WO2014110900A1 - 激光差动共焦图谱显微成像方法与装置 - Google Patents

激光差动共焦图谱显微成像方法与装置 Download PDF

Info

Publication number
WO2014110900A1
WO2014110900A1 PCT/CN2013/081066 CN2013081066W WO2014110900A1 WO 2014110900 A1 WO2014110900 A1 WO 2014110900A1 CN 2013081066 W CN2013081066 W CN 2013081066W WO 2014110900 A1 WO2014110900 A1 WO 2014110900A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential confocal
sample
optical
spectral
detection
Prior art date
Application number
PCT/CN2013/081066
Other languages
English (en)
French (fr)
Inventor
赵维谦
崔晗
邱丽荣
王允
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to US14/366,266 priority Critical patent/US9410880B2/en
Priority to EP13871421.7A priority patent/EP2799844A4/en
Publication of WO2014110900A1 publication Critical patent/WO2014110900A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts

Definitions

  • the present application belongs to the field of optical microscopic imaging and spectrometry, and relates to a laser differential confocal microscopic imaging method and device, which can be used for three-dimensional shape reconstruction and micro-area spectral detection of various samples.
  • the principle of a typical laser confocal Raman optical detector is shown in Figure 2.
  • the laser passes through the first concentrating mirror, the first pinhole, the eighth concentrating mirror, the first spectroscopic system, and the quarter-wave plate along the optical path.
  • After the objective lens focus on the sample to be tested, and excite the Raman scattered light carrying the spectral characteristics of the sample; move the sample to be measured, so that the Raman scattered light corresponding to different regions of the sample is again passed through the quarter-wave plate and It is reflected by the first spectroscopic system, passes through the fourth concentrating mirror, the fourth pinhole, and the fifth concentrating mirror, and then is focused into the first spectrometer for spectral detection.
  • the existing confocal microscopy technique is in the BB' region near the laser excitation focus 0 (the region with a slope difference of no more than 10% from the zero-crossing point) Inside, the Raman spectrum of the sample can be excited and detected by the spectral detection system after the pinhole.
  • the actual detection position of the confocal Raman spectroscopy microscopy technique is often in the defocused BA and A'B' regions in the confocal curve, resulting in the actual detection of the "micro region" much larger than the spot size at the focus of the measurement beam.
  • Raman spectroscopy is used to achieve low confocal localization signal-to-noise ratio, and the blocking effect of the pinhole will further reduce the energy of the Raman spectrum.
  • Increasing the pinhole size and increasing the spectral pass rate will increase the confocal axial positioning curve.
  • the half-height width reduces the positioning accuracy, while the confocal pinhole size in the existing confocal Raman system is usually 150 ⁇ !
  • the pinhole size used is relatively large, and it does not work well.
  • the above reasons limit the ability of the confocal Raman spectroscopy microscopy system to detect the spectrum of the micro-region, which restricts its application in the field of spectral detection and analysis of finer micro-domains. Therefore, improving the fixed-focus accuracy of the system is to improve its spatial resolution. The essential.
  • Kimberley F et al. proposed in the "Description and Theory of a Fiber- Optic Confocal and Super-Focal Raman Microspectrometer” to replace the pinhole of the confocal Raman spectroscopy microscope with a light-spotted beam to achieve the "pinhole” size.
  • Non-mechanical adjustment which does not reduce the spectral resolution of the system when expanding the "pinhole”; in 2007, E Kenwood Blvd et al. proposed in "very efficient fluorescent background suppression in confocal Raman microscopy Department of Physics” by using 3-4ps.
  • the above research mainly focuses on the light source system and spectrum involved in the confocal Raman spectroscopy microscopy system.
  • the detection system, the focusing objective system, the spectral information processing, etc. although the overall performance of the spectral system is improved, but the spatial resolution of the confocal Raman spectroscopy system is not significantly improved, and the spatial resolution of the Raman optical system is improved. Still an open question.
  • Raman spectroscopy In the fields of physics, biomedicine, thin films and pharmaceuticals, the chemical composition, spatial distribution, and surface physicochemical properties of samples are often used to obtain more information in the form of images. Therefore, it is necessary to detect Raman spectra from a single point.
  • the analysis method is extended to detect and analyze samples in a certain area, that is, Raman spectroscopy.
  • Raman spectroscopy requires longer single-point excitation Raman spectroscopy detection time and multi-point Raman spectroscopy detection. The result is bound to Raman.
  • Spectral imaging requires a long detection time, often up to several hours to complete imaging.
  • the long-term imaging process of the instrument is greatly affected by ambient temperature, vibration, air jitter, etc., which may cause the instrument system to drift, resulting in the sample being out of focus; because the existing confocal Raman spectroscopy technology does not have The real-time focus tracking ability can not compensate the defocus error introduced by the detection position offset of the sample during the whole imaging process, which restricts the spatial resolution of the confocal Raman spectroscopy imaging technology.
  • Confocal Raman spectroscopy technology has different requirements for detecting the size of spotlights in the fields of drug detection, gemstone identification, oil and gas exploration, chemical analysis and archaeology, but the existing confocal Raman detection technology cannot. Precise control of the size of the focused spot size also limits the application of confocal Raman optical imaging technology in various fields.
  • the Raman scattered light contained in the scattered light beam collected by the system is extremely weak, and only the Rayleigh beam contained in the scattered light beam collected by the system is ⁇ - 3 ⁇ ⁇ - 6 Therefore, how to use the Rayleigh beam that is 10 3 ⁇ 10 6 times stronger than the Raman scattered light in the existing optical speech detection system in the confocal Raman optical detection is used to improve the confocal Raman light.
  • a new approach to the spatial resolution of speech detection technology is used to improve the confocal Raman light.
  • the differential confocal detection system utilizes a Rayleigh beam that is more than 10 3 ⁇ 10 6 times larger than the Raman scattered light of the sample collected by the existing confocal Raman spectroscopy detection system.
  • High-precision detection which is integrated with the spectral detection system, and simultaneously detects spatial position information and spectral information, in order to achieve high spatial resolution and measure the focus of the spot size controllable "combined map" differential confocal map imaging Light with detection, and achieve high spatial resolution Spectral detection is an urgent problem in the field of spectral microscopy, and it has extremely important theoretical and academic value.
  • the specific idea of the patent application is: organically combine the laser differential confocal technology with the spectral detection technology, and the differential confocal system uses the Rayleigh beam in the sample scattered light collected by the system to track and focus the focus of the focused spot in real time.
  • Position detection the spectral detection system uses the Raman scattered light in the scattered light of the sample collected by the system to perform spectral detection, and then organically fuses the differential confocal detection system signal with the Raman spectral detection system signal to realize laser differential
  • the focus tracking detection of the confocal Raman spectroscopy system and the controllable detection of the spot size that is, the high spatial resolution detection of the Raman spectrum.
  • One of the purposes of the present application is to overcome the deficiencies of the existing confocal Raman spectroscopy detection technique, and to propose a laser differential confocal microscopic layer imaging imaging method and apparatus with high spatial resolution.
  • the laser differential confocal microscopic imaging method comprises:
  • the zero-crossing point accurately corresponds to the focus position, and the zero-point trigger is used to accurately capture the spectral information of the focus position of the excitation spot to achieve high spatial resolution spectral detection;
  • the system can perform high spatial resolution three-dimensional tomographic imaging only when differential subtraction processing is performed on the received Rayleigh optical signal; the system can perform only when the spectral signal of the received Raman scattered light is processed. Spectral detection; When processing the received Rayleigh and Raman scattered light signals simultaneously, the system can perform high spatial resolution micro-area tomography, ie the sample to be sampled The high spatial resolution of the geometric position information and the optical language information is "integrated";
  • the differential confocal curve ( 43 ) accurately corresponds to the focus 0 of the objective lens ( 10 ) at the zero crossing point, and the measured sample ( 11 ) can be accurately tracked and fixed in real time during the measurement process to ensure that the sample to be tested ( 11 ) is throughout The measurement process is always in the focus position, suppressing the influence of ambient temperature and vibration on the spectral measurement, thereby improving the measurement accuracy;
  • the excitation beam is a polarized beam: linearly polarized, circularly polarized, radially polarized; or a structured beam generated by a pupil filtering technique, which, in combination with the pupil filtering technique, can compress and measure the focused spot size and improve System lateral resolution.
  • the system is further for detecting a scattering spectrum comprising a scattering spectrum of the detected fluorescence, the Brillouin scattered light, and the Compton scattered light.
  • the present application also discloses a laser differential confocal atlas microscopic imaging device, comprising an excitation beam generating system (1), a first beam splitting system (8), an objective lens (10), a three-dimensional scanning table (12), and a two-way Color splitting system (13), optical language detection system (22), differential confocal detection system (14) and data processing module (34);
  • the first beam splitting system (8), the objective lens (10), and the three-dimensional scanning table (12) are sequentially placed along the optical path in the exit direction of the excitation beam generating system (1), and the dichroic beam splitting system (13) is located in the first beam splitting system.
  • the direction of reflection, the spectral detection system (22) is located in the transmission direction of the dichroic beam splitting system (13), and the differential confocal detection system (14) is located in the direction of reflection of the dichroic beam splitting system (13), data processing
  • the module (34) is coupled to the optical speech detection system (22) and the differential confocal detection system (14);
  • the excitation beam generating system (1) is placed in the reflection direction of the first beam splitting system (8), and the dichroic beam splitting system (13) is sequentially placed along the optical path in the transmission direction of the first beam splitting system (8), the optical language detecting system (22) in the transmission direction of the dichroic beam splitting system (13), differential confocal detection system (14) Located in the direction of reflection of the dichroic beam splitting system (13), the data processing module (34) is coupled to the differential confocal detection system (14) and the optical speech detection system (22); the data processing module (34) is configured to fuse and Processing data collected by the optical speech detection system (22) and the differential confocal detection system (14).
  • the spectral detection system (22) is a general spectral detection system, including a seventh concentrating mirror (46) placed in sequence along the optical path, a second optical finder (47) located at a focus position of the seventh concentrating mirror (46), and located at a fifth detector (48) after the second optical language meter (47), wherein the ordinary optical language detecting system is configured to detect surface spectrum of the sample to be tested;
  • the spectral detection system (22) is a confocal optical speech detection system, comprising a fourth concentrating mirror (23) placed in sequence along the optical path, and a fourth pinhole (24) located at a focus position of the fourth concentrating mirror (23), located at a fifth condenser (25) behind the fourth pinhole (24), a first optical language detector (26) at a focus position of the fifth condenser (25), and a third detector located behind the first optical language detector (26) (33), the confocal spectral detection system is configured to improve system signal to noise ratio and spatial resolution, and to perform tomographic detection of the sample to be tested.
  • the excitation beam generating system (1) further comprises a polarization modulator (6) and a pupil filter (7), the polarization modulator (6) being configured to generate polarized light, the pupil filter (7) Configured to produce a structured beam.
  • the pupil filter (7) configured to compress the excitation spot may be located between the polarization modulator (6) and the first beam splitting system (8), and may also be located in the first beam splitting system (8) and the objective lens (10). between.
  • a fourth beam splitting system (40) and a microscopic viewing system (37) located in a direction of reflection of the fourth beam splitting system (40), wherein the microscopic viewing system (37) is configured to be a rough image of the sample to be tested;
  • the fourth beam splitting system (40) may be located between the excitation beam generating system (1) and the first beam splitting system (8) or between the first beam splitting system (8) and the objective lens (10).
  • the data processing module (34) comprises: a differential subtraction module (35) configured to process location information, and a data fusion module configured to fuse location information and spectral information
  • the present application also discloses a laser differential confocal microscopic imaging method, including:
  • differential confocal signal and the optical speech signal are obtained by the following steps:
  • An excitation beam is generated by the excitation beam generating system (1), and after the first beam splitting system (8) and the objective lens (10) are sequentially arranged, the excitation beam is focused on the sample to be tested (11), and the excitation is excited.
  • Light and Raman scattered light carrying the optical properties of the sample to be tested (11); the Rayleigh and Raman scattered light are collected by the system back into the optical path, after passing through the objective lens (10) and the first spectroscopic system (8), Entering the dichroic beam splitting system (13) for splitting, the Rayleigh light is reflected into the differential confocal detection system (14), and the geometric position of the sample to be tested (11) is obtained by the differential confocal detection system (14) a differential confocal intensity response signal of the information, the Raman scattered light is transmitted into the spectral detection system (22), and the spectral signal carrying the optical properties of the sample to be tested (11) is obtained by the optical language detecting system (22);
  • the differential confocal signal of the position information and the optical speech signal carrying the optical characteristics of the sample to be tested (11) are transmitted to the data processing system (34) for processing, wherein: the processing includes: only for the differential The focal signal is processed, the system performs high spatial resolution three-dimensional tomographic imaging; and/or, only the spectral signal is processed, the system performs spectral detection; and/or, simultaneously, the differential confocal signal and the spectral signal are processed, The system performs high spatial resolution micro-regional tomography, which is a high spatially resolved "top image" of the detected sample geometric position information and spectral information simultaneously detected;
  • the method further comprises: using the differential confocal curve, adjusting the axial defocus amount of the sample, and controlling the size of the focused spot according to the actual measurement accuracy requirement.
  • the real-time precise tracking and focusing of the objective lens (10) according to a set of differential confocal intensity response signals detected by the axial direction for each determined scanning point;
  • A1 performing axial scanning at a position of a lateral plane of the scanning point to obtain a set of differentials a confocal intensity response signal, the differential confocal intensity response signal is transmitted to the data processing system
  • the data processing system (34) fits the differential confocal intensity response signal to a differential confocal curve
  • the differential confocal curve (43) uses a characteristic that the zero-crossing point and the focus position accurately correspond, and the spectral signal of the focus spot of the excitation spot is accurately captured by the zero-point triggering, including:
  • the objective lens (10) and/or the sample to be tested (11) are axially moved, so that the sample to be tested (11) is in the objective lens (10). Focus position
  • A3 capturing the Raman scattered light of the sample to be tested (11) at the focus position, collecting the light path, and obtaining a photo-sense signal carrying the spectral characteristics of the sample to be tested (11) through the optical language detecting system (22).
  • the utilizing the differential confocal curve, by adjusting the axial defocus amount of the sample, and controlling the size of the focused spot according to the actual measurement accuracy requirement specifically includes:
  • the non-focus position of the linear region BB' corresponds to the defocus region of the objective lens (10), and the focus spot size increases with the defocus amount in the pre-focus or post-focus position in the BB' region.
  • the excitation beam is a polarized beam
  • the polarized beam comprises: linearly polarized light, circularly polarized light, radially polarized light; or a structured light beam generated by a pupil filtering technique, and the structure generated by the pupil filtering technique
  • the beam is used to compress the measured spot size and improve the lateral resolution of the system.
  • the scattering spectrum is also detected, the scattering spectrum comprising fluorescence, Brillouin scattered light, and a scattering spectrum of Compton scattered light.
  • the zero-point trigger is used to accurately capture the optical information of the focus position of the excitation spot, and the high-space resolved spectral detection is realized.
  • the differential confocal technology is used to accurately measure the focused spot, and the focus position is tracked in real time to eliminate environmental influences such as temperature and vibration, and the Raman spectroscopy system can always accurately correspond to the minimum excitation focus spot area.
  • the sample light language greatly improves the micro-spectral detection capability and geometric position detection capability of the existing confocal Raman spectroscopy microscope, that is, achieves high spatial resolution.
  • the linear region of the differential confocal response curve corresponds to the characteristics of different focused spot sizes, and the position of the focused spot is precisely adjusted, thereby controlling the size of the focused spot to facilitate testing and analysis of samples for different test requirements, that is, to achieve measurement focus.
  • the spot size is adjustable.
  • the differential confocal microscopy system with the Raman spectral imaging system in structure and function, it can realize the tomographic imaging of the geometric parameters of the sample micro-region, and realize the spectral detection of the sample micro-region, that is, realize the micro-scale layer at the same time.
  • Three imaging modes of imaging, tomography and spectral testing are analyzed, and the anti-interference ability, linearity and defocus characteristics of the imaging test system are significantly improved.
  • the differential confocal system is used to precisely determine the focus, which greatly improves the spatial resolution of optical speech detection.
  • the size of the focused spot is adjusted to meet different test requirements, making the system versatile.
  • the differential confocal focus trigger detection technology can significantly suppress the influence of system nonlinearity, sample reflectivity and surface tilt on the measurement results, in order to achieve high resolution, high resolution, high precision and high-rise Analysis of the ability to analyze, etc.
  • Figure 1 is a schematic diagram showing the axial response of differential confocal and confocal display
  • FIG. 2 is a schematic diagram of a confocal Raman optical imaging method
  • 3 is a schematic diagram of a laser differential confocal microscopic imaging method
  • 4 is a schematic diagram of a laser differential confocal microscopic imaging device
  • Figure 5 is a schematic diagram of a laser differential confocal microscopic imaging apparatus having a non-confocal optical language detecting system
  • FIG. 6 is a schematic diagram of a laser differential confocal microscopic imaging device with microscopic function
  • FIG. 7 is a schematic diagram of a reflective laser differential confocal microscopic imaging device with microscopic function
  • FIG. 8 is a laser differential confocal Map micrograph imaging method and device embodiment diagram
  • 1-excitation beam generating system 2-laser, 3-first concentrating mirror, 4-first pinhole, 5-eighth concentrating mirror, 6-polarization modulator, 7-optical filter, 8-first beam splitting System, 9-1/4 wave plate, 10-objective lens, 11-test sample, 12-dimensional scanning table, 13-dichroic beam splitting system, 14- differential confocal detection system, 15-second beam splitting system , 16-second concentrating mirror, 17-second pinhole, 18-first detector, 19-third concentrating mirror, 20-third pinhole, 21-second detector, 22-spectral detection system, 23- Four concentrating mirror, 4-fourth pinhole, 25-fifth concentrator, 26-first spectrometer, 27-incident slit, 28-plane mirror, 29-first concave reflecting concentrator, 30-spectral grating, 31- Two concave reflecting condenser, 32-out slit, 33-third detector, 34-data processing module, 35- differential subtraction module, 36-data fusion module, 37-mic
  • the basic idea of the present invention is to realize the spectral detection of "integration of graphics" by combining differential confocal detection and optical speech detection.
  • the excitation beam generating system 1 generates excitation light, passes through the first spectroscopic system 8, and the objective lens 10, and focuses on the sample 11 to be tested, and excites the Rayleigh light and the spectral characteristics of the sample to be tested.
  • the Raman scattered light, the excited Raman scattered light and the Rayleigh light are collected by the system back into the optical path, and after being passed through the objective lens 10, are reflected by the first spectroscopic system 8 to the dichroic beam splitting system 1 3 , through the dichroic beam splitting system 1 After 3 splits, the Raman scattered light and the Rayleigh light are separated from each other, and the Rayleigh light is reflected into the differential
  • the focus detection system 14 performs position detection and the Raman scattered light is transmitted into the spectral detection system 22 for spectral detection.
  • the device includes an excitation beam generating system 1, a first beam splitting system 8, an objective lens 10, a sample 11 to be tested, a three-dimensional scanning table 12, which are placed in the optical path, and two reflection scanning directions in the first beam splitting system 8.
  • the ordinary spectroscopy system including the seventh concentrating mirror 46, the second phonograph 47, and the fifth detector 48 is replaced with the ordinary ray detecting system 22 of Fig. 4, which constitutes Fig. 5.
  • a fourth beam splitting system 40 is added between the first beam splitting system 8 and the objective lens 10, and the fourth beam splitting system 40 adds a microscopic viewing system 37 in the direction of reflection, i.e., Fig. 6.
  • the excitation beam generating system 1 of Fig. 6 is placed in the reflection direction of the first beam splitting system 8, and the dichroic beam splitting system 13 is placed in the transmission direction of the first beam splitting system 8, i.e., Fig. 7.
  • the polarization modulator 6 is a radially polarized light generator
  • the first beam splitting system 8 is a polarization maintaining beam splitting prism
  • the second beam splitting system 15 is a polarization maintaining beam splitting prism
  • the third beam splitting system 39 is a broadband beam splitting prism.
  • the quartering system 40 is a polarization maintaining beam splitting prism
  • the dichroic beam splitting system 13 is a Notch filter
  • the spectrum detecting system 22 is a Raman spectrum detecting system.
  • the laser differential confocal microscopic imaging method has the following test steps: First, the Kohler illumination system 38 produces uniform white light, and the white light is transmitted through the broadband beam splitting prism 39, and is reflected by the polarization maintaining beam splitting prism 40. After the objective lens 10 is focused on the sample 11 to be tested, the white light is reflected back to the original light path, and after being reflected by the polarization-maintaining prism 40 and the broadband beam splitting prism 39, respectively, after passing through the objective lens 10, after passing through the sixth condensing mirror 41, the fourth detector 42 is entered. The sample 11 is roughly imaged by observing the image in the fourth detector 42 to determine the area to be observed of the sample to be tested 11 for rough positioning of the sample to be tested 11.
  • the light beam emitted by the laser 2 is collimated and expanded into parallel light through the first condensing mirror 3, the first pinhole 4, and the eighth condensing mirror 5, and the beam passes through the radially polarized light generator 6 to become radially polarized light.
  • the polarized light passes through the aperture filter 7, the light beam is modulated, and after passing through the polarization maintaining dichroic prism 8, a compressed spot is formed by the objective lens 10 to be focused on the sample 11 to be tested, and the Rayleigh light and the sample to be tested are excited.
  • 11 Raman scattered light of spectral characteristics the sample 11 to be tested can be processed by Raman spectroscopy techniques such as enhanced Raman spectroscopy nanoparticles to increase the intensity of Raman scattered light.
  • the sample 11 to be tested is moved so that the Rayleigh light and the Raman scattered light corresponding to different regions of the sample 11 are collected by the system back to the original optical path, passed through the objective lens 10 and transmitted through the polarization-preserving prism 40, and are reflected by the polarization-preserving prism 8 a detecting portion, wherein the Raman scattered light is transmitted through the Notch filter 13 into the Raman optical speech detecting system 22, the Raman optical detecting system 22 is a confocal Raman light "pump detection system, and the Raman scattered light is concentrated by the fourth collecting mirror 23.
  • the fourth pinhole 24 is condensed into the first optical language device 26 through the fifth condensing mirror 25.
  • the Raman scattered light is reflected by the incident slit 27, the plane mirror 28 and the first concave reflecting condensing mirror 29, and reaches the spectral grating 30. After being diffracted by the spectral grating 30, it is reflected by the second concave reflecting condensing mirror 31 and focused on the exit slit 32, and finally incident on the third detector 33. Due to the diffraction effect of the grating, light of different wavelengths in the Raman optical language are separated from each other. The light from the exit slit 32 is monochromatic light, and when the optical grating 30 is rotated, the wavelength of light emitted from the exit slit 32 is different, and the third is monitored.
  • the Raman light of the sample 11 to be tested can be obtained by the response value of the detector 33 and the angle of the grating rotation; the Rayleigh light is reflected by the Notch filter 13 into the differential confocal detection system 14, and the Rayleigh light transmitted by the polarization maintaining prism 15 is Divided into two beams, the Rayleigh light reflected by the polarization maintaining beam splitting prism 15 is focused by the second concentrating mirror 16, and enters the second pinhole 17 at a position M from the front of the second concentrating mirror 16 and is received by the first detector 18; The Rayleigh light transmitted by the polarization maintaining prism 15 is focused by the third condensing mirror 19, enters the third pinhole 20 at a distance M from the focus of the third condensing mirror 19, and is then received by the second detector 21 behind the third pinhole 20.
  • two detectors in the differential confocal detection system 14 are: the second detector 21 and the first detector 18, respectively, and the reaction sample 11 is measured.
  • the intensity response of the unevenness is (v, u, +u M ) and I 2 ( v, u, -u M ), and the resulting intensity response ( v, u, + u M ) and / 2 ( v, u, - u M ) is sent to the differential subtraction module 35 for differential subtraction processing to obtain a differential confocal intensity response / ( V, M, M M ):
  • the Raman scattered light optical signal of the spectral information of the sample 11 to be detected detected by the third detector 33 in the Raman optical speech detecting system 22 is / ( ) U is the wavelength).
  • the /, I (v, u, u M ) is transmitted to the data fusion module 36 for data processing, thereby obtaining a four-dimensional measurement including the position information I (v, u, u M ) and the optical language information / ( 1 ) of the sample 11 to be tested.
  • the test sample 11 is scanned along the ⁇ , the scan, and the objective lens 10 is scanned in the , direction, and the above steps are repeated to measure a set of i-containing position information I (v, u, u M ) and optical information IU near the focus position of the corresponding objective lens.
  • the optical characteristics of the different measured value positions can be determined by using the different measured values of the differential confocal axial response curve BB', and the light characteristic test of the controllable micro-region near the excitation focus can be realized.
  • the focus position of the excitation spot can be accurately captured, and the corresponding sequence is extracted from the measurement sequence data 1 ⁇ 2 , /, ⁇ ( ⁇ , ⁇ ) ) ⁇
  • the excitation of the focus position that is, the optical region detection and three-dimensional geometric position detection of the micro-region 5 mm .
  • the laser differential confocal micrograph imaging apparatus includes an excitation beam generating system sequentially placed along the optical path, a polarization maintaining dichroic prism 8 located in the exit direction of the excitation beam generating system 1, an objective lens 10, and a sample 11 to be tested.
  • the excitation beam generating system 1 is configured to generate an excitation beam, including sequentially placing the laser 2 along the optical path, the first condensing mirror 3, located at the first a first pinhole 4, a eighth concentrating mirror 5, a radially polarized light generator 6 and a pupil filter 7 at a focus position of the condensing mirror 3;
  • the Raman light "pump detection system includes a fourth condensing mirror 23 sequentially placed along the optical path, located at the a fourth pinhole 24 at a focus position of the fourth concentrating mirror 23, a fifth concentrating mirror 25 located behind the fourth pinhole 24,
  • the differential confocal detecting system 14 comprises a polarization maintaining beam splitting prism 15 and a third direction of the transmission direction of the polarization maintaining beam splitting prism 15 a condensing mirror 19, a third pinhole 20, a second detector 21, a second concentrating mirror 16 in the transmission direction of the polarization maintaining beam splitting prism 15, a second pinhole 17, and a first detector 18, wherein the third pinhole 20 is located at the
  • the third concentrating mirror 19 is at a distance M from the focus, and the second pinhole 17 is located at a distance M before the second concentrating mirror 16
  • the data processing module 34 includes a differential subtraction module 35 and a data fusion module 36 for fusing and processing the collected data. .
  • Step S110 as previously described, the sample to be tested 11 is coarsely positioned by the microscope observation system 37.
  • Step S120 the light beam emitted by the laser 2 is collimated into parallel light by the first condensing mirror 3, the first pinhole 4, and the eighth concentrating mirror 5, and the beam passes through the radial polarized light generator 6 to become a radial polarization.
  • the radially polarized light passes through the aperture filter 7, the light beam is modulated, and after passing through the polarization maintaining beam splitting prism 8, the compressed light spot is formed by the objective lens 10 to be focused on the sample 11 to be tested, and the Rayleigh light and the measured object are excited.
  • the Raman scattered light of the spectral characteristics of the sample 11 can be processed by a Raman enhancement technique such as enhanced Raman optical nanoparticles to increase the intensity of the Raman scattered light.
  • Step S130 axially moving the three-dimensional scanning table 12 or the objective lens 10, axially scanning the sample 11 to be tested; moving the Rayleigh light and the Raman scattered light corresponding to different regions of the sample 11 to be collected by the system back to the original light path, after passing through After the objective lens 10 is transmitted through the polarization-preserving beam splitting prism 40, it is reflected by the polarization-maintaining beam splitting prism 8 into the detecting portion.
  • Raman scattered light is transmitted through the Notch filter 13 into the Raman spectroscopy detection system 22, and the Raman optical detection system 22 is a confocal Raman spectroscopy detection system; Rayleigh light is reflected by the Notch filter 13 into the differential confocal detection system 14 .
  • two detectors in the differential confocal detection system 14 are: a second detector 21 and a first detector 18, respectively
  • the intensity response of the measured sample 11 to the unevenness of the measured sample is (v, u, +u M ) and / 2 (V, M, -M m ), and the resulting intensity response Ii (v, u, + u M ) and (v, u, -u M ) is sent to the differential subtraction module 35 for differential subtraction processing to obtain a differential confocal intensity response / (V, M, M M ):
  • V is the transverse normalized optical coordinate
  • w is the axis
  • u M is the amount of defocus of the pinhole
  • the fixed focus is only related to the axial direction (ie, the direction indicated by the z-axis in the drawing), and is independent of the lateral (ie, the plane direction determined by the X-axis and the y-axis in the drawing). Therefore, the scan referred to in equation (1) is essentially an axial scan.
  • the corresponding differential confocal curve 43 is fitted, and the position of the focus 0 of the objective lens 10 is obtained by using the characteristic that the zero-crossing point of the differential confocal curve (43) accurately corresponds to the focus position, and is operated by three-dimensional scanning.
  • the stage 12 (or the moving objective 10) moves the sample 11 to be tested to the focus 0 position. Then, the Raman scattered light of the sample 11 to be tested at the focus 0 can be recaptured at this time.
  • the third detector 33 detects that the Raman scattered light optical signal carrying the optical information of the sample 11 under test is /U) U is a wavelength).
  • the /, I (v, u, u M ) is transmitted to the data fusion module 36 for data processing, thereby obtaining a four-dimensional measurement including the position information I (v, u, u M ) and the optical language information / ( 1 ) of the sample 11 to be tested.
  • the sample area ⁇ is reconstructed according to the relationship between V and the lateral position coordinates (x, _y) and the relationship between the M and the axial position coordinate z, and the sample 11 corresponding to the focus 0 is reconstructed.
  • the sample micro-area of the sample 11 and the information on the optical properties / (x, j, z , /l) can be determined by the formula (4):
  • the sample to be tested 11 is scanned laterally by using the three-dimensional scanning table (ie, the X, ; direction in the figure), and after moving to the next point, the three-dimensional scanning table (or the objective lens driver on the objective lens) is used.
  • the sample to be tested 11 is axially scanned (i.e., the Z direction in the drawing), and after acquiring the focus 0 position of the objective lens 10, the sample 11 to be tested is moved to the focus 0, and the optical information is acquired.
  • the present application may further: When the three-dimensional scanning table 12 or the objective lens 10 is moved, the Rayleigh light of the sample 11 to be tested is captured (the Rayleigh light is used to obtain a differential confocal curve). Then, in the process of axially scanning the sample 11 to be tested, in addition to obtaining the differential confocal curve, a group of position information corresponding to the focus position of the objective lens 0/(v, w, w M ) and light can be measured. Sequence information / ( 1) Sequence measurement information ⁇ /, ⁇ ( /1) , /, ⁇ ( v, u ) ⁇ ; Each i corresponds to the resolvable area of a spot illumination during axial scanning
  • n ( , Z , ) ( 2 ) This enables nano-scale micro-area laser differential confocal microscopy imaging.
  • the smallest resolvable area is 5 min , that is, the area corresponding to the focus 0.
  • the optical characteristics of the controllable micro-regions near the excitation focus can be determined by using different measurement values of the differential confocal axial response curve BB' segment to determine the optical language characteristics corresponding to different measurement values.
  • the focus position of the excitation spot can be accurately captured, from the measurement sequence data ⁇ /, ⁇ , /, ⁇ (v, In u)) ⁇ , the excitation optical language corresponding to the focus position 0 is extracted, that is, the optical language detection and the three-dimensional geometric position detection of the micro-region 5 min are realized.
  • equation (3) Through the fusion processing of the measurement information ⁇ /, ⁇ ( ⁇ ) , It ( v, u ) ⁇ , the three measurement modes shown in equation (3) can be realized, namely: micro-area tomography test, Three-dimensional scale tomography and spectroscopy.
  • the various embodiments in the present specification are described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the various embodiments can be referred to each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种激光差动共焦图谱成像方法与装置,融合差动共焦探测和光谱探测技术,并利用二向色分光***对瑞利光和拉曼散射光进行分离,其中,拉曼散射光进行光谱探测,瑞利光进行几何位置探测,利用差动共焦曲线过零点与焦点位置精确对应这一特性,通过过零点触发来精确捕获激发光斑焦点位置的光谱信息,实现高空间分辨的光谱探测,构成可实现样品微区高空间分辨光谱探测的方法和装置。上述方法和装置具有定位准确,高空间分辨,光谱探测灵敏度高和测量聚焦光斑尺寸可控等优点,在生物医学、法庭取证等领域有应用前景。

Description

激光差动共焦图 i普显微成像方法与装置
技术领域
本申请属于光学显微成像及光谱测量技术领域, 涉及一种激光差动共 焦图谱显微成像方法与装置, 可用于各类样品的三维形貌重构及微区光谱 探测。 技术背景
1990年 G. J. Puppels等在 Nature期刊报道其发明的将拉曼光谱探测技术 与激光共焦显微技术结合的激光共焦拉曼光谱显微技术, 是拉曼技术的一 次革命性突破。 该技术既继承了共焦显微术的高分辨层析成像特征, 又可 以对样品进行光谱分析, 因此可以实现对样品微区光谱的高分辨层析探 测。 此显著优点使激光共焦拉曼光谱显微技术在光谱测试领域独树一帜, 并且迅速发展为一种极其重要的样品结构与成分分析的重要手段,使之广泛 应用于化学、 生物学、 医学、 物理学、 地质学、 法庭取证、 刑侦学等学科 的前沿基石出研究中。
目前, 典型的激光共焦拉曼光语探测仪的原理如图 2所示, 激光沿光路 依次经过第一聚光镜、 第一针孔、 第八聚光镜、 第一分光***、 四分之一 波片、 物镜后, 聚焦在被测样品上, 激发出载有样品光谱特性的拉曼散射 光; 移动被测样品, 使对应被测样品不同区域的拉曼散射光再次通过四分 之一波片并被第一分光***反射, 经过第四聚光镜、 第四针孔、 第五聚光 镜后聚焦进入第一光谱仪进行光谱探测。
现代科技的快速发展对微区光谱探测能力及空间分辨探测能力提出了 更高的要求, 若要提高空间分辨力, 必须对***进行精确定焦。 在光学探 测***中, 当测量聚焦光斑位于焦点时其尺寸最小, 激发光强最强, 因此 为了获得高空间分辨力, 必须能够捕获到激发光强最强处的光谱, 从而获 得其最佳空间分辨力和最优的光语探测能力。 如图 1所示, 现有的共焦显微 技术在激光激发焦点 0附近的 BB'区域(与过零点斜率差不大于 10%的区域) 内, 均能激发出样品的拉曼光谱, 并能被针孔后的光谱探测***探测。 因 而共焦拉曼光谱显微技术的实际探测位置往往处于共焦曲线中离焦的 BA 和 A'B'区, 从而导致实际探测的"微区"远大于测量光束焦点 0 处光斑尺 寸, 同时, 应用拉曼光谱进行共焦定位信噪比较低, 并且由于针孔的遮挡 作用会进一步降低拉曼光谱的能量, 而扩大针孔尺寸提高光谱通过率则会 增加共焦轴向定位曲线的半高宽, 降低其定位精度, 而现有共焦拉曼*** 中的共焦针孔尺寸通常在 150μη!〜 200μιη之间, 所用针孔尺寸相对较大, 亦 不能很好的起到定焦作用。 上述原因限制了共焦拉曼光谱显微***探测微 区光谱的能力, 制约了其在更精细微区光谱测试与分析场合中的应用, 因 而提高***的定焦精度是提高其空间分辨力的关键。
1996年 Kimberley F等人在《Description and Theory of a Fiber- Optic Confocal and Super-Focal Raman Microspectrometer》 中提出用光乡千束代替共 焦拉曼光谱显微镜的针孔的方法, 实现"针孔"尺寸的非机械调节, 其在扩 大"针孔"时, 并不降低***的光谱分辨力; 2007 年 E Kenwood Blvd等在 《 Very efficient fluorescent background suppression in confocal Raman microscopy Department of Physics》 中提出通过使用 3-4ps的皮秒激光器结合 相应的瞬时曝光技术使样品测量的荧光背景降低了约 3个数量级, 提高了共 焦拉曼光语显微术的分辨力; 2008 年 N.Everall 等在 《The Influence of Out-of-Focus Sample Regions on the Surface Specificity of Confocal Raman Microscopy》中指出采用大数值孔径(NA=1.4 )油浸物镜, 可获得了比传统 共焦拉曼光谱仪更高的轴向分辨力和信噪比, 但是这种方法需要对样品进 行制片, 不能实现非接触和无损测量, 限制了***的应用范围; 2009年 M. J. Pelletier和 Neil J. Everall等在 《Control of Out-of-Focus Light Intensity in Confocal Raman microscopy using optical preprocessing》 中提出利用校正物镜 或结构光瞳掩模消除了离焦位置拉曼散射的光谱强度的干扰, 提高了光谱 探测效率, 大大降低了共焦拉曼***离焦拉曼光谱对其有效深度分辨力的 影响。
上述研究, 主要集中在共焦拉曼光谱显微***涉及的光源***、 光谱 探测***、 聚焦物镜***、 光谱信息处理等方面, 虽然改善了光谱***的 总体性能, 但在共焦拉曼光谱***空间分辨能力的方面却没显著改善, 提 高拉曼光语***的空间分辨力仍是悬而未决的问题。
在物理化学、 生物医学、 薄膜和药物等研究领域, 分析样品的化学成 分、 空间分布、 表面物理化学性质时常以图像的形式来获取样品更多的信 息, 因此需要将拉曼光谱探测由单点分析方式拓展到对一定区域范围内样 品进行探测分析, 即拉曼光谱成像。 然而, 为了获得更精确、 更丰富的测 量信息, 拉曼光谱成像时既需较长的单点激发拉曼光谱探测时间, 又需对 样品进行多点拉曼光谱探测, 其结果势必使拉曼光谱成像需要较长的探测 时间, 常达几个小时才能完成成像。 但是, 仪器长时间成像过程中受环境 温度、 振动、 空气抖动等的影响较大, 易使仪器***产生漂移, 从而导致 样品被探测位置离焦; 由于现有共焦拉曼光谱探测技术不具备实时焦点跟 踪能力, 因而在整个成像过程中, 无法补偿样品的探测位置偏移引入的离 焦误差, 制约了共焦拉曼光谱成像技术空间分辨能力的提高。
共焦拉曼光谱探测技术在毒品探测、 宝玉石真伪鉴别、 油气勘探、 化 学分析以及考古等研究领域对其探测聚焦光斑的尺寸要求有所差异, 而现 有的共焦拉曼探测技术无法精确控制聚焦光斑尺寸的大小, 其结果亦限制 了共焦拉曼光语成像技术在各领域中的应用。
现有共焦拉曼光谱探测仪器中, ***收集到的样品散射光束中包含的 拉曼散射光极其微弱, 只有***收集到的样品散射光束中包含的瑞利光束 的 ιο-3 ~ ιο-6倍, 因此, 在共焦拉曼光语探测中如何利用现有光语探测*** 中遗弃的强于拉曼散射光 103 ~ 106倍的瑞利光束进行辅助探测是改善共焦 拉曼光语探测技术空间分辨力的新途径。
基于上述情况, 本申请提出差动共焦探测***利用现有共焦拉曼光谱 探测***收集到的样品散射光中遗弃的强于样品拉曼散射光 103 ~ 106倍的 瑞利光束进行高精度探测, 使其与光谱探测***有机融合, 进行空间位置 信息和光谱信息的同时探测, 以期实现高空间分辨力、 测量聚焦光斑尺寸 可控的 "图谱合一"的差动共焦图谱成像与探测, 而实现高空间分辨力的光 谱探测是目前光谱显微测试领域亟待解决的问题, 具有极其重要的理论和 学术价值。
本申请专利的具体思路是: 将激光差动共焦技术与光谱探测技术有机 结合, 差动共焦***利用***收集到的样品散射光中的瑞利光束对聚焦光 斑的焦点进行实时跟踪与空间位置探测, 光谱探测***利用***收集到的 样品的散射光中的拉曼散射光进行光谱探测, 然后再将差动共焦探测*** 信号与拉曼光谱探测***信号有机融合, 从而实现激光差动共焦拉曼光谱 ***的焦点跟踪探测和光斑尺寸可控探测, 即实现拉曼光谱的高空间分辨 探测。 发明内容
本申请的目的之一是为了克服现有共焦拉曼光谱探测技术空间分辨力 难以提高的不足, 提出一种具有高空间分辨力的激光差动共焦图谱显微层 析成像方法和装置。
本申请提供的激光差动共焦图谱显微成像方法, 包括:
a )通过激发光束产生***( 1 )产生激发光, 经过第一分光***(8 ) 、 物镜( 10 )后, 聚焦在被测样品( 11 )上, 并激发出瑞利光和载有被测样品
( 11 )光语特性的拉曼散射光, 激发出的拉曼散射光和瑞利光被***收集回 光路中, 经过物镜( 10 )后被第一分光***( 8 )反射至二向色分光***( 13 ), 经二向色分光***(13 )分光后, 拉曼散射光和瑞利光相互分离, 瑞利光被 反射进入差动共焦探测*** ( 14 ) , 拉曼散射光透射进入光谱探测***
( 22 ) , 利用差动共焦曲线(43 )过零点与焦点位置精确对应这一特性, 通 过零点触发来精确捕获激发光斑焦点位置的光谱信息, 实现高空间分辨的 光谱探测;
b ) 只对接收到的瑞利光信号进行差动相减处理时, ***可以进行高空 间分辨的三维尺度层析成像; 只对接收到的拉曼散射光的光谱信号进行处 理时, ***可以进行光谱探测; 同时对接收到的瑞利光和拉曼散射光的信 号进行处理时, ***可以进行高空间分辨的微区图谱层析成像, 即被测样 品几何位置信息和光语信息的高空间分辨的 "图谱合一" ;
c) 差动共焦曲线 ( 43 )过零点处精确对应物镜 ( 10 )的焦点 0, 测量过 程中可以实时对被测样品 ( 11 )进行精确跟踪定焦, 保证被测样品( 11 )在 整个测量过程中始终处于焦点位置, 抑制环境温度和振动等因素对光谱测 量的影响, 从而提高测量精度;
d)差动共焦曲线(43)过零点处对应测量物镜(10) 焦点 0, 此处聚 焦光斑尺寸最小, 探测的区域最小, 线性区域 BB'其他位置对应物镜( 10) 的离焦区域, 在焦前或焦后 BB'区域内的聚焦光斑尺寸随离焦量增大而增 大, 利用此特点, 通过调整样品的 z向离焦量, 并根据实际测量精度需求来 控制聚焦光斑的尺寸, 实现对样品探测区域大小可控。
优选的,所述激发光束是偏振光束: 线偏光、 圓偏光、 径向偏振光; 或 是由光瞳滤波技术生成的结构光束, 其与光瞳滤波技术联用可以压缩测量 聚焦光斑尺寸, 提高***横向分辨力。
优选的, 该***还用于探测散射光谱,所述散射光谱包括探测荧光、 布 里渊散射光、 康普顿散射光的散射光谱。
本申请还公开了一种激光差动共焦图谱显微成像装置, 包括激发光束 产生***(1)、 第一分光***(8)、 物镜(10)、 三维扫描工作台(12)、 二向色分光***(13) 、 光语探测***(22) 、 差动共焦探测***(14)及 数据处理模块( 34 ) ;
其中, 第一分光***(8) 、 物镜(10) 、 三维扫描工作台 (12) 沿光 路依次放置在激发光束产生***(1 ) 出射方向, 二向色分光***(13)位 于第一分光***(8) 的反射方向, 光谱探测***(22)位于二向色分光系 统(13) 的透射方向, 差动共焦探测***(14)位于二向色分光***(13) 的反射方向, 数据处理模块(34)与光语探测***(22)和差动共焦探测系 统( 14 )连接;
或者,激发光束产生***(1 )放在第一分光***(8)的反射方向, 二向 色分光***(13) 沿光路依次放在第一分光***(8) 的透射方向, 光语探 测***( 22 )位于二向色分光***( 13 )的透射方向, 差动共焦探测***( 14 ) 位于二向色分光***(13)的反射方向, 数据处理模块(34)连接差动共焦 探测*** ( 14)与光语探测***(22);所述数据处理模块(34)配置为融合 并处理光语探测***(22) 与差动共焦探测***(14)采集到的数据。
优选的, 所述光谱探测***( 22 )是普通光谱探测***, 包括沿光路依 次放置的第七聚光镜(46) 、 位于第七聚光镜(46)焦点位置的第二光语仪 (47)及位于第二光语仪 (47)后的第五探测器(48) , 所述普通光语探测 ***配置为被测样品的表层光谱探测;
或者,所述光谱探测***(22)是共焦光语探测***, 包括沿光路依次 放置的第四聚光镜( 23 )、 位于第四聚光镜( 23 )焦点位置的第四针孔( 24 )、 位于第四针孔(24)后的第五聚光镜(25) 、 位于第五聚光镜(25)焦点位 置的第一光语仪 (26)及位于第一光语仪 (26)后的第三探测器(33) , 所 述共焦光谱探测***配置为提高***信噪比和空间分辨力, 以及对被测样 品的层析光语探测。
优选的, 激发光束产生***( 1 )还包括偏振调制器( 6 )及光瞳滤波器 (7) , 所述偏振调制器(6) 配置为产生偏振光,所述光瞳滤波器(7) 配置 为产生结构光束。
优选的, 设置为压缩激发光斑的光瞳滤波器(7)可以位于偏振调制器 ( 6 )与第一分光***( 8 )之间, 还可以位于第一分光***( 8 )与物镜( 10 ) 之间。
优选的, 还包括第四分光***( 40 )及位于第四分光***( 40 )反射方 向的显微观察***(37) , 所述显微观察***(37)配置为被测样品粗瞄; 其中, 第四分光***(40)可以位于激发光束产生***(1 )与第一分光系 统(8)之间, 或者位于第一分光***(8)与物镜(10)之间。
优选的, 其特征在于,数据处理模块(34) 包括:配置为处理位置信息的 差动相减模块 (35 ) ,和配置为融合位置信息与光谱信息的数据融合模块
(36) 。
本申请还公开了一种激光差动共焦图谱显微成像方法, 包括:
A、 在横向扫描被测样品(11)的过程中: 实时针对每个确定的扫描点, 根据轴向探测的一组差动共焦强度响应信号对物镜(10 ) 进行精确跟踪定 焦; 在定焦后, 利用差动共焦曲线(43 )过零点与焦点位置精确对应这一特 性, 通过零点触发来精确捕获激发光斑焦点位置的光语信号;
其中, 所述差动共焦信号和光语信号通过以下步骤获得:
通过激发光束产生*** (1)产生激发光束, 所述激发光束经过按先后顺 序排列的第一分光***(8 )和物镜( 10 )后, 聚焦在被测样品 ( 11 )上, 并激发出瑞利光和载有被测样品 ( 11 )光语特性的拉曼散射光; 所述瑞利光 和拉曼散射光被***收集回光路中, 经过物镜(10 )和第一分光***(8 ) 后,进入二向色分光***( 13 )进行分光, 所述瑞利光被反射进入差动共焦探 测***( 14 ) , 通过差动共焦探测*** ( 14 )获得载有被测样品( 11 )几何 位置信息的差动共焦强度响应信号, 所述拉曼散射光透射进入光谱探测系 统(22 ) , 通过光语探测***(22 )获得载有被测样品(11 )光语特性的光 谱信号;
B, 在对被测样品(11 )的横向上的每个扫描点,按上述步骤进行实时跟 踪定焦再精确捕获扫描点的光语信号后, 获得一组载有被测样品 ( 11 )几何 位置信息的差动共焦信号和载有被测样品 ( 11 )光语特性的光语信号, 将信 号传送至数据处理***(34 )进行处理, 其中: 所述处理包括: 只对差动共 焦信号进行处理, ***进行高空间分辨的三维尺度层析成像; 和 /或, 只对 光谱信号进行处理, ***进行光谱探测; 和 /或, 同时对差动共焦信号和光 谱信号进行处理, ***进行高空间分辨的微区图谱层析成像, 所述微区图 谱层析成像为被测样品几何位置信息和光谱信息同时探测的高空间分辨的 "图谱合一" ;
其中, 在精确捕获光谱信号的过程中, 还包括: 利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据实际测量精度需求来控制聚焦光斑的尺 寸。
优选的, 所述实时针对每个确定的扫描点, 根据轴向探测的一组差动 共焦强度响应信号对物镜(10 )进行精确跟踪定焦; 包括:
A1 , 在所述扫描点所在横向平面位置, 进行轴向扫描, 获得一组差动 共焦强度响应信号, 将所述差动共焦强度响应信号传送至数据处理***
( 34 ) , 数据处理***(34 )将差动共焦强度响应信号拟合成差动共焦曲线
( 43 ) , 根据所述差动共焦曲线确定物镜(10 ) 的焦点。
优选的, 所述在定焦后, 利用差动共焦曲线(43 )过零点与焦点位置精 确对应这一特性, 通过零点触发来精确捕获激发光斑焦点位置的光谱信号 包括:
A2, 根据所述定焦后的物镜(10 ) 的焦点, 将所述物镜(10 )和 /或被 测样品 ( 11 )进行轴向移动, 使被测样品 ( 11 )处于物镜 ( 10 )的焦点位置;
A3 , 捕获被测样品( 11 )在焦点位置的拉曼散射光, 收集回光路, 并通 过光语探测***(22 )获得载有被测样品 (11 )光谱特性的光语信号。
优选的, 所述利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据 实际测量精度需求来控制聚焦光斑的尺寸具体包括:
根据差动共焦曲线 (43 ) 线性区域 BB'的非焦点位置对应物镜(10 ) 的 离焦区域, 并且在 BB'区域内的焦前或焦后位置聚焦光斑尺寸随离焦量增大 而增大的特点, 利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据实 际测量精度需求来控制聚焦光斑的尺寸, 实现对样品探测区域大小可控。
优选的, 所述激发光束是偏振光束,所述偏振光束包括: 线偏光、 圓偏 光、 径向偏振光; 或是由光瞳滤波技术生成的结构光束, 所述由光瞳滤波 技术生成的结构光束用于压缩测量聚焦光斑尺寸, 提高***横向分辨力。
优选的, 还能够探测散射光谱,所述散射光谱包括荧光、 布里渊散射 光、 康普顿散射光的散射光谱。
有益效果
本申请对比已有技术具有以下创新点:
1 ) 利用差动共焦***轴向响应曲线的过零点与焦点位置精确对应这一特 性, 通过零点触发来精确捕获激发光斑焦点位置的光语信息, 实现高空 间分辨的光谱探测。
2) 利用二向色分光装置对***收集到的瑞利光和载有被测样品信息的拉曼 散射光进行分光, 瑞利光进入差动共焦探测***, 拉曼散射光进入拉曼 光谱探测***, 实现光能的完全利用, 使微弱的拉曼散射光能够的进入 拉曼光谱探测***, 提高***光谱探测灵敏度, 实现样品几何位置信息 和光语信息的高空间分辨 "图语合一" 。
) 利用差动共焦技术对测量聚焦光斑进行高精度定位, 并对焦点位置进行 实时跟踪, 消除温度和振动等环境影响, 实现调控并使拉曼光谱***探 测可以始终精确对应最小激发聚焦光斑区域的样品光语, 大幅提高现有 共焦拉曼光谱显微镜的微区光谱探测能力和几何位置探测能力, 即实现 高空间分辨。
) 利用差动共焦响应曲线线性区域对应不同聚焦光斑尺寸的特性, 对聚焦 光斑位置进行精确调控, 进而控制测量聚焦光斑的尺寸, 便于对不同测 试需求的样品进行测试与分析, 即实现测量聚焦光斑尺寸可调。
) 将差动共焦显微***与拉曼光谱成像***在结构和功能上相融合, 既可 实现样品微区几何参数的层析成像, 又可实现样品微区的光谱探测, 即 同时实现微尺度层析成像、 图谱层析成像和光谱测试三种成像模式, 并 显著改善成像测试***的抗干扰能力、 线性和离焦特性。
本申请对比已有技术具有以下显著优点:
) 融合差动共焦技术和光谱探测技术, 利用差动共焦***对焦点的精确定 位, 大幅提高光语探测的空间分辨力。
) 利用差动共焦响应曲线的离焦区域, 调控聚焦光斑尺寸, 可满足不同测 试需求, 使***具有通用性。
) 差动共焦焦点触发探测技术, 可显著抑制***的非线性、 样品反射率和 表面倾斜等对测量结果的影响, 以利于实现微细结构高分辨力、 高抗干 扰能力、 高精度和高层析能力的测量等。 附图说明
图 1为差动共焦与共焦显 轴向响应示意图;
图 2为共焦拉曼光语成像方法示意图;
图 3为激光差动共焦图谱显微成像方法示意图; 图 4为激光差动共焦图谱显微成像装置示意图;
图 5为具有非共焦光语探测***的激光差动共焦图谱显微成像装置示意 图;
图 6为具有显微功能的激光差动共焦图谱显微成像装置示意图; 图 7为具有显微功能的反射式激光差动共焦图谱显微成像装置示意图; 图 8为激光差动共焦图谱显微成像方法与装置实施例图;
其中, 1-激发光束产生***, 2-激光器, 3-第一聚光镜、 4-第一针孔、 5-第八聚光镜、 6-偏振调制器, 7-光瞳滤波器, 8-第一分光***、 9-1/4 波 片, 10-物镜, 11-被测样品, 12-三维扫描工作台, 13-二向色分光***, 14- 差动共焦探测***, 15-第二分光***、 16-第二聚光镜、 17-第二针孔、 18- 第一探测器、 19-第三聚光镜、 20-第三针孔、 21-第二探测器、 22-光谱探测 ***、 23-第四聚光镜、 4-第四针孔, 25-第五聚光镜、 26-第一光谱仪、 27- 入射狭缝, 28-平面反射镜, 29-第一凹面反射聚光镜、 30-光谱光栅、 31-第 二凹面反射聚光镜, 32-出射狭缝、 33-第三探测器、 34-数据处理模块、 35- 差动相减模块、 36-数据融合模块、 37-显微观察***、 38-柯勒照明***, 39-第三分光***、 40-第四分光***、 41-第六聚光镜、 42-第四探测器、 43- 差动共焦曲线、 44-共焦拉曼曲线、 45-共焦曲线、 46-第七聚光镜、 47-第二 光谱仪、 48-第五探测器。 具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明的基本思想是利用差动共焦探测和光语探测相结合实现 "图语合 一" 的光谱探测。
如图 3所示, 激发光束产生*** 1产生激发光, 经过第一分光*** 8、 物镜 10后, 聚焦在被测样品 11上, 并激发出瑞利光和载有被测样品 1 1光 谱特性的拉曼散射光, 激发出的拉曼散射光和瑞利光被***收集回光路中, 经过物镜 1 0后被第一分光*** 8反射至二向色分光*** 1 3 , 经二向色分光 *** 1 3分光后, 拉曼散射光和瑞利光相互分离, 瑞利光被反射进入差动共 焦探测*** 14进行位置探测,拉曼散射光透射进入光谱探测*** 22进行光 谱探测。
如图 4所示, 本装置包括沿光路依次放置的激发光束产生*** 1、 第一 分光*** 8、 物镜 10、 被测样品 11、 三维扫描工作台 12 , 位于第一分光系 统 8反射方向的二向色分光*** 13 , 位于二向色分光*** 13透射方向的光 语探测*** 22及反射方向的差动共焦探测*** 14 , 还包括连接光语探测系 统 22和差动共焦探测*** 14的数据处理模块 34。
把图 4 中光语探测*** 22替换为包括第七聚光镜 46、 第二光语仪 47 及第五探测器 48的普通光谱***, 即构成图 5。
在图 4中第一分光*** 8与物镜 10之间添加第四分光*** 40, 第四分 光*** 40反射方向添加显微观察*** 37 , 即构成图 6。
把图 6中的激发光束产生*** 1放置于第一分光*** 8的反射方向,二 向色分光*** 13放置于第一分光*** 8的透射方向, 即构成图 7。
本实施例中, 偏振调制器 6为径向偏振光产生器, 第一分光*** 8为保 偏分光棱镜, 第二分光*** 15为保偏分光棱镜, 第三分光*** 39为宽带分 光棱镜, 第四分光*** 40 为保偏分光棱镜, 二向色分光*** 13 为 Notch filter, 光谱探测*** 22为拉曼光谱探测***。
如图 8所示, 激光差动共焦图谱显微成像方法, 其测试步骤如下: 首先, 柯勒照明*** 38产生均匀白光, 白光透过宽带分光棱镜 39后, 被保偏分光棱镜 40反射, 经过物镜 10聚焦在被测样品 11上, 白光被反射 回原光路, 经物镜 10后被保偏分光棱镜 40、 宽带分光棱镜 39分别反射后, 经过第六聚光镜 41后进入第四探测器 42, 通过观察第四探测器 42中的图像 对测样品 11进行粗瞄, 以确定被测样品 11 需要观测的区域对被测样品 11 进行粗定位。
然后, 激光器 2发出的光束经第一聚光镜 3、 第一针孔 4、 第八聚光镜 后 5准直扩束为平行光, 光束经过径向偏振光产生器 6后成为径向偏振光, 径向偏振光经光瞳滤波器 7后光束被调制, 透过保偏分光棱镜 8后, 通过物 镜 10形成压缩光斑聚焦在被测样品 11上, 并激发出瑞利光和载有被测样品 11光谱特性的拉曼散射光, 被测样品 11可通过增强拉曼光谱纳米粒子等拉 曼增强技术进行处理, 以提高拉曼散射光的强度。
移动被测样品 11 , 使瑞利光及对应被测样品 11不同区域的拉曼散射光 被***收集回原光路, 经过物镜 10并透射过保偏分光棱镜 40后, 被保偏分 光棱镜 8反射进入探测部分, 其中, 拉曼散射光透射过 Notch filterl3进入拉 曼光语探测*** 22, 拉曼光普探测*** 22为共焦拉曼光 "普探测***, 拉曼 散射光被第四聚光镜 23会聚到第四针孔 24 , 经过第五聚光镜 25会聚进入第 一光语仪 26, 拉曼散射光经入射狭缝 27 , 平面反射镜 28和第一凹面反射聚 光镜 29反射后到达光谱光栅 30, 光束经过光谱光栅 30衍射后, 被第二凹面 反射聚光镜 31反射聚焦到出射狭缝 32上, 最后入射到第三探测器 33。 由于 光栅的衍射作用, 拉曼光语中不同波长的光相互分离, 从出射狭缝 32 出来 的光线为单色光, 当光语光栅 30转动时, 从出射狭缝 32 出射的光波长不 同, 通过监测第三探测器 33 的响应值和光栅旋转的角度即可得到被测样品 11的拉曼光语; 瑞利光被 Notch filterl3反射进入差动共焦探测*** 14, 经 保偏分光棱镜 15透射的瑞利光被分为两束, 经保偏分光棱镜 15反射的瑞利 光被第二聚光镜 16聚焦, 进入距第二聚光镜 16焦点前距离为 M位置的第 二针孔 17后被第一探测器 18接收; 经保偏分光棱镜 15透射的瑞利光被第 三聚光镜 19聚焦, 进入距第三聚光镜 19焦点后距离为 M的第三针孔 20, 继而被第三针孔 20后的第二探测器 21接收。
测量过程中, 对被测样品 11 进行轴向和横向扫描时, 差动共焦探测系 统 14中两个探测器:第二探测器 21和第一探测器 18 , 分别测得反应被测样 品 11 凹凸变化的强度响应为 ( v,u,+uM )和 I2 ( v,u,-uM ) , 将所得强度响应 ( v,u,+uM )和 /2 ( v,u,-uM )传送到差动相减模块 35进行差动相减处理, 获 得差动共焦强度响应 / ( V,M,MM ) :
I( v,u,uM )= i v,u,+uM )~ h( v,u,-uM ) ( 1 ) 其中: 在上述定焦理论中, 定焦只与轴向 (即附图中的 Z轴所指方向) 响应有关, 与横向(即附图中 X轴和 y轴所确定的平面方向)响应无关, 因 此公式(1 ) 所指扫描实质上为轴向扫描。 从而实现被测样品 11几何位置的显微层析成像, 式(1) 中, V为横向 归一化光学坐标, M为轴向归一化光学坐标, wM为针孔的离焦量;
拉曼光语探测*** 22中第三探测器 33探测到的载有被测样品 11光谱 信息的拉曼散射光光语信号为 / ( ) U为波长) 。
将 / 、 I (v,u,uM)传送到数据融合模块 36进行数据处理, 从而获 得包含被测样品 11位置信息 I ( v,u,uM)和光语信息 / ( 1) 的四维测量信息 I ( v,u, λ )
对被测样品 11沿 χ、 向扫描, 物镜 10沿 ζ向扫描, 重复上述步骤, 测 得对应物镜焦点位置附近的一组 i个包含位置信息 I (v,u,uM)和光语信息 I U) 的序列测量信息 U. U) , Ii (v,u) };
利用可分辨区域 对应的位置信息 ( v,w,wM) , 找出对应 区域的光 语信息 U)值, 再依据 V与横向位置坐标(x,_y ) 的关系以及 u与轴向位 置坐标 z的关系, 重构反映被测样品 11微区 三维尺度和光普特性的信息 ( Xi,yi,z i ) ;
对应最小可分辨区域 5mi 三维尺度和光谱特性可由式(2)确定: (x^y^z^) =^(x^y^z^) {v,u)^),ix (v,u,^M)≠o,i2 (v,u,-uM)≠o ( 2 ) 这样即可实现纳米级微区激光差动共焦图谱显微成像。
同时, 可以利用差动共焦轴向响应曲线 BB'段的不同测量值 确定 对应不同测量值位置的光语特性 , 即可实现激发焦点附近可控微 区的光 "普特性测试。
从图 8中可以看出, 通过差动共焦探测*** 14的绝对零点 0, 可精确 捕获激发光斑的焦点位置, 从测量序列数据 ½ , /,· ( ν,Μ ) ) }中, 抽取对 应焦点位置 0的激发光语, 即实现了微区 5mm的光语探测和三维几何位置 探测。
微区图谱层析成像
Figure imgf000015_0001
ΐ χ,γ,ζ) , 三维尺度层析成像
1(λ) , 光谱测试 ... ... ( 3 ) 通过对测量信息 {/,· ( λ ) , It ( v,u ) }的融合处理, 可实现式(3 )所示的 三种测量模式, 即: 微区图谱层析成像测试、 三维尺度层析成像和光谱测 试。
如图 8所示, 激光差动共焦图谱显微成像装置包括沿光路依次放置的激 发光束产生*** 1、 位于激发光束产生*** 1 出射方向的保偏分光棱镜 8、 物镜 10、 被测样品 11、 三维扫描工作台 12及位于保偏分光棱镜 8反射方向 的 Notch filterl3、 位于 Notch filterl3透射方向的拉曼光语探测*** 22、 位于 Notch filterl3反射方向的差动共焦探测*** 14及位于差动共焦探测*** 14 与拉曼光语探测*** 22连接处的数据处理模块 34; 其中, 激发光束产生系 统 1用于产生激发光束, 包括沿光路依次放置激光器 2、 第一聚光镜 3、 位 于第一聚光镜 3焦点位置的第一针孔 4、 第八聚光镜 5、 径向偏振光产生器 6 及光瞳滤波器 7; 拉曼光 "普探测***包括沿光路依次放置的第四聚光镜 23、 位于第四聚光镜 23焦点位置的第四针孔 24、 位于第四针孔 24后的第五聚光 镜 25、 位于第五聚光镜 25焦点位置的第一光语仪 26及位于第一光语仪 26 后的第三探测器 33 , 其中, 第一光语仪 26包括沿光路依次放置的入射狭缝 27、 平面反射镜 28、 第一凹面反射聚光镜 29、 光谱光栅 30、 第二凹面反射 聚光镜 31和出射狭缝 32; 差动共焦探测*** 14包括保偏分光棱镜 15、 位 于保偏分光棱镜 15透射方向的第三聚光镜 19、 第三针孔 20、 第二探测器 21、 位于保偏分光棱镜 15透射方向的第二聚光镜 16、 第二针孔 17、 第一探 测器 18 , 其中, 第三针孔 20位于第三聚光镜 19焦后距离 M处, 第二针孔 17位于第二聚光镜 16焦前距离 M处; 数据处理模块 34包括差动相减模块 35及数据融合模块 36 , 用于融合处理采集到的数据。
下面以图 8所示实施例为基础, 进一步介绍本发明的测试步骤: 步骤 S 110 , 如前所述, 先通过显微镜观察*** 37对被测样品 11粗定 位。
步骤 S 120 , 激光器 2发出的光束经第一聚光镜 3、 第一针孔 4、 第八聚 光镜后 5准直扩束为平行光, 光束经过径向偏振光产生器 6后成为径向偏振 光, 径向偏振光经光瞳滤波器 7后光束被调制, 透过保偏分光棱镜 8后, 通 过物镜 10形成压缩光斑聚焦在被测样品 11上, 并激发出瑞利光和载有被测 样品 11光谱特性的拉曼散射光, 被测样品 11可通过增强拉曼光语纳米粒子 等拉曼增强技术进行处理, 以提高拉曼散射光的强度。
步骤 S 130, 轴向移动三维扫描工作台 12或者物镜 10 , 轴向扫描被测样 品 11 ; 移动时使瑞利光及对应被测样品 11不同区域的拉曼散射光被***收 集回原光路, 经过物镜 10并透射过保偏分光棱镜 40后, 被保偏分光棱镜 8 反射进入探测部分。 其中, 拉曼散射光透射过 Notch filter 13 进入拉曼光谱 探测*** 22 , 拉曼光语探测*** 22 为共焦拉曼光谱探测***; 瑞利光被 Notch filter 13反射进入差动共焦探测*** 14。
其中, 拉曼光 "普探测*** 22和差动共焦探测*** 14的工作过程与前述 类似, 在此不再贅叙。
测量过程中, 对被测样品 11进行轴向 (即图 8中的 z向)扫描时, 差 动共焦探测*** 14中两个探测器:第二探测器 21和第一探测器 18 , 分别测 得反应被测样品 11凹凸变化的强度响应为 ( v,u,+uM )和 /2 ( V,M,-Mm) , 将 所得强度响应 Ii ( v,u,+uM )和 ( v,u,-uM )传送到差动相减模块 35进行差动 相减处理, 获得差动共焦强度响应 / ( V,M,MM ) :
I( v,u,uM )= i v,u,+uM )~ h( v,u,-uM ) ( 1 ) 式(1 )中, V为横向归一化光学坐标, w为轴向归一化光学坐标, uM为 针孔的离焦量;
其中: 在上述定焦理论中, 定焦只与轴向 (即附图中的 z轴所指方向) 响应有关, 与横向(即附图中 X轴和 y轴所确定的平面方向)响应无关, 因 此公式(1 ) 所指扫描实质上为轴向扫描。
根据公式(1 ) 的结果拟合出相应差动共焦曲线 43 , 利用差动共焦曲线 ( 43 )过零点与焦点位置精确对应的特性, 获取物镜 10的焦点 0位置, 并 通过三维扫描工作台 12 (或者移动物镜 10 )将被测样品 11移动至该焦点 0 位置。 那么此时可重新捕获被测样品 11在焦点 0处的拉曼散射光。
利用拉曼光语探测*** 22对处于焦点 0处的被测样品 11进行光语采 集, 第三探测器 33探测到载有被测样品 11光语信息的拉曼散射光光语信号 为 / U) U为波长) 。
将 / 、 I (v,u,uM)传送到数据融合模块 36进行数据处理, 从而获 得包含被测样品 11位置信息 I ( v,u,uM)和光语信息 / ( 1) 的四维测量信息 I ( V,U, λ ) 。
对于焦点 0所对应的被测样品 11样品 区 δ 再依据 V与横向位置坐标 ( x,_y )的关系以及 M与轴向位置坐标 z的关系, 重构反映焦点 0所对应的被 测样品 11样品微区 三维尺度和光谱特性的信息 / (χ,γ,ζ,λ) ;
被测样品 11的样品微区 ^三维尺度和光语特性的信息 / (x,j,z,/l), 可 利 用 公 式 ( 4 ) 确 定 :
^aj ( ' ' = ' ( Ζ, ) It (v,M)=0J! {v,u,+uM )≠0J2 {v,u,-uM )≠0 (4) 即可实现纳米级微区激光差动共焦图谱显微成像。
完成上述步骤后, 利用三维扫描工作台对被测样品 11进行横向扫描(即 图中的 X、 ; 方向) , 移动到下一个点后, 利用三维扫描工作台 (或者物镜 上的物镜驱动器)对被测样品 11进行轴向扫描 (即图中的 Z方向) , 获取 物镜 10的焦点 0位置后, 将被测样品 11移动到焦点 0处, 并获取光语信 息。
那么通过上述过程, 即可获得精确的光谱信息, 实现焦点位置的光谱 探测和三维几何位置探测, 其中, 通过对测量信息 {/ (Λ) , Ii (v,u) }的融 合处理, 可实现式(5)所示的三种测量模式, 即: 微区图谱层析成像测试、 三维尺度层析成像和光语测试。
, 躯随漏成像
, 纖赋
Figure imgf000018_0001
(5) 另外, 本申请在步骤 S130中, 还可以: 在移动三维扫描工作台 12或者物镜 10, 捕获被测样品 11 的瑞利光时 (该组瑞利光用于获得差动共焦曲线) 。 那么在轴向扫描被测样品 11 的过 程中, 除了会获得差动共焦曲线外, 还可测得对应物镜焦点 0位置附近的 一组 个包含位置信息 /( v,w,wM)和光语信息 /( 1)的序列测量信息 { /,·( /1) , /,· ( v,u ) }; 每个 i对应轴向扫描过程中的一个光斑照射的可分辨区域
再利用可分辨区域 对应的位置信息 /,· (v,w,wM) , 找出对应 区域的 光语信息 (λ)值, 再依据 V与横向位置坐标(x,_y) 的关系以及 u与轴向 位置坐标 z的关系, 重构反映被测样品 11样品微区 三维尺度和光谱特性 的信息 /,· ( Χι,γ^ι,λι ) ;
对应最小可分 5mi 三维尺度和光谱特性可由式(2)确定: n ( , Z, )
Figure imgf000019_0001
( 2 ) 这样即可实现纳米级微区激光差动共焦图谱显微成像。 其中最小可分 辨区域 5min也即焦点 0对应的区域。
另外, 在上述过程中, 可以利用差动共焦轴向响应曲线 BB'段的不同测 量值 确定对应不同测量值位置的光语特性 , 即可实现激发 焦点附近可控微区的光语特性测试。
如前所述, 从图 8中可以看出, 通过差动共焦探测*** 14的绝对零点 0, 可精确捕获激发光斑的焦点位置, 从测量序列数据 {/,· , /,· (v,u)) } 中, 抽取对应焦点位置 0的激发光语, 即实现了微区 5min的光语探测和三 维几何位置探测。
/; (x, y, z, X)
L(x,y,z) , 三维尺度层析成像
ΐ ) , 光谱测试
(3) 通过对测量信息 {/,· (λ) , It ( v,u ) }的融合处理, 可实现式(3)所示的 三种测量模式, 即: 微区图谱层析成像测试、 三维尺度层析成像和光谱测 试。 本说明书中的各个实施例均采用递进的方式描述, 每个实施例重点说 明的都是与其他实施例的不同之处, 各个实施例之间相同相似的部分互相 参见即可。
最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术 语仅仅用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定 要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而 且, 术语 "包括" 、 "包含" 或者其任何其他变体意在涵盖非排他性的包 含, 从而使得包括一系列要素的过程、 方法、 商品或者设备不仅包括那些 要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 商品或者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ... ... " 限定的要素, 并不排除在包括所述要素的过程、 方法、 商品或者设备中还存在另外的相同要素。
以上对本申请所提供的一种激光差动共焦图谱显微成像方法与装置, 进行了详细介绍, 本文中应用了具体个例对本申请的原理及实施方式进行 了阐述, 以上实施例的说明只是用于帮助理解本申请的方法及其核心思 想; 同时, 对于本领域的一般技术人员, 依据本申请的思想, 在具体实施 方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为 对本申请的限制。

Claims

1、 激光差动共焦图谱显微成像方法, 其特征在于:
a )通过激发光束产生***( 1 )产生激发光, 经过第一分光***(8 )、 物镜( 10 )后, 聚焦在被测样品( 11 )上, 并激发出瑞利光和载有被测样品
( 11 )光语特性的拉曼散射光, 激发出的拉曼散射光和瑞利光被***收集回 光路中, 经过物镜( 10 )后被第一分光***( 8 )反射至二向色分光***( 13 ), 经二向色分光***(13 )分光后, 拉曼散射光和瑞利光相互分离, 瑞利光被 反射进入差动共焦探测*** ( 14 ) , 拉曼散射光透射进入光谱探测***
( 22 ) , 利用差动共焦曲线(43 )过零点与焦点位置精确对应这一特性, 通 过零点触发来精确捕获激发光斑焦点位置的光谱信息, 实现高空间分辨的 光谱探测;
b ) 只对接收到的瑞利光信号进行差动相减处理时, ***可以进行高空 间分辨的三维尺度层析成像; 只对接收到的拉曼散射光的光谱信号进行处 理时, ***可以进行光谱探测; 同时对接收到的瑞利光和拉曼散射光的信 号进行处理时, ***可以进行高空间分辨的微区图谱层析成像, 即被测样 品几何位置信息和光语信息的高空间分辨的 "图谱合一" ;
c) 差动共焦曲线 ( 43 )过零点处精确对应物镜 ( 10 )的焦点 0, 测量过 程中可以实时对被测样品 ( 11 )进行精确跟踪定焦, 保证被测样品( 11 )在 整个测量过程中始终处于焦点位置, 抑制环境温度和振动等因素对光谱测 量的影响, 从而提高测量精度;
d )差动共焦曲线(43 )过零点处对应测量物镜(10 ) 焦点 0, 此处聚 焦光斑尺寸最小, 探测的区域最小, 线性区域 BB'其他位置对应物镜( 10 ) 的离焦区域, 在焦前或焦后 BB'区域内的聚焦光斑尺寸随离焦量增大而增 大, 利用此特点, 通过调整样品的 z向离焦量, 并根据实际测量精度需求来 控制聚焦光斑的尺寸, 实现对样品探测区域大小可控。
2、 根据权利 1所述的激光差动共焦图谱显微成像方法, 其特征在于: 激发光束是偏振光束: 线偏光、 圓偏光、 径向偏振光; 或是由光瞳滤波技 术生成的结构光束, 其与光瞳滤波技术联用可以压缩测量聚焦光斑尺寸, 提高***横向分辨力。 3、 根据权利 1所述的激光差动共焦图谱显微成像方法, 其特征在于: 该***还用于探测散射光谱,所述散射光谱包括探测荧光、 布里渊散射光、 康普顿散射光的散射光谱。
4、 激光差动共焦图谱显微成像装置, 其特征在于:
包括激发光束产生***( 1 ) 、 第一分光***(8) 、 物镜( 10) 、 三维 扫描工作台 (12) 、 二向色分光***(13) 、 光语探测***(22) 、 差动共 焦探测***(14)及数据处理模块(34) ;
其中, 第一分光***(8) 、 物镜(10) 、 三维扫描工作台 (12) 沿光 路依次放置在激发光束产生***(1 ) 出射方向, 二向色分光***(13)位 于第一分光***(8) 的反射方向, 光谱探测***(22)位于二向色分光系 统(13) 的透射方向, 差动共焦探测***(14)位于二向色分光***(13) 的反射方向, 数据处理模块(34)与光语探测***(22)和差动共焦探测系 统( 14 )连接;
或者,激发光束产生***(1 )放在第一分光***(8)的反射方向, 二向 色分光***(13) 沿光路依次放在第一分光***(8) 的透射方向, 光语探 测***( 22 )位于二向色分光***( 13 )的透射方向, 差动共焦探测***( 14 ) 位于二向色分光***(13)的反射方向, 数据处理模块(34)连接差动共焦 探测*** ( 14)与光语探测***(22);所述数据处理模块(34)配置为融合 并处理光语探测***(22) 与差动共焦探测***(14)采集到的数据。
5、 根据权利 4所述的激光差动共焦图谱显微成像装置, 其特征在于: 所述光谱探测***(22)是普通光谱探测***, 包括沿光路依次放置的第七 聚光镜(46) 、 位于第七聚光镜(46)焦点位置的第二光语仪 (47)及位于 第二光语仪 (47)后的第五探测器(48) , 所述普通光语探测***配置为被 测样品的表层光谱探测;
或者,所述光谱探测***(22)是共焦光语探测***, 包括沿光路依次 放置的第四聚光镜( 23 )、 位于第四聚光镜( 23 )焦点位置的第四针孔( 24 )、 位于第四针孔(24)后的第五聚光镜(25) 、 位于第五聚光镜(25)焦点位 置的第一光语仪 (26)及位于第一光语仪 (26)后的第三探测器(33) , 所 述共焦光谱探测***配置为提高***信噪比和空间分辨力, 以及对被测样 品的层析光语探测。
6、 根据权利 4所述的激光差动共焦图谱显微成像装置, 其特征在于: 激发光束产生***(1 )还包括偏振调制器(6)及光瞳滤波器(7) , 所述 偏振调制器(6)配置为产生偏振光,所述光瞳滤波器(7)配置为产生结构光 束。
7、 根据权利 6所述的激光差动共焦图谱显微成像装置, 其特征在于: 设置为压缩激发光斑的光瞳滤波器(7)可以位于偏振调制器(6)与第一分 光***(8)之间, 还可以位于第一分光***(8)与物镜(10)之间。
8、 根据权利 4所述的激光差动共焦图谱显微成像装置, 其特征在于: 还包括第四分光***(40)及位于第四分光***(40)反射方向的显 观察 ***(37) , 所述显微观察***(37)配置为被测样品粗瞄; 其中, 第四分 光***(40)可以位于激发光束产生***(1 )与第一分光***(8)之间, 或者位于第一分光***(8)与物镜(10)之间。
9、 根据权利 4所述的激光差动共焦图谱显微成像装置, 其特征在于,数 据处理模块(34) 包括:配置为处理位置信息的差动相减模块(35),和配置 为融合位置信息与光谱信息的数据融合模块(36) 。
10、 激光差动共焦图谱显微成像方法, 其特征在于,包括:
A、 在横向扫描被测样品 (11)的过程中: 实时针对每个确定的扫描 点, 根据轴向探测的一组差动共焦强度响应信号对物镜 ( 10)进行精确跟踪 定焦; 在定焦后, 利用差动共焦曲线(43)过零点与焦点位置精确对应这一 特性 , 通过零点触发来精确捕获激发光斑焦点位置的光语信号;
其中, 所述差动共焦信号和光语信号通过以下步骤获得:
通过激发光束产生*** (1)产生激发光束, 所述激发光束经过按先后顺 序排列的第一分光***(8)和物镜( 10)后, 聚焦在被测样品 ( 11 )上, 并激发出瑞利光和载有被测样品 ( 11 )光语特性的拉曼散射光; 所述瑞利光 和拉曼散射光被***收集回光路中, 经过物镜(10)和第一分光***(8) 后,进入二向色分光***( 13 )进行分光, 所述瑞利光被反射进入差动共焦探 测***( 14 ) , 通过差动共焦探测***( 14 )获得载有被测样品( 11 )几何 位置信息的差动共焦强度响应信号, 所述拉曼散射光透射进入光谱探测系 统(22 ) , 通过光语探测***(22 )获得载有被测样品(11 )光语特性的光 谱信号;
Β, 在对被测样品(11 )的横向上的每个扫描点,按上述步骤进行实时跟 踪定焦再精确捕获扫描点的光语信号后, 获得一组载有被测样品 ( 11 )几何 位置信息的差动共焦信号和载有被测样品 ( 11 )光语特性的光语信号, 将信 号传送至数据处理***(34 )进行处理;其中,所述处理包括: 只对差动共焦 信号进行处理, ***进行高空间分辨的三维尺度层析成像; 和 /或, 只对光 谱信号进行处理, ***进行光谱探测; 和 /或, 同时对差动共焦信号和光谱 信号进行处理, ***进行高空间分辨的微区图谱层析成像, 所述微区图谱 层析成像为被测样品几何位置信息和光谱信息同时探测的高空间分辨的 "图谱合一" ;
其中, 在精确捕获光谱信号的过程中, 还包括: 利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据实际测量精度需求来控制聚焦光斑的尺 寸。
11、 根据权利 10 所述的激光差动共焦图谱显微成像方法, 其特征在 于, 所述实时针对每个确定的扫描点, 根据轴向探测的一组差动共焦强度 响应信号对物镜(10 )进行精确跟踪定焦,包括:
A1 , 在所述扫描点所在横向平面位置, 进行轴向扫描, 获得一组差动 共焦强度响应信号, 将所述差动共焦强度响应信号传送至数据处理*** ( 34 ) , 数据处理***(34 )将差动共焦强度响应信号拟合成差动共焦曲线 ( 43 ) , 根据所述差动共焦曲线确定物镜(10 ) 的焦点。
12、 根据权利 10或 11所述的激光差动共焦图谱显微成像方法, 其特征 在于, 所述在定焦后, 利用差动共焦曲线(43 )过零点与焦点位置精确对应 这一特性, 通过零点触发来精确捕获激发光斑焦点位置的光语信号包括:
Α2, 根据所述定焦后的物镜(10 ) 的焦点, 将所述物镜(10 )和 /或被 测样品( 11 )进行轴向移动, 使被测样品( 11 )处于物镜( 10 )的焦点位置; A3 , 捕获被测样品( 11 )在焦点位置的拉曼散射光, 收集回光路, 并通 过光语探测***(22 )获得载有被测样品 (11 )光谱特性的光语信号。
13、 根据权利 10 所述的激光差动共焦图谱显微成像方法, 其特征在 于, 所述利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据实际测量 精度需求来控制聚焦光斑的尺寸具体包括:
根据差动共焦曲线 (43 ) 线性区域 BB'的非焦点位置对应物镜(10 ) 的 离焦区域, 并且在 BB'区域内的焦前或焦后位置聚焦光斑尺寸随离焦量增大 而增大的特点, 利用差动共焦曲线, 通过调整样品的轴向离焦量, 根据实 际测量精度需求来控制聚焦光斑的尺寸, 实现对样品探测区域大小可控。
14、 根据权利 10 所述的激光差动共焦图谱显微成像方法, 其特征在 于: 所述激发光束是偏振光束,所述偏振光束包括: 线偏光、 圓偏光、 径向 偏振光; 或是由光瞳滤波技术生成的结构光束, 所述由光瞳滤波技术生成 的结构光束用于压缩测量聚焦光斑尺寸, 提高***横向分辨力。
15、 根据权利 10 所述的激光差动共焦图谱显微成像方法, 其特征在 于: 还能够探测散射光谱,所述散射光谱包括荧光、 布里渊散射光、 康普顿 散射光的散射光谱。
PCT/CN2013/081066 2013-01-21 2013-08-08 激光差动共焦图谱显微成像方法与装置 WO2014110900A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/366,266 US9410880B2 (en) 2013-01-21 2013-08-08 Laser differential confocal mapping-spectrum microscopic imaging method and device
EP13871421.7A EP2799844A4 (en) 2013-01-21 2013-08-08 METHOD AND APPARATUS FOR LASER DIFFERENTIAL CONFOCAL SPECTRAL MICROSCOPY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310026956.4 2013-01-21
CN201310026956.4A CN103091299B (zh) 2013-01-21 2013-01-21 激光差动共焦图谱显微成像方法与装置

Publications (1)

Publication Number Publication Date
WO2014110900A1 true WO2014110900A1 (zh) 2014-07-24

Family

ID=48204134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081066 WO2014110900A1 (zh) 2013-01-21 2013-08-08 激光差动共焦图谱显微成像方法与装置

Country Status (4)

Country Link
US (1) US9410880B2 (zh)
EP (1) EP2799844A4 (zh)
CN (1) CN103091299B (zh)
WO (1) WO2014110900A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827940A (zh) * 2018-08-20 2018-11-16 吉林大学 一种三维激光拉曼散射光谱测量***
CN109682794A (zh) * 2019-02-22 2019-04-26 中国科学技术大学 一种含能材料的相变时间测量***和方法
CN111521561A (zh) * 2020-06-16 2020-08-11 苏州优函信息科技有限公司 一种多模式显微高光谱成像仪
CN111940912A (zh) * 2019-05-14 2020-11-17 苏州洛博斯特光电科技有限公司 激光差动共焦三维曲面打标方法及装置
CN114001646A (zh) * 2021-10-28 2022-02-01 山西大学 三波长线差分共焦显微探测方法与装置
CN114001647A (zh) * 2021-10-28 2022-02-01 山西大学 三波长点差分共焦显微探测方法与装置
CN115682952A (zh) * 2022-10-25 2023-02-03 浙江大学 一种基于光谱共焦原理的几何量精密测量装置及方法
CN115900590A (zh) * 2023-02-16 2023-04-04 武汉加特林光学仪器有限公司 一种高信噪比的光谱共焦三维检测***及方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091299B (zh) 2013-01-21 2015-01-21 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN105026926A (zh) * 2013-03-04 2015-11-04 株式会社岛津制作所 色谱数据处理装置以及处理方法
CN103411957B (zh) * 2013-08-22 2015-08-12 北京理工大学 高空间分辨双轴共焦图谱显微成像方法与装置
CN103969239B (zh) * 2013-09-06 2016-04-13 北京理工大学 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103439254B (zh) * 2013-09-06 2015-10-14 北京理工大学 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103529014A (zh) * 2013-10-31 2014-01-22 江西农业大学 可精确调节共焦区域的显微共焦拉曼外光路装置
CN103940800B (zh) * 2014-03-10 2016-08-17 北京理工大学 激光共焦布里渊-拉曼光谱测量方法与装置
CN103926233A (zh) * 2014-03-10 2014-07-16 北京理工大学 激光差动共焦布里渊-拉曼光谱测量方法及装置
CN103954602B (zh) * 2014-03-10 2016-08-17 北京理工大学 激光双轴差动共焦布里渊-拉曼光谱测量方法与装置
CN103884703B (zh) * 2014-03-10 2016-10-05 北京理工大学 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN103968765B (zh) * 2014-05-27 2016-08-17 海宁科海光电科技有限公司 聚焦偏移位移传感器
CN104316506B (zh) * 2014-10-14 2017-05-10 上海交通大学 拉曼探头和可自动对焦的拉曼信号探测***以及方法
CN104316507B (zh) * 2014-10-14 2017-08-01 上海交通大学 拉曼信号探测***以及方法
CN104296686A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
CN104482880B (zh) * 2014-12-17 2017-07-11 北京理工大学 激光受激发射损耗三维超分辨分光瞳差动共焦成像方法与装置
CN104482881B (zh) * 2014-12-17 2017-08-01 北京理工大学 激光受激发射损耗三维超分辨差动共焦成像方法与装置
CN104614846B (zh) * 2015-03-03 2017-01-11 北京理工大学 反射式分光瞳差动共焦‑光声显微成像装置与方法
CN104698070B (zh) * 2015-03-17 2018-07-20 北京理工大学 高空间分辨激光共焦质谱显微成像方法与装置
CN104677864B (zh) * 2015-03-17 2017-07-11 北京理工大学 高空间分辨激光分光瞳共焦光谱‑质谱显微成像方法与装置
CN104697982B (zh) * 2015-03-17 2017-07-07 北京理工大学 高空间分辨激光差动共焦质谱显微成像方法与装置
CN104713856B (zh) * 2015-03-17 2017-08-25 北京理工大学 高空间分辨激光共焦光谱‑质谱显微成像方法与装置
CN104677885B (zh) * 2015-03-17 2017-09-05 北京理工大学 高空间分辨激光差动共焦光谱‑质谱显微成像方法与装置
CN104697981B (zh) * 2015-03-17 2017-03-29 北京理工大学 高空间分辨激光分光瞳共焦质谱显微成像方法与装置
CN105241849A (zh) * 2015-07-17 2016-01-13 北京理工大学 分光瞳激光差动共焦libs、拉曼光谱-质谱显微成像方法与装置
CN105136750A (zh) * 2015-07-17 2015-12-09 北京理工大学 激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN105388140B (zh) * 2015-12-01 2017-05-10 杭州中车车辆有限公司 现场隐形指纹显示及其内含物质测量仪
CN105784643B (zh) * 2016-03-07 2019-03-05 华中科技大学 一种降低气体拉曼光谱荧光背景的装置及其方法
JP6788476B2 (ja) * 2016-10-21 2020-11-25 株式会社ミツトヨ クロマティック共焦点センサ及び測定方法
CN106442467B (zh) * 2016-10-31 2020-03-24 北京信息科技大学 空间自调焦激光共焦成像拉曼光谱探测方法与装置
CN106770154B (zh) * 2016-10-31 2020-03-24 北京信息科技大学 空间自调焦激光差动共焦拉曼光谱探测方法与装置
US11009394B2 (en) 2016-11-03 2021-05-18 Oregon Health & Science University Multispectrum super resolution microscopy
CN108088833A (zh) * 2016-11-22 2018-05-29 山东格物光电科技有限公司 使用单模激光的手持式拉曼检测仪
TWI773721B (zh) * 2017-01-20 2022-08-11 日商東京威力科創股份有限公司 異物檢測裝置、異物檢測方法及記憶媒體
CN107037031A (zh) * 2017-05-23 2017-08-11 北京理工大学 反射式差动共焦cars显微光谱测试方法及装置
CN107167456A (zh) * 2017-05-23 2017-09-15 北京理工大学 透射式差动共焦cars显微光谱测试方法及装置
CN107167455A (zh) * 2017-05-23 2017-09-15 北京理工大学 分光瞳激光差动共焦cars显微光谱测试方法及装置
CN107765426B (zh) * 2017-06-30 2020-10-13 长春理工大学 基于对称离焦双探测器的自聚焦激光扫描投影装置
CN107765425B (zh) * 2017-06-30 2019-11-19 长春理工大学 基于对称离焦双探测器的自聚焦激光扫描投影方法
CN111164389B (zh) * 2017-08-10 2022-09-02 联邦科学及工业研究组织 用于监测沿通道的材料流动参数的设备和方法
KR102302604B1 (ko) * 2017-11-01 2021-09-16 한국전자통신연구원 분광 장치
CN107831142B (zh) * 2017-12-07 2024-01-02 黄保坤 光散射共焦激发收集***
CN108226131A (zh) * 2017-12-28 2018-06-29 北京信息科技大学 一种空间周视激光差动共焦拉曼光谱成像探测方法及装置
CN108169207A (zh) * 2017-12-28 2018-06-15 北京信息科技大学 空间自调焦激光差动共焦拉曼光谱成像探测方法与装置
CN108845411B (zh) * 2018-07-03 2023-09-01 苏州闻道电子科技有限公司 基于多面体棱镜及光束调频高分辨率高速成像方法与装置
CN109085119A (zh) * 2018-09-04 2018-12-25 席鹏 一种拉曼层析光谱检测的共聚焦三维成像***和实现方法
US11156636B2 (en) 2018-09-30 2021-10-26 National Institute Of Metrology, China Scanning probe having micro-tip, method and apparatus for manufacturing the same
CN110967330B (zh) * 2018-09-30 2022-12-02 中国计量科学研究院 微区共焦拉曼光谱探测***
CN109187722A (zh) * 2018-11-13 2019-01-11 北京理工大学 后置分光瞳激光共焦拉曼光谱-质谱显微成像方法与装置
CN109668869A (zh) * 2018-12-28 2019-04-23 中国科学院长春光学精密机械与物理研究所 一种手持式反射共聚焦拉曼光谱检测装置
CN110006360B (zh) * 2019-03-08 2020-11-03 北京理工大学 激光共焦核聚变靶丸几何参数综合测量方法与装置
CN109959347B (zh) * 2019-03-08 2020-11-03 北京理工大学 激光差动共焦核聚变靶丸形态性能参数测量方法与装置
CN109959348B (zh) * 2019-03-08 2020-11-03 北京理工大学 激光共焦核聚变靶丸形态性能参数综合测量方法与装置
CN110174393B (zh) * 2019-06-27 2023-09-05 安徽大学 差分单光子拉曼检测麦粒呕吐毒素的装置及检测方法
CN110853145B (zh) * 2019-09-12 2021-11-30 浙江大学 高空间分辨率便携式抗抖动高光谱成像方法及装置
US20210085178A1 (en) * 2019-09-23 2021-03-25 Intelon Optics, Inc. Scanning Patient Interface Systems And Methods
CN111307269B (zh) * 2020-03-11 2021-01-01 北京理工大学 激光共焦/差动共焦拉曼光谱振动参数测量方法
CN112834480B (zh) * 2020-12-31 2023-02-03 中国科学院合肥物质科学研究院 一种高压常温和低温实验的共聚焦拉曼***及其测量方法
CN112684572B (zh) * 2021-01-21 2022-03-29 浙江大学 一种兼具自动调平功能的自动对焦方法及装置
CN113137931B (zh) * 2021-04-27 2023-03-14 珠海横琴美加澳光电技术有限公司 一种光谱共焦可测量面型或厚度的装置及方法
CN113532271B (zh) * 2021-05-31 2022-08-09 浙江大学 一种无标记三维超分辨显微方法与装置
CN113484290A (zh) * 2021-06-18 2021-10-08 中国科学院上海技术物理研究所 共聚焦显微红外调制光致发光谱实验装置及测试方法
CN113624682B (zh) * 2021-07-05 2022-09-23 北京无线电计量测试研究所 一种环形光瞳共焦布里渊显微***
CN113870417B (zh) * 2021-09-26 2024-05-24 天津大学 一种随机交错投影的无监督压缩拉曼高光谱成像方法
CN113866152B (zh) * 2021-09-27 2023-11-10 北京理工大学 激光差动相关共焦拉曼光谱测试方法及装置
CN116851911A (zh) * 2022-02-16 2023-10-10 浙江大学 飞秒激光加工***和三维表面形貌在线测量方法
CN114965369B (zh) * 2022-04-06 2024-04-12 中国科学院上海光学精密机械研究所 掩模基板表面微纳缺陷检测装置和检测方法
CN115356265A (zh) * 2022-08-12 2022-11-18 大连理工大学 一种双探测器检测硅片亚表面损伤信号的装置
CN115993695B (zh) * 2023-02-27 2023-07-25 之江实验室 一种基于光谱共焦的原位自动对焦装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448707A (zh) * 2002-04-01 2003-10-15 中国科学院化学研究所 一种光散射检测器及用于该检测器的毛细管电泳仪
CN1759307A (zh) * 2003-03-11 2006-04-12 皇家飞利浦电子股份有限公司 具有激励***和焦点监测***的光谱分析装置和方法
CN101290293A (zh) * 2008-06-25 2008-10-22 北京理工大学 差动共焦拉曼光谱测试方法
CN101526477A (zh) * 2009-04-21 2009-09-09 北京理工大学 激光差动共焦图谱显微层析成像装置
US7595873B1 (en) * 2008-02-11 2009-09-29 Thermo Electron Scientific Instruments Llc Rapid spatial averaging over an extended sample in a Raman spectrometer
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
CN102608098A (zh) * 2012-02-22 2012-07-25 江阴极光仪器科技有限公司 共焦拉曼光谱仪及其激光光路的处理方法
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034970A1 (de) * 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Lichtrastermikroskop und Verwendung
KR100817854B1 (ko) * 2006-09-19 2008-03-31 재단법인서울대학교산학협력재단 라만 산란광 및 광산란의 동시 검출 장치
JP5092104B2 (ja) * 2010-08-30 2012-12-05 ナノフォトン株式会社 分光測定装置、及び分光測定方法
FR2969282B1 (fr) * 2010-12-21 2014-07-18 Horiba Jobin Yvon Sas Dispositif et procede de visualisation et de mesure de diffusion raman

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448707A (zh) * 2002-04-01 2003-10-15 中国科学院化学研究所 一种光散射检测器及用于该检测器的毛细管电泳仪
CN1759307A (zh) * 2003-03-11 2006-04-12 皇家飞利浦电子股份有限公司 具有激励***和焦点监测***的光谱分析装置和方法
US7595873B1 (en) * 2008-02-11 2009-09-29 Thermo Electron Scientific Instruments Llc Rapid spatial averaging over an extended sample in a Raman spectrometer
CN101290293A (zh) * 2008-06-25 2008-10-22 北京理工大学 差动共焦拉曼光谱测试方法
CN101526477A (zh) * 2009-04-21 2009-09-09 北京理工大学 激光差动共焦图谱显微层析成像装置
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
CN102608098A (zh) * 2012-02-22 2012-07-25 江阴极光仪器科技有限公司 共焦拉曼光谱仪及其激光光路的处理方法
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
E KENWOOD BLVD ET AL., VERY EFFICIENT FLUORESCENT BACKGROUND SUPPRESSION IN CONFOCAL RAMAN MICROSCOPY DEPARTMENT OF PHYSICS, 2007
KIMBERLEY F ET AL., DESCRIPTION AND THEORY OF A FIBER - OPTIC CONFOCAL AND SUPER - FOCAL RAMAN MICROSPECTROMETER, 1996
M. J. PELLETIER; NEIL J. EVERALL ET AL., CONTROL OF THE OUT-OF-FOCUS LIGHT INTENSITY IN CONFOCAL RAMAN MICROSCOPY USING OPTICAL PREPROCESSING, 2009
N.EVERALL ET AL., THE INFLUENCE OF OUT-OF-FOCUS SAMPLE REGIONS ON THE SURFACE SPECIFICITY OF CONFOCAL RAMAN MICROSCOPY, 2008
See also references of EP2799844A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827940A (zh) * 2018-08-20 2018-11-16 吉林大学 一种三维激光拉曼散射光谱测量***
CN108827940B (zh) * 2018-08-20 2023-09-19 吉林大学 一种三维激光拉曼散射光谱测量***
CN109682794A (zh) * 2019-02-22 2019-04-26 中国科学技术大学 一种含能材料的相变时间测量***和方法
CN111940912A (zh) * 2019-05-14 2020-11-17 苏州洛博斯特光电科技有限公司 激光差动共焦三维曲面打标方法及装置
CN111521561A (zh) * 2020-06-16 2020-08-11 苏州优函信息科技有限公司 一种多模式显微高光谱成像仪
CN114001646A (zh) * 2021-10-28 2022-02-01 山西大学 三波长线差分共焦显微探测方法与装置
CN114001647A (zh) * 2021-10-28 2022-02-01 山西大学 三波长点差分共焦显微探测方法与装置
CN114001646B (zh) * 2021-10-28 2023-12-26 山西大学 三波长线差分共焦显微探测方法与装置
CN115682952A (zh) * 2022-10-25 2023-02-03 浙江大学 一种基于光谱共焦原理的几何量精密测量装置及方法
CN115682952B (zh) * 2022-10-25 2024-01-30 浙江大学 一种基于光谱共焦原理的几何量精密测量装置及方法
CN115900590A (zh) * 2023-02-16 2023-04-04 武汉加特林光学仪器有限公司 一种高信噪比的光谱共焦三维检测***及方法
CN115900590B (zh) * 2023-02-16 2023-06-13 武汉加特林光学仪器有限公司 一种高信噪比的光谱共焦三维检测***及方法

Also Published As

Publication number Publication date
CN103091299B (zh) 2015-01-21
US9410880B2 (en) 2016-08-09
CN103091299A (zh) 2013-05-08
US20150346101A1 (en) 2015-12-03
EP2799844A4 (en) 2015-09-30
EP2799844A1 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2014110900A1 (zh) 激光差动共焦图谱显微成像方法与装置
CN106442467B (zh) 空间自调焦激光共焦成像拉曼光谱探测方法与装置
WO2015032278A1 (zh) 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103439254B (zh) 一种分光瞳激光共焦拉曼光谱测试方法与装置
WO2015135415A1 (zh) 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN107192702B (zh) 分光瞳激光共焦cars显微光谱测试方法及装置
CN105241849A (zh) 分光瞳激光差动共焦libs、拉曼光谱-质谱显微成像方法与装置
CN104698068B (zh) 高空间分辨激光双轴差动共焦光谱‑质谱显微成像方法与装置
CN105136750A (zh) 激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN105136674A (zh) 激光共焦libs、拉曼光谱-质谱成像方法与装置
CN105067569A (zh) 分光瞳激光共焦libs、拉曼光谱-质谱成像方法与装置
CN104677885A (zh) 高空间分辨激光差动共焦光谱-质谱显微成像方法与装置
CN105021577A (zh) 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
CN106546334A (zh) 空间自调焦激光共焦拉曼光谱探测方法与装置
CN105241850A (zh) 双轴激光共焦libs、拉曼光谱-质谱成像方法与装置
CN107167456A (zh) 透射式差动共焦cars显微光谱测试方法及装置
CN104697982A (zh) 高空间分辨激光差动共焦质谱显微成像方法与装置
CN104749162A (zh) 共聚焦拉曼光谱仪及其光路装置
CN104697967B (zh) 高空间分辨激光双轴共焦光谱‑质谱显微成像方法与装置
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN105181656A (zh) 激光差动共焦诱导击穿-拉曼光谱成像探测方法及装置
CN105067570A (zh) 双轴激光差动共焦libs、拉曼光谱-质谱成像方法与装置
US20140158912A1 (en) Ultra dark field microscope
CN107167457A (zh) 透射式共焦cars显微光谱测试方法及装置
CN106770154B (zh) 空间自调焦激光差动共焦拉曼光谱探测方法与装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14366266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013871421

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE