JP2016031310A - Ultrasonic flaw detection method and ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Download PDF

Info

Publication number
JP2016031310A
JP2016031310A JP2014154228A JP2014154228A JP2016031310A JP 2016031310 A JP2016031310 A JP 2016031310A JP 2014154228 A JP2014154228 A JP 2014154228A JP 2014154228 A JP2014154228 A JP 2014154228A JP 2016031310 A JP2016031310 A JP 2016031310A
Authority
JP
Japan
Prior art keywords
ultrasonic
weld metal
base material
defect
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014154228A
Other languages
Japanese (ja)
Inventor
淳 千星
Atsushi Chihoshi
淳 千星
摂 山本
Setsu Yamamoto
摂 山本
大勢持 光一
Koichi Osemochi
光一 大勢持
郁夫 仙田
Ikuo Senda
郁夫 仙田
千田 格
Itaru Senda
格 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014154228A priority Critical patent/JP2016031310A/en
Publication of JP2016031310A publication Critical patent/JP2016031310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus capable of accurately detecting a flaw within a weld metal.SOLUTION: An ultrasonic flaw detection method for inspecting an inspection object including a weld zone, comprises: a flaw detection step of causing an ultrasonic wave to be incident from an incident point on a surface of a base material of the inspection object and measuring an intensity of a reflected wave of the ultrasonic wave; weld-metal-transmission-length calculation step of calculating a weld metal transmission length that is a length by which the ultrasonic wave is propagated within the weld metal; and a correction step of correcting the reflected wave intensity using data in a database storing therein a relation between an attenuation length of the intensity of the reflected wave of the ultrasonic wave incident from the surface of the base material and reflected by a flaw in the weld metal and the transmission length within the weld metal.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、超音波探傷方法及び超音波探傷装置に関する。   Embodiments described herein relate generally to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus.

超音波探傷検査は、非破壊で被検査対象物の構造材表面および内部の欠陥の有無を確認できる技術である。超音波探傷検査では構造材に超音波を入射する。構造材内に空孔やき裂、剥離といった欠陥がある場合、これら欠陥で超音波が反射される。この超音波の反射波を検出することで構造材内の欠陥の有無や位置を検出することができる。   Ultrasonic flaw detection is a technique that allows non-destructive confirmation of the presence or absence of defects on the surface of a structural material of an object to be inspected. In ultrasonic flaw detection, ultrasonic waves are incident on a structural material. When there are defects such as vacancies, cracks, and delamination in the structural material, ultrasonic waves are reflected by these defects. By detecting the reflected wave of this ultrasonic wave, it is possible to detect the presence and position of a defect in the structural material.

超音波探傷を行う際には、被検査対象物と同じ材料や条件で作成した校正用対象物を用いて、予め校正用対象物に設けられた既知の欠陥からの反射波の強度(反射波強度)を測定する校正試験を行う。そして、被検査対象物に超音波を入射し探傷試験を行う。探傷試験で得られた反射波強度と校正試験で得られた反射波強度と比較し、欠陥の有無を判断する。例えば、欠陥の有無を判断する閾値を校正試験で得られた反射波強度の33%と定め、被検査対象物で得られた反射波強度が閾値以上であれば被検査対象物に欠陥があると判断する。また、被検査対象物で得られた反射波強度が閾値以下であれば被検査対象物に考慮すべき欠陥は無いと判断する。   When performing an ultrasonic flaw detection, the intensity of the reflected wave (reflected wave) from a known defect previously provided in the calibration object using a calibration object created with the same material and conditions as the object to be inspected. Perform a calibration test to measure the strength. Then, an ultrasonic wave is incident on the object to be inspected and a flaw detection test is performed. The presence or absence of a defect is determined by comparing the reflected wave intensity obtained in the flaw detection test with the reflected wave intensity obtained in the calibration test. For example, the threshold value for determining the presence or absence of a defect is set to 33% of the reflected wave intensity obtained in the calibration test, and the object to be inspected is defective if the reflected wave intensity obtained from the object to be inspected is equal to or greater than the threshold value. Judge. Further, if the reflected wave intensity obtained from the inspection object is equal to or lower than the threshold value, it is determined that there is no defect to be considered in the inspection object.

特開2013−044582号公報JP 2013-045482 A

溶接された金属で構成された被検査対象物の溶接金属内の欠陥(以下、溶接欠陥と記載する)にも超音波探傷検査が適用される。溶接欠陥を超音波探傷で検出する際には、例えば母材表面から傾斜をつけて超音波を入射させ溶接欠陥に照射させ、その反射波強度で欠陥の有無を判断する。   The ultrasonic flaw detection inspection is also applied to defects in the weld metal (hereinafter referred to as weld defects) of the object to be inspected made of welded metal. When detecting a welding defect by ultrasonic flaw detection, for example, an ultrasonic wave is applied with an inclination from the surface of the base material to irradiate the welding defect, and the presence or absence of the defect is determined by the intensity of the reflected wave.

しかし、一般に溶接金属は結晶粒が均一でなく、母材の結晶粒と比較して非常に大きい為、溶接金属内を透過する超音波は散乱される。そのため、溶接欠陥で反射された超音波の反射波強度は、母材内のみを透過し母材内の欠陥(以下、母材欠陥と記載する)で反射された超音波の反射波強度に比べて著しく低下する。結果、母材欠陥について行った校正試験で得られた反射波強度を基準に溶接欠陥の有無を判断すると、溶接欠陥からの反射波強度が低すぎ、欠陥として判断されない可能性が有る。   However, generally, the weld metal has non-uniform crystal grains and is very large compared to the crystal grains of the base metal, so that the ultrasonic waves transmitted through the weld metal are scattered. Therefore, the reflected wave intensity of the ultrasonic wave reflected by the welding defect is compared with the reflected wave intensity of the ultrasonic wave that is transmitted only through the base material and reflected by the defect in the base material (hereinafter referred to as the base material defect). Is significantly reduced. As a result, if the presence or absence of a weld defect is determined based on the reflected wave intensity obtained in the calibration test performed on the base material defect, the reflected wave intensity from the weld defect may be too low to be determined as a defect.

本発明では、より精度良く溶接金属内の欠陥を検出することが可能な超音波探傷方法及び超音波探傷装置を提供することを目的とする。   An object of the present invention is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that can detect defects in a weld metal with higher accuracy.

上記目的を達成するため、実施形態の超音波探傷方法は、溶接部を有する検査対象物の検査を行なう超音波探傷方法であって、超音波を前記検査対象物の母材表面の入射点から入射させ前記超音波の反射波強度を測定する探傷ステップと、前記超音波が前記溶接金属内を伝播する距離である溶接金属透過長を算出する溶接金属透過長算出ステップと、前記探傷ステップで測定した前記反射波強度を、前記母材表面から入射され前記溶接金属内の欠陥で反射された前記超音波の反射波強度の減衰量と前記溶接金属内透過長の関係を収録したデータベースのデータを用いて補正する補正ステップとを有する。   In order to achieve the above object, an ultrasonic flaw detection method according to an embodiment is an ultrasonic flaw detection method for inspecting an inspection object having a welded portion, and the ultrasonic wave is detected from an incident point on a base material surface of the inspection object. Measured in a flaw detection step for measuring the reflected wave intensity of the ultrasonic wave that is incident, a weld metal transmission length calculation step for calculating a weld metal transmission length that is a distance that the ultrasonic wave propagates in the weld metal, and a flaw detection step. The data of a database that records the relationship between the attenuation amount of the reflected wave intensity of the ultrasonic wave incident from the surface of the base material and reflected by the defect in the weld metal and the transmission length in the weld metal. And a correction step for correcting by using.

また、上記目的を達成するため、実施形態の超音波探傷装置は、溶接部を有する検査対象物を検査する超音波探傷装置であって、前記検査対象物に超音波を入射する超音波発信器と、前記検査対象物からの反射波を受信する超音波受信器と、前記超音波受信器が受信した前記反射波の信号を処理する信号処理器と、前記母材表面から入射され前記溶接金属内の欠陥で反射された前記超音波の反射波強度の減衰量と前記溶接金属内透過長の関係を収録したデータベースと、を備え前記信号処理器は、前記データベースに収録されたデータを用いて前記超音波受信機が受信した前記反射波の強度を補正する。   In order to achieve the above object, an ultrasonic flaw detector of an embodiment is an ultrasonic flaw detector that inspects an inspection object having a welded portion, and an ultrasonic transmitter that injects ultrasonic waves into the inspection object. An ultrasonic receiver that receives a reflected wave from the inspection object, a signal processor that processes a signal of the reflected wave received by the ultrasonic receiver, and the weld metal that is incident from the surface of the base material A database that records the relationship between the attenuation amount of the reflected wave intensity of the ultrasonic waves reflected by the defects inside and the transmission length in the weld metal, and the signal processor uses the data recorded in the database The intensity of the reflected wave received by the ultrasonic receiver is corrected.

第1の実施形態の超音波探傷装置の模式図。1 is a schematic diagram of an ultrasonic flaw detector according to a first embodiment. 探傷データの一例を示すグラフ。The graph which shows an example of flaw detection data. 第1の実施形態の超音波探傷方法のフローチャート。The flowchart of the ultrasonic flaw detection method of 1st Embodiment. 第1の実施形態のデータベース作成ステップのフローチャート。The flowchart of the database creation step of 1st Embodiment. (a)第1の実施形態における基準値及び標準溶接欠陥反射波強度の測定方法の模式図、(b)溶接金属透過長と減衰量の関係を示す表、(c)溶接金属透過長と減衰量の関係を示すグラフ。(A) Schematic diagram of measurement method of reference value and standard weld defect reflected wave intensity in first embodiment, (b) Table showing relationship between weld metal transmission length and attenuation, (c) Weld metal transmission length and attenuation. The graph which shows the relationship of quantity. 第1の実施形態における溶接金属透過長を算出する方法の模式図。The schematic diagram of the method of calculating the weld metal penetration length in 1st Embodiment. 第2の実施形態において探傷データから母材内伝播時間を測定する方法の模式図。The schematic diagram of the method of measuring the propagation time in a base material from flaw detection data in 2nd Embodiment.

以下本発明の実施形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
以下、第1の実施形態について図1乃至図6を参照しながら説明する。図1は第1の実施形態の超音波探傷装置の模式図である。図2は探傷データの一例を示すグラフである。図3は第1の実施形態の超音波探傷方法のフローチャートである。図4は第1の実施形態のデータベース作成ステップのフローチャートである。図5(a)は、第1の実施形態における基準値及び標準溶接欠陥反射波強度の測定方法の模式図であり、図5(b)は、溶接金属透過長と減衰量の関係を示す表であり、図5(c)は、溶接金属透過長と減衰量の関係を示すグラフである。図6は第1の実施形態における溶接金属透過長を算出する方法の模式図である。
(First embodiment)
Hereinafter, a first embodiment will be described with reference to FIGS. 1 to 6. FIG. 1 is a schematic diagram of the ultrasonic flaw detector according to the first embodiment. FIG. 2 is a graph showing an example of flaw detection data. FIG. 3 is a flowchart of the ultrasonic flaw detection method of the first embodiment. FIG. 4 is a flowchart of the database creation step of the first embodiment. Fig.5 (a) is a schematic diagram of the measuring method of the reference value and standard welding defect reflected wave intensity in 1st Embodiment, FIG.5 (b) is a table | surface which shows the relationship between weld metal penetration length and attenuation amount. FIG.5 (c) is a graph which shows the relationship between weld metal permeation | transmission length and attenuation amount. FIG. 6 is a schematic diagram of a method for calculating the weld metal penetration length in the first embodiment.

(装置構成)
以下、本実施形態の超音波探傷装置の構成について図1を用いて説明する。超音波探傷装置10の被検査対象物9は溶接によって母材11に溶接金属部分13が形成された構造体である。超音波探傷装置10は、母材11に超音波を入射しその反射波を受信することが可能な超音波送受信器12と、超音波送受信器12が受信した反射波の信号を探傷データとして受信し処理可能な信号処理器14を有する。
(Device configuration)
Hereinafter, the configuration of the ultrasonic flaw detector according to the present embodiment will be described with reference to FIG. The inspection object 9 of the ultrasonic flaw detector 10 is a structure in which a weld metal portion 13 is formed on a base material 11 by welding. The ultrasonic flaw detector 10 receives an ultrasonic wave transmitter 12 that can receive ultrasonic waves on a base material 11 and receive a reflected wave thereof, and a reflected wave signal received by the ultrasonic wave transmitter / receiver 12 as flaw detection data. And a signal processor 14 capable of processing.

図1において、超音波送受信器12は超音波を発信する超音波発信器と反射波を受信する超音波受信器の機能を両方兼ねているが、超音波発信器と超音波受信器は別々の構成として設けられていても良い。   In FIG. 1, the ultrasonic transmitter / receiver 12 functions as both an ultrasonic transmitter for transmitting an ultrasonic wave and an ultrasonic receiver for receiving a reflected wave. However, the ultrasonic transmitter and the ultrasonic receiver are different from each other. It may be provided as a configuration.

また、超音波送受信器12は超音波を母材11に斜角入射する。斜角入射は、フェーズドアレイ探触子によるもの、シュー形状によるもの、あるいはその他の手段によるもの何れであっても構わない。超音波送受信器12が超音波を被検査対象9に入射する位置を入射点15と呼称する。溶接金属13内に超音波を透過させる場合であっても、入射点15は母材11表面とする。   Further, the ultrasonic transmitter / receiver 12 makes the ultrasonic wave obliquely incident on the base material 11. The oblique incidence may be by a phased array probe, by a shoe shape, or by other means. A position at which the ultrasonic transmitter / receiver 12 makes the ultrasonic wave incident on the inspection object 9 is referred to as an incident point 15. Even when ultrasonic waves are transmitted through the weld metal 13, the incident point 15 is the surface of the base material 11.

また、被検査対象物9内の欠陥18で反射された超音波の反射波は、入射してきた経路とほぼ同じ経路を伝播し、超音波送受信器12に受信される。以下、超音波送受信器12から発信され欠陥18に到達するまでの超音波を入射波16と呼称し、欠陥18で反射され超音波送受信器12に受信されるまでの超音波を反射波17と呼称する。   In addition, the reflected wave of the ultrasonic wave reflected by the defect 18 in the inspection target object 9 propagates through almost the same path as the incident path and is received by the ultrasonic wave transmitter / receiver 12. Hereinafter, an ultrasonic wave transmitted from the ultrasonic transceiver 12 and reaching the defect 18 is referred to as an incident wave 16, and an ultrasonic wave reflected by the defect 18 and received by the ultrasonic transceiver 12 is referred to as a reflected wave 17. Call it.

また、入射点15から欠陥18までの距離を伝播距離Wと呼称し、超音波が溶接金属部13内を透過する場合は、伝播距離Wのうち入射波16が溶接金属13内を透過する距離を溶接金属透過長Lと呼称する。また、入射波16及び反射波17が超音波発信器12から発信されて欠陥18で反射されるまでの時間を伝播時間t、入射波16及び反射波17が溶接金属13内を透過する時間の合計を溶接金属伝播時間tlと呼称する。   Further, the distance from the incident point 15 to the defect 18 is referred to as a propagation distance W, and when the ultrasonic wave passes through the weld metal portion 13, the distance through which the incident wave 16 passes through the weld metal 13 in the propagation distance W. Is referred to as weld metal penetration length L. Further, the time required for the incident wave 16 and the reflected wave 17 to be transmitted from the ultrasonic transmitter 12 and reflected by the defect 18 is the propagation time t, and the time required for the incident wave 16 and the reflected wave 17 to pass through the weld metal 13. The sum is referred to as weld metal propagation time tl.

超音波送受信器12は信号処理器14に接続されており、信号処理器14は超音波送受信器12から超音波が発信された時刻や探傷データ、その他入手可能なデータから必要な値を抽出し、演算処理することが可能である。その他入手可能なデータとは、例えば被検査対象9の設計データであり、溶接部の形状や大きさ等を把握することが可能であるものとする。   The ultrasonic transmitter / receiver 12 is connected to the signal processor 14, and the signal processor 14 extracts necessary values from the time when the ultrasonic waves are transmitted from the ultrasonic transmitter / receiver 12, flaw detection data, and other available data. It is possible to perform arithmetic processing. The other available data is, for example, design data of the inspection object 9, and it is possible to grasp the shape and size of the welded portion.

信号処理器14が受信する探傷データとは、図2に示すような、反射波17の強度である反射波強度と時間の関係を示すデータである。例えば、横軸に時間、縦軸に反射波強度としたグラフで表される。   The flaw detection data received by the signal processor 14 is data indicating the relationship between reflected wave intensity, which is the intensity of the reflected wave 17, and time as shown in FIG. For example, the horizontal axis represents time, and the vertical axis represents reflected wave intensity.

(超音波探傷について)
超音波探傷では、母材11に入射波16を入射し、母材11内または溶接金属13内の空孔やき裂、剥離といった欠陥18で反射された反射波17の反射波強度に基づき欠陥の有無が判断される。信号処理器14は反射波強度が十分大きい場合には欠陥があると判断し、反射波強度が小さい場合は考慮すべき欠陥が無いと判断する。
(About ultrasonic flaw detection)
In ultrasonic flaw detection, an incident wave 16 is incident on the base material 11, and the defect is detected based on the reflected wave intensity of the reflected wave 17 reflected by the defect 18 such as a hole, crack, or separation in the base material 11 or the weld metal 13. Presence or absence is determined. The signal processor 14 determines that there is a defect when the reflected wave intensity is sufficiently high, and determines that there is no defect to be considered when the reflected wave intensity is low.

しかし、上述したように溶接金属13は結晶粒が大きく、溶接金属13内では入射波16や反射波17は散乱される。そのため、伝播距離Wが同じであっても、超音波の伝播経路に溶接金属13が含まれる場合、欠陥からの反射波強度は、超音波が母材14のみを伝播する場合に比べて低下する。また、溶接金属透過長Lが長いほど、反射波強度が低下する。   However, as described above, the weld metal 13 has large crystal grains, and the incident wave 16 and the reflected wave 17 are scattered in the weld metal 13. Therefore, even if the propagation distance W is the same, when the weld metal 13 is included in the propagation path of the ultrasonic wave, the reflected wave intensity from the defect is lower than when the ultrasonic wave propagates only through the base material 14. . Further, the longer the weld metal transmission length L, the lower the reflected wave intensity.

以上の理由から、溶接欠陥の反射波強度を母材欠陥の反射波強度と同じ基準で評価し、欠陥の有無の判断を行うと、溶接欠陥が見過ごされてしまう可能性がある。よって、本実施形態で溶接欠陥の有無を判断する場合には、溶接欠陥からの反射波強度を、溶接金属13による散乱の影響が無かった場合の反射波強度に補正した後に、母材欠陥の反射波強度と同じ基準で評価し、欠陥の有無の判断を行う。   For the above reasons, if the reflected wave intensity of the weld defect is evaluated based on the same standard as the reflected wave intensity of the base material defect, and the presence or absence of the defect is determined, the weld defect may be overlooked. Therefore, when determining the presence or absence of a weld defect in this embodiment, after correcting the reflected wave intensity from the weld defect to the reflected wave intensity when there is no influence of scattering by the weld metal 13, the base material defect Evaluate based on the same standard as the reflected wave intensity, and determine the presence or absence of defects.

(超音波探傷方法)
次に、本実施形態の超音波探傷方法について図3を用いて説明する。
(Ultrasonic flaw detection method)
Next, the ultrasonic flaw detection method of this embodiment will be described with reference to FIG.

まず、溶接金属透過長Lに応じて、溶接欠陥からの反射波強度が母材欠陥からの反射波強度と比較して、どの程度低下するのかを示すデータベースを作成する(データベース作成ステップS1)。データベース作成ステップS1では、溶接金属透過長Lごとに、溶接欠陥からの反射波強度が母材欠陥からの反射波強度から低下する割合を算出し減衰量を求める。   First, in accordance with the weld metal penetration length L, a database is created that indicates how much the reflected wave intensity from the weld defect is lower than the reflected wave intensity from the base material defect (database creation step S1). In the database creation step S1, for each weld metal transmission length L, the rate of decrease in the reflected wave intensity from the weld defect from the reflected wave intensity from the base material defect is calculated to determine the attenuation.

次に、入射波16を被検査対象9の母材11から入射させその反射波強度を測定(探傷ステップS2)。   Next, the incident wave 16 is incident from the base material 11 of the inspection object 9 and the intensity of the reflected wave is measured (flaw detection step S2).

次に、探傷ステップS2で入射された超音波の溶接金属透過長Lを算出する(溶接金属透過長算出ステップS3)。   Next, the weld metal transmission length L of the ultrasonic wave incident in the flaw detection step S2 is calculated (weld metal transmission length calculation step S3).

次に、データベース作成ステップS1で作成したデータベースを用いて、溶接金属透過長算出ステップS3で算出した溶接金属透過長Lに対応する減衰量を求める(減衰量特定ステップS4)。   Next, using the database created in the database creation step S1, an attenuation amount corresponding to the weld metal penetration length L calculated in the weld metal penetration length calculation step S3 is obtained (attenuation amount specifying step S4).

次に、減衰量特定ステップS4で求めた減衰量を用いて探傷ステップS2で測定した反射波強度を補正する(補正ステップS5)。   Next, the reflected wave intensity measured in the flaw detection step S2 is corrected using the attenuation obtained in the attenuation amount specifying step S4 (correction step S5).

以上の処理によって補正された反射波強度を、母材11の校正試験から得られた閾値と比較し、欠陥の有無を判断する。   The reflected wave intensity corrected by the above processing is compared with the threshold value obtained from the calibration test of the base material 11 to determine the presence or absence of a defect.

以下、それぞれのステップについて具体的に説明する。まず、図4、図5(a)、(b)、(c)を用いてデータベース作成ステップS1を説明する。データベース作成ステップS1は、母材11のみを透過し母材欠陥で反射した超音波の反射波強度(以下、基準値と呼称する)を測定する基準値検出ステップS10と、溶接金属透過長Lごとに溶接欠陥で反射した超音波の反射波強度を測定する標準溶接欠陥反射波強度検出ステップS11と、標準溶接欠陥反射波強度検出ステップS11で測定した溶接欠陥の反射波強度について基準値からの減衰量を算出する減衰量算出ステップS12を有する。   Hereinafter, each step will be specifically described. First, the database creation step S1 will be described with reference to FIGS. 4, 5A, 5B, and 5C. The database creation step S1 includes a reference value detection step S10 for measuring the reflected wave intensity (hereinafter referred to as a reference value) of the ultrasonic wave that is transmitted through only the base material 11 and reflected by the base material defect, and for each weld metal transmission length L. Standard weld defect reflected wave intensity detection step S11 for measuring the reflected wave intensity of the ultrasonic wave reflected by the weld defect, and attenuation from the reference value for the reflected wave intensity of the weld defect measured in standard weld defect reflected wave intensity detection step S11 It has attenuation amount calculation step S12 which calculates quantity.

基準値検出ステップS10と標準溶接欠陥反射波強度検出ステップS11は、図5(a)に示す、被検査対象9と同じ条件で作成された校正用対象物19を用いて行われる。校正用対象物19は、被検査対象物9と同じ材料で構成され、同じ条件で溶接されており、所定の場所に予め溶接欠陥と母材欠陥が設けられている。校正用対象物19に設けられた溶接欠陥を標準溶接欠陥と呼称し、校正用対象物19に設けられた母材内欠陥を標準母材欠陥と呼称する。   The reference value detection step S10 and the standard welding defect reflected wave intensity detection step S11 are performed using a calibration object 19 that is created under the same conditions as the inspection object 9 shown in FIG. The calibration object 19 is made of the same material as the inspection object 9 and is welded under the same conditions, and a welding defect and a base material defect are provided in advance at a predetermined location. A welding defect provided in the calibration object 19 is referred to as a standard welding defect, and a defect in the base material provided in the calibration object 19 is referred to as a standard base material defect.

図5(a)に示す校正用対象物19には標準溶接欠陥が3つ設けられており、それぞれをSDH1、SDH2、SDH3と呼称する。また、校正用対象物19に設けられた標準母材欠陥をSDH0と呼称する。なお、校正用対象物19は、被検査対象物9とは別個に設けられたものであっても良いし、被検査対象物9の一部に予め設けられた部位であっても良い。   The calibration object 19 shown in FIG. 5A is provided with three standard welding defects, which are referred to as SDH1, SDH2, and SDH3, respectively. The standard base material defect provided in the calibration object 19 is referred to as SDH0. The calibration object 19 may be provided separately from the inspection object 9 or may be a part provided in advance on a part of the inspection object 9.

以下、データベース作成ステップS1に含まれる各ステップについて説明する。基準値測定ステップS10では、まず、超音波送受信器12から入射波16を送信し、母材11内のみを透過させてSDH0に照射させる。そして、その反射波17を超音波送受信器12が受信し、信号処理器14が図2に示されるような探傷データを得る。そして信号処理器14は探傷データから有意な強度の信号を抽出し、図5(b)に示すように、基準値A0として記憶する。   Hereinafter, each step included in the database creation step S1 will be described. In the reference value measurement step S10, first, the incident wave 16 is transmitted from the ultrasonic transmitter / receiver 12, and only the inside of the base material 11 is transmitted to irradiate SDH0. The ultrasonic wave transmitter / receiver 12 receives the reflected wave 17 and the signal processor 14 obtains flaw detection data as shown in FIG. Then, the signal processor 14 extracts a signal having a significant intensity from the flaw detection data, and stores it as a reference value A0 as shown in FIG.

次に、標準溶接欠陥反射波強度測定ステップS11について説明する。標準溶接欠陥反射波強度測定ステップS11では、まず、超音波送受信器12から入射波16を送信し、母材11及び溶接金属13を透過させてSDH1、SDH2、SDH3それぞれに照射する。そして、その反射波17を超音波送受信器12が受信し、信号処理器14は探傷データを得る。信号処理器14は探傷データから有意な強度の信号を抽出し、図4(b)に示すように、SDH1、SDH2、SDH3それぞれに対応する反射波強度としてA1、A2、A3として記憶する。SDH1、SDH2、SDH3からの反射波強度A1、A2、A3を標準反射波強度と呼称する。   Next, the standard weld defect reflected wave intensity measurement step S11 will be described. In the standard weld defect reflected wave intensity measurement step S11, first, an incident wave 16 is transmitted from the ultrasonic transmitter / receiver 12, and the SDH1, SDH2, and SDH3 are irradiated through the base material 11 and the weld metal 13, respectively. Then, the ultrasonic wave transmitter / receiver 12 receives the reflected wave 17 and the signal processor 14 obtains flaw detection data. The signal processor 14 extracts a signal having a significant intensity from the flaw detection data, and stores it as A1, A2, and A3 as reflected wave intensities corresponding to SDH1, SDH2, and SDH3, as shown in FIG. 4B. The reflected wave intensities A1, A2, and A3 from SDH1, SDH2, and SDH3 are referred to as standard reflected wave intensities.

なお、標準溶接欠陥反射波強度測定ステップS11において、探傷データから有意な強度の信号を抽出するのは信号処理器14であるとしたが、作業員が探傷データをみて信号を抽出するものとしてもよい。   In the standard weld defect reflected wave intensity measurement step S11, the signal processor 14 extracts a signal having a significant intensity from the flaw detection data. However, the operator may extract a signal by looking at the flaw detection data. Good.

また、SDH1、SDH2、SDH3に対して入射波16を入射させる際、SDH1、SDH2、SDH3のいずれに対しても入射角αが等しくなるように、入射点15の位置を調節する。また、SDH1、SDH2、SDH3に対する溶接金属透過長Lがそれぞれ異なるように、SDH1、SDH2、SDH3に対して入射波16を入射させる際には入射点15の位置を調節する。SDH1、SDH2、SDH3のそれぞれの標準溶接金属透過長LをL1、L2、L3と呼称し、L1<L2<L3であるものとする。   Further, when the incident wave 16 is incident on SDH1, SDH2, and SDH3, the position of the incident point 15 is adjusted so that the incident angles α are equal for all of SDH1, SDH2, and SDH3. Further, when the incident wave 16 is incident on SDH1, SDH2, and SDH3, the position of the incident point 15 is adjusted so that the weld metal transmission lengths L with respect to SDH1, SDH2, and SDH3 are different. The standard weld metal penetration lengths L of SDH1, SDH2, and SDH3 are referred to as L1, L2, and L3, and L1 <L2 <L3.

また、母材11内での入射波16、反射波17の散乱は、溶接金属13内における散乱と比較して無視できる程度である。つまり、SDH1、SDH2、SDH3それぞれの反射波強度A1、A2、A3の基準値A0からの減衰量の違いは、それぞれの溶接金属透過長Lの違いに起因するものである。   Further, the scattering of the incident wave 16 and the reflected wave 17 in the base material 11 is negligible compared to the scattering in the weld metal 13. That is, the difference in attenuation from the reference value A0 of the reflected wave intensities A1, A2, and A3 of the SDH1, SDH2, and SDH3 is caused by the difference in the weld metal transmission length L.

次に、減衰量算出ステップS12について説明する。たとえば、溶接金属透過長L1における減衰量X1は以下のように計算される。   Next, the attenuation amount calculating step S12 will be described. For example, the attenuation amount X1 in the weld metal penetration length L1 is calculated as follows.

Figure 2016031310
Figure 2016031310

同様に溶接金属透過長L2における減衰量X2、溶接金属透過長L3における減衰量X3も計算される。溶接金属透過長Lと減衰量の関係を示した表を図5(b)に示す。また、溶接金属透過長Lと減衰量の関係を示すグラフを図5(c)に示す。図5(b)または(c)が、データベース(例えばハードディスク等の記録媒体)に収録される。   Similarly, the attenuation amount X2 in the weld metal penetration length L2 and the attenuation amount X3 in the weld metal penetration length L3 are also calculated. A table showing the relationship between the weld metal permeation length L and the attenuation is shown in FIG. Moreover, the graph which shows the relationship between the weld metal permeation | transmission length L and attenuation amount is shown in FIG.5 (c). FIG. 5B or 5C is recorded in a database (for example, a recording medium such as a hard disk).

次に、探傷ステップS2について説明する。探傷ステップS2では入射波16を超音波送受信器12から送信させ被検査対象9の母材11に入射し、その反射波17を超音波送受信器12で受信する。そして、信号処理器14は探傷データを受信する。   Next, the flaw detection step S2 will be described. In the flaw detection step S 2, the incident wave 16 is transmitted from the ultrasonic transmitter / receiver 12, is incident on the base material 11 of the inspection object 9, and the reflected wave 17 is received by the ultrasonic transmitter / receiver 12. The signal processor 14 receives the flaw detection data.

信号処理器14は探傷データから有意な強度の信号を抽出し、反射波強度Aとして記憶する。反射波強度Aとして抽出する信号は、作業員の判断により抽出されるものであってもよい。   The signal processor 14 extracts a signal having a significant intensity from the flaw detection data and stores it as reflected wave intensity A. The signal extracted as the reflected wave intensity A may be extracted based on the judgment of the worker.

次に、溶接金属透過長算出ステップS3について図6を用いて説明する。溶接金属透過長算出ステップS3では、伝播距離W、及び、入射点15の位置、入射波16の入射角α、被検査対象9の図面から溶接金属透過長Lを算出する。なお、超音波の透過速度vは母材11と溶接金属13でほぼ等しいと仮定する。   Next, the weld metal penetration length calculation step S3 will be described with reference to FIG. In the weld metal penetration length calculation step S3, the weld metal penetration length L is calculated from the propagation distance W, the position of the incident point 15, the incident angle α of the incident wave 16, and the drawing of the inspection object 9. It is assumed that the ultrasonic transmission speed v is approximately equal between the base material 11 and the weld metal 13.

まず、伝播距離Wは、伝播時間tと母材11及び溶接金属13における超音波の透過速度vから以下のように算出される。   First, the propagation distance W is calculated from the propagation time t and the transmission speed v of the ultrasonic wave in the base material 11 and the weld metal 13 as follows.

Figure 2016031310
Figure 2016031310

なお、総伝播時間tは図2に示すように探傷データから求めることができ、超音波入射時刻から有意な強度の信号が検出されるまでの時間である。   Note that the total propagation time t can be obtained from the flaw detection data as shown in FIG. 2, and is the time from when the ultrasonic wave is incident until a signal with a significant intensity is detected.

次に、入射点15を基準とした欠陥18の位置を求める。なお、入射波16は入射点15から欠陥18まで入射角αのまま直進すると仮定する。入射点15を基準とした欠陥18の位置は、図5(a)に示すように伝播距離Wと入射角αを用いて、幾何学的に特定される。そして、入射点15を基準とした欠陥18の位置と、被検査対象9の図面と照らし合わせることで、欠陥18が溶接金属13内であるのか否かが判明し、溶接金属透過長L及び母材伝播距離Lbが図面から把握される。   Next, the position of the defect 18 with respect to the incident point 15 is obtained. It is assumed that the incident wave 16 travels straight from the incident point 15 to the defect 18 with the incident angle α. The position of the defect 18 with respect to the incident point 15 is geometrically specified using the propagation distance W and the incident angle α as shown in FIG. Then, by comparing the position of the defect 18 with respect to the incident point 15 and the drawing of the object 9 to be inspected, it can be determined whether or not the defect 18 is in the weld metal 13. The material propagation distance Lb is grasped from the drawing.

次に、減衰量特定ステップS4について説明する。減衰量特定ステップS4では、信号処理器14が、溶接金属透過長算出ステップS3で求めた溶接金属透過長Lと、データベース作成ステップS1で作成したデータベースを用いて、探傷ステップS2で測定した反射波強度Aの減衰量を特定する。   Next, the attenuation amount specifying step S4 will be described. In the attenuation amount specifying step S4, the signal processor 14 uses the weld metal transmission length L obtained in the weld metal transmission length calculation step S3 and the database created in the database creation step S1, and the reflected wave measured in the flaw detection step S2. The attenuation amount of the intensity A is specified.

たとえば溶接金属透過長LがL1<L<L2であるものとする。すると、データベースから、溶接金属透過長Lにおける減衰量は以下のように算出される。   For example, the weld metal penetration length L is assumed to be L1 <L <L2. Then, the attenuation amount in the weld metal penetration length L is calculated from the database as follows.

Figure 2016031310
Figure 2016031310

次に、補正ステップS5について説明する。補正ステップS5では減衰量特定ステップS4で算出した減衰量Xを用いて、探傷ステップS2で測定した反射波強度Aを補正する。反射波強度Aは補正前の反射波強度である。補正後の反射波強度を反射波強度Acと記載する。反射波強度Acは、溶接金属13による散乱の影響が無かった場合に置き換え補正された溶接欠陥からの反射波強度である。   Next, the correction step S5 will be described. In the correction step S5, the reflected wave intensity A measured in the flaw detection step S2 is corrected using the attenuation amount X calculated in the attenuation amount specifying step S4. The reflected wave intensity A is the reflected wave intensity before correction. The reflected wave intensity after correction is referred to as reflected wave intensity Ac. The reflected wave intensity Ac is a reflected wave intensity from a welding defect that is corrected for replacement when there is no influence of scattering by the weld metal 13.

補正後の反射波強度Acは以下のように算出される。 The corrected reflected wave intensity Ac is calculated as follows.

Figure 2016031310
Figure 2016031310

この補正後の反射波強度Acを、母材の超音波探傷用の校正試験で得られた反射波強度と比較し、溶接欠陥の有無を判断する。   The corrected reflected wave intensity Ac is compared with the reflected wave intensity obtained in the calibration test for ultrasonic flaw detection of the base material, and the presence or absence of a welding defect is determined.

(効果)
本実施形態の超音波探傷方法及び装置において、溶接欠陥の反射波強度は、溶接金属13を透過する際の減衰を考慮し、超音波が溶接金属を透過した長さに応じて補正される。そのため、溶接欠陥の反射波強度が母材欠陥の反射波強度と比較して著しく低い場合であっても、溶接欠陥の有無を精度よく判別することが可能である。
(effect)
In the ultrasonic flaw detection method and apparatus according to the present embodiment, the reflected wave intensity of the welding defect is corrected according to the length of transmission of the ultrasonic wave through the weld metal in consideration of the attenuation when passing through the weld metal 13. Therefore, even when the reflected wave intensity of the welding defect is significantly lower than the reflected wave intensity of the base material defect, it is possible to accurately determine the presence or absence of the welding defect.

(第2の実施形態)
以下、第2の実施形態について図7を用いて説明する。図7は、第2の実施形態において探傷データから母材内伝播時間を検出する方法の模式図である。なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIG. FIG. 7 is a schematic diagram of a method for detecting the propagation time in the base material from the flaw detection data in the second embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態の超音波探傷装置10の構成は、第1の実施形態と同様である。   The configuration of the ultrasonic flaw detector 10 of the present embodiment is the same as that of the first embodiment.

(超音波探傷方法)
以下、本実施形態における超音波探傷方法について説明する。本実施形態の超音波探傷方法のうち、S1、S2、S4、S5は第1の実施形態と同様であり、説明を省略する。以下、本実施形態の溶接金属透過長算出ステップS3について説明する。
(Ultrasonic flaw detection method)
Hereinafter, the ultrasonic flaw detection method in the present embodiment will be described. Of the ultrasonic flaw detection method according to this embodiment, S1, S2, S4, and S5 are the same as those in the first embodiment, and a description thereof will be omitted. Hereinafter, the weld metal penetration length calculation step S3 of this embodiment will be described.

探傷ステップS2で溶接欠陥に照射された入射波16は溶接欠陥に到達する前に、図2や図5(a)に示されるような母材11と溶接金属13との界面20を通過する。このとき入射波16の一部が界面20で反射される。そのため、図7に示されるように探傷データには、溶接欠陥からの反射波強度の信号と、それよりも前に界面20からの反射波強度の信号が現れる。界面20からの反射波17と反射波強度をそれぞれ第1の反射波と第1の反射波強度と呼称し、溶接欠陥からの反射波17と反射波強度をそれぞれ第2の反射波と第2の反射波強度と呼称する。   The incident wave 16 irradiated to the welding defect in the flaw detection step S2 passes through the interface 20 between the base material 11 and the weld metal 13 as shown in FIGS. 2 and 5A before reaching the welding defect. At this time, a part of the incident wave 16 is reflected by the interface 20. Therefore, as shown in FIG. 7, a reflected wave intensity signal from the welding defect and a reflected wave intensity signal from the interface 20 appear before the flaw detection data. The reflected wave 17 and reflected wave intensity from the interface 20 are referred to as a first reflected wave and a first reflected wave intensity, respectively, and the reflected wave 17 and reflected wave intensity from a welding defect are referred to as a second reflected wave and a second reflected wave, respectively. This is called the reflected wave intensity.

図7に示される探傷データにおいて、超音波入射時刻から第1の反射波が現れるまでの時間が、超音波が母材11内を透過する時間であり、母材伝播時間tbと呼称する。   In the flaw detection data shown in FIG. 7, the time from the ultrasonic incident time until the first reflected wave appears is the time for the ultrasonic wave to pass through the base material 11 and is referred to as the base material propagation time tb.

本実施形態の溶接金属透過長算出ステップS3では、信号処理器14が探傷データから母材伝播時間tbと伝播時間tを検出し、伝播時間tから母材伝播時間tbを差し引くことで、溶接金属伝播時間tlを算出する。そして、伝播速度vと溶接金属伝播時間tlに基づいて、例えば以下の数式により溶接金属透過長Lが算出される。   In the weld metal penetration length calculation step S3 of the present embodiment, the signal processor 14 detects the base material propagation time tb and the propagation time t from the flaw detection data, and subtracts the base material propagation time tb from the propagation time t, thereby welding metal. The propagation time tl is calculated. Then, based on the propagation velocity v and the weld metal propagation time tl, for example, the weld metal penetration length L is calculated by the following mathematical formula.

Figure 2016031310
Figure 2016031310

(効果)
本実施形態の超音波探傷方法及び装置では第1の実施形態と同様に、溶接欠陥からの反射波強度が母材欠陥からの反射波強度と比較して著しく低い場合であっても、溶接欠陥の有無を検出することが可能であり、より高い精度で溶接欠陥を検出することが可能である。
(effect)
In the ultrasonic flaw detection method and apparatus of the present embodiment, as in the first embodiment, even if the reflected wave intensity from the weld defect is significantly lower than the reflected wave intensity from the base material defect, the weld defect Therefore, it is possible to detect a welding defect with higher accuracy.

また、被検査対象9の図面等がない場合であっても、溶接金属透過長Lを算出することが可能であり、溶接欠陥を検出することが可能である。   Further, even if there is no drawing or the like of the inspection object 9, the weld metal penetration length L can be calculated, and a weld defect can be detected.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

9・・・・・・被検査対象物
10・・・・・・超音波探傷装置
11・・・・・・母材
12・・・・・・超音波送受信機
13・・・・・・溶接金属
14・・・・・・信号処理機
15・・・・・・入射点
16・・・・・・入射波
17・・・・・・反射波
18・・・・・・欠陥
19・・・・・・校正用対象物
20・・・・・・母材と溶接金属との界面
SDH0・・・・・・標準母材欠陥
SDH1〜3・・・・・・・標準溶接欠陥
A1〜A3・・・・・・標準反射波強度
W・・・・・・伝播距離
L・・・・・・溶接金属透過長
Lb・・・・・・母材伝播距離
t・・・・・・伝播時間
tl・・・・・・溶接金属伝播時間
tb・・・・・・母材伝播時間
α・・・・・入射角
v・・・・・・超音波の透過速度
A・・・・・・補正前の反射波強度
Ac・・・・・・補正後の反射波強度
S1・・・・・・データベース作成ステップ
S2・・・・・・探傷ステップ
S3・・・・・・溶接金属透過長算出ステップ
S4・・・・・・減衰量特定ステップ
S5・・・・・・補正ステップ
S10・・・・・・基準値測定ステップ
S11・・・・・・標準溶接欠陥反射強度測定ステップ
S12・・・・・・減衰量算出ステップ
9 .. Inspection object 10... Ultrasonic flaw detector 11... Base material 12... Ultrasonic transceiver 13. Metal 14 ... Signal processor 15 ... Incident point 16 ... Incident wave 17 ... Reflected wave 18 ... Defect 19 ... ... Calibration object 20 ····· Interface SDH0 between base metal and weld metal ··· Standard base material defects SDH1 to 3 ··· Standard weld defects A1 to A3 ...... Standard reflected wave intensity W ... Propagation distance L ... Weld metal penetration length Lb ... Base metal propagation distance t ... Propagation time tl・ ・ ・ ・ ・ ・ Weld metal propagation time tb ・ ・ ・ ・ ・ ・ Base material propagation time α ・ ・ ・ Incident angle v ・ ・ ・ Ultrasonic transmission speed A ・ ・ ・ ・ ・ ・ Before correction Reflected wave intensity Ac ... -Corrected reflected wave intensity S1 ... Database creation step S2 ... Flaw detection step S3 ... Weld metal penetration length calculation step S4 ... Attenuation amount specifying step S5... Correction step S10... Reference value measurement step S11... Standard weld defect reflection intensity measurement step S12.

Claims (5)

溶接部を有する検査対象物の検査を行なう超音波探傷方法であって、超音波を前記検査対象物の母材表面の入射点から入射させ前記超音波の反射波強度を測定する探傷ステップと、
前記超音波が前記溶接金属内を伝播する距離である溶接金属透過長を算出する溶接金属透過長算出ステップと、
前記探傷ステップで測定した前記反射波強度を、前記母材表面から入射され前記溶接金属内の欠陥で反射された前記超音波の反射波強度の減衰量と前記溶接金属内透過長の関係を収録したデータベースのデータを用いて補正する補正ステップとを有する超音波探傷方法。
An ultrasonic flaw detection method for inspecting an inspection object having a welded portion, in which an ultrasonic wave is incident from an incident point on a surface of a base material of the inspection object and a reflected wave intensity of the ultrasonic wave is measured,
A weld metal transmission length calculating step of calculating a weld metal transmission length which is a distance that the ultrasonic wave propagates in the weld metal;
The reflected wave intensity measured in the flaw detection step is recorded as a relationship between the attenuation amount of the reflected wave intensity of the ultrasonic wave incident from the surface of the base material and reflected by the defect in the weld metal and the transmission length in the weld metal. And a correction step of correcting using the data in the database.
前記データベースのデータに収録された前記減衰量は、
前記検査対象物の母材と同材料の母材に溶接部が形成され、母材と溶接部のそれぞれに予め設けられた欠陥である標準欠陥を有する校正用対象物を用い、
前記校正用対象物表面から入射された後に前記母材のみを伝播して前記母材内の標準欠陥で反射した超音波の反射波強度である基準値と、
前記校正用対象物表面から入射された後、前記母材及び前記溶接金属を伝播して前記溶接金属内の標準溶接欠陥で反射した超音波の反射波強度である標準溶接欠陥反射波強度とを比較して算出されたものである請求項1に記載の超音波探傷方法。
The amount of attenuation recorded in the database data is:
A welding part is formed on the base material of the same material as the base material of the inspection target, and a calibration target having a standard defect which is a defect provided in advance in each of the base material and the welding part,
A reference value that is the reflected wave intensity of the ultrasonic wave that is propagated through only the base material after being incident from the calibration object surface and reflected by a standard defect in the base material,
A standard weld defect reflected wave intensity which is a reflected wave intensity of an ultrasonic wave which is propagated through the base material and the weld metal and reflected by a standard weld defect in the weld metal after being incident from the calibration object surface. The ultrasonic flaw detection method according to claim 1, which is calculated by comparison.
前記溶接金属透過長算出ステップでは、
前記超音波が前記入射点から前記欠陥に到達するまでの時間である総伝播時間と前記母材内及び前記溶接金属内における前記超音波の伝播速度とに基づき前記入射点から前記欠陥までの伝播距離を算出し、
前記入射点、前記超音波の入射角、前記母材と前記溶接金属の図面に基づき前記超音波が前記母材のみを伝播した母材伝播距離を算出し、
前記総伝播距離と前記母材伝播距離に基づいて前記溶接金属透過長を算出する請求項1または請求項2に記載の超音波探傷方法。
In the weld metal transmission length calculation step,
Propagation from the incident point to the defect based on the total propagation time which is the time until the ultrasonic wave reaches the defect from the incident point and the propagation speed of the ultrasonic wave in the base metal and the weld metal. Calculate the distance,
Based on the incident point, the incident angle of the ultrasonic wave, the base metal and the weld metal, the ultrasonic wave propagates only the base material, and calculates the base material propagation distance,
The ultrasonic flaw detection method according to claim 1, wherein the weld metal penetration length is calculated based on the total propagation distance and the base material propagation distance.
前記溶接金属透過長算出ステップは、
前記超音波が発信された時刻と前記超音波が前記母材と前記溶接金属との界面で反射すた反射波が検出された時刻との差に基づき前記超音波が前記母材のみを伝播した母材内伝播時間を算出し、
前記超音波が発信された時刻と前記超音波が前記溶接金属内の欠陥で反射された反射波が検出された時刻との差に基づき前記超音波が前記入射点から前記欠陥に到達するまでの時間である伝播時間を算出し、
前記溶接金属内における前記超音波の伝播速度と前記母材内伝播時間と前記伝播時間に基づき前記溶接金属透過長が算出する請求項1または請求項2に記載の超音波探傷方法。
The weld metal permeation length calculation step includes:
Based on the difference between the time when the ultrasonic wave was transmitted and the time when the reflected wave reflected by the interface between the base metal and the weld metal was detected, the ultrasonic wave propagated only through the base material. Calculate the propagation time in the base material,
Based on the difference between the time when the ultrasonic wave is transmitted and the time when the reflected wave is detected when the ultrasonic wave is reflected by the defect in the weld metal, the ultrasonic wave reaches the defect from the incident point. Calculate the propagation time that is time,
The ultrasonic flaw detection method according to claim 1, wherein the weld metal penetration length is calculated based on a propagation speed of the ultrasonic wave in the weld metal, a propagation time in the base material, and the propagation time.
溶接部を有する検査対象物を検査する超音波探傷装置であって、
前記検査対象物に超音波を入射する超音波発信器と、
前記検査対象物からの反射波を受信する超音波受信器と、
前記超音波受信器が受信した前記反射波の信号を処理する信号処理器と、
前記母材表面から入射され前記溶接金属内の欠陥で反射された前記超音波の反射波強度の減衰量と前記溶接金属内透過長の関係を収録したデータベースと、を備え
前記信号処理器は、
前記データベースに収録されたデータを用いて前記超音波受信機が受信した前記反射波の強度を補正する超音波探傷装置。
An ultrasonic flaw detector for inspecting an inspection object having a welded portion,
An ultrasonic transmitter for injecting ultrasonic waves into the inspection object;
An ultrasonic receiver for receiving a reflected wave from the inspection object;
A signal processor for processing the reflected wave signal received by the ultrasonic receiver;
A database that records the relationship between the attenuation amount of the reflected wave intensity of the ultrasonic wave that is incident from the surface of the base material and is reflected by the defect in the weld metal and the transmission length in the weld metal, and the signal processor comprises:
An ultrasonic flaw detector that corrects the intensity of the reflected wave received by the ultrasonic receiver using data recorded in the database.
JP2014154228A 2014-07-29 2014-07-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Pending JP2016031310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154228A JP2016031310A (en) 2014-07-29 2014-07-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154228A JP2016031310A (en) 2014-07-29 2014-07-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JP2016031310A true JP2016031310A (en) 2016-03-07

Family

ID=55441775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154228A Pending JP2016031310A (en) 2014-07-29 2014-07-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP2016031310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919027B1 (en) * 2018-03-21 2019-02-08 대한검사기술(주) A method for inspecting the welding part
CN111983032A (en) * 2020-08-25 2020-11-24 中国科学院电工研究所 Online monitoring method and system for damage of optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752855A (en) * 1980-09-10 1982-03-29 Kobe Steel Ltd Ultrasonic flaw detecting method for flange type welded joint
JPH05333001A (en) * 1992-06-01 1993-12-17 Fujitsu Ltd Apparatus for inspecting defective welded part
JP2010014626A (en) * 2008-07-04 2010-01-21 Toshiba Corp 3d ultrasonographic device
JP2010127689A (en) * 2008-11-26 2010-06-10 Central Res Inst Of Electric Power Ind Ultrasonic flaw detection device, cross-sectional image forming method, and cross-sectional image forming program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752855A (en) * 1980-09-10 1982-03-29 Kobe Steel Ltd Ultrasonic flaw detecting method for flange type welded joint
JPH05333001A (en) * 1992-06-01 1993-12-17 Fujitsu Ltd Apparatus for inspecting defective welded part
JP2010014626A (en) * 2008-07-04 2010-01-21 Toshiba Corp 3d ultrasonographic device
US8488871B2 (en) * 2008-07-04 2013-07-16 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic inspection apparatus
JP2010127689A (en) * 2008-11-26 2010-06-10 Central Res Inst Of Electric Power Ind Ultrasonic flaw detection device, cross-sectional image forming method, and cross-sectional image forming program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919027B1 (en) * 2018-03-21 2019-02-08 대한검사기술(주) A method for inspecting the welding part
CN111983032A (en) * 2020-08-25 2020-11-24 中国科学院电工研究所 Online monitoring method and system for damage of optical element
CN111983032B (en) * 2020-08-25 2023-10-10 中国科学院电工研究所 Online monitoring method and system for damage of optical element

Similar Documents

Publication Publication Date Title
JP6441321B2 (en) Improved inspection method by ultrasonic transmission
KR101833467B1 (en) Method for detecting and characterizing defects in a heterogeneous material via ultrasound
KR101478465B1 (en) Mechanized Ultrasonic Testing Method for Curved Pipe Welding Zone
US20120125111A1 (en) Method for nondestructive testing of pipes
CN109196350B (en) Method for detecting defects in materials by ultrasound
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
CN104111286A (en) Wave velocity and thickness calibrating method for ultrasonic wave welding spot detection
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JPS5888653A (en) Ultrasonic flaw detector
CN103217476A (en) Ultrasonic surface wave detection method for surface defects of butt weld of rows of tubes of boiler header
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
Stepanova et al. Acoustic-emission testing of multiple-pass welding defects of large-size constructions
KR101104889B1 (en) Calibration block for ultrasonic testing with tapered and curved surface
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
CA3044105C (en) Method and device for checking an object for flaws
JP6761780B2 (en) Defect evaluation method
JP2009156834A (en) Method for measuring depth of crack-like defect
JP2013185969A (en) Weld defect detection method and weld defect detection device
JP2007271375A (en) Acceptance decision system of material to be inspected in its flaw using ultrasonic flaw detection and acceptance decision method therefor
KR101951393B1 (en) Ultrasonic testing method for special steel
JP6109061B2 (en) Inspection method for remaining life of welded parts of heat-resistant materials
JPS6229023B2 (en)
JP2005315843A (en) Ultrasonic inspection method and device
CN110702791B (en) Method for detecting edge of part through ultrasonic imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831