality of coils 102b transmit and receive ultrasonic waves simultaneously in synchronization. The plurality of permanent magnets 102a are provided corresponding to each of the plurality of coils 102b.
 電磁超音波探触子102内のコイル102bに高周波電流(高周波信号)を流すことにより、鋼板200の表面200aに高周波で変動する磁場M1が発生する。このとき、鋼板200の表面200aには、この磁場M1を打ち消す方向に誘導電流I1が発生する。そして、永久磁石102aによる静磁場M2内の導体(鋼板200)に誘導電流I1が流れることにより、ローレンツ力Fが発生する。このローレンツ力Fは、コイル102bに流す高周波電流に同期して変動する。このローレンツ力Fにより、鋼板200の表面200aが振動し、超音波600が発生する。 By applying a high-frequency current (high-frequency signal) to the coil 102b in the electromagnetic ultrasonic probe 102, a magnetic field M1 that fluctuates at a high frequency is generated on the surface 200a of the steel plate 200. At this time, an induced current I1 is generated on the surface 200a of the steel plate 200 in a direction to cancel the magnetic field M1. And the Lorentz force F generate | occur | produces when the induced current I1 flows into the conductor (steel plate 200) in the static magnetic field M2 by the permanent magnet 102a. This Lorentz force F fluctuates in synchronization with the high-frequency current flowing through the coil 102b. Due to the Lorentz force F, the surface 200a of the steel plate 200 vibrates and an ultrasonic wave 600 is generated.
 図20は、鋼板200の表面200aに導体テープ400を貼り付けた場合を示しており、図19中に一点鎖線で示す領域Rに対応する範囲を示している。この場合、導体テープ400の導電率は鋼板200の導電率よりも大きいため、コイル102bに高周波電流を流すと、導体テープ400には、表面200aに発生する誘導電流I1よりも大きな誘導電流I2が発生する。この導体テープ400に誘導された誘導電流I2は、表面200aに磁場M3を発生させ、この磁場M3を打ち消す方向に誘導電流I3が表面200aに発生する。これにより、コイル102bによって表面200aに発生した磁場M1を打ち消す方向に誘導された誘導電流I1は、誘導電流I3を打ち消す方向に流れる。この結果、表面200aに流れる誘導電流I4は、全体として図19の誘導電流I1よりも小さくなり、誘導電流I4によって発生するローレンツ力Fは、図19の誘導電流I1によって発生するローレンツ力Fよりも小さくなる。従って、図19及び図20に示すように、表面200aに導体テープ400を貼り付けた場合は、表面200aに導体テープ400を貼り付けない場合と比べて、鋼板200に発生する超音波600が減衰する。以上により、導体テープ400を貼り付けた部分は、超音波600が減衰し、導体テープ400を貼り付けていない領域と比べてBエコーが小さくなるため、導体テープ400は疑似的な内部欠陥(疑似欠陥)として認識される。 FIG. 20 shows a case where the conductor tape 400 is affixed to the surface 200a of the steel plate 200, and shows a range corresponding to a region R indicated by a one-dot chain line in FIG. In this case, since the conductivity of the conductor tape 400 is larger than the conductivity of the steel plate 200, when a high frequency current is passed through the coil 102b, the conductor tape 400 has an induced current I2 larger than the induced current I1 generated on the surface 200a. appear. The induced current I2 induced in the conductor tape 400 generates a magnetic field M3 on the surface 200a, and an induced current I3 is generated on the surface 200a in a direction to cancel the magnetic field M3. Thereby, the induced current I1 induced in the direction to cancel the magnetic field M1 generated on the surface 200a by the coil 102b flows in the direction to cancel the induced current I3. As a result, the induced current I4 flowing through the surface 200a is generally smaller than the induced current I1 in FIG. 19, and the Lorentz force F generated by the induced current I4 is larger than the Lorentz force F generated by the induced current I1 in FIG. Get smaller. Accordingly, as shown in FIGS. 19 and 20, when the conductive tape 400 is applied to the surface 200a, the ultrasonic wave 600 generated in the steel plate 200 is attenuated compared to the case where the conductive tape 400 is not applied to the surface 200a. To do. As described above, since the ultrasonic wave 600 is attenuated in the portion where the conductor tape 400 is affixed, and the B echo is smaller than that in the region where the conductor tape 400 is not affixed, the conductor tape 400 has a pseudo internal defect (a pseudo-fault). Recognized as a defect).
 [導体テープの材質について]
 次に、鋼板200以外の材質のプレートを通板テーブル上に載置し、このプレートを搬送する場合に、プレートの材質と導体テープ400の材質の適用例について説明する。上述したように、導体テープ400は、内部探傷の対象である鋼板200の材料よりも大きな導電率を有する。換言すれば、導体テープ400は、内部探傷の対象である鋼板200の材料よりも小さい抵抗率を有する。ここで、例えば、鋼板200(鉄)の導電率は9.9×10S(ジーメンス)/mであり、導体テープ400(アルミニウム)の導電率は37.4×10S/mである。この場合、導体テープ400を貼り付けた箇所では、導体テープ400を貼り付けていない箇所に比べて、10dB程度のBエコーの減衰が生じる。この減衰量は、鋼板200の表面200aに、JIS G 0801相当の基準で重欠陥レベルの内部欠陥が生じている場合に相当する。従って、鉄の鋼板200にアルミニウムの導体テープ400を貼り付けることにより、重欠陥レベルの疑似欠陥を生じさせることができる。
[Conductor tape material]
Next, an application example of the material of the plate and the material of the conductor tape 400 will be described when a plate made of a material other than the steel plate 200 is placed on the plate table and conveyed. As described above, the conductor tape 400 has a higher electrical conductivity than the material of the steel plate 200 that is the subject of internal flaw detection. In other words, the conductive tape 400 has a resistivity lower than that of the material of the steel plate 200 that is an object of internal flaw detection. Here, for example, the electrical conductivity of the steel plate 200 (iron) is 9.9 × 10 6 S (Siemens) / m, and the electrical conductivity of the conductive tape 400 (aluminum) is 37.4 × 10 6 S / m. . In this case, the B echo attenuation of about 10 dB occurs at the location where the conductive tape 400 is affixed, compared to the location where the conductive tape 400 is not affixed. This attenuation amount corresponds to a case where an internal defect having a heavy defect level is generated on the surface 200a of the steel plate 200 on the basis of JIS G 0801. Therefore, by attaching the aluminum conductor tape 400 to the iron steel plate 200, pseudo defects of a heavy defect level can be generated.
 内部探傷の対象物(検査対象物)が鉄の場合、導体テープ400として、アルミニウムよりも更に導電率の高い銅(Cu:導電率:59.0×10S/m)を用いることもできる。この場合、導体テープ400としてアルミニウムを用いた場合と比べて、超音波の減衰量を大きくすることができるため、より欠陥レベルの大きな疑似欠陥を生じさせることができる。 When the object (inspection object) of internal flaw detection is iron, copper (Cu: conductivity: 59.0 × 10 6 S / m) having higher conductivity than aluminum can be used as the conductor tape 400. . In this case, since the attenuation amount of the ultrasonic wave can be increased as compared with the case where aluminum is used as the conductor tape 400, a pseudo defect having a higher defect level can be generated.
 更に、すず(Sn:導電率:7.9×10S/m)、金(Au:導電率:45.5×10S/m)、銀(Ag:導電率:61.4×10S/m)などの材料も、内部探傷の対象物の材質に応じて適宜選択することができ、導体テープ400の材料として好適に用いることができる。いずれの場合も、内部探傷の対象物の導電率よりも大きい導電率を有する材料を導体テープ400として選択する。なお、導体テープ400の導電率が、内部探傷の対象物の導電率に対して2倍程度であれば、JIS G 0801相当の基準で中欠陥~重欠陥レベルの疑似欠陥を生じさせることができる。したがって、導体テープ400の導電率は、内部探傷の対象物の導電率よりも2倍以上であることが好ましい。また、内部探傷の対象物が鉄の場合、導電率およびコスト等を考慮し、導体テープ400の材料はアルミニウムであることが好ましい。 Furthermore, tin (Sn: conductivity: 7.9 × 10 6 S / m), gold (Au: conductivity: 45.5 × 10 6 S / m), silver (Ag: conductivity: 61.4 × 10) The material such as 6 S / m) can be appropriately selected according to the material of the object for internal flaw detection, and can be suitably used as the material for the conductor tape 400. In either case, a material having a conductivity larger than that of the object for internal flaw detection is selected as the conductor tape 400. If the electrical conductivity of the conductor tape 400 is about twice the electrical conductivity of the object for internal flaw detection, it is possible to generate a pseudo defect with a medium to heavy defect level on the basis of JIS G 0801. . Therefore, it is preferable that the electrical conductivity of the conductor tape 400 is twice or more than the electrical conductivity of the object for internal flaw detection. Moreover, when the object of internal flaw detection is iron, it is preferable that the material of the conductor tape 400 is aluminum in consideration of conductivity and cost.
 また、本実施形態では、欠陥検査の対象物として鋼板200(鉄)を用いた場合を例示した。しかしながら、他の金属、またはアルミニウムなどの非鉄金属を内部探傷の対象物とする場合においても、この対象物より導電率の高い導体テープ400を使用することにより、疑似欠陥を生じさせることができる。 Moreover, in this embodiment, the case where the steel plate 200 (iron) was used as the object of defect inspection was illustrated. However, even when another metal or a non-ferrous metal such as aluminum is an object for internal flaw detection, pseudo defects can be generated by using the conductive tape 400 having a higher conductivity than the object.
 [欠陥マップの補正方法]
 本実施形態では、導体テープ400を鋼板200に貼りつけた状態で通板を行い、図16に示すような欠陥マップが得られた場合に、欠陥マップを補正する。導体テープ400を鋼板200に貼り付けた状態で内部探傷を行うと、導体テープ400は直線状であるため、本来は直線状の内部欠陥202が欠陥マップ上に現れる。しかしながら、導体テープ400を貼り付けた状態で内部探傷を行って、図16に示すような欠陥マップが得られた場合は、第1探触子列BTS1で検出された導体テープ400による疑似欠陥の位置データと、第2探触子列BTS2で検出された導体テープ400による疑似欠陥の位置データとの間にズレが生じていることになる。例えば、導体テープ400を貼り付けた状態で内部探傷を行い、図16に示すような欠陥マップが得られた場合、内部欠陥202aが第1探触子列BTS1で検出され、内部欠陥202bが第2探触子列BTS2で検出されており、内部欠陥202aの位置データと内部欠陥202bの位置データとの間にズレが生じていることになる。
[Defect map correction method]
In the present embodiment, when the conductive tape 400 is pasted on the steel plate 200 and the sheet is passed through and a defect map as shown in FIG. 16 is obtained, the defect map is corrected. When the internal flaw detection is performed with the conductor tape 400 attached to the steel plate 200, the conductor tape 400 is linear, and thus the linear internal defect 202 appears on the defect map. However, when an internal flaw detection is performed with the conductor tape 400 attached, and a defect map as shown in FIG. 16 is obtained, the pseudo defects due to the conductor tape 400 detected in the first probe row BTS1 are detected. There is a deviation between the position data and the position data of the pseudo defect due to the conductor tape 400 detected by the second probe row BTS2. For example, when the internal flaw detection is performed with the conductor tape 400 attached and a defect map as shown in FIG. 16 is obtained, the internal defect 202a is detected by the first probe row BTS1, and the internal defect 202b is the first defect. This is detected by the two probe rows BTS2, and there is a deviation between the position data of the internal defect 202a and the position data of the internal defect 202b.
 このため、本実施形態では、導体テープ400を貼り付けた鋼板200を探傷し、図16に示すような欠陥マップが得られた場合は、第1探触子列BTS1で検出される内部欠陥の位置データと、第2探触子列BTS2で検出される内部欠陥の位置データとを一致させる処理を行う。 For this reason, in this embodiment, when the steel plate 200 to which the conductive tape 400 is attached is flawed and a defect map as shown in FIG. 16 is obtained, internal defects detected by the first probe row BTS1 are detected. A process of matching the position data with the position data of the internal defect detected by the second probe row BTS2 is performed.
 図21に示すように、演算装置116は、第1探触子列BTS1で検出される内部欠陥の位置データと、第2探触子列BTS2で検出される内部欠陥の位置データとを一致させるために、位置情報取得部116a、差分取得部116b、補正実行部116c及び補正値記録部116dを備えている。
 導体テープ400が貼り付けられた鋼板200の探傷検査を行い、図16に示すような欠陥マップが得られた場合は、上述のように、第1探触子列BTS1で検出された導体テープ400による疑似欠陥の位置データと、第2探触子列BTS2で検出された導体テープ400による疑似欠陥の位置データとの間にズレが生じていることになる。
 この場合、演算装置116の位置情報取得部116aは、第1探触子列BTS1で検出された導体テープ400による疑似欠陥の位置データと、第2探触子列BTS2で検出された導体テープ400による疑似欠陥の位置データとを取得する。
 差分取得部116bは、第1探触子列BTS1で検出された導体テープ400による疑似欠陥の位置データと、第2探触子列BTS2で検出された導体テープ400による疑似欠陥の位置データとの差分を取得する。
 補正実行部116cは、上記の差分に基づいて、第1探触子列BTS1で検出される内部欠陥202の位置データと、第2探触子列BTS2で検出される内部欠陥202の位置データとが一致するように、内部欠陥202の位置データの補正を行う。
 補正値記録部116dは、上記の差分の値、及び上記の差分による補正アルゴリズムを格納する。
 これにより、上記の差分が検出された以降の内部探傷においては、第1探触子列BTS1で検出される内部欠陥202の位置データと、第2探触子列BTS2で検出される内部欠陥202の位置データとが一致することになる。その結果、図16に示すような欠陥マップが作成されてしまうことを確実に抑止できる。
As shown in FIG. 21, the arithmetic unit 116 matches the position data of the internal defects detected in the first probe row BTS1 with the position data of the internal defects detected in the second probe row BTS2. Therefore, a position information acquisition unit 116a, a difference acquisition unit 116b, a correction execution unit 116c, and a correction value recording unit 116d are provided.
When a flaw detection inspection is performed on the steel plate 200 to which the conductor tape 400 is attached and a defect map as shown in FIG. 16 is obtained, the conductor tape 400 detected by the first probe row BTS1 as described above. This means that there is a deviation between the position data of the pseudo defect due to the above and the position data of the pseudo defect due to the conductor tape 400 detected by the second probe row BTS2.
In this case, the position information acquisition unit 116a of the arithmetic device 116 includes the position data of the pseudo defect by the conductor tape 400 detected by the first probe row BTS1 and the conductor tape 400 detected by the second probe row BTS2. To obtain the position data of the pseudo defect.
The difference acquisition unit 116b includes the position data of the pseudo defects by the conductor tape 400 detected by the first probe row BTS1 and the position data of the pseudo defects by the conductor tape 400 detected by the second probe row BTS2. Get the difference.
Based on the above difference, the correction execution unit 116c determines the position data of the internal defect 202 detected by the first probe row BTS1, and the position data of the internal defect 202 detected by the second probe row BTS2. The position data of the internal defect 202 is corrected so as to match.
The correction value recording unit 116d stores the difference value and the correction algorithm based on the difference.
Thereby, in the internal flaw detection after the difference is detected, the position data of the internal defect 202 detected by the first probe row BTS1 and the internal defect 202 detected by the second probe row BTS2. Will coincide with the position data. As a result, the creation of a defect map as shown in FIG. 16 can be reliably prevented.
 なお、図18では、導体テープ400は、鋼板200の幅方向Yの一部に貼り付けられているが、導体テープ400を貼り付けた際に第1探触子列BTS1と第2探触子列BTS2とで検出される位置データの差分(誤差)は、鋼板200の幅方向Yの全域で生じると考えられる。従って、差分が検出された場合には、鋼板200の幅方向Yの全域で位置データを補正する。これにより、鋼板200の幅方向の全域で位置データの誤差を解消することができる。 In FIG. 18, the conductor tape 400 is affixed to a part of the steel plate 200 in the width direction Y, but when the conductor tape 400 is affixed, the first probe row BTS1 and the second probe. It is considered that the difference (error) between the position data detected in the row BTS2 occurs in the entire area in the width direction Y of the steel plate 200. Therefore, when the difference is detected, the position data is corrected in the entire width direction Y of the steel plate 200. Thereby, the error of position data can be eliminated in the whole area of the steel plate 200 in the width direction.
 図22は、欠陥マップの作成アルゴリズムを補正する方法を示すフローチャートである。先ず、ステップS10では、導体テープ400を貼りつけた鋼板200を探傷する。ここで、導体テープ400が第1探触子列BTS1を通過する時の搬送速度(つまり第1通過速度)と、導体テープ400が第2探触子列BTS2を通過する時の搬送速度(つまり第2通過速度)とが変化するように、鋼板200の加減速を行う。これにより、第1通過速度と第2通過速度との間に速度差が生じる。次のステップS11では、探傷結果から、導体テープ400による疑似欠陥の位置データを取得する。なお、第1通過速度と第2通過速度との間の速度差は、例えば、第1通過速度の10%以上であることが望ましい。例えば第1通過速度が100mm/sである場合、第2通過速度は90mm/s以下または110mm/s以上であることが望ましい。 FIG. 22 is a flowchart showing a method of correcting the defect map creation algorithm. First, in step S10, the steel plate 200 to which the conductive tape 400 is attached is inspected. Here, the conveyance speed when the conductor tape 400 passes the first probe row BTS1 (that is, the first passage speed) and the conveyance speed when the conductor tape 400 passes the second probe row BTS2 (that is, the first probe row BTS2). The steel plate 200 is accelerated and decelerated so that the (second passing speed) changes. Thereby, a speed difference arises between the 1st passage speed and the 2nd passage speed. In the next step S11, the position data of the pseudo defect due to the conductor tape 400 is acquired from the flaw detection result. In addition, as for the speed difference between 1st passage speed and 2nd passage speed, it is desirable that it is 10% or more of 1st passage speed, for example. For example, when the first passing speed is 100 mm / s, the second passing speed is desirably 90 mm / s or less or 110 mm / s or more.
 次のステップS12では、第1探触子列BTS1と第2探触子列BTS2とで疑似欠陥の位置データに差分があるか否かを判定する。そして、疑似欠陥の位置データに差分がある場合は、ステップS13へ進み、差分に基づいて欠陥マップの作成アルゴリズムを補正する。一方、ステップS12で差分が生じていない場合は、ステップS12からステップS14へ進む。 In the next step S12, it is determined whether or not there is a difference in the position data of the pseudo defect between the first probe row BTS1 and the second probe row BTS2. If there is a difference in the position data of the pseudo defect, the process proceeds to step S13, and the defect map creation algorithm is corrected based on the difference. On the other hand, if there is no difference in step S12, the process proceeds from step S12 to step S14.
 ステップS14では、導体テープ400を貼り付けていない鋼板200を探傷する。次のステップS15では、内部欠陥202を検出し、その位置データを取得する。次のステップS16では、欠陥マップの作成アルゴリズムにより、欠陥マップを作成する。ここでは、探傷データと位置データとに基づいて、図4に示すような欠陥マップを作成する。 In step S14, the steel plate 200 to which the conductor tape 400 is not attached is inspected. In the next step S15, the internal defect 202 is detected and its position data is acquired. In the next step S16, a defect map is created by a defect map creation algorithm. Here, a defect map as shown in FIG. 4 is created based on the flaw detection data and the position data.
 また、ステップS13で作成アルゴリズムが補正された場合、ステップS16では、補正されたアルゴリズムで欠陥マップを作成する。具体的には、第1探触子列BTS1が検出する内部欠陥202の位置データと、第1探触子列BTS2が検出する内部欠陥202の位置データとをステップS12で検出した差分により補正し、第1探触子列BTS1及び第2探触子列BTS2が検出する内部欠陥202の位置データを一致させて欠陥マップを作成する。 If the creation algorithm is corrected in step S13, a defect map is created in step S16 using the corrected algorithm. Specifically, the position data of the internal defect 202 detected by the first probe row BTS1 and the position data of the internal defect 202 detected by the first probe row BTS2 are corrected by the difference detected in step S12. The defect map is created by matching the position data of the internal defect 202 detected by the first probe row BTS1 and the second probe row BTS2.
 以上説明したように、本実施形態によれば、導体テープ400を貼り付けて疑似欠陥を生じさせ、この疑似欠陥を探傷した結果に基づいて、内部欠陥202の位置データを補正することができる。従って、鋼板搬送方向Xで同じ位置に存在する内部欠陥202が、搬送方向Xで異なる位置にある内部欠陥202として認識されることがなく、内部欠陥202の探傷をより高精度に行うことができる。 As described above, according to the present embodiment, it is possible to correct the position data of the internal defect 202 based on the result of detecting the pseudo defect by attaching the conductive tape 400 to generate the pseudo defect. Therefore, the internal defect 202 existing at the same position in the steel plate conveyance direction X is not recognized as the internal defect 202 at a different position in the conveyance direction X, and the internal defect 202 can be detected with higher accuracy. .
 これにより、鋼板200に導体テープ400を貼りつける作業は、操業中の小休止の時間(数分程度)でも可能であるため、人工欠陥プレート300を用いた通板を行う必要もなくなる。従って、人工欠陥プレート300を用いた場合に発生していた操業休止時間、クレーン等による準備時間を削減することができる。また、人工欠陥プレート300を準備する必要がないため、人工欠陥プレート300に関わるコストを削減することもできる。 Thus, since the work of attaching the conductive tape 400 to the steel plate 200 can be performed during a short pause (about several minutes) during operation, it is not necessary to perform plate passing using the artificial defect plate 300. Therefore, it is possible to reduce the operation stop time and the preparation time by the crane or the like that have occurred when the artificial defect plate 300 is used. Moreover, since it is not necessary to prepare the artificial defect plate 300, the cost related to the artificial defect plate 300 can be reduced.
 なお、上記実施形態では、図23に示すように、導体テープ400を、鋼板200の幅方向(Y方向)と平行となるように鋼板200に貼り付ける場合を例示した。この場合、図23に示すように、導体テープ400が、第1探触子列BTS1と第2探触子列BTS2との間を通過する時に、第1通過速度と第2通過速度との間に速度差が生じるように鋼板200の加減速を行うことで、第1探触子列BTS1と第2探触子列BTS2との間の位置データのズレを確認する必要がある。第1探触子列BTS1と第2探触子列BTS2との間隔は、0.5m~1.5mであるので、上記のような試運転(鋼板200の加減速)を目視で行うことはオペレータにとって負担である。 In addition, in the said embodiment, as shown in FIG. 23, the case where the conductor tape 400 was affixed on the steel plate 200 so that it might become parallel to the width direction (Y direction) of the steel plate 200 was illustrated. In this case, as shown in FIG. 23, when the conductor tape 400 passes between the first probe row BTS1 and the second probe row BTS2, it is between the first passage speed and the second passage speed. It is necessary to confirm the displacement of the position data between the first probe row BTS1 and the second probe row BTS2 by performing acceleration / deceleration of the steel plate 200 so that a speed difference is generated. Since the distance between the first probe row BTS1 and the second probe row BTS2 is 0.5 m to 1.5 m, it is necessary for the operator to visually perform the above-described test operation (acceleration / deceleration of the steel plate 200). It is a burden for me.
 そこで、図24に示すように、導体テープ400を、鋼板200の幅方向(Y方向)に対して傾斜するように鋼板200に貼り付けてもよい。これにより、導体テープ400が、第1探触子列BTS1と第2探触子列BTS2とに重なっていれば、どの区間で鋼板200の加減速を行っても、第1探触子列BTS1と第2探触子列BTS2との間の位置データのズレを確認することができる。従って、導体テープ400を、鋼板200の幅方向に対して傾斜するように鋼板200に貼り付けることにより、試運転時(鋼板200の加減速時)におけるオペレータの負担を軽減できる。 Therefore, as shown in FIG. 24, the conductor tape 400 may be attached to the steel plate 200 so as to be inclined with respect to the width direction (Y direction) of the steel plate 200. As a result, as long as the conductor tape 400 overlaps the first probe row BTS1 and the second probe row BTS2, the first probe row BTS1 no matter which section the steel plate 200 is accelerated or decelerated. Of the position data between the first probe row BTS2 and the second probe row BTS2. Therefore, by attaching the conductive tape 400 to the steel plate 200 so as to be inclined with respect to the width direction of the steel plate 200, the burden on the operator during the trial operation (during acceleration / deceleration of the steel plate 200) can be reduced.
 導体テープ400の傾斜角θ(図24参照)は、0°から60°の範囲に設定することが望ましい。図25Aは、導体テープ400の傾斜角θが0°の場合に、鋼板200の加減速を行った時に得られる導体テープ400の欠陥評価結果(欠陥マップに現れる導体テープ400に相当する疑似欠陥)を模式的に示す図である。図25Bは、導体テープ400の傾斜角θが45°の場合に、鋼板200の加減速を行った時に得られる導体テープ400の欠陥評価結果を模式的に示す図である。図25Cは、導体テープ400の傾斜角θが70°の場合に、鋼板200の加減速を行った時に得られる導体テープ400の欠陥評価結果を模式的に示す図である。 The inclination angle θ (see FIG. 24) of the conductor tape 400 is preferably set in the range of 0 ° to 60 °. FIG. 25A shows a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle θ of the conductor tape 400 is 0 ° (a pseudo defect corresponding to the conductor tape 400 appearing in the defect map). FIG. FIG. 25B is a diagram schematically showing a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle θ of the conductor tape 400 is 45 °. FIG. 25C is a diagram schematically showing a defect evaluation result of the conductor tape 400 obtained when the steel plate 200 is accelerated / decelerated when the inclination angle θ of the conductor tape 400 is 70 °.
 図25A、図25B及び図25Cに示すように、導体テープ400の傾斜角θが60°より大きくなると、第1探触子列BTS1と第2探触子列BTS2との境界が不明瞭となるので、第1探触子列BTS1と第2探触子列BTS2との間の位置データのズレ量を正確に測定することが困難となる。また、導体テープ400の傾斜角θが0°の場合でも位置データのズレ量を正確に測定することはできるが、前述のように試運転時(鋼板200の加減速時)におけるオペレータの負担が大きいので、導体テープ400の傾斜角θの下限値を30°に設定することが望ましい。さらに、鋼板200が長い場合には、複数の短い導体テープをそれぞれ45°の傾斜角θで貼り付けることにより、1本の導体テープ400を形成しても良い。 As shown in FIGS. 25A, 25B, and 25C, when the inclination angle θ of the conductor tape 400 becomes larger than 60 °, the boundary between the first probe row BTS1 and the second probe row BTS2 becomes unclear. Therefore, it becomes difficult to accurately measure the amount of displacement of the position data between the first probe row BTS1 and the second probe row BTS2. Further, even when the inclination angle θ of the conductor tape 400 is 0 °, the displacement amount of the position data can be accurately measured. However, as described above, the burden on the operator during the trial operation (when the steel plate 200 is accelerated / decelerated) is large. Therefore, it is desirable to set the lower limit value of the inclination angle θ of the conductor tape 400 to 30 °. Furthermore, when the steel plate 200 is long, a single conductor tape 400 may be formed by attaching a plurality of short conductor tapes with an inclination angle θ of 45 °.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 電磁超音波探触子により検出される内部欠陥の位置情報の精度を高め、検査の信頼性を向上させることが可能な欠陥位置補正方法を提供することができる。 It is possible to provide a defect position correction method capable of improving the accuracy of the position information of the internal defect detected by the electromagnetic ultrasonic probe and improving the reliability of the inspection.
100  電磁超音波探傷装置
106  メジャーリングロール
108  先端検出センサー
110  信号処理装置
111  リモートI/O
112  制御装置
113  同期信号発生装置
114  超音波発生器
115  A/D変換制御装置
116  演算装置
116a  位置情報取得部
116b  差分取得部
116c  補正実行部
116d  補正値記録部
200  鋼板
100 Electromagnetic ultrasonic flaw detector 106 Measuring roll 108 Tip detection sensor 110 Signal processor 111 Remote I / O
112 control device 113 synchronization signal generator 114 ultrasonic generator 115 A / D conversion control device 116 arithmetic device 116a position information acquisition unit 116b difference acquisition unit 116c correction execution unit 116d correction value recording unit 200 steel plate

Claims (5)

  1.  検査対象物の搬送方向に沿って複数の列を成して配置される電磁超音波探触子に高周波信号を与えて、前記搬送方向と直交する方向に沿ってかつ、複数の前記電磁超音波探触子に跨るように導体テープが貼り付けられた、前記検査対象物の表面に超音波振動を発生させる工程と; 
     各列の前記電磁超音波探触子で、前記超音波振動のFエコー及びBエコーを検出する工程と; 
     前記Fエコー及び前記Bエコーの検出値に基づいて、前記導体テープによる疑似欠陥を検出する工程と; 
     各列ごとに前記疑似欠陥の位置情報を取得する工程と;
     各列ごとに得られた前記疑似欠陥の位置情報に基づいて、隣り合う列について前記疑似欠陥の位置情報の差分を取得する工程と; 
     前記差分に基づいて、各列の前記電磁超音波探触子によって検出される内部欠陥の位置情報を補正する工程と; 
     を有することを特徴とする欠陥位置補正方法。
    A high-frequency signal is given to the electromagnetic ultrasonic probes arranged in a plurality of rows along the conveyance direction of the inspection object, and a plurality of the electromagnetic ultrasonic waves are along the direction orthogonal to the conveyance direction. A step of generating ultrasonic vibrations on the surface of the object to be inspected, on which a conductive tape is attached so as to straddle the probe;
    Detecting F echoes and B echoes of the ultrasonic vibrations with the electromagnetic ultrasonic probes in each row;
    Detecting a pseudo defect due to the conductive tape based on the detected values of the F echo and the B echo;
    Obtaining the position information of the pseudo defects for each column;
    Obtaining a difference in position information of the pseudo defects for adjacent columns based on the position information of the pseudo defects obtained for each column;
    Correcting the position information of internal defects detected by the electromagnetic ultrasonic probes in each row based on the difference;
    A defect position correcting method characterized by comprising:
  2.  前記導体テープが各列の前記電磁超音波探触子を通過する時に前記検査対象物の搬送速度を変化させる工程をさらに有することを特徴とする請求項1に記載の欠陥位置補正方法。 2. The defect position correcting method according to claim 1, further comprising a step of changing a conveyance speed of the inspection object when the conductor tape passes through the electromagnetic ultrasonic probes in each row.
  3.  前記導体テープの導電率は、前記検査対象物の導電率よりも大きいことを特徴とする請求項1または2に記載の欠陥位置補正方法。 3. The defect position correcting method according to claim 1, wherein the conductivity of the conductor tape is larger than the conductivity of the inspection object.
  4.  前記導体テープの材質はアルミニウム又は銅であり、前記検査対象物は鉄であることを特徴とする請求項1または2に記載の欠陥位置補正方法。 3. The defect position correcting method according to claim 1, wherein the conductive tape is made of aluminum or copper, and the inspection object is iron.
  5.  前記導体テープは、前記検査対象物の幅方向に対して0°から60°の範囲で前記検査対象物に貼り付けられていることを特徴とする請求項1~4のいずれか一項に記載の欠陥位置補正方法。 The conductive tape is attached to the inspection object in a range of 0 ° to 60 ° with respect to the width direction of the inspection object. Defect position correction method.
PCT/JP2014/051101 2013-01-22 2014-01-21 Method for correcting defect location WO2014115720A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2015125916/28A RU2598777C1 (en) 2013-01-22 2014-01-21 Method for correction of position of the defect
CN201480004034.6A CN104903719B (en) 2013-01-22 2014-01-21 Defective locations modification method
KR1020157016947A KR101580083B1 (en) 2013-01-22 2014-01-21 Method for correcting defect location
JP2014536040A JP5692475B2 (en) 2013-01-22 2014-01-21 Defect position correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013009360 2013-01-22
JP2013-009360 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014115720A1 true WO2014115720A1 (en) 2014-07-31

Family

ID=51227511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051101 WO2014115720A1 (en) 2013-01-22 2014-01-21 Method for correcting defect location

Country Status (5)

Country Link
JP (1) JP5692475B2 (en)
KR (1) KR101580083B1 (en)
CN (1) CN104903719B (en)
RU (1) RU2598777C1 (en)
WO (1) WO2014115720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894463A (en) * 2017-12-28 2018-04-10 中国石油天然气集团公司管材研究所 The reference block of ERW steel pipe seam electromagnetic acoustic automatic detections and design method
CN110927260A (en) * 2019-12-10 2020-03-27 爱德森(厦门)电子有限公司 Electromagnetic ultrasonic sorting method for metal materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171046A1 (en) * 2016-03-31 2017-10-05 株式会社未来機械 Work robot and edge detector
KR102301420B1 (en) * 2020-11-25 2021-09-10 부경대학교 산학협력단 Apparatus for Generating Ultrasonic Scan Image Information and Method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156877U (en) * 1986-03-28 1987-10-05
JPH02150765A (en) * 1988-11-30 1990-06-11 Sumitomo Chem Co Ltd Ultrasonic flaw detecting method
JPH02194355A (en) * 1989-01-24 1990-07-31 Nippon Steel Corp Ultrasonic flaw detecting device for steel plate
JPH02227662A (en) * 1989-02-28 1990-09-10 Mitsubishi Electric Corp Ultrasonic automatic test equipment for steel plate
JPH04278454A (en) * 1991-03-06 1992-10-05 Daido Steel Co Ltd Method for setting flaw detection sensitivity of eddy current flaw detection method
JPH10206398A (en) * 1997-01-23 1998-08-07 Hitachi Metals Ltd Method for checking and correcting detection accuracy in ultrasonic flaw detecting method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861462A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Method and device for ultrasonic flaw detection for square material
JPS5888653A (en) * 1981-11-24 1983-05-26 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector
JPS59176616A (en) * 1983-03-28 1984-10-06 Hitachi Ltd Electromagnetic ultrasonic wave thickness measuring device
CN1063848C (en) * 1996-08-23 2001-03-28 中国航天工业总公司第二研究院第二总体设计部 On-line automatic electromagnetic supersonic flaw detecting system of hot steel plate
RU2149393C1 (en) * 1999-05-19 2000-05-20 Зао "Алтек" Process of ultrasonic test of cylindrical articles
RU2184374C1 (en) * 2001-08-28 2002-06-27 ОАО "Радиоавионика" Ultrasonic method for controlling rail head
JP4334215B2 (en) * 2002-12-26 2009-09-30 Jfeスチール株式会社 Electromagnetic ultrasonic measurement method and apparatus
JP2005214686A (en) 2004-01-28 2005-08-11 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic probe and ultrasonic flaw detection method
DE112005000106B4 (en) 2004-02-26 2015-05-13 Obschestvo S Ogranichennoi Otvetstvennostyu "Nordinkraft Sankt-Petersburg" Electromagnetic-acoustic transducer
JP2006208325A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Ppm type electromagnetic ultrasonic transducer, ultrasonic flaw detecting method using it and ultrasonic flaw detector
JP2011047763A (en) * 2009-08-26 2011-03-10 Uchiyama Masakatsu Ultrasonic diagnostic device
KR100971073B1 (en) * 2009-12-02 2010-07-20 한국가스공사 Detection apparatus of coating defects connected pig

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156877U (en) * 1986-03-28 1987-10-05
JPH02150765A (en) * 1988-11-30 1990-06-11 Sumitomo Chem Co Ltd Ultrasonic flaw detecting method
JPH02194355A (en) * 1989-01-24 1990-07-31 Nippon Steel Corp Ultrasonic flaw detecting device for steel plate
JPH02227662A (en) * 1989-02-28 1990-09-10 Mitsubishi Electric Corp Ultrasonic automatic test equipment for steel plate
JPH04278454A (en) * 1991-03-06 1992-10-05 Daido Steel Co Ltd Method for setting flaw detection sensitivity of eddy current flaw detection method
JPH10206398A (en) * 1997-01-23 1998-08-07 Hitachi Metals Ltd Method for checking and correcting detection accuracy in ultrasonic flaw detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894463A (en) * 2017-12-28 2018-04-10 中国石油天然气集团公司管材研究所 The reference block of ERW steel pipe seam electromagnetic acoustic automatic detections and design method
CN107894463B (en) * 2017-12-28 2023-12-08 中国石油天然气集团有限公司 Reference block for electromagnetic ultrasonic automatic detection of ERW steel pipe weld joint and design method
CN110927260A (en) * 2019-12-10 2020-03-27 爱德森(厦门)电子有限公司 Electromagnetic ultrasonic sorting method for metal materials

Also Published As

Publication number Publication date
JPWO2014115720A1 (en) 2017-01-26
KR20150080029A (en) 2015-07-08
RU2598777C1 (en) 2016-09-27
CN104903719B (en) 2017-03-15
CN104903719A (en) 2015-09-09
JP5692475B2 (en) 2015-04-01
KR101580083B1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5692475B2 (en) Defect position correction method
RU2606695C2 (en) Differential sensor, control system and method for detecting anomalies in electroconductive materials
JP4960466B2 (en) Paper sheet processing equipment
JP4814092B2 (en) Apparatus and method for recording path of target object
CN101734172B (en) Magnetic suspension train suspension spacing sensor capable of compensating slot effect
JP2016507060A (en) Method and apparatus for improving analysis by SAFT method during irregular measurement
EP2574912B1 (en) Arrangement for crack detection in metallic materials
JPH04220557A (en) Space-correlation eddy-current measuring system
ZA200604066B (en) Method and apparatus for ultrasonic testing of an object
JP5692474B2 (en) Defect inspection method and defect inspection apparatus
JP2015152436A (en) Device for inspecting cracking of egg
US9772259B2 (en) Method for calibrating an X-ray testing system for a tire type and method for checking the position of cords in a tire
JP2007263930A (en) Eddy current flaw detector
CN102749049B (en) Measurement device for strip thickness
JP2008190921A (en) Method and apparatus for detecting surface flaw of thick steel plate
JP5268686B2 (en) Measuring apparatus and measuring method by electromagnetic ultrasonic method
EP2363703B1 (en) Method and apparatus for determining the natural frequency of wooden planks
JP5377723B2 (en) Status determination apparatus and method
JP4138179B2 (en) Metal detector
JP5132741B2 (en) Status determination apparatus and method
JP2017032478A (en) Residual stress evaluation method
KR20150047272A (en) Apparatus and method for defect detection
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5534123B1 (en) Defect inspection method and defect inspection apparatus
GB2561551A (en) Electromagnetic acoustic transducer based receiver

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014536040

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157016947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015125916

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14743281

Country of ref document: EP

Kind code of ref document: A1