WO2014104248A1 - 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法 - Google Patents

溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法 Download PDF

Info

Publication number
WO2014104248A1
WO2014104248A1 PCT/JP2013/084992 JP2013084992W WO2014104248A1 WO 2014104248 A1 WO2014104248 A1 WO 2014104248A1 JP 2013084992 W JP2013084992 W JP 2013084992W WO 2014104248 A1 WO2014104248 A1 WO 2014104248A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
anion exchange
ion
solution
amount
Prior art date
Application number
PCT/JP2013/084992
Other languages
English (en)
French (fr)
Inventor
清水 和彦
鳥羽 裕一郎
英二 今村
志村 光則
雅世 篠原
敏信 今濱
賢兒 金
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012287988A external-priority patent/JP6159527B2/ja
Priority claimed from JP2013048097A external-priority patent/JP6163326B2/ja
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2014104248A1 publication Critical patent/WO2014104248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method and a recovery device for recovering dissolved salts from water associated with resource mining.
  • Patent Document 1 discloses a technique (Penrice method) for recovering salt in water as valuable salt Na 2 CO 3 for water associated with resource mining. This is a method in which C 12 amine and CO 2 dissolved in an oil phase are reacted with NaCl to convert them to NaHCO 3 and then converted to Na 2 CO 3 by applying heat.
  • Non-Patent Document 1 and Patent Document 2 disclose a method for producing NaHCO 3 from water containing NaCl using an ion exchange resin, as represented by Formula (1).
  • Patent Document 3 discloses a method using limestone (CaCO 3 ) as a CO 2 supply source. Further, in this method, CaCO 3 is burned to obtain CO 2 and, as represented by the formula (4), Ca (OH) 2 as a by-product is used as a regenerated alkali of the ion exchange resin. 2R 3 N—HCl + Ca (OH) 2 ⁇ 2R 3 N + CaCl 2 + 2H 2 O Formula (4)
  • Patent Document 3 uses CO 2 gas generated during the production of Ca (OH) 2 as a reaction raw material and is fixed as a carbonate, and as a system that emits almost no CO 2 gas to the atmosphere, global warming This is an effective technique from the viewpoint of prevention.
  • wastewater containing oil as a COD raw material is not generated.
  • the reaction of formula (3) proceeds almost completely, so there is no loss of carbonate recovery and a very high recovery rate can be obtained.
  • CaCl 2 is generated when the resin is regenerated, but in order to completely regenerate the ion exchange resin (R 3 N—HCl) combined with HCl (formula (4)).
  • a half amount of Ca (OH) 2 of HCl may be brought into contact with the ion-exchange resin, but in practice, a larger amount of Ca (OH) than half the amount of HCl. 2 must be brought into contact with the ion exchange resin.
  • the number of Ca (OH) 2 contained in the ion-exchange resin in the Ca (OH) 2 treatment solution obtained by contacting low even to obtain a CaCl 2 from the treatment liquid Only pure CaCl 2 is obtained, and the obtained CaCl 2 becomes waste.
  • the cost for disposing of this large amount of waste is high at the site of resource mining.
  • this CaCl 2 can be recovered with high purity, it can be used as an industrial raw material in the same way as carbonates, and thus can be a valuable resource.
  • this ion exchange method becomes extremely effective as a technique for recovering salts from the accompanying water generated by resource mining such as natural gas or crude oil such as CSG.
  • An object of the present invention is to recover the CaCl 2 from resource mining produced water, in particular, to provide a recovery method and recovery apparatus of dissolution salts makes it possible to recover the CaCl 2 that suppresses entry of impurities It is.
  • the method for recovering dissolved salts of the present invention includes a first recovery step of passing NaCl-containing resource mining associated water through an anion exchange resin and recovering NaHCO 3 , and after the resource mining accompanying water flowing.
  • a Ca (OH) 2 solution is passed through the anion exchange resin, and a regeneration process for regenerating the anion exchange resin, and a second recovery process for recovering the regenerated liquid after the regeneration process,
  • the pH of the regenerated reprocessing solution is monitored, and the regenerated processing solution recovered until the monitored pH value reaches a predetermined set value is concentrated and dried to recover CaCl 2 . .
  • the method for recovering dissolved salts of the present invention includes a first recovery step of passing NaCl-containing resource mining associated water through an anion exchange resin and recovering NaHCO 3 , and after the resource mining accompanying water flowing A Ca (OH) 2 solution is passed through the anion exchange resin, and a regeneration process for regenerating the anion exchange resin, and a second recovery process for recovering the regenerated liquid after the regeneration process,
  • the Cl ⁇ ion concentration of the regenerated reprocessing solution is monitored, and the amount of Cl ⁇ ion desorption of the anion exchange resin determined based on the monitored Cl ⁇ ion concentration is predetermined.
  • the regenerated solution collected until reaching the set value is concentrated and dried to recover CaCl 2 .
  • the regenerated treatment liquid recovered after the monitored pH value reaches a predetermined set value is used as the anion exchange resin. It is preferable to store as a regenerant for regenerating.
  • the regeneration treatment solution recovered after the Cl ⁇ ion desorption amount of the anion exchange resin has reached a predetermined set value Is preferably stored as a regenerant for regenerating the anion exchange resin.
  • the predetermined set value is the pH of the Ca (OH) 2 solution
  • the monitored pH is the pH of the Ca (OH) 2 solution.
  • the regenerated solution collected until reaching the concentration is concentrated and dried to collect CaCl 2
  • the regenerated solution collected after the monitored pH reaches the pH of the Ca (OH) 2 solution is converted into the anion exchange solution. It is preferable to store the resin as a regenerant for regenerating the resin.
  • the predetermined set value is set between pH 10 and 12, and the monitored pH reaches the set value set between pH 10 and 12.
  • the predetermined set value Cl of the anion-exchange resin in the first recovery step - as an ion adsorption amount, Cl of the anion exchange resin - The regenerated solution collected until the ion desorption amount reaches the Cl ⁇ ion adsorption amount of the anion exchange resin is concentrated and dried to recover CaCl 2, and the Cl ⁇ ion desorption amount of the anion exchange resin is recovered.
  • the predetermined set value is set between 85 and 96% of the Cl ⁇ ion desorption amount of the anion exchange resin, and the anion exchange is performed.
  • resins Cl - ion elimination amount, the anion exchange resin Cl - CaCl 2 was concentrated and dried playback processing liquid collected to reach a set value set between 85 to 96% of the ion adsorption Recovered after the Cl ⁇ ion desorption amount of the anion exchange resin reaches a set value set between 85 and 96% of the Cl ⁇ ion adsorption amount of the anion exchange resin.
  • the apparatus for recovering dissolved salts of the present invention includes a packed tower filled with an anion exchange resin and resource mining associated water containing NaCl through the packed tower to recover NaHCO 3 .
  • the dissolved salt recovery apparatus of the present invention includes a packed tower filled with an anion exchange resin, and resource mining associated water containing NaCl is passed through the packed tower to recover NaHCO 3 . and recovery means, and passed through a Ca (OH) 2 solution to the packed column, a reproducing means for the anion exchange resin regeneration process, Cl of the reproduction process reproduction processing solution - monitoring the ion concentration Cl - ions A second recovery means for recovering the regenerated processing solution until a Cl ⁇ ion desorption amount of the anion exchange resin determined based on the monitored Cl ⁇ ion concentration reaches a predetermined set value; Concentrating means for concentrating the recovered regeneration processing liquid and drying means for drying the concentrated regeneration processing liquid.
  • a calcium hydroxide solution is brought into contact with an ion exchange resin combined with hydrochloric acid to obtain a treatment solution containing calcium chloride, and the purity of the treatment solution is monitored.
  • a third step of obtaining calcium is obtained.
  • the method includes setting a specified value corresponding to the reference purity before the second step, and, based on the specified value in the second step, It is preferable to stop the acquisition.
  • the specified value is a pH of the treatment liquid when the calcium chloride purity is the reference purity.
  • the monitoring of the calcium chloride purity It is preferable to measure the pH of the treatment liquid.
  • the specified value is a chlorine ion desorption amount of the ion-exchange resin when the calcium chloride purity is the reference purity.
  • the calcium chloride purity Preferably, the monitoring includes measuring a chlorine ion concentration of the treatment liquid and calculating the chlorine ion desorption amount based on the measured chlorine ion concentration.
  • recovering the CaCl 2 from resource mining produced water in particular, it is possible to provide a recovery method and recovery apparatus of dissolution salts makes it possible to recover the CaCl 2 that suppresses entry of impurities .
  • PH of the reproduction processing solution for Ca (OH) 2 supply amount and Cl - is a diagram showing the relationship between ion desorption amount.
  • FIG.1 and FIG.2 is a schematic block diagram which shows an example of a structure of the dissolved salt collection
  • the dissolved salt recovery apparatus 1 includes a drainage storage tank 10, a drainage inflow line 12, a drainage pump 14, a packed tower 16 filled with an anion exchange resin, a treated water discharge line 18, a treated water tank 20,
  • the dissolved salt recovery device 1 includes a Ca (OH) 2 storage tank 22, a Ca (OH) 2 inflow line 24, a Ca (OH) 2 pump 26, and a blower 32.
  • the air inlet line 34, the regeneration processing liquid discharge lines 36a and 36b, and the regeneration processing liquid storage tanks 38a and 38b are further provided. As shown in FIG.
  • the waste water inlet line 12 Cl - ion sensor 31 is installed.
  • Ion sensor 21 is provided - Cl in waste water treatment line 18.
  • the Cl ⁇ ion sensor 21 may be installed in the treated water tank 20.
  • a Cl - ion sensor 21 is installed in the treated water tank 20, and a pH sensor 28 and a Cl - ion sensor 30 are installed in the packed tower 16 as shown in FIGS.
  • recovery apparatus 1 is equipped with the control part 40, and is electrically connected with each sensor and the integrating
  • the components shown in FIG. 1 are installed in the packed tower 16, and when recovering CaCl 2 described later, the packed tower 16 1 may be removed, and the components shown in FIG. 2 may be installed in the packed column 16, or the packed column 16 may be configured as shown in FIGS. 1 and 2 through the recovery of NaHCO 3 and the recovery of CaCl 2 . Parts may be installed.
  • one end of the drainage inflow line 12 is connected to the drainage storage tank 10, and the other end is connected to the upper part of the packed tower 16.
  • the wastewater inflow line 12, the drainage pump 14, the integrated flow meter 19, Cl - ions sensor 31 is installed.
  • One end of the treated water discharge line 18 is connected to the bottom of the packed tower 16, and the other end is connected to the treated water tank 20.
  • one end of the Ca (OH) 2 inflow line 24 is connected to the Ca (OH) 2 storage tank 22, and the other end is connected to the upper part of the packed tower 16.
  • the Ca (OH) 2 inlet line 24 Ca (OH) 2 pump 26 is installed.
  • One end of the air inflow line 34 is connected to the blower 32, and the other end is connected to the lower side surface of the packed tower 16.
  • One end of the regeneration processing liquid discharge line 36a is connected to the lower side surface of the packed tower 16, the other end is connected to the regeneration processing liquid storage tank 38a, and one end of the regeneration processing liquid discharge line 36b is connected to the regeneration processing liquid discharge line 36a. The other end is connected to the regeneration processing liquid storage tank 38b.
  • the drainage storage tank 10, the drainage inflow line 12, the drainage pump 14, the treated water discharge line 18, and the treated water tank 20 pass the resource mining associated water containing NaCl to the packed tower 16 and collect the NaHCO 3. It functions as a device.
  • the first recovery device if a configuration of recovering NaHCO 3 from resource mining produced water containing NaCl, but is not limited to the above structure.
  • the Ca (OH) 2 storage tank 22, the Ca (OH) 2 inflow line 24, and the Ca (OH) 2 pump 26 function as a regeneration device that regenerates the anion exchange resin in the packed tower 16.
  • the regenerating apparatus is not limited to the above structure as long as it has a structure for regenerating an anion exchange resin.
  • the second recovery device has a configuration for recovering the regeneration treatment solution until the pH of the regeneration treatment solution or the Cl ⁇ ion desorption amount of the anion exchange resin reaches a predetermined specified value,
  • the present invention is not limited to this configuration.
  • the concentrator 42 has a function of concentrating the regenerated liquid, and examples thereof include an evaporator and a liquid film descending evaporation concentrator.
  • the drying device 44 is for drying the concentrated regeneration treatment liquid, and examples thereof include an electric heating dryer and a vacuum drum dryer.
  • the wastewater to be treated in this embodiment is resource mining accompanying water containing NaCl.
  • the water associated with resource mining is water associated with resource mining such as natural gas such as CSG (Coal Seam Gas) or crude oil, and includes NaCl or the like.
  • the pretreatment step is a step of removing suspended substances, oils, and the like contained in the water associated with resource mining by coagulation sedimentation, coagulation flotation separation, membrane filtration using an MF membrane / UF membrane, or the like.
  • the concentration step is a step of concentrating water associated with resource mining with an RO membrane or the like to increase the NaCl concentration in the water.
  • the concentration of NaCl in the concentrated resource extraction accompanying water is preferably 0.1 mol / L or more from the viewpoint of shortening the subsequent treatment time and performing efficient operation.
  • the resource extraction produced water containing NaCl was passed through an anion exchange resin, the NaCl in the above reaction formula (3) is replaced with NaHCO 3, performing a first recovery step of recovering the NaHCO 3 .
  • the anion exchange resin is a H 2 CO 3 type weakly basic ion-exchange resin, and more preferably H 2 CO 3 type weakly basic acrylic ion exchange resin.
  • H 2 CO 3 type weakly basic acrylic ion exchange resin will be described as an example.
  • the H 2 CO 3 type weakly basic acrylic ion exchange resin is a carbonate-dissolved water obtained by dissolving carbonic acid in pure water or the like in a packed tower 16 filled with a weakly basic acrylic ion exchange resin before the first recovery step. It is necessary to pass water and convert it into H 2 CO 3 type.
  • Examples of the dissolution of carbonic acid include a method of dissolving CO 2 gas in pure water or the like using a gas absorption tower or the like.
  • As the CO 2 gas it is desirable to use CO 2 gas produced as a by-product when methane gas is burned or Ca (OH) 2 is produced from CaCO 3 .
  • the resource extraction accompanying water containing NaCl in the drainage storage tank 10 passes through the drainage inflow line 12 by the drainage pump 14, and is a weak base of H 2 CO 3 type. Is supplied to a packed tower 16 filled with a functional acrylic ion exchange resin. Within packed tower 16 by H 2 CO 3 type weakly basic acrylic ion exchange resin, Cl - is adsorbed, it is treated water containing NaHCO 3 is discharged from the treated water discharge line 18, stored in the processed water tank 20 The treated water containing NaHCO 3 stored in the treated water tank 20 is then concentrated by a concentrating device 42 such as an evaporator and dried by a drying device 44 such as a dryer.
  • a concentrating device 42 such as an evaporator
  • a drying device 44 such as a dryer.
  • Cl was placed in the treated water discharge line 18 - by the ion sensor 21, Cl in the treated water - monitoring the ion concentration, Cl - it is desirable that the ion concentration immediately terminated Once raised. For example, even if the measurement data of the Cl ⁇ ion sensor 21 is sent to the control unit 40 and the control unit 40 electronically controls to stop the operation of the drainage pump 14 and the like when the Cl ⁇ ion concentration increases. good to the worker Cl - checks the measurement data of the ion sensor 21, Cl - at the stage where the ion concentration is increased, may be stopped operation of such drainage pump 14 manually.
  • Cl H 2 CO 3 type weakly basic acrylic ion exchange resin is adsorbed - is that you calculate the ion adsorption amount desired. Specifically, Cl was placed in the drainage inlet line 12 - and the ion concentration, Cl installed in the treated water discharge line 18 - - Cl of resource extraction associated water detected by the ion sensor 31 is detected by the sensor 21 treatment water Cl - is determined by multiplying the flow rate of the resource extraction produced water detected by the integrating flowmeter in the difference between the ion concentration (through water).
  • Cl H 2 CO 3 type weakly basic acrylic ion exchange resin is adsorbed - ion adsorption amount, for example, the Cl - measurement data of the sensor and the integrated flow meter 19 is transmitted to the control unit 40, the control unit 40 It is calculated by.
  • the anion exchange resin used in this embodiment is a weakly basic anion exchange resin having an acrylic tertiary amine type functional group.
  • Amberlite IRA-67 is preferably used.
  • the water passing SV of the resource extraction accompanying water in the first recovery step is preferably about 0.5 to 10 (1 / h).
  • a Ca (OH) 2 solution (hereinafter sometimes referred to as Ca (OH) 2 slurry) is passed through the anion exchange resin to which HCl has been adsorbed in the first recovery step, and the above formula (4
  • a regeneration step is performed in which HCl is desorbed from the anion exchange resin to regenerate the anion exchange resin.
  • Such a regeneration step is a batch type in which the Ca (OH) 2 slurry is gradually added to a predetermined condition while stirring the resin in the packed tower 16 and the reaction solution is discharged from the packed tower 16 after a certain time of reaction. You can go.
  • the Ca (OH) 2 slurry may be passed through the packed tower 16 to continuously discharge the regeneration treatment liquid. From the viewpoint of more efficiently advancing the reaction of formula (4) on the anion exchange resin covered with the slurry, a batch of gradually adding the Ca (OH) 2 slurry to a predetermined amount while stirring the anion exchange resin. The formula is preferred.
  • the concentration of the Ca (OH) 2 slurry is preferably 5 to 10% when used in a batch system and 0.05 to 0.5% when used in a continuous system.
  • the fluid for supplying air to the packed column 16 and stirring the anion exchange resin in the packed column 16 is not limited to air, and any fluid that does not hinder the reaction of formula (4) may be used.
  • any fluid that does not hinder the reaction of formula (4) may be used.
  • methane gas etc. are mentioned.
  • undissolved Ca (OH) 2 is Ca 2+ and OH - from the dissolved, OH - because cause regeneration reaction with HCl on an anion exchange resin, the added Ca (OH) 2 is reproduced In some cases, it takes a time of several minutes to 10 minutes to be fully used in the process. Therefore, it is preferable that the addition of the Ca (OH) 2 slurry in a batch system is performed intermittently in consideration of the time.
  • the second recovery step of recovering the regeneration processing liquid discharged from the packed tower 16 is performed.
  • the pH of the regeneration treatment solution is monitored, and the recovered regeneration solution is concentrated and dried until the monitored pH value reaches a predetermined value.
  • reproduction processing liquid Cl - monitoring the ion concentration monitoring the Cl - Cl anion exchange resin obtained based on the ion concentration - ion elimination amount recovered to reach a predetermined default reproduction processing solution Is concentrated and dried.
  • pH and Cl reproduction process liquid to the supply amount of Ca (OH) 2 - is a diagram showing the relationship between ion desorption amount.
  • FIG. 3 when monitoring the pH of the regeneration treatment solution, before complete regeneration, the Ca (OH) 2 that has passed through the packed column 16 is consumed by the anion exchange resin, while the anion exchange resin. Since HCl is desorbed from the ion exchange resin, the pH of the regeneration treatment solution is lower than the pH 12.2 of the Ca (OH) 2 slurry (when the water temperature is 20 ° C.). The purity of CaCl 2 is high.
  • the pH of the regeneration treatment liquid discharged from the packed tower 16 is monitored by a pH sensor, and the monitored pH value is transmitted to the control unit 40. Then, for example, the control unit 40 compares the pH value of the regeneration processing solution with a predetermined pH value set in advance, and while the pH value does not reach the preset specified value, CaCl 2 in the regeneration processing solution. Therefore, the valve A provided in the regeneration processing liquid discharge line 36a is opened, and the valve B provided in the regeneration processing liquid discharge line 36b is closed. That is, while the pH value is less than the preset specified value, the regeneration processing liquid is supplied from the regeneration processing liquid discharge line 36a to the regeneration processing liquid storage tank 38a.
  • the processing liquid stored in the regeneration processing liquid storage tank 38a is sent to a concentrating device 42 such as an evaporator and concentrated, and then sent to a drying device 44 such as a dryer and dried to recover high-purity CaCl 2. .
  • a concentrating device 42 such as an evaporator and concentrated
  • a drying device 44 such as a dryer and dried to recover high-purity CaCl 2.
  • the valve A is closed and the valve B is opened because the purity of the CaCl 2 in the regenerating solution is lowered.
  • the regeneration processing liquid is supplied from the regeneration processing discharge line 36b to the regeneration processing storage tank 38b.
  • the comparison between the pH value and the specified value, the opening / closing of the valve, and the like may be performed by electronic control by the control unit 40 or may be performed manually by an operator.
  • the pH value of the regeneration treatment liquid can be measured by the pH sensor 28 installed in the packed tower 16, but when it is a continuous type, the regeneration treatment liquid It is necessary to install a pH sensor in the discharge line 36a or the regeneration processing liquid storage tank 38a and measure the pH of the regeneration processing liquid.
  • the specified value to be set in advance is not particularly limited as long as it is a value capable of recovering high-purity CaCl 2 , but in the case of pH monitoring, it should be set to the pH value of the Ca (OH) 2 slurry. Is preferable, and it is more preferable to set between pH 10.0 and 12.0.
  • By setting the specified value to pH 12.0 or less it is possible to reliably transfer the regeneration treatment liquid containing high-purity CaCl 2 to the concentration / drying step.
  • by setting the specified value to pH 10.0 or more it is possible to suppress an increase in the regeneration processing liquid stored for regeneration, and it is possible to use a storage facility with a small capacity.
  • a prescribed value for example, pH of the regenerating solution
  • a calcium hydroxide solution is applied to the ion exchange resin combined with hydrochloric acid.
  • the contact is made to obtain a regeneration treatment liquid containing calcium chloride, and monitoring of the calcium chloride purity of the regeneration treatment liquid is started.
  • the acquisition of the regeneration treatment liquid is stopped until the calcium chloride purity is changed from a state higher than the reference purity to a state lower than the reference purity.
  • the acquisition of the regeneration treatment liquid was stopped until the calcium chloride purity of the regeneration treatment liquid became lower than the reference purity (for example, the calcium chloride purity of the regeneration treatment liquid when the pH of the regeneration treatment liquid was 12.0). Thereafter, by obtaining calcium chloride from the regeneration treatment solution, calcium chloride can be obtained from the regeneration treatment solution having a relatively high calcium chloride purity, and high purity calcium chloride can be produced.
  • the specified value is the pH of the regeneration treatment solution when the calcium chloride purity of the regeneration treatment solution is the reference purity (for example, pH 12.0), and when monitoring the calcium chloride purity, Measure the pH.
  • the specified value can be the chlorine ion desorption amount of the ion exchange resin when the calcium chloride purity of the regeneration treatment solution is the reference purity, instead of the above example which is the pH of the regeneration treatment solution.
  • Cl reproduction processing liquid - monitoring the ion concentration when monitoring calcium chloride purity, Cl reproduction processing liquid - monitoring the ion concentration.
  • Cl reproduction process liquid discharged from the packed tower 16 - ion concentration, Cl - is monitored by the ion sensor, the monitored Cl - ion concentration value is transmitted to the control unit 40 .
  • the desorption amount of Cl 2 ⁇ ions adsorbed on the anion exchange resin can be obtained by the product of the Cl 2 ⁇ ion concentration of the regeneration treatment solution and the regeneration treatment solution amount.
  • the control unit 40 If the flow rate of the regeneration process liquid is constant, the control unit 40, the monitored Cl - obtained by multiplying the constant ion density values, if the reproduction processing solution constant, integrating the reproduction processing liquid discharge line 36a the flowmeter is installed, it transmits a flow rate value of the measured playback processing solution by integrating flowmeter to the control unit 40, the control unit 40, the monitored Cl - measured ion concentration value reproduction processing solution flow rate value It is calculated by multiplying. Then, the control unit 40 compares, for example, the Cl ⁇ ion desorption amount adsorbed on the anion exchange resin with a preset specified value, and the Cl ⁇ ion desorption amount has reached the preset specified value.
  • the valve A is opened and the electromagnetic valve B is closed. That is, while the Cl 2 ⁇ ion desorption amount is less than a preset specified value, the regeneration processing liquid is supplied from the regeneration processing liquid discharge line 36a to the regeneration processing liquid storage tank 38a.
  • the processing liquid stored in the regeneration processing liquid storage tank 38a is sent to a concentrating device 42 such as an evaporator and concentrated, and then sent to a drying device 44 such as a dryer and dried to recover high-purity CaCl 2. .
  • the Cl ⁇ ion concentration of the regenerated solution can be measured by a Cl ⁇ ion sensor 30 installed in the packed tower 16. , Cl playback processing liquid discharge line 36a or reproducing processing liquid reservoir 38a - installing an ion sensor, Cl reproduction processing solution - it is necessary to measure the ion concentration.
  • the specified value to be set in advance is not particularly limited as long as it is a value capable of recovering high-purity CaCl 2 , but in the case of Cl ⁇ ion concentration monitoring, the amount of Cl ⁇ ion adsorption of the anion exchange resin is not limited. preferably set to a value, Cl anion exchange resin - and more preferably set between 85 to 96% of the ion adsorption values.
  • the specified value Cl anion exchange resin - by 85% or more of the ion adsorption value it is possible to suppress the increased reproduction process liquid storing for playback, use a small storage facility capacity It becomes possible to do.
  • the calculation of the Cl ⁇ ion adsorption amount of the anion exchange resin is as described above.
  • Complete regeneration after regeneration treatment liquid i.e., reproduction processing liquid stored as reproduction processing liquid reservoir 38b playback processing liquid discharge line 36b as described above, Cl - somewhat containing ions, Cl - as compared with ion Since the content of Ca (OH) 2 is large, it is desirable to store it for use as a regenerant for regenerating the anion exchange resin in the next cycle. Further, when there are a plurality of packed columns 16 filled with an anion exchange resin, they may be used for regeneration of other series. By doing so, the number of storage facilities can be reduced.
  • this washing waste water is a dilute Ca (OH) 2 solution, it may be used as dissolved water for preparing a Ca (OH) 2 slurry.
  • FIG. 4 is a schematic configuration diagram illustrating an example of a configuration of a dissolved salt recovery apparatus according to a reference example.
  • the dissolved salt recovery apparatus 2 includes a drainage storage tank 46, drainage inflow lines 48a and 48b, drainage pumps 50a and 50b, a pH adjusting tower 52, a blower 54, a gas inflow line 56, and an anion exchange resin.
  • a packed tower 58, a treated water discharge line 60, and a treated water tank 62 are provided.
  • the wastewater inflow line 48a Cl - ion sensor 64 and the alkalinity gauge 68 is installed, the waste water inlet line 48b is installed pH sensors 70, Cl is the treated water discharge line 60 - Ion A sensor 66 is installed.
  • the dissolved salt recovery apparatus 2 includes a control unit 72 and is electrically connected to each sensor and the alkalinity meter 68, and the measurement values of each sensor and the alkalinity meter 68 are transmitted. It is like that.
  • the dissolved salt recovery apparatus 2 includes a concentrating device 74 and a drying device 76.
  • one end of the drainage inflow line 48 a is connected to the drainage storage tank 46, and the other end is connected to the upper part of the pH adjustment tower 52.
  • a drainage pump 50a is installed in the drainage inflow line 48a.
  • One end of the gas inflow line 56 is connected to the blower 54, and the other end is connected to the side surface of the pH adjusting tower 52.
  • One end of the drainage inflow line 48 b is connected to the lower side surface of the pH adjusting tower 52, and the other end is connected to the upper part of the packed tower 58.
  • a drainage pump 50b is installed in the drainage inflow line 48b.
  • One end of the treated water discharge line 60 is connected to the bottom of the packed tower 58, and the other end is connected to the treated water tank 62.
  • the drainage inflow line 48a, the drainage pump 50a, the pH adjusting tower 52, the blower 54, and the gas inflow line 56 function as a pH adjusting device that adjusts the pH of the water associated with resource mining.
  • the pH adjusting device is not limited to the above configuration as long as it has a configuration for adjusting the pH of the resource mining accompanying water. It is preferable to fill the pH adjusting tower 52 with a filler such as Raschig ring from the viewpoint of suppressing the amount of the gas for adjusting the pH of the resource extraction accompanying water.
  • the concentrating device 74 has a function of concentrating the regeneration treatment liquid, and examples thereof include an evaporator and a liquid film descending evaporation concentrating device.
  • the drying device 76 is for drying the concentrated regeneration treatment liquid, and examples thereof include an electric heating dryer and a vacuum drum dryer.
  • the wastewater to be treated in the reference example is resource mining accompanying water containing NaCl and a carbonate substance.
  • the water associated with resource mining is water associated with resource mining such as natural gas such as CSG (Coal Seam Gas) or crude oil, and includes NaCl or the like.
  • the carbonate substance is bicarbonate ion (HCO 3 ⁇ ), carbonate ion (CO 3 2 ⁇ ), free carbonic acid (soluble CO 2 ) and the like.
  • the pretreatment step is a step of removing suspended substances, oils, and the like contained in the water associated with resource mining by coagulation sedimentation, coagulation flotation separation, membrane filtration using an MF membrane / UF membrane, or the like.
  • the concentration step is a step of concentrating water associated with resource mining with an RO membrane or the like to increase the NaCl concentration in the water.
  • the concentration of NaCl in the concentrated resource extraction accompanying water is preferably 0.1 mol / L or more from the viewpoint of shortening the subsequent treatment time and performing efficient operation.
  • the amount of Cl ⁇ ions (moles) relative to the amount (moles) of all carbonated substances (HCO 3 ⁇ , CO 3 2 ⁇ ) excluding free carbonic acid in the water associated with resource mining (after pretreatment and concentration steps) ) Is adjusted according to the ratio (molar ratio) of the source mining accompanying water.
  • the ratio of the amount of Cl ⁇ ions to the amount of all carbonates excluding free carbonic acid in the resources associated with resource mining is smaller. There is.
  • the treated water discharged from the packed column 58 includes NaHCO 3 in addition to NaHCO 3 . Since Na 2 CO 3 is contained, there is no problem with the purity of the dissolved salts, but the purity of NaHCO 3 alone is lowered. Further, when the water associated with resource mining with a pH of 9.5 or more is passed through the packed tower 58 at the subsequent stage, the regeneration reaction of the ion exchange resin by OH ⁇ ions occurs simultaneously with the reaction of the above formula (3).
  • the pH of the water associated with resource mining is set to 7.0 or more and 8.0 or less.
  • most of the total carbonic acid contained in the water associated with resource mining is HCO 3 ⁇ , so that more NaHCO 3 with high purity can be obtained from the treated water discharged from the packed column 58 at the subsequent stage. It can be recovered.
  • the pH of the water associated with resource mining is 6.5 to 8.5 It is adjusted to the range to become difficult to proceed the reaction of the above formula (3), Cl to treated water discharged from the packed tower 58 - incorporation of ions becomes large.
  • the amount of HCO 3 ⁇ with respect to Cl ⁇ ions can be reduced by lowering the pH of the water associated with resource mining from the above range and converting the carbon dioxide in the resource mining accompanying water to free carbonic acid. The reaction of the above formula (3) is likely to proceed.
  • the reaction of the above formula (3) can be promoted by the nature of the anion exchange resin that performs ion exchange at a low pH. Therefore, Cl to treated water - mixing of ions is reduced, can be recovered NaHCO 3 in high purity from the treated water.
  • the lower the ratio of the amount of Cl ⁇ ions to the amount of all carbonates excluding free carbonic acid in the resource extraction associated water the lower the pH of the resource extraction associated water.
  • the pH adjustment tower 52 sets the pH of the resource extraction associated water to 6.5 to 8 is preferably adjusted to .5 or less, more preferably adjusted to 7.0 or more and 8.0 or less, relative to the amount of substance of all carbon materials except for free carbon dioxide of resource extraction associated water Cl - of the amount of substance of ions If the ratio is less than 2, the pH adjustment tower 52 preferably adjusts the pH of the water associated with resource mining to a range of 5.6 or more and less than 6.5.
  • the pH adjustment tower 52 adjusts the pH of the water associated with resource mining to 6 It is preferable to adjust to a range of from 0.0 to less than 6.5, and if the ratio of the amount of Cl ⁇ ions to the amount of all carbonates excluding free carbonic acid in the water associated with resource mining is less than 1, pH adjustment It is preferable to adjust the pH of the water associated with resource mining to a range of 5.6 to less than 6.0 in the tower 52.
  • the pH adjustment process will be described in detail with reference to FIG. 4.
  • the resource mining accompanying water containing NaCl and carbonated material in the drainage storage tank 46 is sent to the drainage inflow line 48a by the drainage pump 50a.
  • Cl of resource extraction associated water through the drainage inlet line 48a - substance amount of ions (mol) of Cl - is measured by the ion sensor 64, the alkalinity of the resource extraction associated water is measured by the alkalinity meter 68.
  • Measured Cl - amount of substance and alkalinity ions are transmitted to the control unit 72.
  • the pH of the resource extraction accompanying water discharged from the pH adjustment tower 52 is measured by the pH sensor 70 installed in the drainage inflow line 48 b, and the measured value is transmitted to the control unit 72. Further, the pH of the water associated with resource mining discharged from the pH adjusting tower 52 is Cl ⁇ ion with respect to the amount (mole) of the total carbonic substances (HCO 3 ⁇ , CO 3 2 ⁇ ) excluding free carbonic acid in the water associated with resource mining.
  • the output of the blower 54 and the like is controlled by the control unit 72 so as to satisfy the pH range, and the CO 2 gas or air The supply amount is adjusted.
  • CO 2 gas when lowering the pH of the water associated with resource mining, CO 2 gas is supplied (or added with HCl or the like described later), and when increasing the pH of the water associated with resource mining, air is supplied (or later described). NaOH to be added).
  • a CO 2 gas a CO 2 that by-product produced when burning the lime to be used for regeneration of the ion exchange resin described later (Ca (OH) 2) and limestone (CaCO 3) It may be used, or CO 2 gas obtained by burning methane gas obtained locally.
  • the anion exchange resin is a H 2 CO 3 type weakly basic ion-exchange resin, and more preferably H 2 CO 3 type weakly basic acrylic ion exchange resin.
  • H 2 CO 3 type weakly basic acrylic ion exchange resin will be described as an example.
  • the H 2 CO 3 type weakly basic ion exchange resin is passed through a packed tower 58 filled with a weakly basic ion exchange resin before the recovery step, by passing carbonate-dissolved water in which carbonic acid is dissolved in pure water or the like. Obtained by conversion to 2 CO 3 type.
  • Examples of the dissolution of carbonic acid include a method of dissolving CO 2 gas in pure water or the like using a gas absorption tower or the like.
  • the CO 2 gas it is desirable to use CO 2 gas produced as a by-product when methane gas is burned or Ca (OH) 2 is produced from CaCO 3 .
  • the recovery process will be described in detail with reference to FIG. 4.
  • the resource extraction accompanying water containing NaCl and carbonated material flowing through the drainage inflow line 48 b and adjusted in pH is filled with anion exchange resin by the drainage pump 50 b.
  • Cl ⁇ is adsorbed by the anion exchange resin, and treated water containing NaHCO 3 is discharged from the treated water discharge line 60 and stored in the treated water tank 62.
  • the treated water containing NaHCO 3 stored in the treated water tank 62 is then concentrated by a concentrating device 74 such as an evaporator and dried by a drying device 76 such as a dryer.
  • Cl was placed in the treated water discharge line 60 or processed water tank 62 - by ion sensor 66, Cl in the treated water - monitoring the ion concentration, Cl - it is desirable that the ion concentration immediately terminated Once raised .
  • the measurement data of the Cl ⁇ ion sensor 66 may be sent to the control unit 72, and electronic control may be performed by the control unit 72 to stop the operation of the drainage pump 50b and the like when the Cl ⁇ ion concentration increases. and the worker Cl - checks the measurement data of the ion sensor 66, Cl - at the stage where the ion concentration is increased, may be stopped operation such as manual drainage pump 50b.
  • the anion exchange resin used in the Reference Example is preferably an anion exchange resin having an acrylic tertiary amine type functional group, and for example, Amberlite IRA-67 is preferably used. It is preferable that the water SV associated with resource mining in the recovery process is about 0.5 to 10 (1 / h).
  • the pH of the water associated with resource mining supplied to the packed tower 58 is adjusted in accordance with the ratio of the amount of Cl ⁇ ions to the amount of the total carbonaceous material excluding free carbonic acid in the water associated with resource mining.
  • Cl ⁇ is efficiently adsorbed by the anion exchange resin, and it becomes possible to recover NaHCO 3 with high purity.
  • FIG. 5 is a schematic configuration diagram showing another example of the configuration of the dissolved salt recovery apparatus according to the reference example.
  • the dissolved salt recovery apparatus 3 shown in FIG. 5 the same components as those of the dissolved salt recovery apparatus 2 shown in FIG.
  • the dissolved salt recovery apparatus 3 includes an HCl storage tank 78, an HCl addition line 80, an HCl pump 82, and a pH adjustment tank 84.
  • a pH sensor 70 is installed in the pH adjustment tank 84.
  • a stirring device (not shown) is installed in the pH adjustment tank 84.
  • one end of the drainage inflow line 48 a is connected to the drainage storage tank 46, and the other end is connected to the pH adjustment tank 84.
  • One end of the HCl addition line 80 is connected to the HCl storage tank 78, and the other end is connected to the pH adjustment tank 84.
  • One end of the drainage inflow line 48 b is connected to the pH adjustment tank 84, and the other end is connected to the upper part of the packed tower 58.
  • a drainage pump 50b is installed in the drainage inflow line 48b.
  • One end of the treated water discharge line 60 is connected to the bottom of the packed tower 58, and the other end is connected to the treated water tank 62.
  • the drainage inflow line 48a, the pH adjustment tank 84, the HCl storage tank 78, the HCl addition line 80, and the HCl pump 82 function as a pH adjustment device that adjusts the pH of the water associated with resource mining.
  • the pH adjusting device is not limited to the above configuration as long as it has a configuration for adjusting the pH of the resource mining accompanying water.
  • the pH sensor 70 installed in the pH adjusting tank 84 measures the pH of the water associated with resource mining and transmits the measured value to the control unit 72.
  • the pH of the water associated with resource mining in the pH adjustment tank 84 is such that the amount of Cl ⁇ ion relative to the amount (mole) of the total carbonic substances (HCO 3 ⁇ , CO 3 2 ⁇ ) excluding free carbonic acid in the resource mining accompanying water (
  • the output of the HCl pump 82 and the like are controlled by the controller 72 so as to satisfy the pH range, and the supply amount of HCl is adjusted.
  • Resource mining associated water adjusted according to the ratio of the mass (mol) of Cl ⁇ ions to the mass (mol) of all carbonic substances (HCO 3 ⁇ , CO 3 2 ⁇ ) excluding free carbonic acid in the resource mining associated water
  • the pH is as described above.
  • HCl is used for pH adjustment, but it is not limited to this as long as it adjusts the pH of water associated with resource mining.
  • an acid agent such as carbonated water can be used. is there.
  • the acid agent such as HCl is used for lowering the pH of the water associated with resource mining, and it is necessary to use an alkaline agent such as NaOH when the pH of the water associated with resource mining is increased.
  • the resource extraction accompanying water whose pH is adjusted in the pH adjusting tank 84 is supplied to the packed tower 58 filled with the anion exchange resin by the drain pump 50b.
  • Cl ⁇ is adsorbed by the anion exchange resin, and treated water containing NaHCO 3 is discharged from the treated water discharge line 60 and stored in the treated water tank 62.
  • the treated water containing NaHCO 3 stored in the treated water tank 62 is then concentrated by a concentrating device 74 such as an evaporator and dried by a drying device 76 such as a dryer.
  • the Cl ⁇ ion concentration in the treated water is monitored by the Cl 2 ⁇ ion sensor 66 installed in the treated water discharge line 60 or the treated water tank 62, and is immediately terminated when the Cl 2 ⁇ ion concentration increases. .
  • the control unit 72 is electronically controlled to stop the operation of the drain pump 50b and the like. good to the worker Cl - checks the measurement data of the ion sensor 66, Cl - at the stage where the ion concentration is increased, may be stopped operation such as manual drainage pump 50b.
  • FIG. 6 is a schematic configuration diagram illustrating an example of a configuration of a dissolved salt recovery apparatus when performing a regeneration process.
  • the dissolved salt recovery device (2, 3) includes a Ca (OH) 2 storage tank 86, a Ca (OH) 2 inflow line 88, a Ca (OH) 2 pump 90, a blower 92, and an air inflow line. 94, a regeneration processing liquid discharge line 98, and a regeneration processing liquid storage tank 38a.
  • a stirring device (not shown) is installed in the Ca (OH) 2 storage tank 86.
  • remove the components shown in FIG. 4 or 5 from the packed tower 58 may be equipped with components shown in FIG. 6 in the packed column 58, NaHCO 3
  • the components shown in FIG. 4 or 5 and FIG. 6 may be installed in the packed tower 58 through the recovery and regeneration process.
  • one end of the Ca (OH) 2 inflow line 88 is connected to the Ca (OH) 2 storage tank 86, and the other end is connected to the upper portion of the packed tower 58.
  • the Ca (OH) 2 inlet line 88 Ca (OH) 2 pump 90 is installed.
  • One end of the air inflow line 94 is connected to the blower 92, and the other end is connected to the lower side surface of the packed tower 58.
  • One end of the regeneration processing liquid discharge line 98 is connected to the lower side surface of the packed tower 58, and the other end is connected to the regeneration processing liquid storage tank 38a.
  • a Ca (OH) 2 solution (hereinafter sometimes referred to as Ca (OH) 2 slurry) is passed through the anion exchange resin to which HCl has been adsorbed in the recovery step, and the above formula (4)
  • a regeneration step is performed in which HCl is desorbed from the anion exchange resin to regenerate the anion exchange resin.
  • Ca (OH) operate the second pump 90
  • Ca (OH) 2 Ca in the storage tank 86 (OH) 2 slurry Ca (OH) 2 inlet line 88 Is supplied to the packed tower 58 and the blower 92 is operated, and the air is supplied to the packed tower 58 through the air inflow line 94.
  • HCl is desorbed from the anion exchange resin and CaCl 2 is generated by contacting the Ca (OH) 2 slurry with air while stirring the anion exchange resin.
  • the regeneration processing liquid is supplied from the regeneration processing liquid discharge line 98 to the regeneration processing liquid storage tank 38a.
  • the regeneration treatment liquid contains CaCl 2 , Ca (OH) 2, etc., and is sent to the concentrating device 74 and the drying device 76 as necessary.
  • Such a regeneration step is a batch type in which the Ca (OH) 2 slurry is gradually added to a predetermined condition while stirring the resin in the packed column 58 and the reaction solution is discharged from the packed column 58 after a predetermined time of reaction. You can go.
  • the Ca (OH) 2 slurry may be passed through the packed tower 58 to continuously discharge the regeneration treatment liquid. From the viewpoint of more efficiently advancing the reaction of formula (4) on the anion exchange resin covered with the slurry, a batch of gradually adding the Ca (OH) 2 slurry to a predetermined amount while stirring the anion exchange resin. The formula is preferred.
  • the concentration of the Ca (OH) 2 slurry is preferably 5 to 10% when used in a batch system and 0.05 to 0.5% when used in a continuous system.
  • the fluid for stirring the anion exchange resin in the packed tower 58 is not limited to air, and may be any fluid that does not inhibit the reaction of the formula (4), and examples thereof include methane gas.
  • undissolved Ca (OH) 2 is Ca 2+ and OH - from the dissolved, OH - because cause regeneration reaction with HCl on an anion exchange resin, the added Ca (OH) 2 is reproduced In some cases, it takes a time of several minutes to 10 minutes to be fully used in the process. Therefore, it is preferable that the addition of the Ca (OH) 2 slurry in a batch system is performed intermittently in consideration of the time.
  • Example 1 CSG resources mining accompanying simulated water is subjected to coagulation pressure flotation separation for the purpose of SS removal and membrane filtration using a UF membrane as a pretreatment step, and further concentration using a reverse osmosis membrane (concentration by 10 times) Went.
  • Table 1 summarizes the water quality of CSG resource mining accompanying simulated water (hereinafter referred to as treated water) after the pretreatment process and the concentration process.
  • This treated water was concentrated under reduced pressure using an evaporator and evaporated to dryness using a hot plate (70 ° C.) to precipitate dissolved salts containing NaHCO 3 .
  • a small amount of the precipitate was dissolved again in pure water, and the Cl - ion concentration was measured to confirm the Cl - ion content in the precipitate. It was confirmed that NaHCO 3 was recovered.
  • Pure water of 5 times the amount of weakly basic anion exchange resin in the packed tower of each series was passed through the packed tower to wash the packed tower. After washing, aeration of air into the resin tower and in a state where the weakly basic anion exchange resin is flowed, 5 w / v% Ca (OH) 2 slurry is intermittently added to the packed tower. Installation was pH sensor and Cl - were measured ion concentration - pH and Cl regeneration treatment liquid ion sensor.
  • the pH of the regenerated solution is 9.8 (Example 1-1: 1st series), 10.0 (Example 1-2: 2nd series), 10.5 (Example) 1-3: Third series), 11.7 (Example 1-4: Fourth series), 12.0 (Example 1-5: Fifth series), and 12.2 Then, 0.018 mol of Ca (OH) 2 was added (comparative example: 6th series), and the regenerated waste liquid was taken out (hereinafter referred to as “first stage regenerated solution”), vacuum concentrated by an evaporator, and hot plate ( (70 ° C.) was evaporated to dryness, and dissolved salts containing CaCl 2 were precipitated.
  • Examples 1-1 to 1-5 pure water was introduced in an amount sufficient to allow the weakly basic anion exchange resin in the packed tower to be immersed (130 mL), and Ca (OH) was allowed to flow while the resin was flowing by air aeration. 2 Slurries were added. The addition of Ca (OH) 2 slurry from the start of regeneration was continued until the same amount as in the comparative example. Moreover, it confirmed that pH at this time was set to 12.2.
  • the regeneration treatment liquid after the additional addition of the Ca (OH) 2 slurry (hereinafter referred to as “second-stage regeneration treatment liquid”) is taken out, concentrated by vacuum distillation using an evaporator, and Evaporation to dryness by a hot plate was performed to precipitate dissolved salts containing Ca (OH) 2 . A small amount of the precipitate was dissolved again in pure water, and the Ca 2+ and Cl ⁇ concentrations were measured to confirm the molar ratio of both elements in the precipitate. The results are summarized in Table 2.
  • This Cl / Camol ratio of 1.86 has a CaCl 2 purity of 95.2% in terms of weight, and contains only 4.2% of Ca (OH) 2 as an impurity.
  • the Cl / Camol ratio is 1.95 or more.
  • This Cl / Camol ratio when converted to weight, has a CaCl 2 purity of 98.3%, and contains only 1.7% of Ca (OH) 2 as an impurity. That is, the lower the pH of the first stage regeneration treatment solution or the lower the Cl desorption rate, the higher the purity of CaCl 2 recovered from the regeneration treatment solution. However, the lower the pH of the first stage regeneration treatment liquid or the lower the Cl desorption rate, the more the amount of the second stage regeneration treatment liquid tends to increase when the second stage regeneration treatment liquid is recovered. Therefore, it is predicted that the storage facility will become large.
  • CaCl 2 can be obtained with high purity from water associated with resource mining containing NaCl.
  • the pH of the regeneration treatment solution is measured, or the Cl ⁇ ion concentration is measured to determine the amount of Cl desorption, and the regeneration recovered until they reach a predetermined set value. It has been found that it is necessary to concentrate and dry the treatment liquid, that is, to obtain CaCl 2 from a regeneration treatment liquid having a relatively high CaCl 2 purity.
  • the range of the set value is set between pH 10.0 and 12.0 in the case of pH measurement, and between 85 and 96% of the Cl ⁇ ion adsorption amount in the case of Cl ⁇ ion concentration measurement. It is preferable.
  • Example 2 In Example 2, the same operation as in Example 1 was performed until CSG resource mining accompanying water simulated water was passed through the resin tower, NaHCO 3 was collected, and washed with pure water. Thereafter, the packed column, pH and Cl regeneration treatment solution - while measuring the ion concentration, and the second stage regeneration process liquid obtained in Example 1-4 (purity CaCl 2 is low) intermittently added . After using all of the second stage regeneration solution, 5 w / v% Ca (OH) 2 slurry was added intermittently. Then, when the pH of the regeneration treatment solution reached 11.7, the regeneration treatment solution in the packed tower was taken out.
  • the reclaimed reprocessing solution (first stage regenerating solution) was concentrated by vacuum distillation with an evaporator and evaporated to dryness with a hot plate to precipitate dissolved salts containing CaCl 2 . A small amount of the precipitate was dissolved again in pure water, and the Ca 2+ and Cl ⁇ concentrations were measured to confirm the molar ratio of both elements in the precipitate.
  • Example 2 the Cl / Camol ratio of the precipitate obtained by concentrating and evaporating and drying the first stage regenerating solution taken out when the pH reached 11.7 was 1.96, and CaCl It was confirmed that 2 could be recovered with high purity.
  • new Ca (OH) 2 was further added, including Ca (OH) 2 added in the first stage regeneration.
  • [NaHCO 3 ] (g / L) [HCO 3 ⁇ ] (mol / L) ⁇ (84/61)
  • [HCO 3 ⁇ ] (mol / L) M alkalinity ⁇ P alkalinity (mol / L)
  • the NaHCO 3 concentration is determined from the CO 3 2- concentrations, CO 3 2- concentrations were determined from the M alkalinity and pH.
  • Reference Example 2 Reference Example 1 except that the simulated drainage was adjusted to pH 6.5 to 8.4 by blowing air into the simulated drainage at pH 6.0, and the simulated drainage at pH 6.0 was used without comparison. As well as. The results of Reference Example 2 are summarized in Table 5.
  • Reference Example 3 by blowing CO 2 gas into the simulated wastewater pH9.5, adjusted simulated wastewater in pH 6.4 ⁇ 8.0, and not blown CO 2 gas for comparison, except for using simulated waste water pH9.5 This was carried out in the same manner as in Reference Example 1.
  • the results of Reference Example 3 are summarized in Table 6.
  • Reference Example 4 by blowing CO 2 gas into the simulated wastewater pH9.5, adjusted simulated wastewater in pH 6.1 ⁇ 8.0, and not blown CO 2 gas for comparison, except for using simulated waste water pH9.5 This was carried out in the same manner as in Reference Example 1.
  • the results of Reference Example 4 are summarized in Table 7.
  • Reference Example 5 by blowing CO 2 gas into the simulated wastewater pH9.5, adjusted simulated wastewater in pH 5.8 ⁇ 6.5, and not blown CO 2 gas for comparison, except for using simulated waste water pH9.5 This was carried out in the same manner as in Reference Example 1. The results of Reference Example 5 are summarized in Table 8.
  • Dissolved salt recovery device 10,46 Drainage storage tank, 12, 48a, 48b Drainage inflow line, 14, 50a, 50b Drain pump, 16,58 Packing tower, 18,60 Treated water discharge line, 19 Integrated flow meter 20, 62 Treated water tank, 21, 30, 31, 64, 66 Cl - ion sensor, 22, 86 Ca (OH) 2 storage tank, 24, 88 Ca (OH) 2 inflow line, 26, 90 Ca (OH) 2 pump, 28, 70 pH sensor, 32, 54, 92 Blower, 34, 94 Air inflow line, 36a, 36b, 98 Regeneration liquid discharge line, 38a, 38b Regeneration liquid storage tank, 40, 72 Controller, 42 , 74 Concentrator, 44,76 Dryer, 52 pH adjustment tower, 56 Gas inflow line, 68 Alkali meter, 78 HCl reservoir, 80 HCl addition line, 82 Cl pump, 84 pH adjustment tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

NaClを含有する資源採掘随伴水を陰イオン交換樹脂を充填した充填塔16に通水してNaHCOを回収し、前記資源採掘随伴水通水後の充填塔16にCa(OH)溶液を通水し、充填塔16内の前記陰イオン交換樹脂を再生処理し、前記再生処理した再生処理液を回収する際に、前記再生処理した再生処理液のpHをモニタリングし、前記モニタリングしたpH値が予め定めた設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収する溶解塩類の回収方法により、資源採掘随伴水から不純物の混入が抑制されたCaClを回収することが可能となる。

Description

溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法
 本発明は、資源採掘随伴水から溶解塩類を回収する方法及び回収装置に関する。
 CSG(Coal Seam Gas)のような天然ガスや原油などの資源採掘で発生する随伴水には、高濃度でNaClやNaHCOが含まれているため、脱塩処理をして水系環境に放流する必要がある。従来、除去された多量の塩は蒸発乾燥され、廃棄物処分されていた。一方でこれらの塩類を有価物として回収する試みもなされている。
 例えば、特許文献1には、資源採掘随伴水を対象に水中の塩を有価塩であるNaCOとして回収する技術が(Penrice法)開示されている。これは、油相中に溶解したC12アミンとCOをNaClに反応させNaHCOに変換し、熱をかけてNaCOに転化する方法である。
 非特許文献1及び特許文献2には、式(1)で表されるように、NaClを含む水からイオン交換樹脂を用いてNaHCOを製造する方法が開示されている。
 RN+CO+NaCl+HO → RN-HCl+NaHCO 式(1)
 上記方法では反応効率を高めるため、式(2)で表されるように、イオン交換樹脂にCO溶解水を吹き込んで、樹枝上に重炭酸または炭酸が補足された型RN-HCO(炭酸型)に変換してから、式(3)で表されるように、NaClを含む被処理水を通水して、NaHCOを製造する。
 RN+CO+HO → RN-HCO           式(2)
 RN-HCO+NaCl → RN-HCl+NaHCO    式(3)
 特許文献3には、COの供給源として石灰石(CaCO)を用いる方法が開示されている。また、この方法では、CaCOを燃やしてCOを得ると共に、式(4)で表されるように、副生物であるCa(OH)をイオン交換樹脂の再生アルカリとして用いている。
 2RN-HCl+Ca(OH) → 2RN+CaCl+2HO 式(4)
 特許文献3の方法は、Ca(OH)製造時に発生するCOガスを反応原料として用い、炭酸塩として固定化するものであり、COガスをほとんど大気へ排出しないシステムとして、地球温暖化防止の観点から有効な技術である。また、油分を使用しないため、COD原となる油分を含んだ排水が発生することもない。さらに、通水条件が適切であれば、式(3)の反応がほぼ完全に進行するため、炭酸塩の回収ロスがなく、非常に高い回収率が得られる。
オーストラリア特許第1053号 南アフリカ特許第785962号 特許第3373512号公報
R.Kunin,Ion Exchange In Chemical Synthesis,Industrial&Engineering Chemistry,1964,56(1),p35-39
 ところで、イオン交換樹脂法は、樹脂の再生の際に、CaClが発生するが、HClと結合したイオン交換樹脂(RN-HCl)を完全に再生する(式(4))ためには、理論上は前記HClの1/2の量のCa(OH)を前記イオン交換樹脂に接触させればよいが、実際には前記HClの1/2の量より多い量のCa(OH)を前記イオン交換樹脂に接触させる必要がある。このため、従来技術では、前記イオン交換樹脂にCa(OH)を接触させて得られた処理液に多くのCa(OH)が含まれ、前記処理液からCaClを得ようとしても低純度のCaClしか得られず、得られたCaClは廃棄物となる。一般に、資源採掘の現場において、この大量の廃棄物を処分するためのコストは高額となる。しかし、このCaClを高純度で回収することができれば、炭酸塩と同じく工業用原料などとして利用できるため、有価物となり得る。また、そうなることで、このイオン交換法がCSGのような天然ガスや原油などの資源採掘で発生する随伴水から塩類を回収する技術として極めて有効なものとなる。
 そこで、本発明の目的は、資源採掘随伴水からCaClを回収すること、特に、不純物の混入を抑制したCaClを回収することを可能とする溶解塩類の回収方法及び回収装置を提供することである。
 (1)本発明の溶解塩類の回収方法は、NaClを含有する資源採掘随伴水を陰イオン交換樹脂に通水し、NaHCOを回収する第1回収工程と、前記資源採掘随伴水通水後の陰イオン交換樹脂にCa(OH)溶液を通水し、前記陰イオン交換樹脂を再生処理する再生工程と、前記再生処理した再生処理液を回収する第2回収工程と、を備え、前記第2回収工程では、前記再生処理した再生処理液のpHをモニタリングし、前記モニタリングしたpH値が予め定めた設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収する。
 (2)本発明の溶解塩類の回収方法は、NaClを含有する資源採掘随伴水を陰イオン交換樹脂に通水し、NaHCOを回収する第1回収工程と、前記資源採掘随伴水通水後の陰イオン交換樹脂にCa(OH)溶液を通水し、前記陰イオン交換樹脂を再生処理する再生工程と、前記再生処理した再生処理液を回収する第2回収工程と、を備え、前記第2回収工程では、前記再生処理した再生処理液のClイオン濃度をモニタリングし、前記モニタリングしたClイオン濃度に基づいて求められる前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収する。
 (3)上記(1)記載の溶解塩類の回収方法において、前記第2回収工程では、前記モニタリングしたpH値が予め定めた設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (4)上記(2)記載の溶解塩類の回収方法において、前記第2回収工程では、前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (5)上記(3)記載の溶解塩類の回収方法において、前記予め定めた設定値を前記Ca(OH)溶液のpHとし、前記モニタリングしたpHが、前記Ca(OH)溶液のpHに達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記モニタリングしたpHが、前記Ca(OH)溶液のpHに達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (6)上記(3)記載の溶解塩類の回収方法において、前記予め定めた設定値をpH10~12の間に設定し、前記モニタリングしたpHが、pH10~12の間に設定した設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記モニタリングしたpHが、pH10~12の間に設定した設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (7)上記(4)記載の溶解塩類の回収方法において、前記予め定めた設定値を前記第1回収工程における前記陰イオン交換樹脂のClイオン吸着量とし、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (8)上記(4)記載の溶解塩類の回収方法において、前記予め定めた設定値を前記陰イオン交換樹脂のClイオン脱離量の85~96%の間に設定し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量の85~96%の間に設定した設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量の85~96%の間に設定した設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することが好ましい。
 (9)また、本発明の溶解塩類の回収装置は、陰イオン交換樹脂を充填した充填塔と、NaClを含有する資源採掘随伴水を前記充填塔に通水し、NaHCOを回収する第1回収手段と、Ca(OH)溶液を前記充填塔に通水し、前記陰イオン交換樹脂を再生処理する再生手段と、前記再生処理した再生処理液のpHをモニタリングするpHセンサと、前記モニタリングしたpH値が予め定めた設定値に達するまでの再生処理液を回収する第2回収手段と、前記回収した再生処理液を濃縮する濃縮手段と、前記濃縮した再生処理液を乾燥する乾燥手段と、を備える。
 (10)また、本発明の溶解塩類の回収装置は、陰イオン交換樹脂を充填した充填塔と、NaClを含有する資源採掘随伴水を前記充填塔に通水し、NaHCOを回収する第1回収手段と、Ca(OH)溶液を前記充填塔に通水し、前記陰イオン交換樹脂を再生処理する再生手段と、前記再生処理した再生処理液のClイオン濃度をモニタリングするClイオンセンサと、前記モニタリングしたClイオン濃度に基づいて求められる前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達するまでの再生処理液を回収する第2回収手段と、前記回収した再生処理液を濃縮する濃縮手段と、前記濃縮した再生処理液を乾燥する乾燥手段と、を備える。
 (11)本発明の塩化カルシウムの製造方法は、塩酸と結合したイオン交換樹脂に水酸化カルシウム溶液を接触させて塩化カルシウムを含む処理液を取得しつつ該処理液の塩化カルシウム純度を監視することを開始する第1ステップと、前記塩化カルシウム純度が予め決められた基準純度より高い状態から低い状態になるまでに前記処理液の取得を停止する第2ステップと、取得された処理液から前記塩化カルシウムを得る第3ステップとを含む。
 (12)上記(11)記載の製造方法において、前記第2ステップの前に前記基準純度に対応する規定値を設定することを含み、前記第2ステップにおいて前記規定値に基づいて前記処理液の取得を停止することが好ましい。
 (13)上記(12)記載の製造方法において、前記規定値は、前記塩化カルシウム純度が前記基準純度であるときの前記処理液のpHであり、この場合、前記塩化カルシウム純度の監視は、前記処理液のpHを測定することであることが好ましい。
 (14)上記(12)記載の製造方法において、前記規定値は、前記塩化カルシウム純度が前記基準純度であるときの前記イオン交換樹脂の塩素イオン脱離量であり、この場合、前記塩化カルシウム純度の監視は、前記処理液の塩素イオン濃度を測定すること、測定された塩素イオン濃度に基づいて前記塩素イオン脱離量を算出することを含むことが好ましい。
 本発明によれば、資源採掘随伴水からCaClを回収すること、特に、不純物の混入を抑制したCaClを回収することを可能とする溶解塩類の回収方法及び回収装置を提供することができる。
本実施形態に係る溶解塩類回収装置の構成の一例を示す概略構成図である。 本実施形態に係る溶解塩類回収装置の構成の一例を示す概略構成図である。 Ca(OH)の供給量に対する再生処理液のpH及びClイオン脱離量との関係を示す図である。 参考例に係る溶解塩類回収装置の構成の一例を示す概略構成図である。 参考例に係る溶解塩類回収装置の構成の他の一例を示す概略構成図である。 再生処理を行う際の溶解塩類回収装置の構成の一例を示す概略構成図である。
 以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 図1及び図2は、本実施形態に係る溶解塩類回収装置の構成の一例を示す概略構成図である。図1に示すように、溶解塩類回収装置1は、排水貯留槽10、排水流入ライン12、排水ポンプ14、陰イオン交換樹脂が充填された充填塔16、処理水排出ライン18、処理水槽20、積算流量計19、を備え、図2に示すように、溶解塩類回収装置1は、Ca(OH)貯留槽22、Ca(OH)流入ライン24、Ca(OH)ポンプ26、ブロワ32、空気流入ライン34、再生処理液排出ライン36a,36b、再生処理液貯留槽38a,38bとをさらに備えるものである。図1に示すように、排水流入ライン12にはClイオンセンサ31が設置されている。排水処理ライン18にはClイオンセンサ21が設置されている。Clイオンセンサ21は処理水槽20内に設置されていてもよい。処理水槽20内にはClイオンセンサ21が設置され、図1及び2に示すように、充填塔16には、pHセンサ28、Clイオンセンサ30が設置されている。Clイオンセンサ21,30,31としては、Clイオン電極を用いたセンサを使用することが望ましい。また、図1及び図2に示すように、溶解塩類回収装置1は、制御部40を備え、各センサ及び積算流量計19と電気的に接続され、各センサ及び積算流量計19の測定値が送信されるようになっている。また、溶解塩類回収装置1は濃縮装置42及び乾燥装置44を備えている。なお、Ca(OH)貯留槽22内には攪拌装置(不図示)が設置されていることが望ましい。本実施形態の溶解塩類回収装置1では、後述するNaHCOを回収する際には、充填塔16に図1に示す構成部品を設置し、後述するCaClを回収する際には、充填塔16から図1に示す構成部品を取り外し、充填塔16に図2に示す構成部品を設置してもよいし、NaHCOの回収及びCaClの回収を通して、充填塔16に図1及び2に示す構成部品を設置していてもよい。
 図1に示すように、排水流入ライン12の一端は排水貯留槽10に接続され、他端は充填塔16の上部に接続されている。排水流入ライン12には、排水ポンプ14、積算流量計19、Clイオンセンサ31が設置されている。処理水排出ライン18の一端は、充填塔16の底部に接続され、他端は処理水槽20に接続されている。また、図2に示すように、Ca(OH)流入ライン24の一端はCa(OH)貯留槽22に接続され、他端は充填塔16の上部に接続されている。Ca(OH)流入ライン24にはCa(OH)ポンプ26が設置されている。空気流入ライン34の一端は、ブロワ32に接続され、他端は充填塔16の下部側面に接続されている。再生処理液排出ライン36aの一端は充填塔16の下部側面に接続され、他端は再生処理液貯留槽38aに接続され、再生処理液排出ライン36bの一端は再生処理液排出ライン36aに接続され、他端は再生処理液貯留槽38bに接続されている。
 排水貯留槽10、排水流入ライン12、排水ポンプ14、処理水排出ライン18及び処理水槽20は、NaClを含有する資源採掘随伴水を充填塔16に通水し、NaHCOを回収する第1回収装置として機能するものである。但し、第1回収装置は、NaClを含有する資源採掘随伴水からNaHCOを回収する構成を備えていれば、上記の構成に制限されるものではない。
 Ca(OH)貯留槽22、Ca(OH)流入ライン24及びCa(OH)ポンプ26は、充填塔16内の陰イオン交換樹脂を再生処理する再生装置として機能するものである。但し、再生装置は、陰イオン交換樹脂を再生処理する構成を備えていれば、上記の構成に制限されるものではない。
 再生処理液排出ライン36a、再生処理液貯留槽38aは、後述するように、再生処理液のpH、又は再生処理液のClイオン濃度に基づいて求められる陰イオン交換樹脂のClイオン脱離量が予め定めた規定値に達するまでの再生処理液を回収する第2回収装置として機能するものである。但し、第2回収装置は、再生処理液のpH、又は陰イオン交換樹脂のClイオン脱離量が予め定めた規定値に達するまでの再生処理液を回収する構成を備えていれば、上記の構成に制限されるものではない。
 濃縮装置42は、再生処理液を濃縮する機能を有するものであり、例えば、エバポレータ、液膜降下式蒸発濃縮装置等が挙げられる。また、乾燥装置44は、濃縮した再生処理液を乾燥させるものであり、例えば、電熱加熱型ドライヤーや真空ドラム式ドライヤー等が挙げられる。
 以下、本実施形態の溶解塩類回収装置1の動作について説明する。
 本実施形態の処理対象となる排水は、NaClを含む資源採掘随伴水である。資源採掘随伴水とは、例えば、CSG(Coal Seam Gas)のような天然ガスや原油などの資源採掘で発生する随伴水であり、NaCl等を含むものである。
 まず、NaClを含む資源採掘随伴水は、排水貯留槽10に供給される前に、前処理工程、濃縮工程を行うことが望ましい。前処理工程は、凝集沈殿、凝集浮上分離やMF膜・UF膜などを用いた膜ろ過等により、資源採掘随伴水に含まれる懸濁物質や油分等を除去する工程である。濃縮工程は、RO膜等により資源採掘随伴水を濃縮し、水中のNaCl濃度を高める工程である。濃縮された資源採掘随伴水中のNaCl濃度は、その後の処理時間を短くし効率的な運転を行う観点等から、0.1mol/L以上であることが望ましい。
<NaHCOを回収する第1回収工程>
 本実施形態では、NaClを含む資源採掘随伴水を陰イオン交換樹脂に通水し、上記式(3)の反応でNaClをNaHCOに交換し、NaHCOを回収する第1回収工程を実施する。陰イオン交換樹脂はHCO型の弱塩基性イオン交換樹脂であることが好ましく、HCO型の弱塩基性アクリル系イオン交換樹脂であることがより好ましい。以下、HCO型の弱塩基性アクリル系イオン交換樹脂を例として説明する。HCO型の弱塩基性アクリル系イオン交換樹脂は、第1回収工程前に、弱塩基性アクリル系イオン交換樹脂を充填した充填塔16に、純水等に炭酸を溶解した炭酸溶解水を通水し、HCO型に変換しておく必要がある。炭酸の溶解については、ガス吸収塔などを用いて、純水等にCOガスを溶解させる方法等が挙げられる。COガスは、メタンガスの燃焼や、CaCOからCa(OH)を製造する際に副生したCOガスを使用することが望ましい。
 図1を用いて第1回収工程を具体的に説明すると、排水貯留槽10内のNaClを含む資源採掘随伴水が、排水ポンプ14により排水流入ライン12を通り、HCO型の弱塩基性アクリル系イオン交換樹脂を充填した充填塔16に供給される。充填塔16内では、HCO型の弱塩基性アクリル系イオン交換樹脂により、Clが吸着され、処理水排出ライン18からNaHCOを含む処理水が排出され、処理水槽20に貯留される。処理水槽20に貯留されたNaHCOを含む処理水は、その後、エバポレータ等による濃縮装置42により濃縮され、ドライヤー等の乾燥装置44により乾燥処理される。本実施形態における第1回収工程では、処理水排出ライン18に設置したClイオンセンサ21により、処理水中のClイオン濃度をモニタリングし、Clイオン濃度が上昇したら直ちに終了することが望ましい。例えば、Clイオンセンサ21の測定データが制御部40に送られ、Clイオン濃度が上昇した段階で、制御部40により、排水ポンプ14等の稼働を停止するように電子制御されていてもよいし、作業者がClイオンセンサ21の測定データをチェックして、Clイオン濃度が上昇した段階で、手動で排水ポンプ14等の稼働を停止してもよい。
 また、本実施形態では、第1回収工程の開始から終了までに、HCO型の弱塩基性アクリル系イオン交換樹脂が吸着したClイオン吸着量を算出しておくことが望ましい。具体的には、排水流入ライン12に設置したClイオンセンサ31により検出される資源採掘随伴水のClイオン濃度と、処理水排出ライン18に設置されたClセンサ21により検出される処理水のClイオン濃度との差に積算流量計により検出した資源採掘随伴水の流量(通水量)を乗じることにより求められる。HCO型の弱塩基性アクリル系イオン交換樹脂が吸着したClイオン吸着量は、例えば、各Clセンサ及び積算流量計19の測定データが、制御部40に送信され、制御部40により求められる。
 本実施形態において使用する陰イオン交換樹脂はアクリル系の第三アミン形の官能基を持った弱塩基性陰イオン交換樹脂であり、例えば、アンバーライトIRA-67を使用するのが好適である。第1回収工程における資源採掘随伴水の通水SVは、0.5~10(1/h)程度とすることが好適である。
<再生工程>
 本実施形態では、第1回収工程においてHClが吸着した陰イオン交換樹脂にCa(OH)溶液(以下、Ca(OH)スラリーと呼ぶ場合がある)を通水して、上記式(4)の反応で、陰イオン交換樹脂からHClを脱離させ、陰イオン交換樹脂を再生する再生工程を実施する。なお、再生工程前には、充填塔16に純水を通水し、陰イオン交換樹脂間の間隙に滞留している資源採掘随伴水を洗い流すことが望ましい。
 図2を用いて再生工程を具体的に説明すると、Ca(OH)ポンプ26を稼働させ、Ca(OH)貯留槽22内のCa(OH)スラリーがCa(OH)流入ライン24から充填塔16に供給されると共に、ブロワ32を稼働させ、空気が空気流入ライン34を通り、充填塔16に供給される。充填塔16内では、空気により、陰イオン交換樹脂が攪拌されながらCa(OH)スラリーと接触することにより、陰イオン交換樹脂からHClが脱離され、有価物であるCaClが生成される。このような再生工程は、充填塔16内の樹脂を攪拌しながらCa(OH)スラリーを所定条件まで徐々に添加し、一定時間反応後、再生処理液を充填塔16から排出させる回分式で行っても良い。また、Ca(OH)スラリーを充填塔16に通水し再生処理液を連続的に排出させる連続式で行っても良い。スラリーに覆われた陰イオン交換樹脂上で式(4)の反応をより効率的に進める観点等から、陰イオン交換樹脂を攪拌しながらCa(OH)スラリーを所定量まで徐々に添加する回分式のほうが望ましい。
 Ca(OH)スラリーの濃度は、回分式で使用する場合は5~10%が好適であり、連続式で使用する場合は、0.05~0.5%が好適である。
 充填塔16に空気を供給して、充填塔16内の陰イオン交換樹脂を攪拌するための流体は、空気に限定されるものではなく、式(4)の反応を阻害しない流体であればよく、例えばメタンガス等が挙げられる。
 再生工程では、未溶解のCa(OH)がCa2+とOHに溶解してから、OHが陰イオン交換樹脂上のHClと再生反応を起こすので、添加したCa(OH)が再生に十分に使われるのに数分~10分程度の時間を要する場合があるため、回分式でのCa(OH)スラリーの添加はその時間を見込んで間欠的に行うことが好ましい。
<第2回収工程>
 本実施形態では、充填塔16から排出される再生処理液を回収する第2回回収工程を実施する。この際、再生処理液のpHをモニタリングし、モニタリングしたpH値が予め定めた既定値に達するまでに回収した再生処理液を濃縮及び乾燥する。又は再生処理液のClイオン濃度をモニタリングし、モニタリングしたClイオン濃度に基づいて求められる陰イオン交換樹脂のClイオン脱離量が予め定めた既定値に達するまでに回収した再生処理液を濃縮及び乾燥する。
 図3は、Ca(OH)の供給量に対する再生処理液のpH及びClイオン脱離量との関係を示す図である。図3に示すように、再生処理液のpHをモニタリングする場合、完全再生前であれば、充填塔16に通水したCa(OH)は、陰イオン交換樹脂により消費され、その一方で陰イオン交換樹脂からHClが脱離していく段階であるので、再生処理液のpHは、Ca(OH)スラリーのpH12.2(水温20℃の場合)よりも低いpHであり、再生処理液中のCaClの純度は高い状態である。一方、完全再生後であれば、HClの脱離が終了し、充填塔16に通水したCa(OH)スラリーが充填塔16から再生処理液として排出される段階であるので、再生処理液のpHは、Ca(OH)スラリーのpH12.2(水温20℃の場合)に達し、再生処理液中のCaClの純度が低下していく状態である。
 そこで、本実施形態では、充填塔16から排出される再生処理液のpHが、pHセンサによりモニタリングされ、モニタリングされたpH値が制御部40に送信される。そして、制御部40により、例えば、再生処理液のpH値と予め設定した規定のpH値とが比較され、pH値が予め設定した規定値に達していない間は、再生処理液中のCaClの純度が高いため、再生処理液排出ライン36aに設けられたバルブAを開放し、再生処理液排出ライン36bに設けられたバルブBを閉じる。すなわち、pH値が予め設定した規定値未満の間は、再生処理液は、再生処理液排出ライン36aから再生処理液貯留槽38aに供給される。再生処理液貯留槽38aに貯留された処理液は、エバポレータ等の濃縮装置42に送られて濃縮された後、ドライヤー等の乾燥装置44に送られて乾燥され、高純度CaClが回収される。また、制御部40により、pH値が予め設定した規定値に達した場合には、再生処理液中のCaClの純度が低下していく段階に入るため、バルブAを閉じ、バルブBを開放する。すなわち、pH値が予め設定した規定値に達した後は、再生処理液は、再生処理排出ライン36bから再生処理貯留槽38bに供給される。なお、本実施形態では、pH値と規定値の比較及びバルブの開閉等を制御部40による電子制御により実施しても良いし、作業者による手動により実施してもよい。なお、充填塔16を回分式とした場合には、充填塔16内に設置したpHセンサ28により再生処理液のpH値を測定することができるが、連続式とした場合には、再生処理液排出ライン36a又は再生処理液貯留槽38aにpHセンサを設置し、再生処理液のpHを測定する必要がある。
 予め設定する規定値としては、高純度のCaClを回収することができる値であれば特に制限されるものではないが、pHモニタリングの場合、Ca(OH)スラリーのpH値に設定することが好ましく、pH10.0~12.0の間で設定することがより好ましい。規定値をpH12.0以下とすることにより、確実に高純度のCaClを含有する再生処理液を濃縮・乾燥工程に移行することが可能となる。また、規定値をpH10.0以上とすることにより、再生用として貯留する再生処理液が多くなることを抑制することができ、容量の小さな貯留設備を使用することが可能となる。このようにして、まず、塩化カルシウムの予め決められた基準純度に対応する規定値(例えば、再生処理液のpH)を設定し、次に、塩酸と結合したイオン交換樹脂に水酸化カルシウム溶液を接触させて塩化カルシウムを含む再生処理液を取得するとともに再生処理液の塩化カルシウム純度の監視を開始する。その後、規定値に基づいて、塩化カルシウム純度が基準純度より高い状態から低い状態になるまでに再生処理液の取得を停止する。このように、再生処理液の塩化カルシウム純度が基準純度(例えば、再生処理液のpHが12.0のときの再生処理液の塩化カルシウム純度)より低くなるまでに再生処理液の取得を停止した後、再生処理液から塩化カルシウムを得ることにより、塩化カルシウム純度が比較的高い状態の再生処理液から塩化カルシウムを得ることができ、高純度の塩化カルシウムを製造することができる。上記の例では、規定値は、再生処理液の塩化カルシウム純度が基準純度であるときの再生処理液のpH(例えば、pH12.0)であり、塩化カルシウム純度を監視するとき、再生処理液のpHを測定する。規定値は、再生処理液のpHである上記の例に代え、再生処理液の塩化カルシウム純度が基準純度であるときのイオン交換樹脂の塩素イオン脱離量とすることができる。この場合、塩化カルシウム純度を監視するとき、再生処理液のClイオン濃度をモニタリングする。
 図2に示すように、再生処理液のClイオン濃度をモニタリングする場合、完全再生前であれば、陰イオン交換樹脂に吸着していたHClが脱離していく段階であるので、再生処理液中のClイオン濃度に基づいて求められる陰イオン交換樹脂のClイオン脱離量は、陰イオン交換樹脂のClイオン吸着量より低く、再生処理液中のCaClの純度は高い状態である。一方、完全再生後であれば、HClの脱離が終了し、充填塔16に通水したCa(OH)スラリーが充填塔16から再生処理液として排出される段階であるので、陰イオン交換樹脂のClイオン脱離量は、陰イオン交換樹脂のClイオン吸着量に達し、再生処理液中のCaClの純度が低下していく状態である。
 そこで、他の本実施形態では、充填塔16から排出される再生処理液のClイオン濃度が、Clイオンセンサによりモニタリングされ、モニタリングされたClイオン濃度値が制御部40に送信される。ここで、陰イオン交換樹脂に吸着していたClイオンの脱離量は、再生処理液のClイオン濃度と再生処理液量との積により求められる。再生処理液の流量が一定であれば、制御部40で、モニタリングされたClイオン濃度値に定数を乗じることにより求められ、再生処理液が一定でなければ、再生処理液排出ライン36aに積算流量計を設置し、積算流量計により測定された再生処理液の流量値を制御部40に送信し、制御部40で、モニタリングされたClイオン濃度値に測定された再生処理液の流量値を乗じることにより求められる。そして、制御部40により、例えば、陰イオン交換樹脂に吸着していたClイオン脱離量と予め設定した規定値とが比較され、Clイオン脱離量が予め設定した規定値に達していない間は、再生処理液中のCaClの純度が高いため、バルブAを開放し、電磁バルブBを閉じる。すなわち、Clイオン脱離量が予め設定した規定値未満の間は、再生処理液は、再生処理液排出ライン36aから再生処理液貯留槽38aに供給される。再生処理液貯留槽38aに貯留された処理液は、エバポレータ等の濃縮装置42に送られて濃縮された後、ドライヤー等の乾燥装置44に送られて乾燥され、高純度CaClが回収される。また、制御部40により、Clイオン脱離量が予め設定した規定値に達した場合には、再生処理液中のCaClの純度が低下していく段階に入るため、バルブAを閉じ、バルブBを開放する。すなわち、Clイオン脱離量が予め設定した規定値に達した後は、再生処理液は、再生処理排出ラインbから再生処理貯留槽bに供給される。なお、本実施形態では、Clイオン脱離量と規定値の比較及びバルブの開閉等を制御部40による電子制御により実施しても良いし、作業者による手動により実施してもよい。なお、充填塔16を回分式とした場合には、充填塔16内に設置したClイオンセンサ30により再生処理液のClイオン濃度を測定することができるが、連続式とした場合には、再生処理液排出ライン36a又は再生処理液貯留槽38aにClイオンセンサを設置し、再生処理液のClイオン濃度を測定する必要がある。
 予め設定する規定値としては、高純度のCaClを回収することができる値であれば特に制限されるものではないが、Clイオン濃度モニタリングの場合、陰イオン交換樹脂のClイオン吸着量の値に設定することが好ましく、陰イオン交換樹脂のClイオン吸着量の値の85~96%の間に設定することがより好ましい。規定値を陰イオン交換樹脂のClイオン吸着量の値の96%以下とすることにより、確実に高純度のCaClを含有する再生処理液を濃縮・乾燥工程に移行することが可能となる。規定値を陰イオン交換樹脂のClイオン吸着量の値の85%以上とすることにより、再生用として貯留する再生処理液が多くなることを抑制することができ、容量の小さな貯留設備を使用することが可能となる。陰イオン交換樹脂のClイオン吸着量の算出については、前述の通りである。
 本実施形態では、再生処理液のpH又はClイオン脱離量が既定値に達した後、充填塔16に、Ca(OH)スラリーをさらに導入し、陰イオン交換樹脂の完全再生を行うことが好ましい。完全再生後の再生処理液、すなわち、前述したように再生処理液排出ライン36bを通り再生処理液貯留槽38bに貯留した再生処理液は、Clイオンを多少含むが、Clイオンに比べてCa(OH)含有量が多いので、次のサイクルにおける陰イオン交換樹脂を再生するための再生剤として使用するために貯留しておくことが望ましい。また、陰イオン交換樹脂を充填した充填塔16が複数ある場合は、他の系列の再生に使用しても良い。そうすることにより、貯留設備の数を減らすことが可能となる。
 第2回収工程終了後には、充填塔16に純水を通水して、陰イオン交換樹脂を洗浄することが望ましい。この洗浄排水は、希薄なCa(OH)溶液であるので、Ca(OH)スラリーを調製するための、溶解水として使用してもよい。
 図4は、参考例に係る溶解塩類回収装置の構成の一例を示す概略構成図である。図4に示すように、溶解塩類回収装置2は、排水貯留槽46、排水流入ライン48a,48b、排水ポンプ50a,50b、pH調整塔52、ブロワ54、ガス流入ライン56、陰イオン交換樹脂が充填された充填塔58、処理水排出ライン60、処理水槽62を備えるものである。図4に示すように、排水流入ライン48aにはClイオンセンサ64及びアルカリ度計68が設置され、排水流入ライン48bにはpHセンサ70が設置され、処理水排出ライン60にはClイオンセンサ66が設置されている。Clイオンセンサ64,66としては、Clイオン電極を用いたセンサを使用することが望ましい。また、図4に示すように、溶解塩類回収装置2は、制御部72を備え、各センサ、アルカリ度計68と電気的に接続され、各センサ及びアルカリ度計68の測定値が送信されるようになっている。また、溶解塩類回収装置2は濃縮装置74及び乾燥装置76を備えている。
 図4に示すように、排水流入ライン48aの一端は排水貯留槽46に接続され、他端はpH調整塔52の上部に接続されている。排水流入ライン48aには、排水ポンプ50aが設置されている。ガス流入ライン56の一端はブロワ54に接続され、他端はpH調整塔52の側面に接続されている。排水流入ライン48bの一端はpH調整塔52の下部側面に接続され、他端は充填塔58の上部に接続されている。排水流入ライン48bには、排水ポンプ50bが設置されている。処理水排出ライン60の一端は、充填塔58の底部に接続され、他端は処理水槽62に接続されている。
 排水流入ライン48a、排水ポンプ50a、pH調整塔52、ブロワ54、ガス流入ライン56は、資源採掘随伴水のpHを調整するpH調整装置として機能するものである。pH調整装置は、資源採掘随伴水のpHを調整する構成を備えていれば、上記の構成に制限されるものではない。pH調整塔52内には、資源採掘随伴水のpH調整用ガスの使用量を抑制する等の観点から、ラシヒリング等の充填剤を充填することが好ましい。
 濃縮装置74は、再生処理液を濃縮する機能を有するものであり、例えば、エバポレータ、液膜降下式蒸発濃縮装置等が挙げられる。また、乾燥装置76は、濃縮した再生処理液を乾燥させるものであり、例えば、電熱加熱式ドライヤーや真空ドラムドライヤー等が挙げられる。
 以下、参考例の溶解塩類回収装置2の動作について説明する。
 参考例の処理対象となる排水は、NaCl及び炭酸物質を含む資源採掘随伴水である。資源採掘随伴水とは、例えば、CSG(Coal Seam Gas)のような天然ガスや原油などの資源採掘で発生する随伴水であり、NaCl等を含むものである。ここで、炭酸物質とは、重炭酸イオン(HCO )、炭酸イオン(CO 2-)、遊離炭酸(溶解性CO)等である。
 まず、NaCl及び炭酸物質を含む資源採掘随伴水は、排水貯留槽46に供給される前に、前処理工程、濃縮工程を行うことが望ましい。前処理工程は、凝集沈殿、凝集浮上分離やMF膜・UF膜などを用いた膜ろ過等により、資源採掘随伴水に含まれる懸濁物質や油分等を除去する工程である。濃縮工程は、RO膜等により資源採掘随伴水を濃縮し、水中のNaCl濃度を高める工程である。濃縮された資源採掘随伴水中のNaCl濃度は、その後の処理時間を短くし効率的な運転を行う観点等から、0.1mol/L以上であることが望ましい。
<pH調整工程>
 参考例では、(前処理・濃縮工程後)の資源採掘随伴水中の遊離炭酸を除く全炭酸物質(HCO 、CO 2-)の物質量(モル)に対するClイオンの物質量(モル)の比(モル比)に応じて、源採掘随伴水のpHを調整するpH調整工程を実施する。高純度のNaHCOを回収するためには、資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が小さいほど、資源採掘随伴水のpHを低くする必要がある。
 通常、モル比に関わらず、pH8.5以上の資源採掘随伴水を後段の充填塔58に通水して処理を行うと、充填塔58から排出される処理水には、NaHCOの他にNaCOが含まれる状態となるため、溶解塩類の純度としては問題ないが、NaHCO単体の純度としては低下する。更にpH9.5以上の資源採掘随伴水を後段の充填塔58に通水して処理を行うと、上記式(3)の反応と同時に、OHイオンによるイオン交換樹脂の再生反応が生じ、充填塔58から排出される処理水にはClイオンが混入するため、充填塔58から排出される処理水中のNaHCO純度は更に低下する。しかし、遊離炭酸を除く全炭酸物質の物質量(モル)に対するClイオンの物質量(モル)の比が2以上の場合、資源採掘随伴水のpHを6.5以上~8.5以下にすると、上記式(3)の反応が十分進行するとともに、資源採掘随伴水中に含まれる全炭酸物質の多くがHCO となっているため、後段の充填塔58から排出される処理水から高純度のNaHCOを回収することができる。遊離炭酸を除く全炭酸物質の物質量(モル)に対するClイオンの物質量(モル)の比が2以上の場合、特に、資源採掘随伴水のpHを7.0以上~8.0以下に調整することにより、資源採掘随伴水中に含まれる全炭酸物質の大部分がHCO となっているため、後段の充填塔58から排出される処理水から、高純度でより多くのNaHCOを回収することができる。一方、遊離炭酸を除く全炭酸物質の物質量(モル)に対するClイオンの物質量(モル)の比が2より小さくなるにつれ、資源採掘随伴水のpHを6.5以上~8.5以下の範囲に調整しても上記式(3)の反応が進みにくくなるため、充填塔58から排出される処理水にClイオンの混入が多くなってしまう。しかし、資源採掘随伴水のpHを上記範囲より下げ、資源採掘随伴水中の炭酸を遊離炭酸にすることで、Clイオンに対するHCO の量を低減させることができるため、充填塔58内では上記式(3)の反応が進み易くなる。また、資源採掘随伴水のpHを上記範囲に設定することにより、低pHでイオン交換する陰イオン交換樹脂の性質により上記式(3)の反応を促進することができる。このため、処理水へのClイオンの混入が少なくなり、処理水から高純度のNaHCOを回収することができる。
 参考例では、高純度のNaHCOを回収するためには、資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が小さいほど、資源採掘随伴水のpHを低くすればよいが、以下の基準でpH調整することが好ましい。資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が2以上であれば、pH調整塔52にて資源採掘随伴水のpHを6.5以上~8.5以下に調整することが好ましく、7.0以上~8.0以下に調整することがより好ましく、資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が2未満であれば、pH調整塔52にて資源採掘随伴水のpHを5.6以上~6.5未満の範囲に調整することが好ましい。さらに、資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が2未満~1以上であれば、pH調整塔52にて資源採掘随伴水のpHを6.0以上~6.5未満の範囲に調整することが好ましく、資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が1未満であれば、pH調整塔52にて資源採掘随伴水のpHを5.6以上~6.0未満の範囲に調整することが好ましい。
 図4を用いてpH調整工程を具体的に説明すると、排水貯留槽46内のNaCl及び炭酸物質を含む資源採掘随伴水が、排水ポンプ50aにより排水流入ライン48aに送液される。排水流入ライン48aを通る資源採掘随伴水中のClイオンの物質量(モル)がClイオンセンサ64により測定され、資源採掘随伴水中のアルカリ度がアルカリ度計68により測定される。測定されたClイオンの物質量及びアルカリ度が制御部72に送信される。制御部72では、アルカリ度とpHに基づいて、遊離炭酸を除く全炭酸物質の物質量(mol/L)が算出される(=Mアルカリ度/100,000-10(pH-14))。そして、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比(Clイオン/遊離炭酸を除く全炭酸物質)が求められる。そして、pH調整塔52に供給された資源採掘随伴水に、ブロワ54からガス流入ライン56を通してpH調整塔52に供給されたCOガス又は空気を接触させ、資源採掘随伴水のpHが調整される。参考例では、pH調整塔52から排出される資源採掘随伴水のpHが、排水流入ライン48bに設置されたpHセンサ70により測定され、その測定値が制御部72に送信される。そして、pH調整塔52から排出された資源採掘随伴水のpHが、資源採掘随伴水中の遊離炭酸を除く全炭酸物質(HCO 、CO 2-)の物質量(モル)に対するClイオンの物質量(モル)の比に応じて調整されるpHを満たしていない場合は、そのpH範囲を満たすように、制御部72によりブロワ54等の出力等が制御され、COガス又は空気の供給量が調節される。参考例では、資源採掘随伴水のpHを下げる場合には、COガスを供給し(又は後述するHCl等を添加)、資源採掘随伴水のpHを上げる場合には、空気を供給(又は後述するNaOH等を添加)する。なお、COガスを用いる場合には、後述するイオン交換樹脂の再生に利用する消石灰(Ca(OH))や石灰石(CaCO)を燃焼して製造する際に副生されるCOを利用しても良いし、現地で得られるメタンガスなどを燃焼して得られるCOガスを利用してもよい。
<NaHCOを回収する回収工程>
 参考例では、前述したようにpH調整されたNaCl及び炭酸物質を含む資源採掘随伴水を陰イオン交換樹脂に通水し、上記式(3)の反応でNaClをNaHCOに交換し、NaHCOを回収する回収工程を実施する。陰イオン交換樹脂はHCO型の弱塩基性イオン交換樹脂であることが好ましく、HCO型の弱塩基性アクリル系イオン交換樹脂であることがより好ましい。以下HCO型の弱塩基性アクリル系イオン交換樹脂を例として説明する。HCO型の弱塩基性イオン交換樹脂は、回収工程前に、弱塩基性イオン交換樹脂を充填した充填塔58に、純水等に炭酸を溶解した炭酸溶解水を通水し、HCO型に変換することによって得られる。炭酸の溶解については、ガス吸収塔などを用いて、純水等にCOガスを溶解させる方法等が挙げられる。COガスは、メタンガスの燃焼や、CaCOからCa(OH)を製造する際に副生したCOガスを使用することが望ましい。
 図4を用いて回収工程を具体的に説明すると、排水流入ライン48bを流れるNaCl及び炭酸物質を含み、pH調整された資源採掘随伴水が、排水ポンプ50bにより、陰イオン交換樹脂を充填した充填塔58に供給される。充填塔58内では、陰イオン交換樹脂により、Clが吸着され、処理水排出ライン60からNaHCOを含む処理水が排出され、処理水槽62に貯留される。処理水槽62に貯留されたNaHCOを含む処理水は、その後、エバポレータ等による濃縮装置74により濃縮され、ドライヤー等の乾燥装置76により乾燥処理される。参考例における回収工程では、処理水排出ライン60または処理水槽62に設置したClイオンセンサ66により、処理水中のClイオン濃度をモニタリングし、Clイオン濃度が上昇したら直ちに終了することが望ましい。例えば、Clイオンセンサ66の測定データが制御部72に送られ、Clイオン濃度が上昇した段階で、制御部72により、排水ポンプ50b等の稼働停止するように電子制御されていてもよいし、作業者がClイオンセンサ66の測定データをチェックして、Clイオン濃度が上昇した段階で、手動で排水ポンプ50b等の稼働を停止してもよい。
 参考例において使用する陰イオン交換樹脂はアクリル系の第三アミン形の官能基を持った陰イオン交換樹脂であることが好ましく、例えば、アンバーライトIRA-67を使用するのが好適である。回収工程における資源採掘随伴水の通水SVは、0.5~10(1/h)程度とすることが好適である。
 参考例では、充填塔58に供給される資源採掘随伴水のpHを資源採掘随伴水中の遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比に応じて調整しているため、充填塔58内では、陰イオン交換樹脂により効率よくClが吸着され、高い純度のNaHCOを回収することが可能となる。
 図5は、参考例に係る溶解塩類回収装置の構成の他の一例を示す概略構成図である。図5に示す溶解塩類回収装置3において、図4に示す溶解塩類回収装置2と同様の構成については同一の符号を付し、その説明を省略する。図5に示すように、溶解塩類回収装置3は、HCl貯留槽78、HCl添加ライン80、HClポンプ82、pH調整槽84、を備える。図5に示すように、pH調整槽84内にはpHセンサ70が設置されている。また、pH調整槽84内には、攪拌装置(不図示)が設置されることが望ましい。
 図5に示すように、排水流入ライン48aの一端は排水貯留槽46に接続され、他端はpH調整槽84に接続されている。また、HCl添加ライン80の一端はHCl貯留槽78に接続され、他端はpH調整槽84に接続されている。また、排水流入ライン48bの一端はpH調整槽84に接続され、他端は充填塔58の上部に接続されている。排水流入ライン48bには、排水ポンプ50bが設置されている。処理水排出ライン60の一端は、充填塔58の底部に接続され、他端は処理水槽62に接続されている。
 排水流入ライン48a、pH調整槽84、HCl貯留槽78、HCl添加ライン80、HClポンプ82は、資源採掘随伴水のpHを調整するpH調整装置として機能するものである。pH調整装置は、資源採掘随伴水のpHを調整する構成を備えていれば、上記の構成に制限されるものではない。
 以下、参考例の溶解塩類回収装置3の動作について説明する。
 NaCl及び炭酸物質を含む資源採掘随伴水は、前述したように、排水貯留槽46に供給される前に前処理工程、濃縮工程を行うことが望ましい。そして、排水貯留槽46内のNaCl及び炭酸物質を含む資源採掘随伴水が、排水流入ライン48aを通る際に、資源採掘随伴水中のClイオンの物質量(モル)がClイオンセンサ64により測定され、資源採掘随伴水中のアルカリ度がアルカリ度計68により測定される。測定されたClイオンの物質量及びアルカリ度が制御部72に送信される。制御部72では、アルカリ度とpHに基づいて、遊離炭酸を除く全炭酸物質の物質量(mol/L)が算出される(=Mアルカリ度/100,000-10(pH-14))。そして、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比(Clイオン/遊離炭酸を除く全炭酸物質)が求められる。そして、資源採掘随伴水がpH調整槽84に供給されると共に、HClポンプ82によりHCl貯留槽78内のHCl溶液がHCl添加ライン80からpH調整槽84に供給され、資源採掘随伴水のpHが調整される。参考例では、pH調整槽84内に設置されたpHセンサ70により、資源採掘随伴水のpHが測定され、その測定値が制御部72に送信される。pH調整槽84内の資源採掘随伴水のpHが、資源採掘随伴水中の遊離炭酸を除く全炭酸物質(HCO 、CO 2-)の物質量(モル)に対するClイオンの物質量(モル)の比に応じて調整されるpHを満たしていない場合は、そのpH範囲を満たすように、制御部72によりHClポンプ82等の出力等が制御され、HClの供給量が調節される。資源採掘随伴水中の遊離炭酸を除く全炭酸物質(HCO 、CO 2-)の物質量(モル)に対するClイオンの物質量(モル)の比に応じて調整される資源採掘随伴水のpHについては前述した通りである。
 参考例では、pH調整にHClを用いているが、資源採掘随伴水のpHを調整するものであればこれに制限されるものではなく、例えば、炭酸水等の酸剤を用いることも可能である。また、HCl等の酸剤は、資源採掘随伴水のpHを下げるために用いるものであって、資源採掘随伴水のpHを上げる場合には、NaOH等のアルカリ剤を用いることが必要である。
 pH調整槽84内でpH調整された資源採掘随伴水は、排水ポンプ50bにより、陰イオン交換樹脂を充填した充填塔58に供給される。充填塔58内では、陰イオン交換樹脂により、Clが吸着され、処理水排出ライン60からNaHCOを含む処理水が排出され、処理水槽62に貯留される。処理水槽62に貯留されたNaHCOを含む処理水は、その後、エバポレータ等による濃縮装置74により濃縮され、ドライヤー等の乾燥装置76により乾燥処理される。参考例における回収工程では、処理水排出ライン60あるいは処理水槽62に設置したClイオンセンサ66により、処理水中のClイオン濃度をモニタリングし、Clイオン濃度が上昇したら直ちに終了することが望ましい。例えば、Clイオンセンサ66の測定データが制御部72に送られ、Clイオン濃度が上昇した段階で、制御部72により、排水ポンプ50b等の稼働を停止するように電子制御されていてもよいし、作業者がClイオンセンサ66の測定データをチェックして、Clイオン濃度が上昇した段階で、手動で排水ポンプ50b等の稼働を停止してもよい。
 次に、NaHCOを回収した後における、陰イオン交換樹脂の再生処理について説明する。
 図6は、再生処理を行う際の溶解塩類回収装置の構成の一例を示す概略構成図である。図6に示すように、溶解塩類回収装置(2,3)は、Ca(OH)貯留槽86、Ca(OH)流入ライン88、Ca(OH)ポンプ90、ブロワ92、空気流入ライン94、再生処理液排出ライン98、再生処理液貯留槽38a、を備えるものである。なお、Ca(OH)貯留槽86内には攪拌装置(不図示)が設置されていることが望ましい。参考例では、後述する再生処理を実施する際には、充填塔58から図4又は5に示す構成部品を取り外し、充填塔58に図6に示す構成部品を設置してもよいし、NaHCOの回収及び再生処理を通して、充填塔58に図4又は5、及び図6に示す構成部品を充填塔58に設置していてもよい。
 また、図6に示すように、Ca(OH)流入ライン88の一端はCa(OH)貯留槽86に接続され、他端は充填塔58の上部に接続されている。Ca(OH)流入ライン88にはCa(OH)ポンプ90が設置されている。空気流入ライン94の一端は、ブロワ92に接続され、他端は充填塔58の下部側面に接続されている。再生処理液排出ライン98の一端は充填塔58の下部側面に接続され、他端は再生処理液貯留槽38aに接続されている。
 図6に示す再生処理を行う際の溶解塩類回収装置(2,3)の動作について説明する。
<再生工程>
 参考例では、上記回収工程においてHClが吸着した陰イオン交換樹脂にCa(OH)溶液(以下、Ca(OH)スラリーと呼ぶ場合がある)を通水して、上記式(4)の反応で、陰イオン交換樹脂からHClを脱離させ、陰イオン交換樹脂を再生する再生工程を実施する。なお、再生工程前には、充填塔58に純水を通水し、陰イオン交換樹脂間の間隙に滞留している資源採掘随伴水を洗い流すことが望ましい。
 図6を用いて再生工程を具体的に説明すると、Ca(OH)ポンプ90を稼働させ、Ca(OH)貯留槽86内のCa(OH)スラリーがCa(OH)流入ライン88から充填塔58に供給されると共に、ブロワ92を稼働させ、空気が空気流入ライン94を通り、充填塔58に供給される。充填塔58内では、空気により、陰イオン交換樹脂が攪拌されながらCa(OH)スラリーと接触することにより、陰イオン交換樹脂からHClが脱離され、CaClが生成される。そして、再生処理液が再生処理液排出ライン98から再生処理液貯留槽38aに供給される。再生処理液中には、CaClやCa(OH)等が含まれており、必要に応じて、濃縮装置74及び乾燥装置76に送られる。
 このような再生工程は、充填塔58内の樹脂を攪拌しながらCa(OH)スラリーを所定条件まで徐々に添加し、一定時間反応後、再生処理液を充填塔58から排出させる回分式で行っても良い。また、Ca(OH)スラリーを充填塔58に通水し再生処理液を連続的に排出させる連続式で行っても良い。スラリーに覆われた陰イオン交換樹脂上で式(4)の反応をより効率的に進める観点等から、陰イオン交換樹脂を攪拌しながらCa(OH)スラリーを所定量まで徐々に添加する回分式のほうが望ましい。
 Ca(OH)スラリーの濃度は、回分式で使用する場合は5~10%が好適であり、連続式で使用する場合は、0.05~0.5%が好適である。
 充填塔58内の陰イオン交換樹脂を攪拌するための流体は、空気に限定されるものではなく、式(4)の反応を阻害しない流体であればよく、例えばメタンガス等が挙げられる。
 再生工程では、未溶解のCa(OH)がCa2+とOHに溶解してから、OHが陰イオン交換樹脂上のHClと再生反応を起こすので、添加したCa(OH)が再生に十分に使われるのに数分~10分程度の時間を要する場合があるため、回分式でのCa(OH)スラリーの添加はその時間を見込んで間欠的に行うことが好ましい。
 以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1及び比較例)
 CSG資源採掘随伴水模擬水に、前処理工程としてSS除去を目的とした凝集加圧浮上分離とUF膜を用いた膜ろ過を行い、さらに、濃縮工程として逆浸透膜による濃縮(10倍濃縮)を行った。前処理工程及び濃縮工程後のCSG資源採掘随伴水模擬水(以下、被処理水と呼ぶ)の水質を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 弱塩基性アクリル系陰イオン交換樹脂(オルガノ社製、アンバーライトIRA-67)を0.2L充填した充填塔に、COガス曝気塔で調製したCO溶解水を通水し、弱塩基性陰イオン交換樹脂をHCO型に変換した(上記式(2)の反応を参照)。ここで、充填塔に流入する前のCO溶解水の無機炭素濃度、充填塔から流出した流出水の無機炭素濃度を測定し、流出水の無機炭素濃度が流入前のCO溶解水の無機炭素濃度と同等になるまで、CO溶解水の通水を継続し、0.2LのIRA-67が有する交換容量0.32mol全量をHCO型(RN-HCO)に変換させた。このHCO型に変換した弱塩基性陰イオン交換樹脂を充填した充填塔を6つ(以下、6系列)準備した。
 各系列の充填塔への被処理水(21℃)の通水を開始し、通水中の被処理水と、充填塔から排出された処理水のClイオン濃度を計測した。通水初期から処理水のClイオン濃度は180mg/L(0.005mol/L)以下であったが、通水量360mLの時に処理水のClイオン濃度が200mg/L(0.006mol/L)に上昇し、その時点で通水を停止した。このときClイオン吸着量は0.140molと推定された。この処理水をエバポレータによる減圧濃縮及びホットプレート(70℃)による蒸発乾固を行ってNaHCOを含む溶解塩類を析出させた。ここで、析出物を再度純水に微量溶解し、Clイオン濃度を測定して、析出物中のClイオン含有量を確認したところ、重量で0.1%未満であり、高純度のNaHCOが回収できていることを確認した。
 各系列の充填塔内の弱塩基性陰イオン交換樹脂量の5倍量の純水を充填塔に通水し、充填塔内を洗浄した。洗浄後、樹脂塔内に空気を曝気して、弱塩基性陰イオン交換樹脂を流動させた状態で、5w/v%のCa(OH)スラリーを間欠的に添加しながら、充填塔内に設置したpHセンサ及びClイオンセンサで再生処理液のpH及びClイオン濃度を測定した。
 6系列の充填塔を用い、再生処理液のpHが9.8(実施例1-1:第1系列)、10.0(実施例1-2:第2系列)、10.5(実施例1-3:第3系列)、11.7(実施例1-4:第4系列)、12.0(実施例1-5:第5系列)に達した時点、及び12.2に達してから更にCa(OH)2を0.018mol添加(比較例:第6系列)して、再生廃液を取り出し(以下、「第一段階再生処理液」と称する)、エバポレータによる減圧濃縮及びホットプレート(70℃)による蒸発乾固を行って、CaClを含む溶解塩類を析出させた。析出物を再度純水に微量溶解し、Ca2+とCl濃度を測定して、析出物中の両元素のモル比を確認した。その結果を表2にまとめた。なお、比較例はこの時点で既に完全に再生されている状態である。
 その後、実施例1-1~1-5には、充填塔内の弱塩基性陰イオン交換樹脂が十分浸る量(130mL)の純水を導入し、空気曝気で樹脂を流動させながらCa(OH)スラリーを添加した。再生開始からのCa(OH)スラリー添加量が比較例と同じ量になるまで添加した。また、このときのpHが12.2になっていることを確認した。
 実施例1-1~1-5では、Ca(OH)スラリーを追加添加した後の再生処理液(以下、「第二段階再生処理液」と称する)を取り出し、エバポレータによる減圧蒸留による濃縮及びホットプレートによる蒸発乾固を行って、Ca(OH)を含む溶解塩類を析出させた。析出物を再度純水に微量溶解し、Ca2+とCl濃度を測定して、析出物中の両元素のモル比を確認した。その結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 CaClのCa2+とClのモル比は1:2であるので、実施例1-1~1-5及び比較例の析出物のCl/Camol比が2に近いほど再生処理液中のCaClの純度が高く、値が小さいほどCaClの純度が低いことになる。そこで、表2の結果を見ると、比較例では、析出物のCl/Camol比が1.46と低かったのに対し、完全再生前で一旦Ca(OH)添加を停止し、第一段階再生処理液として再生処理液を取り出した実施例1-1~1-5では、Cl/Camol比が1.86以上であった。このCl/Camol比1.86は、重量換算すると、CaCl純度95.2%であり、不純物としてCa(OH)を4.2%しか含まないことになる。また、pH11.7以下(Cl脱離率95%)の実施例1-1~1-4では、Cl/Camol比が1.95以上となっている。このCl/Camol比は、重量換算すると、CaCl純度98.3%であり、不純物としてCa(OH)を1.7%しか含まないことになる。すなわち、第一段階再生処理液のpHが低いほど、あるいはCl脱離率が低いほど、再生処理液から回収されるCaClの純度は高くなる傾向にある。但し、第一段階再生処理液のpHが低いほど、あるいはCl脱離率が低いほど、第二段階再生処理液を回収する場合には、第二段階再生処理液の量が多くなる傾向にあるため、貯留設備が大きくなることが予測される。
 以上の結果から、NaClを含有する資源採掘随伴水から、CaClを高純度で得ることができることが確認された。CaClを高純度で回収するためには、再生処理液のpHを計測、またはClイオン濃度を計測してCl脱離量を求め、それらが予め定めた設定値に達するまでに回収した再生処理液を濃縮・乾燥させる、すなわちCaCl純度が比較的高い再生処理液からCaClを得られるようにする必要があることがわかった。その設定値の範囲としては、pH計測の場合、pH10.0~12.0の間に設定すること、Clイオン濃度計測の場合、Clイオン吸着量の85~96%の間に設定することが好ましい。
(実施例2)
 実施例2では、CSG資源採掘随伴水模擬水を樹脂塔に通水しNaHCOを回収し、純水で洗浄するまで実施例1と同様の操作を行った。その後、充填塔に、再生処理液のpH及びClイオン濃度を測定しながら、実施例1-4で得られた第二段階再生処理液(CaClの純度は低い)を間欠的に添加した。第二段階再生処理液を全て使用した後、5w/v%のCa(OH)スラリーを間欠的に添加した。そして、再生処理液のpHが11.7に達した時点で、充填塔内の再生処理液を取り出した。取り出した再生処理液(第一段階再生処理液)は、エバポレータによる減圧蒸留による濃縮及びホットプレートによる蒸発乾固を行って、CaClを含む溶解塩類を析出させた。析出物を再度純水に微量溶解しCa2+とCl濃度を測定して、析出物中の両元素のモル比を確認した。
 次に、充填塔内に純水を導入し、Ca(OH)スラリーを間欠的に添加し、再生処理液のpHを測定し、Ca(OH)スラリーを加えてもpHが12.2以上に上がらない状態とした。この段階の再生処理液(第二段階再生処理液)を充填塔から取り出し、第二段階再生処理液中のClイオンを計測した。そして、第一段階再生処理液のClイオン脱離量と合わせた総Cl脱離率を算出し、完全に再生できたことを確認した。
 実施例2の結果としては、pH11.7に達した時点で取り出した第一段階再生処理液を濃縮・蒸発乾固させて得られた析出物のCl/Camol比は1.96であり、CaClを高純度で回収できることが確認できた。第一段階再生後、完全再生まで(再生処理液のpHが12.2になるまで)更に新規のCa(OH)を添加したが、第一段階再生で添加したCa(OH)も含め完全再生までに添加した新規のCa(OH)量は0.071mol(0.142eq)であり、被処理水の通水で吸着したClイオン量(0.140mol=0.140eq)とほぼ等量であった。完全再生には、表2の比較例でCa(OH)0.100molを要しているように、本来Clイオン吸着量よりも多いCa(OH)が必要だが、前のサイクルの再生における第二段階再生処理液を再生剤として使用することにより、1回の再生当たりに使用する新規のCa(OH)量は、Clイオンの吸着量とほぼ等量で済むことが確認できた。
 また、Ca(OH)とともに、第二段階再生処理液を再生剤として使用しても、CaClを高純度で回収することができることが確認できた。その結果、必要最小限のCa(OH)の添加で、弱塩基性陰イオン交換樹脂の再生が可能であり、Ca(OH)のロス・廃棄がほとんどなく、再生に関わるランニングコストを低減できることが示された。
(参考例1~5の模擬排水)
 参考例1~5では、表3に示す組成の模擬排水を調整した。模擬排水中のCl濃度、各炭酸濃度は、実際の資源採掘随伴水に前処理・濃縮工程を実施したあとの濃度として想定される範囲内の値とした。
Figure JPOXMLDOC01-appb-T000003
(参考例1)
 pH9.5の模擬排水にCOガスを吹き込んで、pH6.7~9に調整した模擬排水、及び比較のためCOガスを吹き込まず、pH9.5の模擬排水を、弱塩基性アクリル系イオン交換樹脂(オルガノ社製、アンバーライトIRA-67、交換容量1.6eq/L-R)を200mL充填した充填塔に通水した。なお、充填塔の弱酸性アクリル系イオン交換樹脂は、あらかじめCO溶解水を通水して、弱塩基性イオン交換樹脂の全量をHCO型に変換した状態にしてから、上記模擬排水をSV1.0(1/h)で通水した。充填塔から排出された処理水のHCO 、CO 2-、Clの濃度を測定し、これら合計アニオンの総量が延べ0.2当量になった時点で、模擬排水の通水を停止した。Naイオン濃度、処理水pHを確認し、得られた処理水のNaHCO、NaCO、NaCl、NaOH濃度をもとに、濃縮・乾燥で固形物として析出させた場合のNaHCOの純度及び回収量を求めた。その結果を表4にまとめた。ここで、処理水中に含有されるNaHCO濃度はHCO 濃度(mol/L)から求めた。HCO 濃度はMアルカリ度とPアルカリ度を測定して求めた。
[NaHCO](g/L)=[HCO ](mol/L)×(84/61)
[HCO ](mol/L)=Mアルカリ度-Pアルカリ度(mol/L)
 またNaHCO濃度は、CO 2-濃度から求め、CO 2-濃度はMアルカリ度とpHから求めた。
[NaCO](g/L)=[CO 2-](mol/L)×(106/60)
[CO 2-]=2×(Mアルカリ度-10(pH-14))(mol/L)
 また、模擬排水1LあたりのNaHCO回収量(g/L)は、濃縮乾燥後の析出物量×純度(%)で算出した。
Figure JPOXMLDOC01-appb-T000004
 表3及び表4から分かるように、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が6.0の模擬排水では、COガスでpHを6.7~8.5の範囲で調整することにより、純度の高いNaHCOを高収量で回収できた。特に、pH6.7~8.0ではより純度が高く、より高収量でNaHCOを回収することができた。
(参考例2)
 pH6.0の模擬排水に空気を吹き込んで、pH6.5~8.4に調整した模擬排水、及び比較のため空気を吹き込まず、pH6.0の模擬排水を用いたこと以外は、参考例1と同様に行った。参考例2の結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表3及び表5から分かるように、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が6.0の模擬排水では、空気でpHを6.5~8.4の範囲で調整することにより、純度の高いNaHCOを高収量で回収できた。特に、pH6.5~8.0ではより純度が高く、より高収量でNaHCOを回収することができた。
(参考例3)
 pH9.5の模擬排水にCOガスを吹き込んで、pH6.4~8.0に調整した模擬排水、及び比較のためCOガスを吹き込まず、pH9.5の模擬排水を用いたこと以外は、参考例1と同様に行った。参考例3の結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000006
 表3及び表6から分かるように、遊離炭酸を除く全炭酸物質の物質量に対するClイオの物質量の比が2.0の模擬排水では、COガスでpHを6.4~8.0の範囲で調整することにより、純度の高いNaHCOを高収量で回収できた。特に、pH6.7~8.0ではより純度が高く、より高収量でNaHCOを回収することができた。
(参考例4)
 pH9.5の模擬排水にCOガスを吹き込んで、pH6.1~8.0に調整した模擬排水、及び比較のためCOガスを吹き込まず、pH9.5の模擬排水を用いたこと以外は、参考例1と同様に行った。参考例4の結果を表7にまとめた。
Figure JPOXMLDOC01-appb-T000007
 表3及び表7から分かるように、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が1.5の模擬排水では、COガスでpHを6.1~6.7の範囲で調整することにより、純度の高いNaHCOを高収量で回収できた。特に、pH6.1で、より純度の高いNaHCOを回収できた。
(参考例5)
 pH9.5の模擬排水にCOガスを吹き込んで、pH5.8~6.5に調整した模擬排水、及び比較のためCOガスを吹き込まず、pH9.5の模擬排水を用いたこと以外は、参考例1と同様に行った。参考例5の結果を表8にまとめた。
Figure JPOXMLDOC01-appb-T000008
 表3及び表8から分かるように、遊離炭酸を除く全炭酸物質の物質量に対するClイオンの物質量の比が0.9の模擬排水では、COガスでpHを5.8~6.5の範囲で調整することにより、純度の高いNaHCOを高収量で回収できた。特に、pH5.8で、より純度の高いNaHCOを回収できた。
 以上、参考例1~5の結果から、資源採掘随伴水にNaClと炭酸イオン・重炭酸イオンが共存し、その含有量・存在比率が様々に変化しても、遊離炭酸を除く全炭酸物質の物質量に対するClイオン物質量の比に応じて、資源採掘随伴水のpHを調整することにより、純度の高いNaHCOを安定的に取り出せることが確認できた。
 1~3 溶解塩類回収装置、10,46 排水貯留槽、12,48a,48b 排水流入ライン、14,50a,50b 排水ポンプ、16,58 充填塔、18,60 処理水排出ライン、19 積算流量計、20,62 処理水槽、21,30,31,64,66 Clイオンセンサ、22,86 Ca(OH)貯留槽、24,88 Ca(OH)流入ライン、26,90 Ca(OH)ポンプ、28,70 pHセンサ、32,54,92 ブロワ、34,94 空気流入ライン、36a,36b,98 再生処理液排出ライン、38a,38b 再生処理液貯留槽、40,72 制御部、42,74 濃縮装置、44,76 乾燥装置、52 pH調整塔、56 ガス流入ライン、68 アルカリ度計、78 HCl貯留槽、80 HCl添加ライン、82 HClポンプ、84 pH調整槽。

Claims (14)

  1.  NaClを含有する資源採掘随伴水を陰イオン交換樹脂に通水し、NaHCOを回収する第1回収工程と、
     前記資源採掘随伴水通水後の陰イオン交換樹脂にCa(OH)溶液を通水し、前記陰イオン交換樹脂を再生処理する再生工程と、
     前記再生処理した再生処理液を回収する第2回収工程と、を備え、
     前記第2回収工程では、前記再生処理した再生処理液のpHをモニタリングし、前記モニタリングしたpH値が予め定めた設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収することを特徴とする溶解塩類の回収方法。
  2.  NaClを含有する資源採掘随伴水を陰イオン交換樹脂に通水し、NaHCOを回収する第1回収工程と、
     前記資源採掘随伴水通水後の陰イオン交換樹脂にCa(OH)溶液を通水し、前記陰イオン交換樹脂を再生処理する再生工程と、
     前記再生処理した再生処理液を回収する第2回収工程と、を備え、
     前記第2回収工程では、前記再生処理した再生処理液のClイオン濃度をモニタリングし、前記モニタリングしたClイオン濃度に基づいて求められる前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収することを特徴とする溶解塩類の回収方法。
  3.  前記第2回収工程では、前記モニタリングしたpH値が予め定めた設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することを特徴とする請求項1記載の溶解塩類の回収方法。
  4.  前記第2回収工程では、前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留することを特徴とする請求項2記載の溶解塩類の回収方法。
  5.  前記予め定めた設定値を前記Ca(OH)溶液のpHとし、前記モニタリングしたpHが、前記Ca(OH)溶液のpHに達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記モニタリングしたpHが、前記Ca(OH)溶液のpHに達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留する請求項3記載の溶解塩類の回収方法。
  6.  前記予め定めた設定値をpH10~12の間に設定し、前記モニタリングしたpHが、pH10~12の間に設定した設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記モニタリングしたpHが、pH10~12の間に設定した設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留する請求項3記載の溶解塩類の回収方法。
  7.  前記予め定めた設定値を前記第1回収工程における前記陰イオン交換樹脂のClイオン吸着量とし、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留する請求項4記載の溶解塩類の回収方法。
  8.  前記予め定めた設定値を前記陰イオン交換樹脂のClイオン脱離量の85~96%の間に設定し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量の85~96%の間に設定した設定値に達するまでに回収した再生処理液を濃縮及び乾燥してCaClを回収し、前記陰イオン交換樹脂のClイオン脱離量が、前記陰イオン交換樹脂のClイオン吸着量の85~96%の間に設定した設定値に達した後に回収した再生処理液を、前記陰イオン交換樹脂を再生処理するための再生剤として貯留する請求項4記載の溶解塩類の回収方法。
  9.  陰イオン交換樹脂を充填した充填塔と、
     NaClを含有する資源採掘随伴水を前記充填塔に通水し、NaHCOを回収する第1回収手段と、
     Ca(OH)溶液を前記充填塔に通水し、前記陰イオン交換樹脂を再生処理する再生手段と、
     前記再生処理した再生処理液のpHをモニタリングするpHセンサと、
     前記モニタリングしたpH値が予め定めた設定値に達するまでの再生処理液を回収する第2回収手段と、
     前記回収した再生処理液を濃縮する濃縮手段と、
     前記濃縮した再生処理液を乾燥する乾燥手段と、を備えることを特徴とする溶解塩類の回収装置。
  10.   陰イオン交換樹脂を充填した充填塔と、
     NaClを含有する資源採掘随伴水を前記充填塔に通水し、NaHCOを回収する第1回収手段と、
     Ca(OH)溶液を前記充填塔に通水し、前記陰イオン交換樹脂を再生処理する再生手段と、
     前記再生処理した再生処理液のClイオン濃度をモニタリングするClイオンセンサと、
     前記モニタリングしたClイオン濃度に基づいて求められる前記陰イオン交換樹脂のClイオン脱離量が予め定めた設定値に達するまでの再生処理液を回収する第2回収手段と、
     前記回収した再生処理液を濃縮する濃縮手段と、
     前記濃縮した再生処理液を乾燥する乾燥手段と、を備えることを特徴とする溶解塩類の回収装置。
  11.  塩酸と結合したイオン交換樹脂に水酸化カルシウム溶液を接触させて塩化カルシウムを含む処理液を取得しつつ該処理液の塩化カルシウム純度を監視することを開始する第1ステップと、
    前記塩化カルシウム純度が予め決められた基準純度より高い状態から低い状態になるまでに前記処理液の取得を停止する第2ステップと、
     取得された処理液から前記塩化カルシウムを得る第3ステップとを含む、塩化カルシウムの製造方法。
  12.  前記第2ステップの前に前記基準純度に対応する規定値を設定することを含み、
     前記第2ステップにおいて前記規定値に基づいて前記処理液の取得を停止する、請求項11に記載の塩化カルシウムの製造方法。
  13.  前記規定値は、前記塩化カルシウム純度が前記基準純度であるときの前記処理液のpHであり、
     前記塩化カルシウム純度の監視は、前記処理液のpHを測定することである、請求項12に記載の塩化カルシウムの製造方法。
  14.  前記規定値は、前記塩化カルシウム純度が前記基準純度であるときの前記イオン交換樹脂の塩素イオン脱離量であり、
     前記塩化カルシウム純度の監視は、前記処理液の塩素イオン濃度を測定すること、測定された塩素イオン濃度に基づいて前記塩素イオン脱離量を算出することを含む、請求項12に記載の塩化カルシウムの製造方法。
PCT/JP2013/084992 2012-12-28 2013-12-26 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法 WO2014104248A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-287988 2012-12-28
JP2012287988A JP6159527B2 (ja) 2012-12-28 2012-12-28 炭酸水素ナトリウムの製造方法及び炭酸水素ナトリウムの製造装置
JP2013-048097 2013-03-11
JP2013048097A JP6163326B2 (ja) 2013-03-11 2013-03-11 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法

Publications (1)

Publication Number Publication Date
WO2014104248A1 true WO2014104248A1 (ja) 2014-07-03

Family

ID=51021322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084992 WO2014104248A1 (ja) 2012-12-28 2013-12-26 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法

Country Status (1)

Country Link
WO (1) WO2014104248A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119295A1 (en) * 2019-02-05 2022-04-21 Arizona Board Of Regents On Behalfof Arizona State University System and method of water rejuvenation for the regeneration of sorbent filters
WO2022141423A1 (en) * 2020-12-31 2022-07-07 Veolia (China) Environment Services Co., Ltd Method for treating organic compounds from industrial wastewaters with resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507032A (ja) * 1991-11-26 1995-08-03 ブルナー・モンド(ユーケイ)リミテッド アルカリ金属炭酸塩の製造
WO2006006497A1 (ja) * 2004-07-09 2006-01-19 Aquatech Corporation インジウム吸着剤及びインジウムの分別方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507032A (ja) * 1991-11-26 1995-08-03 ブルナー・モンド(ユーケイ)リミテッド アルカリ金属炭酸塩の製造
WO2006006497A1 (ja) * 2004-07-09 2006-01-19 Aquatech Corporation インジウム吸着剤及びインジウムの分別方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT KUNIN: "Ion exchange in chemical synthesis", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 56, no. 1, January 1964 (1964-01-01), pages 35 - 39 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119295A1 (en) * 2019-02-05 2022-04-21 Arizona Board Of Regents On Behalfof Arizona State University System and method of water rejuvenation for the regeneration of sorbent filters
WO2022141423A1 (en) * 2020-12-31 2022-07-07 Veolia (China) Environment Services Co., Ltd Method for treating organic compounds from industrial wastewaters with resins

Similar Documents

Publication Publication Date Title
US11649170B2 (en) Preparation of lithium carbonate from lithium chloride containing brines
US9995121B2 (en) Selective removal of silica from silica containing brines
RU2541357C2 (ru) Система очистки концентрата
US20140054233A1 (en) Selective Removal of Silica from Silica Containing Brines
EP1899043A1 (en) Preparation and use of cationic halides, sequestration of carbon dioxide
JP5666196B2 (ja) 硫酸銅回収方法及び硫酸銅回収装置
CN102936070A (zh) 一种通过两步法处理pvc生产中含汞废水的方法
CN103635436A (zh) 用于处理矿井水的方法
US11174532B1 (en) Processes for producing lithium compounds using reverse osmosis
JP5792984B2 (ja) 溶存性アルミニウムの除去方法及び装置
JP5360764B2 (ja) 被処理水中のアンモニア成分およびリン成分の同時回収方法、並びに同時回収システム
JP6163326B2 (ja) 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法
KR20060114711A (ko) 폐수의 크로마토그래피 분리에 의한 플루오라이드 및암모니아의 선택적 제거
WO2014104248A1 (ja) 溶解塩類の回収方法、溶解塩類の回収装置及び塩化カルシウムの製造方法
JP6159527B2 (ja) 炭酸水素ナトリウムの製造方法及び炭酸水素ナトリウムの製造装置
AU2017246245B9 (en) Mineral recovery and method for treatment of water having carbonate alkalinity
JP2014151310A (ja) 水処理方法及び水処理装置
WO2014108941A1 (ja) 水処理方法及び水処理装置
JPH03181384A (ja) 純水製造装置の樹脂再生システム
CN104294045B (zh) 含钒钨酸盐溶液深度除钒的方法
Tanaka et al. Technology for removing potassium ion from concentrated seawater by electrodialysis and solar salt dissolved in brine
RU2183202C2 (ru) Способ комплексной переработки природных минерализованных вод
US20220348480A1 (en) Method for Treating Water to Reduce the Dissolved Silica Content Thereof
JP2012192341A (ja) ホウフッ化物含有液の処理方法
JP2003135927A (ja) 排ガス処理方法及び排ガス処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869062

Country of ref document: EP

Kind code of ref document: A1