JP2005307252A - Aluminum alloy clad material for automobile heat exchanger - Google Patents

Aluminum alloy clad material for automobile heat exchanger Download PDF

Info

Publication number
JP2005307252A
JP2005307252A JP2004123993A JP2004123993A JP2005307252A JP 2005307252 A JP2005307252 A JP 2005307252A JP 2004123993 A JP2004123993 A JP 2004123993A JP 2004123993 A JP2004123993 A JP 2004123993A JP 2005307252 A JP2005307252 A JP 2005307252A
Authority
JP
Japan
Prior art keywords
sacrificial anode
aluminum alloy
clad
brazing
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004123993A
Other languages
Japanese (ja)
Other versions
JP4236184B2 (en
Inventor
Hirokazu Tanaka
宏和 田中
Hirotoki Arikawa
弘時 有川
Toshihiko Fukuda
敏彦 福田
Yoshifusa Shoji
美房 正路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2004123993A priority Critical patent/JP4236184B2/en
Publication of JP2005307252A publication Critical patent/JP2005307252A/en
Application granted granted Critical
Publication of JP4236184B2 publication Critical patent/JP4236184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy clad material for automobile heat exchanger which has excellent formability and also excellent brazability and corrosion resistance of a sacrificial anode material surface and is suitably used for a tube material made of aluminum alloy for automobile heat exchanger, such as evaporator, capacitor, radiator and heater core, and particularly for that which is bent into a B-shaped tube shape in such a way that both ends of a clad plate come into contact with a sacrificial anode material and is then brazed. <P>SOLUTION: In the aluminum alloy clad material in which one side of a core material is clad with the sacrificial anode material and the other side is clad with an Al-Si alloy brazing filler metal and further the sacrificial anode material is used as a brazing surface, the core material is composed of an Al-Mn alloy containing 0.05 to 0.35% Ti and the sacrificial anode material is composed of an aluminum alloy consisting of >1.5 to <3.0% Si and the balance Al with impurities or an Al-Zn alloy containing >1.5 to <3.0% Si. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車熱交換器用アルミニウム合金クラッド材、とくに、不活性ガス雰囲気中でのフッ化物系フラックスやセシウム化物系フラックスを用いたろう付けにより接合されるエバポレータ、コンデンサ、ラジエータやヒータコアなどのアルミニウム合金製自動車熱交換器用のチューブ材、または当該熱交換器と接続される配管材(押出クラッド管)として好適な自動車熱交換器用アルミニウム合金クラッド材に関する。   The present invention relates to an aluminum alloy clad material for automobile heat exchangers, and in particular, aluminum alloys such as evaporators, capacitors, radiators and heater cores joined by brazing using a fluoride flux or a cesium fluoride flux in an inert gas atmosphere. The present invention relates to an aluminum alloy clad material for an automobile heat exchanger suitable as a tube material for an automobile heat exchanger or a piping material (extruded clad pipe) connected to the heat exchanger.

自動車熱交換器、例えばラジエータは、外面にフィンを有し、内面が作動流体(冷媒)の通路となるチューブおよびヘッダーから構成されている。このような自動車のラジエータまたはヒータコアなどのチューブ材、ヘッダープレート材としては、JIS A3003などのAl−Mn系合金を芯材とし、芯材の片面にAl−Si系合金ろう材をクラッドした二層構造のアルミニウム合金クラッド材、芯材の一方の面にろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金クラッド材が用いられている。   2. Description of the Related Art An automobile heat exchanger, for example, a radiator, includes a tube and a header that have fins on the outer surface and the inner surface serves as a passage for a working fluid (refrigerant). As a tube material and header plate material such as an automobile radiator or heater core, an Al-Mn alloy such as JIS A3003 is used as a core material, and an Al-Si alloy brazing material is clad on one side of the core material. Aluminum alloy clad material with a three-layer structure in which a brazing material is clad on one surface of the core material and a sacrificial anode material of Al-Zn alloy or Al-Zn-Mg alloy is clad on the other surface A clad material is used.

クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブとフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からろう付けによりチューブを製造する場合のろう付け接合のためにクラッドされている。これらのろう付には、最近では一般にフッ化物フラックスやセシウム化物系フラックスを用いる不活性ガス雰囲気ろう付けが適用される。また、犠牲陽極材は、たとえばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、芯材の孔食や隙間腐食の発生を防止する。   When manufacturing an aluminum alloy heat exchanger, the clad Al-Si brazing material is used when a tube is manufactured by joining a tube and a fin, joining a tube and a header plate, or brazing a clad plate. It is clad for brazing. In recent years, an inert gas atmosphere brazing using a fluoride flux or a cesium fluoride flux is generally applied to these brazing. The sacrificial anode material is used, for example, on the inner surface side of the tube, and exerts a sacrificial anode action in contact with the working fluid, thereby preventing pitting corrosion and crevice corrosion of the core material.

近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。また、各種熱交換器の製造において、従来は図1に示すように、クラッド板を曲成して溶接により偏平チューブ1とし、これをヘッダープレートに組付けて一体ろう付けを行っていたが、最近では、省エネルギーや作業効率化などの観点から、図2に示すように、クラッド板の両端部が犠牲陽極材と当接するように曲げ加工するだけで、溶接することなくB型のチューブ形状2とし、ヘッダープレートに組付けた後、一体ろう付けすることが多くなっており、さらに、図3に示すように、チューブ1内にクラッドフィン材3を装入してろう付けすることにより、チューブの剛性を高める手法も行われている。   In recent years, with the demand for lighter automobiles, automobile heat exchangers are also required to be made thinner from the viewpoint of energy saving and resource saving, and the tube materials are also becoming thinner. Also, in the manufacture of various heat exchangers, conventionally, as shown in FIG. 1, the clad plate is bent and welded to form a flat tube 1, which is assembled to the header plate and integrally brazed. Recently, from the viewpoint of energy saving and work efficiency improvement, as shown in FIG. 2, the B-shaped tube shape 2 can be formed without welding by simply bending the clad plate so that both ends of the clad plate are in contact with the sacrificial anode material. In many cases, after assembling to the header plate, it is often brazed integrally, and as shown in FIG. There are also techniques to increase the rigidity of the steel.

しかしながら、チューブ材やフィン材が薄肉であるため、クラッドされるろう材量が少なく、図2、図3のように犠牲陽極材がろう付け面となるものにおいては、ろう付け時、ろう材のろうが十分にまわらず、図2のものにおいては、クラッド板の両端部と犠牲陽極材との当接部(点線囲い部−A部)に接合不良が生じることが少なくない。また、図3のように、チューブ1内にクラッドフィン材3を装入して不活性ガス雰囲気中でろう付けする場合、ろう付け中にチューブ内面の空気が不活性ガスに完全に置換されず残存するため、クラッドフィン材3のろう材が接合部に十分に濡れ広がらず、クラッドフィン材3とチューブ材1内面の犠牲陽極材との接触部(点線囲い部−B部)の接合が不十分となることがある。   However, since the tube material and the fin material are thin, the amount of brazing material to be clad is small, and in the case where the sacrificial anode material is the brazing surface as shown in FIGS. In the case of FIG. 2, the brazing does not sufficiently occur, and it is not uncommon for poor bonding to occur at the abutting portion (dotted line enclosing portion-A portion) between both ends of the clad plate and the sacrificial anode material. Further, as shown in FIG. 3, when the clad fin material 3 is inserted into the tube 1 and brazed in an inert gas atmosphere, the air inside the tube is not completely replaced with the inert gas during brazing. Therefore, the brazing material of the clad fin material 3 does not sufficiently wet and spread in the joint portion, and the contact portion between the clad fin material 3 and the sacrificial anode material on the inner surface of the tube material 1 (the dotted line enclosed portion-B portion) is not bonded. May be sufficient.

チューブの内面側(犠牲陽極材面)にさらにろう材をクラッドし、接合部をろう対ろうの組み合わせとすることにより上記の問題を解決することが考えられるが、ろう付け時にろう材から犠牲陽極材へSiが拡散し、また犠牲陽極材からろう材へZnが拡散することで、充分な犠牲陽極効果が発揮されず、内面側の耐食性が低下するという問題点がある。   It is conceivable that the above problem can be solved by further brazing a brazing material on the inner surface side (sacrificial anode material surface) of the tube and combining the brazing and brazing joints. When Si diffuses into the material and Zn diffuses from the sacrificial anode material into the brazing material, there is a problem that the sufficient sacrificial anode effect is not exhibited and the corrosion resistance on the inner surface side is lowered.

チューブ材として適用される耐エロージョン・コロージョン性に優れたアルミニウム合金クラッド材として、Al−Mn系合金芯材の片面に犠牲陽極材としてSi:3.0〜12.0%を含有し、またはSi:3.0〜12.0%、Zn:1〜10%を含有し、残部Alおよび不純物からなるアルミニウム合金をクラッドしたものが提案されており(特許文献1参照)、このクラッド材を使用し、犠牲陽極材にろう材としての機能をもたせることによって上記の問題を解決することが期待されるが、このものにおいては、ろう付け時における犠牲陽極材の流動が避けられず、犠牲陽極材の耐食性を安定して維持することが困難な場合が多い。
特開2000−190089号公報
As an aluminum alloy clad material excellent in erosion / corrosion resistance applied as a tube material, it contains Si: 3.0 to 12.0% as a sacrificial anode material on one side of an Al-Mn alloy core material, or Si : A material containing 3.0 to 12.0%, Zn: 1 to 10% and clad with an aluminum alloy composed of the balance Al and impurities has been proposed (see Patent Document 1). The sacrificial anode material is expected to solve the above problem by having a function as a brazing material, but in this case, the sacrificial anode material cannot be prevented from flowing during brazing, and the sacrificial anode material In many cases, it is difficult to stably maintain the corrosion resistance.
JP 2000-190089 A

発明者らは、チューブ材における前記従来の問題点を解消するために、犠牲陽極材へのSiの添加に着目し、犠牲陽極材面にろう付け性を与えるとともに、犠牲陽極材面の耐食性をも維持し得る犠牲陽極材の組成について試験、検討を行った結果、犠牲陽極材に通常のAl−Si系合金ろう材に比べてきわめて少量のSiを含有させることにより融点が低下し、ろう付け加熱中に犠牲陽極材中に僅かな液相が生じることによりろう付け性が向上すると同時に、犠牲陽極材はほとんど流動せず、犠牲陽極材の厚さが維持され耐食性の維持も可能であること、犠牲陽極材に多量のZnを共存させることによってさらに耐食性を高めることができることを見出した。   In order to solve the above-mentioned conventional problems in the tube material, the inventors paid attention to the addition of Si to the sacrificial anode material, provided brazing properties to the sacrificial anode material surface, and improved the corrosion resistance of the sacrificial anode material surface. As a result of testing and examining the composition of the sacrificial anode material that can be maintained, the sacrificial anode material contains a very small amount of Si as compared with a normal Al-Si alloy brazing material, and the melting point is lowered. Brazing performance is improved by generating a slight liquid phase in the sacrificial anode material during heating, and at the same time, the sacrificial anode material hardly flows, the thickness of the sacrificial anode material is maintained, and corrosion resistance can be maintained. The present inventors have found that the corrosion resistance can be further improved by allowing a large amount of Zn to coexist in the sacrificial anode material.

本発明は、上記の知見に基づいてさらに検討を加えた結果としてなされたものであり、その目的は、とくに、不活性ガス雰囲気中でのフッ化物系フラックスやセシウム化物系フラックスを用いたろう付けにより接合されるエバポレータ、コンデンサ、ラジエータやヒータコアなどのアルミニウム合金製自動車熱交換器用のチューブ材(クラッド板を曲成して溶接またはろう付けによりチューブ形状とし、犠牲陽極材に他の部材がろう付けされるもの、クラッド板の両端部が犠牲陽極材と当接するように曲げ加工してB型のチューブ形状としろう付けするもの)、および熱交換器と接続される配管材(押出クラッド管)として好適な成形性に優れ、犠牲陽極材面のろう付け性、耐食性に優れた自動車熱交換器用アルミニウム合金クラッド材を提供することにある。   The present invention has been made as a result of further investigation based on the above-mentioned knowledge, and the purpose thereof is, in particular, by brazing using a fluoride-based flux or a cesium-based flux in an inert gas atmosphere. Tube materials for aluminum alloy automotive heat exchangers such as evaporators, condensers, radiators and heater cores to be joined (clad plates are bent into a tube shape by welding or brazing, and other members are brazed to the sacrificial anode material Suitable for use as a pipe material (extrusion clad pipe) connected to a heat exchanger and a B-shaped tube shape by bending so that both ends of the clad plate are in contact with the sacrificial anode material) Aluminum alloy clad material for automotive heat exchangers with excellent formability, brazing performance of sacrificial anode material, and corrosion resistance It is to.

上記の目的を達成するための請求項1による自動車熱交換器用アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする。   In order to achieve the above object, an aluminum alloy clad material for an automobile heat exchanger according to claim 1 is obtained by clad a sacrificial anode material on one surface of a core material and clad an Al-Si alloy brazing material on the other surface. An aluminum alloy clad material in which the sacrificial anode material is a brazed surface, the core material is an Al-Mn alloy containing 0.05 to 0.35% Ti, and the sacrificial anode material is 1.5% It is characterized by being an aluminum alloy containing more than 3.0% and less than 3.0% Si and the balance Al and impurities.

請求項2による自動車熱交換器用アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有するAl−Zn系合金であることを特徴とする。   An aluminum alloy clad material for an automobile heat exchanger according to claim 2 is an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si alloy brazing material is clad on the other surface. In the case where the material becomes a brazing surface, the core material is an Al-Mn alloy containing 0.05 to 0.35% Ti, and the sacrificial anode material is more than 1.5% and less than 3.0%. It is an Al—Zn alloy containing Si.

請求項3による自動車熱交換器用アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有するAl−Zn系合金であることを特徴とする。   The aluminum alloy clad material for automobile heat exchanger according to claim 3 is an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the sacrificial anode material serves as a brazing surface. It is an Al—Mn alloy containing 0.5 to 0.35% Ti, and the sacrificial anode material is an Al—Zn alloy containing more than 1.5% and less than 3.0% Si. To do.

請求項4による自動車熱交換器用アルミニウム合金クラッド材は、請求項2または3において、前記犠牲陽極材がSi:1.5%を越え3.0%未満、Zn:3.0〜10.0%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする。   The aluminum alloy clad material for automobile heat exchanger according to claim 4 is the sacrificial anode material according to claim 2 or 3, wherein the sacrificial anode material exceeds Si: 1.5% and less than 3.0%, Zn: 3.0-10.0% It is characterized by being an aluminum alloy containing the balance Al and impurities.

請求項5による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、前記犠牲陽極材がさらにIn:0.001〜0.05%、Sn:0.001〜0.05%のうちの1種または2種を含有することを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 5 is any one of claims 1 to 4, wherein the sacrificial anode material is further In: 0.001 to 0.05%, Sn: 0.001 to 0.05. % Of 1% or 2%.

請求項6による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜5のいずれかにおいて、前記犠牲陽極材がさらにMg:4.0%以下を含有することを特徴とする。   The aluminum alloy clad material for automobile heat exchanger according to claim 6 is characterized in that in any one of claims 1 to 5, the sacrificial anode material further contains Mg: 4.0% or less.

請求項7による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜6のいずれかにおいて、前記犠牲陽極材がさらにCu:0.05%以下、Ti:0.3%以下、Cr:0.2%以下、Zr:0.3%以下のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 7 is the aluminum alloy clad material according to any one of claims 1 to 6, wherein the sacrificial anode material is further Cu: 0.05% or less, Ti: 0.3% or less, Cr: 0.00. It is characterized by containing one or more of 2% or less and Zr: 0.3% or less.

請求項8による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜7のいずれかにおいて、前記犠牲陽極材がさらにFe:0.15〜2.0%を含有することを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 8 is characterized in that in any one of claims 1 to 7, the sacrificial anode material further contains Fe: 0.15 to 2.0%.

請求項9による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜8のいずれかにおいて、前記犠牲陽極材がさらにSr:0.005〜0.1%を含有することを特徴とする。   The aluminum alloy clad material for automobile heat exchanger according to claim 9 is characterized in that in any one of claims 1 to 8, the sacrificial anode material further contains Sr: 0.005 to 0.1%.

請求項10による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜9のいずれかにおいて、前記芯材がMn:0.3%を越え2.0%以下、Ti:0.05〜0.35%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 10 is the aluminum alloy clad material according to any one of claims 1 to 9, wherein the core material is Mn: more than 0.3% and not more than 2.0%, Ti: 0.05-0. It is an aluminum alloy containing 35%, the balance being Al and impurities.

請求項11による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜10のいずれかにおいて、前記芯材がさらにCu:0.1〜1.0%、Si:0.1〜1.5%のうちの1種または2種を含有することを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 11 is any one of claims 1 to 10, wherein the core material is further Cu: 0.1 to 1.0%, Si: 0.1 to 1.5%. It contains 1 type or 2 types of these, It is characterized by the above-mentioned.

請求項12による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜11記載のいずれかにおいて、前記芯材がさらにMg:0.5%以下を含有することを特徴とする。   The aluminum alloy clad material for automobile heat exchanger according to claim 12 is characterized in that in any one of claims 1 to 11, the core material further contains Mg: 0.5% or less.

請求項13による自動車熱交換器用アルミニウム合金クラッド材は、請求項1〜12のいずれかにおいて、前記芯材がさらにCr:0.5%以下、Zr:0.3%以下のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for an automotive heat exchanger according to claim 13 is any one of claims 1 to 12, wherein the core material is further one of Cr: 0.5% or less and Zr: 0.3% or less. It contains 2 or more types.

請求項14による自動車熱交換器用アルミニウム合金クラッド材は、請求項1、2、4〜13のいずれかにおいて、前記ろう材がSi:6〜13%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする。   An aluminum alloy clad material for an automobile heat exchanger according to claim 14 is the aluminum alloy clad according to any one of claims 1, 2, 4 to 13, wherein the brazing material contains Si: 6 to 13%, and the balance is Al and impurities. It is characterized by being.

請求項15による自動車熱交換器用アルミニウム合金クラッド材は、請求項1、2、4〜14のいずれかにおいて、前記ろう材がさらにFe:0.8〜2.0%、Zn:0.5〜5.0、Sr:0.005〜0.1%のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for an automobile heat exchanger according to claim 15 is any one of claims 1, 2, 4 to 14, wherein the brazing material is further Fe: 0.8 to 2.0%, Zn: 0.5 to 5.0, Sr: One or more of 0.005 to 0.1% are contained.

請求項16による自動車熱交換器用アルミニウム合金クラッド材は、請求項1、2、4〜15のいずれかにおいて、前記ろう材がさらにBi:0.2%以下、Be:0.1%以下のうちの1種または2種を含有することを特徴とする。   An aluminum alloy clad material for an automobile heat exchanger according to claim 16 is any one of claims 1, 2, 4 to 15, wherein the brazing material is further Bi: 0.2% or less, Be: 0.1% or less. It contains 1 type or 2 types of these.

請求項17による自動車熱交換器用アルミニウム合金クラッド材は、請求項1、2、4〜16のいずれかにおいて、前記ろう材がさらにIn:0.001〜0.05%、Sn:0.001〜0.05%のうちの1種または2種を含有することを特徴とする。   An aluminum alloy clad material for an automobile heat exchanger according to claim 17 is the aluminum alloy clad material according to any one of claims 1, 2, 4 to 16, wherein the brazing material is further In: 0.001 to 0.05%, Sn: 0.001 to It is characterized by containing one or two of 0.05%.

本発明によれば、とくに、不活性ガス雰囲気中でのフッ化物系フラックスやセシウム化物系フラックスを用いたろう付けにより接合されるエバポレータ、コンデンサ、ラジエータやヒータコアなどのアルミニウム合金製自動車熱交換器用のチューブ材(クラッド板を曲成して溶接またはろう付けによりチューブ形状とし、犠牲陽極材に他の部材をろう付けするもの、クラッド板の両端部が犠牲陽極材と当接するように曲げ加工してB型のチューブ形状としろう付けするもの)、および熱交換器と接続される配管材(押出クラッド管)として好適な成形性に優れ、犠牲陽極材面のろう付け性、耐食性に優れた自動車熱交換器用アルミニウム合金クラッド材が提供される。   According to the present invention, a tube for an aluminum alloy automobile heat exchanger such as an evaporator, a condenser, a radiator, or a heater core, which is joined by brazing using a fluoride flux or a cesium fluoride flux in an inert gas atmosphere. Bending material (bending the clad plate into a tube by welding or brazing, brazing other members to the sacrificial anode material, bending so that both ends of the clad plate are in contact with the sacrificial anode material B Automobile heat exchange with excellent moldability suitable for piping material (extruded clad pipe) connected to a heat exchanger and brazing and corrosion resistance of the sacrificial anode material surface A dexterous aluminum alloy cladding material is provided.

本発明のアルミニウム合金クラッド材の組成およびその限定理由について説明する。
(犠牲陽極材)
Si:1.5%を越え3.0%未満
Siは、犠牲陽極材の融点を低下させ、ろう付け中に極わずか液相を生じさせることにより、ろうとして作用する。Siの好ましい含有量は1.5%を越え3.0%未満の範囲であり、1.5%以下ではろうとして有効に作用し難く、3.0%以上では、ろう付け加熱時に流動し易くなり、犠牲陽極材としての機能が損なわれる。Siのさらに好ましい含有範囲は2.0%を越え3.0%未満である。
The composition of the aluminum alloy clad material of the present invention and the reason for limitation will be described.
(Sacrificial anode material)
Si: more than 1.5% and less than 3.0% Si acts as a brazing by lowering the melting point of the sacrificial anode material and creating a negligible liquid phase during brazing. The preferable content of Si is in the range of more than 1.5% and less than 3.0%, and if it is 1.5% or less, it is difficult to act effectively as brazing, and if it is 3.0% or more, it tends to flow during brazing heating. Thus, the function as a sacrificial anode material is impaired. A more preferable content range of Si is more than 2.0% and less than 3.0%.

Zn:3.0〜10.0%
Znは、犠牲陽極材の融点を低下させ、ろう付け中に極わずか液相を生じさせることにより、ろうとして作用する。また、犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を発揮させ、芯材の孔食や隙間腐食の発生を防止する。電位を貴化するSiを犠牲陽極材中に含有させるため、Znも相当量含有させることが必要である。Znの好ましい含有量は3.0〜10.0%の範囲であり、Znの含有量が3.0%未満ではその効果が小策く、10.0%を越えて含有すると犠牲陽極材の自己耐食性が低下する。Znのさらに好ましい含有範囲は4.0〜6.0%である。
Zn: 3.0 to 10.0%
Zn acts as a braze by lowering the melting point of the sacrificial anode material and creating a negligible liquid phase during brazing. Further, the potential of the sacrificial anode material is made lower, the sacrificial anode effect on the core material is exhibited, and the occurrence of pitting corrosion and crevice corrosion of the core material is prevented. In order to contain Si that makes the potential noble in the sacrificial anode material, it is necessary to contain a considerable amount of Zn. The preferable content of Zn is in the range of 3.0 to 10.0%. If the Zn content is less than 3.0%, the effect is negligible. If the content exceeds 10.0%, the sacrificial anode material Self-corrosion resistance is reduced. The more preferable content range of Zn is 4.0 to 6.0%.

In:0.001〜0.05%
Inは、微量の添加によって犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を確実に発揮させ、芯材の孔食や隙間腐食の発生を防止する。Inの好ましい含有量は0.001〜0.05%の範囲であり、0.001%未満ではその効果が十分でなく、0.05%を越えると、自己耐食性および圧延加工性が低下する。Inのさらに好ましい含有範囲は0.01〜0.03%である。
In: 0.001 to 0.05%
In adds a small amount to make the potential of the sacrificial anode material low, and reliably exert the sacrificial anode effect on the core material, thereby preventing the occurrence of pitting corrosion and crevice corrosion of the core material. The preferable content of In is in the range of 0.001 to 0.05%. If the content is less than 0.001%, the effect is not sufficient, and if it exceeds 0.05%, the self-corrosion resistance and the rolling workability are deteriorated. A more preferable content range of In is 0.01 to 0.03%.

Sn:0.001〜0.05%
Snは、微量の添加によって犠牲陽極材の電位を卑にし、芯材に対する犠牲陽極効果を確実に発揮させ、芯材の孔食や隙間腐食の発生を防止する。Snの好ましい含有量は0.001〜0.05%の範囲であり、0.001%未満ではその効果が十分でなく、0.05%を越えると、自己耐食性および圧延加工性が低下する。Snのさらに好ましい含有範囲は0.01〜0.03%である。
Sn: 0.001 to 0.05%
Sn lowers the potential of the sacrificial anode material by adding a small amount, reliably exerts the sacrificial anode effect on the core material, and prevents the occurrence of pitting corrosion and crevice corrosion of the core material. The preferable content of Sn is in the range of 0.001 to 0.05%. If it is less than 0.001%, the effect is not sufficient, and if it exceeds 0.05%, the self-corrosion resistance and the rolling processability are deteriorated. The more preferable content range of Sn is 0.01 to 0.03%.

Mg:4.0%以下
Mgは、熱交換器などのろう付け組み立て時、ろう付け加熱中に芯材へ拡散し、芯材中のSiやCuとともに強度を高めるよう機能する。犠牲陽極材に残存したMgはSiとともに犠牲陽極材の強度を高め、これらの効果によってクラッド材の強度を改善する。Mgの好ましい含有量は4.0%以下の範囲であり、4.0%を越えると圧延加工性が低下する。Mgのさらに好ましい含有範囲は2.5%以下である。
Mg: 4.0% or less When Mg is brazed and assembled in a heat exchanger or the like, Mg diffuses into the core material during brazing heating and functions to increase the strength together with Si and Cu in the core material. Mg remaining in the sacrificial anode material increases the strength of the sacrificial anode material together with Si, and improves the strength of the clad material by these effects. The preferable content of Mg is in the range of 4.0% or less. If it exceeds 4.0%, the rolling processability is lowered. A more preferable content range of Mg is 2.5% or less.

Cu:0.05%以下
Cuは、犠牲陽極材の電位を貴にし、犠牲陽極材へのZnの添加による自己耐食性の低下を抑制する。Cuの好ましい含有量は0.05%以下の範囲であり、0.05%を越えると、犠牲陽極材と芯材との間の電位差を十分に確保することができず、芯材に対する犠牲陽極効果が低下する。
Cu: 0.05% or less Cu makes the potential of the sacrificial anode material noble and suppresses a decrease in self-corrosion resistance due to the addition of Zn to the sacrificial anode material. The preferable content of Cu is in the range of 0.05% or less, and if it exceeds 0.05%, a sufficient potential difference between the sacrificial anode material and the core material cannot be secured, and the sacrificial anode with respect to the core material. The effect is reduced.

Cr:0.2%以下、Zr:0.3%以下
CrおよびZrは、犠牲陽極材の結晶粒度を粗大にして、ろう付け加熱中の芯材のCuの粒界拡散を抑制する。CrおよびZrがそれぞれ0.2%および0.3%を越えると、鋳造時に巨大な晶出物が生成し、健全な板材の製造が困難となる。
Cr: 0.2% or less, Zr: 0.3% or less Cr and Zr increase the crystal grain size of the sacrificial anode material and suppress the Cu grain boundary diffusion of the core material during brazing heating. If Cr and Zr exceed 0.2% and 0.3%, respectively, huge crystallized products are generated during casting, and it becomes difficult to produce a sound plate material.

Ti:0.3%以下
Tiは、材料の板厚方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.3%以下の範囲であり、0.3%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。
Ti: 0.3% or less Ti is divided into a high-concentration region and a low-concentration region in the thickness direction of the material. These regions are alternately distributed in layers, and a low-concentration region has priority over a high region. Corrosion has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.3% or less, and if it exceeds 0.3%, casting becomes difficult, and workability deteriorates, making it difficult to produce a sound material.

Fe:0.15〜2.0%
Feは、Al−Fe−Si系化合物を形成し、Siの固溶度を低下することにより液相率を低下させ、ろうの流動を抑制する。また、Feは、Al−Fe系やAl−Fe−Si系化合物を形成し、それら化合物が腐食の起点となって孔食が分散されることにより耐食性を向上させる。Feの好ましい含有量は0.15〜2.0%の範囲であり、0.15%未満ではその効果が小さく、2.0%を越えると犠牲陽極材の自己耐食性が低下する。Feのさらに好ましい含有範囲は0.7%を越え1.2%以下である。
Fe: 0.15-2.0%
Fe forms an Al—Fe—Si-based compound, lowers the solid solubility of Si, lowers the liquid phase rate, and suppresses the flow of wax. Fe forms an Al-Fe-based or Al-Fe-Si-based compound, and these compounds serve as a starting point for corrosion to improve the corrosion resistance by dispersing pitting corrosion. The preferable content of Fe is in the range of 0.15 to 2.0%. If the content is less than 0.15%, the effect is small, and if it exceeds 2.0%, the self-corrosion resistance of the sacrificial anode material is lowered. A more preferable content range of Fe is more than 0.7% and 1.2% or less.

Sr:0.005〜0.1%
Srは、犠牲陽極材中におけるSi粒子の存在形態をより微細且つ均一にするよう機能し、その結果ろう付け性を向上させる。Srの好ましい含有量は0.005〜0.1%の範囲であり、0.005%未満ではその効果が十分でなく、0.1%を越えて含有してもその効果が飽和する。なお、本発明においては、犠牲陽極材中にNa:1〜100ppm、Sb:0.001〜0.5%が添加されていてもその効果に影響を与えることはない。
Sr: 0.005 to 0.1%
Sr functions to make the presence form of Si particles in the sacrificial anode material finer and uniform, and as a result, improves brazing properties. The preferable content of Sr is in the range of 0.005 to 0.1%. If the content is less than 0.005%, the effect is not sufficient, and even if the content exceeds 0.1%, the effect is saturated. In the present invention, even if Na: 1 to 100 ppm and Sb: 0.001 to 0.5% are added to the sacrificial anode material, the effect is not affected.

(芯材)
Mn:0.3〜2.0%
Mnは、芯材の強度を向上させるとともに、芯材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。Mnの好ましい含有量は0.3〜2.0%の範囲であり、0.3%未満ではその効果が小さく、2.0%を越えると、鋳造時に粗大な化合物が生成し圧延加工性が低下して健全な板材(芯材)が得難くなる。Mnのさらに好ましい含有範囲は0.8〜1.5%である。
(Core material)
Mn: 0.3 to 2.0%
Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. The preferable content of Mn is in the range of 0.3 to 2.0%. If the content is less than 0.3%, the effect is small. It decreases and it becomes difficult to obtain a healthy plate (core material). A more preferable content range of Mn is 0.8 to 1.5%.

Ti:0.05〜0.35%
Tiは、材料の板厚方向に濃度の高い領域と低い領域に分かれ、これらの領域が層状となって交互に分布し、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、この効果により板厚方向への粒界腐食の進行が妨げられ材料の耐孔食性が向上する。Tiの好ましい含有量は0.05〜0.35%の範囲であり、0.05%未満ではその効果が小さく、0.35%を越えると、鋳造が困難となり、また加工性が低下して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。
Ti: 0.05 to 0.35%
Ti is divided into a high concentration region and a low region in the thickness direction of the material, and these regions are alternately distributed in layers, and the low Ti concentration region corrodes preferentially compared to the high region, It has the effect of layering the corrosion form, and this effect prevents the progress of intergranular corrosion in the plate thickness direction and improves the pitting corrosion resistance of the material. The preferable content of Ti is in the range of 0.05 to 0.35%. If it is less than 0.05%, the effect is small, and if it exceeds 0.35%, casting becomes difficult and workability is reduced. It becomes difficult to produce sound materials. A more preferable content range of Ti is 0.1 to 0.2%.

Cu:0.1〜1.0%
Cuは、芯材の強度を向上させるとともに、芯材の電位を貴にし、犠牲陽極材のとの電位差およびろう材との電位差を大きくして耐食性を向上させるよう機能する。また、ろう付け時に犠牲陽極材およびろう材に拡散して、犠牲陽極材およびろう材の厚さ方向になだらかなCuの濃度勾配を形成させ、この結果、芯材側の電位は貴となり、犠牲陽極材の表面側およびろう材の表面側の電位は卑となって、犠牲陽極材およびろう材の厚さ方向になだらかな電位勾配が形成されるため、腐食形態が全面腐食型となる。Cuの好ましい含有量は0.1〜1.0%の範囲であり、0.1%未満ではその効果が小さく、1.0%を越えると芯材の耐食性が低下し、また融点が低下してろう付け時に局部的な溶融が生じ易くなる。Cuのさらに好ましい含有範囲は0.4〜0.7%である。
Cu: 0.1 to 1.0%
Cu functions to improve the corrosion resistance by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference with the sacrificial anode material and the potential difference with the brazing material. In addition, it diffuses into the sacrificial anode material and the brazing material during brazing, and forms a gentle Cu concentration gradient in the thickness direction of the sacrificial anode material and brazing material. As a result, the potential on the core material side becomes noble and sacrificed. The potentials on the surface side of the anode material and the surface side of the brazing material become base, and a gentle potential gradient is formed in the thickness direction of the sacrificial anode material and the brazing material. The preferable content of Cu is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is small. If the content exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered. Local melting tends to occur during brazing. The more preferable content range of Cu is 0.4 to 0.7%.

Si:0.1〜1.5%
Siは、芯材の強度を向上させる効果を有する。とくに、犠牲陽極材にMgが含有する場合、Siはろう付け中に犠牲陽極材から拡散してくるMgと共存してMgと結合してMg2 Siを生成することにより、ろう付け後に時効硬化が生じ、強度がさらに向上する。Siの好ましい含有量は0.1〜1.5%の範囲であり、0.1%未満ではその効果が小さく、1.5%を越えると、芯材の耐食性が低下するとともに、芯材の融点を下げ、ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.3〜1.0%である。
Si: 0.1 to 1.5%
Si has the effect of improving the strength of the core material. In particular, when Mg is contained in the sacrificial anode material, Si coexists with Mg diffusing from the sacrificial anode material during brazing, and bonds with Mg to form Mg 2 Si, thereby age-hardening after brazing. And the strength is further improved. The preferable content of Si is in the range of 0.1 to 1.5%. If the content is less than 0.1%, the effect is small. If the content exceeds 1.5%, the corrosion resistance of the core material decreases, and The melting point is lowered, and local melting tends to occur during brazing. A more preferable content range of Si is 0.3 to 1.0%.

Mg:0.5%以下
Mgは、芯材の強度を向上させる。0.5%を越えて含有すると、フッ化物系フラックスを用いて不活性ガス雰囲気中でろう付けを行う場合、ろう付け時にMgがフッ化物系フラックスと反応してMgのフッ化物が生成し、ろう付け性を低下させるとともに、ろう付け部の外観が悪くなる。Mgのさらに好ましい含有範囲は0.15%以下である。
Mg: 0.5% or less Mg improves the strength of the core material. When the content exceeds 0.5%, when brazing is performed in an inert gas atmosphere using a fluoride-based flux, Mg reacts with the fluoride-based flux during brazing to produce Mg fluoride. While reducing brazing property, the external appearance of a brazing part worsens. A more preferable content range of Mg is 0.15% or less.

Cr:0.5%以下、Zr:0.3%以下
CrおよびZrは、芯材の結晶粒度を粗大にし、ろう付け加熱中のろう材中のSiの粒界拡散を抑制する。CrおよびZrがそれぞれ0.5%および0.3%を越えると、鋳造時に巨大晶出物が生成し、加工性が低下して健全な板材の製造が困難となる。
Cr: 0.5% or less, Zr: 0.3% or less Cr and Zr increase the crystal grain size of the core material and suppress the grain boundary diffusion of Si in the brazing material during brazing heating. When Cr and Zr exceed 0.5% and 0.3%, respectively, giant crystallized substances are generated during casting, and workability is lowered, making it difficult to produce a sound plate material.

(ろう材)
ろう材としては、通常用いられているAl−Si系合金、好ましくはSi:6〜13%を含む合金が使用される。Siが6%未満では流動性が低下してろう材としての作用が不十分となり、Siが13%を越えると、健全な材料の製造が困難となる。
(Brazing material)
As the brazing material, a commonly used Al—Si alloy, preferably an alloy containing Si: 6 to 13% is used. If Si is less than 6%, the fluidity is lowered and the effect as a brazing material is insufficient, and if Si exceeds 13%, it is difficult to produce a sound material.

Fe:0.8〜2.0%
Feは、Al−Fe系、Al−Fe−Si系化合物を形成し、これらの化合物が腐食の起点となるため孔食が分散し、外面の耐食性が向上する。Feの好ましい含有範囲は0.8〜2.0%であり、0.8%未満ではその効果が小さく、2.0%を越えると、外面の耐食性が低下する。
Fe: 0.8 to 2.0%
Fe forms Al—Fe and Al—Fe—Si compounds, and these compounds serve as starting points for corrosion, so that pitting corrosion is dispersed and the corrosion resistance of the outer surface is improved. The preferable content range of Fe is 0.8 to 2.0%. If the content is less than 0.8%, the effect is small, and if it exceeds 2.0%, the corrosion resistance of the outer surface is lowered.

Zn:0.5〜5.0%
Znは、上記の範囲で含有されても本発明の効果を損なうことはない。5.0%を越えて含有すると、自己耐食性が低下する。
Zn: 0.5 to 5.0%
Even if Zn is contained in the above range, the effect of the present invention is not impaired. If the content exceeds 5.0%, the self-corrosion resistance decreases.

Sr:0.005〜0.1%
Srは、ろう材中のSi粒子を微細かつ均一に分散させる効果がある。Si粒子が微細かつ均一に分散することにより、ろうの溶融が均一になり、ろう付け性が改善される。Srの好ましい含有量は0.005〜0.1%の範囲であり、0.005%未満ではその効果が小さく、0.1%を越えると、その効果が飽和する。
Sr: 0.005 to 0.1%
Sr has an effect of finely and uniformly dispersing Si particles in the brazing material. When the Si particles are finely and uniformly dispersed, the melting of the brazing becomes uniform and the brazing property is improved. The preferable content of Sr is in the range of 0.005 to 0.1%. If it is less than 0.005%, the effect is small, and if it exceeds 0.1%, the effect is saturated.

Bi:0.2%以下、Be:0.1%以下
BiおよびBeは、上記の範囲で含有されても本発明の効果を損なうことはない。BiおよびBeが0.2%および0.1%を越えるとろう付け性が低下する。
Bi: 0.2% or less, Be: 0.1% or less Even if Bi and Be are contained in the above ranges, the effect of the present invention is not impaired. When Bi and Be exceed 0.2% and 0.1%, the brazing property decreases.

In:0.001〜0.05%、Sn:0.001〜0.05%
InおよびSnは、上記の範囲で含有されても本発明の効果を損なうことはない。InおよびSnが0.05%を越えると、ろう材の自己耐食性および圧延加工性が低下する。なお、本発明においては、Na:1〜100ppm、Sb:0.001〜0.5%が含有されていても、本発明の効果に影響することはない。
In: 0.001-0.05%, Sn: 0.001-0.05%
Even if In and Sn are contained in the above ranges, the effects of the present invention are not impaired. When In and Sn exceed 0.05%, the self-corrosion resistance and rolling workability of the brazing material are lowered. In the present invention, even if Na: 1 to 100 ppm and Sb: 0.001 to 0.5% are contained, the effect of the present invention is not affected.

本発明のアルミニウム合金クラッド材は、芯材、犠牲陽極材およびAl−Si系ろう材を構成するアルミニウム合金を、たとえば、連続鋳造により造塊し、必要に応じて均質化処理後、犠牲陽極材用およびろう材用アルミニウム合金の鋳塊については、それぞれ所定厚さまで熱間圧延し、ついで、芯材用アルミニウム合金鋳塊と、犠牲陽極用アルミニウム合金およびろう材用アルミニウム合金を組み合わせて、常法に従って熱間圧延によりクラッド材とし、その後冷間圧延、中間焼鈍、冷間圧延により所定の厚さとすることによって製造される。   The aluminum alloy clad material of the present invention comprises a core material, a sacrificial anode material, and an aluminum alloy constituting an Al—Si brazing material, for example, ingot by continuous casting, and after homogenization treatment as necessary, a sacrificial anode material The aluminum alloy ingots for solder and brazing material are each hot-rolled to a predetermined thickness, and then the aluminum alloy ingot for core material is combined with the aluminum alloy for sacrificial anode and the aluminum alloy for brazing material. Accordingly, the clad material is manufactured by hot rolling, and then is made to have a predetermined thickness by cold rolling, intermediate annealing, and cold rolling.

なお、本発明は、芯材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材がAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有するAl−Zn系合金である自動車熱交換器用アルミニウム合金クラッド材を、図4に示すように、犠牲陽極材面にクラッドフィン材をろう付け接合する場合にも有効である。   The present invention is an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the sacrificial anode material serves as a brazing surface. The core material is an Al-Mn alloy, and the sacrificial anode An aluminum alloy clad material for an automobile heat exchanger, which is an Al—Zn-based alloy containing Si exceeding 1.5% and less than 3.0%, is clad fin material on the sacrificial anode material surface as shown in FIG. It is also effective when brazing and joining.

以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
連続鋳造によって表1に示す組成を有する芯材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、芯材用合金および犠牲陽極材用合金の鋳塊については均質化処理を行った。
Example 1
An ingot obtained by ingoting a core material alloy having the composition shown in Table 1, a sacrificial anode material alloy having the composition shown in Table 2, and a brazing alloy having the composition shown in Table 3 by continuous casting. Among these, the ingots of the core material alloy and the sacrificial anode material alloy were subjected to a homogenization treatment.

ついで、犠牲陽極材用合金およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊とを合わせ材として熱間圧延しクラッド材を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.20mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、犠牲陽極材は0.025〜0.050mm、ろう材は0.020mmである。   Subsequently, the ingot of the sacrificial anode material alloy and the brazing material alloy is hot-rolled to a predetermined thickness, and the hot-rolled plate and the core alloy ingot are hot-rolled together to form a clad material. Got. Thereafter, a plate material (cladding material, tempered H14) having a thickness of 0.20 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The composition of the clad material is 0.025 to 0.050 mm for the sacrificial anode material and 0.020 mm for the brazing material.

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

得られたクラッド材を試験材として、以下の方法により(1)クラッド性(圧延性)、(2)ろう付け性、(3)犠牲陽極材の耐食性,(5)ろう材の耐食性を評価した。結果を表4〜7に示す。   Using the obtained clad material as a test material, the following methods were used to evaluate (1) cladability (rollability), (2) brazeability, (3) corrosion resistance of the sacrificial anode material, and (5) corrosion resistance of the braze material. . The results are shown in Tables 4-7.

クラッド性(圧延性):犠牲陽極材、芯材、ろう材の製造、あるいはクラッド材の製造において、圧延加工性がわるく健全な材料の製造ができないものをクラッド性不良(×)とし、健全なクラッド材が得られたものをクラッド性良好(○)とする。   Cladness (rollability): Sacrificial anode material, core material, brazing material production, or clad material production with poor rolling processability and failure to produce a sound material is regarded as poor cladability (x) The one obtained from the clad material is defined as good clad property (◯).

ろう付け性:得られたクラッド材(試験材)と、3003合金板(厚さ1.0mm)を図5に示すように組み合わせて逆T字試験片を作製し、フッ化物系フラックスを塗布して、窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱し接合状態を評価した。接合状態が良好なものは○、接合不良や局部溶融が生じたものは×とした。   Brazing property: The obtained clad material (test material) and 3003 alloy plate (thickness 1.0 mm) are combined as shown in FIG. 5 to produce an inverted T-shaped test piece, and a fluoride-based flux is applied. Then, the joining state was evaluated by heating to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere. The case where the bonding state was good was marked with ◯, and the case where bonding failure or local melting occurred was marked with x.

犠牲陽極材の耐食性:得られたクラッド材(試験材)を、単板のままフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、犠牲陽極材面について下記の条件で腐食試験を行った。
腐食液:Cl- :195ppm、SO4 2- :60ppm、Cu2+:1pm、Fe3+:30ppm
比液量:5mL/cm2
シール:ろう材面と端面をシリコン樹脂でシールした。
試験方法:88℃に加熱した腐食液中に8時間浸漬した後、冷却して25℃で16時間保持するサイクルを4か月間繰り返し、最大腐食深さを測定した。
Corrosion resistance of the sacrificial anode material: The obtained clad material (test material) was applied as a single plate with a fluoride flux and heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere. A corrosion test was performed on the anode material surface under the following conditions.
Corrosion solution: Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 pm, Fe 3+ : 30 ppm
Specific liquid volume: 5 mL / cm 2
Seal: The brazing filler metal surface and the end surface were sealed with silicon resin.
Test method: After immersing in a corrosive liquid heated to 88 ° C. for 8 hours, a cycle of cooling and holding at 25 ° C. for 16 hours was repeated for 4 months, and the maximum corrosion depth was measured.

ろう材の耐食性:得られたクラッド材(試験材)を、単板のままフッ化物系フラックスを塗布して窒素ガス雰囲気中で600℃(材料温度)のろう付け温度に加熱した後、犠牲陽極材面と端面をシリコン樹脂でシールし、ろう材面のCASS試験を2週間行って、最大腐食深さを測定した。   Corrosion resistance of brazing material: The obtained clad material (test material) was applied as a single plate with a fluoride flux, heated to a brazing temperature of 600 ° C. (material temperature) in a nitrogen gas atmosphere, and then sacrificed anode The material surface and the end surface were sealed with silicon resin, and the CASS test of the brazing material surface was conducted for 2 weeks to measure the maximum corrosion depth.

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

表4〜7にみられるように、本発明に従う試験材No.1〜117はいずれも、クラッド性(圧延性)、ろう付け性に優れ、犠牲陽極材およびろう材の腐食試験において、最大腐食深さはいずれも0.1mm未満であり、良好な耐食性をそなえている。   As seen in Tables 4-7, test material No. Nos. 1-117 are excellent in cladability (rollability) and brazing properties, and in corrosion tests of sacrificial anode materials and brazing materials, the maximum corrosion depths are both less than 0.1 mm and have good corrosion resistance. ing.

比較例1
連続鋳造によって表8に示す組成を有する芯材用合金、表9に示す組成を有する犠牲陽極材用合金、および表10に示す組成を有するろう材用合金を造塊し、芯材用合金および犠牲陽極材用合金の鋳塊を均質化処理した。
Comparative Example 1
An alloy for core material having the composition shown in Table 8 by continuous casting, an alloy for sacrificial anode material having the composition shown in Table 9, and an alloy for brazing material having the composition shown in Table 10 are obtained. The ingot of the sacrificial anode material alloy was homogenized.

ついで、犠牲陽極材用合金の鋳塊およびろう材用合金の鋳塊を所定の厚さまで熱間圧延し、これらの熱間圧延板と芯材用合金の鋳塊とを合わせ材として熱間圧延し、クラッド材を得た。その後、冷間圧延、中間焼鈍、冷間圧延によって厚さ0.20mmの板材(クラッド材、調質H14)を得た。クラッド材の構成は、犠牲陽極材は0.040mm、ろう材は0.020mmである。なお、表8〜10において、本発明の条件を外れたものには下線を付した。   Next, the ingot of the alloy for sacrificial anode material and the ingot of the alloy for brazing material are hot-rolled to a predetermined thickness, and these hot-rolled plates and the ingot of the alloy for core material are used as a combined material for hot rolling. Thus, a clad material was obtained. Thereafter, a plate material (cladding material, tempered H14) having a thickness of 0.20 mm was obtained by cold rolling, intermediate annealing, and cold rolling. The structure of the clad material is 0.040 mm for the sacrificial anode material and 0.020 mm for the brazing material. In Tables 8 to 10, those outside the conditions of the present invention are underlined.

得られたクラッド材を試験材として、実施例1と同じ方法で(1)クラッド性(圧延性)、(2)ろう付け性、(3)犠牲陽極材の耐食性、(4)ろう材の耐食性を評価した。結果を表11に示す。   Using the obtained clad material as a test material, in the same manner as in Example 1, (1) cladability (rollability), (2) brazeability, (3) corrosion resistance of sacrificial anode material, (4) corrosion resistance of braze material Evaluated. The results are shown in Table 11.

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

Figure 2005307252
Figure 2005307252

表11に示すように、試験材No.118は芯材のMn量が少ないため、犠牲陽極材の耐食性が劣る。試験材No.119は芯材のMn量が多いため、芯材の製造において圧延加工性がわるく、健全な芯材の製造が困難となった結果、クラッド性不良となった。試験材No.120は芯材のTi量が少ないため、耐食性(ろう材面の耐食性)に劣る。試験材No.121は芯材のTi量が多いため、芯材の製造において圧延加工性がわるく、健全な芯材の製造が困難となった結果、クラッド性不良となった。試験材No.122は芯材のCu量が多いため、ろう付け時に芯材に局部溶融が生じろう付け性が低下した。試験材No.123は芯材のSi量が多いため、ろう付け時に芯材に局部溶融が生じろう付け性が低下した。試験材No.124は芯材のMg量が多いため、ろう付け性が劣り接合不良が生じた。   As shown in Table 11, the test material No. Since the core material 118 has a small amount of Mn, the sacrificial anode material has poor corrosion resistance. Test material No. Since No. 119 has a large amount of Mn in the core material, rolling workability is poor in the production of the core material, and as a result, it became difficult to produce a sound core material. Test material No. 120 is inferior in corrosion resistance (corrosion resistance of the brazing material surface) because the amount of Ti in the core material is small. Test material No. Since No. 121 has a large amount of Ti in the core material, rolling workability is poor in the production of the core material, and as a result, it became difficult to produce a sound core material, resulting in poor cladness. Test material No. Since 122 had a large amount of Cu in the core material, local melting occurred in the core material at the time of brazing, and the brazing performance was lowered. Test material No. Since 123 had a large amount of Si in the core material, local melting occurred in the core material at the time of brazing, and the brazing property was lowered. Test material No. Since 124 had a large amount of Mg in the core material, the brazeability was poor and poor bonding occurred.

試験材No.125は犠牲陽極材のSi量が少ないため、ろう付け性が劣る。試験材N.126は犠牲陽極材のSi量が多いため、犠牲陽極材が流動して犠牲陽極材としての機能が失われ耐食性が劣る。試験材No.127は犠牲陽極材のZn量が多いため、犠牲陽極材の消耗が早くなり耐食性が低下している。試験材No.128および129は犠牲陽極材のIn量およびSn量が多いため、いずれも犠牲陽極材の製造において圧延加工性がわるく、健全な犠牲陽極材の製造が困難となった結果、クラッド性不良となった。   Test material No. 125 is inferior in brazing because the amount of Si in the sacrificial anode material is small. Test material N. Since 126 has a large amount of Si in the sacrificial anode material, the sacrificial anode material flows to lose its function as the sacrificial anode material, resulting in poor corrosion resistance. Test material No. 127 has a large amount of Zn in the sacrificial anode material, so that the sacrificial anode material is quickly consumed and the corrosion resistance is lowered. Test material No. Since 128 and 129 have a large amount of In and Sn in the sacrificial anode material, both have poor rolling processability in the production of the sacrificial anode material, and as a result, it has become difficult to produce a sacrificial anode material, resulting in poor cladding properties. It was.

試験材No.130は犠牲陽極材のFe量が多いため、自己腐食性が多くなり耐食性が劣る。試験材No.131はろう材のSi量が多いため、圧延性が劣り、健全なクラッド材が得られなかった。   Test material No. Since 130 has a large amount of Fe in the sacrificial anode material, the self-corrosion is increased and the corrosion resistance is inferior. Test material No. Since 131 had a large amount of Si in the brazing material, the rollability was inferior and a sound clad material could not be obtained.

アルミニウム合金クラッド材から製造された従来のチューブ材示す断面図である。It is sectional drawing which shows the conventional tube material manufactured from the aluminum alloy clad material. 本発明によるアルミニウム合金クラッド材から製造されたチューブ材(B型のチューブ形状)の実施例を示す断面図であるIt is sectional drawing which shows the Example of the tube material (B type tube shape) manufactured from the aluminum alloy clad material by this invention. 本発明によるアルミニウム合金クラッド材から製造されたチューブ材の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the tube material manufactured from the aluminum alloy clad material by this invention. 本発明によるアルミニウム合金クラッド材とクラッドフィンとの接合を示す断面図である。It is sectional drawing which shows joining of the aluminum alloy clad material and clad fin by this invention. 実施例1で作製する逆T字試験片を示す図である。2 is a diagram showing an inverted T-shaped test piece manufactured in Example 1. FIG.

符号の説明Explanation of symbols

1 チューブ材
2 B型のチューブ形状
3 クラッドフィン材
1 Tube material 2 B-shaped tube shape 3 Clad fin material

Claims (17)

芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%(質量%、以下同じ)を越え3.0%未満のSiを含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする自動車熱交換器用アルミニウム合金クラッド材。 An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si alloy brazing material is clad on the other surface, and the core material is 0 Al-Mn alloy containing 0.05-0.35% Ti, sacrificial anode material containing more than 1.5% (mass%, the same shall apply hereinafter) and less than 3.0% Si, the balance being Al And an aluminum alloy clad material for an automobile heat exchanger, characterized by being an aluminum alloy comprising impurities. 芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系合金ろう材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有するAl−Zn系合金であることを特徴とする自動車熱交換器用アルミニウム合金クラッド材。 An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si alloy brazing material is clad on the other surface, and the core material is 0 An Al—Mn alloy containing 0.05 to 0.35% Ti, and the sacrificial anode material is an Al—Zn alloy containing Si exceeding 1.5% and less than 3.0%. Aluminum alloy clad material for automotive heat exchanger. 芯材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材で、犠牲陽極材がろう付け面となるものにおいて、芯材が0.05〜0.35%のTiを含有するAl−Mn系合金であり、犠牲陽極材が1.5%を越え3.0%未満のSiを含有するAl−Zn系合金であることを特徴とする自動車熱交換器用アルミニウム合金クラッド材。 An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the sacrificial anode material is a brazing surface, and the core material contains Al-Mn containing 0.05 to 0.35% Ti An aluminum alloy clad material for an automobile heat exchanger, characterized in that the sacrificial anode material is an Al—Zn alloy containing Si exceeding 1.5% and less than 3.0%. 前記犠牲陽極材がSi:1.5%を越え3.0%未満、Zn:3.0〜10.0%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする請求項2または3記載の自動車熱交換器用アルミニウム合金クラッド材。
The sacrificial anode material is an aluminum alloy containing Si: more than 1.5% and less than 3.0%, Zn: 3.0 to 10.0%, the balance being Al and impurities. The aluminum alloy clad material for automobile heat exchanger according to 2 or 3.
,
前記犠牲陽極材がさらにIn:0.001〜0.05%、Sn:0.001〜0.05%のうちの1種または2種を含有することを特徴とする請求項1〜4のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The sacrificial anode material further contains one or two of In: 0.001 to 0.05% and Sn: 0.001 to 0.05%. An aluminum alloy clad material for an automobile heat exchanger according to claim 1. 前記犠牲陽極材がさらにMg:4.0%以下を含有することを特徴とする請求項1〜5のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for an automobile heat exchanger according to any one of claims 1 to 5, wherein the sacrificial anode material further contains Mg: 4.0% or less. 前記犠牲陽極材がさらにCu:0.05%以下、Ti:0.3%以下、Cr:0.2%以下、Zr:0.3%以下のうちの1種または2種以上を含有することを特徴とする請求項1〜6のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The sacrificial anode material further contains one or more of Cu: 0.05% or less, Ti: 0.3% or less, Cr: 0.2% or less, Zr: 0.3% or less. The aluminum alloy clad material for an automobile heat exchanger according to any one of claims 1 to 6. 前記犠牲陽極材がさらにFe:0.15〜2.0%を含有することを特徴とする請求項1〜7のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for an automobile heat exchanger according to any one of claims 1 to 7, wherein the sacrificial anode material further contains Fe: 0.15 to 2.0%. 前記犠牲陽極材がさらにSr:0.005〜0.1%を含有することを特徴とする請求項1〜8のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The aluminum alloy clad material for an automobile heat exchanger according to any one of claims 1 to 8, wherein the sacrificial anode material further contains Sr: 0.005 to 0.1%. 前記芯材がMn:0.3%を越え2.0%以下、Ti:0.05〜0.35%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする請求項1〜9のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The core material is an aluminum alloy containing Mn: more than 0.3% and not more than 2.0%, Ti: 0.05 to 0.35%, and the balance being Al and impurities. The aluminum alloy clad material for automobile heat exchangers according to any one of? 前記芯材がさらにCu:0.1〜1.0%、Si:0.1〜1.5%のうちの1種または2種を含有することを特徴とする請求項1〜10のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The core material further contains one or two of Cu: 0.1 to 1.0% and Si: 0.1 to 1.5%. Aluminum alloy clad material for automobile heat exchanger as described in 1. 前記芯材がさらにMg:0.5%以下を含有することを特徴とする請求項1〜11記載のいずれかに自動車熱交換器用アルミニウム合金クラッド材。 The said core material contains Mg: 0.5% or less further, The aluminum alloy clad material for motor vehicle heat exchangers in any one of Claims 1-11 characterized by the above-mentioned. 前記芯材がさらにCr:0.5%以下、Zr:0.3%以下のうちの1種または2種以上を含有することを特徴とする請求項1〜12のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The automobile heat according to any one of claims 1 to 12, wherein the core material further contains one or more of Cr: 0.5% or less and Zr: 0.3% or less. Aluminum alloy clad material for exchangers. 前記ろう材がSi:6〜13%を含有し、残部Alおよび不純物からなるアルミニウム合金であることを特徴とする請求項1、2、4〜13のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 14. The aluminum alloy for an automobile heat exchanger according to claim 1, wherein the brazing material is an aluminum alloy containing Si: 6 to 13%, and the balance being Al and impurities. Clad material. 前記ろう材がさらにFe:0.8〜2.0%、Zn:0.5〜5.0、Sr:0.005〜0.1%のうちの1種または2種以上を含有することを特徴とする請求項1、2、4〜14のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The brazing material further contains one or more of Fe: 0.8 to 2.0%, Zn: 0.5 to 5.0, Sr: 0.005 to 0.1%. The aluminum alloy clad material for automobile heat exchanger according to any one of claims 1, 2, 4 to 14. 前記ろう材がさらにBi:0.2%以下、Be:0.1%以下のうちの1種または2種を含有することを特徴とする請求項1、2、4〜15のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。 The brazing material further contains one or two of Bi: 0.2% or less and Be: 0.1% or less. Aluminum alloy clad material for automotive heat exchanger. 前記ろう材がさらにIn:0.001〜0.05%、Sn:0.001〜0.05%のうちの1種または2種を含有することを特徴とする請求項1、2、4〜16のいずれかに記載の自動車熱交換器用アルミニウム合金クラッド材。
The brazing material further contains one or two of In: 0.001 to 0.05% and Sn: 0.001 to 0.05%. 16. The aluminum alloy clad material for an automobile heat exchanger according to any one of 16 above.
JP2004123993A 2004-04-20 2004-04-20 Aluminum alloy clad material for automotive heat exchanger Expired - Fee Related JP4236184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123993A JP4236184B2 (en) 2004-04-20 2004-04-20 Aluminum alloy clad material for automotive heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123993A JP4236184B2 (en) 2004-04-20 2004-04-20 Aluminum alloy clad material for automotive heat exchanger

Publications (2)

Publication Number Publication Date
JP2005307252A true JP2005307252A (en) 2005-11-04
JP4236184B2 JP4236184B2 (en) 2009-03-11

Family

ID=35436350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123993A Expired - Fee Related JP4236184B2 (en) 2004-04-20 2004-04-20 Aluminum alloy clad material for automotive heat exchanger

Country Status (1)

Country Link
JP (1) JP4236184B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284558A (en) * 2007-05-15 2008-11-27 Furukawa Sky Kk Aluminum soldered structure body for heat exchanger, clad material to be used in the same, and method for manufacturing the same
WO2011034102A1 (en) * 2009-09-21 2011-03-24 株式会社デンソー Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
CN102471836A (en) * 2009-09-21 2012-05-23 古河Sky株式会社 Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
WO2014115512A1 (en) * 2013-01-25 2014-07-31 株式会社デンソー Tube for heat exchanger
EP2075083B1 (en) 2007-12-25 2018-05-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Brazing sheet of aluminium alloy
EP2969308B1 (en) 2013-03-13 2018-08-29 Novelis, Inc. Brazing sheet core alloy for heat exchanger
CN108699637A (en) * 2016-02-17 2018-10-23 株式会社Uacj Aluminium alloy brazing piece and its manufacturing method and the manufacturing method for using the automobile heat exchanger for working as the soldering lug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284558A (en) * 2007-05-15 2008-11-27 Furukawa Sky Kk Aluminum soldered structure body for heat exchanger, clad material to be used in the same, and method for manufacturing the same
EP2075083B1 (en) 2007-12-25 2018-05-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Brazing sheet of aluminium alloy
WO2011034102A1 (en) * 2009-09-21 2011-03-24 株式会社デンソー Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
CN102471836A (en) * 2009-09-21 2012-05-23 古河Sky株式会社 Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP5602747B2 (en) * 2009-09-21 2014-10-08 株式会社デンソー High corrosion resistance aluminum alloy brazing sheet, method for producing the same, and high corrosion resistance heat exchanger using the same
US9095934B2 (en) 2009-09-21 2015-08-04 Denso Corp. High-corrosion-resistant aluminum alloy brazing sheet, method of manufacturing such sheet, and corrosive-resistant heat exchanger using such sheet
EP2489750A4 (en) * 2009-09-21 2015-09-30 Denso Corp Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
WO2014115512A1 (en) * 2013-01-25 2014-07-31 株式会社デンソー Tube for heat exchanger
JP2014142157A (en) * 2013-01-25 2014-08-07 Denso Corp Tube for heat exchanger
EP2969308B1 (en) 2013-03-13 2018-08-29 Novelis, Inc. Brazing sheet core alloy for heat exchanger
CN108699637A (en) * 2016-02-17 2018-10-23 株式会社Uacj Aluminium alloy brazing piece and its manufacturing method and the manufacturing method for using the automobile heat exchanger for working as the soldering lug
EP3418408A4 (en) * 2016-02-17 2019-07-03 UACJ Corporation Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet

Also Published As

Publication number Publication date
JP4236184B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4448758B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties
JP4236183B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
JP2007092101A (en) Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger
JP4236185B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP2010197002A (en) Tube for plate bending-type aluminum heat exchanger, aluminum heat exchanger, and method of manufacturing tube for plate bending-type aluminum heat exchanger
JP4541252B2 (en) Aluminum alloy sheet for radiator tube
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP4236184B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP4236187B2 (en) Aluminum alloy clad material for automotive heat exchanger
JP5632175B2 (en) Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties
JP5354912B2 (en) Aluminum heat exchanger and manufacturing method thereof
JP5354911B2 (en) Aluminum heat exchanger and manufacturing method thereof
JP4954551B2 (en) Aluminum brazing alloy in which erosion during brazing is suppressed, brazing sheet using the same, header pipe for heat exchanger, and heat exchanger
JP2006037135A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2004076145A (en) Sacrificial material for heat exchanger, and clad material made of aluminum alloy for heat exchanger
JP3968024B2 (en) Aluminum alloy clad material for heat exchanger
JP3876180B2 (en) Aluminum alloy three-layer clad material
JP5159709B2 (en) Aluminum alloy clad material for heat exchanger tube and heat exchanger core using the same
JP3876179B2 (en) Aluminum alloy three-layer clad material
JP3968023B2 (en) Aluminum alloy clad material for heat exchanger
JP5354909B2 (en) Aluminum alloy bare fin material for heat exchanger
JP4861905B2 (en) Aluminum alloy brazing material and aluminum alloy brazing sheet
JP4440550B2 (en) Aluminum heat exchanger
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

R150 Certificate of patent or registration of utility model

Ref document number: 4236184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees