WO2014108092A1 - 汽车余热利用方法 - Google Patents

汽车余热利用方法 Download PDF

Info

Publication number
WO2014108092A1
WO2014108092A1 PCT/CN2014/070451 CN2014070451W WO2014108092A1 WO 2014108092 A1 WO2014108092 A1 WO 2014108092A1 CN 2014070451 W CN2014070451 W CN 2014070451W WO 2014108092 A1 WO2014108092 A1 WO 2014108092A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
vehicle
generation chip
temperature difference
internal combustion
Prior art date
Application number
PCT/CN2014/070451
Other languages
English (en)
French (fr)
Inventor
闫化启
彭映斌
Original Assignee
Yan Huaqi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yan Huaqi filed Critical Yan Huaqi
Publication of WO2014108092A1 publication Critical patent/WO2014108092A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for utilizing waste heat of a vehicle, in particular to a method for utilizing waste heat of a vehicle.
  • the object of the present invention is to provide a method for utilizing waste heat of a vehicle, which can convert heat generated during operation of an internal combustion engine into electric energy, and replace the existing vehicle generator to charge the vehicle battery, thereby improving the fuel utilization efficiency of the internal combustion engine, and In terms of the load of the internal combustion engine, the power output from the internal combustion engine can be used to drive the vehicle to travel.
  • a method for utilizing automobile waste heat comprising the following steps:
  • thermoelectric power generation chip group After the vehicle is started, part of the heat in the exhaust gas discharged from the internal combustion engine of the vehicle is transmitted to the hot surface of the first thermoelectric power generation chip group, and the cold surface of the first thermoelectric power generation chip group is continuously cooled, so that the first thermoelectric power generation chip group is heated.
  • the temperature difference between the cold surface and the cold surface reaches 40 ° C or above, and the first temperature difference power generation chip group continuously generates power.
  • the output voltage when the temperature difference between the hot surface and the cold surface of the first temperature difference power generation group is 40 ° C is higher than the output voltage of the vehicle battery. ;
  • thermoelectric power generation chip group in step 3 and the current generated by the second temperature difference power generation chip group in step 2 are charged to the battery of the vehicle through the voltage adapter and the charging circuit.
  • step 1 the cold surface of the first thermoelectric power generation chip group and the cold surface of the second temperature difference power generation chip group in step 2 are radiated to the air through the inorganic heat superconducting duct.
  • the heat in the exhaust gas discharged from the internal combustion engine of the vehicle in step 1 is conducted to the hot surface of the first thermoelectric power generation chip group through an inorganic thermal superconductor installed in the exhaust pipe of the vehicle.
  • step 2 after cooling the cylinder of the internal combustion engine of the internal combustion engine, the cooling water of the internal combustion engine enters the hot water tank disposed on the water outlet pipe of the cooling water jacket of the internal combustion engine, and the outer surface of the hot water tank is in contact with the hot surface of the second thermoelectric power generation chip group.
  • the heat of the cooling water of the internal combustion engine is transmitted to the hot surface of the second thermoelectric power generation chip set through the hot water tank, and the cooling water of the internal combustion engine enters the radiator along the water outlet pipe of the cooling water jacket of the internal combustion engine after cooling in the hot water tank.
  • the first thermoelectric power generation chip group and the second thermoelectric power generation chip group are connected to the vehicle battery through a voltage adapter and a charging circuit, and the hot surface of the first thermoelectric power generation chip group is in contact with one end of the first inorganic thermal superconductor, and the first inorganic thermal super
  • the other end of the duct is located inside the tail section of the exhaust pipe of the vehicle, and the cold surface of the first thermoelectric power generation chip group is in contact with the second inorganic hot super-duct, and the cooling water jacket of the vehicle internal combustion engine is installed on the cooling water outlet pipe between the radiator and the vehicle radiator.
  • the outer wall of the hot water tank is in contact with the hot surface of the second thermoelectric power generation chip set, the cold surface of the second temperature difference power generation chip group is in contact with the third inorganic thermal superconductor, the second inorganic hot supercatheter and the third inorganic Heat sink fins are provided on the hot superconducting duct.
  • the first inorganic thermal superconductor coincides with the central axis of the vehicle exhaust pipe, and the first inorganic thermal superconductor is connected to the inner wall of the vehicle exhaust pipe through 3-6 metal support pieces, and each metal support piece is along the first inorganic thermal supercatheter The circumference is evenly distributed.
  • a fixing seat is mounted on the chassis of the vehicle, and the fixing seat is connected to the first pressing plate by bolts, and the first inorganic thermal superconductor, the first thermoelectric power generating sheet group and the second inorganic thermal superconducting tube are located between the first pressing plate and the fixing seat.
  • the hot water tank is connected to the second pressure plate by bolts, and the third inorganic hot super duct and the second thermoelectric power generation sheet group are located between the second pressure plate and the hot water tank.
  • An insulating layer is disposed on the non-contact surface of the first inorganic thermal superconductor, the first thermoelectric power generation sheet, and the second inorganic thermal superconducting tube.
  • the invention has the advantages that the heat generated during the operation of the internal combustion engine can be converted into electric energy, and the vehicle battery is charged instead of the existing vehicle generator, on the one hand, the fuel utilization efficiency of the internal combustion engine can be improved, and on the other hand, the load of the internal combustion engine can be reduced, so that the load of the internal combustion engine can be reduced.
  • the power output of the internal combustion engine is all used to drive the vehicle to travel; the heat conduction and heat dissipation efficiency can reach a very high level, and the cooling water of the vehicle internal combustion engine can be cooled, so that the load of the vehicle radiator is also reduced.
  • FIG. 1 is a schematic structural view of an apparatus for utilizing waste heat of a vehicle according to the present invention
  • Figure 2 is a schematic view showing the structure of the A direction of Figure 1;
  • Figure 3 is a schematic enlarged view of the portion I of Figure 1;
  • Figure 4 is a schematic enlarged cross-sectional view taken along line B-B of Figure 1.
  • the method for utilizing automobile waste heat according to the present invention comprises the following steps:
  • thermoelectric power generation chip group 1 After the vehicle is started, part of the heat in the exhaust gas discharged from the internal combustion engine of the vehicle is transmitted to the hot surface of the first thermoelectric power generation chip group 1, and the cold surface of the first thermoelectric power generation chip group 1 is continuously cooled to make the first thermoelectric power generation chip group 1
  • the temperature difference between the hot surface and the cold surface reaches 40 ° C or more, and the first temperature difference power generation chip group 1 continues to generate electricity, and the output voltage when the temperature difference between the hot surface and the cold surface of the first temperature difference power generation chip group 1 is 40 ° C is higher than The output voltage of the vehicle battery 15;
  • the current from the first thermoelectric power generation chip group 1 in step 3 and the current from the second temperature difference power generation chip group 2 in step 2 are charged to the battery 15 of the vehicle via the voltage adapter 13 and the charging circuit 14.
  • the invention recovers the heat generated during the operation of the internal combustion engine of the vehicle by means of temperature difference power generation, and the cooling water temperature and the exhaust gas temperature of the vehicle internal combustion engine are all in a relative temperature range without stable rise and fall, and the temperature difference power generation piece can be ensured.
  • the group continues to generate electricity.
  • the electric energy generated by the thermoelectric power generation chip group is charged to the vehicle battery for use by the electric components of the whole vehicle. It is necessary to ensure that the voltage output by the thermoelectric power generation chip set under normal working conditions of the internal combustion engine is higher than the output voltage of the vehicle battery, and is repeated in an environment of 40 ° C.
  • thermoelectric power generation chip set the lowest temperature difference that can be maintained by the thermoelectric power generation chip set under normal working conditions of the internal combustion engine is 40 ° C, so that the voltage generated by the thermoelectric power generation chip set at a temperature difference of 40 ° C is higher than the output voltage of the vehicle battery to ensure the normal vehicle. Charge the battery continuously while driving. Considering that the temperature at which the vehicle's exhaust gas is heated varies, it is greatly affected by many factors, sometimes low and sometimes high, especially when the engine is just starting. The output voltage of the thermoelectric power meter will vary with the temperature difference, but the battery must be charged higher than the battery terminal voltage. If it is lower than the battery terminal voltage, the battery may reverse discharge.
  • the front end of the battery must be equipped with a diode that prevents the discharge and the necessary voltage adapter.
  • the adaptation link is set to a stable value higher than the battery terminal voltage by the DC/DC DC converter. Keep the battery in charge state to improve efficiency.
  • This can be used with "wide input voltage range (10V-40V) synchronous step-down controller" such as TPS40050 (Texas products in the US), and the output is set to 25V or above (or 13V or more). Charge 24V (or 12V) car battery.
  • the temperature difference power generation chip set used in the exhaust gas is low, and can be adjusted by the "low input (1.8V-9.0V) multi-topology high-frequency PWM controller" such as TPS43000 (also known as Texas products). Charge the same battery for more than 25V.
  • the invention converts the heat generated by the operation of the internal combustion engine into electric energy, and replaces the existing vehicle generator to charge the vehicle battery, on the one hand, can improve the fuel utilization efficiency of the internal combustion engine, on the other hand, can reduce the load of the internal combustion engine, and the power output of the internal combustion engine is all Used to drive the vehicle to walk.
  • the cold surface of the first temperature difference power generation chip group 1 and the cold surface of the second temperature difference power generation chip group 2 in the step 2 are all passed through the inorganic heat supercatheter. Cooling in the air.
  • Inorganic thermal supercatheter was invented by Chinese American scientist Dr. Yu Yuzhi. It has been tested by Stanford (SRI), and its highest equivalent thermal conductivity is 32,500 times that of metallic silver. The thermal resistance approaches zero, in 27 countries around the world ( Including China) to obtain patent rights.
  • silver is the best thermal conductivity metal in nature, and the inorganic heat pipe invented by Mr. Qu is tens of thousands times higher than silver.
  • the inorganic heat supercatheter can be used to quickly transfer the heat of the cold surface of the thermoelectric power generation group to the air, thereby helping the cold surface of the thermoelectric power generation group to rapidly cool down, maintaining the temperature difference of the temperature difference power generation chip group, and increasing the temperature difference as much as possible.
  • the power generation of the slice group can be used to quickly transfer the heat of the cold surface of the thermoelectric power generation group to the air, thereby helping the cold surface of the thermoelectric power generation group to rapidly cool down, maintaining the temperature difference of the temperature difference power generation chip group, and increasing the temperature difference as much as possible.
  • the heat in the exhaust gas of the internal combustion engine is conducted to the hot surface of the thermoelectric power generation chip group, in order to pursue higher heat conduction efficiency, the heat in the exhaust gas discharged from the internal combustion engine of the vehicle in step 1 is also passed through the exhaust pipe 4 of the vehicle.
  • the inorganic thermal superconductor is conducted to the hot face of the first thermoelectric power generation chip set 1. Since the cold surface of the thermoelectric power generation chip group needs to be kept at a low temperature, it cannot be directly installed in the exhaust pipe of the vehicle, and when the thermoelectric power generation chip group is installed on the outer wall of the exhaust pipe of the vehicle, the heat conduction efficiency is difficult to ensure due to the small contact surface. Therefore, the present invention installs the inorganic thermal supercatheter in the exhaust pipe of the vehicle, and conducts heat to the hot surface of the thermoelectric power generation chip set through the inorganic thermal superconductor to achieve optimal heat exchange efficiency.
  • the heat conduction mode of the cooling water of the internal combustion engine of the present invention is: in step 2, after the cooling water of the internal combustion engine of the vehicle cools the cylinder of the internal combustion engine 8, the hot water tank 11 is disposed on the water outlet pipe 10 of the cooling water jacket of the internal combustion engine.
  • the outer wall of the hot water tank 11 is in contact with the hot surface of the second thermoelectric power generation chip group 2, and the heat of the cooling water of the internal combustion engine is conducted to the hot surface of the second thermoelectric power generation chip group 2 through the hot water tank 11, and the cooling water of the internal combustion engine is taken in the hot water.
  • the water outlet pipe 10 of the cooling water jacket of the internal combustion engine enters the radiator 9.
  • the structure does not constitute a resistance to the cooling water circulation of the vehicle, and at the same time, the temperature of the cooling water can be lowered before the cooling water enters the radiator, which is advantageous for reducing the load of the radiator of the vehicle.
  • thermoelectric power generation chip group 1 and the second thermoelectric power generation chip group 2 are connected to the vehicle battery 15 through the voltage adapter 13 and the charging circuit 14, and the hot surface of the first thermoelectric power generation chip group 1 is first.
  • One end of the inorganic thermal superconductor 3 is in contact, and the other end of the first inorganic thermal superconductor 3 is located inside the tail section of the vehicle exhaust pipe 4, and the cold surface of the first thermoelectric power generation chip group 1 is in contact with the second inorganic thermal superconductor 6, the vehicle A hot water tank 11 is installed on the cooling water outlet pipe 10 between the cooling water jacket of the internal combustion engine 8 and the vehicle radiator 9, and the outer wall of the hot water tank 11 is in contact with the hot surface of the second thermoelectric power generation group 2, and the second temperature difference is generated.
  • thermoelectric power generation chip set of the present invention needs to be close to the heat source, but the heat-resistant temperature of the thermoelectric power generation chip set itself is limited (the safe working temperature is about 100 ° C, and will soften after exceeding 150 ° C), the cooling water of the internal combustion engine The temperature is relatively stable (80 °C-90 °C), so that the hot surface of the second temperature difference power generation chip set 2 can directly contact the hot water tank, but the temperature difference of the front, middle and rear sections of the vehicle exhaust pipe is large, wherein the front section The temperature of the middle section and the middle section exceeds the heat resistance temperature of the thermoelectric power generation chip set.
  • the first thermoelectric power generation chip set 1 must be installed close to the tail section of the vehicle exhaust pipe, and the temperature of the tail pipe section of the vehicle exhaust pipe is usually 80 ° C-100. °C, in line with the heat-resistant temperature of the thermoelectric power generation chip set, and also can provide sufficient temperature to the hot surface of the thermoelectric power generation chip set, keeping the temperature difference of the temperature difference power generation chip set above 40 °C.
  • the first inorganic thermal supercatheter 3 coincides with the central axis of the vehicle exhaust pipe 4, the first inorganic
  • the hot superconductor 3 is connected to the inner wall of the vehicle exhaust pipe 4 through 3-6 metal support sheets 5, and each metal support piece 5 is evenly distributed along the circumference of the first inorganic thermal superconductor 3.
  • the metal supporting piece 5 can increase the contact area of the first inorganic hot supercavity 3 with the exhaust gas, and can also conduct heat of the wall of the exhaust pipe 4 to the first inorganic hot supercavity 3, so that the first inorganic hot superconductor 3 can Collect more heat to conduct to the first thermoelectric generation sheet.
  • the first inorganic thermal superconductor 3 can be in contact with the first thermoelectric power generation chip group 1 at the hot surface, the second inorganic thermal superconductor 6 and the first One end of the thermoelectric power generation chip group 1 in contact with the cold surface and one end of the third inorganic thermal superconductor 12 and the cold surface of the second thermoelectric power generation chip group 2 are processed into a flat shape.
  • the first inorganic thermal superconductor 3, the first thermoelectric power generation chip set 1 and the second inorganic thermal superconductor 6 of the present invention are connected by the following structure: a fixing seat 17 is mounted on the vehicle chassis 16, and the fixing seat 17 is bolted and first The pressure plate 18 is connected, and the first inorganic thermal superconductor 3, the first thermoelectric power generation chip group 1 and the second inorganic thermal superconductor 6 are located between the first pressure plate 18 and the fixed seat 17.
  • the structure has the advantages of convenient installation and disassembly, and easy installation in the tail section of the exhaust pipe.
  • the hot water tank 11, the third inorganic hot superconductor 12 and the second thermoelectric power generation unit group 2 of the present invention are connected by the following structure: the hot water tank 11 is connected to the second pressure plate 19 by bolts, and the third inorganic heat is super
  • the duct 12 and the second thermoelectric power generation unit group 2 are located between the second pressure plate 19 and the hot water tank 11.
  • the structure has the advantages that the heat receiving tank 11 and the second temperature difference power generating sheet group 2 have large heat exchange area and occupy small space.
  • the first inorganic heat superconductor 3 and the first temperature difference power generation can be generated.
  • An insulating layer 20 is provided on the non-contact faces of the side faces of the sheet set 1 and the second inorganic hot superconducting duct 6.
  • the thermal insulation layer 20 can also protect the first inorganic thermal superconductor 3, the first thermoelectric power generation chip set 1 and the second inorganic thermal superconductor 6, and prevent the first inorganic thermal supercatheter 3 and the first thermoelectric power generation chip set. 1 and the second inorganic hot superconductor 6 are damaged by the splashed sand in the running of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种汽车余热利用方法,包括下述步骤:①车辆启动后将车辆内燃机排出的尾气中的部分热量传导至第一温差发电片组的热面,同时对第一温差发电片组的冷面持续进行降温,第一温差发电片组发电;②车辆水温超过80℃时将车辆内燃机冷却水中的部分热量传导至第二温差发电片组的热面,同时对第二温差发电片组的冷面持续进行降温,第二温差发电片组发电;③步骤①中发出的电流和步骤②中发出的电流通过电压适配器对车辆的蓄电池进行充电。本发明能够将内燃机工作时产生的热量转化为电能,替代现有车辆发电机对车辆电瓶进行充电,一方面能够提升内燃机的燃料利用效率,另一方面能够减轻内燃机的负载,使内燃机输出动力全部用于驱动车辆行走。

Description

汽车余热利用方法 技术领域
技术领域
   本发明涉及一种汽车余热利用方法,具体地说是一种汽车余热利用方法。
背景技术
   目前使用内燃机驱动的汽车仍是汽车行业中的主流产品,内燃机在工作时,燃料燃烧产生的能量不可能全部转化为动能,而损失的部分能量以热量的形式随内燃机的尾气和缸体的冷却水散出,如果能将这部分热量加以回收利用则会大幅提高内燃机的燃料利用效率,而如何对内燃机损失的热量进行充分利用这一问题自从内燃机问世至今,尽管众多技术人员付出了大量的努力,但仍然收效甚微,目前本领域技术人员设计出的汽车内燃机余热回收方式及设备均处于理论实验阶段,其实际回收的能量均十分微弱,不具备实用价值。目前现有的车辆电瓶均需要发电机进行充电,发电机运转时需要使用内燃机输出的部分动力驱动,因此内燃机输出的动力无法全部用于驱动车辆行走。
发明内容
   本发明的目的是提供一种汽车余热利用方法,它能够将内燃机工作时产生的热量转化为电能,替代现有车辆发电机对车辆电瓶进行充电,一方面能够提升内燃机的燃料利用效率,另一方面能够减轻内燃机的负载,使内燃机输出的动力全部用于驱动车辆行走。
   本发明为实现上述目的,通过以下技术方案实现:汽车余热利用方法,包括下述步骤:
   ①车辆启动后将车辆内燃机排出的尾气中的部分热量传导至第一温差发电片组的热面,同时对第一温差发电片组的冷面持续进行降温,使第一温差发电片组热面与冷面之间的温差达到40℃以上,第一温差发电片组持续发电,第一温差发电片组热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池的输出电压;
   ②车辆水温超过80℃时将车辆内燃机冷却水中的部分热量传导至第二温差发电片组的热面,同时对第二温差发电片组的冷面持续进行降温,使第二温差发电片组热面与冷面之间的温差达到40℃以上,第二温差发电片组持续发电,第二温差发电片组热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池的输出电压;
   ③步骤①中第一温差发电片组发出的电流和步骤②中第二温差发电片组发出的电流通过电压适配器和充电电路对车辆的蓄电池进行充电。
   步骤①中第一温差发电片组的冷面以及步骤②中第二温差发电片组的冷面均通过无机热超导管向空气中散热。
   步骤①中车辆内燃机排出的尾气中的热量通过安装在车辆排气管中的无机热超导管传导至第一温差发电片组的热面。
   步骤②中车辆内燃机冷却水在对内燃机的缸体进行降温后,进入设置在内燃机冷却水套的出水管道上的取热水箱,取热水箱外壁与第二温差发电片组的热面接触,内燃机冷却水的热量经取热水箱传导至第二温差发电片组的热面,内燃机冷却水在取热水箱内降温后沿内燃机冷却水套的出水管道进入散热器。
   第一温差发电片组和第二温差发电片组均通过电压适配器和充电电路与车辆蓄电池连接,第一温差发电片组的热面与第一无机热超导管的一端接触,第一无机热超导管的另一端位于车辆排气管尾段内部,第一温差发电片组的冷面与第二无机热超导管接触,车辆内燃机的冷却水套与车辆散热器之间的冷却水出水管道上安装取热水箱,取热水箱外壁与第二温差发电片组的热面接触,第二温差发电片组的冷面与第三无机热超导管接触,第二无机热超导管和第三无机热超导管上均设置散热翅片。第一无机热超导管与车辆排气管的中轴线重合,第一无机热超导管通过3-6个金属支撑片与车辆排气管的内壁连接,各金属支撑片沿第一无机热超导管周圈均匀分布。第一无机热超导管与第一温差发电片组热面接触的一端、第二无机热超导管与第一温差发电片组冷面接触的一端以及第三无机热超导管与第二温差发电片组冷面接触的一端均加工成扁平状。车辆底盘上安装固定座,固定座通过螺栓与第一压板连接,第一无机热超导管、第一温差发电片组和第二无机热超导管位于第一压板和固定座之间。取热水箱通过螺栓与第二压板连接,第三无机热超导管和第二温差发电片组位于第二压板与取热水箱之间。第一无机热超导管、第一温差发电片组和第二无机热超导管侧面的非接触面上设置保温层。
   本发明的优点在于:能够将内燃机工作时产生的热量转化为电能,替代现有车辆发电机对车辆电瓶进行充电,一方面能够提升内燃机的燃料利用效率,另一方面能够减轻内燃机的负载,使内燃机输出的动力全部用于驱动车辆行走;热量传导和散热效率均能达到极高的水准,可对车辆内燃机冷却水进行降温,使车辆散热器的负载也有所降低。
附图说明
   图1是本发明所述对汽车余热进行利用的设备的结构示意图;
   图2是图1的A向结构示意图;
   图3是图1中I部放大结构示意图;
   图4是图1中B-B剖视放大结构示意图。
具体实施方式
   本发明所述的汽车余热利用方法包括下述步骤:
   ①车辆启动后将车辆内燃机排出的尾气中的部分热量传导至第一温差发电片组1的热面,同时对第一温差发电片组1的冷面持续进行降温,使第一温差发电片组1热面与冷面之间的温差达到40℃以上,第一温差发电片组1持续发电,第一温差发电片组1热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池15的输出电压;
   ②车辆水温超过80℃时将车辆内燃机冷却水中的部分热量传导至第二温差发电片组2的热面,同时对第二温差发电片组2的冷面持续进行降温,使第二温差发电片组2热面与冷面之间的温差达到40℃以上,第二温差发电片组2持续发电,第二温差发电片组2热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池15的输出电压;
   ③步骤①中第一温差发电片组1发出的电流和步骤②中第二温差发电片组2发出的电流通过电压适配器13和充电电路14对车辆的蓄电池15进行充电。
   本发明以温差发电的方式对车辆内燃机工作时产生的热量进行回收,车辆内燃机运转稳定后其冷却水温度和尾气温度均处于一个相对温度的范围内,不会出现大幅升降,能够确保温差发电片组持续发电。温差发电片组发出的电能向车辆蓄电池充电,供全车用电部件使用,需确保温差发电片组在内燃机正常工况下输出的电压高于车辆蓄电池的输出电压,在40℃的环境中反复试验得知,温差发电片组在内燃机正常工况下能够保持的最低温差为40℃,因此确保温差发电片组在温差为40℃时发出的电压高于车辆蓄电池的输出电压即可保证车辆正常行驶时不断向蓄电池充电。考虑到汽车尾气所加热的温度是变化的,是很受很多因素影响的,有时低,有时高,特别是发动机刚起动时。温差发电片的输出电压是会随温差而变化,但对蓄电池的充电必须高于电池端电压才能充电,如果低于电池端电压,电池可能反向放电。因而电池前端必须加阻止递向放电的二极管和必要的电压适配器,即温差发电片输出电压大范围变化时,适配环节经DC/DC直流变换器整定到稳定的高于蓄电池端电压某一值使电池一直处于充电状态,以提高效率,这可用“宽输入电压范围(10V-40V)同步降压型控制器”如TPS40050之类(美国Texas产品),输出整定为25V以上(或13V以上)对24V(或12V)汽车蓄电池充电。尾气所用温差发电片组电压较低,可经“低输入(1.8V-9.0V)多拓扑结构型高频PWM控制器”如TPS43000之类(亦为美国Texas产品)多组串并联后同样整定为25V以上对同一蓄电池充电。本发明将内燃机工作时产生的热量转化为电能,替代现有车辆发电机对车辆电瓶进行充电,一方面能够提升内燃机的燃料利用效率,另一方面能够减轻内燃机的负载,使内燃机输出的动力全部用于驱动车辆行走。
   本发明为了加快温差发电片组冷面的散热速度,可在步骤①中第一温差发电片组1的冷面以及步骤②中第二温差发电片组2的冷面均通过无机热超导管向空气中散热。无机热超导管由华裔美国科学家渠玉芝先生发明,经美国斯坦福(SRI)研究院测试,其最高等效导热系数是金属银的32500倍,热阻趋近于零,在全世界27个国家(包括中国)取得专利权。众所周知,银是自然界中导热性能最佳的金属,而渠先生发明的无机热管导热性能比银还高数万倍,故被称为热超导管,相对于电阻接近零称为电超导而得名。因此在本发明中使用无机热超导管可使温差发电片组冷面的热量迅速传导至空气中,帮助温差发电片组冷面迅速降温,保持温差发电片组的温差,尽可能的提高温差发电片组的发电功率。
   本发明在将内燃机尾气中的热量传导至温差发电片组热面时,为了追求较高的导热效率,也将步骤①中车辆内燃机排出的尾气中的热量通过安装在车辆排气管4中的无机热超导管传导至第一温差发电片组1的热面。由于温差发电片组的冷面需保持低温,因此无法直接安装在车辆排气管中,而将温差发电片组安装在车辆排气管的外壁时,由于接触面较小,导热效率难以保证,因此本发明将无机热超导管安装在车辆排气管中,通过无机热超导管将热量传导至温差发电片组的热面能够达到最佳的换热效率。
   本发明所述内燃机冷却水的热量传导方式为:步骤②中车辆内燃机冷却水在对内燃机8的缸体进行降温后,进入设置在内燃机冷却水套的出水管道10上的取热水箱11,取热水箱11外壁与第二温差发电片组2的热面接触,内燃机冷却水的热量经取热水箱11传导至第二温差发电片组2的热面,内燃机冷却水在取热水箱11内降温后沿内燃机冷却水套的出水管道10进入散热器9。该结构不会对车辆冷却水循环构成阻力,同时还能够在冷却水进入散热器之前降低冷却水的温度,有利于减少车辆散热器的负载。
   本发明具体连接关系如下:第一温差发电片组1和第二温差发电片组2均通过电压适配器13和充电电路14与车辆蓄电池15连接,第一温差发电片组1的热面与第一无机热超导管3的一端接触,第一无机热超导管3的另一端位于车辆排气管4尾段内部,第一温差发电片组1的冷面与第二无机热超导管6接触,车辆内燃机8的冷却水套与车辆散热器9之间的冷却水出水管道10上安装取热水箱11,取热水箱11外壁与第二温差发电片组2的热面接触,第二温差发电片组2的冷面与第三无机热超导管12接触,第二无机热超导管6和第三无机热超导管12上均设置散热翅片7。为降低热量损耗,本发明所述的温差发电片组需靠近热源,但温差发电片组自身的耐热温度有限(安全工作温度为100℃左右,超过150℃后会软化),内燃机冷却水的温度较稳定(80℃-90℃),可使第二温差发电片组2的热面直接与取热水箱接触,但车辆排气管的前、中、后段温度差别较大,其中前段和中段的温度均超过了温差发电片组自身的耐热温度,因此第一温差发电片组1须靠近车辆排气管的尾段安装,车辆排气管尾段的温度通常为80℃-100℃,符合温差发电片组自身的耐热温度,同时还能够提供足够的温度给温差发电片组的热面,保持温差发电片组的温差在40℃以上。
   本发明为了进一步提高内燃机尾气与第一温差发电片组1热面之间的导热效率,可采用下述结构:第一无机热超导管3与车辆排气管4的中轴线重合,第一无机热超导管3通过3-6个金属支撑片5与车辆排气管4的内壁连接,各金属支撑片5沿第一无机热超导管3周圈均匀分布。金属支撑片5能够增加第一无机热超导管3与尾气的接触面积,同时还能够将排气管4管壁的热量传导至第一无机热超导管3,使第一无机热超导管3能够收集更多的热量向第一温差发电片传导。
   本发明为了增加无机热超导管与温差发电片组的接触面积,可将第一无机热超导管3与第一温差发电片组1热面接触的一端、第二无机热超导管6与第一温差发电片组1冷面接触的一端以及第三无机热超导管12与第二温差发电片组2冷面接触的一端均加工成扁平状。
   本发明所述第一无机热超导管3、第一温差发电片组1和第二无机热超导管6通过下述结构连接:车辆底盘16上安装固定座17,固定座17通过螺栓与第一压板18连接,第一无机热超导管3、第一温差发电片组1和第二无机热超导管6位于第一压板18和固定座17之间。该结构具有安装拆卸方便、便于在排气管尾段附件安装的优点。
   本发明所述取热水箱11、第三无机热超导管12和第二温差发电片组2通过下述结构连接:取热水箱11通过螺栓与第二压板19连接,第三无机热超导管12和第二温差发电片组2位于第二压板19与取热水箱11之间。该结构具有取热水箱11与第二温差发电片组2换热面积大、占用空间小的优点。
   本发明为了减少第一温差发电片组1受周围环境温度的影响,保持第一温差发电片组1热面与冷面之间的温差,可在第一无机热超导管3、第一温差发电片组1和第二无机热超导管6侧面的非接触面上设置保温层20。保温层20同时还能够对第一无机热超导管3、第一温差发电片组1和第二无机热超导管6起到保护作用,防止第一无机热超导管3、第一温差发电片组1和第二无机热超导管6在车辆行驶中被飞溅的砂石损坏。

Claims (10)

  1. 汽车余热利用方法,其特征在于:包括下述步骤:
       ①车辆启动后将车辆内燃机排出的尾气中的部分热量传导至第一温差发电片组(1)的热面,同时对第一温差发电片组(1)的冷面持续进行降温,使第一温差发电片组(1)热面与冷面之间的温差达到40℃以上,第一温差发电片组(1)持续发电,第一温差发电片组(1)热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池(15)的输出电压;
       ②车辆水温超过80℃时将车辆内燃机冷却水中的部分热量传导至第二温差发电片组(2)的热面,同时对第二温差发电片组(2)的冷面持续进行降温,使第二温差发电片组(2)热面与冷面之间的温差达到40℃以上,第二温差发电片组(2)持续发电,第二温差发电片组(2)热面与冷面之间的温差为40℃时的输出电压高于车辆蓄电池(15)的输出电压;
       ③步骤①中第一温差发电片组(1)发出的电流和步骤②中第二温差发电片组(2)发出的电流通过电压适配器(13)和充电电路(14)对车辆的蓄电池(15)进行充电。
  2. 根据权利要求1所述的汽车余热利用方法,其特征在于:步骤①中第一温差发电片组(1)的冷面以及步骤②中第二温差发电片组(2)的冷面均通过无机热超导管向空气中散热。
  3. 根据权利要求1所述的汽车余热利用方法,其特征在于:步骤①中车辆内燃机排出的尾气中的热量通过安装在车辆排气管(4)中的无机热超导管传导至第一温差发电片组(1)的热面。
  4. 根据权利要求1所述的汽车余热利用方法,其特征在于:步骤②中车辆内燃机冷却水在对内燃机(8)的缸体进行降温后,进入设置在内燃机冷却水套的出水管道上(10)的取热水箱(11),取热水箱(11)外壁与第二温差发电片组(2)的热面接触,内燃机冷却水的热量经取热水箱(11)传导至第二温差发电片组(2)的热面,内燃机冷却水在取热水箱(11)内降温后沿内燃机冷却水套的出水管道(10)进入散热器(9)。
  5. 根据权利要求1所述的汽车余热利用方法,其特征在于:第一温差发电片组(1)和第二温差发电片组(2)均通过电压适配器(13)和充电电路(14)与车辆蓄电池(15)连接,第一温差发电片组(1)的热面与第一无机热超导管(3)的一端接触,第一无机热超导管(3)的另一端位于车辆排气管(4)尾段内部,第一温差发电片组(1)的冷面与第二无机热超导管(6)接触,车辆内燃机(8)的冷却水套与车辆散热器(9)之间的冷却水出水管道(10)上安装取热水箱(11),取热水箱(11)外壁与第二温差发电片组(2)的热面接触,第二温差发电片组(2)的冷面与第三无机热超导管(12)接触,第二无机热超导管(6)和第三无机热超导管(12)上均设置散热翅片(7)。
  6. 根据权利要求5所述的汽车余热利用方法,其特征在于:第一无机热超导管(3)与车辆排气管(4)的中轴线重合,第一无机热超导管(3)通过3-6个金属支撑片(5)与车辆排气管(4)的内壁连接,各金属支撑片(5)沿第一无机热超导管(3)周圈均匀分布。
  7. 根据权利要求5所述的汽车余热利用方法,其特征在于:第一无机热超导管(3)与第一温差发电片组(1)热面接触的一端、第二无机热超导管(6)与第一温差发电片组(1)冷面接触的一端以及第三无机热超导管(12)与第二温差发电片组(2)冷面接触的一端均加工成扁平状。
  8. 根据权利要求7所述的汽车余热利用方法,其特征在于:车辆底盘(16)上安装固定座(17),固定座(17)通过螺栓与第一压板(18)连接,第一无机热超导管(3)、第一温差发电片组(1)和第二无机热超导管(6)位于第一压板(18)和固定座(17)之间。
  9. 根据权利要求7所述的汽车余热利用方法,其特征在于:取热水箱(11)通过螺栓与第二压板(19)连接,第三无机热超导管(12)和第二温差发电片组(2)位于第二压板(19)与取热水箱(11)之间。
  10. 根据权利要求5所述的汽车余热利用方法,其特征在于:第一无机热超导管(3)、第一温差发电片组(1)和第二无机热超导管(6)侧面的非接触面上设置保温层(20)。
PCT/CN2014/070451 2013-01-14 2014-01-10 汽车余热利用方法 WO2014108092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310012456.5 2013-01-14
CN201310012456 2013-01-14

Publications (1)

Publication Number Publication Date
WO2014108092A1 true WO2014108092A1 (zh) 2014-07-17

Family

ID=50451199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070451 WO2014108092A1 (zh) 2013-01-14 2014-01-10 汽车余热利用方法

Country Status (2)

Country Link
CN (1) CN103726951A (zh)
WO (1) WO2014108092A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836317A (zh) * 2015-04-20 2015-08-12 洪莲 一种利用管道温差发电向设备供电的方法和***
CN106965645A (zh) * 2017-05-25 2017-07-21 天津商业大学 发动机余热回收发电与太阳能联合的制冷空调***
CN112428782A (zh) * 2020-11-28 2021-03-02 芜湖展益汽车科技有限公司 一种智能汽车热管理***
CN112443387A (zh) * 2020-10-22 2021-03-05 上海常田实业有限公司 一种挖掘机用发动机节能散热***
CN113090366A (zh) * 2020-01-08 2021-07-09 东北林业大学 尾气的温差发电装置
CN114401458A (zh) * 2021-12-29 2022-04-26 无锡混沌能源技术有限公司 基于温差发电技术的管道数据远传装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065097A (zh) * 2015-08-21 2015-11-18 无锡市海昌机械设备有限公司 一种尾气回收利用装置
CN106812625A (zh) * 2017-03-20 2017-06-09 华东交通大学 一种车用冷却水箱温差发电装置
CN107401449A (zh) * 2017-09-06 2017-11-28 哈尔滨工程大学 柴油机废气余热冷却egr风扇增压***
CN111710937A (zh) * 2020-06-13 2020-09-25 扬州工业职业技术学院 一种电动汽车电池组散热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274790A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 排熱回収装置
CN201369695Y (zh) * 2009-03-18 2009-12-23 陈绍勇 一种内燃机/汽车发动机排气***余热温差发电装置
CN201523345U (zh) * 2009-10-01 2010-07-07 洛阳希诺能源科技有限公司 一种利用汽车排气管余热发电装置
CN201623673U (zh) * 2010-01-25 2010-11-03 武汉理工大学 汽车尾气废热温差发电装置
CN101956594A (zh) * 2010-08-27 2011-01-26 奇瑞汽车股份有限公司 一种发动机废气能量利用装置及应用该装置的汽车
CN202475319U (zh) * 2011-11-05 2012-10-03 吴宸至 新一代汽车发电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200997575Y (zh) * 2006-12-28 2007-12-26 东风汽车集团股份有限公司 利用汽车水箱的水温实现温差发电装置
DE102008005334A1 (de) * 2008-01-21 2009-07-30 Christian Vitek Thermoelektrischer Generator
KR100986655B1 (ko) * 2009-07-30 2010-10-08 충북대학교 산학협력단 열전 발전 장치
KR101129197B1 (ko) * 2010-01-14 2012-03-26 자동차부품연구원 자동차의 배열회수용 열전발전 시스템
CN102510245B (zh) * 2011-12-02 2014-09-03 浙江大学 用于机动车尾气余热回收的温差发电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274790A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 排熱回収装置
CN201369695Y (zh) * 2009-03-18 2009-12-23 陈绍勇 一种内燃机/汽车发动机排气***余热温差发电装置
CN201523345U (zh) * 2009-10-01 2010-07-07 洛阳希诺能源科技有限公司 一种利用汽车排气管余热发电装置
CN201623673U (zh) * 2010-01-25 2010-11-03 武汉理工大学 汽车尾气废热温差发电装置
CN101956594A (zh) * 2010-08-27 2011-01-26 奇瑞汽车股份有限公司 一种发动机废气能量利用装置及应用该装置的汽车
CN202475319U (zh) * 2011-11-05 2012-10-03 吴宸至 新一代汽车发电机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836317A (zh) * 2015-04-20 2015-08-12 洪莲 一种利用管道温差发电向设备供电的方法和***
CN104836317B (zh) * 2015-04-20 2023-09-22 北京暖流科技有限公司 一种利用管道温差发电向设备供电的方法和***
CN106965645A (zh) * 2017-05-25 2017-07-21 天津商业大学 发动机余热回收发电与太阳能联合的制冷空调***
CN113090366A (zh) * 2020-01-08 2021-07-09 东北林业大学 尾气的温差发电装置
CN112443387A (zh) * 2020-10-22 2021-03-05 上海常田实业有限公司 一种挖掘机用发动机节能散热***
CN112428782A (zh) * 2020-11-28 2021-03-02 芜湖展益汽车科技有限公司 一种智能汽车热管理***
CN112428782B (zh) * 2020-11-28 2023-09-22 芜湖展益汽车科技有限公司 一种智能汽车热管理***
CN114401458A (zh) * 2021-12-29 2022-04-26 无锡混沌能源技术有限公司 基于温差发电技术的管道数据远传装置

Also Published As

Publication number Publication date
CN103726951A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2014108092A1 (zh) 汽车余热利用方法
JP5484071B2 (ja) 熱電発電機を搭載した車両
US9482142B2 (en) Cooling system for an electric vehicle and method for producing a cooling system
CN109774407B (zh) 一种热管理***及其控制方法和车辆
US20160221458A1 (en) Vehicle Conductive Charge Port Having Cooling Infrastructure
WO2015064302A1 (ja) エンジン冷却システム
CN103644016B (zh) 圆柱壳直板翅片式汽车排气热电发电装置
CN201739025U (zh) 一种汽车余热发电装置
WO2009121226A1 (zh) 无刷直流电机及其散热装置
WO2023115986A1 (zh) 一种燃料电池废热回收***以及车辆
US9896986B2 (en) Method and apparatus for operating an internal combustion engine
CN104279078A (zh) 一种汽车尾气温差发电***
CN1794557A (zh) 一种发动机排气管余热发电方法及装置
CN101944867A (zh) 一种圆筒式温差发电器
CN204140230U (zh) 一种汽车尾气温差发电***
WO2021012392A1 (zh) 一种储能型混合动力汽车能量回收及降噪装置
KR20180077459A (ko) 자동차의 열전 발전 장치 및 그 제어 방법
CN206135455U (zh) 充电装置
CN111174603B (zh) 一种节能型空冷器冷却***
CN201781449U (zh) 一种圆筒式温差发电器
JP2008143432A (ja) 車載用電源装置
JP4239474B2 (ja) 車輌用駆動装置
CN211106935U (zh) 一种新能源商用车电驱动***冷却装置
WO2017162196A1 (zh) 热电转换模块、新型内燃机、新型电机及发电方法
CN102769414A (zh) 一种圆形汽车尾气半导体热电发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.11.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14737650

Country of ref document: EP

Kind code of ref document: A1