CN106546334A - 空间自调焦激光共焦拉曼光谱探测方法与装置 - Google Patents

空间自调焦激光共焦拉曼光谱探测方法与装置 Download PDF

Info

Publication number
CN106546334A
CN106546334A CN201610953178.7A CN201610953178A CN106546334A CN 106546334 A CN106546334 A CN 106546334A CN 201610953178 A CN201610953178 A CN 201610953178A CN 106546334 A CN106546334 A CN 106546334A
Authority
CN
China
Prior art keywords
confocal
light
space
autofocusing
raman spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610953178.7A
Other languages
English (en)
Inventor
祝连庆
王帅
张雯
姚齐峰
娄小平
董明利
骆飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610953178.7A priority Critical patent/CN106546334A/zh
Publication of CN106546334A publication Critical patent/CN106546334A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种空间自调焦激光共焦拉曼光谱探测方法与装置,该方法与装置在光谱探测中引入调焦望远技术和共焦技术,并利用二向色分光***,对瑞利散射光和拉曼散射光进行无损分离,利用探测器共焦响应曲线最大值与焦点位置精确对应的特性,通过寻找响应最大值来精确控制望远***自动调整焦点,使激发光束自动聚焦到被测对象,同时获取激光光斑焦点位置的光谱信息,实现空间自动调焦的光谱探测,构成一种可实现样品空间自调焦光谱探测的方法和装置。本发明具有自动调焦,定点准确特点,并同时扩大探测范围和提高光谱探测灵敏度。

Description

空间自调焦激光共焦拉曼光谱探测方法与装置
技术领域
本发明涉及空间光学成像和光谱测量技术领域,具体涉及一种空间自调焦激光共焦拉曼光谱探测方法与装置。
背景技术
激光共焦拉曼光谱测试技术是将空间成像技术与拉曼光谱分析技术结合起来的新技术,它将入射激光通过自调焦望远***聚焦到样品上,从而可以在较远的距离上在不受周围物质干扰的情况下,获得所照样品的物质成分结构和组成等,提供较好的分子“指纹”特征。它不仅可以观测样品同一层面内不同微区的拉曼光谱信号,还能分别观测样品空间深度不同的层面的拉曼信号,对被测样品进行空间扫描,从而在不损伤样品的情况下达到进行图谱探测的效果。激光共焦拉曼光谱测试技术由于其无损光谱层析成像能力及高分辨率,已广泛应用于物理、化学、生物医学、石油化工、环境科学、材料科学、地质、邢侦、考古和珠宝鉴定等领域。
目前现有激光共焦拉曼光谱仪采用了显微***,限制了***可探测范围;采用三维移动平台作为样品承载平台,限制了样品尺寸和存在形态;利用弱的拉曼散射光进行定位,降低了***的定焦灵敏度;;长时间光谱探测过程中,***容易受环境等因素影响发生漂移,产生离焦,降低***长期工作的可靠性;***只可进行光谱探测,模式单一;测量过程中需要遮避光,工作环境受到限制。
发明内容
本发明提供一种空间自调激光共焦拉曼光谱探测方法与装置,目的在于解决现有共焦拉曼光谱探测技术探测范围难以提高以及光谱探测模式单一的问题。
本发明的技术方案是:一种空间自调焦激光共焦拉曼光谱探测方法,利用望远***的光收集能力,通过二向色分光***将***收集到的散射光分离为瑞利散射光和拉曼散射光;所述的瑞利散射光进入共焦探测***进行望远镜焦点位置的调整和激发光的聚焦,所述的拉曼散射光进入拉曼光谱探测***进行光谱探测,利用共焦曲线最大值M与焦点O位置精确对应这一特性,通过寻找最大值来精确控制激发光束聚焦在样品上,同时获取激发光斑焦点位置的光谱信息,实现大空间范围的自动光谱探测,该方法包括如下步骤:
1)通过激光光束***产生激发光,经过二向色分光***和望远***后,照射在被测样品上,并激发出瑞利散射光和载有样品光谱特性的拉曼散射光;
2)通过调焦机构,使共焦探测***的响应最大,完成激发光束自动聚焦在样品上,同时获得样品的位置信息[α,β,l];
3)使对应被测样品区域的瑞利散射光及拉曼散射光再次经过望远***,并被望远***整形成平行光透射至二向色分光***,经二向色分光***对瑞利散射光和拉曼散射光进行分离;
4)部分瑞利散射光被二向色分光***透射,经第一分光***反射进入共焦探测***,利用共焦探测***中的第一探测器,测得反映样品位置信息的强度响应I[α,β,l],即可进行望远***焦点位置的判定,从而完成望远***的自动调焦,将激发光束聚焦在样品上;
5)拉曼散射光经二向色分光***透射,经第一分光***透射进入拉曼光谱探测***,利用拉曼光谱探测***测得载有被测样品特性的拉曼散射信号I(λ),即可进行光谱测试,其中λ为波长;
6)将I(λ)传送到数据处理模块进行数据处理,从而获得包含被测样品对应区域位置的光谱信息I(λ),物***置信息[α,β,l];
7)转动探测***,对空间进行沿α,β方向扫描,望远***进行沿l方向扫描调焦,重复上述步骤测得对应物镜焦点位置的一组n个包含位置信息[α,β,l]和I(λ)的序列测量信息[I(λ),α,β,l];
8)利用可分辨区域δn对应的位置信息[α,β,l],找出对应δn区域的光谱信息In(λ)值,再根据与空间坐标[α,β,l]的关系,重构反映被测物微区δn三维结构和光谱特性的信息In(αn,βn,ln,λn),即实现了微区δmin的光谱探测和三维几何位置探测;
9)对应最小可分辨区域δmin的三维尺度和光谱特性由下式确定:
即实现了大空间范围共焦拉曼光谱探测。
优选的,共焦曲线最大值M处对应望远***焦点O位置,此处聚焦光斑尺寸最小,探测的区域最小,共焦曲线其他位置对应望远***的离焦区域,在焦前或焦后区域内的聚焦光斑尺寸随离焦量增大而增大。利用此特点,通过调整望远***的调焦机构,精确的将激发光束聚焦在样品上。
优选的,激发光束可以是偏振光束:线偏振、圆偏振或径向偏振光,还可以是由光瞳滤波技术生成的结构光束,其与偏振调制技术联用可以压缩测量聚焦光斑的尺寸,提高***角向分辨力。
一种空间自调焦激光共焦拉曼光谱探测装置,包括激发光束***,望远调焦***,二向色分光***,第一分光***,拉曼光谱探测***,共焦探测***及数据处理模块;其中激发光束***和望远调焦***沿光路依次放置在二向色分光***的反射方向;第一分光***处于二向色分光***的透射方向;拉曼光谱探测***位于第一分光***的透射方向;共焦探测***位于第一分光***的反射方向;数据处理模块与拉曼光谱探测***和共焦探测***及望远调焦***连接。
优选的,激发光束***还可以包括偏振调制器及光瞳滤波器。用于产生偏振光及空间结构光束,用于提高***的光学性能。
优选的,用于压缩激发光斑的光瞳滤波器可以位于偏振控制器与二向色分光***之间,还可以位于二向色分光***与望远***之间。
优选的,激发光束***还可以放在二向色分光***的透射方向,望远***放置在二向色分光***的透射方向,第一分光***放置在二向色分光***一的反射方向。
优选的,拉曼光谱探测***可以是普通拉曼光谱探测***,包括沿光路依次放置的第五聚光镜,位于第五聚光镜焦点位置的第一光谱仪及位于第一光谱仪后的第二探测器,用于被测样品的表面光谱的探测;还可以是共焦拉曼光谱探测***,包括沿光路依次放置的第七聚光镜,位于第七聚光镜焦点位置的第三针孔,位于第三针孔后的第八聚光镜,位于第八聚光镜焦点位置的第二光谱仪及位于第二光谱仪后的第三探测器,用于提高***信噪比和空间分辨力,完成对被测样品的光谱探测。
优选的,数据处理模块包括用于处理位置信息的共焦数据处理模块和用于处理位置信息和光谱信息的数据融合模块,还包括用于控制望远***调焦的数据控制模块。
本发明的有益效果是:一种空间自调焦激光共焦拉曼光谱探测方法与装置,融合望远技术、调焦技术、共焦技术和光谱探测技术,利用望远***提高***光收集能力,使***具有大空间探测范围;利用共焦***对焦点的精确定位,大幅提高光谱探测的空间分辨力;***融合共焦技术、调焦技术,可实现自动聚焦,实现样品的自动聚焦探测;***同时空间成像、图谱成像及光谱测试三种模式。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示出本发明激光共焦响应曲线;
图2示出本发明空间自调焦激光共焦拉曼光谱探测方法示意图;
图3示出本发明空间自调焦激光共焦拉曼光谱探测装置示意图;
图4示出本发明空间自调焦激光共焦拉曼光谱探测方法与装置实施例1示意图;
图5示出本发明空间自调焦激光共焦拉曼光谱探测方法与装置实施例2示意图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
下面结合附图和实施例对本发明做进一步的说明。
图1为本发明激光共焦响应曲线。
图2为本发明空间自调焦激光共焦拉曼光谱探测方法示意图。如图2所示,激发光束***600产生激发光,经过二向色分光***900反射,经望远调焦***100后,聚焦在被测样品140上,并在样品上激发出瑞利散射光和载有被测样品光谱特性的拉曼散射光,激发出的拉曼散射光和瑞利散射光被***收集回光路,经过望远调焦***100后,经二向色分光***900透射后,拉曼散射光和部分瑞利散射光透射,经第一分光***150分光,部分瑞利散射光被反射进入共焦探测***170进行位置探测,拉曼散射光透射进入光谱探测***220进行光谱探测,根据共焦响应曲线,数据处理模块控制望远调焦机构调焦,使激发光聚焦在样品上,使共焦响应曲线最大,完成激发光束的自动聚焦。
图3为本发明空间自调焦激光共焦拉曼光谱探测装置示意图。如图3所示,本装置包括沿光路依次放置的激发光束***600,二向色分光***900,望远调焦***100,被测样品140,位于二向色分光***900透射方向的第一分光***150,位于第一分光***150透射方向的光谱探测***220及反射方向的共焦探测***170,还包括连接光谱探测***220和共焦探测***170及望远***100的数据处理模块340及计算机控制***350。
实施例1
图4为本发明空间自调焦激光共焦拉曼光谱探测方法与装置实施例1示意图。
如图4所示,一种空间自调焦激光共焦拉曼光谱探测方法,具体的测试方法包括以下步骤:
激发光束***600中的激光器610产生激发光,经过第一负透镜620发散扩束,经第一聚光镜630准直成为平行光束。
平行光束经二向色分光***900反射,经望远调焦镜110后发散,经望远集光镜130聚焦后,聚焦在被测样品140上,并在样品上激发出瑞利散射光和载有被测样品光谱特性的拉曼散射光。
激发出的拉曼散射光和瑞利散射光被望远集光镜130收集回光路,经过望远调焦镜110后压缩光束口径,经二向色分光***900透射后,拉曼散射光和部分瑞利散射光透射,经第一分光***150分光。
部分瑞利散射光被反射进入共焦探测***170,经第四聚光镜200会聚,经第二针孔190透射,在第一探测器180上形成光强响应信号,并被传送到数据处理模块340,然后被处理后传送到计算机控制***350,计算机控制***350处理后,形成控制信号并传送给数据处理模块340,数据处理模块340产生调焦控制信号并控制望远调焦机构120进行调焦,同时第一探测器180的信号也会跟踪变化,形成新的控制循环,这个过程继续下去,直到第一探测器180出现最大响应,调焦机构120完成激发光的聚焦,此时拉曼散射光透射进入光谱探测***220进行光谱探测。
利用空间自调焦激光共焦拉曼光谱探测装置,通过共焦探测响应曲线使调焦机构120完成激发光的聚焦,此时拉曼散射光透射进入光谱探测***220进行光谱探测,拉曼散射光被第五聚光镜240会聚进入第一光谱仪250,拉曼散射光经入射狭缝260,平面反射镜270和第一凹面反射聚光镜280反射后到达光谱光栅300,光束经过光谱光栅300衍射后,被第二凹面反射聚光镜290反射聚焦到第二探测器230。由于光栅的衍射作用,拉曼光谱中不同波长的光相互分离,从光谱仪出射出来的即是样品的拉曼光谱。
测量过程中,对被测样品140进行空间扫描时,共焦探测***170中的第一探测器180,测得反应被测样品140距离变化的强度响应为I(α,β,l),将所得强度响应I(α,β,l)传送到数据处理模块340进行处理。
拉曼光谱探测***220中第二探测器230探测到的载有被测样品140光谱信息的拉曼散射光光谱信号为I(λ),其中λ为波长;
将I(λ),I(α,β,l)传送到计算机控制***350进行数据处理,从而获得包含被测样品14位置信息I(α,β,l)和光谱信息I(λ)的三维测量信息I(α,β,l,λ)。
对被测样品140沿α,β向扫描,望远调焦机构120沿l向扫描,重复上述步骤测得对应物镜焦点位置附近的一组n个包含位置信息[α,β,l]和I(λ)的序列测量信息[I(λ),α,β,l]。
利用可分辨区域δn对应的位置信息[α,β,l],找出对应δn区域的光谱信息In(λ)值,再根据与空间坐标[α,β,l]的关系,重构反映被测物微区δn三维结构和光谱特性的信息In(αn,βn,ln,λn),即实现了微区δmin的光谱探测和三维几何位置探测。
对应最小可分辨区域δmin的三维尺度和光谱特性由下式确定:
即实现了空间自调焦激光共焦拉曼光谱探测。
微区图谱成像
Iσmin(α,β,l)=In(α,β,l)三维形状成像
Iσmin(α,β,l)=In(λ)光谱测量
从图4中可以看出,通过共焦探测***170响应曲线210的极大值点,可精确捕获激发光斑的焦点位置,从测量序列数据中,抽取对应焦点位置O的激发光谱,即实现了微区的光谱探测和三维几何位置探测。
如图4所示,空间自调焦激光共焦拉曼光谱探测装置包括位于二向色分光***900反射方向的激光光束***600,位于二向色分光***900透射方向沿光路依次放置的望远调焦镜110、望远集光镜130和被测样品140,位于二向色分光***900透射方向的第一分光***150,位于第一分光***150透射方向的拉曼光谱探测***220,位于第一分光***反射方向的共焦探测***170,及与共焦探测***170与拉曼光谱探测***220及望远调焦机构120的连接的数据处理模块340和与数据处理模块340通过串口连接的计算机控制***350。
其中,激发光束产生***600用于产生激发光束,包括沿光路依次放置的激光器610、第一负透镜620和第一聚光镜630。
拉曼光谱探测***220包括沿光路依次放置的第五聚光镜240,位于第五聚光镜240焦点位置的第一光谱仪250及位于第一光谱仪250后的第二探测器230。
其中,第一光谱仪250包括沿光路依次放置的入射狭缝260、平面反射镜270、第一凹面反射聚光镜280、光谱光栅300和第二凹面反射聚光镜290。
共焦探测***170包括第四聚光镜200、位于第四聚光镜200焦点位置的第二针孔190和第一探测器180。
数据处理模块340和计算机控制***350,用于融合处理采集到的数据并产生控制信号。
实施例2
图5为本发明空间自调焦激光共焦拉曼光谱探测方法与装置实施例2示意图。本实施例相比较于实施例1的不同之处在于:如图5所示,激发光束***600置于二向色分光***900的透射方向,望远调焦***100置于二向色分光***900的透射方向,第一分光***150置于在二向色分光***900的反射方向。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上进行的改动都是本发明的保护范围。

Claims (9)

1.一种空间自调焦激光共焦拉曼光谱探测方法,该方法包括如下步骤:
1)通过激光光束***产生激发光,经过二向色分光***和望远***后,照射在被测样品上,并激发出瑞利散射光和载有样品光谱特性的拉曼散射光;
2)通过调焦机构,使共焦探测***的响应最大,完成激发光束自动聚焦在样品上,同时获得样品的位置信息[α,β,l];
3)使对应被测样品区域的瑞利散射光及拉曼散射光再次经过望远***,并被望远***整形成平行光透射至二向色分光***,经二向色分光***对瑞利散射光和拉曼散射光进行分离;
4)部分瑞利散射光被二向色分光***透射,经第一分光***反射进入共焦探测***,利用共焦探测***中的第一探测器,测得反映样品位置信息的强度响应I[α,β,l],将激发光束聚焦在样品上;
5)拉曼散射光经二向色分光***透射,经第一分光***透射进入拉曼光谱探测***,利用拉曼光谱探测***测得载有被测样品特性的拉曼散射信号I(λ),其中λ为波长;
6)将I(λ)传送到数据处理模块进行数据处理,从而获得包含被测样品对应区域位置的光谱信息I(λ)和物***置信息[α,β,l];
7)转动探测***,对空间进行沿α,β方向扫描,望远***进行沿l方向扫描调焦,重复上述步骤测得对应物镜焦点位置的一组n个包含位置信息[α,β,l]和I(λ)的序列测量信息[I(λ),α,β,l];
8)利用可分辨区域δn对应的位置信息[α,β,l],找出对应δn区域的光谱信息In(λ)值,再根据与空间坐标[α,β,l]的关系,重构反映被测物微区δn三维结构和光谱特性的信息In(αn,βn,ln,λn);
9)对应最小可分辨区域δmin的三维尺度和光谱特性由下式确定:
2.根据权利要求1所述的空间自调焦激光共焦拉曼光谱探测方法,其特征在于,共焦曲线最大值M处对应望远***焦点O位置,此处聚焦光斑尺寸最小,探测的区域最小,共焦曲线其他位置对应望远***的离焦区域,在焦前或焦后区域内的聚焦光斑尺寸随离焦量增大而增大。
3.根据权利要求1所述的空间自调焦激光共焦拉曼光谱探测方法,其特征在于,激发光束可以是偏振光束:线偏振、圆偏振或径向偏振光,还可以是由光瞳滤波技术生成的结构光束。
4.一种空间自调焦激光共焦拉曼光谱探测装置,包括激发光束***,望远调焦***,二向色分光***,第一分光***,拉曼光谱探测***,共焦探测***及数据处理模块;其中,激发光束***和望远调焦***沿光路依次放置在二向色分光***的反射方向;第一分光***处于二向色分光***的透射方向;拉曼光谱探测***位于第一分光***的透射方向;共焦探测***位于第一分光***的反射方向;数据处理模块与拉曼光谱探测***和共焦探测***及望远调焦***连接。
5.根据权利要求4所述的空间自调焦激光共焦拉曼光谱探测装置,其特征在于,激发光束***还可以包括偏振调制器及光瞳滤波器。
6.根据权利要求5所述的空间自调焦激光共焦拉曼光谱探测装置,其特征在于,用于压缩激发光斑的光瞳滤波器可以位于偏振控制器与二向色分光***之间,还可以位于二向色分光***与望远***之间。
7.根据权利要求4所述的空间自调焦激光共焦拉曼光谱探测装置,其特征在于,激发光束***还可以放在二向色分光***的透射方向,望远***放置在二向色分光***的透射方向,第一分光***放置在二向色分光***一的反射方向。
8.根据权利要求4所述的空间自调焦激光共焦拉曼光谱探测装置,其特征在于,拉曼光谱探测***可以是普通拉曼光谱探测***,包括沿光路依次放置的第五聚光镜,位于第五聚光镜焦点位置的第一光谱仪及位于第一光谱仪后的第二探测器;还可以是共焦拉曼光谱探测***,包括沿光路依次放置的第七聚光镜,位于第七聚光镜焦点位置的第三针孔,位于第三针孔后的第八聚光镜,位于第八聚光镜焦点位置的第二光谱仪及位于第二光谱仪后的第三探测器。
9.根据权利要求4所述的空间自调焦激光共焦拉曼光谱探测装置,其特征在于,数据处理模块包括共焦数据处理模块和数据融合模块,还包括数据控制模块。
CN201610953178.7A 2016-11-03 2016-11-03 空间自调焦激光共焦拉曼光谱探测方法与装置 Pending CN106546334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953178.7A CN106546334A (zh) 2016-11-03 2016-11-03 空间自调焦激光共焦拉曼光谱探测方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953178.7A CN106546334A (zh) 2016-11-03 2016-11-03 空间自调焦激光共焦拉曼光谱探测方法与装置

Publications (1)

Publication Number Publication Date
CN106546334A true CN106546334A (zh) 2017-03-29

Family

ID=58393575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953178.7A Pending CN106546334A (zh) 2016-11-03 2016-11-03 空间自调焦激光共焦拉曼光谱探测方法与装置

Country Status (1)

Country Link
CN (1) CN106546334A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831142A (zh) * 2017-12-07 2018-03-23 黄保坤 光散射共焦激发收集***
CN107991286A (zh) * 2017-12-26 2018-05-04 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法
CN109060761A (zh) * 2018-07-03 2018-12-21 上海理工大学 具有三维高空间分辨率高速拉曼光谱扫描成像方法与装置
CN109765213A (zh) * 2019-03-27 2019-05-17 威朋(苏州)医疗器械有限公司 相干反斯托克斯拉曼散射显微镜成像装置
CN111076813A (zh) * 2019-12-31 2020-04-28 中国科学院西安光学精密机械研究所 一种真空紫外光机***装调方法及装置
CN111239047A (zh) * 2020-03-09 2020-06-05 深圳中科飞测科技有限公司 一种光学设备及实现自动聚焦的方法
CN112444512A (zh) * 2020-11-12 2021-03-05 山东大学 微型化激光拉曼光谱采集装置及方法
CN112683795A (zh) * 2020-12-11 2021-04-20 北京华泰诺安探测技术有限公司 一种自动对焦***及拉曼探测***与方法
CN113552112A (zh) * 2021-07-21 2021-10-26 北京大学 一种碳化硅内部激光聚焦平面检测方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280671A (zh) * 2014-10-08 2015-01-14 国家电网公司 特高压电晕放电早期诊断的激光共振拉曼方法
CN105021577A (zh) * 2015-06-23 2015-11-04 北京理工大学 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
US20160091366A1 (en) * 2014-09-25 2016-03-31 Frank Jiann-Fu Yang Auto-focus raman spectrometer system
CN105890753A (zh) * 2016-04-21 2016-08-24 厦门大学 拉曼光谱仪自动对焦***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091366A1 (en) * 2014-09-25 2016-03-31 Frank Jiann-Fu Yang Auto-focus raman spectrometer system
CN104280671A (zh) * 2014-10-08 2015-01-14 国家电网公司 特高压电晕放电早期诊断的激光共振拉曼方法
CN105021577A (zh) * 2015-06-23 2015-11-04 北京理工大学 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
CN105890753A (zh) * 2016-04-21 2016-08-24 厦门大学 拉曼光谱仪自动对焦***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MISRA, ANUPAM K.ET AL.: "Single-Pulse Standoff Raman Detection of Chemicals from 120 m", 《APPLIED SPECTROSCOPY》 *
S. SADATE ET AL.: "Standoff Raman measurement of nitrates in water", 《PROC. OF SPIE》 *
XIAOCHEN MENG, LIANQING ZHU: "Technique of laser confocal and Raman spectroscopy for living cell analysis", 《PROC. OF SPIE》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831142A (zh) * 2017-12-07 2018-03-23 黄保坤 光散射共焦激发收集***
CN107831142B (zh) * 2017-12-07 2024-01-02 黄保坤 光散射共焦激发收集***
CN107991286A (zh) * 2017-12-26 2018-05-04 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法
CN107991286B (zh) * 2017-12-26 2024-02-27 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法
CN109060761B (zh) * 2018-07-03 2021-01-22 上海理工大学 具有三维高空间分辨率高速拉曼光谱扫描成像方法与装置
CN109060761A (zh) * 2018-07-03 2018-12-21 上海理工大学 具有三维高空间分辨率高速拉曼光谱扫描成像方法与装置
CN109765213A (zh) * 2019-03-27 2019-05-17 威朋(苏州)医疗器械有限公司 相干反斯托克斯拉曼散射显微镜成像装置
CN109765213B (zh) * 2019-03-27 2024-03-29 苏州威邦震电光电技术有限公司 相干反斯托克斯拉曼散射显微镜成像装置
CN111076813A (zh) * 2019-12-31 2020-04-28 中国科学院西安光学精密机械研究所 一种真空紫外光机***装调方法及装置
CN111239047B (zh) * 2020-03-09 2023-10-27 深圳中科飞测科技股份有限公司 一种光学设备及实现自动聚焦的方法
CN111239047A (zh) * 2020-03-09 2020-06-05 深圳中科飞测科技有限公司 一种光学设备及实现自动聚焦的方法
CN112444512A (zh) * 2020-11-12 2021-03-05 山东大学 微型化激光拉曼光谱采集装置及方法
CN112444512B (zh) * 2020-11-12 2022-04-12 山东大学 微型化激光拉曼光谱采集装置及方法
CN112683795A (zh) * 2020-12-11 2021-04-20 北京华泰诺安探测技术有限公司 一种自动对焦***及拉曼探测***与方法
CN113552112A (zh) * 2021-07-21 2021-10-26 北京大学 一种碳化硅内部激光聚焦平面检测方法及***

Similar Documents

Publication Publication Date Title
CN106546334A (zh) 空间自调焦激光共焦拉曼光谱探测方法与装置
CN106442467A (zh) 空间自调焦激光共焦成像拉曼光谱探测方法与装置
CN103091299B (zh) 激光差动共焦图谱显微成像方法与装置
US11313721B2 (en) Compact spectrometer
CN103940800B (zh) 激光共焦布里渊-拉曼光谱测量方法与装置
CN103439254B (zh) 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103105231B (zh) 一种高空间分辨共焦拉曼光谱探测方法与装置
CN201233362Y (zh) 一种用于检测水果品质的多光谱成像装置
EP1063512B1 (en) Method and apparatus for particle assessment using multiple scanning beam reflectance
CN108169207A (zh) 空间自调焦激光差动共焦拉曼光谱成像探测方法与装置
CN105021577A (zh) 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
US10067058B1 (en) Auto-focus system
CN103926233A (zh) 激光差动共焦布里渊-拉曼光谱测量方法及装置
JP2013546000A (ja) イメージマップ分光偏光法
CN105181656A (zh) 激光差动共焦诱导击穿-拉曼光谱成像探测方法及装置
US7110118B2 (en) Spectral imaging for vertical sectioning
CN104931481B (zh) 激光双轴差动共焦诱导击穿‑拉曼光谱成像探测方法与装置
CN108226131A (zh) 一种空间周视激光差动共焦拉曼光谱成像探测方法及装置
CN104697967B (zh) 高空间分辨激光双轴共焦光谱‑质谱显微成像方法与装置
CN105067570A (zh) 双轴激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN106770154A (zh) 空间自调焦激光差动共焦拉曼光谱探测方法与装置
CN109254072A (zh) 一种激光差动共焦Raman-LIBS-质谱联用显微成像方法与装置
CN104990908B (zh) 激光双轴共焦诱导击穿‑拉曼光谱成像探测方法及装置
CN208140586U (zh) 一种光斑可移动的差分拉曼光谱检测装置
CN109187723A (zh) 后置分光瞳差动共焦拉曼光谱-质谱显微成像方法与装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329

RJ01 Rejection of invention patent application after publication