WO2014092368A1 - 선박의 액화가스 처리 시스템 - Google Patents

선박의 액화가스 처리 시스템 Download PDF

Info

Publication number
WO2014092368A1
WO2014092368A1 PCT/KR2013/011078 KR2013011078W WO2014092368A1 WO 2014092368 A1 WO2014092368 A1 WO 2014092368A1 KR 2013011078 W KR2013011078 W KR 2013011078W WO 2014092368 A1 WO2014092368 A1 WO 2014092368A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
engine
boil
fuel
lng
Prior art date
Application number
PCT/KR2013/011078
Other languages
English (en)
French (fr)
Inventor
배재류
서정대
김인수
추교식
김진강
김성수
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120143522A external-priority patent/KR20130139150A/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US14/651,614 priority Critical patent/US20150316208A1/en
Priority to RU2015127777A priority patent/RU2015127777A/ru
Priority to EP13862373.1A priority patent/EP2933183A1/en
Priority to SG11201504439YA priority patent/SG11201504439YA/en
Priority to CN201380064545.2A priority patent/CN104837724A/zh
Priority to JP2015546379A priority patent/JP2016507705A/ja
Publication of WO2014092368A1 publication Critical patent/WO2014092368A1/ko
Priority to PH12015501277A priority patent/PH12015501277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/002Storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a liquefied gas treatment system of a ship.
  • Liquefied gas such as LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas)
  • LNG Liquefied Natural Gas
  • LPG Liquefied Petroleum Gas
  • the liquefied gas is transported in a gas state through a gas pipe on land or sea, or transported to a distant consumer while stored in a liquefied gas carrier in a liquefied state.
  • Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperature (approximately -163 °C in case of LNG), and its volume is greatly reduced than in gas state, so it is very suitable for long distance transportation by sea. .
  • Liquefied gas carriers such as LNG carriers
  • a storage tank that can withstand cryogenic temperatures of liquefied gas It includes).
  • Examples of offshore structures in which storage tanks for storing liquefied gas in such a cryogenic state are provided include vessels such as LNG Regasification Vessel (LV RV), LNG Floating Storage and Regasification Unit (FSRU), LNG Floating, Production, Storage and off-loading), structures such as BMPP (Barge Mounted Power Plant), and the like.
  • vessels such as LNG Regasification Vessel (LV RV), LNG Floating Storage and Regasification Unit (FSRU), LNG Floating, Production, Storage and off-loading
  • structures such as BMPP (Barge Mounted Power Plant), and the like.
  • LNG RV is a LNG regasification facility installed on a LNG carrier that can be self-driving and floating.
  • LNG FSRU stores LNG in a storage tank that is unloaded from LNG carriers at sea, away from the land. It is an offshore structure that vaporizes liquefied natural gas and supplies it to onshore demand.
  • LNG FPSO purifies the mined natural gas from the sea and directly liquefies and stores it in a storage tank.If necessary, the LNG stored in this storage tank is transferred to an LNG carrier. It is a marine structure used for loading.
  • BMPP is a structure used to generate electricity at sea by mounting a power generation facility on a barge.
  • the vessel is a concept including all of the structures, such as LNG FPSO, LNG FSRU, BMPP, as well as liquefied gas carrier such as LNG carrier, LNG RV.
  • the liquefaction temperature of natural gas is about -163 ° C at ambient pressure, so LNG is evaporated even if its temperature is slightly higher than -163 ° C at normal pressure.
  • the LNG storage tank of the LNG carrier is insulated, but since the external heat is continuously transmitted to the LNG, LNG is transported while the LNG carrier is transporting the LNG.
  • Boil-off gas (BOG) is generated in the LNG storage tank by continuously vaporizing it in the LNG storage tank.
  • the generated boil-off gas increases the pressure in the storage tank and accelerates the flow of the liquefied gas in response to the fluctuation of the vessel, it may cause structural problems, so it is necessary to suppress the generation of the boil-off gas.
  • the boil-off gas inside the storage tank is discharged to the outside of the storage tank to maintain the proper pressure of the storage tank to be re-liquefied through the re-liquefaction apparatus.
  • the discharged boil-off gas is re-liquefied through heat exchange with a coolant, for example, nitrogen, mixed refrigerant, etc., cooled to a cryogenic temperature in the reliquefaction apparatus including a refrigeration cycle and returned to the storage tank.
  • a coolant for example, nitrogen, mixed refrigerant, etc.
  • LNG carriers equipped with a conventional DFDE propulsion system because the evaporation gas was processed through the evaporation gas compressor and heating only without installing a reliquefaction facility, were supplied as fuel to the DFDE to consume the evaporated gas.
  • the boil-off gas has to be burned in a gas combustion unit (GCU) or vented into the atmosphere.
  • GCU gas combustion unit
  • the present invention is to solve the conventional problems as described above, by supplying the liquefied gas stored in the storage tank and the evaporated gas evaporated from the liquefied gas as a fuel to the engine mounted on the vessel, the liquefied gas and evaporation It is an object of the present invention to provide a liquefied gas treatment system for a ship that can efficiently use gas.
  • a storage tank for storing liquefied gas;
  • a fuel supply line capable of supplying gas generated by evaporation of liquefied gas to the engine as fuel gas;
  • the engine is supplied with the fuel gas compressed at low pressure.
  • the liquefied gas processing system includes: a compressor line for compressing an evaporated gas generated in the storage tank by a compressor and supplying the engine as fuel; A pump line for compressing LNG contained in the storage tank by a pump and supplying the engine as fuel; It may include.
  • the liquefied gas treatment system may further include a heat exchanger for liquefying a portion of the boil off gas which is not supplied as fuel to the engine.
  • a liquefied gas treatment system of a ship having a storage tank for storing liquefied natural gas and an engine using the evaporated gas discharged from the storage tank as a fuel, the evaporation generated in the storage tank
  • a compressor for receiving and compressing gas
  • the engine for receiving and using the boil-off gas compressed by the compressor as fuel
  • a heat exchanger for liquefying a portion of the boil-off gas not supplied to the engine;
  • a part of the compressed boil-off gas not supplied to the engine may be liquefied by exchanging heat with the boil-off gas discharged from the storage tank and transferred to the compressor.
  • the liquefied gas treatment system may further include a decompression means installed to lower the pressure of the boil-off gas liquefied in the heat exchanger.
  • An expansion valve, an expander, etc. can be used as a pressure reduction means.
  • the liquefied gas treatment system may further include a gas-liquid separator installed to return only the liquid component to the storage tank among the evaporated gases which are decompressed and passed into the gas-liquid mixed state while passing through the decompression means.
  • the liquefied gas processing system may further include a cooler installed to cool the liquefied evaporated gas supplied to the decompression means by heat exchange with the gaseous components of the evaporated gas which are decompressed and gas-liquid mixed while passing through the expansion valve. Can be.
  • the gas component may be discharged from the storage tank and joined to the boil-off gas supplied to the compressor.
  • the compressor may include a plurality of compression cylinders.
  • the liquefied gas treatment system may further include an evaporation gas consuming means for receiving and using a compressed boil-off gas passing through a portion of the plurality of compression cylinders included in the compressor.
  • the boil-off gas sent to the heat exchanger may be boil-off gas compressed through some or all of the plurality of compression cylinders included in the compressor.
  • the liquefied gas treatment system may further include a forced vaporizer for forcibly vaporizing the liquefied natural gas stored in the storage tank and supplying the liquefied natural gas to the compressor.
  • the liquefied gas treatment system includes a cooler for cooling an evaporated gas supplied to the decompression means after being liquefied in the heat exchanger and heat-exchanged with a gaseous component of the evaporated gas which has been decompressed while passing through the decompression means to form a gas-liquid mixed state. It may further include.
  • the liquefied gas treatment system may further include an orifice installed upstream of the decompression means to reduce the pressure of the boil-off gas compressed by the compressor and to supply the decompression means to the decompression means.
  • the engine may include a low speed two stroke low pressure gas injection engine and a DF engine.
  • a liquefied gas treatment system of a ship having a storage tank for storing liquefied natural gas and an engine using liquefied natural gas stored in the storage tank as a fuel, in the storage tank A first stream of boil-off gas generated from liquefied natural gas and discharged from the storage tank; A second stream of boil-off gas branched from the first stream and supplied to the engine as fuel when the amount of the first stream is greater than the amount of fuel required by the engine; A third stream of boil off gas not supplied to the engine in the first stream; And liquefied by exchanging the third stream with the first stream in a heat exchanger to liquefy the boil-off gas without using a reliquefaction apparatus having a separate refrigeration cycle.
  • a system is provided.
  • a liquefied gas processing system of a ship having a storage tank for storing liquefied natural gas and an engine supplied with liquefied natural gas stored in the storage tank to use as fuel, generated in the storage tank
  • a compressor line for compressing the BOG by a compressor to supply the engine as fuel
  • a pump line for compressing LNG contained in the storage tank by a pump and supplying the engine as fuel
  • a gas-liquid separator installed in the pump line to separate the methanol component from the LNG to adjust the methane number of the LNG to a value required by the engine
  • the liquefied gas treatment system may further include a vaporizer installed at an upstream side of the gas-liquid separator to partially vaporize the LNG by applying heat to the LNG supplied to the gas-liquid separator.
  • the liquefied gas treatment system may further include a return line for returning the liquid component separated from the gas-liquid separator to the storage tank.
  • the engine includes a main engine and an auxiliary engine, and at least one of the main engine and the auxiliary engine may require methane price adjustment.
  • the fuel gas is supplied to the engine by a liquefied gas treatment system having a storage tank for storing liquefied natural gas and an engine supplied with liquefied natural gas stored in the storage tank and used as fuel.
  • the liquefied gas treatment system includes a compressor line for compressing BOG generated in the storage tank by a compressor and supplying the engine as fuel and a LNG contained in the storage tank by a high pressure pump. And a pump line for supplying fuel as fuel to the engine, wherein the methane value adjustment step of adjusting the methane number of LNG to a value required by the engine by separating heavy hydrocarbon components from the LNG when supplying LNG to the engine through the pump line.
  • a fuel gas supply method is provided.
  • a liquefied gas treatment system by a liquefied gas treatment system of a ship having a storage tank for storing LNG, a main engine and an auxiliary engine using the LNG stored in the storage tank as a fuel.
  • the liquefied gas treatment system the compressor line for compressing the BOG generated in the storage tank by a compressor to supply the main engine and the auxiliary engine as fuel, and the LNG contained in the storage tank by the pump compression
  • At least one of the main engine and the auxiliary engine is supplied as fuel.
  • the vessel of liquefied gas treatment method is provided.
  • LNG stored in the storage tank may be supplied as fuel to the main engine and the auxiliary engine through the pump line.
  • BOG generated in the storage tank may be supplied as fuel to any one of the main engine and the auxiliary engine through the compressor line.
  • BOG generated in the storage tank may be supplied as fuel to the auxiliary engine through the compressor line, and LNG stored in the storage tank may be supplied as fuel to the main engine through the pump line.
  • BOG generated in the storage tank is supplied as fuel to at least one of the main engine and the auxiliary engine intermittently through the compressor line, and BOG is supplied to at least one of the main engine and the auxiliary engine.
  • the LNG stored in the storage tank may be supplied as fuel to at least one of the main engine and the auxiliary engine through the pump line.
  • BOG generated in the storage tank and LNG stored in the storage tank may be supplied as fuel to the main engine and the auxiliary engine at the same time.
  • the compressor includes a plurality of compression cylinders, and the BOG generated in the storage tank may be supplied as fuel to the auxiliary engine after being compressed by some compression cylinders among the plurality of compression cylinders.
  • the BOG and the forced vaporized LNG generated in the storage tank may be supplied to the compressor and compressed, and then supplied as fuel to at least one of the main engine and the auxiliary engine.
  • the heavy hydrocarbon component When supplying the LNG stored in the storage tank to the auxiliary engine, the heavy hydrocarbon component may be separated from the LNG to adjust the methane value of the LNG to the value required by the auxiliary engine.
  • the BOG not supplied as fuel to the main engine and the auxiliary engine can be liquefied by exchanging heat with the BOG discharged from the storage tank and transferred to the compressor.
  • a liquefied gas treatment system of a ship having a storage tank for storing LNG, a main engine and an auxiliary engine using the LNG stored in the storage tank as fuel, generated in the storage tank
  • a main BOG supply line for compressing the BOG by a compressor and supplying the main engine as fuel to the main engine
  • a BOG sub-supply line for compressing the BOG generated in the storage tank by a compressor and supplying the auxiliary engine as fuel to the auxiliary engine
  • An LNG main supply line for compressing the LNG stored in the storage tank by a pump and supplying the main engine as fuel
  • LNG sub-supply line for compressing the LNG stored in the storage tank by a pump to supply the fuel to the auxiliary engine
  • a liquefied gas treatment system of a ship comprising a.
  • the pump may include at least one of a discharge pump installed inside the storage tank to discharge LNG to the outside of the storage tank, and a pump installed outside the storage tank.
  • a liquefied gas treatment system of a ship having a storage tank for storing liquefied natural gas and an engine using liquefied natural gas stored in the storage tank as a fuel, in the storage tank A first stream of boil-off gas generated from liquefied natural gas and discharged from the storage tank; A second stream of boil-off gas supplied to the engine as fuel in the first stream; A third stream of boil off gas not supplied to the engine in the first stream; Wherein the first stream is compressed in a compression apparatus and then branches into the second stream and the third stream, and the third stream compressed in the compression apparatus is heat exchanged with the first stream in a heat exchanger to separate Liquefied without using a reliquefaction apparatus using a refrigerant of the liquefied gas, the liquefied gas stream is provided with a liquefied gas treatment system of a ship, characterized in that after all the pressure is returned to the storage tank.
  • the third stream is depressurized and then into a gas-liquid mixed state so that both gaseous and liquid components can be returned to the storage tank.
  • the gas component may be discharged from the storage tank together with the boil-off gas newly generated in the storage tank and supplied to the compression device.
  • the pressure reducing means for depressurizing the third stream may be an expansion valve or an expander.
  • the compression device may include a plurality of compression cylinders.
  • the first stream may be compressed through some or all of the plurality of compression cylinders included in the compression apparatus and then sent to the heat exchanger.
  • the engine may include a low speed 2-stroke low pressure gas injection engine as a main engine and a DF engine as an auxiliary engine.
  • the second stream passes through all of the plurality of compression cylinders included in the compression apparatus and then passes through a line supplied to the main engine and some of the plurality of compression cylinders included in the compression apparatus. It can be supplied as fuel to the engine via a line supplied to the engine.
  • the compression device may comprise a first compressor and a second compressor.
  • the second stream may be branched from the first stream after being compressed in the first compressor.
  • the third stream may be further pressurized while passing through the second compressor and then supplied to the heat exchanger.
  • It may further include a forced vaporizer for forcibly vaporizing the liquefied natural gas stored in the storage tank to supply to the compression device.
  • a liquefied gas treatment system of a ship by supplying the liquefied gas stored in the storage tank and the evaporated gas evaporated from the liquefied gas as a fuel to the engine mounted on the vessel, to use the liquefied gas and the evaporated gas efficiently.
  • the liquid liquefied gas stored in the storage tank is pressurized by a pump and then vaporized and supplied to the engine, and the evaporated gas evaporated from the liquefied gas is discharged from the storage tank and pressurized by a compressor.
  • the liquefied gas treatment system of the ship for supplying to the after-engine may be provided.
  • some of the compressed boil-off gas is supplied as fuel to the engine of the ship, for example, the propulsion system, and the rest of the compressed boil-off gas from the storage tank.
  • a liquefied gas treatment system of a vessel that can be liquefied by the cold heat of the boiled gas before it is newly discharged and compressed to return to the storage tank.
  • the liquefied gas treatment system according to an embodiment of the present invention, it is possible to re-liquefy the boil-off gas generated in the storage tank without installing a re-liquefaction device that consumes a lot of energy and excessively requires an initial installation cost, reliquefaction The energy consumed by the device can be reduced.
  • all the boil-off gas generated during the transport of cargo (ie LNG) of the LNG carrier can be used as fuel of the engine or re-liquefied and returned to the storage tank for storage.
  • the amount of boil-off gas consumed by the GCU can be reduced, and the boil-off gas can be reliquefied and treated without the need for a separate refrigerant such as nitrogen.
  • the refrigerant is supplied and stored There is no need to install additional equipment to reduce the initial installation and operating costs for the entire system.
  • the evaporated gas cooled and liquefied in the heat exchanger after being compressed to reduce the pressure by an expander it is possible to generate energy when expanding the energy Can be recycled.
  • FIG. 1 is a schematic configuration diagram showing a liquefied gas treatment system of a ship according to a first embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram showing a liquefied gas treatment system of a ship according to a second embodiment of the present invention
  • 3 and 4 are schematic configuration diagrams showing liquefied gas treatment systems of a ship, according to variants of the second embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a liquefied gas treatment system of a ship according to a third embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a liquefied gas treatment system of a ship according to a fourth embodiment of the present invention.
  • FIG. 7 and 8 are schematic structural diagrams showing liquefied gas treatment systems of a ship, according to variants of the fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram showing a liquefied gas treatment system of a ship according to a fifth embodiment of the present invention.
  • 10 to 12 are schematic structural diagrams showing liquefied gas treatment systems of a ship, according to variants of the fifth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram showing a liquefied gas treatment system according to a sixth embodiment of the present invention.
  • 14 to 17 are schematic configuration diagrams showing liquefied gas treatment systems of a ship according to modifications of the sixth embodiment of the present invention.
  • 18 is a conceptual diagram illustrating an example of an engine that receives liquefied gas as fuel through a liquefied gas treatment system and uses the same.
  • MEGI engines are in the spotlight as next generation eco-friendly engines that can reduce pollutant emissions by 23%, carbon dioxide by 80%, and sulfur compounds by 95% compared to diesel engines of the same class.
  • Such a MEGI engine is a vessel such as an LNG carrier for storing and transporting LNG in a cryogenic storage tank (in this specification, a vessel is an LNG carrier, an LNG RV, etc., as well as a marine plant such as LNG FPSO, LNG FSRU, etc.).
  • natural gas is used as fuel, and a high pressure gas supply pressure of about 150 to 400 bara (absolute pressure) is required for the engine depending on the load.
  • the MEGI engine can be used directly on the propellers for propulsion, for which the MEGI engine consists of a two-stroke engine rotating at low speed. That is, the MEGI engine is a low speed two-stroke high pressure natural gas injection engine.
  • a DF engine for example, DFDG; Dual Fuel Diesel Generator
  • DFDG Dual Fuel Diesel Generator
  • the DF engine can mix and burn oil and natural gas, or use only one selected from oil and natural gas as fuel.There is less sulfur compound in the fuel than if only oil is used as fuel. little.
  • the DF engine does not need to supply fuel gas at the same high pressure as the MEGI engine, and compresses the fuel gas to about several to several tens of bara.
  • the DF engine drives the generator by the driving force of the engine to obtain electric power, and uses this electric power to drive the propulsion motor or to drive various devices and facilities.
  • the methane component having a relatively low liquefaction temperature is evaporated preferentially.
  • the methane content is high and can be supplied as a fuel to the DF engine as it is.
  • the methane content is relatively lower than the methane value required by the DF engine, and the ratio of hydrocarbon components (methane, ethane, propane, butane, etc.) constituting the LNG varies depending on the region, it is vaporized as it is. Not suitable for fueling DF engines.
  • the liquefied natural gas is forcibly vaporized, and then the temperature is lowered to liquefy and remove the heavy hydrocarbon (HHC) component having a higher liquefaction point than methane. After the methane is adjusted, the methane can be further heated to meet the temperature requirements of the engine.
  • HHC heavy hydrocarbon
  • FIG. 18 is a conceptual diagram illustrating an example of an engine that receives liquefied gas as fuel through a liquefied gas processing system according to various embodiments of the present disclosure.
  • the engine illustrated in FIG. 18 is a low-speed two-stroke low pressure gas injection engine capable of supplying gas as a fuel by compressing the gas at low pressure as compared with the aforementioned MEGI engine.
  • high pressure means a fuel supply pressure required by a MEGI engine (low speed two stroke high pressure gas injection engine), for example, a pressure of about 150 to 400 bara (absolute pressure), and "low pressure” means a low speed two stroke low pressure. It should be considered to mean the fuel supply pressure required by the gas injection engine, for example a pressure of about 5 to 40 bara.
  • the engine 300 includes a cylinder 310 and a piston 360, a low pressure gas supply port 311 is formed in the middle of the cylinder 110, and the piston 360 is provided.
  • a combustion air supply port 331 is formed at a lower portion of the cylinder 110 that can be opened when at the bottom dead center.
  • the low pressure gas supply port 311 is equipped with a valve 312, and the low pressure gas (approximately 5 to 40 bara) supplied from the low pressure gas supply line 320 passes through the valve 312 into the cylinder 310. Can be introduced.
  • Combustion air supplied from the air supply line 340 may be introduced into the cylinder 310 through the air receiver 332 surrounding the lower end of the cylinder 310 and the air supply port 331.
  • One or more prechambers 353 are formed in the cylinder head 350, and one or more fuel nozzles 351 are installed to inject pilot fuel into the prechambers 353.
  • the cylinder head 350 is provided with an exhaust valve 355 for discharging the exhaust gas.
  • Low pressure pressurized natural gas ie, vaporized LNG
  • oil may be supplied as fuel through the fuel nozzle 351.
  • the oil injected into the prechamber 353 through the fuel nozzle 351 may act as a pilot fuel (about 1% or so) that triggers ignition of low pressure gas.
  • a spark plug may be installed in the prechamber for ignition of the pilot fuel, which may be integrally formed with the fuel nozzle. Since the technology using the prechamber and the pilot fuel for the combustion of the lean gas is already commercially available, a detailed description thereof will be omitted.
  • the engine 300 opens the air supply port 331 and the exhaust valve 355 when the piston 360 is located at the bottom dead center. As the combustion air is supplied into the cylinder 310 through the open air supply port 331, air is generated to exhaust the exhaust gas.
  • the air supply port 331 is closed, and the valve 312 is opened before the pressure in the cylinder further rises, and thus, the pressure supply port 311 is approximately 5 to 40 bara. Low pressure gas as fuel is supplied into the cylinder 310.
  • the liquefied gas treatment system is an LNG carrier which uses, for example, a low speed two-stroke low pressure gas injection engine as shown in FIG. 18 as a propulsion main engine (ie, propulsion means using LNG as fuel). It can be applied to such ships.
  • the liquefied gas treatment system 100 includes a fuel that provides a path for transferring LNG from a cargo tank 1 to a main engine 3 as a propulsion system. And a supply line 110 and a BOG line 140 that provides a path for transferring BOG (Boil Off Gas) generated from the storage tank 1 to the main engine 3.
  • BOG Bit Off Gas
  • the liquefied gas processing system 100 using the BOG using the BOG according to the present embodiment, the LNG through the fuel supply line 110 as a fuel by the LNG pump (LNG pump 120) and LNG vaporizer (LNG vaporizer) 130 It is supplied to the main engine 3, the BOG is compressed by the BOG compressor 150 through the BOG line 140, and supplied to the main engine 3 as fuel, and the excess BOG from the BOG compressor 150 is supplied.
  • the LNG pump LNG pump 120
  • LNG vaporizer LNG vaporizer
  • the low speed two-stroke low pressure gas injection engine that can be used as the main engine 3 can be fueled at low pressures, for example of about 5 to 40 bara (absolute pressure). Therefore, as the LNG pump 120 and the BOG compressor 150 according to the present embodiment, a pump and a compressor capable of compressing the LNG and the BOG at the pressure required by the main engine 3, respectively, are used.
  • the fuel supply line 110 provides a path for transferring LNG supplied by the driving of the transfer pump 2 from the storage tank 1 of the LNGC to the main engine 3 as fuel, for example, and the LNG pump 120 And LNG vaporizer 130 is installed.
  • the LNG pump 120 is installed to provide the pumping force required for the transfer of LNG to the fuel supply line 110, and may be installed to be made in parallel in a plurality of as in this embodiment.
  • the fuel supply line 110 includes two pumps, that is, a transfer pump 2 installed inside the storage tank 1, and an LNG pump 120 installed outside the storage tank 1. Is provided and is configured to pressurize the fuel over the primary and secondary. However, if only one pump can pressurize the LNG to the pressure required by the main engine 3, only one of the transfer pump 2 and the LNG pump 120 may be installed in the fuel supply line 110. It may be.
  • the LNG vaporizer 130 is installed at the rear end of the LNG pump 120 in the fuel supply line 110 to vaporize the LNG transported by the LNG pump 120.
  • LNG is a fruit
  • Various heating means for vaporizing by heat exchange with the fruit circulated through the circulation line 131 and providing heat of vaporization of LNG may be used as another example.
  • the fruit is circulated and supplied to the fruit circulation line 131, for example, steam generated from the boiler may be used.
  • the BOG line 140 provides a path for transferring the naturally occurring BOG from the storage tank 1 to the main engine 3, and is connected to the fuel supply line 110 as in the present embodiment, thereby making the BOG the main fuel. It can be supplied to the engine 3, alternatively, it can also provide a path for supplying the BOG directly to the main engine (3).
  • the BOG compressor 150 is installed in the BOG line 140 to compress the BOG passing through the BOG line 140. Although only one BOG compressor 150 is shown in FIG. 1, the BOG compressor is configured such that two compressors of the same specification are connected in parallel to satisfy the redundancy requirements as in conventional fuel supply systems. Can be configured. However, when a single BOG compressor 150 is installed in the branch of the excess BOG line 160 in the BOG line 140 as in this embodiment, the economic burden and maintenance according to the installation of the expensive BOG compressor 150 And the additional effect of reducing the burden on repairs.
  • the redundant BOG line 160 provides a path for supplying excess BOG from the BOG compressor 150 to the integrated IGG / GCU system 200, as well as the auxiliary IGG / GCU system 200, for example an auxiliary such as a DF engine.
  • the excess BOG can be supplied as fuel to the engine or the like.
  • the integrated IGG / GCU system 200 is a system in which an Inert Gas Generator (IGG) and a Gas Combustion Unit (GCU) are integrated.
  • IGG Inert Gas Generator
  • GCU Gas Combustion Unit
  • connection line 170 may be provided with a heater 180 for heating BOG or vaporized LNG passing therethrough, and a pressure reduction valve for reducing excessive pressure by adjusting pressure by BOG or vaporized LNG.
  • Valve (PRV) 190 may be installed.
  • the heater 180 is a gas heater using the heat of combustion of the gas, or other heating means, including a fruit circulation supply for providing a heat source for heating by the circulation of the fruit may be used.
  • the BOG When the pressure in the storage tank 1 is equal to or higher than a predetermined pressure or the amount of generation of BOG is large, the BOG is compressed by the BOG compressor 150 and supplied as fuel to the main engine 3. In addition, when the pressure in the storage tank 1 is less than the predetermined pressure or the amount of BOG is generated, the LNG is transported and vaporized by driving the LNG pump 120 and the LNG vaporizer 130 and supplied as fuel to the main engine 3. To be possible.
  • the excess BOG from the BOG compressor 150 is supplied to the auxiliary engine such as the integrated IGG / GCU system 200 or the DF engine through the excess BOG line 160 to the consumption or storage tank 1 of the BOG. It is to be used for the purpose of generating inert gas to be supplied, and furthermore, to be used as fuel for auxiliary engines.
  • the integrated IGG / GCU system 200 to which BOG is supplied may consume BOG continuously generated from the storage tank 1 by BOG combustion in the main body 210, and may be supplied to the storage tank 1 as needed.
  • Combustion gas can also be produced as an inert gas.
  • FIG. 2 is a schematic structural diagram of a liquefied gas treatment system of a ship according to a second embodiment of the present invention.
  • the liquefied gas treatment system of the present embodiment is applied to an LNG carrier provided with an engine capable of using natural gas as fuel (ie, a propulsion means using LNG as fuel), for example, a low-speed two-stroke low pressure gas injection engine.
  • a propulsion means using LNG as fuel for example, a low-speed two-stroke low pressure gas injection engine.
  • the liquefied gas treatment system of the present embodiment can be applied to all types of vessels installed with liquefied gas storage tanks, that is, LNG carriers, LNG RVs, etc., as well as offshore plants such as LNG FPSO, LNG FSRU, BMPP.
  • the boil-off gas (NBOG) generated and discharged from the storage tank 11 storing the liquefied gas is along the boil-off gas supply line (L1). It is conveyed and compressed in the compressor 13 and then supplied to the main engine 3, for example, a low speed two-stroke low pressure gas injection engine.
  • the boil-off gas is compressed by the compressor 13 to a low pressure of about 5 to 40 bara and then supplied as fuel to the main engine 3, for example, a low speed two-stroke low pressure gas injection engine.
  • Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the liquefied gas is continuously evaporated in the storage tank 11, and the evaporated gas is discharged through the evaporated gas discharge line L1 to maintain the pressure of the evaporated gas at an appropriate level. Let's do it.
  • a discharge pump 12 is installed inside the storage tank 11, to discharge the LNG to the outside of the storage tank if necessary.
  • the compressor 13 may include one or more compression cylinders 14 and one or more intermediate coolers 15 for cooling the boil-off gas which has risen in temperature while being compressed.
  • the compressor 13 can be configured to compress, for example, the boil-off gas to about 40 bara.
  • FIG. 2 a multistage compression compressor 13 including three compression cylinders 14 and three intermediate coolers 15 is illustrated, but the number of compression cylinders and intermediate coolers may be one or two, respectively. And the like may be changed as necessary. Further, in addition to the structure in which a plurality of compression cylinders are arranged in one compressor, it may be changed to have a structure in which a plurality of compressors are connected in series.
  • the boil-off gas compressed by the compressor 13 is supplied to the main engine 3, for example, a low-speed two-stroke low pressure gas injection engine, through the boil-off gas supply line L1, and to the required amount of fuel required by the main engine 3; Accordingly, all of the compressed boil-off gas may be supplied to the main engine 3, or only some of the compressed boil-off gas may be supplied to the main engine 3.
  • the evaporation is performed.
  • the first stream of gas may be divided into a second stream and a third stream after compression so that the second stream is supplied as fuel to the main engine 3 and the third stream is liquefied and returned to the storage tank 11. have.
  • the second stream is supplied to the main engine 3 through the boil-off gas supply line L1.
  • the second stream passes through all of the one or more compression cylinders 14 included in the compressor 13, and then is connected to the main engine 3 (ie, the boil-off gas supply line L1), After passing through some of the plurality of compression cylinders 14 included in the compressor 13, the fuel is connected to the auxiliary engine 5, for example, through a line connected to the DF engine DFDG (ie, the boil-off gas branch line L8). Can be supplied as.
  • the third stream is returned to the storage tank 11 through the boil-off gas return line L3.
  • a heat exchanger 21 is installed in the boil-off gas return line L3 to cool and liquefy the third stream of compressed boil-off gas.
  • the heat exchanger 21 exchanges the third stream of compressed boil-off gas with the first stream of boil-off gas supplied to the compressor 13 after being discharged from the storage tank 11.
  • the third stream of compressed boil-off gas can be liquefied by receiving cold heat from the first stream of boil-off gas before compression.
  • the heat exchanger 21 heats the cryogenic evaporation gas immediately after being discharged from the storage tank 11 and the high-pressure evaporated gas compressed by the compressor 13 to cool and liquefy the high-pressure evaporated gas.
  • the boil-off gas LBOG cooled by the heat exchanger 21 and at least partially liquefied is decompressed while passing through the expansion valve 22 as the decompression means and supplied to the gas-liquid separator 23 in a gas-liquid mixed state. While passing through the expansion valve 22, the LBOG may be depressurized to approximately normal pressure (eg, reduced to 3 bar).
  • the liquefied boil-off gas is separated from the gas and the liquid component in the gas-liquid separator 23, so that the liquid component, that is, LNG, is transferred to the storage tank 11 through the boil-off gas return line L3. It is discharged from the storage tank 11 through the boil-off gas recirculation line (L5) and joined to the boil-off gas supplied to the compressor (13). More specifically, the boil-off gas recirculation line L5 extends from the top of the gas-liquid separator 23 and is connected to the upstream side of the heat-exchanger 21 in the boil-off gas supply line L1.
  • the pressure of the boil-off gas after decompression by the decompression means is advantageously set higher than the internal pressure of the storage tank 11.
  • the heat exchanger 21 is installed in the boil-off gas return line L3 for convenience of description, but the heat exchanger 21 actually includes a first stream of boil-off gas being transferred through the boil-off gas supply line L1. Since the heat exchange is performed between the third streams of the boil-off gas being transferred through the boil-off gas return line (L3), the heat exchanger 21 is also installed in the boil-off gas supply line (L1).
  • Another expansion valve 24 may be further installed in the boil-off gas recirculation line L5 so that the gas component discharged from the gas-liquid separator 23 may be reduced in pressure while passing through the expansion valve 24.
  • the third stream of boil-off gas supplied to the gas-liquid separator 23 after being liquefied in the heat exchanger 21 and the gas-component separated from the gas-liquid separator 23 are transferred to the boil-off gas recycle line L5 to exchange heat.
  • a cooler 25 is installed in the boil-off gas recirculation line L5 to further cool the three streams. That is, the cooler 25 further cools the boil-off gas in the high pressure liquid state with the natural gas in the low pressure cryogenic gas state.
  • the gas component discharged from the gas-liquid separator 23 is decompressed and then joined to the first stream of the boil-off gas supplied to the compressor 13 to be supplied to the compressor together. Since the power consumption of the compressor is kept constant until a certain amount of flow rate, and then the power consumption increases, the power consumption does not increase even if the flow rate is added up to the level where the power consumption is kept constant. Therefore, even if the power consumption is maintained at a constant level, even if additional gas components discharged from the gas-liquid separator are supplied to the compressor, the evaporation gas can be effectively treated without additional power consumption.
  • the cooler 25 has been described as being installed in the boil-off gas recirculation line L5. However, in the cooler 25, the third stream of the boil-off gas being transferred through the boil-off gas return line L3 and evaporated. Since heat exchange is performed between the gas components being conveyed through the gas recirculation line (L5), the cooler 25 is also installed in the boil-off gas return line (L3).
  • the system can be configured such that the cooler 25 is omitted. If the cooler 25 is not installed, the efficiency of the entire system may be slightly lowered. However, piping arrangement and system operation are easy, and the initial installation cost and maintenance cost of the cooler are reduced.
  • the compressor 13 is compressed or phased.
  • the boil-off gas being compressed is branched through the boil-off gas branch lines L7 and L8 and used in the boil-off gas consumption means.
  • a GCU 7 capable of using low pressure pressurized natural gas as fuel, or an auxiliary engine 5 (for example, a DF Generator (DFDG), a gas turbine, etc.) may be used.
  • the pressure of the boil-off gas branching through the boil-off gas branch lines L7 and L8 in the middle of the compressor 13 may be about 5 to 10 bara.
  • the boil-off gas generated during the transportation of cargo (ie LNG) of the LNG carrier is used as the fuel of the engine or re-liquefied Since it can be returned to the storage tank and stored, it is possible to reduce or eliminate the amount of evaporated gas consumed by the GCU, and to re-liquefy the evaporated gas without installing a reliquefaction device using a separate refrigerant such as nitrogen. Can be processed.
  • a reliquefaction apparatus that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • FIG. 2 illustrates that the boil-off gas return line L3 for supplying the compressed BOG to the heat exchanger 21 is branched at the rear end of the compressor 13, the boil-off gas return line L3 is the above-mentioned boil-off gas.
  • the compressor 13 may be installed to branch off the boil-off gas in the middle of being compressed in stages. 4 shows a modification of branching the two-stage compressed boil-off gas by two cylinders. In this case, the pressure of the boil-off gas branching from the intermediate stage of the compressor 13 may be about 5 to 10 bara.
  • the three front cylinders operate in an oil-free manner and the second two cylinders operate in an oil-lubricated manner.
  • branching BOG in the rear stage or more than four stages it is necessary to configure the BOG to be transferred through the oil filter, but it may be advantageous in that branching below three stages does not require the use of an oil filter.
  • FIG. 5 is a schematic structural diagram of a liquefied gas treatment system of a ship according to a third embodiment of the present invention.
  • the LNG is forcibly used. It is different from the liquefied gas treatment system of the second embodiment in that it is configured to be capable of being made.
  • the same components as the second embodiment are given the same reference numerals, and detailed description thereof will be omitted.
  • the boil-off gas NBOG generated and discharged from the storage tank 11 storing the liquefied gas is along the boil-off gas supply line L1.
  • Auxiliary engine 5, for example DF after being fed and compressed in compressor 13 to the main engine 3, for example a low speed two-stroke low pressure gas injection engine, or after being compressed in compressor 13 or during multistage compression. It is similar to the second embodiment in that it is supplied to an engine (DF Generator) and used as fuel.
  • the amount of boil-off gas as fuel required by the main engine 3 and the auxiliary engine 5 is larger than the amount of boil-off gas naturally occurring in the storage tank 11.
  • the LNG stored in the storage tank 11 is provided with a forced vaporization line (L11) to be vaporized in the forced vaporizer 31 and supplied to the compressor (13).
  • the amount of LNG stored in the storage tank is small so that the amount of generated evaporation gas is small or the amount of evaporated gas as fuel required by various engines is naturally Even if the amount of generated boil-off gas is greater than that, the fuel can be stably supplied.
  • FIG. 6 is a schematic structural diagram of a liquefied gas treatment system of a ship according to a fourth embodiment of the present invention.
  • the liquefied gas treatment system according to the fourth embodiment is different from the liquefied gas treatment system of the second embodiment in that an expander 52 is used as the decompression means instead of the expansion valve. That is, according to the fourth embodiment, the boil-off gas LBOG cooled in the heat exchanger 21 and at least partially liquefied is decompressed while passing through the expander 52 and the gas-liquid separator 23 in a gas-liquid mixed state. Supplied to.
  • the same components as the second embodiment are given the same reference numerals, and detailed description thereof will be omitted.
  • the expander 52 produces energy while expanding the liquefied boil-off gas of high pressure to low pressure.
  • LBOG may be decompressed to approximately atmospheric pressure as it passes through inflator 52.
  • the liquefied boil-off gas is separated from the gas and the liquid component in the gas-liquid separator 23, so that the liquid component, that is, LNG, is transferred to the storage tank 11 through the boil-off gas return line L3. It is discharged from the storage tank 11 through the boil-off gas recirculation line (L5) and joined to the boil-off gas supplied to the compressor (13). More specifically, the boil-off gas recirculation line L5 extends from the top of the gas-liquid separator 23 and is connected to the upstream side of the heat-exchanger 21 in the boil-off gas supply line L1.
  • the boil-off gas recirculation line L5 may be further provided with a decompression means, for example, an expansion valve 24, so that the gas component discharged from the gas-liquid separator 23 may be decompressed while passing through the expansion valve 24.
  • a decompression means for example, an expansion valve 24, so that the gas component discharged from the gas-liquid separator 23 may be decompressed while passing through the expansion valve 24.
  • FIG. 7 and 8 are schematic structural diagrams showing a liquefied gas treatment system of a ship according to a modification of the fourth embodiment of the present invention.
  • the boil-off gas return line L3 for supplying the compressed BOG to the heat exchanger 21 is branched at the rear end of the compressor 13.
  • the boil-off gas return line L3 may be installed to branch off the boil-off gas in the middle of being compressed by the compressor 13 step by step. 7 shows a variation of branching the two stage compressed boil-off gas by two cylinders.
  • the liquefied gas treatment system according to the fourth embodiment is further configured to further cool the cooled and liquefied evaporated gas while passing through the heat exchanger 21.
  • the cooler 25 (see FIG. 6) as the heat exchanger can be modified to be omitted. If the cooler 25 is not installed, the efficiency of the entire system may be slightly lowered. However, piping arrangement and system operation are easy, and the initial installation cost and maintenance cost of the cooler are reduced.
  • the liquefied gas processing system according to the fourth embodiment is modified so that the expander 52 and the expansion valve 55 as the decompression means are arranged in parallel. Can be. At this time, the expander 52 and the expansion valve 55 arranged in parallel are located between the heat exchanger 21 and the gas-liquid separator 23. Evaporation gas return line L3 between the heat exchanger 21 and the gas-liquid separator 23 for installing expansion valves 55 in parallel and, if necessary, using only expander 52 or expansion valve 55. Bypass line L31 is installed which branches from and bypasses inflator 52.
  • the liquefied gas processing system and processing method according to the fourth embodiment of the present invention when transporting cargo (ie LNG) of the LNG carrier Since the generated boil-off gas can be used as fuel of an engine or re-liquefied and returned to the storage tank for storage, the amount of boil-off gas consumed by the GCU or the like can be reduced or eliminated. It is possible to re-liquefy and treat the boil-off gas without installing a reliquefaction device using a refrigerant.
  • the liquefied gas treatment system and method according to the fourth embodiment of the present invention are applied to a plant such as LNG FPSO, LNG FSRU, or BMPP in addition to a vessel such as an LNG carrier or an LNG RV, it may occur in a storage tank storing LNG. Since the used boil-off gas can be used or reliquefied as a fuel in an engine (including not only an engine for propulsion but also an engine used for power generation, etc.), it is possible to reduce or eliminate wasted boil-off gas.
  • a reliquefaction apparatus using a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • FIG. 9 is a schematic structural diagram of a liquefied gas treatment system of a ship according to a fifth embodiment of the present invention.
  • the liquefied gas treatment system according to the fifth embodiment stores the evaporated gas liquefied in the heat exchanger 21 and then pressurized by the depressurization means (for example, the expansion valve 22) without passing through the gas-liquid separator 23, and the storage tank as it is. It differs from the liquefied gas treatment system of the second embodiment in that it is configured to return to (11).
  • the depressurization means for example, the expansion valve 22
  • the liquefied gas treatment system of the second embodiment is configured to return to (11).
  • the same components as the second embodiment are given the same reference numerals, and detailed description thereof will be omitted.
  • the vaporized gas ie, two-phase evaporated gas
  • gaseous components ie, flash gas
  • liquid components ie, liquefied evaporation gas
  • the boil-off gas return line L3 may be configured such that the two-phase boil-off gas returned to the storage tank 11 is injected to the bottom of the storage tank 11.
  • the gas component (ie, flash gas) in the two-phase boil-off gas injected to the bottom of the storage tank 11 may be partially dissolved in LNG stored in the storage tank 11 or liquefied by cold heat of LNG. .
  • the flash gas (BOG) not melted or liquefied is discharged from the storage tank (11) again through the boil-off gas supply line (L1) together with the BOG (NBOG) additionally generated in the storage tank.
  • the flash gas discharged from the storage tank 11 together with the newly generated BOG is recycled to the compressor 13 along the boil-off gas supply line L1.
  • FIG. 10 is a schematic structural diagram showing a liquefied gas treatment system of a ship according to a first modification of the fifth embodiment of the present invention.
  • the first modification of the fifth embodiment shown in FIG. 10 is based on the liquefied gas treatment system according to the fifth embodiment shown in FIG. 9 only in that an expander 52 is used instead of the expansion valve as the pressure reducing means. Different. That is, according to the first modification of the fifth embodiment, the boil-off gas LBOG cooled and liquefied in the heat exchanger 21 is decompressed while passing through an expander 52 to be in a gas-liquid mixed state. It returns to the storage tank 11 in an upper state.
  • FIG. 11 is a schematic structural diagram showing a liquefied gas treatment system of a ship according to a second modification of the fifth embodiment of the present invention.
  • the second modification of the fifth embodiment shown in FIG. 11 is a diagram in that a plurality of compressors (for example, the first compressor 13a and the second compressor 13b) are used instead of the multistage compressor as the compression device. It is different from the liquefied gas treatment system according to the fifth embodiment shown in FIG.
  • the boil-off gas (NBOG) generated and discharged from the storage tank 11 storing the liquefied gas is connected to the boil-off gas supply line L1. It is conveyed along and supplied to the 1st compressor 13a.
  • the boil-off gas compressed in the first compressor (13a) is compressed to about 5 to 40 bara and then driven along the fuel supply line (L2), that is, a propulsion system using LNG as fuel (e.g., DFDE or low speed two stroke).
  • L2 fuel supply line
  • the boil-off gas supplied to and remaining in the demand can be further compressed by the second compressor 13b as a booster compressor, and then moved along the boil-off gas return line L3 as in the fifth embodiment described above. Liquefaction can be returned to the storage tank (11).
  • the fuel supply line L2 for branching to supply the pressurized boil-off gas to the demand destination may be configured to branch downstream of the second compressor 13b.
  • the first compressor 13a may be a first stage compressor including one compression cylinder 14a and one intermediate cooler 15a.
  • the second compressor 13b may be a first stage compressor including one compression cylinder 14b and one intermediate cooler 15b, and a multistage compressor including a plurality of compression cylinders and a plurality of intermediate coolers may be utilized if necessary. May be
  • the boil-off gas compressed in the first compressor 13a is compressed to about 5 to 40 bara and then supplied to the demand source, for example, an auxiliary engine 5 such as a DF engine (i.e., DFDE) through the fuel supply line L2. It is supplied to the main engine 3 (that is, a low speed two-stroke low pressure gas injection engine), and all of the boil-off gas may be supplied to the engine, or only a portion of the boil-off gas may be supplied to the engine, depending on the amount of fuel required by the engine. .
  • a DF engine i.e., DFDE
  • the first stream of boil-off gas is referred to as a first stream.
  • the second stream is supplied as fuel to a propulsion system DF engine (i.e., DFDE) or a low speed two-stroke low pressure gas injection engine, and the third stream is liquefied.
  • DFDE propulsion system DF engine
  • the third stream is liquefied.
  • the second stream is supplied to the DFDE through the fuel supply line (L2), the third stream is further pressurized by the second compressor (13b) and then stored through the boil-off gas return line (L3) through the liquefaction and decompression process
  • the tank 11 is returned to.
  • a heat exchanger 21 is installed in the boil-off gas return line L3 to liquefy the third stream of compressed boil-off gas. The heat exchanger 21 exchanges the third stream of compressed boil-off gas with the first stream of boil-off gas supplied to the first compressor 13a after being discharged from the storage tank 11.
  • the third stream of compressed boil-off gas receives cold heat from the first stream of boil-off gas before being compressed (ie at least partially Liquefied).
  • the heat exchanger 21 heats the cryogenic evaporation gas immediately after being discharged from the storage tank 11 and the high-pressure evaporated gas compressed by the compressor 13 to cool (liquefy) the high-pressure evaporated gas. .
  • the boil-off gas LBOG cooled in the heat exchanger 21 is depressurized while passing through the expansion valve 22 (for example, JT valve) as a decompression means, and then returns to the storage tank 11 in a gas-liquid mixed state. do. While passing through the expansion valve 22, the LBOG may be depressurized to approximately normal pressure (eg, reduced to 3 bar).
  • the expansion valve 22 for example, JT valve
  • the boil-off gas compressed by the first compressor 13a is branched through the boil-off gas branch line L7 and used in the boil-off gas consumption means.
  • the boil-off gas consumption means a GCU 7 or a gas turbine which can use natural gas as a fuel can be used.
  • FIG. 12 is a schematic structural diagram showing a liquefied gas treatment system of a ship according to a third modification of the fifth embodiment of the present invention.
  • the third modification of the fifth embodiment shown in FIG. 12 uses the expander 52 instead of the expansion valve as the decompression means, liquefying according to the second modification of the fifth embodiment shown in FIG. It is different from the gas treatment system. That is, according to the third modification of the fifth embodiment, the boil-off gas LBOG cooled and liquefied in the heat exchanger 21 is decompressed while passing through an expander 52 serving as a decompression means to be in a gas-liquid mixed state. Then, it returns to the storage tank 11 in a two phase state.
  • the liquefied gas processing system and processing method according to the fifth embodiment of the present invention when transporting cargo (ie LNG) of the LNG carrier Since the generated boil-off gas can be used as fuel of an engine or re-liquefied and returned to the storage tank for storage, the amount of boil-off gas consumed by the GCU or the like can be reduced or eliminated. It is possible to re-liquefy and treat the boil-off gas without installing a reliquefaction device using a refrigerant.
  • the liquefied gas treatment system and method according to the fifth embodiment of the present invention are applied to a plant such as LNG FPSO, LNG FSRU, or BMPP in addition to a vessel such as an LNG carrier or an LNG RV, it occurs in a storage tank that stores LNG. Since the used boil-off gas can be used or reliquefied as a fuel in an engine (including not only an engine for propulsion but also an engine used for power generation, etc.), it is possible to reduce or eliminate wasted boil-off gas.
  • a reliquefaction apparatus using a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • FIG. 13 shows a liquefied gas treatment system according to a sixth embodiment of the present invention.
  • the liquefied gas treatment system (that is, LNG pump 120) according to the first embodiment of the present invention shown in FIG.
  • a hybrid system having a line pressurized and supplied as fuel to the propulsion system, a line pressurized by the compressor 150 to feed the BOG as fuel, and a second embodiment of the present invention shown in FIG.
  • the liquefied gas treatment system according to the configuration is integrated.
  • each liquefied gas treatment system according to the third to fifth embodiments shown in FIGS. 3 to 12 is a hybrid system (L23, L24, L25 of FIG. 13) as shown in FIG. Of course).
  • the liquefied gas treatment system of the ship of the present invention shown in FIG. 13 includes a low-speed two-stroke low pressure gas injection engine as the main engine 3, and a DF engine (DFDG) as the auxiliary engine 5.
  • DFDG DF engine
  • the main engine is used for propulsion for the operation of the ship
  • the auxiliary engine is used for power generation to supply power to various devices and equipment installed inside the ship, but the present invention is used by the use of the main engine and the auxiliary engine. It is not limited.
  • a plurality of main engines and auxiliary engines may be installed.
  • the liquefied gas treatment system of a ship is a natural gas (that is, a gaseous BOG) stored in the storage tank 11 for engines (ie, the main engine 3 and the auxiliary engine 5). And liquid LNG) as a fuel.
  • a natural gas that is, a gaseous BOG
  • liquid LNG liquid LNG
  • the liquefied gas treatment system of the ship is a main BOG as an evaporation gas supply line for supplying the main engine 3 with the BOG contained in the storage tank 11.
  • a supply line L1 and a BOG sub-supply line L8 branching from the BOG main supply line L1 and supplying the BOG to the auxiliary engine 5 are included.
  • the BOG main supply line L1 has the same configuration as the boil-off gas supply line L1 in the previous embodiment, but in the description made with reference to FIG. 13, the bog gas supply line for the DF engine (that is, the BOG sub supply line) (L8)) to be referred to as the main BOG supply line (L1).
  • the BOG sub-supply line L8 has the same configuration as the boil-off gas branch line L8 in the previous embodiment, but in the description made with reference to FIG. 13, the BOG sub-supply line L8 is distinguished from the BOG main supply line L1 in order to distinguish it from the BOG main supply line L1. It is called subfeed line L8.
  • the LNG main supply line for supplying the LNG contained in the storage tank 11 to the main engine 3 L23 and the LNG sub-supply line L24 which branches from this LNG main supply line L23, and supplies LNG to the auxiliary engine 5 are included.
  • the compressor 13 for compressing BOG is installed in BOG main supply line L1
  • the pump 43 for compressing LNG is installed in LNG main supply line L23.
  • the boil-off gas (NBOG) generated in the storage tank 11 storing the liquefied gas and discharged through the BOG discharge valve 41 is transferred along the BOG main supply line L1, compressed in the compressor 13, and then main
  • the engine 3 is supplied to, for example, a low speed two-stroke low pressure gas injection engine.
  • the boil-off gas is compressed to a low pressure of about 5 to 40 bara by the compressor 13 and then supplied to the main engine 3.
  • Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the liquefied gas is continuously evaporated in the storage tank 11, and the evaporated gas is discharged inside the storage tank 11 to maintain the pressure of the evaporated gas at an appropriate level.
  • liquefied gases such as LNG, in cryogenic conditions
  • the compressor 13 may include one or more compression cylinders 14 and one or more intermediate coolers 15 for cooling the boil-off gas which has risen in temperature while being compressed.
  • a compressor 13 of multistage compression including three compression cylinders 14 and three intermediate coolers 15, is illustrated, but the number of compression cylinders and intermediate coolers can be changed as necessary.
  • it may be changed to have a structure in which a plurality of compressors are connected in series.
  • the boil-off gas compressed by the compressor 13 is supplied to the main engine 3 through the BOG main supply line L1, and all of the boil-off gas compressed according to the required amount of fuel required by the main engine is supplied to the main engine 3. May be supplied to the main engine 3 or only a part of the compressed boil-off gas.
  • FIG. 13 shows a branched two-stage BOG and supplies a part thereof to the auxiliary engine 5 through the secondary BOG supply line L8, this is only an example, and the one-stage or three-stage compressed BOG is shown.
  • the system can also be configured to branch off and feed to auxiliary engines via a secondary BOG supply line.
  • the methane component having a relatively low liquefaction temperature is preferentially vaporized, the methane content in the case of boiled gas can be supplied as a fuel to the DF engine as it is. Therefore, the BOG main supply line and the BOG sub supply line do not need to be installed separately for methane value control.
  • the boil-off gas generated in the storage tank 11 is larger than the amount of fuel required by the main engine and the auxiliary engine, and the excess boil-off gas is expected to be generated, the boil-off gas is supplied through the liquefied gas treatment system of the present invention. Reliquefaction can be returned to the storage tank.
  • the boil-off gas compressed or compressed in the compressor 13 can be branched through the boil-off gas branch line L7 to be used by the BOG consumption means.
  • the boil-off gas consumption means a GCU 7, a gas turbine, or the like which can use relatively low pressure natural gas as a fuel can be used.
  • the boil-off gas branch line L7 may be branched from the BOG sub-supply line L8 as shown in FIG. 13.
  • At least a part of the boil-off gas supplied to the main engine 3 through the boil-off gas supply line L1 after being compressed by the compressor 13 is processed, that is, reliquefied through the boil-off gas return line L3, and the storage tank 11
  • the process of returning is the same as that already described above with reference to FIG. 2, and thus a detailed description thereof will be omitted.
  • the compressor 13 illustrates that the boil-off gas return line L3 for supplying the compressed BOG to the heat exchanger 21 is branched at the rear end of the compressor 13, but the boil-off gas return line L3 is the above-mentioned boil-off gas. Similar to the BOG sub-supply line L8 as the branch line L7 and the boil-off gas branch line, the compressor 13 may be installed to branch off the boil-off gas in the middle of being compressed in stages. FIG. 13 shows a variation in which the two stage compressed boil-off gas is branched by two cylinders. In this case, the pressure of the boil-off gas branching from the intermediate stage of the compressor 13 may be about 5 to 10 bara.
  • a discharge pump 12 installed inside the storage tank 11 for discharging the LNG to the outside of the storage tank 11, and is primarily compressed by the discharge pump 12.
  • a pump 43 for secondarily compressing the LNG to the pressure required by the MEGI engine is provided.
  • Discharge pump 12 may be installed one inside each storage tank (11). Although only one pump 43 is shown in FIG. 13, a plurality of pumps may be connected and used in parallel as necessary.
  • the LNG discharged through the discharge pump 12 from the storage tank 11 storing the liquefied gas is transferred along the LNG main supply line L23 and supplied to the pump 43. Subsequently, LNG is compressed to low pressure by the pump 43, and then supplied to the heater 44 to vaporize.
  • the vaporized LNG is supplied as fuel to the main engine 3, for example, a low speed two-stroke low pressure gas injection engine.
  • the secondary LNG supply line L24 for supplying fuel gas to the DF engine which is the auxiliary engine 5 is branched from the main LNG supply line L23.
  • the secondary LNG supply line L24 may be branched from the main LNG supply line L23 so as to branch off the LNG before being compressed by the pump 43.
  • the sub LNG supply line L24 branches off the main LNG supply line L23 upstream of the pump 43, but according to a modification, the sub LNG supply line L24 is connected to the pump ( Downstream from the main LNG supply line L23.
  • the LNG supply line L24 branches on the downstream side of the pump 43, since the LNG is further pressurized by the pump 43, it is assisted by the decompression means before supplying LNG as fuel to the auxiliary engine. It may be necessary to lower the LNG pressure to the pressure required by the engine.
  • the secondary LNG supply line L24 branches off the upstream side of the pump 43, so that it is not necessary to install additional decompression means.
  • FIG. 13 illustrates a case in which methane value is adjusted only for the fuel supplied to the auxiliary engine 5, and methane value need not be adjusted for the fuel supplied to the main engine 3.
  • the methane content is relatively lower than that of the boil-off gas, which is lower than the methane value required by the DF engine, and the ratio of hydrocarbon components (methane, ethane, propane, butane, etc.) constituting LNG depending on the region. Because of this difference, it is not suitable to be vaporized as it is and supplied to the DF engine as fuel.
  • LNG is heated in the heater 45 and only partially vaporized.
  • the fuel gas which is partially vaporized and mixed with a gaseous state (ie, natural gas) and a liquid state (ie, LNG), is supplied to the gas-liquid separator 46 to be separated into gas and liquid. Since the vaporization temperature of the HHC component having a high calorific value is relatively high, the proportion of the heavy hydrocarbon component is relatively high in the liquid LNG which is not vaporized in the partially vaporized fuel gas. Therefore, by separating the liquid component in the gas-liquid separator 46, that is, separating the heavy hydrocarbon component, the methane number of the fuel gas can be increased.
  • the heating temperature in the heater 45 can be adjusted to obtain an appropriate methane number.
  • the heating temperature in the heater 45 may be determined in the range of approximately -80 to -120 degrees Celsius.
  • the liquid component separated from the fuel gas in the gas-liquid separator 46 is returned to the storage tank 11 through the liquid component return line L5.
  • the boil-off gas return line L3 and the liquid component return line L25 may be extended to the storage tank 11 after joining.
  • the methane-adjusted fuel gas is supplied to the heater 47 through the LNG sub-supply line L24 and further heated to a temperature required by the auxiliary engine 5 and then supplied as fuel to the auxiliary engine.
  • the auxiliary engine 5 is for example DFDG
  • the methane number required is generally 80 or more.
  • the methane value before the separation of the heavy hydrocarbon component is 71.3
  • the lower heating value (LHV) is 48,872.8 kJ / kg (1). atm, saturated vapor basis).
  • the methane number is 95.5
  • the LHV is 49,265.6 kJ / kg.
  • the fuel gas may be supplied to the engine after being compressed through the compressor 13 or may be supplied to the engine after being compressed through the pump 43.
  • ships such as LNG carriers and LNG RVs are used to transport LNG from the place of production to the place of consumption. Therefore, when operating from the place of production to the place of consumption, the ship operates in the state of Laden, which is loaded with LNG in a storage tank, and unloads the LNG. After returning to the production site, the storage tanks are operated in a nearly empty ballast state. In the Leiden state, the amount of LNG is relatively high, so the amount of boil-off gas is relatively high. In the ballast state, the amount of LNG is low, so the amount of LNG is relatively low.
  • the amount of boil-off gas generated when the storage tank capacity of LNG is approximately 130,000 to 350,000 is approximately 3 to 4 ton / h at Leiden City. And from about 0.3 to 0.4 ton / h in ballast.
  • the amount of fuel gas required by the engines may be about 1 to 4 ton / h (average about 1.5 ton / h) for the main engine and about 0.5 ton for the DF engine (DFDG), which is an auxiliary engine. / h
  • DFDG DF engine
  • the compressor line i.e., L1 and L8 in FIG. 13
  • the pump line i.e., L23 and L24 in FIG. 13
  • the raden with a large amount of evaporated gas is generated. It may be advantageous to supply fuel gas to the engines via the compressor line in the state and to supply the fuel gas to the engines through the pump line in the ballast state where the amount of boil-off gas is low.
  • the system in a ballast state in which the amount of boil-off gas is less than the amount of fuel required by the engine, the system may be operated to process the boil-off gas both through the auxiliary engine 5 and through reliquefaction. Alternatively, the system may be operated to return all of the boil-off gas to the storage tank in the ballast state.
  • the energy required to compress the gas (BOG) by the compressor requires significantly more energy than the energy required to compress the liquid (LNG) by the pump, and the compressor for compressing the gas is quite expensive and bulky.
  • a reliquefaction apparatus for reliquefaction of the BOG is necessary to deal with the BOG continuously generated in the storage tank.
  • the secondary BOG is supplied during the multi-stage compression without compressing the boil-off gas to the pressure required by the engine in the multistage compressor. It may be efficient to divert the boil off gas via line L8 and use it as fuel in the DF engine. That is, if the boil-off gas is supplied to the DF engine via only the second compression cylinder of the three-stage compressor, the remaining compression cylinders are idle.
  • the power required when driving the whole compressor to compress the boil-off gas, the power required is 2MW, whereas when using only two stages and idling the remaining stages, the required power is 600 kW, and the fuel is supplied to the engine through the pump.
  • the power required is 100 kW. Therefore, when the amount of BOG generated is less than the fuel required in the engine, such as in a ballast state, it is advantageous in terms of energy efficiency that BOG consumes the entire amount in the DF engine or the like and supplies LNG as fuel through the pump.
  • LNG may be forcibly supplied by insufficient amount while supplying BOG as fuel to the engine through the compressor.
  • the amount of BOG is generated in the ballast state, instead of discharging the BOG every time it is generated, instead of discharging it and consuming it, the BOG is collected without being discharged until the storage tank reaches a constant pressure, and then intermittently discharged to the auxiliary or main engine It can also supply as fuel.
  • the ship's engine (main engine or auxiliary engine) may be supplied with fuel BOG compressed by the compressor 13 and LNG compressed by the pump 43 at the same time.
  • the ship's engine may alternately receive either BOG compressed by the compressor 13 or LNG compressed by the pump 43 as fuel alternately.
  • the fuel gas supply system of the present invention in which the compressor line and the pump line are installed together, can continue normal operation through the other supply line even if a problem occurs in one supply line, and if only one compressor line is installed, the fuel gas supply system is expensive.
  • the optimal fuel gas supply method can be selected and operated according to the amount of boil-off gas, which can reduce the initial drying cost as well as operating cost.
  • the liquefied gas is most efficiently It becomes usable.
  • the boil-off gas generated when the cargo of the LNG carrier ie, LNG
  • the LNG carrier ie, LNG
  • it can be used as fuel of an engine or re-liquefied and returned to the storage tank for storage, it is possible to reduce or eliminate the amount of boil-off gas consumed by GCU, etc., and to re-liquefy using a separate refrigerant such as nitrogen.
  • Evaporative gas can be reliquefied and treated without the need for installation of equipment.
  • the present embodiment despite the recent trend that the capacity of the storage tank is increased, the amount of generated evaporated gas is increased, and the performance of the engine is improved, and the amount of fuel required is reduced. Since it can be returned to the storage tank, it is possible to prevent the waste of boil-off gas.
  • a reliquefaction apparatus using a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • a separate refrigerant that is, nitrogen refrigerant refrigeration cycle, mixed refrigerant refrigeration cycle, etc.
  • FIGS. 14 to 17 show schematic diagrams showing a liquefied gas treatment system of a ship, according to variants of the sixth embodiment of the present invention.
  • the primary fuel is supplied by two pumps, that is, the discharge pump 12 installed inside the storage tank 1 and the pump 43 provided outside the storage tank 1. And pressurizing over secondary.
  • the discharge pump 12 installed inside the storage tank 1 and the pump 43 provided outside the storage tank 1.
  • pressurizing over secondary if only one pump can pressurize the LNG to the pressure required by the main engine 3, only one of the transfer pump 2 and the LNG pump 120 may be installed.
  • the first modification of the sixth embodiment shown in FIG. 14 differs from the liquefied gas treatment system according to the sixth embodiment shown in FIG. 13 only in that no pump 43 is installed in the LNG main supply line L23.
  • the second modification of the sixth embodiment shown in FIG. 15 differs from the liquefied gas treatment system according to the sixth embodiment shown in FIG. 13 only in that no discharge pump 12 is installed in the storage tank.
  • main engine 3 for example, a low-speed two-stroke low pressure gas injection engine
  • main engine 3 requires an appropriate methane value similarly to the DF engine used as the auxiliary engine 5
  • methane value of LNG supplied as fuel it is necessary to adjust the methane value of LNG supplied as fuel.
  • the third modification of the sixth embodiment shown in FIG. 16 is similar to the LNG sub-supply line L24 in that the heater 48 and the gas-liquid separator 49 are installed in the LNG main supply line L23. It is different from the liquefied gas treatment system according to the sixth embodiment shown. Since the heater 48 and the gas-liquid separator 49 installed in the LNG main supply line L23 perform the same functions as the heater 45 and the gas-liquid separator 46 installed in the LNG secondary supply line L24, detailed descriptions thereof are omitted. do.
  • the heater 45, the gas-liquid separator 46, and the heater 47 are installed in the LNG main supply line L23, and the LNG sub supply line L24 is provided. Branching from the LNG main supply line L23 on the downstream side of the gas-liquid separator 46 (more specifically, downstream of the heater 47), and the pump 43 is installed in the LNG main supply line L23. It is different from the liquefied gas treatment system according to the sixth embodiment shown in FIG.
  • the heater 45 and the heater 47 basically have the same function in that they serve to heat fuel, and may have the same configuration in the heating method to perform such a function.
  • the pump may be changed to be installed in the LNG main supply line L23.
  • the system is configured such that the cooler 25 is omitted. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장되어 있는 액화천연가스를 연료로서 사용하는 엔진을 갖춘 선박의 액화가스 처리 시스템이 개시된다. 본 발명의 액화가스 처리 시스템은, 액화가스를 저장하고 있는 저장탱크와; 상기 저장탱크에 저장된 액화가스를 연료로서 사용하는 엔진과; 액화가스가 기화하여 발생한 가스를 연료가스로서 상기 엔진에 공급할 수 있는 연료 공급라인; 을 포함하며, 상기 엔진은 저압으로 압축된 상기 연료가스를 공급받는다.

Description

[규칙 제26조에 의한 보정 17.12.2013] 선박의 액화가스 처리 시스템
본 발명은 선박의 액화가스 처리 시스템에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
LNG 운반선 등의 액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading), BMPP (Barge Mounted Power Plant)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화천연가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화천연가스를 저장탱크에 저장한 후 필요에 따라 액화천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 그리고 BMPP는 바지선에 발전설비를 탑재하여 해상에서 전기를 생산하기 위해 사용되는 구조물이다.
본 명세서에서 선박이란, LNG 운반선과 같은 액화가스 운반선, LNG RV 등을 비롯하여, LNG FPSO, LNG FSRU, BMPP 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제 및 처리하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 종래의 선박의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 된다. 이때, 배출된 증발가스는 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 냉매, 예를 들어 질소, 혼합냉매 등과의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
종래 DFDE 추진시스템을 탑재한 LNG 운반선의 경우, 재액화 설비를 설치하지 않고 증발가스 압축기와 가열만을 통해 증발가스를 처리한 후 DFDE에 연료로서 공급하여 증발가스를 소비하였기 때문에 엔진의 연료 필요량이 증발가스의 발생량보다 적을 때는 증발가스를 가스연소기(GCU; Gas Combustion Unit)에서 연소시켜 버리거나 대기중으로 버릴(venting) 수밖에 없는 문제가 있었다.
그리고 종래 재액화 설비와 저속 디젤 엔진을 탑재한 LNG 운반선은 재액화 설비를 통해 BOG를 처리할 수 있음에도 불구하고 질소가스를 이용한 재액화 장치 운전의 복잡성으로 인해 전체 시스템의 제어가 복잡하고 상당한 양의 동력이 소모되는 문제가 있었다.
결국, 저장탱크로부터 자연적으로 발생하는 증발가스를 비롯하여 액화가스를 효율적으로 처리하기 위한 시스템 및 방법에 대한 연구 개발이 지속적으로 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 저장탱크에 저장되어 있는 액화가스와, 이 액화가스로부터 증발된 증발가스를 선박에 장착된 엔진에 연료로서 공급함으로써, 액화가스 및 증발가스를 효율적으로 사용할 수 있도록 하는 선박의 액화가스 처리 시스템을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 액화가스를 저장하고 있는 저장탱크와; 상기 저장탱크에 저장된 액화가스를 연료로서 사용하는 엔진과; 액화가스가 기화하여 발생한 가스를 연료가스로서 상기 엔진에 공급할 수 있는 연료 공급라인; 을 포함하며, 상기 엔진은 저압으로 압축된 상기 연료가스를 공급받는, 선박의 액화가스 처리 시스템이 제공된다.
상기 액화가스 처리 시스템은, 상기 저장탱크에서 발생된 증발가스를 압축기에 의해 압축하여 상기 엔진에 연료로서 공급하는 압축기 라인과; 상기 저장탱크에 수용된 LNG를 펌프에 의해 압축하여 상기 엔진에 연료로서 공급하는 펌프 라인; 을 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 증발가스 중 상기 엔진에 연료로서 공급되지 않은 일부의 증발가스를 액화시키기 위한 열교환기를 더 포함할 수 있다.
본 발명의 다른 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에서 배출되는 증발가스를 연료로서 사용하는 엔진을 갖춘 선박의 액화가스 처리 시스템으로서, 상기 저장탱크 내에서 발생한 증발가스를 공급받아 압축하는 압축기와; 상기 압축기에서 압축된 증발가스를 연료로서 공급받아 사용하는 상기 엔진과; 상기 증발가스 중 상기 엔진에 공급되지 않은 일부의 증발가스를 액화시키기 위한 열교환기; 를 포함하는 것을 특징으로 하는 선박의 액화가스 처리 시스템이 제공된다.
상기 열교환기에서는, 상기 압축된 증발가스 중 상기 엔진에 공급되지 않은 일부의 증발가스를, 상기 저장탱크로부터 배출되어 상기 압축기로 이송되고 있는 증발가스와 열교환시켜 액화시킬 수 있다.
상기 액화가스 처리 시스템은, 상기 열교환기에서 액화된 증발가스의 압력을 낮추기 위해 설치되는 감압수단을 더 포함할 수 있다.
감압수단으로서는, 팽창밸브, 팽창기 등을 사용할 수 있다.
상기 액화가스 처리 시스템은, 상기 감압수단을 통과하면서 감압되어 기액 혼합상태로 된 증발가스 중, 액체 성분만을 상기 저장탱크에 복귀시키기 위해 설치되는 기액분리기를 더 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 감압수단에 공급되는 액화된 증발가스를, 상기 팽창밸브를 통과하면서 감압되어 기액 혼합상태로 된 증발가스 중 기체 성분과 열교환시켜 냉각시키기 위해 설치되는 냉각기를 더 포함할 수 있다.
상기 기체 성분은 상기 저장탱크로부터 배출되어 상기 압축기로 공급되는 증발가스에 합류될 수 있다.
상기 압축기는, 복수개의 압축 실린더를 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 압축기에 포함된 복수개의 상기 압축 실린더 중에서 일부의 압축 실린더를 통과하여 압축된 증발가스를 공급받아 사용하는 증발가스 소비수단을 더 포함할 수 있다.
상기 열교환기로 보내지는 증발가스는, 상기 압축기에 포함된 복수개의 상기 압축 실린더 중에서 일부 또는 전부를 통과하여 압축된 증발가스일 수 있다.
상기 액화가스 처리 시스템은, 상기 저장탱크에 저장된 액화천연가스를 강제로 기화시켜 상기 압축기에 공급하기 위한 강제기화기를 더 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 열교환기에서 액화된 후 상기 감압수단에 공급되는 증발가스를, 상기 감압수단을 통과하면서 감압되어 기액 혼합상태로 된 증발가스 중 기체 성분과 열교환시켜 냉각시키기 위한 냉각기를 더 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 감압수단의 상류측에 설치되어 상기 압축기에서 압축된 증발가스의 압력을 감압시킨 후 상기 감압수단에 공급하는 오리피스를 더 포함할 수 있다.
상기 엔진은 저속 2행정 저압가스 분사 엔진 및 DF 엔진을 포함할 수 있다.
본 발명의 다른 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장되어 있는 액화천연가스를 연료로서 사용하는 엔진을 갖춘 선박의 액화가스 처리 시스템으로서, 상기 저장탱크 내에서 액화천연가스로부터 발생된 후 상기 저장탱크로부터 배출되는 증발가스의 제1 스트림과; 상기 제1 스트림의 양이 상기 엔진에서 요구하는 연료의 양보다 많을 때, 상기 제1 스트림으로부터 분기되어 연료로서 상기 엔진에 공급되는 증발가스의 제2 스트림과; 상기 제1 스트림 중 상기 엔진에 공급되지 않은 증발가스의 제3 스트림; 을 포함하며, 상기 제3 스트림을 열교환기에서 상기 제1 스트림과 열교환시켜 액화시킴으로써 별도의 냉동사이클을 갖는 재액화장치를 사용하지 않고 증발가스를 처리할 수 있는 것을 특징으로 하는 선박의 액화가스 처리 시스템이 제공된다.
본 발명의 다른 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장된 액화천연가스를 공급받아 연료로서 사용하는 엔진을 갖춘 선박의 액화가스 처리 시스템으로서, 상기 저장탱크에서 발생된 BOG를 압축기에 의해 압축하여 상기 엔진에 연료로서 공급하는 압축기 라인과; 상기 저장탱크에 수용된 LNG를 펌프에 의해 압축하여 상기 엔진에 연료로서 공급하는 펌프 라인과; LNG로부터 중탄화수소 성분을 분리함으로써 LNG의 메탄가를 상기 엔진에서 요구하는 값으로 맞추기 위해 상기 펌프 라인에 설치되는 기액 분리기; 를 포함하는 선박의 액화가스 처리 시스템이 제공된다.
상기 액화가스 처리 시스템은, 상기 기액 분리기의 상류측에 설치되어 상기 기액 분리기에 공급되는 LNG에 열을 가함으로써 LNG를 부분적으로 기화시키는 기화기를 더 포함할 수 있다.
상기 액화가스 처리 시스템은, 상기 기액 분리기에서 분리된 액체성분을 상기 저장탱크로 복귀시키는 복귀라인을 더 포함할 수 있다.
상기 엔진은 메인 엔진과 보조 엔진을 포함하며, 상기 메인 엔진과 상기 보조 엔진 중 적어도 하나는 메탄가 조절이 요구될 수 있다.
본 발명의 다른 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장된 액화천연가스를 공급받아 연료로서 사용하는 엔진을 갖춘 액화가스 처리 시스템에 의해 상기 엔진에 연료가스를 공급하는 방법으로서, 상기 액화가스 처리 시스템은, 상기 저장탱크에서 발생된 BOG를 압축기에 의해 압축하여 상기 엔진에 연료로서 공급하는 압축기 라인과, 상기 저장탱크에 수용된 LNG를 고압펌프에 의해 압축하여 상기 엔진에 연료로서 공급하는 펌프 라인을 포함하며, 상기 펌프 라인을 통하여 LNG를 상기 엔진에 공급할 때, LNG로부터 중탄화수소 성분을 분리함으로써 LNG의 메탄가를 상기 엔진에서 요구하는 값으로 맞추는 메탄가 조절단계를 포함하는 연료가스 공급 방법이 제공된다.
본 발명의 다른 측면에 따르면, LNG를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장되어 있는 LNG를 연료로서 사용하는 메인 엔진 및 보조 엔진을 갖춘 선박의 액화가스 처리 시스템에 의해 액화가스를 처리하는 방법으로서, 상기 액화가스 처리 시스템은, 상기 저장탱크에서 발생된 BOG를 압축기에 의해 압축하여 상기 메인 엔진 및 상기 보조 엔진에 연료로서 공급하는 압축기 라인과, 상기 저장탱크에 수용된 LNG를 펌프에 의해 압축하여 상기 메인 엔진 및 상기 보조 엔진에 연료로서 공급하는 펌프 라인을 포함하며, 밸러스트 상태에 비해 상기 저장탱크에 저장된 LNG의 양이 많은 레이든 상태에서, 상기 저장탱크에서 발생하는 BOG는 상기 압축기 라인을 통하여 상기 메인 엔진 및 상기 보조 엔진 중 적어도 하나에 연료로서 공급되는 것을 특징으로 하는 선박의 액화가스 처리 방법이 제공된다.
상기 밸러스트 상태에서, 상기 저장탱크에 저장된 LNG는 상기 펌프 라인을 통하여 상기 메인 엔진 및 상기 보조 엔진에 연료로서 공급될 수 있다.
상기 밸러스트 상태에서, 상기 저장탱크에서 발생하는 BOG는 상기 압축기 라인을 통하여 상기 메인 엔진 및 상기 보조 엔진 중 어느 하나에 연료로서 공급될 수 있다.
상기 밸러스트 상태에서, 상기 저장탱크에서 발생하는 BOG는 상기 압축기 라인을 통하여 상기 보조 엔진에 연료로서 공급되고, 상기 저장탱크에 저장된 LNG는 상기 펌프 라인을 통하여 상기 메인 엔진에 연료로서 공급될 수 있다.
상기 밸러스트 상태에서, 상기 저장탱크에서 발생하는 BOG는 상기 압축기 라인을 통하여 간헐적으로 상기 메인 엔진 및 상기 보조 엔진 중 적어도 하나에 연료로서 공급되고, 상기 메인 엔진 및 상기 보조 엔진 중 적어도 하나에 BOG가 공급되지 않을 때, 상기 저장탱크에 저장된 LNG는 상기 펌프 라인을 통하여 상기 메인 엔진 및 상기 보조 엔진 중 적어도 하나에 연료로서 공급될 수 있다.
상기 밸러스트 상태에서, 상기 저장탱크에서 발생하는 BOG와 상기 저장탱크에 저장된 LNG는 동시에 상기 메인 엔진 및 상기 보조 엔진에 연료로서 공급될 수 있다.
상기 압축기는 복수개의 압축 실린더를 포함하며, 상기 저장탱크에서 발생하는 BOG는 복수개의 상기 압축 실린더 중에서 일부의 압축 실린더에 의해 압축된 후 상기 보조 엔진에 연료로서 공급될 수 있다.
상기 저장탱크에서 발생하는 BOG와 강제기화된 LNG를 상기 압축기에 공급하여 압축시킨 후 상기 메인 엔진 및 상기 보조 엔진 중 적어도 하나에 연료로서 공급할 수 있다.
상기 저장탱크에 저장된 LNG를 상기 보조 엔진에 공급할 때, LNG의 메탄가를 상기 보조 엔진에서 요구하는 값으로 맞추기 위해 LNG로부터 중탄화수소 성분을 분리할 수 있다.
상기 압축기에 의해 압축된 BOG 중에서 상기 메인 엔진 및 상기 보조 엔진에 연료로서 공급되지 않은 BOG를, 상기 저장탱크로부터 배출되어 상기 압축기로 이송되고 있는 BOG와 열교환시켜 액화시킬 수 있다.
본 발명의 다른 측면에 따르면, LNG를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장되어 있는 LNG를 연료로서 사용하는 메인 엔진 및 보조 엔진을 갖춘 선박의 액화가스 처리 시스템으로서, 상기 저장탱크에서 발생된 BOG를 압축기에 의해 압축하여 상기 메인 엔진에 연료로서 공급하는 BOG 주 공급라인과; 상기 저장탱크에서 발생된 BOG를 압축기에 의해 압축하여 상기 보조 엔진에 연료로서 공급하는 BOG 부 공급라인과; 상기 저장탱크에 저장된 LNG를 펌프에 의해 압축하여 상기 메인 엔진에 연료로서 공급하는 LNG 주 공급라인과; 상기 저장탱크에 저장된 LNG를 펌프에 의해 압축하여 상기 보조 엔진에 연료로서 공급하는 LNG 부 공급라인; 을 포함하는 것을 특징으로 하는 선박의 액화가스 처리 시스템이 제공된다.
상기 펌프는, 상기 저장탱크의 내부에 설치되어 LNG를 상기 저장탱크의 외부로 배출시키는 배출펌프와, 상기 저장탱크의 외부에 설치되는 펌프 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 측면에 따르면, 액화천연가스를 저장하고 있는 저장탱크와, 상기 저장탱크에 저장되어 있는 액화천연가스를 연료로서 사용하는 엔진을 갖춘 선박의 액화가스 처리 시스템으로서, 상기 저장탱크 내에서 액화천연가스로부터 발생된 후 상기 저장탱크로부터 배출되는 증발가스의 제1 스트림과; 상기 제1 스트림 중 연료로서 상기 엔진에 공급되는 증발가스의 제2 스트림과; 상기 제1 스트림 중 상기 엔진에 공급되지 않은 증발가스의 제3 스트림; 을 포함하며, 상기 제1 스트림은 압축장치에서 압축된 후 상기 제2 스트림과 상기 제3 스트림으로 분기되며, 상기 압축장치에서 압축된 상기 제3 스트림은 열교환기에서 상기 제1 스트림과 열교환되어 별도의 냉매를 이용한 재액화장치를 사용하지 않고 액화되며, 액화된 상기 제3 스트림은 감압된 후 모두 상기 저장탱크에 복귀하는 것을 특징으로 하는 선박의 액화가스 처리 시스템이 제공된다.
상기 제3 스트림은 감압된 후 기액 혼합상태로 되어, 기체 성분과 액체 성분 모두가 상기 저장탱크에 복귀할 수 있다.
상기 기체 성분은 상기 저장탱크에서 새롭게 발생한 증발가스와 함께 상기 저장탱크에서 배출되어 상기 압축장치에 공급될 수 있다.
상기 제3 스트림을 감압하기 위한 감압수단은 팽창밸브 또는 팽창기일 수 있다.
상기 압축장치는, 복수개의 압축 실린더를 포함할 수 있다.
상기 제1 스트림은, 상기 압축장치에 포함된 복수개의 상기 압축 실린더 중에서 일부 또는 전부를 통과하여 압축된 후 상기 열교환기로 보내질 수 있다.
상기 엔진은 메인 엔진인 저속 2행정 저압가스 분사 엔진과 보조 엔진인 DF 엔진을 포함할 수 있다.
상기 제2 스트림은, 상기 압축장치에 포함된 복수개의 상기 압축 실린더 전부를 통과한 후 상기 메인 엔진에 공급되는 라인과, 상기 압축장치에 포함된 복수개의 상기 압축 실린더 중 일부를 통과한 후 상기 보조 엔진에 공급되는 라인을 통해 상기 엔진에 연료로서 공급될 수 있다.
상기 압축장치는 제1 압축기 및 제2 압축기를 포함할 수 있다.
상기 제2 스트림은 상기 제1 압축기에서 압축된 후 상기 제1 스트림으로부터 분기될 수 있다.
상기 제3 스트림은 상기 제2 압축기를 통과하면서 더욱 가압된 후 상기 열교환기에 공급될 수 있다.
상기 저장탱크에 저장된 액화천연가스를 강제로 기화시켜 상기 압축장치에 공급하기 위한 강제기화기를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 저장탱크에 저장되어 있는 액화가스와, 이 액화가스로부터 증발된 증발가스를 선박에 장착된 엔진에 연료로서 공급함으로써, 액화가스 및 증발가스를 효율적으로 사용할 수 있도록 하는 선박의 액화가스 처리 시스템이 제공될 수 있다.
본 발명의 일 실시예에 따르면, 저장탱크에 저장된 액체상태의 액화가스는 펌프에 의해 가압한 후 기화시켜 엔진에 공급하고, 액화가스로부터 증발된 증발가스는 저장탱크로부터 배출시켜 압축기에 의해 가압한 후 엔진에 공급하는 선박의 액화가스 처리 시스템이 제공될 수 있다.
본 발명의 일 실시예에 따르면, 저장탱크에서 배출된 증발가스를 가압한 후 압축된 증발가스 중 일부는 선박의 엔진, 예컨대 추진 시스템에 연료로서 공급하고, 압축된 증발가스 중 나머지는 저장탱크로부터 새롭게 배출되어 압축되기 전의 증발가스의 냉열로 액화시켜 저장탱크로 복귀시킬 수 있는 선박의 액화가스 처리 시스템이 제공될 수 있다.
그에 따라 본 발명의 실시예에 따른 액화가스 처리 시스템에 의하면, 에너지 소모량이 많고 초기 설치비가 과도하게 소요되는 재액화 장치를 설치하지 않고도 저장탱크에서 발생되는 증발가스를 재액화시킬 수 있어, 재액화 장치에서 소모되는 에너지를 절감할 수 있게 된다.
또한 본 발명의 실시예에 따른 액화가스 처리 시스템에 의하면, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 모든 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시킬 수 있게 되고, 질소 등 별도의 냉매를 사용할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
또한 본 발명의 실시예에 따른 액화가스 처리 시스템에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
또한 본 발명의 실시예에 따른 액화가스 처리 시스템에 의하면, 압축된 후 열교환기에서 냉각 및 액화된 증발가스를 팽창기(Expander)에 의해 감압시킬 경우, 팽창시 에너지를 생성할 수 있어 버려지는 에너지를 재활용할 수 있다.
도 1은 본 발명의 제1 실시예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도,
도 2는 본 발명의 제2 실시예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도,
도 3 및 도 4는 본 발명의 제2 실시예의 변형예들에 따른, 선박의 액화가스 처리 시스템들을 도시한 개략 구성도,
도 5는 본 발명의 제3 실시예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도,
도 6은 본 발명의 제4 실시예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도,
도 7 및 도 8은 본 발명의 제4 실시예의 변형예들에 따른, 선박의 액화가스 처리 시스템들을 도시한 개략 구성도,
도 9는 본 발명의 제5 실시예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도,
도 10 내지 도 12는 본 발명의 제5 실시예의 변형예들에 따른, 선박의 액화가스 처리 시스템들을 도시한 개략 구성도,
도 13은 본 발명의 제6 실시예에 따른 액화가스 처리 시스템을 도시한 개략 구성도,
도 14 내지 도 17은 본 발명의 제6 실시예의 변형예들에 따른, 선박의 액화가스 처리 시스템들을 도시한 개략 구성도,
도 18은 액화가스 처리 시스템을 통하여 액화가스를 연료로서 공급받아 사용하는 엔진의 일례를 도시하는 개념도이다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 최근에는 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위한 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선과 같은 선박을 위한 고압 천연가스 분사 엔진, 예를 들어 MEGI 엔진이 개발되어 사용되고 있다. ME-GI 엔진은, 동급출력의 디젤엔진에 비해 오염물질 배출량을 이산화탄소는 23%, 질소화합물은 80%, 황화합물은 95% 이상 줄일 수 있는 친환경적인 차세대 엔진으로서 각광받고 있다.
이와 같은 MEGI 엔진은 LNG를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 선박(본 명세서에서 선박이란, LNG 운반선, LNG RV 등을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 엔진에 대하여 대략 150 ~ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
MEGI 엔진은 추진을 위해 프로펠러에 직결되어 사용될 수 있으며, 이를 위해 MEGI 엔진은 저속으로 회전하는 2행정 엔진으로 이루어진다. 즉, MEGI 엔진은 저속 2행정 고압 천연가스 분사 엔진이다.
또한, 질소산화물 배출량을 저감하기 위해, 디젤유와 천연가스를 혼합하여 연료로서 사용하는 DF 엔진(예컨대 DFDG; Dual Fuel Diesel Generator)이 개발되어, 추진이나 발전용으로 사용되고 있다. DF 엔진은 오일과 천연가스를 혼합연소하거나 오일과 천연가스 중 선택된 하나만을 연료로 사용할 수 있는 엔진으로서, 오일만을 연료로 사용하는 경우보다 연료에 포함된 황화합물이 적어 배기가스 중 황산화물의 함량이 적다.
DF 엔진은 MEGI 엔진과 같은 고압으로 연료가스를 공급할 필요가 없으며, 대략 수 내지 수십 bara 정도로 연료가스를 압축하여 공급하면 된다. DF 엔진은 엔진의 구동력에 의해 발전기를 구동시켜 전력을 얻고, 이 전력을 이용하여 추진용 모터를 구동시키거나 각종 장치나 설비를 운전한다.
천연가스를 연료로서 공급할 때 MEGI 엔진의 경우에는 메탄가를 맞출 필요가 없지만, DF 엔진의 경우에는 메탄가를 맞출 필요가 있다.
LNG가 가열되면 액화온도가 상대적으로 낮은 메탄 성분이 우선적으로 기화되기 때문에, 증발가스의 경우에는 메탄 함유량이 높아 그대로 DF 엔진에 연료로서 공급될 수 있다. 하지만, LNG의 경우에는, 메탄 함유량이 상대적으로 낮아 DF 엔진에서 요구하는 메탄가보다 낮고, 산지에 따라 LNG를 구성하는 탄화수소 성분(메탄, 에탄, 프로판, 부탄 등)들의 비율이 다르기 때문에, 그대로 기화시켜 DF 엔진에 연료로서 공급하기에 적절하지 않다.
메탄가를 조절하기 위해서는 액화천연가스를 강제 기화시킨 후, 온도를 낮추어 메탄보다 액화점이 높은 중탄화수소(HHC; heavy hydrocarbon) 성분을 액화시켜 제거할 수 있다. 메탄가를 조절한 후 엔진에서 요구하는 온도 조건에 맞추어 메탄가가 조절된 천연가스를 추가로 가열할 수도 있다.
한편, 효율은 높지만 요구압력이 높아 시스템 구성이 어렵고 설치비 및 공간이 많이 소요되는 MEGI 엔진의 단점을 극복하고자, 환경오염 배출기준을 만족시키면서도 저압으로 연료를 공급(즉, 고압의 펌프나 압축기, 극저온용 펌프 등 배제 가능)할 수 있고 LNG와 HFO(Heavy Fuel Oil)을 필요에 따라 선택적 혹은 복합적으로 연료로서 사용(즉, 이중연료 적용 가능)할 수 있는 저압가스 분사 2행정 저속 해양 엔진이 개발되었다.
도 18에는 앞으로 설명하게 된 본 발명의 다양한 실시예들에 따른 액화가스 처리 시스템을 통하여 액화가스를 연료로서 공급받아 사용하는 엔진의 일례를 도시하는 개념도가 도시되어 있다.
도 18에 예시된 엔진은, 전술한 MEGI 엔진에 비해 저압으로 가스를 압축시켜 연료로서 공급할 수 있는 저속 2행정 저압가스 분사 엔진이다. 본 명세서에서 "고압"이란 MEGI 엔진(저속 2행정 고압가스 분사 엔진)에서 요구하는 연료공급압력, 예컨대 150 ~ 400 bara(절대압력) 정도의 압력을 의미하는 것이고, "저압"이란 저속 2행정 저압가스 분사 엔진에서 요구하는 연료공급압력, 예컨대 5 ~ 40 bara 정도의 압력을 의미하는 것으로 간주되어야 한다.
도 18에 도시된 바와 같이, 엔진(300)은, 실린더(310)와 피스톤(360)을 포함하며, 실린더(110)의 중간에 저압가스 공급포트(311)가 형성되고, 피스톤(360)이 하사점에 있을 때 개방될 수 있는 실린더(110)의 하단 부분에 연소용 공기 공급포트(331)가 형성된다.
저압가스 공급포트(311)에는 밸브(312)가 장착되고, 저압가스 공급라인(320)으로부터 공급된 저압가스(대략 5 ~ 40 bara 정도)는 이 밸브(312)를 통하여 실린더(310) 내부로 유입될 수 있다.
공기 공급라인(340)으로부터 공급된 연소용 공기는 실린더(310) 하단을 둘러싸는 공기 리시버(332)와 공기 공급포트(331)를 통하여 실린더(310) 내부로 유입될 수 있다.
실린더 헤드(350)에는 하나 이상의 프리챔버(353)가 형성되고, 이 프리챔버(353)에 파일럿 연료를 분사할 수 있도록 하나 이상의 연료노즐(351)이 설치된다. 또, 실린더 헤드(350)에는 배기가스를 배출시키기 위한 배기밸브(355)가 설치된다.
저압가스 공급포트(311)를 통해서는 저압으로 가압된 천연가스(즉, 기화된 LNG)가 연료로서 공급되고, 연료노즐(351)을 통해서는 오일이 연료로서 공급될 수 있다. 연료노즐(351)을 통해 프리챔버(353) 내로 분사되는 오일은 저압가스의 착화를 촉발시키는 파일럿 연료(대략 1% 정도)로서 작용할 수 있다. 파일럿 연료의 점화를 위해 프리챔버에는 점화 플러그가 설치될 수 있으며, 이 점화 플러그는 연료노즐과 일체로 형성될 수도 있다. 희박가스의 연소를 위하여 프리챔버와 파일럿 연료를 사용하는 기술은 이미 상용화된 것이므로 더 이상의 상세한 설명은 생략한다.
이 엔진(300)은, 도 18에 실선으로 도시된 바와 같이 피스톤(360)이 하사점에 위치할 때에 공기 공급포트(331)와 배기밸브(355)가 개방된다. 개방된 공기 공급포트(331)를 통해 연소용 공기가 실린더(310) 내로 공급되면서 소기가 일어나 배기가스가 배출된다.
피스톤(360)이 상승하기 시작하면 공기 공급포트(331)가 폐쇄되고, 실린더 내부의 압력이 더욱 상승하기 전에 밸브(312)가 개방되어 저압가스 공급포트(311)를 통해 대략 5 내지 40bara 정도의 연료로서의 저압가스가 실린더(310) 내로 공급된다.
도 18에 점선으로 도시한 바와 같이 피스톤(360)이 상사점에 위치할 때, 프리챔버(353)에서 점화가 일어나 실린더(310)의 내부로 화염이 전파됨에 따라 가스연료의 폭발을 촉발하여 피스톤(360)을 하사점까지 밀어내면서 동력을 생성한다.
이하 첨부한 도면을 참조하여 본 발명의 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
본 발명의 실시예에 따른 액화가스 처리 시스템은, 추진용 메인 엔진(즉, LNG를 연료로서 사용하는 추진수단)으로서 예컨대 도 18에 도시된 저속 2행정 저압가스 분사 엔진을 장착하여 사용하는 LNG 운반선 등의 선박에 적용될 수 있다.
(제1 실시예)
도 1은 본 발명의 제1 실시예에 따른 액화가스 처리 시스템을 도시한 구성도이다. 도 1을 참조하면, 본 실시예에 따른 액화가스 처리 시스템(100)은, 저장탱크(cargo tank; 1)로부터 LNG를 추진 시스템으로서의 엔진(main engine; 3)으로 이송시키기 위한 경로를 제공하는 연료 공급라인(110)과, 저장탱크(1)로부터 발생되는 BOG(Boil Off Gas)를 메인 엔진(3)으로 이송시키기 위한 경로를 제공하는 BOG 라인(140)을 포함한다. 또한, 본 실시예에 따른 BOG를 이용한 액화가스 처리 시스템(100)은, 연료 공급라인(110)을 통해서 LNG를 LNG 펌프(LNG pump; 120) 및 LNG 기화기(LNG vaporizer; 130)에 의해 연료로서 메인 엔진(3)에 공급하고, BOG 라인(140)을 통해서 BOG를 BOG 압축기(BOG compressor; 150)에 의해 압축시켜서 연료로서 메인 엔진(3)에 공급하며, BOG 압축기(150)로부터 잉여의 BOG를 통합형 IGG/GCU 시스템(200)으로 공급한다.
메인 엔진(3)으로 사용될 수 있는 저속 2행정 저압가스 분사 엔진은 예를 들어 대략 5 ~ 40 bara(절대압력) 정도의 저압으로 연료를 공급받을 수 있다. 따라서, 본 실시예에 따른 LNG 펌프(120)와 BOG 압축기(150)로서는 메인 엔진(3)에서 요구하는 압력으로 LNG와 BOG를 각각 압축시킬 수 있는 펌프와 압축기가 사용된다.
연료 공급라인(110)은 예컨대 LNGC의 저장탱크(1)로부터 이송 펌프(2)의 구동에 의해 공급되는 LNG를 연료로서 메인 엔진(3)으로 이송시키기 위한 경로를 제공하고, LNG 펌프(120)와 LNG 기화기(130)가 설치된다.
LNG 펌프(120)는 연료 공급라인(110)에 LNG의 이송에 필요한 펌핑력을 제공하도록 설치되고, 본 실시예에서처럼 다수로 이루어져서 병렬되도록 설치될 수 있다.
한편, 본 실시예에 따르면, 연료 공급라인(110)에는 2개의 펌프, 즉 저장탱크(1)의 내부에 설치된 이송 펌프(2)와, 저장탱크(1)의 외부에 설치된 LNG 펌프(120)가 설치되어, 연료를 1차 및 2차에 걸쳐 가압하도록 구성되어 있다. 그러나, 하나의 펌프만으로 메인 엔진(3)에서 요구하는 압력까지 LNG를 가압할 수 있다면, 이송 펌프(2) 및 LNG 펌프(120) 중에서 어느 하나의 펌프만이 연료 공급라인(110)에 설치될 수도 있다.
LNG 기화기(130)는 연료 공급라인(110)에서 LNG 펌프(120)의 후단에 설치됨으로써 LNG 펌프(120)에 의해 이송되는 LNG를 기화시키도록 하는데, LNG의 기화를 위해 일례로, LNG가 열매순환라인(131)을 통해서 순환 공급되는 열매와의 열교환에 의해 기화되도록 하며, 다른 예로서 히터를 비롯하여 LNG의 기화열을 제공하기 위한 다양한 히팅수단이 사용될 수 있다. 한편, 열매순환라인(131)에 순환 공급되는 열매는 일례로, 보일러 등으로부터 발생되는 스팀이 사용될 수 있다.
BOG 라인(140)은 저장탱크(1)로부터 자연적으로 발생되는 BOG를 메인 엔진(3)으로 이송시키기 위한 경로를 제공하고, 본 실시예에서처럼 연료 공급라인(110)에 연결됨으로써 BOG를 연료로서 메인 엔진(3)으로 공급되도록 할 수 있으며, 이와 달리, BOG를 직접 메인 엔진(3)으로 공급하기 위한 경로를 제공할 수도 있다.
BOG 압축기(150)는 BOG 라인(140)에 설치되어 BOG 라인(140)을 통과하는 BOG를 압축시킨다. 도 1에는 하나의 BOG 압축기(150)만이 도시되어 있지만, BOG 압축기는 종래의 일반적인 연료 공급 시스템에서와 같이 이원화설계(redundancy) 요구사항을 만족시키기 위해 동일한 사양의 압축기 2대가 병렬로 연결되도록 시스템이 구성될 수 있다. 다만, 본 실시예에서처럼 BOG 라인(140)에서 잉여 BOG 라인(160)의 분기 부분에 단일의 BOG 압축기(150)가 설치될 경우에는, 고가의 BOG 압축기(150)의 설치에 따른 경제적 부담과 유지 및 보수에 대한 부담을 줄일 수 있다는 추가적인 효과를 거둘 수 있다.
잉여 BOG 라인(160)은 BOG 압축기(150)로부터 잉여의 BOG를 통합형 IGG/GCU 시스템(200)으로 공급하는 경로를 제공하는데, 통합형 IGG/GCU 시스템(200)뿐만 아니라, 예컨대 DF 엔진과 같은 보조 엔진 등으로 잉여 BOG를 연료로서 공급할 수 있다.
통합형 IGG/GCU 시스템(200)은 IGG(Inert Gas Generator)와 GCU(Gas Combustion Unit)가 통합된 시스템이다.
한편, 잉여 BOG 라인(160)과 연료 공급라인(110)은 연결라인(170)에 의해 서로 연결될 수 있다. 따라서, 연결라인(170)에 의해 잉여 BOG를 메인 엔진(3)의 연료로 사용하도록 하거나, 기화된 LNG를 통합형 IGG/GCU 시스템(200)에 연료로서 사용하도록 할 수 있다. 이러한 연결라인(170)에는 통과하는 BOG나 기화된 LNG의 가열을 위하여 히터(180)가 설치될 수 있고, BOG나 기화된 LNG에 의한 압력을 조절함으로써 과도한 압력을 저감시키는 압력감소밸브(Pressure Reduction Valve; PRV)(190)가 설치될 수 있다. 한편, 히터(180)는 가스의 연소열을 이용한 가스히터이거나, 그 밖에도 열매의 순환에 의해 가열을 위한 열원을 제공하는 열매 순환 공급부를 비롯하여, 다양한 히팅수단이 사용될 수 있다.
이와 같은 본 발명의 제1 실시예에 따른 액화가스 처리 시스템의 작용을 설명하기로 한다.
저장탱크(1) 내의 압력이 정해진 압력 이상이거나 BOG의 발생량이 많으면, BOG 압축기(150)의 구동에 의해 BOG를 압축하여 메인 엔진(3)에 연료로서 공급한다. 또한, 저장탱크(1) 내의 압력이 정해진 압력 미만이거나 BOG 발생량이 적으면, LNG 펌프(120)와 LNG 기화기(130)의 구동에 의해 LNG를 이송 및 기화시켜서 메인 엔진(3)에 연료로서 공급될 수 있도록 한다.
한편, BOG 압축기(150)로부터 잉여의 BOG는 잉여 BOG 라인(160)을 통해서 통합형 IGG/GCU 시스템(200) 또는 DF 엔진 등의 보조 엔진으로 공급되도록 하여, BOG의 소모 또는 저장탱크(1)로 공급되기 위한 불활성가스의 생성 목적으로 사용되도록 하고, 나아가서, 보조 엔진 등의 연료로서 사용될 수 있도록 한다.
BOG가 공급되는 통합형 IGG/GCU 시스템(200)은 본체(210) 내의 BOG 연소에 의해서, 저장탱크(1)로부터 지속적으로 발생되는 BOG를 소모할 수 있고, 필요에 따라 저장탱크(1)에 공급하기 위한 불활성가스로서 연소가스를 생성할 수도 있다.
(제2 실시예)
도 2에는 본 발명의 제2 실시예에 따른, 선박의 액화가스 처리 시스템의 개략 구성도가 도시되어 있다.
도 2에는, 천연가스를 연료로 사용할 수 있는 엔진(즉, LNG를 연료로 사용하는 추진수단), 예컨대 저속 2행정 저압가스 분사 엔진을 설치한 LNG 운반선에 본 실시예의 액화가스 처리 시스템이 적용된 예가 도시되어 있지만, 본 실시예의 액화가스 처리 시스템은 액화가스 저장탱크가 설치된 모든 종류의 선박, 즉 LNG 운반선, LNG RV 등을 비롯하여, LNG FPSO, LNG FSRU, BMPP와 같은 해상 플랜트에 적용될 수 있다.
본 발명의 제2 실시예에 따른, 선박의 액화가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 공급된다. 증발가스는 압축기(13)에 의해 대략 5 내지 40 bara 정도의 저압으로 압축된 후 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
저장탱크(11)의 내부에는 필요시 LNG를 저장탱크의 외부로 배출시키기 위해 배출펌프(12)가 설치된다.
압축기(13)는, 하나 이상의 압축 실린더(14)와, 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함할 수 있다. 압축기(13)는 예를 들어 증발가스를 약 40 bara까지 압축하도록 구성될 수 있다. 도 2에서는 3개의 압축 실린더(14)와 3개의 중간 냉각기(15)를 포함하는 다단 압축의 압축기(13)가 예시되어 있지만, 압축 실린더와 중간 냉각기의 개수는 각각 1개 또는 2개씩 포함될 수 있는 등, 필요에 따라 변경될 수 있다. 또한, 하나의 압축기 내에 복수개의 압축 실린더가 배열된 구조 이외에, 복수개의 압축기를 직렬로 연결한 구조를 가지도록 변경될 수도 있다.
압축기(13)에서 압축된 증발가스는 증발가스 공급라인(L1)을 통하여 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 공급되는데, 메인 엔진(3)에서 필요로 하는 연료의 필요량에 따라 압축된 증발가스 전부를 메인 엔진(3)에 공급할 수도 있고, 압축된 증발가스 중 일부만을 메인 엔진(3)에 공급할 수도 있다.
또한, 본 발명의 제2 실시예에 따르면, 저장탱크(11)로부터 배출되어 압축기(13)에서 압축되는 증발가스(즉, 저장탱크에서 배출된 증발가스 전체)를 제1 스트림이라 할 때, 증발가스의 제1 스트림을 압축 후에 제2 스트림과 제3 스트림으로 나누어, 제2 스트림은 메인 엔진(3)에 연료로서 공급하고 제3 스트림은 액화시켜 저장탱크(11)로 복귀시키도록 구성할 수 있다.
이때, 제2 스트림은 증발가스 공급라인(L1)을 통해 메인 엔진(3)에 공급된다. 필요시, 제2 스트림은, 압축기(13)에 포함된 하나 이상의 압축 실린더(14) 전부를 통과한 후, 메인 엔진(3)에 연결되는 라인(즉, 증발가스 공급라인(L1))과, 압축기(13)에 포함된 복수개의 압축 실린더(14) 중 일부를 통과한 후 보조 엔진(5), 예컨대 DF 엔진(DFDG)에 연결되는 라인(즉, 증발가스 분기라인(L8))을 통해 연료로서 공급될 수 있다.
제3 스트림은 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 복귀된다. 압축된 증발가스의 제3 스트림을 냉각 및 액화시킬 수 있도록 증발가스 복귀라인(L3)에는 열교환기(21)가 설치된다. 열교환기(21)에서는 압축된 증발가스의 제3 스트림을 저장탱크(11)로부터 배출된 후 압축기(13)로 공급되는 증발가스의 제1 스트림과 열교환시킨다.
압축되기 전의 증발가스의 제1 스트림의 유량이 제3 스트림의 유량보다 많기 때문에, 압축된 증발가스의 제3 스트림은 압축되기 전의 증발가스의 제1 스트림으로부터 냉열을 공급받아 액화될 수 있다. 이와 같이 열교환기(21)에서는 저장탱크(11)로부터 배출된 직후의 극저온의 증발가스와 압축기(13)에서 압축된 고압 상태의 증발가스를 열교환시켜 이 고압 상태의 증발가스를 냉각 및 액화시킨다.
열교환기(21)에서 냉각되어 적어도 부분적으로 액화된 증발가스(LBOG)는 감압수단으로서의 팽창밸브(22)를 통과하면서 감압되어 기액 혼합상태로 기액분리기(23)에 공급된다. 팽창밸브(22)를 통과하면서 LBOG는 대략 상압으로 감압(예컨대 3바로 감압)될 수 있다. 액화된 증발가스는 기액분리기(23)에서 기체와 액체 성분이 분리되어, 액체성분, 즉 LNG는 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 이송되고, 기체성분, 즉 증발가스는 증발가스 재순환라인(L5)을 통해 저장탱크(11)로부터 배출되어 압축기(13)로 공급되는 증발가스에 합류된다. 더욱 상세하게는, 증발가스 재순환라인(L5)은 기액분리기(23)의 상단으로부터 연장되어 증발가스 공급라인(L1)에서 열교환기(21)보다 상류측에 연결된다.
감압된 증발가스가 원활하게 저장탱크(11)에 복귀할 수 있도록, 또한 감압된 증발가스 중 기체 성분을 증발가스 재순환 라인(L5)을 통해 원활하게 증발가스 공급라인(L1)에 합류시킬 수 있도록, 감압수단에 의한 감압 이후의 증발가스의 압력은 저장탱크(11)의 내부압력보다는 높게 설정되는 것이 유리하다.
위에서는 설명의 편의상 열교환기(21)가 증발가스 복귀라인(L3)에 설치된 것으로 설명하였으나, 실제로 열교환기(21)에서는 증발가스 공급라인(L1)을 통해 이송되고 있는 증발가스의 제1 스트림과 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림 사이에 열교환이 이루어지고 있으므로, 열교환기(21)는 증발가스 공급라인(L1)에 설치된 것이기도 하다.
증발가스 재순환라인(L5)에는 또 다른 팽창밸브(24)가 더 설치될 수 있으며, 그에 따라 기액분리기(23)로부터 배출된 기체 성분은 팽창밸브(24)를 통과하면서 감압될 수 있다. 또한 열교환기(21)에서 액화된 후 기액분리기(23)로 공급되는 증발가스의 제3 스트림과 기액분리기(23)에서 분리되어 증발가스 재순환라인(L5)을 통해 이송되는 기체 성분을 열교환시켜 제3 스트림을 더욱 냉각시킬 수 있도록 증발가스 재순환라인(L5)에는 냉각기(25)가 설치된다. 즉, 냉각기(25)에서는 고압 액체 상태의 증발가스를 저압 극저온 기체 상태의 천연가스로 추가 냉각시킨다.
본 실시예에 따르면, 기액분리기(23)로부터 배출된 기체 성분을 감압시킨 후 압축기(13)에 공급되고 있는 증발가스의 제1 스트림에 합류시켜 함께 압축기에 공급하는데, 압축기로 기체를 압축하는 경우에 일정량의 유량까지는 압축기의 전력 소모가 일정하게 유지되다가 이후 전력 소모가 증가하게 되므로, 전력 소모가 일정하게 유지되는 수준까지는 유량이 추가되더라도 전력 소모는 증가하지 않는다. 따라서 전력 소모가 일정하게 유지되는 수준에서는 기액분리기로부터 배출된 기체 성분을 추가로 압축기에 공급하더라도 추가적인 전력 소모 없이 효과적으로 증발가스를 처리할 수 있다.
여기에서, 설명의 편의상 냉각기(25)가 증발가스 재순환라인(L5)에 설치된 것으로 설명하였으나, 실제로 냉각기(25)에서는 증발가스 복귀라인(L3)을 통해 이송되고 있는 증발가스의 제3 스트림과 증발가스 재순환라인(L5)을 통해 이송되고 있는 기체 성분 사이에 열교환이 이루어지고 있으므로, 냉각기(25)는 증발가스 복귀라인(L3)에 설치된 것이기도 하다.
도 3에 도시된 바와 같이, 본 실시예의 변형예에 따르면 냉각기(25)가 생략되도록 시스템이 구성될 수 있다. 냉각기(25)를 설치하지 않을 경우 전체 시스템의 효율이 약간 저하될 수는 있지만, 배관의 배치와 시스템의 운용이 용이하고 냉각기의 초기 설치비 및 유지보수비가 절감되는 이점이 있다.
한편, 저장탱크(11)에서 발생하는 증발가스의 양이 저속 2행정 저압가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 증발가스가 발생할 것으로 예상되는 경우에는, 압축기(13)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L7, L8)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 저압으로 가압된 천연가스를 연료로서 사용할 수 있는 GCU(7)나, 보조 엔진(5)(예컨대 DF Generator(DFDG), 가스 터빈 등)이 사용될 수 있다. 압축기(13)의 중간 단에서 증발가스 분기라인(L7, L8)을 통하여 분기하는 증발가스의 압력은 대략 5 ~ 10 bara 정도일 수 있다.
이상 설명한 바와 같은 본 발명의 제2 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
또한 본 발명의 제2 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
도 2에는 압축된 BOG를 열교환기(21)에 공급하기 위한 증발가스 복귀라인(L3)이 압축기(13)의 후단에서 분기되는 것으로 예시하고 있지만, 증발가스 복귀라인(L3)은 전술한 증발가스 분기라인(L7, L8)과 마찬가지로 압축기(13)에서 단계적으로 압축되고 있는 도중의 증발가스를 분기시킬 수 있도록 설치될 수 있다. 도 4에는 2개의 실린더에 의해 2단 압축된 증발가스를 분기시키는 변형예가 도시되어 있다. 이때 압축기(13)의 중간 단에서 분기하는 증발가스의 압력은 대략 5 ~ 10 bara 정도일 수 있다.
특히, 5개의 실린더를 포함하되 전단 3개의 실린더는 무급유 윤활(oil-free) 방식으로 동작하고 후단 2개의 실린더는 급유 윤활(oil-lubricated) 방식으로 동작하는 부카르트 사의 압축기를 사용할 경우, 압축기 후단이나 4단 이상에서 BOG를 분기시킬 때는 오일 필터를 거쳐 BOG가 이송되도록 구성할 필요가 있으나 3단 이하에서 분기시킬 때는 오일 필터를 사용할 필요가 없다는 점에서 유리할 수 있다.
(제3 실시예)
도 5에는 본 발명의 제3 실시예에 따른 선박의 액화가스 처리 시스템의 개략 구성도가 도시되어 있다.
제3 실시예에 따른 액화가스 처리 시스템은, 메인 엔진(3)이나 보조 엔진(5) 등에서 요구하는 증발가스의 양이 자연적으로 발생하는 증발가스의 양보다 많을 경우, LNG를 강제로 기화시켜 사용할 수 있도록 구성된다는 점에서 제2 실시예의 액화가스 처리 시스템과 상이하다. 이하에서는 제2 실시예의 액화가스 처리 시스템과의 차이점만을 더욱 상세하게 설명한다. 또한 제2 실시예와 동일한 구성요소에는 동일한 부재번호를 부여하고, 그에 대한 상세한 설명은 생략한다.
본 발명의 제3 실시예에 따른, 선박의 액화가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 공급되거나, 압축기(13)에서 압축된 후 또는 다단-압축되는 도중에 보조 엔진(5), 예컨대 DF 엔진(DF Generator)에 공급되어 연료로서 사용된다는 점에 있어서는 제2 실시예와 마찬가지이다.
다만, 제3 실시예의 액화가스 처리 시스템은, 메인 엔진(3)과 보조 엔진(5)에서 요구하는 연료로서의 증발가스의 양이 저장탱크(11)에서 자연적으로 발생하는 증발가스의 양보다 많을 경우, 저장탱크(11)에 저장된 LNG를 강제기화기(31)에서 기화시켜 압축기(13)에 공급할 수 있도록 강제기화 라인(L11)을 구비한다.
제3 실시예에서와 같이 강제기화 라인(L11)을 구비하면, 저장탱크에 저장되어 있는 LNG의 양이 적어 증발가스의 발생량이 적거나, 각종 엔진에서 요구하는 연료로서의 증발가스의 양이 자연적으로 발생하는 증발가스의 양보다 많은 경우에도 안정적으로 연료를 공급할 수 있게 된다.
(제4 실시예)
도 6에는 본 발명의 제4 실시예에 따른, 선박의 액화가스 처리 시스템의 개략 구성도가 도시되어 있다.
제4 실시예에 따른 액화가스 처리 시스템은, 팽창밸브 대신에, 감압수단으로서 팽창기(Expander)(52)를 사용한다는 점에서 제2 실시예의 액화가스 처리 시스템과 상이하다. 즉, 제4 실시예에 따르면, 열교환기(21)에서 냉각되어 적어도 부분적으로 액화된 증발가스(LBOG)는, 팽창기(Expander)(52)를 통과하면서 감압되어 기액 혼합상태로 기액분리기(23)에 공급된다. 이하에서는 제2 실시예의 액화가스 처리 시스템과의 차이점만을 더욱 상세하게 설명한다. 또한 제2 실시예와 동일한 구성요소에는 동일한 부재번호를 부여하고, 그에 대한 상세한 설명은 생략한다.
팽창기(52)는 고압의 액화된 증발가스를 저압으로 팽창시키면서 에너지를 생산한다. 팽창기(52)를 통과하면서 LBOG는 대략 상압으로 감압될 수 있다. 액화된 증발가스는 기액분리기(23)에서 기체와 액체 성분이 분리되어, 액체성분, 즉 LNG는 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 이송되고, 기체성분, 즉 증발가스는 증발가스 재순환라인(L5)을 통해 저장탱크(11)로부터 배출되어 압축기(13)로 공급되는 증발가스에 합류된다. 더욱 상세하게는, 증발가스 재순환라인(L5)은 기액분리기(23)의 상단으로부터 연장되어 증발가스 공급라인(L1)에서 열교환기(21)보다 상류측에 연결된다.
증발가스 재순환라인(L5)에는 감압수단, 예컨대 팽창밸브(24)가 더 설치될 수 있으며, 그에 따라 기액분리기(23)로부터 배출된 기체 성분은 팽창밸브(24)를 통과하면서 감압될 수 있다.
도 7 및 도 8에는 본 발명의 제4 실시예의 변형예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 6에 도시된 제4 실시예에는 압축된 BOG를 열교환기(21)에 공급하기 위한 증발가스 복귀라인(L3)이 압축기(13)의 후단에서 분기되는 것으로 예시하고 있다. 하지만, 전술한 증발가스 분기라인(L7, L8)이나 혹은 도 4를 참조하여 설명한 제2 실시예의 변형예에서의 증발가스 복귀라인과 마찬가지로, 도 7에 도시된 바와 같은 제4 실시예의 변형예에 따르면, 증발가스 복귀라인(L3)은 압축기(13)에서 단계적으로 압축되고 있는 도중의 증발가스를 분기시킬 수 있도록 설치될 수 있다. 도 7에는 2개의 실린더에 의해 2단 압축된 증발가스를 분기시키는 변형예가 도시되어 있다.
또한, 도 7에 도시된 제4 실시예의 제1 변형예를 참조하면, 제4 실시예에 따른 액화가스 처리 시스템은, 열교환기(21)를 통과하면서 냉각 및 액화된 증발가스를 추가적으로 냉각하기 위한 열교환기로서의 냉각기(25)(도 6 참조)가 생략되도록 변형될 수 있다. 냉각기(25)를 설치하지 않을 경우 전체 시스템의 효율이 약간 저하될 수는 있지만, 배관의 배치와 시스템의 운용이 용이하고 냉각기의 초기 설치비 및 유지보수비가 절감되는 이점이 있다.
또한, 도 8에 도시된 제4 실시예의 제2 변형예를 참조하면, 제4 실시예에 따른 액화가스 처리 시스템은, 감압수단으로서의 팽창기(52)와 팽창밸브(55)가 병렬로 배치되도록 변형될 수 있다. 이때, 병렬로 배치된 팽창기(52) 및 팽창밸브(55)는, 열교환기(21)와 기액 분리기(23) 사이에 위치된다. 팽창밸브(55)를 병렬로 설치하기 위해서, 그리고 필요시 팽창기(52) 혹은 팽창밸브(55)만을 사용하기 위해서, 열교환기(21)와 기액 분리기(23) 사이의 증발가스 복귀라인(L3)으로부터 분기하여 팽창기(52)를 우회하는 바이패스 라인(L31)이 설치된다. 팽창기(52)만을 사용하여 액화된 증발가스를 팽창시킬 경우에는 팽창밸브(55)를 폐쇄하고, 팽창밸브(55)만을 사용하여 액화된 증발가스를 팽창시킬 경우에는 증발가스 복귀라인(L3)에서 팽창기(52)의 전단과 후단에 각각 설치된 개폐밸브(53, 54)를 폐쇄한다.
이상 설명한 바와 같은 본 발명의 제4 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 이전의 실시예에 따른 액화가스 처리 시스템 및 처리 방법과 마찬가지로, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
본 발명의 제4 실시예에 따른 액화가스 처리 시스템 및 처리 방법이 LNG 운반선이나 LNG RV와 같은 선박 이외에 LNG FPSO, LNG FSRU, BMPP와 같은 플랜트에 적용된 경우에도, LNG를 저장하고 있는 저장탱크에서 발생되는 증발가스를 엔진(추진을 위한 엔진뿐만 아니라, 발전용으로 사용되는 엔진 등도 포함됨)에서 연료로서 사용하거나 재액화시킬 수 있기 때문에, 낭비되는 증발가스를 감소시키거나 없앨 수 있다.
또한 본 발명의 제4 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
(제5 실시예)
도 9에는 본 발명의 제5 실시예에 따른, 선박의 액화가스 처리 시스템의 개략 구성도가 도시되어 있다.
제5 실시예에 따른 액화가스 처리 시스템은, 열교환기(21)에서 액화된 후 감압수단(예컨대 팽창밸브(22))에서 갑압된 증발가스를, 기액분리기(23)를 거치지 않고, 그대로 저장탱크(11)에 복귀시키도록 구성된다는 점에서 제2 실시예의 액화가스 처리 시스템과 상이하다. 이하에서는 제2 실시예의 액화가스 처리 시스템과의 차이점만을 더욱 상세하게 설명한다. 또한 제2 실시예와 동일한 구성요소에는 동일한 부재번호를 부여하고, 그에 대한 상세한 설명은 생략한다.
본 실시예에 따르면, 액화된 후 감압되면서 기체 성분(즉, 플래시 가스)과 액체 성분(즉, 액화증발가스)이 혼합된 상태로 된 증발가스(즉, 2상(two phase) 증발가스)를, 증발가스 복귀라인(L3)을 통하여 저장탱크(11)에 복귀시킨다. 증발가스 복귀라인(L3)은, 저장탱크(11)에 복귀하는 2상 증발가스가 저장탱크(11)의 바닥으로 분사되도록 구성될 수 있다.
저장탱크(11)의 바닥으로 분사된 2상 증발가스 중 기체 성분(즉, 플래시 가스)는, 저장탱크(11)에 저장되어 있는 LNG에 부분적으로 녹아들어가거나 LNG의 냉열에 의해 액화될 수 있다. 또, 녹거나 액화되지 않은 플래시 가스(BOG)는, 저장탱크에서 추가로 발생하는 BOG(NBOG)와 함께 증발가스 공급라인(L1)을 통하여 다시 저장탱크(11)로부터 배출된다. 새롭게 발생한 BOG와 함께 저장탱크(11)로부터 배출된 플래시 가스는 증발가스 공급라인(L1)을 따라 압축기(13)로 재순환된다.
본 실시예에 따르면, 팽창 후 2상 상태의 증발가스를 저장탱크(11)의 바닥에 분사시킴으로써, 저장탱크(11)에 저장되어 있는 LNG에 의해, 액화되는 증발가스의 양을 증가시킬 수 있으며, 기액분리기 등의 설비를 생략하여 설치비 및 운용비 등을 절감할 수 있다는 장점이 있다.
도 10에는 본 발명의 제5 실시예의 제1 변형예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 10에 도시된 제5 실시예의 제1 변형예는, 감압수단으로서 팽창밸브 대신에 팽창기(Expander)(52)를 사용한다는 점에서만 도 9에 도시된 제5 실시예에 따른 액화가스 처리 시스템과 상이하다. 즉, 제5 실시예의 제1 변형예에 따르면, 열교환기(21)에서 냉각되어 액화된 증발가스(LBOG)는, 팽창기(Expander)(52)를 통과하면서 감압되어 기액 혼합상태로 된 후, 2상 상태로 저장탱크(11)에 복귀한다.
도 11에는 본 발명의 제5 실시예의 제2 변형예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 11에 도시된 제5 실시예의 제2 변형예는, 압축장치로서 다단압축기 대신에 복수개의 압축기(예를 들어, 제1 압축기(13a) 및 제2 압축기(13b))를 사용한다는 점에서 도 9에 도시된 제5 실시예에 따른 액화가스 처리 시스템과 상이하다.
본 발명의 제5 실시예의 제2 변형예에 따른 액화가스 처리 시스템에 따르면, 액화가스를 저장하는 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 공급라인(L1)을 따라 이송되어 제1 압축기(13a)에 공급된다. 제1 압축기(13a)에서 압축된 증발가스는 대략 5 ~ 40 bara 정도로 압축된 후 연료 공급라인(L2)을 따라 수요처, 즉 LNG를 연료로 사용하는 추진 시스템(예를 들어, DFDE 또는 저속 2행정 저압가스 분사 엔진)에 공급될 수 있다. 수요처에 공급되고 남는 증발가스는 부스터 압축기로서의 제2 압축기(13b)에 의해 추가로 압축될 수 있으며, 그 다음, 전술한 제5 실시예에서와 마찬가지로, 증발가스 복귀라인(L3)을 따라 이동하면서 액화되어 저장탱크(11)에 복귀할 수 있다.
도시하지는 않았지만, 가압된 증발가스를 수요처에 공급하기 위해 분기하는 연료 공급라인(L2)은, 제2 압축기(13b)의 하류측에서 분기하도록 구성될 수도 있다.
제1 압축기(13a)는 하나의 압축 실린더(14a)와 하나의 중간 냉각기(15a)를 포함하는 1단 압축기일 수 있다. 제2 압축기(13b)는 하나의 압축 실린더(14b)와 하나의 중간 냉각기(15b)를 포함하는 1단 압축기일 수 있으며, 필요하다면 복수개의 압축 실린더와 복수개의 중간 냉각기를 포함하는 다단 압축기가 활용될 수도 있다.
제1 압축기(13a)에서 압축된 증발가스는 대략 5 ~ 40 bara 정도까지 압축된 후 연료 공급라인(L2)을 통하여 수요처, 예를 들어 DF 엔진(즉, DFDE) 등의 보조 엔진(5)이나 메인 엔진(3)(즉, 저속 2행정 저압가스 분사 엔진)에 공급되는데, 엔진에서 필요로 하는 연료의 필요량에 따라 증발가스 전부를 엔진에 공급할 수도 있고, 증발가스 중 일부만을 엔진에 공급할 수도 있다.
즉, 저장탱크(11)로부터 배출되어 제1 압축기(13a)에 공급되는 증발가스(즉, 저장탱크에서 배출된 증발가스 전체)를 제1 스트림이라 할 때, 증발가스의 제1 스트림을 제1 압축기(13a)의 하류측에서 제2 스트림과 제3 스트림으로 나누어, 제2 스트림은 추진 시스템인 DF 엔진(즉, DFDE)이나 저속 2행정 저압가스 분사 엔진에 연료로서 공급하고 제3 스트림은 액화시켜 저장탱크로 복귀시키도록 구성할 수 있다.
이때, 제2 스트림은 연료 공급라인(L2)을 통해 DFDE에 공급되고, 제3 스트림은 제2 압축기(13b)에서 더욱 가압된 후 액화 및 감압과정을 거쳐 증발가스 복귀라인(L3)을 통해 저장탱크(11)로 복귀된다. 압축된 증발가스의 제3 스트림을 액화시킬 수 있도록 증발가스 복귀라인(L3)에는 열교환기(21)가 설치된다. 열교환기(21)에서는 압축된 증발가스의 제3 스트림을 저장탱크(11)로부터 배출된 후 제1 압축기(13a)로 공급되는 증발가스의 제1 스트림과 열교환시킨다.
압축되기 전의 증발가스의 제1 스트림의 유량이 제3 스트림의 유량보다 많기 때문에, 압축된 증발가스의 제3 스트림은 압축되기 전의 증발가스의 제1 스트림으로부터 냉열을 공급받아 냉각(즉 적어도 부분적으로 액화)될 수 있다. 이와 같이 열교환기(21)에서는 저장탱크(11)로부터 배출된 직후의 극저온의 증발가스와 압축기(13)에서 압축된 고압 상태의 증발가스를 열교환시켜 이 고압 상태의 증발가스를 냉각(액화)시킨다.
열교환기(21)에서 냉각된 증발가스(LBOG)는 감압수단으로서의 팽창밸브(22)(예를 들어, J-T 밸브)를 통과하면서 감압된 후, 계속해서 기액 혼합상태로 저장탱크(11)에 복귀한다. 팽창밸브(22)를 통과하면서 LBOG는 대략 상압으로 감압(예컨대 3바로 감압)될 수 있다.
한편, 저장탱크(11)에서 발생하는 증발가스의 양이 메인 엔진(3)이나 보조 엔진(5) 등에서 요구하는 연료량보다 많아 잉여의 증발가스가 발생할 것으로 예상되는 경우(예를 들어, 엔진 정지시나 저속 운항시 등)에는, 제1 압축기(13a)에서 압축된 증발가스를, 증발가스 분기라인(L7)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 천연가스를 연료로서 사용할 수 있는 GCU(7)나, 가스 터빈 등이 사용될 수 있다.
도 12에는 본 발명의 제5 실시예의 제3 변형예에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
도 12에 도시된 제5 실시예의 제3 변형예는, 감압수단으로서 팽창밸브 대신에 팽창기(Expander)(52)를 사용한다는 점에서만 도 11에 도시된 제5 실시예의 제2 변형예에 따른 액화가스 처리 시스템과 상이하다. 즉, 제5 실시예의 제3 변형예에 따르면, 열교환기(21)에서 냉각되어 액화된 증발가스(LBOG)는, 감압수단으로서의 팽창기(Expander)(52)를 통과하면서 감압되어 기액 혼합상태로 된 후, 2상 상태로 저장탱크(11)에 복귀한다.
이상 설명한 바와 같은 본 발명의 제5 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 이전의 실시예에 따른 액화가스 처리 시스템 및 처리 방법과 마찬가지로, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
본 발명의 제5 실시예에 따른 액화가스 처리 시스템 및 처리 방법이 LNG 운반선이나 LNG RV와 같은 선박 이외에 LNG FPSO, LNG FSRU, BMPP와 같은 플랜트에 적용된 경우에도, LNG를 저장하고 있는 저장탱크에서 발생되는 증발가스를 엔진(추진을 위한 엔진뿐만 아니라, 발전용으로 사용되는 엔진 등도 포함됨)에서 연료로서 사용하거나 재액화시킬 수 있기 때문에, 낭비되는 증발가스를 감소시키거나 없앨 수 있다.
또한 본 발명의 제5 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
(제6 실시예)
도 13에는 본 발명의 제6 실시예에 따른 액화가스 처리 시스템이 도시되어 있다.
도 13에 도시된 본 발명의 제6 실시예에 따른 액화가스 처리 시스템은, 도 1에 도시한 본 발명의 제1 실시예에 따른 액화가스 처리 시스템(즉, LNG 펌프(120)에 의해 LNG를 가압하여 추진 시스템에 연료로서 공급하는 라인과, 압축기(150)에 의해 BOG를 가압하여 추진 시스템에 연료로서 공급하는 라인을 갖는 하이브리드 시스템)과, 도 2에 도시한 본 발명의 제2 실시예에 따른 액화가스 처리 시스템이 통합되어 구성된다.
도시하지는 않았지만, 본 발명에 의하면, 도 3 내지 도 12에 도시한 제3 내지 제5 실시예에 따른 각각의 액화가스 처리 시스템이 도 13에 도시된 것처럼 하이브리드 시스템(도 13의 L23, L24, L25 참조)과 통합될 수 있음은 물론이다.
도 13에 도시된 본 발명의 선박의 액화가스 처리 시스템은, 메인 엔진(3)으로서 저속 2행정 저압가스 분사 엔진을 포함하고 있으며, 보조 엔진(5)으로서 DF 엔진(DF Generator; DFDG)을 포함하고 있다. 통상, 메인 엔진은 선박의 운항을 위해 추진용으로 사용되고, 보조 엔진은 선박 내부에 설치된 각종 장치 및 설비에 전력을 공급하기 위해 발전용으로 사용되지만, 본 발명은 메인 엔진과 보조 엔진의 용도에 의해 한정되는 것은 아니다. 메인 엔진과 보조 엔진은 각각 복수개가 설치될 수 있다.
본 실시예에 따른 선박의 액화가스 처리 시스템은, 엔진들(즉, 메인 엔진(3)과 보조 엔진(5))에 대해 저장탱크(11)에 수용되어 있는 천연가스(즉, 기체 상태의 BOG와 액체 상태의 LNG)를 연료로서 공급할 수 있도록 구성된다.
기체 상태의 BOG를 연료가스로서 공급하기 위해 본 실시예에 따른 선박의 액화가스 처리 시스템은, 저장탱크(11)에 수용되어 있는 BOG를 메인 엔진(3)에 공급하는 증발가스 공급라인으로서의 BOG 주 공급라인(L1)과, 이 BOG 주 공급라인(L1)으로부터 분기하여 BOG를 보조 엔진(5)에 공급하는 BOG 부 공급라인(L8)을 포함한다. BOG 주 공급라인(L1)은, 이전의 실시예에서의 증발가스 공급라인(L1)과 동일한 구성이나, 도 13을 참조하여 이루어지는 설명에서는 DF 엔진에 대한 증발가스 공급라인(즉, BOG 부 공급라인(L8))과의 구별을 위해 BOG 주 공급라인(L1)이라고 호칭한다. 또한, BOG 부 공급라인(L8)은, 이전의 실시예에서의 증발가스 분기라인(L8)과 동일한 구성이나, 도 13을 참조하여 이루어지는 설명에서는 BOG 주 공급라인(L1)과의 구별을 위해 BOG 부 공급라인(L8)이라고 호칭한다.
또, 액체 상태의 LNG를 연료가스로서 공급하기 위해 본 실시예에 따른 선박의 액화가스 처리 시스템은, 저장탱크(11)에 수용되어 있는 LNG를 메인 엔진(3)에 공급하는 LNG 주 공급라인(L23)과, 이 LNG 주 공급라인(L23)으로부터 분기하여 LNG를 보조 엔진(5)에 공급하는 LNG 부 공급라인(L24)을 포함한다.
본 실시예에 따르면, BOG 주 공급라인(L1)에는 BOG를 압축하기 위한 압축기(13)가 설치되고, LNG 주 공급라인(L23)에는 LNG를 압축하기 위한 펌프(43)가 설치된다.
액화가스를 저장하는 저장탱크(11)에서 발생되어 BOG 배출밸브(41)를 통해 배출된 증발가스(NBOG)는, BOG 주 공급라인(L1)을 따라 이송되어 압축기(13)에서 압축된 후 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 공급된다. 증발가스는 압축기(13)에 의해 대략 5 내지 40 bara 정도의 저압으로 압축된 후 메인 엔진(3)에 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 저장탱크(11) 내부의 증발가스를 배출시킨다.
압축기(13)는, 하나 이상의 압축 실린더(14)와, 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함할 수 있다. 도 13에서는 3개의 압축 실린더(14)와 3개의 중간 냉각기(15)를 포함하는 다단 압축의 압축기(13)가 예시되어 있지만, 압축 실린더와 중간 냉각기의 개수는 필요에 따라 변경될 수 있다. 또한, 하나의 압축기 내에 복수개의 압축 실린더가 배열된 구조 이외에, 복수개의 압축기를 직렬로 연결한 구조를 가지도록 변경될 수도 있다.
압축기(13)에서 압축된 증발가스는 BOG 주 공급라인(L1)을 통하여 메인 엔진(3)에 공급되는데, 메인 엔진에서 필요로 하는 연료의 필요량에 따라 압축된 증발가스 전부를 메인 엔진(3)에 공급할 수도 있고, 압축된 증발가스 중 일부만을 메인 엔진(3)에 공급할 수도 있다.
보조 엔진(5)인 DF 엔진에 연료가스를 공급하기 위한 부 BOG 공급라인(L8)은 주 BOG 공급라인(L1)으로부터 분기된다. 더욱 상세하게는, 부 BOG 공급라인(L8)은 압축기(13)에서 다단-압축되고 있는 도중의 증발가스를 분기해 낼 수 있도록 주 BOG 공급라인(L1)으로부터 분기된다. 도 13에는 2단 압축된 BOG를 분기시켜 그 일부를 부 BOG 공급라인(L8)을 통해 보조 엔진(5)으로 공급하는 것으로 도시하고 있지만, 이는 예시일 뿐이며, 1단 혹은 3단 압축된 BOG를 분기시켜 부 BOG 공급라인을 통해 보조 엔진 등으로 공급할 수 있도록 시스템을 구성할 수도 있다.
전술한 바와 같이, LNG가 가열되면 액화온도가 상대적으로 낮은 메탄 성분이 우선적으로 기화되기 때문에, 증발가스의 경우에는 메탄 함유량이 높아 그대로 DF 엔진에 연료로서 공급될 수 있다. 따라서, BOG 주 공급라인 및 BOG 부 공급라인에는 메탄가 조절을 위한 장치가 별도로 설치될 필요가 없다.
한편, 저장탱크(11)에서 발생하는 증발가스의 양이 메인 엔진과 보조 엔진에서 요구하는 연료량보다 많아 잉여의 증발가스가 발생할 것으로 예상되는 경우에는, 본 발명의 액화가스 처리 시스템을 통하여 증발가스를 재액화시켜 저장탱크에 복귀시킬 수 있다.
재액화용량을 초과하는 증발가스가 발생하는 경우에는, 압축기(13)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L7)을 통하여 분기시켜 BOG 소비수단에서 사용할 수 있다. 증발가스 소비수단으로서는 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 GCU(7), 가스 터빈 등이 사용될 수 있다. 증발가스 분기라인(L7)은, 도 13에 도시된 바와 같이, BOG 부 공급라인(L8)에서 분기될 수 있다.
압축기(13)에서 압축된 후 증발가스 공급라인(L1)을 통하여 메인 엔진(3)에 공급되는 증발가스 중 적어도 일부를 증발가스 복귀라인(L3)을 통해 처리, 즉 재액화시켜 저장탱크(11)로 복귀시키는 과정은, 도 2를 참조하여 이미 전술한 바와 마찬가지이므로 상세한 설명은 생략한다.
도 13에는 압축된 BOG를 열교환기(21)에 공급하기 위한 증발가스 복귀라인(L3)이 압축기(13)의 후단에서 분기되는 것으로 예시하고 있지만, 증발가스 복귀라인(L3)은 전술한 증발가스 분기라인(L7)이나 증발가스 분기라인으로서의 BOG 부 공급라인(L8)과 마찬가지로 압축기(13)에서 단계적으로 압축되고 있는 도중의 증발가스를 분기시킬 수 있도록 설치될 수 있다. 도 13에는 2개의 실린더에 의해 2단 압축된 증발가스를 분기시키는 변형예가 도시되어 있다. 이때 압축기(13)의 중간 단에서 분기하는 증발가스의 압력은 대략 5 ~ 10 bara 정도일 수 있다.
LNG 주 공급라인(L23)에는, 저장탱크(11)의 내부에 설치되어 LNG를 저장탱크(11)의 외부로 배출시키기 위한 배출펌프(12)와, 이 배출펌프(12)에서 1차적으로 압축된 LNG를 MEGI 엔진에서 요구하는 압력까지 2차적으로 압축시키기 위한 펌프(43)가 설치되어 있다. 배출펌프(12)는 각 저장탱크(11)마다 내부에 하나씩 설치될 수 있다. 펌프(43)는 도 13에는 하나만 도시되어 있으나, 필요에 따라 복수의 펌프가 병렬로 연결되어 사용될 수 있다.
액화가스를 저장하는 저장탱크(11)에서 배출펌프(12)를 통해 배출된 LNG는, LNG 주 공급라인(L23)을 따라 이송되어 펌프(43)에 공급된다. 계속해서 LNG는 펌프(43)에서 저압으로 압축된 후 히터(44)에 공급되어 기화된다. 기화된 LNG는 연료로서 메인 엔진(3), 예컨대 저속 2행정 저압가스 분사 엔진에 공급된다.
보조 엔진(5)인 DF 엔진에 연료가스를 공급하기 위한 부 LNG 공급라인(L24)은 주 LNG 공급라인(L23)으로부터 분기된다. 예를 들면, 부 LNG 공급라인(L24)은 펌프(43)에서 압축되기 전의 LNG를 분기해 낼 수 있도록 주 LNG 공급라인(L23)으로부터 분기될 수 있다.
한편, 도 13에서는 부 LNG 공급라인(L24)이 펌프(43)의 상류측에서 주 LNG 공급라인(L23)으로부터 분기하는 것으로 도시되어 있지만, 변형예에 따르면 부 LNG 공급라인(L24)이 펌프(43)의 하류측에서 주 LNG 공급라인(L23)으로부터 분기하는 것으로 변형될 수 있다. 다만, LNG 공급라인(L24)이 펌프(43)의 하류측에서 분기하는 경우에는, LNG가 펌프(43)에 의해 추가적으로 가압된 상태이므로 보조 엔진에 연료로서의 LNG를 공급하기 전에 감압수단에 의해 보조 엔진에서 요구하는 압력으로 LNG의 압력을 하강시킬 필요가 있을 수도 있다. 도 13에 도시된 실시예에서와 같이 부 LNG 공급라인(L24)이 펌프(43)의 상류측에서 분기하는 경우에는 추가의 감압수단을 설치할 필요가 없다는 점에서 유리하다.
부 LNG 공급라인(L24)에는 히터(45), 기액분리기(46), 및 히터(47)가 설치되어, 연료로서 공급되는 LNG의 메탄가 및 온도를 DF 엔진에서 요구하는 값으로 조절할 수 있다. 도 13에는, 보조 엔진(5)에 공급되는 연료에 대해서만 메탄가를 조절하고, 메인 엔진(3)에 공급되는 연료에 대해서는 메탄가를 조절할 필요가 없는 경우가 예시되어 있다.
전술한 바와 같이, LNG의 경우에는, 메탄 함유량이 증발가스에 비해 상대적으로 낮아 DF 엔진에서 요구하는 메탄가보다 낮고, 산지에 따라 LNG를 구성하는 탄화수소 성분(메탄, 에탄, 프로판, 부탄 등)들의 비율이 다르기 때문에, 그대로 기화시켜 연료로서 DF 엔진에 공급하기에 적절하지 않다.
메탄가를 조절하기 위해, LNG는 히터(45)에서 가열되어 부분적으로만 기화된다. 부분적으로 기화되어 기체 상태(즉, 천연가스)와 액체 상태(즉, LNG)가 혼합된 상태인 연료가스는 기액분리기(46)에 공급되어, 기체와 액체로 분리된다. 발열량이 높은 중탄화수소(HHC) 성분의 기화온도가 상대적으로 높기 때문에, 부분적으로 기화된 연료가스에서 기화되지 않은 남아있는 액체 상태의 LNG에는 중탄화수소 성분의 비율이 상대적으로 높아진다. 따라서, 기액분리기(46)에서 액체 성분을 분리해 냄으로써, 즉 중탄화수소 성분을 분리해 냄으로써, 연료가스의 메탄가는 높아질 수 있다.
LNG에 함유된 탄화수소 성분의 비율과, 엔진에서 요구하는 메탄가 등을 감안하여, 적절한 메탄가를 얻기 위해서 히터(45)에서의 가열 온도가 조절될 수 있다. 히터(45)에서의 가열 온도는 대략 섭씨 -80 내지 -120도의 범위 내에서 정해질 수 있다. 기액분리기(46)에서 연료가스로부터 분리된 액체 성분은 액체성분 복귀라인(L5)을 통해 저장탱크(11)에 복귀된다. 증발가스 복귀라인(L3)과 액체성분 복귀라인(L25)은 합류된 후 저장탱크(11)까지 연장될 수 있다.
메탄가가 조절된 연료가스는 LNG 부 공급라인(L24)을 통해 히터(47)에 공급되며, 보조 엔진(5)에서 요구하는 온도로 더욱 가열된 후 보조 엔진에 연료로서 공급된다. 보조 엔진(5)이 예를 들어 DFDG인 경우, 요구되는 메탄가는 일반적으로 80 이상이다. 예를 들어, General LNG(통상, 메탄: 89.6%, 질소: 0.6%)의 경우, 중탄화수소 성분을 분리해 내기 전의 메탄가는 71.3이며, 그때의 LHV(lower heating value)는 48,872.8 kJ/kg(1 atm, saturated vapor 기준)이다. 이 General LNG를 7 bara로 가압한 후 섭씨 -120 도까지 가열하여 중탄화수소 성분을 제거하면, 메탄가는 95.5로 높아지며, 그때의 LHV는 49,265.6 kJ/kg 이다.
본 실시예에 따르면, 엔진(즉, 메인 엔진(3) 및 보조 엔진(5))에 연료가스를 공급하는 경로가 2개(더욱 상세하게는 메인 엔진과 보조 엔진 각각에 대해 2개)로 이루어진다. 즉, 연료가스는 압축기(13)를 통해 압축된 후 엔진에 공급될 수도 있고, 펌프(43)를 통해 압축된 후 엔진에 공급될 수도 있다.
특히 LNG 운반선, LNG RV 등과 같은 선박은, LNG를 생산지로부터 소비지로 수송하기 위해 사용되므로, 생산지에서 소비지로 운항할 때에는 저장탱크에 LNG를 가득 적재한 레이든(Laden) 상태로 운항하고, LNG를 하역한 후 다시 생산지로 돌아갈 때에는 저장탱크가 거의 비어있는 밸러스트(Ballast) 상태로 운항한다. 레이든 상태에서는 LNG의 양이 많아 상대적으로 증발가스 발생량도 많고, 밸러스트 상태에서는 LNG의 양이 적어 상대적으로 증발가스 발생량도 적다.
저장탱크의 용량, 외부 온도 등의 조건에 따라 다소 차이가 있으나, 예를 들어, LNG의 저장탱크 용량이 대략 130,000 내지 350,000 인 경우에 발생되는 증발가스의 양은, 레이든시 대략 3 내지 4 ton/h 이고, 밸러스트시 대략 0.3 내지 0.4 ton/h 이다. 또한, 엔진들에서 요구하는 연료가스의 양은, 메인 엔진의 경우에는 대략 1 내지 4 ton/h (평균 약 1.5 ton/h) 정도일 수 있고, 보조 엔진인 DF 엔진(DFDG)의 경우에는 대략 0.5 ton/h 이다. 한편, 최근에는 저장탱크의 단열성능이 향상됨에 따라 BOR(Boil Off Rate)이 점차 낮아지고 있는 추세이므로, BOG의 발생량도 감소하는 추세이다.
따라서, 본 실시예의 연료가스 공급 시스템과 같이 압축기 라인(즉, 도 13에서의 L1 및 L8)과 펌프 라인(즉, 도 13에서의 L23 및 L24)이 함께 갖춰진 경우, 증발가스의 발생량이 많은 레이든 상태에서는 압축기 라인을 통해 엔진들에 연료가스를 공급하고, 증발가스의 발생량이 적은 밸러스트 상태에서는 펌프 라인을 통해 엔진들에 연료가스를 공급하는 것이 유리할 수도 있다.
이와 같이 증발가스 발생량이 엔진에서의 연료 필요량보다 적은 밸러스트 상태에서, 증발가스는 보조 엔진(5)과 재액화를 통해 모두 처리하도록 시스템을 운용할 수 있다. 혹은, 밸러스트 상태에서 증발가스는 모두 재액화되어 저장탱크로 복귀하도록 시스템을 운용할 수도 있다.
통상, 압축기에 의하여 기체(BOG)를 압축하기 위해 필요한 에너지는 펌프에 의해 액체(LNG)를 압축하기 위해 필요한 에너지보다 상당히 많은 에너지가 요구되고, 기체를 압축하기 위한 압축기는 상당히 고가이고 부피 역시 많이 차지하므로, 압축기 라인 없이 펌프 라인만을 사용하는 것이 경제적일 것으로 생각될 수 있다. 예를 들어, 다단으로 구성된 한 세트의 압축기를 구동시켜 엔진에 연료를 공급하기 위해서는 2MW의 전력이 소비되는데, 펌프를 사용하면 100kW의 전력만이 소비된다. 그러나, 레이든 상태에서 펌프 라인만을 사용하여 엔진들에 연료가스를 공급할 경우, 저장탱크에서 지속적으로 발생하는 BOG를 처리하기 위해 BOG를 재액화시키기 위한 재액화 장치가 반드시 필요하며, 이 재액화 장치에서 소모하는 에너지를 함께 고려할 경우, 압축기 라인과 펌프 라인을 함께 설치하여 레이든 상태에서는 압축기 라인을 통해 연료가스를 공급하고 밸러스트 상태에서는 펌프 라인을 통해 연료가스를 공급하는 것이 유리할 수도 있다.
한편, 밸러스트 상태와 같이, 저장탱크에서 발생하는 증발가스의 양이 엔진에서 요구하는 연료량에 미치지 못하는 경우, 다단 압축기에서 증발가스를 엔진에서 요구하는 압력까지 압축시키기 않고, 다단 압축되는 도중에 부 BOG 공급라인(L8)을 통해 증발가스를 분기시켜 DF 엔진에서 연료로서 사용하는 것이 효율적일 수 있다. 즉, 3단 압축기 중 2단째의 압축 실린더만을 거쳐 증발가스를 DF 엔진에 공급한다면, 나머지 단의 압축 실린더는 공회전된다. 예를 들어, 압축기 전체를 구동시켜 증발가스를 압축시킬 경우 요구되는 전력이 2MW인 반면, 2단까지만 사용하고 나머지 단을 공회전시킬 경우 요구되는 전력은 600kW이고, 펌프를 통해 엔진에 연료를 공급할 경우 요구되는 전력은 100kW이다. 그러므로, 밸러스트 상태와 같이 BOG 발생량이 엔진에서의 연료 필요량보다 적은 경우에는 BOG는 DF 엔진 등에서 전량 소비하고 펌프를 통해 LNG를 연료로서 공급하는 것이 에너지 효율 측면에서 유리하다.
그러나, 필요에 따라서는, BOG 발생량이 엔진에서의 연료 필요량보다 적은 경우에도 압축기를 통해 BOG를 엔진에 연료로서 공급하면서 부족한 양만큼 LNG를 강제기화시켜 공급할 수도 있다. 한편, 밸러스트 상태에서는 BOG의 발생량이 적으므로, BOG를 발생할 때마다 배출시켜 소비하는 대신, 저장탱크가 일정한 압력에 도달할 때까지 BOG를 배출시키지 않고 모아두었다가 간헐적으로 배출시켜 보조 엔진 혹은 메인 엔진에 연료로서 공급할 수도 있다.
밸러스트 상태에서 선박의 엔진(메인 엔진 혹은 보조 엔진)은, 압축기(13)에 의해 압축된 BOG와 펌프(43)에 의해 압축된 LNG를, 동시에 연료로서 공급받을 수도 있다. 또한, 밸러스트 상태에서 선박의 엔진은, 압축기(13)에 의해 압축된 BOG와 펌프(43)에 의해 압축된 LNG 중 어느 하나를, 번갈아 교대로 연료로서 공급받을 수도 있다.
또한, 장비의 수리 및 교체가 용이하지 않은 선박에서는 비상시를 감안하여 중요한 설비를 2개씩 설치할 것이 요구된다(redundancy; 즉, 이원화 설계). 즉, 선박에서는, 주 설비와 동일한 기능을 수행할 수 있는 여분의 설비를 설치하여, 주 설비의 정상동작시에는 여분의 설비를 대기상태로 두고, 주 구성 장비의 고장시 그 기능을 인계받아 수행할 수 있도록 중요한 설비를 중복 설계할 것이 요구된다. 이원화 설계가 요구되는 설비로서는 주로 회전구동되는 설비, 예를 들어 압축기나 펌프 등을 들 수 있다.
이와 같이, 선박에는, 평소에는 사용되지 않으면서 오로지 이원화 요구조건만을 만족시키기 위해 각종 설비가 이중으로 설치될 필요가 있는데, 2개의 압축기 라인을 사용하는 연료가스 공급 시스템은 압축기의 설치에 많은 비용과 공간이 소요되고 사용시에 많은 에너지가 소모되는 문제가 있고, 2개의 펌프 라인을 사용하는 연료가스 공급 시스템은 증발가스의 처리(즉, 재액화)에 많은 에너지가 소모되는 문제가 있을 수 있다. 그에 비해 압축기 라인과 펌프 라인을 함께 설치한 본 발명의 연료가스 공급 시스템은 어느 한쪽의 공급라인에 문제가 발생하더라도 다른 쪽 공급라인을 통해 정상적인 운항을 계속할 수 있고, 압축기 라인을 한 개만 설치한다면 고가의 압축기를 적게 사용하면서 증발가스의 발생량에 따라 최적의 연료가스 공급 방식을 적절하게 선택하여 운용할 수 있어 최초 건조시 비용은 물론 운용비용도 절감할 수 있게 된다는 추가적인 효과를 거둘 수도 있다.
또한, 본 발명의 실시예에 따르면, 압축기 라인과 펌프 라인을 함께 설치하는 동시에, 열교환기(21)에 의해 별도의 냉매 냉동사이클을 사용하지 않고 재액화시킬 수 있도록 함으로써, 액화가스를 가장 효율적으로 사용할 수 있게 된다.
즉, 도 13에 도시된 바와 같이, 본 발명의 일 실시예에 따라 액화가스 처리 시스템과 하이브리드 연료가스 공급 시스템이 결합된 경우, LNG 운반선의 화물(즉, LNG) 운반시 발생되는 증발가스를, 엔진의 연료로서 사용하거나 재액화시켜 다시 저장탱크로 복귀시켜 저장할 수 있기 때문에, GCU 등에서 소모하여 버려지는 증발가스의 양을 감소시키거나 없게 할 수 있게 되고, 질소 등 별도의 냉매를 사용하는 재액화 장치를 설치할 필요 없이 증발가스를 재액화하여 처리할 수 있게 된다.
본 실시예에 따르면, 저장탱크의 용량이 커져 증발가스의 발생량은 많아지고 엔진의 성능이 개선되어 필요한 연료량은 감소하는 최근의 추세에도 불구하고, 엔진의 연료로서 사용하고 남는 증발가스는 재액화시켜 다시 저장탱크로 복귀시킬 수 있기 때문에 증발가스의 낭비를 막을 수 있게 된다.
특히 본 실시예에 따른 액화가스 처리 시스템 및 처리 방법에 의하면, 별도의 냉매를 사용하는 재액화 장치(즉, 질소냉매 냉동 사이클이나 혼합냉매 냉동 사이클 등)가 설치될 필요가 없으므로, 냉매를 공급 및 저장하기 위한 설비를 추가로 설치할 필요가 없어, 전체 시스템을 구성하기 위한 초기 설치비와 운용비용을 절감할 수 있다.
도 14 내지 도 17에는 본 발명의 제6 실시예의 변형예들에 따른, 선박의 액화가스 처리 시스템을 도시한 개략 구성도가 도시되어 있다.
전술한 제6 실시예에 따르면, 2개의 펌프, 즉 저장탱크(1)의 내부에 설치된 배출펌프(12)와, 저장탱크(1)의 외부에 설치된 펌프(43)에 의해, 연료를 1차 및 2차에 걸쳐 가압하도록 구성되어 있다. 그러나, 하나의 펌프만으로 메인 엔진(3)에서 요구하는 압력까지 LNG를 가압할 수 있다면, 이송 펌프(2) 및 LNG 펌프(120) 중에서 어느 하나의 펌프만이 설치될 수도 있다.
도 14에 도시된 제6 실시예의 제1 변형예는 LNG 주 공급라인(L23)에 펌프(43)가 설치되지 않는다는 점에서만 도 13에 도시된 제6 실시예에 따른 액화가스 처리 시스템과 상이하고, 도 15에 도시된 제6 실시예의 제2 변형예는 저장탱크 내에 배출펌프(12)가 설치되지 않는다는 점에서만 도 13에 도시된 제6 실시예에 따른 액화가스 처리 시스템과 상이하다.
한편, 메인 엔진(3)(예컨대, 저속 2행정 저압가스 분사 엔진)이, 보조 엔진(5)으로 사용하는 DF 엔진과 마찬가지로 적정 메탄가를 요구한다면, 연료로서 공급되는 LNG의 메탄가를 조절할 필요가 있다.
도 16에 도시된 제6 실시예의 제3 변형예는 LNG 부 공급라인(L24)과 마찬가지로 LNG 주 공급라인(L23)에도 히터(48)와 기액분리기(49)가 설치되어 있다는 점에서 도 13에 도시된 제6 실시예에 따른 액화가스 처리 시스템과 상이하다. LNG 주 공급라인(L23)에 설치된 히터(48) 및 기액분리기(49)는 LNG 부 공급라인(L24)에 설치된 히터(45) 및 기액분리기(46)와 동일한 기능을 수행하는 것이므로 상세한 설명은 생략한다.
또, 도 17에 도시된 제6 실시예의 제4 변형예는 LNG 주 공급라인(L23)에 히터(45), 기액분리기(46) 및 히터(47)가 설치되고, LNG 부 공급라인(L24)이 기액분리기(46)의 하류측(더욱 상세하게는 히터(47)의 하류측)에서 LNG 주 공급라인(L23)으로부터 분기한다는 점과, LNG 주 공급라인(L23)에 펌프(43)가 설치되지 않는다는 점에서 도 13에 도시된 제6 실시예에 따른 액화가스 처리 시스템과 상이하다. 히터(45)와 히터(47)는 연료를 가열하는 역할을 수행한다는 점에서 기본적으로 동일한 기능을 가지며, 이러한 기능을 수행하기 위해 가열방식에 있어서 동일한 구성을 가질 수도 있다. 또, 도시하지는 않았지만, 제6 실시예의 제4 변형예에 있어서도 LNG 주 공급라인(L23)에 펌프가 설치되도록 변경될 수 있음은 물론이다.
한편, 도 16 및 도 17에 도시된 제6 실시예의 제3 및 제4 변형예에 따르면, 도 3에 도시된 제2 실시예의 변형예에서와 같이, 냉각기(25)가 생략되도록 시스템이 구성될 수 있다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (3)

  1. 액화가스를 저장하고 있는 저장탱크와;
    상기 저장탱크에 저장된 액화가스를 연료로서 사용하는 엔진과;
    액화가스가 기화하여 발생한 가스를 연료가스로서 상기 엔진에 공급할 수 있는 연료 공급라인;
    을 포함하며, 상기 엔진은 저압으로 압축된 상기 연료가스를 공급받는, 선박의 액화가스 처리 시스템.
  2. 청구항 1에 있어서,
    상기 저장탱크에서 발생된 증발가스를 압축기에 의해 압축하여 상기 엔진에 연료로서 공급하는 압축기 라인과;
    상기 저장탱크에 수용된 LNG를 펌프에 의해 압축하여 상기 엔진에 연료로서 공급하는 펌프 라인;
    을 더 포함하는, 선박의 액화가스 처리 시스템.
  3. 청구항 1에 있어서,
    상기 증발가스 중 상기 엔진에 연료로서 공급되지 않은 일부의 증발가스를 액화시키기 위한 열교환기를 더 포함하는, 선박의 액화가스 처리 시스템.
PCT/KR2013/011078 2012-12-11 2013-12-02 선박의 액화가스 처리 시스템 WO2014092368A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/651,614 US20150316208A1 (en) 2012-12-11 2013-12-02 Liquefied gas processing system for ship
RU2015127777A RU2015127777A (ru) 2012-12-11 2013-12-02 Система обработки сжиженного газа, предназначенная для судна
EP13862373.1A EP2933183A1 (en) 2012-12-11 2013-12-02 Liquefied gas processing system for ship
SG11201504439YA SG11201504439YA (en) 2012-12-11 2013-12-02 Liquefied gas processing system for ship
CN201380064545.2A CN104837724A (zh) 2012-12-11 2013-12-02 用于船舶的液化气处理***
JP2015546379A JP2016507705A (ja) 2012-12-11 2013-12-02 船舶の液化ガス処理システム
PH12015501277A PH12015501277A1 (en) 2012-12-11 2015-06-05 Liquefied gas processing system for ship

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0143522 2012-12-11
KR1020120143522A KR20130139150A (ko) 2012-12-11 2012-12-11 해상 구조물의 증발가스 처리 시스템 및 처리 방법
KR10-2013-0058587 2013-05-23
KR20130058587 2013-05-23
KR10-2013-0073731 2013-06-26
KR20130073731 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014092368A1 true WO2014092368A1 (ko) 2014-06-19

Family

ID=50934605

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/011079 WO2014092369A1 (ko) 2012-12-11 2013-12-02 선박의 액화가스 처리 시스템
PCT/KR2013/011078 WO2014092368A1 (ko) 2012-12-11 2013-12-02 선박의 액화가스 처리 시스템

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011079 WO2014092369A1 (ko) 2012-12-11 2013-12-02 선박의 액화가스 처리 시스템

Country Status (9)

Country Link
US (1) US20150316208A1 (ko)
EP (1) EP2933183A1 (ko)
JP (1) JP2016507705A (ko)
KR (7) KR20140075595A (ko)
CN (1) CN104837724A (ko)
PH (1) PH12015501277A1 (ko)
RU (1) RU2015127777A (ko)
SG (1) SG11201504439YA (ko)
WO (2) WO2014092369A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068846A (ja) * 2014-09-30 2016-05-09 川崎重工業株式会社 船舶

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386543B1 (ko) 2012-10-24 2014-04-18 대우조선해양 주식회사 선박의 증발가스 처리 시스템
KR101640765B1 (ko) 2013-06-26 2016-07-19 대우조선해양 주식회사 선박의 증발가스 처리 시스템 및 방법
KR101526427B1 (ko) 2014-06-23 2015-06-05 현대자동차 주식회사 차량용 열교환기
KR20160015698A (ko) * 2014-07-31 2016-02-15 대우조선해양 주식회사 연료 공급 제어 시스템 및 제어 방법
KR20160015699A (ko) * 2014-07-31 2016-02-15 대우조선해양 주식회사 연료 공급 시스템 및 방법
KR101938915B1 (ko) * 2014-10-06 2019-01-16 현대중공업 주식회사 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법
KR101938916B1 (ko) * 2014-10-06 2019-01-16 현대중공업 주식회사 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법
KR101938914B1 (ko) * 2014-10-06 2019-01-16 현대중공업 주식회사 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법
KR20160044098A (ko) * 2014-10-14 2016-04-25 현대중공업 주식회사 액화가스 처리 시스템
KR20160044099A (ko) * 2014-10-14 2016-04-25 현대중공업 주식회사 액화가스 처리 시스템
KR102234667B1 (ko) * 2014-11-24 2021-04-05 삼성중공업(주) 선박의 고압 연료 공급장치
KR101521570B1 (ko) * 2014-12-05 2015-05-19 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
KR101665479B1 (ko) * 2015-01-21 2016-10-12 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
WO2016122028A1 (ko) * 2015-01-30 2016-08-04 대우조선해양 주식회사 선박용 엔진의 연료 공급 시스템 및 방법
KR102379516B1 (ko) * 2015-02-03 2022-03-29 삼성중공업 주식회사 연료가스 공급시스템
KR102160838B1 (ko) * 2015-02-23 2020-09-29 현대중공업 주식회사 액화가스 처리 시스템
KR101665495B1 (ko) * 2015-02-24 2016-10-12 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
KR102069919B1 (ko) * 2015-03-20 2020-01-28 현대중공업 주식회사 액화가스 처리 시스템
KR101842324B1 (ko) * 2015-04-07 2018-03-26 현대중공업 주식회사 가스 처리 시스템
KR101765390B1 (ko) * 2015-04-07 2017-08-07 현대중공업 주식회사 액화가스 처리 시스템
JP6802810B2 (ja) 2015-06-02 2020-12-23 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 船舶
WO2016195233A1 (ko) * 2015-06-02 2016-12-08 대우조선해양 주식회사 선박
RU2703355C2 (ru) * 2015-06-02 2019-10-16 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. Судно
FR3040773B1 (fr) * 2015-09-03 2021-02-12 Cryostar Sas Systeme et procede de traitement de gaz issu de l'evaporation d'un liquide cryogenique
EP3372484B1 (en) * 2015-11-05 2024-04-03 Hyundai Heavy Industries Co., Ltd. Gas treatment system and vessel comprising same
KR102369070B1 (ko) * 2015-11-10 2022-03-03 삼성중공업 주식회사 연료가스 공급시스템
KR102369064B1 (ko) * 2015-11-10 2022-03-03 삼성중공업 주식회사 연료가스 공급시스템
KR20170055399A (ko) * 2015-11-11 2017-05-19 현대중공업 주식회사 Lng 운반선
KR101751854B1 (ko) * 2015-11-12 2017-06-28 대우조선해양 주식회사 선박
KR102483924B1 (ko) * 2016-02-18 2023-01-02 삼성전자주식회사 기화기 및 이를 구비하는 박막 증착 장치
KR101834377B1 (ko) * 2016-03-24 2018-03-05 삼성중공업 주식회사 액화가스 재기화 장치
CN109563969B (zh) * 2016-05-04 2021-02-12 创新低温***公司 用于向气体消耗构件供给可燃气体并用于液化所述可燃气体的设备
JP6732946B2 (ja) * 2016-05-04 2020-07-29 イノベイティブ クライオジェニック システムズ, インコーポレイテッド ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備
EP3455545B1 (en) * 2016-05-11 2022-11-09 Gaztransport Et Technigaz Gas storage and treatment installation
DK179056B1 (en) * 2016-05-26 2017-09-25 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Fuel supply system for a large two-stroke compression-ignited high-pressure gas injection internal combustion engine
KR101876971B1 (ko) * 2016-08-17 2018-07-10 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
JP6757217B2 (ja) * 2016-09-23 2020-09-16 川崎重工業株式会社 船舶
FR3057941B1 (fr) * 2016-10-20 2020-02-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration et/ou de liquefaction d'un fluide cryogenique
WO2018087731A1 (en) * 2016-11-14 2018-05-17 Priserve Engineering Inc An open loop vaporization system and a method thereof
KR102619112B1 (ko) * 2017-01-06 2023-12-29 한화파워시스템 주식회사 액화천연가스 운반선의 연료공급장치
KR102651092B1 (ko) * 2017-01-24 2024-03-26 한화오션 주식회사 액화천연가스 연료 선박의 연료 공급 시스템 및 방법
JP6815213B2 (ja) * 2017-01-30 2021-01-20 株式会社神戸製鋼所 ボイルオフガス回収システム
KR102164165B1 (ko) * 2017-02-02 2020-10-12 현대중공업 주식회사 증발가스 재액화 시스템 및 선박
JP6565022B2 (ja) * 2017-02-17 2019-08-28 三井E&S造船株式会社 液化ガス燃料船の交通経路形成構造
WO2018222230A1 (en) * 2017-02-24 2018-12-06 Exxonmobil Upstream Research Company Method of purging a dual purpose lng/lin storage tank
KR102269727B1 (ko) * 2017-03-30 2021-06-29 엑손모빌 업스트림 리서치 캄파니 Lng 및 액체 질소를 위한 이중 극저온 카고 탱크를 구비한 선박/부유식 저장 유닛
SG11201913136XA (en) * 2017-07-07 2020-01-30 Global Lng Services As Large scale coastal liquefaction
KR101908570B1 (ko) * 2017-08-01 2018-10-16 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
CN110997475B (zh) * 2017-07-31 2022-10-04 大宇造船海洋株式会社 用于船舶的蒸发气体再液化***和蒸发气体再液化方法
KR101908569B1 (ko) * 2017-07-31 2018-10-16 대우조선해양 주식회사 증발가스 재액화 시스템 내의 윤활유 배출 방법 및 엔진의 연료 공급 방법
SG11202001852SA (en) * 2017-09-01 2020-04-29 Samsung Heavy Ind Co Ltd Method and apparatus for transferring liquid cargo in pressurization type
KR102066635B1 (ko) * 2018-06-08 2020-01-15 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 상기 시스템 내의 윤활유 배출 방법
KR102106621B1 (ko) * 2018-07-31 2020-05-28 삼성중공업 주식회사 증발가스 재액화 시스템 및 증발가스 재액화 방법
KR102626179B1 (ko) * 2018-12-26 2024-01-18 한화오션 주식회사 연료가스 공급 시스템 및 방법
KR102211432B1 (ko) * 2018-12-27 2021-02-04 대우조선해양 주식회사 극저온용 오일필터 및 상기 극저온용 오일필터가 적용된 선박용 증발가스 처리 시스템
IT201900000939A1 (it) * 2019-01-22 2020-07-22 Cnh Ind Italia Spa Sistema di distribuzione del gas per l'alimentazione del gas contenuto in serbatoi diversi a un motore di un veicolo alimentato da combustibile gassoso alternativo
KR20200144630A (ko) 2019-06-18 2020-12-30 삼성중공업 주식회사 액화가스 공급시스템
FR3103227B1 (fr) * 2019-11-20 2021-10-15 Gaztransport Et Technigaz Système d’alimentation en gaz d’au moins un appareil consommateur de gaz équipant un navire
CN111412695B (zh) * 2020-03-25 2021-01-15 西安交通大学 一种基于液氧液氮混合再抽空的超级过冷液氧获取***
CN112253994B (zh) * 2020-09-22 2022-12-13 沪东中华造船(集团)有限公司 一种用于向船舶发动机供给燃料的***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099209A (ko) * 2008-05-16 2008-11-12 대우조선해양 주식회사 Lng 운반선의 연료가스 공급 장치
KR20110042910A (ko) * 2009-10-20 2011-04-27 대우조선해양 주식회사 액화가스 수송선의 증발가스 재액화 장치
KR20110050239A (ko) * 2009-11-06 2011-05-13 대우조선해양 주식회사 액화연료가스 추진 선박에서의 증발가스 처리 방법 및 그에 따른 액화연료가스 추진 선박
KR20110073825A (ko) * 2009-12-24 2011-06-30 삼성중공업 주식회사 부유식 해상구조물의 액화천연가스 재기화 장치
KR20120114055A (ko) * 2011-04-06 2012-10-16 삼성중공업 주식회사 Bog를 선박위치제어장치에 이용하는 선박

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1472533A (en) * 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
JPS59194697A (ja) * 1983-04-18 1984-11-05 Toshiba Corp 電動機駆動装置
JPH06336192A (ja) * 1993-05-28 1994-12-06 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス運搬船におけるボイルオフガスの燃焼制御装置
GB0120661D0 (en) 2001-08-24 2001-10-17 Cryostar France Sa Natural gas supply apparatus
JP4347037B2 (ja) * 2003-12-25 2009-10-21 三菱重工業株式会社 ガスタービン等ガス焚内燃機関への燃料供給装置およびこれを備えたlng船
JP2006348752A (ja) 2005-06-13 2006-12-28 Kawasaki Shipbuilding Corp 液化天然ガス運搬船の蒸発ガス供給システム
KR101577795B1 (ko) * 2009-10-29 2015-12-15 대우조선해양 주식회사 고압가스 분사엔진과 저압가스 분사엔진을 갖는 액화연료가스 추진 선박에 연료가스를 공급하는 시스템
KR101106088B1 (ko) 2011-03-22 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099209A (ko) * 2008-05-16 2008-11-12 대우조선해양 주식회사 Lng 운반선의 연료가스 공급 장치
KR20110042910A (ko) * 2009-10-20 2011-04-27 대우조선해양 주식회사 액화가스 수송선의 증발가스 재액화 장치
KR20110050239A (ko) * 2009-11-06 2011-05-13 대우조선해양 주식회사 액화연료가스 추진 선박에서의 증발가스 처리 방법 및 그에 따른 액화연료가스 추진 선박
KR20110073825A (ko) * 2009-12-24 2011-06-30 삼성중공업 주식회사 부유식 해상구조물의 액화천연가스 재기화 장치
KR20120114055A (ko) * 2011-04-06 2012-10-16 삼성중공업 주식회사 Bog를 선박위치제어장치에 이용하는 선박

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068846A (ja) * 2014-09-30 2016-05-09 川崎重工業株式会社 船舶

Also Published As

Publication number Publication date
SG11201504439YA (en) 2015-07-30
KR20140075647A (ko) 2014-06-19
KR20140075607A (ko) 2014-06-19
KR101444248B1 (ko) 2014-09-26
CN104837724A (zh) 2015-08-12
PH12015501277A1 (en) 2015-08-24
US20150316208A1 (en) 2015-11-05
RU2015127777A (ru) 2017-01-18
KR20140075595A (ko) 2014-06-19
KR20140130092A (ko) 2014-11-07
KR20140076490A (ko) 2014-06-20
KR20150006814A (ko) 2015-01-19
KR20140075606A (ko) 2014-06-19
KR101460968B1 (ko) 2014-11-12
WO2014092369A1 (ko) 2014-06-19
KR101512691B1 (ko) 2015-04-16
EP2933183A1 (en) 2015-10-21
JP2016507705A (ja) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2014092368A1 (ko) 선박의 액화가스 처리 시스템
WO2014065619A1 (ko) 선박의 액화가스 처리 시스템
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
WO2012128448A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
WO2012128447A1 (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
WO2012124886A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
WO2015130122A1 (ko) 증발가스 처리 시스템
WO2017078245A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2012124884A1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
WO2009102136A2 (ko) 탄화수소 액화가스를 처리하기 위한 처리장치 및 방법
WO2018139753A1 (ko) 액화천연가스 연료 선박의 연료 공급 시스템 및 방법
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2019194670A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016195232A1 (ko) 선박
WO2016126025A1 (ko) 선박의 연료가스 공급시스템
WO2016126037A1 (ko) 선박의 증발가스 처리장치 및 처리방법
WO2016195233A1 (ko) 선박
WO2017209492A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2016195231A1 (ko) 선박
WO2018124815A1 (ko) 연료가스 공급 시스템
WO2016195229A1 (ko) 선박
WO2016200170A1 (ko) 가스 처리 시스템을 포함하는 선박
WO2017135804A1 (ko) 가스 재기화 시스템을 구비하는 선박
WO2021167343A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P720/2015

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 12015501277

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201503441

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015546379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651614

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013862373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015127777

Country of ref document: RU

Kind code of ref document: A