WO2014115512A1 - Tube for heat exchanger - Google Patents

Tube for heat exchanger Download PDF

Info

Publication number
WO2014115512A1
WO2014115512A1 PCT/JP2014/000174 JP2014000174W WO2014115512A1 WO 2014115512 A1 WO2014115512 A1 WO 2014115512A1 JP 2014000174 W JP2014000174 W JP 2014000174W WO 2014115512 A1 WO2014115512 A1 WO 2014115512A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
tube
brazed
joined
main body
Prior art date
Application number
PCT/JP2014/000174
Other languages
French (fr)
Japanese (ja)
Inventor
伸洋 本間
道泰 山本
手島 聖英
勇樹 寺本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014115512A1 publication Critical patent/WO2014115512A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the present disclosure relates to a heat exchanger tube mounted on a heat exchanger.
  • a sacrificial material layer to which Zn is added is clad on the inner surface of the tube (a surface in contact with the fluid).
  • a brazing filler metal layer to which Si is added is clad on the outer surface of the tube for joining to the outer fin and joining the inner pillar portion. That is, the tube has a three-layer structure having a sacrificial material layer, a core material, and a brazing material layer.
  • the strength of the tube when reducing the thickness of the tube, since the thickness of the tube is reduced, the strength is lowered, and as a result, the durability is lowered.
  • a method of increasing the strength by adding Mg to aluminum constituting the core material can be considered. At that time, the strength of the tube can be further improved by adding Mg not only to the core material but also to the sacrificial material.
  • the brazing property may be deteriorated.
  • the tube having the inner pillar portion as described above it is necessary to braze the joint portion between the tube inner surface and the inner pillar portion, that is, the contact portion between the sacrificial material layer and the brazing material layer. Mg added to the steel sometimes deteriorates the brazing property.
  • the present disclosure aims to suppress a deterioration in brazing property with a member to be joined in a heat exchanger tube containing a material that deteriorates brazing property.
  • the heat exchanger tube includes a tube main body portion having a core material made of aluminum or aluminum alloy while fluid flows therein.
  • the tube main body is provided between a joining member, a joined member brazed to the joining member with a brazing material, and a brazed joining surface between the joining member and the joined member.
  • a flux for chemically removing the oxide film a flux for chemically removing the oxide film.
  • the brazing joint surface in the joining member has a brazing surface constituent part, and the brazing surface constituent part is made of a material other than the brazing material and containing a reactive material that reacts with the flux.
  • the brazing surface constituting part is covered with a covering material made of a material other than the reaction material.
  • the brazing surface constituent part constituted by the material containing the reaction material that reacts with the flux is covered with the coating material constituted by a material other than the reaction material, that is, the flux and the brazing surface.
  • the covering material By disposing the covering material between the constituent parts, the reaction material is diffused from the brazing surface constituent part to the covering material at the time of brazing. Therefore, since it can suppress that the reaction material from a brazing surface structure part spread
  • the heat exchanger tube includes a tube main body portion having a core material made of aluminum or an aluminum alloy while fluid is circulated therein.
  • the tube main body includes a joining member and a member to be joined that is brazed to the joining member with a brazing material.
  • the brazing joint surface with the member to be joined in the joining member has a brazing surface constituting part made of a material containing a flow inhibiting material that inhibits the flow of the brazing material melted during brazing.
  • the brazing surface constituting part is covered with a covering material made of a material other than the flow-inhibiting material.
  • the brazing surface constituting portion constituted by the material containing the flow inhibiting material that inhibits the flow of the molten brazing material is covered with the covering material constituted by a material other than the flow inhibiting material.
  • the flow-inhibiting material is diffused from the brazing surface constituting portion to the coating material. Therefore, it is possible to suppress the flow-inhibiting material from diffusing into the brazing material, so that it is possible to inhibit the flow of the molten brazing material from being inhibited and the brazing performance from deteriorating.
  • FIG. 6 is an enlarged view of a part VI in FIG. 5. It is sectional drawing orthogonal to the cooling water distribution direction of the tube which concerns on the modification of this indication.
  • a tube 2 is a tube through which engine cooling water flows.
  • the tube 2 is formed in a flat shape so that the air flow direction (perpendicular to the paper surface) coincides with the major axis direction, and the longitudinal direction thereof. Are arranged in parallel in the vertical direction so as to coincide with the horizontal direction.
  • wave-shaped outer fins 3 are joined to the flat surfaces on both sides of the tube 2, and the heat transfer area between the engine cooling water and the air is increased by increasing the heat transfer area with the air by the outer fins 3. Promoting.
  • the substantially rectangular heat exchanging portion including the tube 2 and the outer fin 3 is referred to as a core portion 4.
  • the header tank 5 extends in a direction (vertical direction in the present embodiment) perpendicular to the longitudinal direction of the tube 2 at a longitudinal end portion (in the present embodiment, left and right ends) of the tube 2. It communicates.
  • the header tank 5 includes a core plate 5a to which the tube 2 is inserted and joined, and a tank body 5b that constitutes a tank internal space together with the core plate 5a.
  • the core plate 5a is made of metal (for example, aluminum alloy), and the tank body 5b is made of resin.
  • a concave groove (not shown) is provided on the entire periphery of the edge of the core plate 5a.
  • a packing (not shown) made of an elastic material such as rubber is disposed in the groove, and the gap between the tank body 5b and the core plate 5a is liquid-tightly sealed by this packing.
  • a claw portion (not shown) is erected on the peripheral edge of the core plate 5a, and the tank main body 5b is fixed to the flange formed on the outer peripheral edge of the tank main body 5b. 5a is assembled.
  • inserts 6 that extend substantially in parallel with the longitudinal direction of the tube 2 and reinforce the core portion 4 are provided.
  • the tube 2 has a tube body 21 that forms a cooling water passage (fluid passage) 20 through which cooling water flows.
  • a cooling water passage fluid passage
  • an inner column portion 22 is provided inside the tube main body portion 21, so as to connect the two flat surfaces and increase the pressure resistance of the tube main body portion 21.
  • the inner column portion 22 is disposed in the center portion in the air flow direction inside the tube main body portion 21.
  • the inner column portion 22 divides the cooling water flow path 20 inside the tube main body portion 21 into two.
  • the tube body portion 21 and the inner column portion 22 are integrally formed by bending a plate member 200 made of aluminum alloy. Specifically, the portions in the vicinity of both ends of the plate-like member 200 are bent substantially at right angles so as to protrude toward the tube inner surface 11 side as the back surface of the plate-like member 200 continuously in the longitudinal direction intersecting the width direction. Thereby, the 1st brazing part 12 is formed.
  • the 2nd brazing part 13 is formed.
  • the length of the second brazing part 13 is longer than the length of the first brazing part 12, and the height of the cooling water flow path 20 is high. It is almost equal to H.
  • the height H of the cooling water channel 20 is the length of the cooling water channel 20 in the tube stacking direction.
  • the tube 2 is bent so that the inner side of the second brazing portion 13 in the plate-shaped member 200 is bent toward the tube inner surface 11 side, that is, with the opposite tube outer surface 14 side being the outer side.
  • the surface on the side is in contact with the surface on the back surface side (tube inner surface 11 side) of the central portion in the width direction of the plate-like member 200 in the longitudinal direction, and the surface side of the second brazed portion 13 ( The surfaces on the tube outer surface 14 side) are formed so as to contact each other over the longitudinal direction.
  • the inner pillar portion 22 is formed by the first brazing portion 12 and the second brazing portion 13. Further, the tube main body portion 21 is formed by a portion other than the first brazing portion 12 and the second brazing portion 13 in the plate-like member 200.
  • the inner pillar portion 22 is brazed and joined to the tube body portion 21 by brazing the first brazing portion 12 to the joining member 23 of the tube body portion 21 that is the plate-like member 200. Therefore, the inner column part 22 (more specifically, the first brazing part 12) of the present embodiment may be used as an example of a member to be joined that is brazed to the joining member 23 of the tube main body part 21.
  • the plate-like member 200 has a core material 201 made of an aluminum alloy. Specifically, in this embodiment, an aluminum-magnesium (Al—Mg) alloy is employed as the core material 201.
  • Al—Mg aluminum-magnesium
  • a brazing material 202 for brazing the outer fin 3, the first brazing portion 12, and the second brazing portion 13 is clad on the surface (tube outer surface 14) of the core material 201.
  • an aluminum-silicon (Al—Si) brazing material is employed as the brazing material 202.
  • the back surface (tube inner surface 11) of the core material 201 is clad with a sacrificial material 203 made of a material whose potential is lower than that of the core material 201.
  • the sacrificial material 203 functions to suppress corrosion of the core material 201 by preferentially corroding the core material 201.
  • an aluminum-zinc-magnesium (Al—Zn—Mg) alloy is employed as the sacrificial material 203.
  • a flux 300 for chemically removing an oxide film on the brazed joint surface is applied to the brazed joint surface between the tube main body portion 21 and the first brazed portion 12 in the plate-like member 200.
  • Mg is added to the aluminum alloy, which is a constituent material of the core material 201 and the sacrificial material 203, in order to increase the strength of the tube 2.
  • Mg is a material that is not contained in the brazing filler metal 202 and reacts with the flux 300. Therefore, Mg of this embodiment may be used as an example of a reaction material that reacts with the flux.
  • brazing surface configuration As described above, since Mg is added to the constituent material of the core material 201 and the sacrificial material 203, the portion constituting the joint surface with the first brazing portion 12 in the tube main body portion 21 (hereinafter referred to as brazing surface configuration). It can be said that the portion 21a is made of an aluminum alloy material containing Mg. In the present embodiment, the brazing surface constituting portion 21 a is disposed at a substantially central portion in the width direction of the plate-like member 200.
  • the brazing surface constituting part 21a of the tube main body part 21 is covered with a coating material 400 as an example of a covering material made of a material other than Mg.
  • a coating material 400 as an example of a covering material made of a material other than Mg.
  • pure aluminum is employed as the coating material 400.
  • the tube manufacturing apparatus includes a material roll 71, a coating apparatus 72, a forming apparatus 73, and the like.
  • the material roll 71 is obtained by winding a plate member 200 that is a tube material.
  • the coating device 72 applies the coating material 400 to the central portion in the width direction of the plate-like member 200 taken out from the material roll 71.
  • the molding device 73 performs plastic working on the plate member 200 with a plurality of molding rollers 730 while feeding the plate member 200 coated with the coating material 400 by the coating device 72 in the longitudinal direction thereof.
  • the plate member 200 is gradually formed into a predetermined shape. Specifically, the tube main body portion 21 and the inner column portion 22 are integrally formed by bending the plate-like member 200 as described above.
  • a plurality of tubes 2 manufactured by the above-described method, a core plate 5a in which a brazing material is clad on the outer surface of the tank, that is, the surface facing the core portion 4, the outer fin 3, and the insert 6 are provided.
  • this temporarily assembled body is carried into a heating furnace, and the core portion 4 (that is, the tube 2 and the outer fin 3), the insert 6 and the core plate 5a are integrally joined by brazing. More specifically, by heating the temporary assembly in a heating furnace, the tube 2 and the insert 6 are brazed and joined to the core plate 5a by the brazing material clad on the core plate 5a, and the surface of the tube 2 The outer fin 3 is brazed and joined to the outer surface of the tube 2 by the brazing material 202 clad.
  • the first brazing portion 12 of the inner column portion 22 is brazed and joined to the tube main body portion 21 by the brazing material 202 clad on the surface of the tube 2, and the second brazing facing the inner column portion 22.
  • the parts 13 are brazed and joined.
  • the tank body 5b is assembled to the core plate 5a. In this way, the radiator 1 shown in FIG. 1 is completed.
  • Mg is added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2. For this reason, since the strength of the tube 2 can be increased, the durability of the tube 2 can be improved. On the other hand, Mg reacts with the flux 300 at the time of brazing, obstructs the spreadability of the flux 300, and may deteriorate the brazing property.
  • the brazing surface constituting portion 21a (sacrificial material 203) made of an aluminum alloy containing Mg is covered with a coating material 400 made of pure aluminum not containing Mg. Yes. That is, the coating material 400 is arrange
  • the tube 2 of the present embodiment includes a tube main body portion 21 and inner fins 8 that are provided in the tube main body portion 21 and increase the heat transfer area with cooling water. Yes.
  • the tube main body 21 and the inner fin 8 are composed of different plate-like members 200 and 800, respectively.
  • the plate-like member 800 constituting the inner fin 8 for example, an aluminum alloy can be used.
  • the tube main body portion 21 of the present embodiment includes a first flat plate portion 211 and a second flat plate portion 212 that face each other in parallel in the short diameter direction, and a circular arc that protrudes outward on one end side (left side of the paper surface) in the long diameter direction. It comprises an arcuate curved portion 213 and a caulking portion 214 for caulking and joining the first and second flat plate portions 211 and 212 on the other end side in the major axis direction (right side in the drawing).
  • the arcuate curved portion 213 is bent integrally with the first and second flat plate portions 211 and 212, and connects the first and second flat plate portions 211 and 212.
  • the fin side flat plate part 81 formed in the flat form parallel to the 1st, 2nd flat plate parts 211 and 212 is provided in the crimping
  • FIG. The fin-side flat plate portion 81 is wound together with the second flat plate portion 212 by the first flat plate portion 211 while being sandwiched between the first and second flat plate portions 211 and 212 of the tube main body portion 21.
  • the winding caulking means that one of the first and second flat plate portions 211 and 212 of the tube main body portion 21 (the first flat plate portion 211 in this embodiment) is replaced with the other flat plate portion (this embodiment).
  • both the flat plate portions 211 and 212 are mechanically fixed by plastically deforming the flat plate portion on one side so as to be wound around the second flat plate portion 212).
  • the portion of the inner fin 8 excluding the fin-side flat plate portion 81 is formed in a wave shape so as to have a flat portion 82 that is substantially parallel to the cooling water flow direction and a top portion 83 that connects between the adjacent flat portions 82. .
  • the top part 83 is formed so that the 1st, 2nd flat plate parts 211 and 212 of the tube main-body part 21 may be contact
  • the inner fin 8 is brazed and joined to the tube main body 21 by brazing the top 83 of the inner fin 8 to the joining members 23 of the first and second flat plate portions 211 and 212 of the tube main body 21. Therefore, the inner fin 8 of the present embodiment may be used as an example of a member to be bonded according to the present disclosure.
  • the plate-like member 800 constituting the inner fin 8 has a core material 801 made of aluminum alloy.
  • a core material 801 made of aluminum alloy.
  • Al—Mg aluminum-magnesium
  • the brazing material 802 for brazing the tube main body 21 is clad on both surfaces of the core material 801.
  • an aluminum-silicon (Al—Si) brazing material is employed as the brazing material 802.
  • the flux 300 that chemically removes the oxide film on the brazed joint surface is applied to the brazed joint surface between the tube body 21 and the inner fin 8.
  • the brazing surface constituting portion 21a is made of an aluminum alloy material containing Mg.
  • the brazing surface constituting portion 21a made of an aluminum alloy containing Mg is covered with the coating material 400 made of pure aluminum not containing Mg. According to this, since Mg from the brazing surface constituting portion 21 a is diffused into the coating material 400 when the plate-like member 200 is brazed, it is possible to prevent Mg from diffusing into the flux 300. Therefore, the same effect as the first embodiment can be obtained.
  • the tube 2 in which the inner pillar part 22 was provided in the inside of the tube main-body part 21 was formed by bending the plate-shaped member 200 toward the tube inner surface 11 side from both ends.
  • the method of forming the tube 2 is not limited to this.
  • a protrusion 24 is bent at the center in the width direction of the plate-like member 200, the opposing inner surfaces of the protrusion 24 are brazed and joined, and the thickness direction of the protrusion 24 (plate-like)
  • the tube 2 may be formed by brazing and joining the width direction both ends 25 of the plate-like member 200 to the side portion of the member 200 in the width direction.
  • the inner pillar portion 22 is formed by the projection 24 and both ends 25 in the width direction of the plate member 200 brazed to the projection 24.
  • part which comprises the joining surface with the inner pillar part 22 in the tube main-body part 21, ie, the width direction both ends 25 of the plate-shaped member 200 comprises the brazing surface structure part 21a.
  • Mg which is a reaction material that reacts with the flux 300
  • Mg is added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2.
  • the present invention is not limited to this.
  • at least one of Ti and Mn may be added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2.
  • Ti and Mn are flow-inhibiting materials that inhibit the flow of the brazing filler metal 202 that has melted during brazing, if Ti or Mn diffuses into the brazing filler metal 202, brazing properties may deteriorate.
  • the brazing surface constituting portion 21a made of an aluminum alloy containing at least one of Ti and Mn with a coating material 400 made of a material not containing Ti and Mn, a plate shape
  • Ti and Mn are diffused from the brazing surface constituting portion 21 a into the coating material 400. Therefore, since Ti and Mn can be prevented from diffusing into the brazing material 202, it is possible to inhibit the flow of the molten brazing material 202 from being inhibited and the brazing performance from deteriorating.
  • the coating material 400 pure aluminum, an aluminum alloy not containing Ti and Mn, or a brazing material not containing Ti and Mn can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An inner post part (22) is brazed to the joint part (23) of a tube main body part (21) by means of brazing filler material (202). A flux (300) is provided on the brazed joint surface of the joint part (23) and the inner post part (22) to chemically remove oxidation film on the brazed joint surface. A brazing surface formation part (21a) forming the brazed joint surface in the joint part (23) is formed of a material other than the brazing filler material (202) and containing a reaction material that reacts with the flux (300). The brazing surface formation part (21a) is covered by a coating material (400) formed of a material other than the reaction material. Thus, it is possible to prevent deterioration in the ability to accomplish brazing to a joined member in a heat exchanger tube containing a material that degrades the brazing ability.

Description

熱交換器用チューブTube for heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年1月25日に出願された日本特許出願2013-012345を基にしている。 This application is based on Japanese Patent Application No. 2013-012345 filed on January 25, 2013, the disclosure of which is incorporated herein by reference.
 本開示は、熱交換器に搭載される熱交換器用チューブに関するものである。 The present disclosure relates to a heat exchanger tube mounted on a heat exchanger.
 従来、アルミニウム製の熱交換器用チューブ(以下、単にチューブともいう)として、チューブの内部に、チューブの耐圧強度を高めるための内柱部が設けられたものが提案されている(例えば、特許文献1参照)。このようなチューブは、扁平管状に折り曲げられた金属板の幅方向(曲げ方向)両端部を互いにろう付け接合することによって形成されている。 2. Description of the Related Art Conventionally, aluminum heat exchanger tubes (hereinafter also simply referred to as tubes) have been proposed in which inner column portions for increasing the pressure resistance of the tubes are provided inside the tubes (for example, Patent Documents). 1). Such a tube is formed by brazing and joining the width direction (bending direction) both ends of the metal plate bent into the flat tube shape.
特表2005-510688号公報JP 2005-510688 A
 一般に、水を主成分とする流体をチューブ内に流通させる場合、チューブ内面(当該流体と接触する面)には、Znを添加した犠牲材層がクラッドされている。また、チューブの外面には、アウターフィンとの接合や、内柱部の接合のために、Siを添加したろう材層がクラッドされている。つまり、チューブは、犠牲材層-芯材-ろう材層を有する三層構造になっている。 Generally, when a fluid containing water as a main component is circulated in a tube, a sacrificial material layer to which Zn is added is clad on the inner surface of the tube (a surface in contact with the fluid). Further, a brazing filler metal layer to which Si is added is clad on the outer surface of the tube for joining to the outer fin and joining the inner pillar portion. That is, the tube has a three-layer structure having a sacrificial material layer, a core material, and a brazing material layer.
 ところで、チューブの薄肉化を図る場合、チューブの板厚を低下させるので強度が低下し、ひいては耐久性が低下する。これに対し、チューブの耐久性を向上させるために、芯材を構成するアルミニウムにMgを添加して強度を高める手法が考えられる。その際、芯材だけではなく、犠牲材にもMgを添加することで、さらにチューブの強度を向上させることができる。 By the way, when reducing the thickness of the tube, since the thickness of the tube is reduced, the strength is lowered, and as a result, the durability is lowered. On the other hand, in order to improve the durability of the tube, a method of increasing the strength by adding Mg to aluminum constituting the core material can be considered. At that time, the strength of the tube can be further improved by adding Mg not only to the core material but also to the sacrificial material.
 しかしながら、Mgは、アルミニウムのろう付け時に酸化皮膜を除去するフラックスの広がり性を阻害するため、ろう付け性が悪化するおそれがある。特に、上述したような内柱部を有するチューブでは、チューブ内面と内柱部との接合部、つまり、犠牲材層とろう材層との接触部分のろう付けを行う必要があるため、犠牲材に添加されたMgがろう付け性を悪化させる場合がある。 However, since Mg inhibits the spread of the flux that removes the oxide film during brazing of aluminum, the brazing property may be deteriorated. In particular, in the tube having the inner pillar portion as described above, it is necessary to braze the joint portion between the tube inner surface and the inner pillar portion, that is, the contact portion between the sacrificial material layer and the brazing material layer. Mg added to the steel sometimes deteriorates the brazing property.
 本開示は上記点に鑑みて、ろう付け性を悪化させる材料を含有する熱交換器用チューブにおいて、被接合部材とのろう付け性の悪化を抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress a deterioration in brazing property with a member to be joined in a heat exchanger tube containing a material that deteriorates brazing property.
 本開示の一態様によると、熱交換器用チューブは、内部に流体が流通するとともに、アルミニウムまたはアルミニウム合金製の芯材を有するチューブ本体部を備える。チューブ本体部は、接合部材と、接合部材にろう材によりろう付け接合された被接合部材と、接合部材と被接合部材とのろう付け接合面の間に設けられて、当該ろう付け接合面の酸化皮膜を化学的に除去するフラックスと、を有する。接合部材におけるろう付け接合面はろう付け面構成部を有し、ろう付け面構成部はろう材以外の材料であって、かつ、フラックスと反応する反応材料を含有する材料により構成されている。ろう付け面構成部は、反応材料以外の材料により構成される被覆材によって被覆されている。 According to an aspect of the present disclosure, the heat exchanger tube includes a tube main body portion having a core material made of aluminum or aluminum alloy while fluid flows therein. The tube main body is provided between a joining member, a joined member brazed to the joining member with a brazing material, and a brazed joining surface between the joining member and the joined member. And a flux for chemically removing the oxide film. The brazing joint surface in the joining member has a brazing surface constituent part, and the brazing surface constituent part is made of a material other than the brazing material and containing a reactive material that reacts with the flux. The brazing surface constituting part is covered with a covering material made of a material other than the reaction material.
 これによれば、フラックスと反応する反応材料を含有する材料により構成されているろう付け面構成部を、当該反応材料以外の材料により構成される被覆材によって被覆する、すなわち、フラックスとろう付け面構成部との間に被覆材を配置することで、ろう付け時に、ろう付け面構成部から反応材料が被覆材へ拡散される。したがって、ろう付け面構成部からの反応材料がフラックスへ拡散することを抑制できるので、反応材料とフラックスとが反応してろう付け性が悪化することを抑制できる。 According to this, the brazing surface constituent part constituted by the material containing the reaction material that reacts with the flux is covered with the coating material constituted by a material other than the reaction material, that is, the flux and the brazing surface. By disposing the covering material between the constituent parts, the reaction material is diffused from the brazing surface constituent part to the covering material at the time of brazing. Therefore, since it can suppress that the reaction material from a brazing surface structure part spread | diffuses to a flux, it can suppress that a reaction material and a flux react and brazing property deteriorates.
 本開示の他の一態様によると、熱交換器用チューブは、内部に流体が流通するとともに、アルミニウムまたはアルミニウム合金製の芯材を有するチューブ本体部を備える。チューブ本体部は、接合部材と、接合部材にろう材によりろう付け接合された被接合部材と、を有する。接合部材における被接合部材とのろう付け接合面は、ろう付け時に溶融したろう材の流動を阻害する流動阻害材料を含有する材料により構成されているろう付け面構成部を有しする。ろう付け面構成部は、流動阻害材料以外の材料により構成される被覆材によって被覆されている。 According to another aspect of the present disclosure, the heat exchanger tube includes a tube main body portion having a core material made of aluminum or an aluminum alloy while fluid is circulated therein. The tube main body includes a joining member and a member to be joined that is brazed to the joining member with a brazing material. The brazing joint surface with the member to be joined in the joining member has a brazing surface constituting part made of a material containing a flow inhibiting material that inhibits the flow of the brazing material melted during brazing. The brazing surface constituting part is covered with a covering material made of a material other than the flow-inhibiting material.
 これによれば、溶融したろう材の流動を阻害する流動阻害材料を含有する材料により構成されているろう付け面構成部を、当該流動阻害材料以外の材料により構成される被覆材によって被覆することで、ろう付け時に、ろう付け面構成部から流動阻害材料が被覆材へ拡散される。したがって、流動阻害材料がろう材へ拡散することを抑制できるので、溶融したろう材の流動が阻害されてろう付け性が悪化することを抑制できる。 According to this, the brazing surface constituting portion constituted by the material containing the flow inhibiting material that inhibits the flow of the molten brazing material is covered with the covering material constituted by a material other than the flow inhibiting material. Thus, at the time of brazing, the flow-inhibiting material is diffused from the brazing surface constituting portion to the coating material. Therefore, it is possible to suppress the flow-inhibiting material from diffusing into the brazing material, so that it is possible to inhibit the flow of the molten brazing material from being inhibited and the brazing performance from deteriorating.
本開示の第1実施形態におけるラジエータを示す正面図である。It is a front view showing a radiator in a 1st embodiment of this indication. 第1実施形態に係るチューブの冷却水流通方向と直交する断面図である。It is sectional drawing orthogonal to the cooling water distribution direction of the tube which concerns on 1st Embodiment. 図2のIII部拡大図である。It is the III section enlarged view of FIG. 第1実施形態におけるチューブの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the tube in 1st Embodiment. 本開示の第2実施形態に係るチューブの冷却水流通方向と直交する断面図である。It is sectional drawing orthogonal to the cooling water flow direction of the tube which concerns on 2nd Embodiment of this indication. 図5のVI部拡大図である。FIG. 6 is an enlarged view of a part VI in FIG. 5. 本開示の変形例に係るチューブの冷却水流通方向と直交する断面図である。It is sectional drawing orthogonal to the cooling water distribution direction of the tube which concerns on the modification of this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 本開示の第1実施形態について図1~図4に基づいて説明する。本実施形態は、本開示に係る熱交換器用チューブを、車両用エンジン(内燃機関)を冷却したエンジン冷却水と空気とを熱交換するラジエータ1のチューブ2に適用したものである。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, the heat exchanger tube according to the present disclosure is applied to the tube 2 of the radiator 1 that exchanges heat between engine cooling water that has cooled a vehicle engine (internal combustion engine) and air.
 図1中、チューブ2はエンジン冷却水が流れる管であり、このチューブ2は、空気の流通方向(紙面垂直方向)が長径方向と一致するように扁平状に形成されているとともに、その長手方向が水平方向に一致するように鉛直方向に複数本平行に配置されている。 In FIG. 1, a tube 2 is a tube through which engine cooling water flows. The tube 2 is formed in a flat shape so that the air flow direction (perpendicular to the paper surface) coincides with the major axis direction, and the longitudinal direction thereof. Are arranged in parallel in the vertical direction so as to coincide with the horizontal direction.
 また、チューブ2の両側の扁平面には波状に成形されたアウターフィン3が接合されており、このアウターフィン3により空気との伝熱面積を増大させてエンジン冷却水と空気との熱交換を促進している。以下、チューブ2およびアウターフィン3からなる略矩形状の熱交換部をコア部4と呼ぶ。 Further, wave-shaped outer fins 3 are joined to the flat surfaces on both sides of the tube 2, and the heat transfer area between the engine cooling water and the air is increased by increasing the heat transfer area with the air by the outer fins 3. Promoting. Hereinafter, the substantially rectangular heat exchanging portion including the tube 2 and the outer fin 3 is referred to as a core portion 4.
 ヘッダタンク5は、チューブ2の長手方向端部(本実施形態では、左右端)にて、チューブ2の長手方向と直交する方向(本実施形態では、鉛直方向)に延びて複数のチューブ2と連通するものである。ヘッダタンク5は、チューブ2が挿入接合されたコアプレート5aと、コアプレート5aとともにタンク内空間を構成するタンク本体5bとを有して構成されている。なお、本実施形態では、コアプレート5aは金属(例えば、アルミニウム合金)製であり、タンク本体5bは樹脂製である。 The header tank 5 extends in a direction (vertical direction in the present embodiment) perpendicular to the longitudinal direction of the tube 2 at a longitudinal end portion (in the present embodiment, left and right ends) of the tube 2. It communicates. The header tank 5 includes a core plate 5a to which the tube 2 is inserted and joined, and a tank body 5b that constitutes a tank internal space together with the core plate 5a. In the present embodiment, the core plate 5a is made of metal (for example, aluminum alloy), and the tank body 5b is made of resin.
 コアプレート5aの縁部全周には、凹状の溝部(図示せず)が設けられている。この溝部には、ゴム等の弾性材からなるパッキン(図示せず)が配置されており、このパッキンにてタンク本体5bとコアプレート5aとの隙間を液密に密閉している。コアプレート5aの周縁部には爪部(図示せず)が立設されており、この爪部をタンク本体5bの外周縁に形成されたフランジにカシメ固定することによって、タンク本体5bはコアプレート5aに組み付けられている。 A concave groove (not shown) is provided on the entire periphery of the edge of the core plate 5a. A packing (not shown) made of an elastic material such as rubber is disposed in the groove, and the gap between the tank body 5b and the core plate 5a is liquid-tightly sealed by this packing. A claw portion (not shown) is erected on the peripheral edge of the core plate 5a, and the tank main body 5b is fixed to the flange formed on the outer peripheral edge of the tank main body 5b. 5a is assembled.
 コア部4の両端部には、チューブ2の長手方向と略平行に延びてコア部4を補強するインサート6が設けられている。 At both ends of the core portion 4, inserts 6 that extend substantially in parallel with the longitudinal direction of the tube 2 and reinforce the core portion 4 are provided.
 次に、本実施形態の特徴点であるチューブ2の形状について、図2および図3に基づいて説明する。 Next, the shape of the tube 2 that is a characteristic point of the present embodiment will be described with reference to FIGS.
 図2に示すように、チューブ2は、内部に冷却水が流通する冷却水流路(流体流路)20を形成するチューブ本体部21を有している。チューブ本体部21の内部には、二つの扁平面同士を接続するように形成され、チューブ本体部21の耐圧強度を高める内柱部22が設けられている。内柱部22は、チューブ本体部21の内部における空気の流通方向の中央部に配置されている。この内柱部22により、チューブ本体部21内部の冷却水流路20が二つに仕切られている。 As shown in FIG. 2, the tube 2 has a tube body 21 that forms a cooling water passage (fluid passage) 20 through which cooling water flows. Inside the tube main body portion 21, an inner column portion 22 is provided so as to connect the two flat surfaces and increase the pressure resistance of the tube main body portion 21. The inner column portion 22 is disposed in the center portion in the air flow direction inside the tube main body portion 21. The inner column portion 22 divides the cooling water flow path 20 inside the tube main body portion 21 into two.
 チューブ本体部21および内柱部22は、アルミニウム合金製の板状部材200を折り曲げることにより、一体に形成されている。具体的には、板状部材200における両端部近傍の部位を、幅方向と交差する長手方向にわたって連続して、板状部材200の裏面としてのチューブ内面11側に突出するように略直角に折り曲げることにより、第1ろう付け部12が形成されている。 The tube body portion 21 and the inner column portion 22 are integrally formed by bending a plate member 200 made of aluminum alloy. Specifically, the portions in the vicinity of both ends of the plate-like member 200 are bent substantially at right angles so as to protrude toward the tube inner surface 11 side as the back surface of the plate-like member 200 continuously in the longitudinal direction intersecting the width direction. Thereby, the 1st brazing part 12 is formed.
 板状部材200における第1ろう付け部12の内側を、幅方向と交差する長手方向にわたって連続して、板状部材200の裏面としてのチューブ内面11側に突出するように略直角に折り曲げることにより、第2ろう付け部13が形成されている。チューブ2の長手方向(冷却水の流通方向)に垂直な断面において、第2ろう付け部13の長さは、第1ろう付け部12の長さよりも長くなっており、冷却水流路20の高さHとほぼ等しくなっている。なお、冷却水流路20の高さHとは、冷却水流路20におけるチューブ積層方向の長さである。 By bending the inner side of the first brazing portion 12 in the plate-like member 200 continuously in the longitudinal direction intersecting the width direction so as to protrude toward the tube inner surface 11 as the back surface of the plate-like member 200, The 2nd brazing part 13 is formed. In the cross section perpendicular to the longitudinal direction of the tube 2 (circulation direction of the cooling water), the length of the second brazing part 13 is longer than the length of the first brazing part 12, and the height of the cooling water flow path 20 is high. It is almost equal to H. The height H of the cooling water channel 20 is the length of the cooling water channel 20 in the tube stacking direction.
 そして、チューブ2は、板状部材200における第2ろう付け部13の内側を、チューブ内面11側へ、すなわち反対側のチューブ外面14側を外側にして曲げて、第1ろう付け部12の表面側(チューブ外面14側)の面が、板状部材200における幅方向の中央部の裏面側(チューブ内面11側)の面と、長手方向にわたって接するとともに、第2ろう付け部13の表面側(チューブ外面14側)の面同士が、長手方向にわたって接するように形成される。 Then, the tube 2 is bent so that the inner side of the second brazing portion 13 in the plate-shaped member 200 is bent toward the tube inner surface 11 side, that is, with the opposite tube outer surface 14 side being the outer side. The surface on the side (tube outer surface 14 side) is in contact with the surface on the back surface side (tube inner surface 11 side) of the central portion in the width direction of the plate-like member 200 in the longitudinal direction, and the surface side of the second brazed portion 13 ( The surfaces on the tube outer surface 14 side) are formed so as to contact each other over the longitudinal direction.
 これにより、第1ろう付け部12および第2ろう付け部13によって、内柱部22が形成されている。また、板状部材200における第1ろう付け部12および第2ろう付け部13以外の部位によって、チューブ本体部21が形成されている。 Thus, the inner pillar portion 22 is formed by the first brazing portion 12 and the second brazing portion 13. Further, the tube main body portion 21 is formed by a portion other than the first brazing portion 12 and the second brazing portion 13 in the plate-like member 200.
 第1ろう付け部12を板状部材200であるチューブ本体部21の接合部材23にろう付けすることにより、内柱部22がチューブ本体部21にろう付け接合されている。したがって、本実施形態の内柱部22(より詳細には第1ろう付け部12)は、チューブ本体部21の接合部材23にろう付け接合される被接合部材の一例として用いられてもよい。 The inner pillar portion 22 is brazed and joined to the tube body portion 21 by brazing the first brazing portion 12 to the joining member 23 of the tube body portion 21 that is the plate-like member 200. Therefore, the inner column part 22 (more specifically, the first brazing part 12) of the present embodiment may be used as an example of a member to be joined that is brazed to the joining member 23 of the tube main body part 21.
 図3に示すように、板状部材200は、アルミニウム合金製の芯材201を有している。本実施形態では、具体的に、芯材201として、アルミニウム-マグネシウム(Al-Mg)系合金が採用されている。 As shown in FIG. 3, the plate-like member 200 has a core material 201 made of an aluminum alloy. Specifically, in this embodiment, an aluminum-magnesium (Al—Mg) alloy is employed as the core material 201.
 芯材201の表面(チューブ外面14)には、アウターフィン3、第1ろう付け部12および第2ろう付け部13のろう付けを行うためのろう材202がクラッドされている。本実施形態では、具体的に、ろう材202として、アルミニウム-シリコン(Al-Si)系ろう材が採用されている。 A brazing material 202 for brazing the outer fin 3, the first brazing portion 12, and the second brazing portion 13 is clad on the surface (tube outer surface 14) of the core material 201. In the present embodiment, specifically, an aluminum-silicon (Al—Si) brazing material is employed as the brazing material 202.
 芯材201の裏面(チューブ内面11)には、芯材201よりも電位が卑となる材料で構成された犠牲材203がクラッドされている。犠牲材203は、芯材201に対して優先的に腐食することで、芯材201の腐食を抑制する機能を果たす。本実施形態では、具体的に、犠牲材203として、アルミニウム-亜鉛-マグネシウム(Al-Zn-Mg)合金が採用されている。 The back surface (tube inner surface 11) of the core material 201 is clad with a sacrificial material 203 made of a material whose potential is lower than that of the core material 201. The sacrificial material 203 functions to suppress corrosion of the core material 201 by preferentially corroding the core material 201. In this embodiment, specifically, an aluminum-zinc-magnesium (Al—Zn—Mg) alloy is employed as the sacrificial material 203.
 板状部材200における、チューブ本体部21と第1ろう付け部12とのろう付け接合面には、当該ろう付け接合面の酸化皮膜を化学的に除去するフラックス300が塗布されている。 A flux 300 for chemically removing an oxide film on the brazed joint surface is applied to the brazed joint surface between the tube main body portion 21 and the first brazed portion 12 in the plate-like member 200.
 上述したように、芯材201および犠牲材203の構成材料であるアルミニウム合金には、それぞれ、チューブ2の強度を高めるためにMgが添加されている。ここで、Mgは、ろう材202には含有されておらず、かつ、フラックス300と反応する材料である。したがって、本実施形態のMgが、フラックスと反応する反応材料の一例として用いられても良い。 As described above, Mg is added to the aluminum alloy, which is a constituent material of the core material 201 and the sacrificial material 203, in order to increase the strength of the tube 2. Here, Mg is a material that is not contained in the brazing filler metal 202 and reacts with the flux 300. Therefore, Mg of this embodiment may be used as an example of a reaction material that reacts with the flux.
 上述したように、芯材201および犠牲材203の構成材料にMgが添加されているので、チューブ本体部21における第1ろう付け部12との接合面を構成する部位(以下、ろう付け面構成部21aという)は、Mgを含有するアルミニウム合金材料で構成されているといえる。本実施形態では、ろう付け面構成部21aは、板状部材200の幅方向の略中央部に配置されている。 As described above, since Mg is added to the constituent material of the core material 201 and the sacrificial material 203, the portion constituting the joint surface with the first brazing portion 12 in the tube main body portion 21 (hereinafter referred to as brazing surface configuration). It can be said that the portion 21a is made of an aluminum alloy material containing Mg. In the present embodiment, the brazing surface constituting portion 21 a is disposed at a substantially central portion in the width direction of the plate-like member 200.
 チューブ本体部21のろう付け面構成部21aは、Mg以外の材料により構成された被覆材の一例としてのコーティング材400に被覆されている。本実施形態では、コーティング材400として、純アルミニウムを採用している。 The brazing surface constituting part 21a of the tube main body part 21 is covered with a coating material 400 as an example of a covering material made of a material other than Mg. In the present embodiment, pure aluminum is employed as the coating material 400.
 次に、本実施形態のチューブ2の製造方法について説明する。図4に示すように、チューブ製造装置は、材料ロール71、コーティング装置72、成形装置73等から構成されている。 Next, the manufacturing method of the tube 2 of this embodiment is demonstrated. As shown in FIG. 4, the tube manufacturing apparatus includes a material roll 71, a coating apparatus 72, a forming apparatus 73, and the like.
 材料ロール71は、チューブ材料である板状部材200が巻かれたものである。コーティング装置72は、材料ロール71から取り出された板状部材200の幅方向中央部に、コーティング材400を塗布するものである。 The material roll 71 is obtained by winding a plate member 200 that is a tube material. The coating device 72 applies the coating material 400 to the central portion in the width direction of the plate-like member 200 taken out from the material roll 71.
 成形装置73は、コーティング装置72によってコーティング材400が塗布された板状部材200をその長手方向に送りながら、板状部材200に対して複数機の成形ローラ730にて塑性加工を施すことにより、板状部材200を徐々に所定形状に成形するものである。具体的には、板状部材200を上述したように折り曲げることにより、チューブ本体部21および内柱部22を一体に形成する。 The molding device 73 performs plastic working on the plate member 200 with a plurality of molding rollers 730 while feeding the plate member 200 coated with the coating material 400 by the coating device 72 in the longitudinal direction thereof. The plate member 200 is gradually formed into a predetermined shape. Specifically, the tube main body portion 21 and the inner column portion 22 are integrally formed by bending the plate-like member 200 as described above.
 次に、本実施形態のラジエータ1の製造方法について述べる。 Next, a method for manufacturing the radiator 1 of this embodiment will be described.
 まず、上記した方法で製造した複数本のチューブ2、タンク外方側の面、すなわちコア部4と対向する側の面にろう材がクラッドされたコアプレート5a、アウターフィン3、およびインサート6を用意する。 First, a plurality of tubes 2 manufactured by the above-described method, a core plate 5a in which a brazing material is clad on the outer surface of the tank, that is, the surface facing the core portion 4, the outer fin 3, and the insert 6 are provided. prepare.
 次に、所定間隔毎に整列配置された複数本のチューブ2間にアウターフィン3を装填してコア部4を仮組みした後、ヘッダタンク5のコアプレート5aに形成された貫通孔(図示せず)内に各チューブ2およびインサート6を挿入する。これにより、ヘッダタンク5のコアプレート5a、各チューブ2、アウターフィン3、およびインサート6の仮固定(仮組み付け)が完了する。 Next, after the outer fins 3 are loaded between the plurality of tubes 2 arranged at predetermined intervals and the core portion 4 is temporarily assembled, through holes (not shown) formed in the core plate 5a of the header tank 5 are shown. 1) Each tube 2 and insert 6 are inserted into the inside. Thereby, temporary fixing (temporary assembly) of the core plate 5a of the header tank 5, each tube 2, the outer fin 3, and the insert 6 is completed.
 次に、この仮組み付け体を加熱炉内に搬入し、コア部4(すなわちチューブ2およびアウターフィン3)、インサート6およびコアプレート5aをろう付けにて一体接合する。より詳細には、上記仮組み付け体を加熱炉内で加熱することで、コアプレート5aにクラッドされたろう材により、チューブ2およびインサート6がコアプレート5aにろう付け接合されるとともに、チューブ2の表面にクラッドされたろう材202により、アウターフィン3がチューブ2の外表面にろう付け接合される。 Next, this temporarily assembled body is carried into a heating furnace, and the core portion 4 (that is, the tube 2 and the outer fin 3), the insert 6 and the core plate 5a are integrally joined by brazing. More specifically, by heating the temporary assembly in a heating furnace, the tube 2 and the insert 6 are brazed and joined to the core plate 5a by the brazing material clad on the core plate 5a, and the surface of the tube 2 The outer fin 3 is brazed and joined to the outer surface of the tube 2 by the brazing material 202 clad.
 このとき、チューブ2の表面にクラッドされたろう材202により、内柱部22の第1ろう付け部12がチューブ本体部21にろう付け接合されるとともに、内柱部22の対向する第2ろう付け部13同士がろう付け接合される。 At this time, the first brazing portion 12 of the inner column portion 22 is brazed and joined to the tube main body portion 21 by the brazing material 202 clad on the surface of the tube 2, and the second brazing facing the inner column portion 22. The parts 13 are brazed and joined.
 次に、タンク本体5bをコアプレート5aに組み付ける。このようにして、図1に示すラジエータ1が完成する。 Next, the tank body 5b is assembled to the core plate 5a. In this way, the radiator 1 shown in FIG. 1 is completed.
 以上説明したように、本実施形態では、チューブ2を構成する板状部材200の芯材201および犠牲材203にMgを添加している。このため、チューブ2の強度を高めることができるので、チューブ2の耐久性を向上させることが可能となる。一方、Mgは、ろう付け時にフラックス300と反応し、フラックス300の広がり性を阻害し、ろう付け性が悪化するおそれがある。 As described above, in this embodiment, Mg is added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2. For this reason, since the strength of the tube 2 can be increased, the durability of the tube 2 can be improved. On the other hand, Mg reacts with the flux 300 at the time of brazing, obstructs the spreadability of the flux 300, and may deteriorate the brazing property.
 これに対し、本実施形態では、Mgを含有するアルミニウム合金により構成されているろう付け面構成部21a(犠牲材203)を、Mgを含有しない純アルミニウムにより構成されるコーティング材400によって被覆している。すなわち、フラックス300とろう付け面構成部21aとの間に、コーティング材400を配置している。これによれば、板状部材200のろう付け時に、ろう付け面構成部21aからのMgがコーティング材400へ拡散されるので、Mgがフラックス300へ拡散することを抑制できる。したがって、Mgとフラックス300とが反応してろう付け性が悪化することを抑制できる。
(第2実施形態)
 次に、本開示の第2実施形態について図5に基づいて説明する。本第2実施形態は、第1実施形態と比較して、チューブ本体部21の内部にインナーフィン8を設けた点が異なるものである。
On the other hand, in this embodiment, the brazing surface constituting portion 21a (sacrificial material 203) made of an aluminum alloy containing Mg is covered with a coating material 400 made of pure aluminum not containing Mg. Yes. That is, the coating material 400 is arrange | positioned between the flux 300 and the brazing surface structure part 21a. According to this, since Mg from the brazing surface constituting portion 21 a is diffused into the coating material 400 when the plate-like member 200 is brazed, it is possible to prevent Mg from diffusing into the flux 300. Therefore, it can suppress that Mg and the flux 300 react and brazing property deteriorates.
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described based on FIG. The second embodiment is different from the first embodiment in that the inner fin 8 is provided inside the tube main body 21.
 図5に示すように、本実施形態のチューブ2は、チューブ本体部21と、当該チューブ本体部21内に設けられるとともに、冷却水との伝熱面積を増大させるインナーフィン8とから構成されている。チューブ本体部21とインナーフィン8は、それぞれ異なる板状部材200、800で構成されている。ここで、インナーフィン8を構成する板状部材800として、例えばアルミニウム合金を用いることができる。 As shown in FIG. 5, the tube 2 of the present embodiment includes a tube main body portion 21 and inner fins 8 that are provided in the tube main body portion 21 and increase the heat transfer area with cooling water. Yes. The tube main body 21 and the inner fin 8 are composed of different plate- like members 200 and 800, respectively. Here, as the plate-like member 800 constituting the inner fin 8, for example, an aluminum alloy can be used.
 本実施形態のチューブ本体部21は、短径方向において並行に対向する第1平板部211および第2平板部212と、長径方向一端側(紙面左側)において外側に突出し円弧状に形成された円弧状湾曲部213と、長径方向他端側(紙面右側)において第1、第2平板部211、212をカシメ接合するカシメ部214から構成されている。円弧状湾曲部213は、第1、第2平板部211、212と一体に繋がって屈曲しており、第1、第2平板部211、212を接続している。 The tube main body portion 21 of the present embodiment includes a first flat plate portion 211 and a second flat plate portion 212 that face each other in parallel in the short diameter direction, and a circular arc that protrudes outward on one end side (left side of the paper surface) in the long diameter direction. It comprises an arcuate curved portion 213 and a caulking portion 214 for caulking and joining the first and second flat plate portions 211 and 212 on the other end side in the major axis direction (right side in the drawing). The arcuate curved portion 213 is bent integrally with the first and second flat plate portions 211 and 212, and connects the first and second flat plate portions 211 and 212.
 インナーフィン8のうちカシメ部214側には、第1、第2平板部211、212と平行な平板状に形成されたフィン側平板部81が設けられている。このフィン側平板部81は、チューブ本体部21の第1、第2平板部211、212で挟まれた状態で、第1平板部211により、第2平板部212と共に巻きカシメされている。 The fin side flat plate part 81 formed in the flat form parallel to the 1st, 2nd flat plate parts 211 and 212 is provided in the crimping | crimped part 214 side among the inner fins 8. FIG. The fin-side flat plate portion 81 is wound together with the second flat plate portion 212 by the first flat plate portion 211 while being sandwiched between the first and second flat plate portions 211 and 212 of the tube main body portion 21.
 ここで、巻きカシメとは、チューブ本体部21の第1、第2平板部211、212のうち一方側の平板部(本実施形態では第1平板部211)を他方側の平板部(本実施形態では第2平板部212)に巻き付けるように一方側の平板部を塑性変形させて両平板部211、212を機械的に固定するものである。 Here, the winding caulking means that one of the first and second flat plate portions 211 and 212 of the tube main body portion 21 (the first flat plate portion 211 in this embodiment) is replaced with the other flat plate portion (this embodiment). In the embodiment, both the flat plate portions 211 and 212 are mechanically fixed by plastically deforming the flat plate portion on one side so as to be wound around the second flat plate portion 212).
 インナーフィン8のうちフィン側平板部81を除く部位は、冷却水流れ方向と略平行な平面部82と、隣接する平面部82間を繋ぐ頂部83とを有するように波形状に形成されている。そして、頂部83が、チューブ本体部21の第1、第2平板部211、212と接するように形成されている。 The portion of the inner fin 8 excluding the fin-side flat plate portion 81 is formed in a wave shape so as to have a flat portion 82 that is substantially parallel to the cooling water flow direction and a top portion 83 that connects between the adjacent flat portions 82. . And the top part 83 is formed so that the 1st, 2nd flat plate parts 211 and 212 of the tube main-body part 21 may be contact | connected.
 インナーフィン8の頂部83をチューブ本体部21の第1、第2平板部211、212の接合部材23にろう付けすることにより、インナーフィン8がチューブ本体部21にろう付け接合されている。したがって、本実施形態のインナーフィン8が、本開示の被接合部材の一例として用いられてもよい。 The inner fin 8 is brazed and joined to the tube main body 21 by brazing the top 83 of the inner fin 8 to the joining members 23 of the first and second flat plate portions 211 and 212 of the tube main body 21. Therefore, the inner fin 8 of the present embodiment may be used as an example of a member to be bonded according to the present disclosure.
 図6に示すように、インナーフィン8を構成する板状部材800は、アルミニウム合金製の芯材801を有している。本実施形態では、具体的に、芯材801として、アルミニウム-マグネシウム(Al-Mg)系合金が採用されている。 As shown in FIG. 6, the plate-like member 800 constituting the inner fin 8 has a core material 801 made of aluminum alloy. In this embodiment, specifically, an aluminum-magnesium (Al—Mg) alloy is employed as the core material 801.
 芯材801の両面には、チューブ本体部21とのろう付けを行うためのろう材802がクラッドされている。本実施形態では、具体的に、ろう材802として、アルミニウム-シリコン(Al-Si)系ろう材が採用されている。 The brazing material 802 for brazing the tube main body 21 is clad on both surfaces of the core material 801. In this embodiment, specifically, an aluminum-silicon (Al—Si) brazing material is employed as the brazing material 802.
 チューブ本体部21とインナーフィン8とのろう付け接合面には、当該ろう付け接合面の酸化皮膜を化学的に除去するフラックス300が塗布されている。 The flux 300 that chemically removes the oxide film on the brazed joint surface is applied to the brazed joint surface between the tube body 21 and the inner fin 8.
 上述したように、接合部材23における板状部材200の芯材201および犠牲材203の構成材料にMgが添加されているので、接合部材23におけるインナーフィン8との接合面を構成する部位(以下、ろう付け面構成部21aという)は、Mgを含有するアルミニウム合金材料で構成されているといえる。 As described above, since Mg is added to the constituent materials of the core material 201 and the sacrificial material 203 of the plate-like member 200 in the joining member 23, the part constituting the joining surface with the inner fin 8 in the joining member 23 (hereinafter referred to as “the joining member 23”). It can be said that the brazing surface constituting portion 21a is made of an aluminum alloy material containing Mg.
 以上説明したように、本実施形態では、Mgを含有するアルミニウム合金により構成されているろう付け面構成部21aを、Mgを含有しない純アルミニウムにより構成されるコーティング材400によって被覆している。これによれば、板状部材200のろう付け時に、ろう付け面構成部21aからのMgがコーティング材400へ拡散されるので、Mgがフラックス300へ拡散することを抑制できる。したがって、上記第1実施形態と同様の効果を得ることができる。 As described above, in this embodiment, the brazing surface constituting portion 21a made of an aluminum alloy containing Mg is covered with the coating material 400 made of pure aluminum not containing Mg. According to this, since Mg from the brazing surface constituting portion 21 a is diffused into the coating material 400 when the plate-like member 200 is brazed, it is possible to prevent Mg from diffusing into the flux 300. Therefore, the same effect as the first embodiment can be obtained.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 (1)上記第1実施形態では、板状部材200を両端部からチューブ内面11側に向かって折り曲げることにより、チューブ本体部21の内部に内柱部22が設けられたチューブ2を形成した例について説明したが、チューブ2の形成方法はこれに限定されない。例えば、図7に示すように、板状部材200の幅方向中央部に突起24を屈曲形成し、その突起24の対向する内面をろう付け接合するとともに、当該突起24の厚さ方向(板状部材200の幅方向)側部に板状部材200の幅方向両端部25をろう付け接合することによって、チューブ2を形成してもよい。 (1) In the said 1st Embodiment, the tube 2 in which the inner pillar part 22 was provided in the inside of the tube main-body part 21 was formed by bending the plate-shaped member 200 toward the tube inner surface 11 side from both ends. However, the method of forming the tube 2 is not limited to this. For example, as shown in FIG. 7, a protrusion 24 is bent at the center in the width direction of the plate-like member 200, the opposing inner surfaces of the protrusion 24 are brazed and joined, and the thickness direction of the protrusion 24 (plate-like) The tube 2 may be formed by brazing and joining the width direction both ends 25 of the plate-like member 200 to the side portion of the member 200 in the width direction.
 このとき、突起24、および当該突起24ろう付けされた板状部材200の幅方向両端部25によって、内柱部22が形成されている。また、チューブ本体部21における内柱部22との接合面を構成する部位、すなわち板状部材200の幅方向両端部25が、ろう付け面構成部21aを構成している。 At this time, the inner pillar portion 22 is formed by the projection 24 and both ends 25 in the width direction of the plate member 200 brazed to the projection 24. Moreover, the site | part which comprises the joining surface with the inner pillar part 22 in the tube main-body part 21, ie, the width direction both ends 25 of the plate-shaped member 200 comprises the brazing surface structure part 21a.
 (2)上記実施形態では、コーティング材400として、純アルミニウムを採用した例について説明したが、これに限らず、Mgを含有していないアルミニウム合金や、Mgを含有していないろう材を採用してもよい。 (2) In the above embodiment, an example in which pure aluminum is used as the coating material 400 has been described. However, the present invention is not limited to this, and an aluminum alloy not containing Mg or a brazing material not containing Mg is used. May be.
 (3)上記実施形態では、チューブ2の強度を高めるために、チューブ2を構成する板状部材200の芯材201および犠牲材203に、フラックス300と反応する反応材料であるMgを添加した例について説明したが、これに限定されない。例えば、チューブ2を構成する板状部材200の芯材201および犠牲材203に、TiおよびMnの少なくとも一方を添加してもよい。 (3) In the above embodiment, in order to increase the strength of the tube 2, Mg, which is a reaction material that reacts with the flux 300, is added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2. However, the present invention is not limited to this. For example, at least one of Ti and Mn may be added to the core material 201 and the sacrificial material 203 of the plate-like member 200 constituting the tube 2.
 ここで、TiおよびMnは、ろう付け時に溶融したろう材202の流動を阻害する流動阻害材料であるため、ろう材202にTiまたはMnが拡散すると、ろう付け性が悪化するおそれがある。 Here, since Ti and Mn are flow-inhibiting materials that inhibit the flow of the brazing filler metal 202 that has melted during brazing, if Ti or Mn diffuses into the brazing filler metal 202, brazing properties may deteriorate.
 これに対し、TiおよびMnの少なくとも一方を含有するアルミニウム合金により構成されているろう付け面構成部21aを、TiおよびMnを含有しない材料により構成されるコーティング材400によって被覆することで、板状部材200のろう付け時に、ろう付け面構成部21aからTiやMnがコーティング材400へ拡散される。したがって、TiやMnがろう材202へ拡散することを抑制できるので、溶融したろう材202の流動が阻害されてろう付け性が悪化することを抑制できる。 On the other hand, by covering the brazing surface constituting portion 21a made of an aluminum alloy containing at least one of Ti and Mn with a coating material 400 made of a material not containing Ti and Mn, a plate shape When the member 200 is brazed, Ti and Mn are diffused from the brazing surface constituting portion 21 a into the coating material 400. Therefore, since Ti and Mn can be prevented from diffusing into the brazing material 202, it is possible to inhibit the flow of the molten brazing material 202 from being inhibited and the brazing performance from deteriorating.
 この場合、コーティング材400としては、純アルミニウム、TiおよびMnを含有していないアルミニウム合金、または、TiおよびMnを含有していないろう材を採用することができる。 In this case, as the coating material 400, pure aluminum, an aluminum alloy not containing Ti and Mn, or a brazing material not containing Ti and Mn can be employed.

Claims (5)

  1.  内部に流体が流通するとともに、アルミニウムまたはアルミニウム合金製の芯材(201)を有するチューブ本体部(21)を備え、
     前記チューブ本体部(21)は、
      接合部材(23)と、
      前記接合部材(23)にろう材(202、802)によりろう付け接合された被接合部材(22、8)と、
      前記接合部材(23)と前記被接合部材(22、8)とのろう付け接合面の間に設けられて、当該ろう付け接合面の酸化皮膜を化学的に除去するフラックス(300)と、を有し、
     前記接合部材(23)における前記ろう付け接合面はろう付け面構成部(21a)を有し、前記ろう付け面構成部(21a)は前記ろう材(202、802)以外の材料であって、かつ、前記フラックス(300)と反応する反応材料を含有する材料により構成されており、
     前記ろう付け面構成部(21a)は、前記反応材料以外の材料により構成される被覆材(400)によって被覆されている熱交換器用チューブ。
    A fluid flows through the inside, and includes a tube main body portion (21) having a core material (201) made of aluminum or aluminum alloy,
    The tube body (21)
    A joining member (23);
    To-be-joined members (22, 8) brazed to the joining members (23) by brazing materials (202, 802);
    A flux (300) provided between the brazed joint surfaces of the joined member (23) and the joined members (22, 8) to chemically remove an oxide film on the brazed joined surface; Have
    The brazing joint surface in the joining member (23) has a brazing surface constituent part (21a), and the brazing surface constituent part (21a) is a material other than the brazing material (202, 802), And it is comprised with the material containing the reactive material which reacts with the said flux (300),
    The brazing surface constituting portion (21a) is a heat exchanger tube covered with a covering material (400) made of a material other than the reaction material.
  2.  前記被覆材(400)は、純アルミニウム、前記反応材料が含まれていないアルミニウム合金、または前記ろう材により構成されている請求項1に記載の熱交換器用チューブ。 The tube for a heat exchanger according to claim 1, wherein the covering material (400) is made of pure aluminum, an aluminum alloy not containing the reaction material, or the brazing material.
  3.  内部に流体が流通するとともに、アルミニウムまたはアルミニウム合金製の芯材(201)を有するチューブ本体部(21)を備え、
     前記チューブ本体部(21)は、
      接合部材(23)と、
      前記接合部材(23)にろう材(202、802)によりろう付け接合された被接合部材(22、8)と、を有し、
     前記接合部材(23)における前記被接合部材(22、8)とのろう付け接合面は、ろう付け時に溶融した前記ろう材(202、802)の流動を阻害する流動阻害材料を含有する材料により構成されているろう付け面構成部(21a)を有し、
     前記ろう付け面構成部(21a)は、前記流動阻害材料以外の材料により構成される被覆材(400)によって被覆されている熱交換器用チューブ。
    A fluid flows through the inside, and includes a tube main body portion (21) having a core material (201) made of aluminum or aluminum alloy,
    The tube body (21)
    A joining member (23);
    A member to be joined (22, 8) brazed to the joining member (23) by a brazing material (202, 802),
    The brazing joint surface of the joining member (23) with the joined members (22, 8) is made of a material containing a flow inhibiting material that inhibits the flow of the brazing material (202, 802) melted during brazing. A brazing surface component (21a) configured;
    The brazing surface constituting part (21a) is a heat exchanger tube covered with a covering material (400) made of a material other than the flow-inhibiting material.
  4.  前記被覆材(400)は、純アルミニウム、前記流動阻害材料が含まれていないアルミニウム合金、または前記ろう材により構成されている請求項3に記載の熱交換器用チューブ。 The tube for a heat exchanger according to claim 3, wherein the covering material (400) is made of pure aluminum, an aluminum alloy not containing the flow-inhibiting material, or the brazing material.
  5.  前記チューブ本体部(21)は、折り曲げられた板状部材(200)により構成されているとともに、前記チューブ本体部(21)内の流体流路(20)を複数に仕切る内柱部(22)を有しており、
     前記板状部材(200)のうち前記内柱部(22)の一部が、前記被接合部材である請求項1ないし4のいずれか1つに記載の熱交換器用チューブ。
    The tube main body (21) is constituted by a bent plate-like member (200), and an inner column (22) for dividing the fluid flow path (20) in the tube main body (21) into a plurality of parts. Have
    The heat exchanger tube according to any one of claims 1 to 4, wherein a part of the inner pillar portion (22) of the plate-like member (200) is the member to be joined.
PCT/JP2014/000174 2013-01-25 2014-01-16 Tube for heat exchanger WO2014115512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-012345 2013-01-25
JP2013012345A JP6182876B2 (en) 2013-01-25 2013-01-25 Tube for heat exchanger and method for producing heat exchanger

Publications (1)

Publication Number Publication Date
WO2014115512A1 true WO2014115512A1 (en) 2014-07-31

Family

ID=51227308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000174 WO2014115512A1 (en) 2013-01-25 2014-01-16 Tube for heat exchanger

Country Status (2)

Country Link
JP (1) JP6182876B2 (en)
WO (1) WO2014115512A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155778B1 (en) * 2020-06-05 2020-09-15 구일공조(주) Heat-exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315337A (en) * 1998-05-01 1999-11-16 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2000026931A (en) * 1998-05-01 2000-01-25 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
US6234243B1 (en) * 1999-12-14 2001-05-22 Visteon Global Technologies, Inc. Heat exchanger assembly with magnesium barrier
JP2002012935A (en) * 2000-06-29 2002-01-15 Kobe Steel Ltd Aluminum alloy sheet with protective corrosion prevention and its composite material
JP2005307252A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006226613A (en) * 2005-02-17 2006-08-31 Shinko Alcoa Yuso Kizai Kk Flat tube for heat exchanger
JP2008189998A (en) * 2007-02-05 2008-08-21 Kobe Steel Ltd Brazing sheet made of aluminum alloy for heat exchanger
JP2009162447A (en) * 2008-01-09 2009-07-23 Mitsubishi Alum Co Ltd Multi-hole flat tube and single hole tube material for multi-hole flat tube
JP2011520032A (en) * 2008-04-18 2011-07-14 サパ ヒート トランスファー アーベー High strength and high strength brazing sandwich material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145268A (en) * 1984-01-04 1985-07-31 Nippon Denso Co Ltd Production of heat exchanging element
JPS60255263A (en) * 1984-05-31 1985-12-16 Nippon Denso Co Ltd Manufacture of lightweight and corrosion-resistant heat exchanger
US7032808B2 (en) * 2003-10-06 2006-04-25 Outokumu Oyj Thermal spray application of brazing material for manufacture of heat transfer devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315337A (en) * 1998-05-01 1999-11-16 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2000026931A (en) * 1998-05-01 2000-01-25 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
US6234243B1 (en) * 1999-12-14 2001-05-22 Visteon Global Technologies, Inc. Heat exchanger assembly with magnesium barrier
JP2002012935A (en) * 2000-06-29 2002-01-15 Kobe Steel Ltd Aluminum alloy sheet with protective corrosion prevention and its composite material
JP2005307252A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006226613A (en) * 2005-02-17 2006-08-31 Shinko Alcoa Yuso Kizai Kk Flat tube for heat exchanger
JP2008189998A (en) * 2007-02-05 2008-08-21 Kobe Steel Ltd Brazing sheet made of aluminum alloy for heat exchanger
JP2009162447A (en) * 2008-01-09 2009-07-23 Mitsubishi Alum Co Ltd Multi-hole flat tube and single hole tube material for multi-hole flat tube
JP2011520032A (en) * 2008-04-18 2011-07-14 サパ ヒート トランスファー アーベー High strength and high strength brazing sandwich material

Also Published As

Publication number Publication date
JP2014142157A (en) 2014-08-07
JP6182876B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
US20190186849A1 (en) Parallel Flow Type Heat Exchanger
WO2017064940A1 (en) Heat exchanger
US8074708B2 (en) Heat exchanger
JP4297177B2 (en) Tube for heat exchanger
WO2012063443A1 (en) Tube for heat exchanger
JP2006118830A (en) Heat exchanger and manufacturing method of heat exchanger
JP2008238223A (en) Brazing method
WO2013150738A1 (en) Tube and heat exchanger provided with tube
JP2008032384A (en) Heat exchanger
WO2017013918A1 (en) Heat exchanger
JP2005106431A (en) Heat exchanger module
GB2486788A (en) A heat exchanger, a tube for a heat exchanger, a method of making a tube for a heat exchanger and a method of making a heat exchanger
WO2014115512A1 (en) Tube for heat exchanger
WO2014162700A1 (en) Method for manufacturing heat exchange, and heat exchanger
JP5944626B2 (en) Manufacturing method of heat exchanger
JP2007144496A (en) Joint structure and its manufacturing method
JP2005510688A (en) Tube profile for heat exchanger
JP2007107754A (en) Heat exchanger and its manufacturing method
JP2007170805A (en) Brazed structure and method of manufacturing the same
JP2005331176A (en) Heat exchanger
JP2010185636A (en) Heat exchanger
JP2020003089A (en) Heat exchange tube and heat exchanger
JP5359288B2 (en) Heat exchanger
JP4787511B2 (en) Joining structure of heat exchanger and joining method thereof
JP4291644B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743720

Country of ref document: EP

Kind code of ref document: A1