CN113532271B - 一种无标记三维超分辨显微方法与装置 - Google Patents

一种无标记三维超分辨显微方法与装置 Download PDF

Info

Publication number
CN113532271B
CN113532271B CN202110603303.2A CN202110603303A CN113532271B CN 113532271 B CN113532271 B CN 113532271B CN 202110603303 A CN202110603303 A CN 202110603303A CN 113532271 B CN113532271 B CN 113532271B
Authority
CN
China
Prior art keywords
resolution
light
super
scanning
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110603303.2A
Other languages
English (en)
Other versions
CN113532271A (zh
Inventor
匡翠方
张宇森
何敏菲
周国尊
刘旭
***
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110603303.2A priority Critical patent/CN113532271B/zh
Publication of CN113532271A publication Critical patent/CN113532271A/zh
Application granted granted Critical
Publication of CN113532271B publication Critical patent/CN113532271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开一种无标记三维超分辨显微方法,包括步骤:利用实心照明光束和空心照明光束对无标记样品同时进行二维扫描,得到由实心光斑调制得到的正共聚焦反射光强度图和由空心光斑调制得到的负共聚焦反射光强度图,并进行差分计算;采用差动测量扫描方法对样品进行扫描测量实现轴向超分辨,一个光电探测器置于焦平面的离焦距离‑uM处,另一个光电探测器置于焦平面的离焦距离+uM处,分别测得反映样品表面形貌变化大小的强度曲线,进行差动相减并进行归一化处理,后得到一个差分强度信号;根据强度曲线在零点附近AB线性测量范围内的光强大小,重构出样品表面形貌和微观尺度;并得到三维超分辨显微图像。

Description

一种无标记三维超分辨显微方法与装置
技术领域
本发明属于激光点扫描显微领域,尤其涉及一种无标记三维超分辨显微方法与装置。
背景技术
无标记超分辨率显微镜主要适用于无标记非荧光样品。为了实现无标记的超分辨率显微镜,一种简单的方法就是近场扫描光学显微镜(SNOM)技术,该技术使用超薄纳米尖端检测样品表面的近场信号。但是,低成像速度和尖端与物体表面之间距离的精密控制的要求使得SNOM不太令人满意。在随后的发展中,科学家使用了一些纳米结构来实现多个无标记的超分辨显微成像,例如具有双曲线分布的超透镜微球,基于超材料的固体浸没透镜(mSIL)和纳米线环形照明显微镜(NWRIM)等。然而,上述技术也有一定的应用瓶颈。一方面,基于纳米结构的设备必须放置在物体的近场中,并且仅限于表面检测。另一方面,这些技术对制造过程提出了复杂的要求,并且还增加了成本。
一些无标记的远场光学显微镜技术被用于三维物体的表面形貌测量,它们的结构比SNOM更简单,其主要特点就是利用了光的干涉性质,如白光干涉仪。该技术利用不同波长的光在不同光程差时相干增强,而相干增强的波长对应的颜色就体现物体该点的光程信息,也是物体深度信息。虽然白光干涉仪可以实现高的轴向分辨率,但是它的横向分辨率并不高,是受限于衍射极限的。
共聚焦显微技术是一种能同时提高轴向分辨率和轴向分辨率的技术,而在共聚焦***上改进的强度差分技术能近一步提高横向和轴向分辨率。强度差分技术有着易于实施且不限于样品的特定特性,并以更经济的方式提高显微镜的空间分辨率。早在20世纪90年代就有人提出了将宽场图像减去共聚焦图像能提高分辨率,同时反应物体深度信息。但这种方法在频谱上只是减弱了低频信息,放大高频信息,也因此减小了图像的信噪比,所以并没有得到很好的应用。
公开号为CN102830102A的专利申请描述的差动共聚焦显微技术(DCM),通过利用双共焦装置的微分减法成功地提高了轴向分辨率。实现了纳米级的轴向检测,这有利于材料表面形貌的起伏检测。
公开号为CN110220875A的专利申请描述的荧光差分显微技术(FED),通过两路不同激发光,实心光斑和空心光斑激发样品,并将实心光斑的图像减去空心光斑的图像,由于这种相减处理相当于减小点扩散函数,从而实现了横向超分辨。在后续的改进中,通过加入并行扫描装置,减少了扫描时间,实现实时成像。将FED方法应用在无标记显微技术中能有效地提高横向分辨率。
发明内容
本发明在激光点扫描显微术的基础上,融合横向并行辐射差分超分辨技术与差动共焦显微技术的各自特点,提供一种横向光学超分辨、轴向纳米级分辨的三维超分辨成像***,实现对无标记非荧光样品及材料的表面形貌检测。
通过差动共焦显微探测技术提高成像***的轴向分辨率,通过并行辐射差分超分辨方法提高其横向分辨率。
这本发明的具体技术方案步骤如下:
(1)利用实心照明光束和空心照明光束对无标记样品同时进行二维扫描,得到由实心光斑调制得到的正共聚焦反射光强度图Is(x,y,z0,0)和由空心光斑调制得到的负共聚焦反射光强度图Ik(x,y,z0,0);
(2)根据公式If(x,y,z0,0)=Is(x,y,z0,0)-αIk(x,y,z0,0)得到横向超分辨图像If(x,y,z0,0),其中α为权重因子,可根据实际成像效果确定,在计算过程中,有可能因为差分出现负强度问题,则采用直接归零的方式;
(3)采用差动测量扫描方法对样品进行扫描测量实现轴向超分辨,一个光电探测器置于焦平面的离焦距离-uM处,另一个光电探测器置于焦平面的离焦距离+uM处,分别测得反映样品表面形貌变化大小的强度曲线IA(x,y,z,-uM)和IB(x,y,z,+uM),进行差动相减并进行归一化处理,后得到一个差分强度信号ID(x,y,z,uM);
(4)优化uM值,提高差动共焦方法的轴向分辨率,然后根据强度曲线ID(x,y,z,uM)在零点附近AB线性测量范围内的光强大小,重构出样品表面形貌和微观尺度。
(5)通过结合横向超分辨图像信息和轴向差动测量信息得到三维超分辨显微图像。
本发明原理如下:
设(x,y,z)为样品物空间坐标,此方法得到的图像原始数据可记为I(x,y,z,uM),其中uM是探测器的离焦距离。
为方便计算与分析,对各变量进行坐标变换:
径向光学坐标υ:
Figure BDA0003093600740000031
a为光瞳半径,f为物镜焦距;极坐标下的径向坐标
Figure BDA0003093600740000032
轴向光学坐标u:
Figure BDA0003093600740000033
归一化半径
Figure BDA0003093600740000034
J0为零阶贝塞尔函数。
记装置中的显微物镜的光瞳函数为P(ρ),根据共聚焦理论,三维的点扩散函数表示为:
Figure BDA0003093600740000035
(1)横向超分辨的实现
用实心激发光斑和横向空心激发光斑两种激发模式的光斑扫描,分别得到两幅图像。两种激发模式探测器都在焦平面上,所以uM=0。实心激发时,光瞳函数Ps(ρ)=1,|ρ|≤1,得到的是得到的普通共焦图像,强度分布记为Is(x,y,z,0)。横向空心激发时,激发光经过涡旋相位板,光瞳函数变为
Figure BDA0003093600740000036
得到的负共焦图像,强度分布记为Ik(x,y,z,0)。
横向超分辨图像If(x,y,z,0)是共焦图像与负共焦图像的特殊权重差分的结果,表达式为:
If(x,y,z,0)=Is(x,y,z,0)-αIk(x,y,z,0) (2)
式中,Is(x,y,z,0)和Ik(x,y,z,0)在计算时均取归一化强度分布,α为权重因子,可根据实际成像效果确定。在计算过程中,有可能因为差分出现负强度问题,一般采取直接归零的方式。
(2)纵向超分辨的实现
为了分析该***中的纵向分辨率,以探测物体是一个理想点,探测器位于焦平面为例,并且只考虑探测到的中心点轴向分布的光强分布,即式(2)中的x=0,y=0,υ=0,uM=0:
Figure BDA0003093600740000041
它的函数曲线图见图3的短虚线I0
由该线图可以看出,当轴向位置u在u=0附近变化时,光强I0变化不大,这意味着如果样品的扫描平面稍偏离焦平面,光强变化不明显。这意味着传统的通过共聚焦***检测获得的最大光强的位置u,从而检测物体表面高度变化的方法的分辨率不高。
而在远离u=0的地方,光强I0随轴向位置u变化呈较明显的线性关系。这样的明显光强变化可以更明显的反映物体表面高度变化。
通过设置两路探测光路,并将探测器分别向相反方向偏离相同距离+uM和-uM。这两路探测得到的光强IA,IB随轴向位置u的函数曲线为:
Figure BDA0003093600740000042
Figure BDA0003093600740000043
IA见图3的实线,IB见图3的长虚线。
将两路探测信号相减可以得到差动信号ID
Figure BDA0003093600740000044
差动信号ID见图3的点划线,从图中可以看出,通过将两路信号相减,得到的曲线ID有一段斜率更大的线性区域AB(相对于没有相减时的原曲线IA中的线性区域CD),这意味着等间隔光强ID变化时,轴向位置u随之变化地更明显,这意味着更高的轴向分辨率。
(3)三维超分辨的实现
通过振镜扫描对物体某个轴向位置z0进行二维扫描,通过物镜轴向移动实现物体的轴向扫描,一次二维扫描得到四组数据Is(x,y,z0,0),Ik(x,y,z0,0),IA(x,y,z0,-uM),IB(x,y,z0,+uM)。
根据上述的横向和轴向超分辨实现的原理,在一路激发光路中放置涡旋相位板,在几路探测光路中将探测器分别放置在焦平面位置、偏离焦平面+uM和-uM位置。最后将探测的信号根据相应原理相减,得到横向超分辨信息:
If(x,y,z0,0)=Is(x,y,z0,0)-αIk(x,y,z0,0) (7)
不同扫描点(x,y)得到的差动信号ID
ID(x,y,z0,uM)=IA(x,y,z0,-uM)-IB(x,y,z0,+uM) (8)
物体的轴向信息需要通过物体高度h变化体现的。通过得到的横向各点的差动信号ID(x,y,z0,uM)的值,查找z与差动信号ID对应的转化关系,得到物体横向各点(x,y)轴向位置信息z(相对与扫描平面z0),从而换算为物体高度信息h。
附图说明
图1为本发明显微装置方案一示意图;
图2为本发明显微装置方案二示意图;
图3为本发明显微装置的实现轴向超分辨原理的示意图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例的限制。下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1
如图1所示,一种无标记差分三维超分辨显微装置,包括激光器1,透镜2,起偏器3,涡旋相位板4,半波片5、偏振分束器6,四分之一波片7,二色镜8,扫描镜9,扫描镜10,扫描透镜11,管透镜12,反射镜13,显微物镜14,样品15,透镜16,小孔17,光电探测器18,激光器19,透镜20,偏振分束器21,四分之一波片22,分束器23,透镜24,小孔25,光电探测器26,分束器27,透镜28,小孔29,光电探测器30,透镜31,小孔32,光电探测器33,计算机34。
采用图1所示的装置所实现的无标记差分三维超分辨显微方法,其过程如下:
(1)激光器1发出照明光,经过透镜2准直,经过起偏器3调节成线偏光,再经过涡旋相位板4调制成空心光斑,半波片5将入射光调制p偏振光,四分之一波片7将线偏光调节成圆偏光;
(2)激光器19发出照明光,经过透镜20准直,四分之一波片22将经过偏振分束器21的出射光调节至圆偏光;
(3)激光器1和19发出波长接近但不同的激光,优选中心波长分别为405nm和450nm,二色镜8能透过激光器1发出的较短波长的光(405nm),反射激光器19发出的较长波长的光(450nm),两路激光通过二色镜8后进入振镜模块;
(4)经二色镜8出射的光至扫描振镜9和扫描振镜10,扫描振镜9和扫描振镜10组成振镜模块由计算机34控制,以对样品进行二维扫描;
(5)两路激光经过扫描透镜11和管透镜12,经反射镜13反射,进入显微物镜14,照明样品15;
(6)样品的两色反射光由同样的物镜14收集,返回振镜模块,到二色镜8处按波长被分为两路;
(7)较短波长的反射光(405nm)透过二色镜8,其中s分量经过偏振分束器6反射,透镜16会聚和小孔17,最终被位于焦点位置的光电探测器18收集,得到空心光斑扫描图像Ik(x,y,z0,0);
(8)较长波长的反射光(450nm)经二色镜8反射,经过四分之一波片22,其中s分量经偏振分束镜21反射,被分束镜23分为两束光,一束经过透镜24,小孔25,被位于焦点位置的光电探测器26收集,得到实心光斑扫描图像Is(x,y,z0,0),另一束又被分束镜27分为两束,分别被相同焦距的透镜28和31聚焦;
(9)将实心光斑扫描图像Is(x,y,z0,0)和空心光斑扫描图像Ik(x,y,z0,0)归一化后进行特殊权重相减,得到横向超分辨的图If(x,y,z0,0);
(10)光电探测器30置于透镜28焦平面的离焦距离-uM处,光电探测器33置于透镜31焦平面的离焦距离+uM处,分别测得反映样品15表面形貌变化大小的强度曲线IA(x,y,z,-uM)和IB(x,y,z,+uM),进行差动相减并进行归一化处理,后得到一个差分强度信号ID(x,y,z,uM);
(11)优化uM值,提高差动共焦方法的轴向分辨率,然后根据强度曲线ID(x,y,z,uM)在零点附近AB测量范围内的光强大小,重构出样品表面形貌和微观尺度。
实施例2
如图2所示,一种由实现样品三维超分辨的荧光辐射微分显微装置,包括激光器1,透镜2,半波片3,偏振分束器4,涡旋相位板5,偏振分束器6,反射镜7和8,四分之一波片9,半波片10,偏振分束器11,四分之一波片12,二色镜13,扫描镜14,扫描镜15,扫描透镜16,管透镜17,反射镜18,显微物镜19,样品20,透镜21,小孔22,光纤耦合输入的光电探测器23,光纤耦合输入的光电探测器24,激光器25,透镜26,偏振分束器27,四分之一波片28,分束器29,透镜30,小孔31,光电探测器32,透镜33,小孔34,光电探测器35,计算机36。
(1)激光器1发出照明光,经过透镜2准直,半波片3调节经过偏振分束器4的p偏振光和s偏振光的光强比例,p偏振光经过涡旋相位板5调制成空心光束,s偏振光(实心光束)经过反射镜7和8,偏振分束器6将空心光束和实心光束进行合束,其中这两束光束存在着微小的距离差d;
(2)根据圆孔衍射极限公式
Figure BDA0003093600740000081
其中k为波矢,a为圆孔半径,θ为孔径角,I0为中心光强极大值,其艾里斑直径可由公式
Figure BDA0003093600740000082
得到,次级大的相对强度为I2≈0.00175I0,因此当两光斑相间大于一个艾里斑距离时,其旁瓣的影响则小于千分之二,因此两光斑需要间隔大于一个艾里斑,以保证光斑相互间不影响。在该实施例中,为保证实心光斑和空心光斑不会互相干扰,利用调节反射镜7和8使得实心光斑和空心光斑在物面上错开至少200nm以上;
(3)两束光经过四分之一波片9和半波片10调节成圆偏光,其中两束光的p分量透过偏振分束器11,再经过四分之一波片12调节成圆偏光;
(4)激光器25发出照明光,经过透镜26准直,四分之一波片28将经过偏振分束器27的出射光调节至圆偏光;
(5)激光器1和25发出波长接近但不同的激光,优选中心波长分别为405nm和450nm,二色镜13能透过激光器1发出的较短波长的光(405nm),反射激光器25发出的较长波长的光(450nm),两路激光通过二色镜13后进入振镜模块;
(6)经二色镜13出射的光至扫描振镜14和扫描振镜15,扫描振镜14和扫描振镜15组成振镜模块由计算机36控制,以对样品进行二维扫描;
(7)两路激光经过扫描透镜16和管透镜17,经反射镜18反射,进入显微物镜19,照明样品20;
(8)样品的两色反射光由同样的物镜19收集,返回振镜模块,到二色镜13处按波长被分为两路;
(9)较短波长的反射光(405nm)透过二色镜13,经过四分之一波片12,其中s分量被偏振分束器11反射,经透镜21会聚,两个存在微小位移差的反射光束分别被两根光纤22接收,并最终被光电探测器23和24收集,得到焦上实心斑扫描图像Is(x,y,z0,0)和空心斑扫描图像Ik(x,y,z0,0);将两幅荧光强度图进行移位匹配,根据公式If(x,y,z0,0)=Is(x,y,z0,0)-αIk(x,y,z0,0)得到超分辨图像If(x,y,z0,0);
(10)较长波长的反射光(450nm)经二色镜8反射,其中s分量经偏振分束镜27反射,被分束镜23分为两束光,一束经过透镜24,小孔25,被光电探测器26收集,得到焦上实心光斑扫描图像Is(x,y,z,0),另一束又被分束镜27分为两束,分别被相同焦距的透镜28和31聚焦;
(11)光电探测器32置于透镜30焦平面的离焦距离-uM处,光电探测器35置于透镜33焦平面的离焦距离+uM处,分别测得反映样品20表面形貌变化大小的强度曲线IA(x,y,z,-uM)和IB(x,y,z,+uM),进行差动相减并进行归一化处理,后得到一个差分强度信号ID(x,y,z,uM);
(12)优化uM值,提高差动共焦方法的轴向分辨率,然后根据强度曲线ID(x,y,z,uM)在零点附近AB测量范围内的光强大小,重构出样品表面形貌和微观尺度。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发明精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种无标记三维超分辨显微方法,其特征在于,包括步骤:
(1)利用实心照明光束和空心照明光束对无标记样品同时进行二维扫描,得到由实心光斑调制得到的正共聚焦反射光强度图
Figure 385646DEST_PATH_IMAGE002
和由空心光斑调制得到的负共聚焦反射光强度图
Figure 235790DEST_PATH_IMAGE004
(2)根据公式
Figure 872308DEST_PATH_IMAGE006
得到横向超分辨图像
Figure 152635DEST_PATH_IMAGE008
,其中α为权重因子,
(3)采用差动测量扫描方法对样品进行扫描测量实现轴向超分辨,一个光电探测器置于焦平面的离焦距离
Figure 241814DEST_PATH_IMAGE010
处,另一个光电探测器置于焦平面的离焦距离
Figure 895649DEST_PATH_IMAGE012
处,分别测得反映样品表面形貌变化大小的强度曲线
Figure 386673DEST_PATH_IMAGE014
Figure 100551DEST_PATH_IMAGE016
,进行差动相减并进行归一化处理,后得到一个差分强度信号
Figure 942605DEST_PATH_IMAGE018
(4)优化
Figure 134552DEST_PATH_IMAGE020
值,根据强度曲线
Figure 480083DEST_PATH_IMAGE022
在零点附近AB线性测量范围内的光强大小,重构出样品表面形貌和微观尺度;
(5)通过结合横向超分辨图像信息和轴向差动测量信息得到三维超分辨显微图像;
利用两个激光器发出波长接近但不相同的激光,分别形成所述的实心照明光束和空心照明光束;一路激光为波长为405 nm;另一路激光波长为450 nm。
2.根据权利要求1所述的无标记三维超分辨显微方法,其特征在于,所述步骤(1)和(3)中,利用雪崩光电二极管(APD)或光电倍增管(PMT)收集反射的激光强度信号。
3.根据权利要求1所述的无标记三维超分辨显微方法,其特征在于,步骤(2)内的公式差分出现负值时,计算结果直接归零。
4.根据权利要求1所述的无标记三维超分辨显微方法,其特征在于,
Figure 364862DEST_PATH_IMAGE002
Figure 163054DEST_PATH_IMAGE004
在计算时均取归一化强度分布,α为权重因子。
5.根据权利要求1所述的无标记三维超分辨显微方法,其特征在于,通过设置两路探测光路,并将探测器分别向相反方向偏离相同距离
Figure 893113DEST_PATH_IMAGE024
Figure 107798DEST_PATH_IMAGE026
6.一种无标记三维超分辨显微成像装置,基于权利要求1-5任一项所述的无标记三维超分辨显微方法,其特征在于,两个激光器发出波长接近但不相同的激光,二色镜能透过一个激光器发出的较短波长的光,反射另一个激光器发出的较长波长的光,两路激光通过二色镜后进入振镜模块同时对样品进行扫描;其中用405 nm 激光扫描得到
Figure 163479DEST_PATH_IMAGE028
,用450 nm激光扫描得到
Figure 714546DEST_PATH_IMAGE030
Figure 248296DEST_PATH_IMAGE032
Figure 568418DEST_PATH_IMAGE034
,通过波长不同分离出两路信号。
CN202110603303.2A 2021-05-31 2021-05-31 一种无标记三维超分辨显微方法与装置 Active CN113532271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110603303.2A CN113532271B (zh) 2021-05-31 2021-05-31 一种无标记三维超分辨显微方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110603303.2A CN113532271B (zh) 2021-05-31 2021-05-31 一种无标记三维超分辨显微方法与装置

Publications (2)

Publication Number Publication Date
CN113532271A CN113532271A (zh) 2021-10-22
CN113532271B true CN113532271B (zh) 2022-08-09

Family

ID=78124499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110603303.2A Active CN113532271B (zh) 2021-05-31 2021-05-31 一种无标记三维超分辨显微方法与装置

Country Status (1)

Country Link
CN (1) CN113532271B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326609B (zh) * 2020-10-16 2022-05-13 之江实验室 基于偏振复用的实时三维荧光差分超分辨成像方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322403A (ja) * 2006-06-05 2007-12-13 Topcon Corp 画像処理装置及びその処理方法
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
CN102798622A (zh) * 2012-08-17 2012-11-28 浙江大学 一种基于强度差分的三维超分辨显微方法和装置
EP2535755A1 (en) * 2011-06-14 2012-12-19 Ecole Polytechnique Fédérale de Lausanne (EPFL) Cumulant microscopy
CN104482881A (zh) * 2014-12-17 2015-04-01 北京理工大学 激光受激发射损耗三维超分辨差动共焦成像方法与装置
CN104614318A (zh) * 2015-01-28 2015-05-13 浙江大学 一种快速的超分辨显微成像方法和装置
CN109358004A (zh) * 2018-11-30 2019-02-19 浙江大学 双波长差分非标记显微成像的方法和装置
CN109632756A (zh) * 2019-01-18 2019-04-16 浙江大学 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091299B (zh) * 2013-01-21 2015-01-21 北京理工大学 激光差动共焦图谱显微成像方法与装置
US10989724B1 (en) * 2016-07-29 2021-04-27 Labrador Diagnostics Llc Systems and methods for multi-analysis
CA2973361A1 (en) * 2017-07-14 2019-01-14 Peter A. Vokhmin Multichannel line scan sted microscopy, method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322403A (ja) * 2006-06-05 2007-12-13 Topcon Corp 画像処理装置及びその処理方法
CN101852594A (zh) * 2010-05-10 2010-10-06 北京理工大学 超分辨激光偏振差动共焦成像方法与装置
EP2535755A1 (en) * 2011-06-14 2012-12-19 Ecole Polytechnique Fédérale de Lausanne (EPFL) Cumulant microscopy
CN102798622A (zh) * 2012-08-17 2012-11-28 浙江大学 一种基于强度差分的三维超分辨显微方法和装置
CN104482881A (zh) * 2014-12-17 2015-04-01 北京理工大学 激光受激发射损耗三维超分辨差动共焦成像方法与装置
CN104614318A (zh) * 2015-01-28 2015-05-13 浙江大学 一种快速的超分辨显微成像方法和装置
CN109358004A (zh) * 2018-11-30 2019-02-19 浙江大学 双波长差分非标记显微成像的方法和装置
CN109632756A (zh) * 2019-01-18 2019-04-16 浙江大学 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置

Also Published As

Publication number Publication date
CN113532271A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN109632756B (zh) 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置
CN110632045B (zh) 一种产生并行超分辨焦斑的方法和装置
US8362448B2 (en) Apparatus and method for high spatial resolution imaging of a structure of a sample
CN107907513B (zh) 一种基于偏振解调的点扫描超分辨成像方法和装置
EP1287337B1 (en) Method and apparatus for surface plasmon microscopy
US11409092B2 (en) Parallel multi-region imaging device
CN110907415B (zh) 一种基于并行探测的三维亚十纳米定位方法及装置
CN109188669B (zh) 基于无衍射超分辨光束照明的非标记远场超分辨显微***及方法
CN206757171U (zh) 新型多角度环状光学照明显微成像***
US9739716B2 (en) Method for regulating the relative position of an analyte in relation to a light beam
CN110146473B (zh) 一种轴向超分辨的双光子荧光显微装置及方法
CN112649405B (zh) 基于共路并行荧光辐射差分的超分辨显微成像方法和装置
CN112485232B (zh) 基于一维暗斑分时照明的亚十纳米定位测向方法和装置
CN103954598B (zh) 一种基于倏逝波照明的轴向高精度定位方法及装置
US20140218794A1 (en) Confocal Fluorescence Microscope
CN113532271B (zh) 一种无标记三维超分辨显微方法与装置
JP2023082061A (ja) 試料表面を撮像するための方法および機器
JP2005037388A (ja) 試料内で励起された、および/または後方散乱した光放射を、対物レンズ二重配置により光学的に捕捉するための配置およびその方法
JP2009540346A (ja) 干渉共焦点顕微鏡
CN109709666B (zh) 基于超分辨透镜的非标记远场超分辨显微***及方法
CN111879737A (zh) 一种产生高通量超衍射极限焦斑的装置和方法
CN110907414A (zh) 一种基于并行探测的二维亚十纳米定位方法及装置
CN112326609B (zh) 基于偏振复用的实时三维荧光差分超分辨成像方法和装置
CN115855971A (zh) 半导体缺陷检测***
CN115598820A (zh) 一种双物镜三维结构光照明超分辨显微成像装置与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant