WO2014084549A1 - 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자 - Google Patents

에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자 Download PDF

Info

Publication number
WO2014084549A1
WO2014084549A1 PCT/KR2013/010645 KR2013010645W WO2014084549A1 WO 2014084549 A1 WO2014084549 A1 WO 2014084549A1 KR 2013010645 W KR2013010645 W KR 2013010645W WO 2014084549 A1 WO2014084549 A1 WO 2014084549A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
growth
doping concentration
layer
epitaxial
Prior art date
Application number
PCT/KR2013/010645
Other languages
English (en)
French (fr)
Inventor
강석민
김지혜
황민영
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120137985A external-priority patent/KR102053077B1/ko
Priority claimed from KR1020130012962A external-priority patent/KR102098209B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US14/648,704 priority Critical patent/US9793355B2/en
Priority to CN201380070392.2A priority patent/CN104919571B/zh
Publication of WO2014084549A1 publication Critical patent/WO2014084549A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table

Definitions

  • Embodiments relate to epitaxial wafers.
  • Embodiments relate to methods of making epitaxial wafers.
  • Embodiments relate to power devices using epitaxial wafers.
  • Embodiments are directed to a light emitting device using an epitaxial wafer.
  • the embodiment provides an epitaxial wafer whose quality is guaranteed.
  • the embodiment provides an epitaxial wafer with minimal defects.
  • the embodiment provides a power device using such an epitaxial wafer.
  • the embodiment provides a light emitting device using such an epitaxial wafer.
  • the epitaxial wafer comprises: a substrate; And an epitaxial layer disposed on the substrate.
  • the epitaxial layer disposed on the substrate and having a first doping concentration;
  • a second semiconductor layer disposed on the first semiconductor layer and having a second doping concentration;
  • a third semiconductor layer disposed on the second semiconductor layer and having a thickness thicker than that of the first semiconductor layer and having a third doping concentration.
  • the second doping concentration is located between the first doping concentration and the third doping concentration.
  • the switch element comprises a substrate; A first semiconductor layer disposed on the substrate;
  • the third semiconductor layer has a thickness thicker than that of the first semiconductor layer.
  • the second doping concentration of the second semiconductor layer is located between the first doping concentration of the first semiconductor layer and the third doping concentration of the third semiconductor layer.
  • the switch element comprises a substrate; A first semiconductor layer disposed on the substrate;
  • the third semiconductor layer has a thickness thicker than that of the first semiconductor layer.
  • the second doping concentration of the second semiconductor layer is located between the first doping concentration of the first semiconductor layer and the third doping concentration of the third semiconductor layer.
  • the light emitting device includes a substrate; An epitaxial layer on the substrate; And a light emitting structure including at least a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer on the epitaxial layer.
  • the epitaxial layer includes a first semiconductor layer disposed on the substrate; A second semiconductor layer disposed on the first semiconductor layer; And a third semiconductor layer disposed on the second semiconductor layer.
  • the third semiconductor layer has a thickness thicker than that of the first semiconductor layer.
  • the second doping concentration of the second semiconductor layer is located between the first doping concentration of the first semiconductor layer and the third doping concentration of the third semiconductor layer.
  • Embodiments can reduce the amount of growth source and initially grow the epitaxial material at low speed, thereby minimizing internal and surface defects in the epitaxial layer.
  • Embodiments can reduce the amount of Si and initially grow the epitaxial material at low speed, thereby minimizing internal and surface defects of the epitaxial layer.
  • Embodiments can reduce the amount of growth source and doping source to initially grow the epitaxial material at low speed, thereby minimizing internal and surface defects of the epitaxial layer.
  • the embodiment can satisfy the characteristics required by the electronic device by applying an epitaxial wafer having the internal defect and the surface defect minimized to the electronic device.
  • the embodiment allows growth even when the growth conditions are changed, so that a break in growth between the first semiconductor layer and the third semiconductor layer does not occur, thereby further reducing defects, enhancing the efficiency of the growth process, and shortening the process time. Can be.
  • FIG. 1 is a cross-sectional view illustrating an epitaxial wafer according to an embodiment.
  • FIG. 2 is a flowchart illustrating a process of manufacturing the epitaxial wafer of FIG. 1 according to the first embodiment.
  • FIG. 3 is a view for explaining the manufacturing process of FIG.
  • FIG. 4 is a diagram showing the change in the growth temperature and the amount of growth source according to epitaxial growth.
  • FIG. 5 is a flowchart illustrating a process of manufacturing the epitaxial wafer of FIG. 1 according to the second embodiment.
  • FIG. 6 is a diagram showing the amount of growth source and the change of growth temperature according to epitaxial growth.
  • FIG. 7 is a cross-sectional view illustrating a Schottky barrier diode according to an embodiment.
  • FIG. 8 is a cross-sectional view illustrating a MESFET according to an embodiment.
  • FIG. 9 is a sectional view showing a light emitting device according to the embodiment.
  • each layer (film), region, pattern or structure is formed to be “on” or “under” the substrate, each layer (film), region, pad or pattern.
  • “on” and “under” include both the meanings of “directly” and “indirectly”.
  • the criteria for the top or bottom of each layer will be described with reference to the drawings.
  • Semiconductor-based electronic devices can be formed by forming additional structures on the epitaxial wafer. Therefore, in order to manufacture high quality semiconductor-based electronic devices, the quality of epitaxial wafers must be guaranteed.
  • the epitaxial wafer of the embodiment can be optimized to minimize the surface roughness (surface roughness) and surface defects (surface defects) by optimizing the growth process conditions.
  • BPD Basal Plane Dislocation
  • SFs Stacking Faults
  • FPD Frank Partial Dislocation
  • the surface roughness and surface defects of the epitaxial wafer may be determined by the amount of reaction source initially introduced (flux), growth temperature, pressure, total amount of reaction source, C / Si ratio, Si / H2 ratio, etc. It depends on the process conditions. Thus, such process conditions can be optimized to minimize surface defect density and surface roughness.
  • the surface roughness of the epitaxial wafer of the embodiment may be about 1 nm or less.
  • the surface defect density of the epitaxial wafer of the embodiment may be 0.1 / cm 2 or less. Therefore, it is possible to improve the quality of the semiconductor-based electronic device using such an epitaxial wafer.
  • Switch devices may include, but are not limited to, power devices such as Schottky barrier diodes and metal semiconductor field effect transistors (MESFETs).
  • power devices such as Schottky barrier diodes and metal semiconductor field effect transistors (MESFETs).
  • FIG. 1 is a cross-sectional view illustrating an epitaxial wafer according to an embodiment.
  • the epitaxial wafer 100 may include a substrate 110 and an epitaxial layer 150.
  • the substrate 110 may include silicon carbide. That is, the substrate 110 may include one of 3C-SiC, 4H-SiC, and 6H-SiC.
  • Silicon carbide may be a compound semiconductor consisting of silicon (Si) and carbon (C). Compared to conventional silicon (Si), silicon carbide has 10 times the dielectric breakdown field strength, 3 times the bandgap and 3 times the thermal conductivity.
  • silicon carbide is expected to be widely used in electronic devices. Silicon carbide can be applied to power devices or light emitting devices. In particular, silicon carbide-based power devices withstand high breakdown voltage, have low resistivity and can be operated at high temperatures.
  • the high breakdown voltage results in the formation of very thin drift layers, which can dramatically reduce the thickness of the power device.
  • An epitaxial layer 150 may be formed by growing an epitaxial material on the substrate 110.
  • the epitaxial layer 150 may be grown by using a hybrid vapor phase epitaxy (HVPE), a metal organic chemical vapor deposition (MOCVD), a molecular beam epitaxy (MBE), or sputtering.
  • HVPE hybrid vapor phase epitaxy
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the epitaxial material may include the same compound semiconductor material as the substrate 110, for example, silicon carbide, but is not limited thereto.
  • the epitaxial layer 150 includes the same material as the substrate 110, the difference in lattice constant or thermal expansion coefficient between the epitaxial layer 150 and the substrate 110 is not large or large, such as bending due to stress. Possibility of defect is not big.
  • the epitaxial layer 150 is grown with the same material as the substrate 110, the crystallinity of the epitaxial layer 150 may be improved.
  • the epitaxial layer 150 may include a first semiconductor layer 120, a second semiconductor layer 130, and a third semiconductor layer 140.
  • the second semiconductor layer 130 may be disposed on the first semiconductor layer 120
  • the third semiconductor layer 140 may be disposed on the second semiconductor layer 130.
  • the first to third semiconductor layers 140 may include the same compound semiconductor material, for example, silicon carbide, but are not limited thereto.
  • the third semiconductor layer 140 may be an active layer for performing a specific function of the electronic device, but is not limited thereto.
  • the third semiconductor layer 140 may be a drift layer of a power device or a conductive semiconductor layer of a light emitting device.
  • the first semiconductor layer 120 may be a buffer layer for mitigating or minimizing a defect generated in the third semiconductor layer 140.
  • the defect may be an internal defect generated in the first to third semiconductor layers 140 or a surface defect generated on an upper surface of the third semiconductor layer 140.
  • Types of surface defects include droplets, triangle defects, pit, wavey pit, particles, and the like.
  • the first semiconductor layer 120 may be used as a seed layer for growing the third semiconductor layer 140.
  • the defect of the first semiconductor layer 120 may be connected to the third semiconductor layer 140 via the second semiconductor layer 130.
  • first semiconductor layer 120 and the third semiconductor layer 140 may be grown under different process conditions.
  • first process conditions may be set to minimize defects in the first semiconductor layer 120
  • second process conditions may be set to increase growth rates in the third semiconductor layer 140. have.
  • the surface roughness of the epitaxial layer 150 may be 1 nm or less, and the surface defect density may be 0.1 / cm 2 or less.
  • the size of the defect determination object is several micrometers to several tens of micrometers. Therefore, the defect below this size was excluded from the defect determination object.
  • the epitaxial layer 150 may also be referred to as an epitaxial structure, an epitaxial film, or a semiconductor structure.
  • the second semiconductor layer 130 is not continuously grown from the first semiconductor layer 120 to the third semiconductor layer 140 due to the difference in growth conditions between the first to third semiconductor layer 140 It can play a role in preventing it.
  • the growth conditions in the second semiconductor layer 130 may vary between the growth conditions in the first semiconductor layer 120 and the growth conditions in the third semiconductor layer 140. That is, the growth condition of the second semiconductor layer 130 may be changed from the growth condition of the first semiconductor layer 120 to the growth condition of the third semiconductor layer 140. For example, the growth temperature for the growth of the second semiconductor layer 130 may be reduced from the growth temperature for the growth of the first semiconductor layer 120 to the growth temperature for the growth of the third semiconductor layer 140.
  • the amount of the reaction source for the growth of the second semiconductor layer 130 or the amount of the growth source may be the amount of the reaction source for the growth of the first semiconductor layer 120 or the amount of the growth source. It can be increased by the amount of the reaction source or the amount of the growth source for growth of.
  • the continuous growth between the growth of the first semiconductor layer 120 and the growth of the third semiconductor layer 140 proceeds to further reduce internal defects, thereby reducing the surface defect density as well as the third.
  • the surface roughness of the semiconductor layer 140 may be further reduced.
  • the second semiconductor layer 130 may be formed by successive growth between the growth of the first semiconductor layer 120 and the growth of the third semiconductor layer 140.
  • Doping concentrations of the first to third semiconductor layers 120, 130, and 140 may be different from each other.
  • the doping concentration of the first semiconductor layer 120 may be greater than the doping concentration of the third semiconductor layer 140.
  • the doping concentration of the second semiconductor layer 130 is located between the doping concentration of the third semiconductor layer 140 and the doping concentration of the first semiconductor layer 120, and is equal to the doping concentration of the first semiconductor layer 120. Or may be linearly and nonlinearly reduced to be equal to or close to the doping concentration of the third semiconductor layer 140, but is not limited thereto. Therefore, the doping concentration of the second semiconductor layer 130 at the interface A in contact with the first semiconductor layer 120 and the second semiconductor layer at the interface B in contact with the third semiconductor layer 140 ( The doping concentrations of 130 may be different from each other.
  • the first semiconductor layer 120 by increasing the doping concentration of the first semiconductor layer 120, defects that may occur due to lattice mismatch with the substrate 110 may be prevented.
  • the role of the buffer layer of the first semiconductor layer 120 is further reinforced by the second semiconductor layer 130, which may be used as the buffer layer, internal defects may be caused by the first and second semiconductor layers 120 and 130. Can be minimized.
  • the third semiconductor layer 140 minimizes surface defects as well as internal defects, and further, surface roughness is significantly reduced.
  • the crystallinity of another semiconductor layer formed on the third semiconductor layer 140 may be improved, thereby improving electrical / optical properties, thereby improving product reliability of the electronic device mounted on the epitaxial wafer.
  • the following first and second embodiments can provide a method for reducing the surface roughness to 1 nm or less and reducing the surface defect density to 0.1 / cm 2 or less.
  • FIG. 2 is a flowchart illustrating a process of manufacturing the epitaxial wafer of FIG. 1 according to the first embodiment
  • FIG. 3 is a diagram for describing the process of FIG. 2.
  • the substrate 110 may be provided in the reaction chamber (S210).
  • the substrate 110 may include one of 3C-SiC, 4H-SiC, and 6H-SiC, but this is only an example, and the material of the substrate 110 may be different depending on the device or product to be finally manufactured. Of course, it is configurable.
  • Plate 110 may be undoped, n-type or p-doped, but is not limited thereto.
  • a cleaning process may be performed to remove an oxide film naturally generated on the surface thereof.
  • a reaction source for epitaxial growth may be implanted into the reaction chamber.
  • the reaction source may include, but is not limited to, a growth source for epitaxial growth, a doping source for doping, and a petroleum gas.
  • the growth source may vary depending on the material and type of the substrate 110.
  • the substrate 110 is formed of silicon carbide, SiH 4 + C 3 H 8 + H 2 , MTS (CH 3 SiCl 3 ), TCS, which is a material having the same or similar lattice constant as the substrate 110.
  • Solid, liquid or gaseous materials including compounds containing carbon and silicon such as (SiHCl 3 ), Si x C x, and the like may be used as the growth source.
  • the doping source may include a Group 5 compound semiconductor material including nitrogen gas (N 2 ) for n-type doping or a Group 3 compound semiconductor material including Al for p-type doping.
  • a p-type aluminum silicon carbide (AlSiC) semiconductor layer may be grown by a growth process using silicon carbide, a doping source including Al, and a growth process using a diluent gas.
  • an n-type silicon carbide nitride (SiCN) semiconductor layer may be grown by a growth process using silicon carbide, a doping source including nitrogen gas (N 2 ), and a growth process using diluent gas.
  • the p-type aluminum silicon carbide (AlSiC) semiconductor layer or the n-type silicon carbide nitride (SiCN) semiconductor layer may be a conductive semiconductor layer, but is not limited thereto.
  • the first semiconductor layer 120 may be grown on the substrate 110 using the first growth process. That is, in the first growth process, the epitaxial material may be grown by the amount of the first growth source to form the first semiconductor layer 120 (S220).
  • the amount of the first growth source may be related to the ratio of the growth source and the dilution gas.
  • the ratio of growth source and dilution gas in the first growth process may be maintained at approximately 1: 4000 to 1: 3000, but is not limited thereto.
  • the growth source at the ratio of growth source and diluent gas may be a silicon based material.
  • the C / Si ratio may be 0.5 to 1.0, and the injection parameter of the reaction source may be adjusted to 10 ml / min to 25 ml / min.
  • a1 to a4 represent a positive real number
  • b1 to b3 represent a real number
  • the amount of the growth source, the amount of the doping source and the amount of the dilution gas each have a unit of ml / min.
  • the growth source, the doping source and the dilution gas may be injected such that the injection parameter according to the equation (1) satisfies approximately 1/25 min / ml to 1/10 min / ml, that is, 10 ml / min to 25 ml / min. have.
  • the first semiconductor layer 120 having a doping concentration of about 5 ⁇ 10 17 / cm 3 to 5 ⁇ 10 18 / cm 3 may be formed by the first growth process.
  • the first semiconductor layer 120 may be grown at a low speed. Accordingly, the epitaxial material, that is, the interatomic mobility of the reaction source becomes active, and the atoms are evenly distributed to improve crystallinity and reduce internal defects.
  • the reduction of the internal defects of the first semiconductor layer 120 may reduce the internal defects and the surface defects of the third semiconductor layer 140 and reduce the surface roughness.
  • the thickness of the first semiconductor layer 120 grown in the first growth process may be approximately 0.5 ⁇ m to 1 ⁇ m.
  • the thickness of the first semiconductor layer 120 is 0.5 ⁇ m or less, it may be difficult to be used as a power device because the breakdown voltage is low when it is later applied to the power device.
  • the thickness of the first semiconductor layer 120 is 0.5 ⁇ m or more, the leakage current may increase.
  • the second growth process may be performed in succession with the first growth process to form the second semiconductor layer 130. That is, while the reaction gas is injected in the second growth process, while the amount of the first growth source is increased to the amount of the second growth source, epitaxial growth may be performed to form the second semiconductor layer 130 (S230). ). As such, since the second growth source is continuously injected, epitaxial growth may be continuously performed to form the second semiconductor layer 130 continuously in the first semiconductor layer 120.
  • the C / Si ratio may be about 1.0 and the injection parameter of the reaction gas may be about 15 ml / min to 0.5 ml / min.
  • the amount of second growth source ie the ratio of growth source and diluent gas, may be increased from approximately 1: 4000 to 1: 3000 to approximately 1: 800.
  • the amount of growth source in the second growth process can be increased linearly, nonlinearly or stepwise.
  • the amount of growth source in the second growth process may be increased from the amount of the first growth source in the first growth process to the amount of the second growth source in the third growth process.
  • the second growth process is an intermediate process for setting the third growth process, and may be a step in which the amount of the growth source is changed.
  • the epitaxial growth is continuously performed without stopping by the second growth process, so that the third semiconductor layer 140 is not only easily grown, but also internal defects and surface defects are reduced, and surface roughness is also reduced. can do.
  • the doping concentration difference between the first semiconductor layer 120 and the third semiconductor layer 140 may be controlled by the second semiconductor layer 130. Therefore, as shown in FIG. 1, the doping concentration of the interface A of the second semiconductor layer 130 in contact with the first semiconductor layer 120 and the second semiconductor layer in contact with the third semiconductor layer 140 are shown. Doping concentrations of the interface B of the 130 may be different from each other.
  • the amount of doping source in the second growth process may be reduced from the amount of doping source in the first growth process to the amount of doping source in the second growth process to obtain a doping concentration of the second semiconductor layer 130.
  • the second semiconductor layer 130 is grown while reducing the amount of the doping source as described above, a doping concentration difference between the interface A and the interface B of the second semiconductor layer 130 may occur. Accordingly, the doping concentration of the second semiconductor layer 130 may be reduced from 5 ⁇ 10 16 / cm 3 to 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 16 / cm 3 to 5 ⁇ 10 14 / cm 3 . .
  • the second semiconductor layer 130 may be grown until the amount of the growth source and the amount of the doping source required in the third growth process are satisfied.
  • the thickness of the second semiconductor layer 130 grown as described above may have the same thickness as the first semiconductor layer 120, but the embodiment is not limited thereto. When the amount of growth source required in the third growth process and the amount of the doping source are satisfied, the thickness of the second semiconductor layer 130 may be smaller than the thickness of the first semiconductor layer 120.
  • the first embodiment forms the second semiconductor layer 130 by varying the amount of the doping source and the amount of the growth source between the first and third semiconductor layers 120 and 140, thereby removing the first semiconductor layer 120 from the first semiconductor layer 120.
  • Growth to the third semiconductor layer 140 may be continuously performed without interruption. That is, since the amounts of the doping source and the growth source are different in the first and third semiconductor layers 120 and 140, the third semiconductor layer 140 grows immediately after the first semiconductor layer 120 is grown. If so, injection of the reaction source should be stopped to control the amount of growth source. However, the first embodiment may allow the growth to continue even during the change of the amount of the doping source and the amount of the growth source so that the growth is not stopped.
  • the second semiconductor layer 130 having a doping concentration since the second semiconductor layer 130 having a doping concentration is formed, defects that may occur in the first semiconductor layer 120 may be prevented from propagating to the third semiconductor layer 140. .
  • the second semiconductor layer 130 may suppress defects caused by lattice mismatch with the substrate 110, and thus, the first semiconductor layer 120.
  • defects generated in the third semiconductor layer 140 due to the second semiconductor layer 130 may be minimized, and surface roughness of the third semiconductor layer 140 may also be minimized.
  • a third growth process may be performed in succession to the second growth process to form the third semiconductor layer 140. That is, epitaxial growth may proceed until the target thickness is obtained by the amount of the second growth source, thereby forming the third semiconductor layer (S240).
  • the amount of the second growth source in the third listing process ie, the ratio of the growth source and the dilution gas, may be approximately 1: 800.
  • the C / Si ratio may be approximately 0.9 to 1.0, and the injection parameter of the reaction gas may be 5 ml / min to 0.5 ml / min.
  • the amount of such second growth source until the epitaxial growth reaches the target thickness of the third semiconductor layer 9140. Can proceed.
  • the doping concentration of the third semiconductor layer 140 may be set lower than the doping concentration of the first semiconductor layer 120 or the second semiconductor layer 130, but is not limited thereto.
  • the doping concentration of the third semiconductor layer 140 may be 2 ⁇ 10 15 / cm 3 to 7 ⁇ 10 15 / cm 3 .
  • the amount of the second growth source in the third growth process may be greater than the amount of the first growth source in the first growth process.
  • the amount of growth source and the growth rate can generally be proportional. Therefore, as the amount of the second growth source is increased, the growth rate of the third semiconductor layer 140 may also increase.
  • the growth rate of the first semiconductor layer 120 when growing in the amount of the first growth source in the first growth process, is approximately 1 ⁇ m / h ⁇ 3 ⁇ m / h, while the second growth in the third growth process
  • the growth rate of the third semiconductor layer 140 may have a thickness of about 20 ⁇ m / h or more.
  • the third semiconductor layer 140 is a layer for improving the growth rate and may have a thickness thicker than the thickness of the first semiconductor layer 120, but is not limited thereto.
  • the third semiconductor layer 140 may be used as an active layer capable of performing a specific function in an electronic device, for example, a drift layer of a switch device or a first conductive semiconductor layer of a light emitting device. I never do that.
  • the growth rate of the second growth process is also reduced. It can be changed, specifically increased from the first growth rate in the first growth process to the second growth rate in the second growth process.
  • the delay loss of the process time in the first semiconductor layer 120 which is grown at low speed is made up. Can be.
  • the epitaxial layer that is, the first to third semiconductor layers 120, 130, and 140
  • growth conditions such as temperature, pressure, and rotational speed of the substrate are all the same, or if necessary, each other. can be different.
  • the growth temperature is about 1600 ° C to 1650 ° C
  • the pressure is about 70mbar to 120mbar
  • the rotational speed of the substrate may be set to about 50rpm to 70rpm, but is not limited thereto.
  • FIG. 5 is a flowchart illustrating a process of manufacturing the epitaxial wafer of FIG. 1 according to the second embodiment.
  • the substrate 110 may be provided in the reaction chamber (S310).
  • the substrate 110 may include one of 3C-SiC, 4H-SiC, and 6H-SiC.
  • a reaction source for epitaxial growth may be implanted into the reaction chamber.
  • the reaction source may include, but is not limited to, a growth source for epitaxial growth, a doping source for doping, and a petroleum gas.
  • An epitaxial growth may be performed on the substrate 110 using the first growth process to form the first semiconductor layer 120 (S320).
  • the growth temperature (hereinafter referred to as the first growth temperature) is approximately 1510 ° C to 1800 ° C, the C / Si ratio is about 0.7 to 0.8, and the Si / H 2 ratio is 1/3000 or less,
  • the injection parameter of the reaction source can be adjusted from 1.5 ml / min to 40 ml / min.
  • a first growth rate of 1 ⁇ m / h to 3 ⁇ m / h, which is relatively low, can be obtained by the first growth process.
  • the growth temperature is set to a high level, and thus the mobility of the atoms in the reaction source is increased to provide an environment in which even growth is possible. Increased time to evenly distribute and grow phases. Accordingly, the first semiconductor layer 120 grown by the first growth process has an effect of greatly reducing surface defects by minimizing lattice mismatch with the substrate 110.
  • the thickness of the first semiconductor layer 120 grown by the first growth process may be approximately 0.5 ⁇ m to 1 ⁇ m, but is not limited thereto.
  • the doping concentration of the first semiconductor layer 120 grown by the first growth process may be about 5 ⁇ 10 17 / cm 3 to 7 ⁇ 10 18 / cm 3 . As such, by increasing the doping concentration of the first semiconductor layer 120 in contact with the substrate 110, the occurrence of defects due to lattice mismatch with the substrate 110 may be suppressed.
  • the second growth process may be performed in succession with the first growth process to form the second semiconductor layer 130. That is, in the second growth process, while continuously injecting the reaction source into the reaction chamber, the epitaxial growth may proceed while gradually decreasing the growth temperature and gradually increasing the amount of the growth source to form the second semiconductor layer 130. There is (S330).
  • the growth temperature in the second growth process may be lowered from the first growth temperature in the first growth process to the second growth temperature in the third growth process, which will be described later.
  • the second growth temperature may be approximately 1500 ° C. to 1700 ° C.
  • the growth temperature in the second growth process can be lowered linearly, nonlinearly or in stages.
  • the amount of growth source in the second process may be increased from the amount of growth source in the first growth process to the amount of growth source in the third growth process.
  • the growth source in the second growth process can be lowered linearly, nonlinearly or in stages.
  • the second growth process is an intermediate process for setting the third growth process, and may be a step in which the growth temperature and the amount of the growth source are changed.
  • the second semiconductor layer 130 may be grown by the second growth process.
  • the amount of growth source is not injected into the reaction chamber until the growth temperature in the second growth process is lowered from the first growth temperature of the first growth process to the third growth temperature of the third growth process, it is no longer epitaxial Growth will not proceed. Subsequently, when the third growth process is performed, not only the third semiconductor layer 140 is not easily grown on the first semiconductor layer 120 due to a sudden environmental change, but also internal defects in the third semiconductor layer 140. And surface defects may be more and the surface roughness may be increased.
  • the epitaxial growth is continuously performed without stopping by the second growth process, so that the third semiconductor layer 140 is not only easily grown, but also internal defects and surface defects are reduced, and surface roughness is also reduced. can do.
  • the amount of doping source in the reaction source is increased from the amount of doping source that satisfies the doping concentration of the first semiconductor layer 120 to the amount of doping source that satisfies the doping concentration of the third semiconductor layer 140. It can be set to. Therefore, the amount of doped source injected into the reaction chamber in the second growth process should also be set to increase with the amount of growth source.
  • the amount of doping source injected into the reaction chamber during the second growth process is set to increase linearly, nonlinearly or stepwise, for example from 0.1 ml / min to 0.5 ml / min to 1.5 ml / min to 2.5 ml / min. Can be.
  • the doping concentration difference between the first semiconductor layer 120 and the third semiconductor layer 140 may be controlled by the second semiconductor layer 130. Therefore, as shown in FIG. 1, the doping concentration of the interface A of the second semiconductor layer 130 in contact with the first semiconductor layer 120 and the second semiconductor layer in contact with the third semiconductor layer 140 are shown. Doping concentrations of the interface B of the 130 may be different from each other.
  • the amount of the doping source in the second growth process may be reduced to the amount of the doping source in the second growth process as the amount of the doping source in the first growth process. Accordingly, the doping concentration of the second semiconductor layer 130 may be reduced from 5 ⁇ 10 16 / cm 3 to 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 16 / cm 3 to 5 ⁇ 10 14 / cm 3 . .
  • the second growth process may be maintained until the growth temperature and the growth rate satisfy the conditions in the growth process of the third semiconductor layer 140.
  • the second semiconductor layer 130 which is distinguished from the first semiconductor layer 120 and the third semiconductor layer 140, may be formed through the second growth process.
  • the third growth process may be continued following the second growth process. That is, in the third growth process, the reaction source including the amount of the growth source increased than the amount of the growth source in the first growth process is continuously injected, while the second is lower than the first growth temperature in the first growth process.
  • the epitaxial growth may proceed until the target thickness becomes the growth temperature, thereby forming the third semiconductor layer 140 (S340).
  • the second growth temperature may be approximately 1500 ° C. to 1700 ° C.
  • the doping concentration of the third semiconductor layer 140 grown under such growth conditions may be approximately 1 ⁇ 10 15 / cm 3 to 5 ⁇ 10 15 / cm 3 .
  • the growth rate can be controlled according to the amount of growth source in the reaction source.
  • the second growth rate by the amount of growth source thus increased is about 20 ⁇ m / h or more, and the first growth rate by the amount of growth source in the first growth process is about 1 ⁇ m / h to 3 ⁇ m / h Can be higher.
  • the growth delay of the first and second semiconductor layers 120 and 130 may be compensated for.
  • a relatively small growth source is injected to maintain the growth rate at a low speed, whereby atoms are evenly distributed on the substrate 110. Can be reduced.
  • the third semiconductor layer 140 is rapidly grown to a target thickness by maintaining a high growth rate by injecting relatively many growth sources. Process time can be shortened.
  • the third semiconductor layer 140 may be formed under the process conditions of the first growth process for forming the first semiconductor layer 120.
  • the second growth process may be performed to guide the change naturally to the process conditions of the third growth process, and the second semiconductor layer 130 may be formed by the second growth process.
  • the density of the growth sources of the first to third semiconductor layers 120, 130, and 140 formed by the first to third growth processes may vary. That is, the growth source density included in the first to third semiconductor layers 120, 130, and 140 is changed by varying the amount of the growth source implanted to form the first to third semiconductor layers 120, 130, and 140. May also vary.
  • the growth source may be silicon.
  • the amount of growth source in the third growth process may be greater than the amount of growth source in the first growth process, and the amount of growth source may be large in the second growth process. Therefore, the growth source density of the third semiconductor layer 140 may be greater than the growth source density of the first semiconductor layer 120. In addition, the growth source density of the second semiconductor layer 130 may be increased linearly, nonlinearly or stepwise.
  • An epitaxial layer including the first to third semiconductor layers 120, 130, and 140 may be formed on the substrate by the manufacturing process as described above.
  • the top roughness of the epitaxial layer that is, the surface roughness of the third semiconductor layer 140 may be about 1 nm or less, and the surface defect density of the third semiconductor layer 140 may be about 0.1 / cm 2 or less.
  • Such epitaxial wafers can be applied to a variety of electronic devices.
  • the epitaxial wafer 100 manufactured as described above may be applied to various electronic devices.
  • the electronic device may include a semiconductor switching device and a light emitting device, but is not limited thereto.
  • Semiconductor switching devices may include power devices such as Schottky barrier diodes and MESFETs.
  • FIG. 7 is a cross-sectional view illustrating a Schottky barrier diode according to an embodiment.
  • a Schottky barrier diode may include a substrate 110, an epitaxial layer 150, a drift layer 152, a plurality of doped regions 154, an anode contact 156, and a cathode contact ( 158).
  • the substrate 110 and the epitaxial layer 150 are epitaxial wafers 100 according to the first to third embodiments.
  • the epitaxial layers 150 of the epitaxial wafers 100 according to the first to third embodiments are the first semiconductor layer 120 grown at a low growth rate and the third grown at a high growth rate.
  • the epitaxial layer 150 including the semiconductor layer 140 both internal defects and surface defects can be minimized.
  • the second semiconductor layer 130 may be formed to maintain the continuity of growth of the first and third semiconductor layers 120 and 140.
  • the substrate 110 and the epitaxial layer 150 may be n-type conductive layers, but are not limited thereto.
  • the drift layer 152 may be formed on the epitaxial layer 150.
  • the drift layer 152 includes silicon carbide and may be an n-type conductive layer, but is not limited thereto.
  • a plurality of doped regions 154 may be formed on the top surface of the drift layer 152 by, for example, ion implantation.
  • the anode contact 156 may be formed on the drift layer 152 in contact with both the drift layer 152 and the doped region 154.
  • the anode contact 156 may be schottky bonded to an upper surface of the drift layer 152 between the plurality of doped regions 154 and ohmic contact with the doped regions 154.
  • the cathode contact 158 may be formed on the back side of the substrate 110.
  • the anode electrode 156 and the cathode electrode 158 may be metal, but are not limited thereto.
  • the junction between anode contact 156 and drift layer 152 may be turned on at lower voltages than the junction between doped region 154 and drift layer 152. Therefore, at low forward voltages, the device exhibits Schottky diode behavior. In other words, the current shift in the device may be governed by multiple carriers injected across the Schottky junction at low forward voltages. At typical voltages, the device has no minority carrier injection, so Schottky barrier diodes can have the fast switching speed characteristics of Schottky diodes.
  • the depletion region formed by the PN junction between the doped region 154 and the drift layer 152 is expanded to block reverse current through the device to protect the Schottky junction and to prevent reverse leakage current in the device. You can limit it.
  • first and second semiconductor layers 120 and 130 may be used as the buffer layer, and the third semiconductor layer 140 may be used as the drift layer, but is not limited thereto.
  • the drift layer 152 may not be further formed. That is, the doped region 154 may be directly formed on the upper surface of the third semiconductor layer 140.
  • FIG. 8 is a cross-sectional view illustrating a MESFET according to an embodiment.
  • a MESFET may include a substrate 110, an epitaxial layer 150, a drift layer 162, a body region 164, a source region 166, a body contact region 168, and a gate. It may include an insulator 170, a gate contact 172, a source contact 174, and a drain contact 176.
  • the substrate 110 and the epitaxial layer 150 are epitaxial wafers 100 according to the first and second embodiments.
  • the epitaxial wafer 100 will not be described further.
  • the substrate 110 and the epitaxial layer 150 may be n-type conductive layers, but are not limited thereto.
  • the drift layer 162 may be formed on the epitaxial layer 150.
  • the drift layer 162 includes silicon carbide and may be an n-type conductive layer, but is not limited thereto.
  • the body region 164 may be formed in the drift layer 162 by ion implantation.
  • the body region 164 may be a p-type doped region, but is not limited thereto.
  • the source region 166 may be formed in the body region 164 adjacent to the body contact region 168.
  • the source region 166 may be an n-type doped region, and the body contact region 168 may be a p + doped region, but is not limited thereto.
  • the gate insulator 170 may be formed on the top surface of the drift layer 162 and may extend over the top surface of the body region 164 between the source region 166 and the drift layer 162.
  • the gate contact 172 may be formed on the gate insulator 170, the source contact 174 may be formed on the source region 166, and the drain contact 176 may be formed on the rear surface of the substrate 110. .
  • the MESFET structure When there is no off state, i.e., there is not enough gate voltage to induce the channel, the MESFET structure can be the same as the PIN diode formed of the body region 164, the drift layer 162 and the substrate 110. When the MESFET structure is biased in the reverse direction, the depletion region extends toward the substrate 110 mainly on the drift layer 162 face of the junction between the body region 164 and the drift layer 162, which can block the drain voltage. have.
  • the first semiconductor layer 120 and the second semiconductor layer 130 may be used as the buffer layer, and the third semiconductor layer 140 may be used as the drift layer, but is not limited thereto.
  • the drift layer 162 may not be further formed. That is, the body region 164, the source region 166, and the body contact region 168 may be directly formed on the upper surface of the third semiconductor layer 140.
  • FIG. 9 is a sectional view showing a light emitting device according to the embodiment.
  • the light emitting device may include a substrate 110, an epitaxial layer 150, a light emitting structure 188, and first and second electrodes 190 and 192.
  • the substrate 110 and the epitaxial layer 150 are epitaxial wafers 100 according to the first to third embodiments.
  • the epitaxial wafer 100 will not be described further.
  • the substrate 110 may not include a dopant.
  • the epitaxial layer 150 may be an n-type conductive layer, but is not limited thereto.
  • the epitaxial first to third semiconductor layers 120, 130, and 140 may include n-type dopants, but are not limited thereto.
  • the light emitting structure 188 can generate light.
  • the light emitting structure 188 may be formed of a III-V compound semiconductor material.
  • the light emitting structure 188 may include a first conductive semiconductor layer 182, an active layer 184, and a second conductive semiconductor layer 186.
  • the first and second conductivity-type semiconductor layers 182 and 186 may include, for example, one of GaN, AlGaN, and AlInGaN.
  • the first conductive semiconductor layer 182 may include an n-type dopant
  • the second conductive semiconductor layer 186 may include a p-type dopant, but is not limited thereto.
  • the active layer 184 is recombined with a first carrier, for example, electrons supplied from the first conductivity type semiconductor layer 182, and a second carrier, for example, holes supplied from the second conductivity type semiconductor layer 186, to form an active layer 184.
  • a first carrier for example, electrons supplied from the first conductivity type semiconductor layer 182
  • a second carrier for example, holes supplied from the second conductivity type semiconductor layer 186
  • the active layer 184 may have a stacked structure that is repeated a plurality of times using a well layer and a barrier layer as one cycle.
  • the first electrode 190 may be disposed on a portion of the first conductive semiconductor layer 182, and the second electrode 192 may be disposed on a portion of the second conductive semiconductor layer 186.
  • the size of the second electrode 192 corresponds to a partial region of the second conductivity type semiconductor layer 186
  • current mainly concentrates on the second conductivity type semiconductor layer 186 corresponding to the size of the second electrode 192.
  • a transparent conductive layer such as, for example, ITO may be disposed on the entire area of the second conductivity type semiconductor layer 186. Therefore, since the current supplied to the second electrode 192 is current spreaded by the transparent conductive layer, the current may be evenly injected into the entire area of the second conductive semiconductor layer 186 to uniformly generate light.
  • the first and second electrodes 190 and 192 may be formed of metal.
  • electrons are generated from the first conductive semiconductor layer 182
  • holes are generated from the second conductive semiconductor layer 186, and the active layer 184. At) electrons and holes may be recombined to generate light.
  • Light of various wavelengths may be generated according to the energy band gap of the active layer 184.
  • the light emitting device of the embodiment may include a red light emitting device, a green light emitting device, a blue light emitting device, an infrared light emitting device or an ultraviolet light emitting device.
  • the light emitting device of the embodiment may be packaged and used as an illumination, a display, a backlight unit, or the like.
  • a semiconductor electronic device such as a Schottky barrier diode, a MESFET, and a light emitting device may be manufactured using the epitaxial wafer 100 according to the first to third embodiments.
  • the epitaxial wafers of the embodiments can be used in electronic devices.
  • the electronic device may be a switch device or a light emitting device.
  • the switch element can be a Schottky barrier diode or a MESFET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

에피택셜 웨이퍼는 기판 상에 배치되는 에피택셜층을 포함한다. 에피택셜층은 제1 내지 제3 반도체층을 포함한다. 제3 반도체층은 제1 반도체층보다 두꺼운 두께를 가진다. 제2 반도체층의 제2 도핑 농도는 제1 반도체층의 제1 도핑 농도와 제3 반도체층의 제3 도핑 농도 사이에 위치된다.

Description

에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
실시예는 에피택셜 웨이퍼에 관한 것이다.
실시예는 에피택셜 웨이퍼의 제조 방법에 관한 것이다.
실시예는 에피택셜 웨이퍼를 이용한 전력 소자에 관한 것이다.
실시예는 에피택셜 웨이퍼를 이용한 발광 소자에 관한 것이다.
전자 소자가 사회 전반에 광범위하게 사용되고 있다.
종래의 전자 소자는 사파이어나 실리콘으로 제조되었지만, 전자 소자의 요구 조건을 충족시켜 주지 못하고 있다.
최근 들어, 실리콘 카바이드 기반의 전자 소자에 대한 연구가 활발하게 진행되고 있다.
하지만, 아직 실리콘 카바이드를 기판으로 하는 웨이퍼에 대한 품질이 충족되지 못하고 있다.
실시예는 품질이 보장되는 에피택셜 웨이퍼를 제공한다.
실시예는 결함을 최소화한 에피택셜 웨이퍼를 제공한다.
실시예는 이러한 에피택셜 웨이퍼를 이용한 전력 소자를 제공한다.
실시예는 이러한 에피택셜 웨이퍼를 이용한 발광 소자를 제공한다.
실시예에 따르면, 에피택셜 웨이퍼는, 기판; 및 상기 기판 상에 배치되는 에피택셜 층을 포함한다. 상기 에피택셜층은 상기 기판 상에 배치되고, 제1 도핑 농도를 가지는 제1 반도체층; 상기 제1 반도체층 상에 배치되고, 제2 도핑 농도를 가지는 제2 반도체층; 및 상기 제2 반도체층 상에 배치되고, 상기 제1 반도체층의 두께보다 두꺼운 두께를 갖고, 제3도핑 농도를 가지는 제3 반도체층를 포함한다. 상기 제2 도핑 농도는 상기 제1 도핑 농도와 상기 제3 도핑 농도 사이에 위치된다.
실시예에 따르면, 스위치 소자는 기판; 상기 기판 상에 배치되는 제1 반도체층;
상기 제1 반도체층 상에 배치되는 제2 반도체층; 상기 제2 반도체층 상에 배치되는 제3 반도체층; 상기 제3 반도체층 상에 배치되는 애노드 전극; 및 상기 기판 아래에 배치되는 캐소드 전극을 포함한다. 상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가진다. 상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치된다.
실시예에 따르면, 스위치 소자는 기판; 상기 기판 상에 배치되는 제1 반도체층;
상기 제1 반도체층 상에 배치되는 제2 반도체층; 상기 제2 반도체층 상에 배치되는 제3 반도체층; 상기 제3 반도체층 상에 배치되는 소스 콘택, 드레인 콘택 및 게이트 콘택; 및 상기 제3 반도체층과 상기 게이트 콘택 사이에 배치되는 게이트 절연체를 포함한다. 상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가진다. 상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치된다.
실시예에 따르면, 발광 소자는 기판; 상기 기판 상에 에피택셜층; 및 상기 에피택셜층 상에 적어도 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물을 포함한다. 상기 에피택셜층은 상기 기판 상에 배치되는 제1 반도체층; 상기 제1 반도체층 상에 배치되는 제2 반도체층; 및 상기 제2 반도체층 상에 배치되는 제3 반도체층를 포함한다. 상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가진다. 상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치된다.
실시예는 성장 소스의 양을 줄여 초기에 저속으로 에피택셜 재질을 성장시킴으로써, 에피택셜층의 내부 결함과 표면 결함을 최소화할 수 있다.
실시예는 Si의 양을 줄여 초기에 저속으로 에피택셜 재질을 성장시킴으로써, 에피택셜층의 내부 결함과 표면 결함을 최소화할 수 있다.
실시예는 성장 소스와 도핑 소스의 양을 줄여 초기에 저속으로 에피택셜 재질을 성장시킴으로써, 에피택셜층의 내부 결함과 표면 결함을 최소화할 수 있다.
실시예는 이와 같이 내부 결함과 표면 결함이 최소화된 에피택셜 웨이퍼를 전자 소자에 적용하여 해당 전자 소자에서 요구하는 특성을 만족시켜 줄 수 있다.
실시예는 성장 조건의 변화시에도 성장이 되도록 하여, 제1 반도체층과 제3 반도체층 사이의 성장의 단절이 발생되지 않도록 하여 결함을 더욱 더 줄이고 성장 공정의 효율성을 강화하며 공정 시간을 단축시킬 수 있다.
도 1은 실시예에 따른 에피택셜 웨이퍼를 도시한 단면도이다.
도 2는 제1 실시예에 따른 도 1의 에피택셜 웨이퍼의 제조 공정을 도시한 순서도이다.
도 3은 도 2의 제조 공정을 설명하기 위한 도면이다.
도 4는 에피택셜 성장에 따른 성장 소스의 양과 성장 온도의 변화를 보여주는 도면이다.
도 5는 제2 실시예에 따른 도 1의 에피택셜 웨이퍼의 제조 공정을 도시한 순서도이다.
도 6는 에피택셜 성장에 따른 성장 소스의 양과 성장 온도의 변화를 보여주는 도면이다.
도 7은 실시예에 따른 쇼트키 배리어 다이오드를 도시한 단면도이다.
도 8은 실시예에 따른 MESFET을 도시한 단면도이다.
도 9는 실시예에 따른 발광 소자를 도시한 단면도이다.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "directly"와 "indirectly"의 의미를 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
이하, 첨부된 도면을 참조하여 실시 예를 설명하면 다음과 같다. 도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
반도체 기반 전자 소자는 에피택셜 웨이퍼 상에 추가적인 구조물을 형성하여 형성될 수 있다. 따라서, 품질이 우수한 반도체 기반 전자 소자를 제조하기 위해서는 에피택셜 웨이퍼의 품질이 보장되어야 한다.
실시예의 에피택셜 웨이퍼는 성장 공정 조건을 최적화하여 표면 조도(surface roughness) 및 표면 결함(surface defect)을 최소화하여 품질을 보장하여 줄 수 있다.
에피택셜 웨이퍼의 표면 결함은 에피택셜 성장 공정에서 발생하는 기저면 전위(Basal Plane Dislocation, BPD), 적층 결함(Stacking Faults, SFs), 프랭크 파샬 전위(Frank Partial Dislocation, FPD) 등의 내부 결함에 기인하여 발현될 수 있다.
에피택셜 웨이퍼의 표면 조도 및 표면 결함은 초기에 투입되는 반응 소스의 양(flux), 성장 온도, 압력, 반응 소스의 전체 양(flux), C/Si 비(ratio), Si/H2 비 등의 공정 조건에 따라 달라진다. 따라서, 이러한 공정 조건을 최적화하여 표면 결함 밀도(surface defect density) 및 표면 조도를 최소화할 수 있다.
예컨대, 실시예의 에피택셜 웨이퍼의 표면 조도는 대략 1nm 이하일 수 있다. 아울러, 실시예의 에피택셜 웨이퍼의 표면 결함 밀도는 0.1/cm2 이하일 수 있다. 따라서, 이러한 에피택셜 웨이퍼를 이용한 반도체 기반 전자 소자의 품질을 향상시켜 줄 수 있다.
실시예의 전자 소자로는 스위칭 제어를 위한 스위치 소자와 광을 생성하는 발광 소자가 사용될 수 있다. 스위치 소자는 쇼트키 배리어 다이오드 및 MESFET(Metal Semiconductor Field Effect Transistor)과 같은 전력 소자를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
도 1은 실시예에 따른 에피택셜 웨이퍼를 도시한 단면도이다.
도 1을 참조하면, 실시예에 따른 에피택셜 웨이퍼(100)는 기판(110)과 에피택셜층(150)을 포함할 수 있다.
기판(110)은 실리콘 카바이드(silicon carbide)를 포함할 수 있다. 즉, 기판(110)은 3C-SiC, 4H-SiC 및 6H-SiC 중 하나를 포함할 수 있다.
실리콘 카바이드는 실리콘(Si)과 카본(C)으로 이루어진 화합물 반도체일 수 있다. 기존의 실리콘(Si)에 비해, 실리콘 카바이드는 10배의 절연 항복 세기(dielectric breakdown field strength), 3배의 밴드갭(bandgap) 및 3배의 열 전도성(thermal conductivity)을 가진다.
이러한 우수한 특성으로 인해 실리콘 카바이드는 전자 소자에 광범위하게 활용될 수 있을 것으로 기대된다. 실리콘 카바이드는 전력 소자나 발광 소자에 적용될 수 있다. 특히 실리콘 카바이드 기반의 전력 소자는 높은 항복 전압(breakdown voltage)에 견디고(withstand), 낮은 저항률(resistivity)을 가지며 높은 온도에서 동작될 수 있다.
높은 항복 전압으로 인해 매우 얇은 드리프트(drift) 층이 형성되어 전력 소자의 두께가 획기적으로 줄어들 수 있다.
기판(110) 상에 에피택셜 재질을 성장시켜 에피택셜층(150)이 형성될 수 있다.
에피택셜층(150)은 HVPE(Hydride Vapor Phase Epitaxy), MOCVD(Metal Organic Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy) 또는 스퍼터링을 이용하여 성장될 수 있다.
에피택셜 재질은 기판(110)과 동일한 화합물 반도체 물질, 예컨대 실리콘 카바이드를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
에피택셜층(150)이 기판(110)과 동일한 물질을 포함하므로, 에피택셜층(150)과 기판(110)과의 격자 상수 차이나 열 팽창률 차이가 없거나 크지 않으므로 스트레스(stress)에 의한 휘어짐과 같은 불량 가능성이 크지 않다.
아울러, 기판(110)과 동일한 물질로 에피택셜층(150)이 성장되므로, 에피택셜층(150)의 결정성이 향상될 수 있다.
실시예에 따른 에피택셜층(150)은 제1 반도체층(120), 제2 반도체층(130) 및 제3 반도체층(140)을 포함할 수 있다. 제2 반도체층(130)은 제1 반도체층(120) 상에 배치되고, 제3 반도체층(140)은 제2 반도체층(130) 상에 배치될 수 있다. 제1 내지 제3 반도체층(140)은 동일 화합물 반도체 물질, 예컨대 실리콘 카바이드를 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 제3 반도체층(140)은 전자 소자의 특정 기능을 수행하기 위한 활성층일 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제3 반도체층(140)은 전력 소자의 드리프트 층이거나 발광 소자의 도전형 반도체층일 수 있다.
제1 반도체층(120)은 제3 반도체층(140)에 발생되는 결함을 완화하거나 최소화하여 주기 위한 버퍼층일 수 있다. 결함은 제1 내지 제3 반도체층(140)의 내부에 발생되는 내부 결함이거나 제3 반도체층(140)의 상면에 발생되는 표면 결함일 수 있다.
표면 결함의 종류로는 용적(droplet), 트라이앵글 결함(triangle defect), 피트(pit), 웨이비 피트(wavy pit), 파티클(particle) 등이 있다.
제3 반도체층(140)이 제1 반도체층(120) 상에 성장되므로, 제3 반도체층(140)에서 발생되는 결함을 최소화하기 위해서는 제1 반도체층(120)에서 발생되는 결함이 최소화되어야 한다. 제1 반도체층(120)은 제3 반도체층(140)을 성장하기 위한 시드층으로서 사용될 수 있다. 제1 반도체층(120)에 결함이 발생되면, 제1 반도체층(120)의 결함이 제2 반도체층(130)을 경유하여 제3 반도체층(140)으로 이어질 수 있다.
제1 반도체층의 결함을 최소화하기 위해, 제1 반도체층(120)과 제3 반도체층(140)은 서로 상이한 공정 조건으로 성장될 수 있다. 예컨대, 제1 반도체층(120)은 성장 속도를 줄이는 대신에 결함을 최소화하도록 제1 공정 조건이 설정되고, 제3 반도체층(140)은 성장 속도를 증가시키도록 제2 공정 조건이 설정될 수 있다.
이러한 공정에 의해 실시예의 에피택셜층(150), 즉 제3 반도체층(140)의 표면 조도는 1nm 이하이고, 표면 결함 밀도는 0.1/cm2 이하일 수 있다.
실시예에서, 결함 판정 대상의 사이즈는 수㎛ 내지 수십㎛이다. 따라서, 이러한 사이즈 이하의 결함은 결함 판정 대상에서 제외되었다.
에피택셜층(150)은 에피택셜 구조물, 에피택셜 필름 또는 반도체 구조물로 명명될 수도 있다.
한편, 제2 반도체층(130)은 제1 내지 제3 반도체층(140) 사이의 성장 조건 차이로 인해 제1 반도체층(120)으로부터 제3 반도체층(140)으로의 성장이 연속적이지 않고 끊기는 것을 방지하여 주는 역할을 할 수 있다. 이를 위해, 제2 반도체층(130)에서의 성장 조건은 제1 반도체층(120)에서의 성장 조건과 제3 반도체층(140)에서의 성장 조건 사이에서 변화될 수 있다. 즉, 제2 반도체층(130)의 성장 조건은 제1 반도체층(120)의 성장 조건으로부터 제3 반도체층(140)의 성장 조건으로 변화될 수 있다. 예컨대, 제2 반도체층(130)의 성장을 위한 성장 온도는 제1 반도체층(120)의 성장을 위한 성장 온도에서 제3 반도체층(140)의 성장을 위한 성장 온도로 감소될 수 있다. 예컨대, 제2 반도체층(130)의 성장을 위한 반응 소스의 양 또는 성장 소스의 양은 제1 반도체층(120)의 성장을 위한 반응 소스의 양 또는 성장 소스의 양에서 제3 반도체층(140)의 성장을 위한 반응 소스의 양 또는 성장 소스의 양으로 증가될 수 있다.
이와 같이, 제1 반도체층(120)의 성장과 제3 반도체층(140)의 성장 사이의 연속적인 성장이 진행되도록 함으로써, 내부 결함을 더욱 더 줄일 수 있어 표면 결함 밀도도 줄어들 뿐만 아니라, 제3 반도체층(140)의 표면 조도가 더욱 작아질 수 있다. 제1 반도체층(120)의 성장과 제3 반도체층(140)의 성장 사이의 연속적인 성장에 의해 제2 반도체층(130)이 형성될 수 있다.
제1 내지 제3 반도체층(120, 130, 140)의 도핑 농도는 서로 상이할 수 있다. 예컨대, 제1 반도체층(120)의 도핑 농도는 제3 반도체층(140)의 도핑 농도보다 클 수 있다. 예컨대 제2 반도체층(130)의 도핑 농도는 제3 반도체층(140)의 도핑 농도와 제1 반도체층(120)의 도핑 농도 사이에 위치되고, 제1 반도체층(120)의 도핑 농도와 같거나 근접하여 제3 반도체층(140)의 도핑 농도와 같거나 근접하도록 선형적으로, 비선형적으로 감소될 수 있지만, 이에 대해서는 한정하지 않는다. 따라서, 제1 반도체층(120)과 접촉하는 경계면(A)에서의 제2 반도체층(130)의 도핑 농도와 제3 반도체층(140)과 접촉하는 경계면(B)에서의 제2 반도체층(130)의 도핑 농도가 서로 상이할 수 있다.
이와 같이, 제1 반도체층(120)의 도핑 농도가 높게 하여 줌으로써, 기판(110)과의 격자 불일치로 인해 발생될 수 있는 결함을 방지하여 줄 수 있다. 실시예에서는 버퍼층으로 사용될 수 있는 제2 반도체층(130)에 의해 제1 반도체층(120)의 버퍼층의 역할이 더 보강되므로, 제1 및 제2 반도체층(120, 130)에 의해 내부 결함이 최소화될 수 있다.
이와 같이, 제1 및 제2 반도체층(120, 130)에 의해 내부 결함이 최소화되므로, 제3 반도체층(140)은 내부 결함뿐만 아니라 표면 결함도 최소화되며, 나아가 표면 조도도 획기적으로 작아지게 되어 제3 반도체층(140) 상에 형성되는 또 다른 반도체층의 결정성을 향상시켜 전기적/광학적 특성이 향상되어, 이러한 에피택셜 웨이퍼에 장착되는 전자 소자의 제품 신뢰성이 향상될 수 있다.
이하, 실시예에 따른 에피택셜 웨이퍼의 제조 공정을 설명한다.
이하의 제1 및 제2 실시예에서는 표면 조도를 1nm 이하로 하고 표면 결함 밀도를 0.1/cm2 이하로 줄이기 위한 방법을 제공할 수 있다.
도 2는 제1 실시예에 따른 도 1의 에피택셜 웨이퍼의 제조 공정을 도시한 순서도이고, 도 3은 도 2의 제조 공정을 설명하기 위한 도면이다.
도 2 및 도 3을 참조하면, 반응 챔버 내에 기판(110)이 제공될 수 있다(S210).
기판(110)은 3C-SiC, 4H-SiC 및 6H-SiC 중 하나를 포함할 수 있지만, 이는 일 실시 예에 불과할 뿐, 기판(110)의 소재는 최종적으로 제작하고자 하는 소자나 제품에 따라 다르게 구성 가능함은 물론이다.
판(110)은 도핑되지 않거나(undoped)나 n형 도핑이나 p형 도핑될 수 있지만, 이에 대해서는 한정하지 않는다.
기판(110)은 반응 챔버 내로 로딩되기 전에 그 표면에 자연적으로 생성되는 산화막을 제거하기 위해 세정 공정이 수행될 수 있다.
기판(110)은 예컨대, 대략 0° ~ 10°의 오프각을 가질 수 있지만 이에 대해서는 한정하지 않는다. 오프각은 (0001)Si면과 (000-1)C면을 기준으로 기판(110)이 기울어진 각도로 정의할 수 있다.
기판(110)이 제공되면, 반응 챔버 내에 에피택셜 성장을 위한 반응 소스가 주입될 수 있다.
반응 소스는 에피택셜 성장을 위한 성장 소스, 도핑을 위한 도핑 소스 및 휘석 가스를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
성장 소스는 기판(110)의 재질 및 종류에 따라서 달라질 수 있다. 예를 들어, 기판(110)이 실리콘 카바이드로 형성되는 경우, 기판(110)과 격자 상수가 같거나 비슷한 물질인, SiH4+C3H8+H2, MTS(CH3SiCl3), TCS(SiHCl3), SixCx 등의 탄소 및 규소를 포함하는 화합물을 포함하는 고상, 액상 또는 기상의 물질이 성장 소스로 이용될 수 있다.
도핑 소스는 n형 도핑을 위한 질소 가스(N2)를 포함하는 5족 화합물 반도체물질 또는 p형 도핑을 위한 Al을 포함하는 3족 화합물 반도체 물질을 포함할 수 있다.
예컨대, 탄화 규소를 포함하는 성장 소스, Al을 포함하는 도핑 소스 및 희석 가스를 이용한 성장 공정에 의해 p형 알루미늄 실리콘 카바이드(AlSiC) 반도체층이 성장될 수 있다.
예컨대, 탄화 규소를 포함하는 성장 소스, 질소 가스(N2)를 포함하는 도핑 소스 및 희석 가스를 이용한 성장 공정에 의해 n형 실리콘 카바이드 나이트라이드(SiCN) 반도체층이 성장될 수 있다.
p형 알루미늄 실리콘 카바이드(AlSiC) 반도체층 또는 n형 실리콘 카바이드 나이트라이드(SiCN) 반도체층은 전도성 반도체층일 수 있지만, 이에 대해서는 한정하지 않는다.
희석 가스는 성장 소스나 도핑 소스를 희석시키는 역할을 할 수 있다. 희석 가스는 수소 가스(H2), 아르곤(Ar) 또는 헬륨(Hg)와 같은 불활성 가스를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
제1 성장 공정을 이용하여 기판(110) 상에 제1 반도체층(120)이 성장될 수 있다. 즉, 제1 성장 공정에서, 제1 성장 소스의 양으로 에피택셜 재질이 성장되어 제1 반도체층(120)이 형성될 수 있다(S220).
제1 성장 소스의 양은 성장 소스와 희석 가스의 비와 관련될 수 있다. 제1 성장 공정에서의 성장 소스와 희석 가스의 비는 대략 1:4000 내지 1:3000로 유지될 수 있지만, 이에 대해서는 한정하지 않는다. 성장 소스와 희석 가스의 비에서 성장 소스는 실리콘 계열 물질일 수 있다.
아울러, 제1 성장 공정에서, C/Si 비는 0.5 내지 1.0일 수 있고, 반응 소스의 주입 파라미터는 10㎖/min 내지 25㎖/min으로 조절될 수 있다.
반응 소스의 주입 파라미터는 하기 수학식 1과 같이 정의될 수 있다.
수학식 1
Figure PCTKR2013010645-appb-M000001
여기서, a1~a4는 양의 실수를 나타내고, b1~b3는 실수를 나타내고, 성장 소스의 양, 도핑 소스의 양 및 희석 가스의 양은 각각 ㎖/min의 단위를 가진다. 예를 들어, a1=a2=a3=a4=1이고, b1=b2=b3=0일 수 있다.
이러한 경우, 성장 소스, 도핑 소스 및 희석 가스는 수학식 1에 따른 주입 파라미터가 대략 1/25 min/ml 내지 1/10 min/ml, 다시 말해 10ml/min 내지 25ml/min을 만족하도록 주입될 수 있다.
제1 성장 공정에 의해 대략 5×1017/㎤ 내지 5×1018/㎤의 도핑 농도를 갖는 제1 반도체층(120)이 형성될 수 있다.
제1 성장 공정에서, 제1 성장 소스의 양이 비교적 적게 주입되므로 제1 반도체층(120)이 저속으로 성장될 수 있다. 이에 따라, 에피택셜 재질, 즉 반응 소스의 원자 간 이동도가 활발해지게 되어 원자들이 골고루 분포되어 결정성이 향상되고 내부 결함이 줄어들 수 있다. 이러한 제1 반도체층(120)의 내부 결함의 감소는 제3 반도체층(140)의 내부 결함 및 표면 결함을 줄어들게 하는 한편 표면 조도를 작아지게 할 수 있다.
제1 성장 공정에서 성장된 제1 반도체층(120)의 두께는 대략 0.5㎛ 내지 1㎛일 수 있다. 제1 반도체층(120)의 두께가 0.5㎛ 이하인 경우, 추후 전력 소자 등에 적용되는 경우 내압이 낮아 전력 소자로 활용되기 어려울 수 있다. 제1 반도체층(120)의 두께가 0.5㎛ 이상인 경우, 누설 전류가 증가될 수 있다.
제1 성장 공정에 연속하여 제2 성장 공정이 수행되어 제2 반도체층(130)이 형성될 수 있다. 즉, 제2 성장 공정에서 반응 가스가 주입되는 한편, 제1 성장 소스의 양이 제2 성장 소스의 양으로 증가되면서 에피택셜 성장이 진행되어 제2 반도체층(130)이 형성될 수 있다(S230). 이와 같이, 제2 성장 소스가 지속적으로 주입됨으로써, 에피택셜 성장 또한 지속적으로 진행되어 제1 반도체층(120)에 연속하여 제2 반도체층(130)이 형성될 수 있다.
제2 성장 공정에서, C/Si 비는 대략 1.0 정도일 수 있고, 반응 가스의 주입 파라미터가 대략 15㎖/min 내지 0.5㎖/min일 수 있다.
제2 성장 소스의 양, 즉 성장 소스와 희석 가스의 비는 대략 1:4000 내지 1: 3000으로부터 대략 1:800로 증가될 수 있다. 제2 성장 공정에서의 성장 소스의 양은 선형적으로, 비선형적으로 또는 단계적으로 증가될 수 있다.
도 4에 도시한 바와 같이, 제2 성장 공정에서 성장 소스의 양은 제1 성장 공정에서의 제1 성장 소스의 양으로부터 제3 성장 공정에서의 제2 성장 소스의 양으로 증가될 수 있다.
제2 성장 공정은 제3 성장 공정을 설정하기 위한 중간 과정으로서, 성장 소스의 양이 변화되는 단계일 수 있다.
제1 실시예는 제2 성장 공정에 의해 에피택셜 성장이 멈추지 않고 연속적으로 진행되도록 하여 줌으로써, 제3 반도체층(140)이 용이하게 성장될 뿐만 아니라 내부 결함 및 표면 결함을 줄이고 표면 조도도 작아지게 할 수 있다.
제2 반도체층(130)에 의해 제1 반도체층(120)과 제3 반도체층(140) 사이의 도핑 농도차가 조절될 수 있다. 따라서, 도 1에 도시한 바와 같이, 제1 반도체층(120)과 접촉하는 제2 반도체층(130)의 경계면(A)의 도핑 농도와 제3 반도체층(140)과 접촉하는 제2 반도체층(130)의 경계면(B)의 도핑 농도가 서로 상이해질 수 있다. 제2 반도체층(130)의 도핑 농도를 얻기 위해 제2 성장 공정에서 도핑 소스의 양은 제1 성장 공정에서의 도핑 소스의 양으로부터 제2 성장 공정에서의 도핑 소스의 양으로 감소될 수 있다. 이와 같이 도핑 소스의 양을 감소시키면서 제2 반도체층(130)이 성장됨으로써, 제2 반도체층(130)의 경계면(A)과 경계면(B) 사이의 도핑 농도 차이가 발생될 수 있다. 이에 따라, 제2 반도체층(130)의 도핑 농도는 5×1016/cm3~1×1016/cm3부터 1×1016/cm3~5×1014/cm3로 감소될 수 있다.
제2 반도체층(130)은 제3 성장 공정에서 요구되는 성장 소스의 양과 도핑 소스의 양이 만족될 때까지 성장될 수 있다. 이와 같이 성장된 제2 반도체층(130)의 두께는 제1 반도체층(120)과 동일한 두께를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 제3 성장 공정에서 요구되는 성장 소스의 양과 도핑 소스의 양이 만족되는 시점이 빨라지도록 하는 경우, 제2 반도체층(130)의 두께가 제1 반도체층(120)의 두께보다 작을 수 있다.
제1 실시예는 제1 및 제3 반도체층(120, 140) 사이에 도핑 소스의 양 및 성장 소스의 양을 변화시켜 제2 반도체층(130)을 형성함으로써, 제1 반도체층(120)으로부터 제3 반도체층(140)으로의 성장이 끊기지 않고 연속적으로 진행되도록 할 수 있다. 즉, 제1 및 제3 반도체층(120, 140)은 그 도핑 소스의 양과 성장 소스의 양이 상이하기 때문에, 제1 반도체층(120)이 성장된 후 곧바로 제3 반도체층(140)이 성장되는 경우, 성장 소스의 양을 조절하기 위해 반응 소스의 주입이 중단되어야 한다. 하지만, 제1 실시예는 이러한 도핑 소스의 양과 성장 소스의 양의 변화시키는 와중에도 지속적으로 성장이 이루어지도록 하여 성장이 중단되지 않도록 할 수 있다.
제1 실시예는 도핑 농도가 변화되는 제2 반도체층(130)이 형성됨으로써, 제1 반도체층(120)에서 혹시나 발생되는 결함이 제3 반도체층(140)으로 전파되는 것을 차단하여 줄 수 있다.
아울러, 제2 반도체층(130)은 제1 반도체층(120)과 더불어 버퍼층으로서의 역할을 하므로, 기판(110)과의 격자 불일치로 인한 결함 발생을 억제하여 줄 수 있고, 제1 반도체층(120)과 더불어 제2 반도체층(130)으로 인해 제3 반도체층(140)에 발생되는 결함을 최소화하여 줄 수 있고, 제3 반도체층(140)의 표면 조도 또한 최소화할 수 있다.
제2 성장 공정에 연속하여 제3 성장 공정이 수행되어 제3 반도체층(140)이 형성될 수 있다. 즉, 제2 성장 소스의 양으로 목표 두께가 얻어질 때까지 에피택셜 성장이 진행되어 제3 반도체층이 형성될 수 있다(S240). 제3 상장 공정에서의 제2 성장 소스의 양, 즉 성장 소스와 희석 가스의 비는 대략 1:800일 수 있다.
제3 성장 공정에서, C/Si 비는 대략 0.9 내지 1.0일 수 있고, 반응 가스의 주입 파라미터가 5㎖/min 내지 0.5㎖/min일 수 있다.
이미 제2 성장 공정에 의해 제3 성장 공정에서 요구되는 제2 성장 소스의 양으로 증가되었으므로, 이러한 제2 성장 소스의 양으로 에피택셜 성장이 제3 반도체층9140)의 목표 두께에 도달할 때까지 진행될 수 있다.
제3 반도체층(140)의 도핑 농도는 제1 반도체층(120) 또는 제2 반도체층(130)의 도핑농도보다 낮게 설정될 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제3 반도체층(140)의 도핑 농도는 2×1015/cm3~7×1015/cm3일 수 있다.
도 4에 도시된 바와 같이, 제3 성장 공정에서의 제2 성장 소스의 양은 제1 성장 공정에서의 제1 성장 소스의 양보다 많을 수 있다.
성장 소스의 양과 성장 속도는 대체로 비례 관계가 성립될 수 있다. 따라서, 제2 성장 소스의 양이 증가됨에 따라 제3 반도체층(140)의 성장 속도 또한 증가될 수 있다.
예컨대, 제1 성장 공정에서 제1 성장 소스의 양으로 성장시, 제1 반도체층(120)의 성장 속도는 대략 1㎛/h~3㎛/h을 갖는데 반해, 제3 성장 공정에서 제2 성장 소스의 양으로 성장시, 제3 반도체층(140)의 성장 속도는 대략 20㎛/h 이상을 가질 수 있다.
제3 반도체층(140)은 성장 속도를 향상시키기 위한 층으로서, 제1 반도체층(120)의 두께보다 두꺼운 두께를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 아울러, 제3 반도체층(140)은 전자 소자에서 특정 기능, 예컨대 스위치 소자의 드리프트층의 기능이나 발광 소자의 제1 도전형 반도체층의 기능을 수행할 수 있는 활성층으로 사용될 수 있지만, 이에 대해서는 한정하지 않는다.
한편, 제2 성장 공정의 성장 소스의 양이 제1 성장 공정에서의 제1 성장 소스의 양으로부터 제2 성장 공정에서의 제2 성장 소스의 양으로 증가되므로, 제2 성장 공정의 성장 속도 또한 제1 성장 공정에서의 제1 성장 속도로부터 제2 성장 공정에서의 제2 성장 속도로 변화, 구체적으로 증가될 수 있다.
이와 같이, 제3 성장 공정에서 제2 성장 소스의 양이 증가되어 고속으로 제3 반도체층(140)이 형성됨으로써, 저속으로 성장되는 제1 반도체층(120)에서의 공정 시간의 지연 손실이 만회될 수 있다.
제1 실시예에서, 에피택셜층, 즉 제1 내지 제3 반도체층(120, 130, 140)의 성장 시, 온도, 압력, 기판의 회전 속도 등의 성장 조건은 모두 동일하거나, 필요에 따라 서로 다를 수 있다. 예컨대, 성장 온도는 대략 1600℃ 내지 1650℃이고, 압력은 대략 70mbar 내지 120mbar이며, 기판의 회전 속도는 대략 50rpm 내지 70rpm으로 설정될 수 있지만, 이에 대해서는 한정하지 않는다.
도 5는 제2 실시예에 따른 도 1의 에피택셜 웨이퍼의 제조 공정을 도시한 순서도이다.
제2 실시예에서 제1 실시예와 동일한 구성이나 기능에 대해서는 이미 앞서 설명된 바 있으므로 더 이상의 설명은 생략한다. 제2 실시예에서 생략된 내용은 제1 실시예로부터 용이하게 이해될 수 있다.
도 5를 참조하면, 반응 챔버 내에 기판(110)이 제공될 수 있다(S310).
기판(110)은 3C-SiC, 4H-SiC 및 6H-SiC 중 하나를 포함할 수 있다.
기판(110)이 제공되면, 반응 챔버 내에 에피택셜 성장을 위한 반응 소스가 주입될 수 있다.
반응 소스는 에피택셜 성장을 위한 성장 소스, 도핑을 위한 도핑 소스 및 휘석 가스를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
제1 성장 공정을 이용하여 기판(110) 상에 에피택셜 성장이 진행되어 제1 반도체층(120)이 형성될 수 있다(S320).
제1 성장 공정에서, 성장 온도(이하, 제1 성장 온도라 함)는 대략 1510℃~1800℃이고, C/Si 비는 대략 0.7 내지 0.8이며, Si/H2 비는 1/3000 이하이며, 반응 소스의 주입 파라미터는 1.5ml/min 내지 40ml/min으로 조절될 수 있다.
이상과 같이, 성장 소스의 양, 즉 Si/H2 비가 비교적 적게 주입하여 줌으로써, 제1 성장 공정에 의해 비교적 낮은 1㎛/h~3㎛/h의 제1 성장 속도가 얻어질 수 있다.
제2 실시예는 성장 온도를 높게 설정하여 줌으로써 반응 소스의 원자 간 이동도가 활발해져 고른 성장이 가능한 환경이 마련되고, 성장 소스의 양을 줄여주어 성장 속도가 낮아지도록 하여 줌으로써 원자들이 기판(110) 상에 고르게 분포 및 성장할 수 있는 시간을 늘려줄 수 있다. 이에 따라 제1 성장 공정에 의해 성장된 제1 반도체층(120)은 기판(110)과의 격자 불일치(lattice mismatch)를 최소화하여 표면 결함을 크게 줄여줄 수 있는 효과가 있다.
제1 성장 공정에 의해 성장된 제1 반도체층(120)의 두께는 대략 0.5㎛~1㎛일 수 있지만, 이에 대해서는 한정하지 않는다.
제1 성장 공정에 의해 성장된 제1 반도체층(120)의 도핑 농도는 대략 5×1017/cm3~7×1018/cm3일 수 있다. 이와 같이, 기판(110)과 접촉하는 제1 반도체층(120)의 도핑 농도를 높게 하여 줌으로써, 기판(110)과의 기판(110)과의 격자 불일치로 인한 결함 발생을 억제하여 줄 수 있다.
제1 성장 공정에 연속하여 제2 성장 공정이 수행되어 제2 반도체층(130)이 형성될 수 있다. 즉, 제2 성장 공정에서, 반응 챔버 내에 반응 소스를 지속적으로 주입하되, 성장 온도를 서서히 낮추는 한편 성장 소스의 양을 점차 증가시키면서 에피택셜 성장이 진행되어 제2 반도체층(130)이 형성될 수 있다(S330).
도 6에 도시한 바와 같이, 제2 성장 공정에서의 성장 온도가 제1 성장 공정에서의 제1 성장 온도로부터 나중에 설명될 제3 성장 공정에서의 제2 성장 온도로 낮아질 수 있다. 제2 성장 온도는 대략 1500℃ 내지 1700℃일 수 있다. 제2 성장 공정에서의 성장 온도는 선형적으로, 비선형적으로 또는 단계적으로 낮아질 수 있다.
이에 반해, 제2 공정에서의 성장 소스의 양은 제1 성장 공정에서의 성장 소스의 양으로부터 제3 성장 공정에서의 성장 소스의 양으로 증가될 수 있다.
제2 성장 공정에서의 성장 소스는 선형적으로, 비선형적으로 또는 단계적으로 낮아질 수 있다.
제2 성장 공정은 제3 성장 공정을 설정하기 위한 중간 과정으로서, 성장 온도와 성장 소스의 양이 변화되는 단계일 수 있다. 제2 성장 공정에 의해 제2 반도체층(130)이 성장될 수 있다.
만일 제2 성장 공정에서의 성장 온도가 제1 성장 공정의 제1 성장 온도에서 제3 성장 공정의 제3 성장 온도로 낮아질 때까지 성장 소스의 양이 반응 챔버로 주입되지 않는 경우, 더 이상 에피택셜 성장이 진행되지 않게 된다. 이후, 제3 성장 공정을 진행하는 경우, 급격한 환경 변화로 인해 제1 반도체층(120) 상에 제3 반도체층(140)이 용이하게 성장되지 않을 뿐만 아니라 제3 반도체층(140)에 내부 결함 및 표면 결함이 많아지고 표면 조도도 커지게 될 수 있다.
제2 실시예는 제2 성장 공정에 의해 에피택셜 성장이 멈추지 않고 연속적으로 진행되도록 하여 줌으로써, 제3 반도체층(140)이 용이하게 성장될 뿐만 아니라 내부 결함 및 표면 결함을 줄이고 표면 조도도 작아지게 할 수 있다.
제2 성장 공정에서, 반응 소스 내의 도핑 소스의 양은 제1 반도체층(120)의 도핑 농도를 만족시키는 도핑 소스의 양으로부터 제3 반도체층(140)의 도핑 농도를 만족시키는 도핑 소스의 양까지 증가하도록 설정될 수 있다. 따라서, 제2 성장 공정에서 반응 챔버 내로 주입되는 도핑 소스의 양도 성장 소스의 양과 함께 증가하도록 설정되어야 한다. 제2 성장 공정 동안 반응 챔버 내로 주입되는 도핑 소스의 양은, 예를 들면 0.1ml/min 내지 0.5ml/min으로부터 1.5ml/min 내지 2.5ml/min까지 선형적, 비선형적으로 또는 단계적으로 증가하도록 설정될 수 있다.
이에 따라, 제2 반도체층(130)에 의해 제1 반도체층(120)과 제3 반도체층(140) 사이의 도핑 농도차가 조절될 수 있다. 따라서, 도 1에 도시한 바와 같이, 제1 반도체층(120)과 접촉하는 제2 반도체층(130)의 경계면(A)의 도핑 농도와 제3 반도체층(140)과 접촉하는 제2 반도체층(130)의 경계면(B)의 도핑 농도가 서로 상이해질 수 있다. 제2 반도체층(130)의 도핑 농도를 얻기 위해 제2 성장 공정에서 도핑 소스의 양은 제1 성장 공정에서의 도핑 소스의 양으로서 제2 성장 공정에서의 도핑 소스의 양으로 감소될 수 있다. 이에 따라, 제2 반도체층(130)의 도핑 농도는 5×1016/cm3~1×1016/cm3부터 1×1016/cm3~5×1014/cm3로 감소될 수 있다.
이러한 제2 성장 공정은 성장 온도 및 성장 속도가 제3 반도체층(140) 성장 공정에서의 조건을 만족시킬 때까지 유지될 수 있다. 제2 성장 공정을 통하여 제1 반도체층(120) 및 제3 반도체층(140)과 구별되는 제2 반도체층(130)이 형성될 수 있다.
제3 반도체층(140)을 성장하기 위한 성장 온도(이하, 제2 성장 온도라 함)와 성장 소스의 양이 만족되는 경우, 제2 성장 공정에 연속하여 제3 성장 공정이 진행될 수 있다. 즉, 제3 성장 공정에서, 제1 성장 공정에서의 성장 소스의 양보다 증가된 성장 소스의 양을 포함한 반응 소스를 지속적으로 주입하는 한편, 제1 성장 공정에서의 제1 성장 온도보다 낮아진 제2 성장 온도로 목표 두께가 될 때까지 에피택셜 성장이 진행되어 제3 반도체층(140)이 형성될 수 있다(S340).
제2 성장 온도는 대략 1500℃ 내지 1700℃일 수 있다. 이와 같은 성장 조건에 의해 성장된 제3 반도체층(140)의 도핑 농도는 대략 1×1015/cm3 내지 5×1015/cm3 일 수 있다.
성장 속도는 반응 소스 내의 성장 소스의 양에 따라 제어될 수 있다.
이와 같이 증가된 성장 소스의 양에 의한 제2 성장 속도는 대략 20㎛/h이상으로서, 제1 성장 공정에서의 성장 소스의 양에 의한 제1 성장 속도인 대략 1㎛/h~3㎛/h보다 높을 수 있다.
이와 같이, 제3 반도체층(140)을 성장하기 위한 성장 속도를 높여 줌으로서, 제1 및 제2 반도체층(120, 130)의 성장 지연이 만회될 수 있다.
제2 실시예는 제1 반도체층(120)을 형성하기 위한 제1 성장 공정에서는 비교적 적은 성장 소스를 주입하여 성장 속도를 저속으로 유지하여 줌으로써, 기판(110) 상에 고르게 원자들이 분포하여 결함이 줄여 줄 수 있다. 아울러, 제3 반도체층(140)을 형성하기 위한 제3 성장 공정에서는 비교적 많은 성장 소스를 주입하여 성장 속도를 고속으로 유지하여 줌으로써, 제3 반도체층(140)을 목표 두께로 신속하게 성장시키므로, 공정 시간을 단축시킬 수 있다.
제3 반도체층(140)의 급격히 변화된 공정 조건에서 성장되지 않도록 하기 위해, 제1 반도체층(120)을 형성하기 위한 제1 성장 공정의 공정 조건에서 제3 반도체층(140)을 형성하기 위한 제3 성장 공정의 공정 조건으로 자연스럽게 변화되도록 가이드하도록 제2 성장 공정이 진행되며, 이러한 제2 성장 공정에 의해 제2 반도체층(130)이 형성될 수 있다.
한편, 제1 내지 제3 성장 공정에 의해 형성된 제1 내지 제3 반도체층(120, 130, 140)의 성장 소스의 밀도는 달라질 수 있다. 즉, 제1 내지 제3 반도체층(120, 130, 140)을 형성하기 위해 주입된 성장 소스의 양이 달라짐으로써, 제1 내지 제3 반도체층(120, 130, 140)에 포함된 성장 소스 밀도도 달라질 수 있다. 성장 소스는 실리콘일 수 있다.
예컨대, 제1 성장 공정에서의 성장 소스의 양보다 제3 성장 공정에서의 성장 소스의 양이 더 많고, 제2 성장 공정에서는 성장 소스의 양이 많아질 수 있다. 따라서, 제3 반도체층(140)의 성장 소스 밀도는 제1 반도체층(120)의 성장 소스 밀도보다 클 수 있다. 또한, 제2 반도체층(130)의 성장 소스 밀도는 선형적으로, 비선형적으로 또는 단계적으로 증가될 수 있다.
이상과 같은 제조 공정에 의해 기판 상에 제1 내지 제3 반도체층(120, 130, 140)을 포함하는 에피택셜층이 형성될 수 있다. 이때, 에피택셜층의 최상층, 즉 제3 반도체층(140)의 표면 조도는 대략 1nm 이하이고, 제3 반도체층(140)의 표면 결함 밀도는 대략 0.1/cm2 이하일 수 있다.
이러한 에피택셜 웨이퍼는 다양한 전자 소자에 적용될 수 있다.
이와 같이 제조된 에피택셜 웨이퍼(100)는 다양한 전자 소자에 적용될 수 있다. 전자 소자는 반도체 스위칭 소자 및 발광 소자를 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 반도체 스위칭 소자는 쇼트키 배리어 다이오드 및 MESFET과 같은 전력 소자를 포함할 수 있다.
도 7은 실시예에 따른 쇼트키 배리어 다이오드를 도시한 단면도이다.
도 7을 참조하면, 실시예에 따른 쇼트키 배리어 다이오드는 기판(110), 에피택셜층(150), 드리프트층(152), 다수의 도핑 영역(154), 애노드 콘택(156) 및 캐소드 콘택(158)을 포함할 수 있다.
기판(110)과 에피택셜층(150)은 제1 내지 제3 실시예에 따른 에피택셜 웨이퍼(100)이다.
앞서 설명한 바와 같이, 제1 내지 제3 실시예에 따른 에피택셜 웨이퍼(100)의 에피택셜층(150)은 낮은 성장 속도로 성장된 제1 반도체층(120)과 높은 성장 속도로 성장된 제3 반도체층(140)을 포함하는 에피택셜층(150)을 포함함으로써, 내부 결함과 표면 결함 모두가 최소화될 수 있다. 아울러, 제1 및 제3 반도체층(120, 140)의 성장 연속성을 유지하기 위해 제2 반도체층(130)이 형성될 수 있다.
예컨대, 기판(110)과 에피택셜층(150)은 n형 도전층일 수 있지만, 이에 대해서는 한정하지 않는다.
드리프트층(152)이 에피택셜층(150) 상에 형성될 수 있다. 드리프트층(152)은 실리콘 카바이드를 포함하고, n형 도전층일 수 있지만, 이에 대해서는 한정하지 않는다.
다수의 도핑 영역(154)이 예컨대 이온 주입에 의해 드리프트층(152)의 상면에 형성될 수 있다.
애노드 콘택(156)은 드리프트층(152)과 도핑 영역(154) 모두와 접촉되어 드리프트층(152) 상에 형성될 수 있다. 애노드 콘택(156)은 다수의 도핑 영역(154) 사이의 드리프트층(152)의 상면에 쇼트키 접합되고, 도핑 영역(154)과 오믹 콘택될 수 있다.
캐소드 콘택(158)은 기판(110)의 배면 상에 형성될 수 있다. 애노드 전극(156)과 캐소드 전극(158)은 금속일 수 있지만, 이에 대해서는 한정하지 않는다.
순방향 동작시, 애노드 콘택(156)과 드리프트층(152) 사이의 접합은 도핑 영역(154)과 드리프트층(152) 사이의 접합보다 낮은 전압들에 턴온될 수 있다. 그러므로, 낮은 순방향 전압에서 소자는 쇼트키 다이오드 행동(behavior)을 보인다. 다시 말해, 소자에서 전류 이동은 낮은 순방향 전압에서 쇼트키 접합의 전역에 걸쳐 주입되는 다수 캐리어들에 의해 좌우될 수 있다. 일반적인 전압에서 소자에는 소수 캐리어 주입이 없으므로 쇼트키 배리어 다이오드는 쇼트키 다이오드의 빠른 스위칭 속도 특성을 가질 수 있다.
역방향 바이어스 조건에서, 도핑 영역(154)과 드리프트층(152) 사이의 PN 접합에 의해 형성되는 공핍 영역은 소자를 통해 역방향 전류를 차단하기 위해 확장되어 쇼트키 접합을 보호하고 소자에서 역방향 누설 전류를 제한하여 줄 수 있다.
한편, 제1 및 제2 반도체층(120, 130)은 버퍼층으로 사용되고, 제3 반도체층(140)은 드리프트층으로 사용될 수 있지만, 이에 대해서는 한정하지 않는다.
제3 반도체층(140)이 드리프트층으로 사용되는 경우, 드리프트층(152)이 추가로 형성되지 않아도 된다. 즉, 제3 반도체층(140)의 상면에 직접 도핑 영역(154)가 형성될 수 있다.
도 8은 실시예에 따른 MESFET을 도시한 단면도이다.
도 8을 참조하면, 실시예에 따른 MESFET은 기판(110), 에피택셜층(150), 드리프트층(162), 바디 영역(164), 소스 영역(166), 바디 콘택 영역(168), 게이트 절연체(170), 게이트 콘택(172), 소스 콘택(174) 및 드레인 콘택(176)을 포함할 수 있다.
기판(110)과 에피택셜층(150)은 제1 및 제2 실시예에 따른 에피택셜 웨이퍼(100)이다. 이러한 에피택셜 웨이퍼(100)는 더 이상의 설명을 생략한다.
기판(110)과 에피택셜층(150)은 n형 도전층일 수 있지만, 이에 대해서는 한정하지 않는다.
드리프트층(162)이 에피택셜층(150) 상에 형성될 수 있다. 드리프트층(162)은 실리콘 카바이드를 포함하고, n형 도전층일 수 있지만, 이에 대해서는 한정하지 않는다.
바디 영역(164)은 이온 주입에 의해 드리프트층(162)에 형성될 수 있다. 바디 영역(164)은 p형 도핑 영역일 수 있지만, 이에 대해서는 한정하지 않는다.
소스 영역(166)은 바디 콘택 영역(168)에 인접한 바디 영역(164)에 형성될 수 있다. 소스 영역(166)은 n형 도핑 영역이고, 바디 콘택 영역(168)은 p+ 도핑 영역일 수 있지만, 이에 대해서는 한정하지 않는다.
게이트 절연체(170)는 드리프트층(162)의 상면 상에 형성되고, 소스 영역(166)과 드리프트층(162) 사이의 바디 영역(164)의 상면 위로 확장될 수 있다.
게이트 콘택(172)은 게이트 절연체(170) 상에 형성되고, 소스 콘택(174)은 소스 영역(166) 상에 형성되며, 드레인 콘택(176)은 기판(110)의 배면 상에 형성될 수 있다.
충분한 전압이 게이트 콘택(172)에 인가되면, 소스 영역(166)과 드리프트층(162) 사이의 바디 영역(164)에서 소자의 표면에 채널이 유도되어 소자가 온 상태가 될 수 있다.
오프 상태, 즉 채널을 유도하기에 충분한 게이트 전압이 존재하지 않을 때, MESFET 구조는 바디 영역(164), 드리프트층(162) 및 기판(110)으로 형성되는 PIN 다이오드와 동일할 수 있다. MESFET 구조가 역방향으로 바이어스될 때, 주로 바디 영역(164)과 드리프트층(162) 사이의 접합의 드리프트층(162) 면 위에서 기판(110)을 향하여 공핍 영역이 확장되고, 이것이 드레인 전압을 차단할 수 있다.
한편, 제1 반도체층(120)과 제2 반도체층(130)은 버퍼층으로 사용되고, 제3 반도체층(140)은 드리프트층으로 사용될 수 있지만, 이에 대해서는 한정하지 않는다.
제3 반도체층(140)이 드리프트층으로 사용되는 경우, 드리프트층(162)이 추가로 형성되지 않아도 된다. 즉, 제3 반도체층(140)의 상면에 직접 바디 영역(164), 소스 영역(166) 및 바디 콘택 영역(168)가 형성될 수 있다.
도 9는 실시예에 따른 발광 소자를 도시한 단면도이다.
도 9를 참조하면, 실시예에 따른 발광 소자는 기판(110), 에피택셜층(150), 발광 구조물(188) 및 제1 및 제2 전극(190, 192)을 포함할 수 있다.
기판(110)과 에피택셜층(150)은 제1 내지 제3 실시예에 따른 에피택셜 웨이퍼(100)이다. 이러한 에피택셜 웨이퍼(100)는 더 이상의 설명을 생략한다.
기판(110)은 도펀트를 포함하지 않을 수 있다.
에피택셜층(150)은 n형 도전층일 수 있지만, 이에 대해서는 한정하지 않는다. 또는, 에피택셜에서 제1 내지 제3 반도체층(120, 130, 140)은 n형 도펀트를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
발광 구조물(188)은 광을 생성할 수 있다. 발광 구조물(188)은 III-V족 화합물 반도체 물질로 형성될 수 있다.
발광 구조물(188)은 제1 도전형 반도체층(182), 활성층(184) 및 제2 도전형 반도체층(186)을 포함할 수 있다.
제1 및 제2 도전형 반도체층(182, 186)은 예컨대, GaN, AlGaN 및 AlInGaN 중 하나를 포함할 수 있다.
예컨대 제1 도전형 반도체층(182)은 n형 도펀트를 포함하고, 제2 도전형 반도체층(186)은 p형 도펀트를 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
활성층(184)은 제1 도전형 반도체층(182)에서 공급되는 제1 캐리어, 예컨대 전자와 제2 도전형 반도체층(186)에서 공급되는 제2 캐리어, 예컨대 정공이 재결합되어 활성층(184)의 화합물 반도체 물질에 의해 결정된 에너지 밴드갭에 상응하는 파장의 광을 생성하여 줄 수 있다.
활성층(184)은 우물층과 배리어층을 한 주기로 하여 다수회 반복되는 적층 구조를 가질 수 있다.
제1 전극(190)은 제1 도전형 반도체층(182)의 일부 영역 상에 배치되고, 제2 전극(192)은 제2 도전형 반도체층(186)의 일부 영역 상에 배치될 수 있다.
제2 전극(192)의 사이즈가 제2 도전형 반도체층(186)의 일부 영역에 대응되어, 제2 전극(192)의 사이즈에 대응하는 제2 도전형 반도체층(186)에 주로 전류가 집중될 수 있다. 이러한 문제를 해결하기 위해, 제2 도전형 반도체층(186)의 전 영역 상에 예컨대, ITO와 같은 투명한 도전층이 배치될 수 있다. 따라서, 제2 전극(192)으로 공급된 전류가 투명한 도전층에 의해 전류 스프레딩되므로 전류가 제2 도전형 반도체층(186)의 전 영역으로 고르게 주입되어 광이 균일하게 생성될 수 있다.
제1 및 제2 전극(190, 192)는 금속으로 형성될 수 있다.
제1 및 제2 전극(190, 192)으로 전원이 인가되는 경우, 제1 도전형 반도체층(182)로부터 전자가 생성되고 제2 도전형 반도체층(186)로부터 정공이 생성되고, 활성층(184)에서 전자와 정공이 재결합되어 광이 생성될 수 있다.
활성층(184)의 에너지 밴드갭에 따라 다양한 파장의 광이 생성될 수 있다.
따라서, 실시예의 발광 소자는 적색 발광 소자, 녹색 발광 소자, 청색 발광 소자, 적외선 발광 소자 또는 자외선 발광 소자를 포함할 수 있다.
실시예의 발광 소자는 패키징되어, 조명, 디스플레이, 백라이트 유닛 등으로 활용될 수 있다.
이상과 같이 제1 내지 제3 실시예에 따른 에피택셜 웨이퍼(100)를 이용하여 쇼트키 배리어 다이오드, MESFET 및 발광 소자와 같은 반도체 전자 소자가 제조될 수 있다.
실시예의 에피택셜 웨이퍼는 전자 소자에 사용될 수 있다. 전자 소자는 스위치 소자나 발광 소자일 수 있다. 예컨대, 스위치 소자는 쇼트키 배리어 다이오드 또는 MESFET일 수 있다.

Claims (20)

  1. 기판; 및
    상기 기판 상에 배치되는 에피택셜 층을 포함하고,
    상기 에피택셜층은,
    상기 기판 상에 배치되고, 제1 도핑 농도를 가지는 제1 반도체층;
    상기 제1 반도체층 상에 배치되고, 제2 도핑 농도를 가지는 제2 반도체층; 및
    상기 제2 반도체층 상에 배치되고, 상기 제1 반도체층의 두께보다 두꺼운 두께를 갖고, 제3도핑 농도를 가지는 제3 반도체층를 포함하고,
    상기 제2 도핑 농도는 상기 제1 도핑 농도와 상기 제3 도핑 농도 사이에 위치되는 에피택셜 웨이퍼.
  2. 제1항에 있어서,
    상기 2 도핑 농도가 상기 제2 반도체층의 두께 방향을 따라 변화되는 에피택셜 웨이퍼.
  3. 제2항에 있어서,
    상기 제2 도핑 농도는 상기 제1 반도체층에 인접하는 상기 제2 반도체층의 제1 영역보다 상기 제3 반도체층에 인접하는 상기 제2 반도체층의 제2 영역에서 더 높은 에피택셜 웨이퍼.
  4. 제2항에 있어서,
    상기 제1 반도체층과 접촉하는 상기 제2 반도체층의 제1 영역의 상기 제2 도핑 농도는 상기 제1 도핑 농도보다 낮은 에피택셜 웨이퍼.
  5. 제2항에 있어서,
    상기 제3 반도체층과 접촉하는 상기 제2 반도체층의 제2 영역의 상기 제2 도핑 농도는 상기 제3 도핑 농도보다 높은 에피택셜 웨이퍼.
  6. 제1항에 있어서,
    상기 제1 반도체층 및 상기 제2 버퍼층은 버퍼층인 에피택셜 웨이퍼.
  7. 제1항에 있어서,
    상기 제1 반도체층은 균일하게 분포되는 화합물 반도체 물질을 포함하는 에피택셜 웨이퍼.
  8. 제1항에 있어서,
    상기 제2 도핑 농도는 5×1016/cm3~1×1016/cm3부터 1×1016/cm3~5×1014/cm3로 변화되는 에피택셜 웨이퍼.
  9. 제1항에 있어서,
    상기 제2 도핑 농도는 상기 제2 반도체층의 두께 방향의 위치에 따라 상이한 에피택셜 웨이퍼.
  10. 제1항에 있어서,
    상기 제3 반도체층의 표면 조도는 1nm 이하인 에피택셜 웨이퍼.
  11. 제1항에 있어서,
    상기 제3 반도체층의 표면 결함 밀도는 0.1/cm2 이하인 에피택셜 웨이퍼.
  12. 제1항에 있어서,
    상기 기판은 3C-SiC, 4H-SiC 및 6H-SiC 중 하나를 포함하는 에피택셜 웨이퍼.
  13. 제1항에 있어서,
    상기 제1 내지 제3 반도체층 중 적어도 하나는 실리콘 카바이드 나이트라이드(SiCN) 반도체층을 포함하는 에피택셜 웨이퍼.
  14. 제1항에 있어서,
    상기 제1 내지 제3 반도체층 중 적어도 하나는 알루미늄 실리콘 카바이드(AlSiC) 반도체층을 포함하는 에피택셜 웨이퍼.
  15. 제1항에 있어서,
    상기 에피택셜층은 상기 기판과 동일한 물질을 포함하는 에피택셜 웨이퍼.
  16. 제1항에 있어서,
    상기 제1 반도체층의 두께는 0.5㎛ 내지 1㎛인 에피택셜 웨이퍼.
  17. 제1항에 있어서,
    상기 제3 도핑 농도는 상기 제1 도핑 농도보다 낮은 에피택셜 웨이퍼.
  18. 기판;
    상기 기판 상에 배치되는 제1 반도체층;
    상기 제1 반도체층 상에 배치되는 제2 반도체층;
    상기 제2 반도체층 상에 배치되는 제3 반도체층;
    상기 제3 반도체층 상에 배치되는 애노드 전극; 및
    상기 기판 아래에 배치되는 캐소드 전극을 포함하고,
    상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가지며,
    상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치되는 스위치 소자.
  19. 기판;
    상기 기판 상에 배치되는 제1 반도체층;
    상기 제1 반도체층 상에 배치되는 제2 반도체층;
    상기 제2 반도체층 상에 배치되는 제3 반도체층;
    상기 제3 반도체층 상에 배치되는 소스 콘택, 드레인 콘택 및 게이트 콘택; 및
    상기 제3 반도체층과 상기 게이트 콘택 사이에 배치되는 게이트 절연체를 포함하고,
    상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가지며,
    상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치되는 스위치 소자.
  20. 기판;
    상기 기판 상에 에피택셜층; 및
    상기 에피택셜층 상에 적어도 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 발광 구조물을 포함하고,
    상기 에피택셜층은,
    상기 기판 상에 배치되는 제1 반도체층;
    상기 제1 반도체층 상에 배치되는 제2 반도체층; 및
    상기 제2 반도체층 상에 배치되는 제3 반도체층를 포함하고,
    상기 제3 반도체층은 상기 제1 반도체층의 두께보다 두꺼운 두께를 가지며,
    상기 제2 반도체층의 제2 도핑 농도는 상기 제1 반도체층의 제1 도핑 농도와 상기 제3 반도체층의 제3 도핑 농도 사이에 위치되는 발광 소자.
PCT/KR2013/010645 2012-11-30 2013-11-21 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자 WO2014084549A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/648,704 US9793355B2 (en) 2012-11-30 2013-11-21 Epitaxial wafer and switch element and light-emitting element using same
CN201380070392.2A CN104919571B (zh) 2012-11-30 2013-11-21 外延晶元,以及使用其的开关元件和发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0137985 2012-11-30
KR1020120137985A KR102053077B1 (ko) 2012-11-30 2012-11-30 에피택셜 웨이퍼 및 그 제조 방법
KR1020130012962A KR102098209B1 (ko) 2013-02-05 2013-02-05 에피택셜 웨이퍼 및 그 제조 방법
KR10-2013-0012962 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014084549A1 true WO2014084549A1 (ko) 2014-06-05

Family

ID=50828121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010645 WO2014084549A1 (ko) 2012-11-30 2013-11-21 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자

Country Status (3)

Country Link
US (1) US9793355B2 (ko)
CN (1) CN104919571B (ko)
WO (1) WO2014084549A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180075525A (ko) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법
EP3260581A4 (en) * 2015-02-18 2018-08-29 Showa Denko K.K. Method for producing silicon carbide single crystal epitaxial wafer and silicon carbide single crystal epitaxial wafer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201417150A (zh) * 2012-10-31 2014-05-01 Lg Innotek Co Ltd 磊晶晶圓
WO2014084550A1 (ko) * 2012-11-30 2014-06-05 엘지이노텍 주식회사 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
CN103295937A (zh) * 2013-05-21 2013-09-11 北京京东方光电科技有限公司 芯片的绑定设备和方法
US9728610B1 (en) 2016-02-05 2017-08-08 Infineon Technologies Americas Corp. Semiconductor component with a multi-layered nucleation body
CN109155239B (zh) * 2016-05-20 2023-04-21 三菱电机株式会社 碳化硅外延基板及碳化硅半导体装置
DE102017113864A1 (de) * 2017-06-22 2018-12-27 Infineon Technologies Austria Ag Verfahren zum Herstellen einer Justiermarke
CN108417483B (zh) * 2018-03-29 2020-06-16 南京国盛电子有限公司 一种8英寸大功率igbt元器件用外延片的制备方法
CN113078205B (zh) * 2021-03-30 2023-05-02 安徽长飞先进半导体有限公司 基于Al-N共掺的SiC外延结构及其制备方法
JP2023069926A (ja) * 2021-11-08 2023-05-18 株式会社ニューフレアテクノロジー 気相成長方法及び気相成長装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079232A (ja) * 2003-08-29 2005-03-24 Shindengen Electric Mfg Co Ltd 高速スイッチングダイオードおよびその製造法
US20050118746A1 (en) * 2001-10-26 2005-06-02 Sumakeris Joseph J. Minimizing degradation of SiC bipolar semiconductor devices
US20070015308A1 (en) * 2004-07-15 2007-01-18 Fairchild Semiconductor Corporation Schottky diode structure to reduce capacitance and switching losses and method of making same
US20070292999A1 (en) * 2006-06-16 2007-12-20 Cree, Inc. Transistors Having Implanted Channel Layers and Methods of Fabricating the Same
US20120049902A1 (en) * 2010-08-30 2012-03-01 Stmicroelectronics S.R.L. Integrated electronic device and method for manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185215B2 (ja) * 1999-05-07 2008-11-26 弘之 松波 SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP4848495B2 (ja) * 2001-06-04 2011-12-28 学校法人関西学院 単結晶炭化ケイ素及びその製造方法
US9209281B2 (en) * 2007-04-23 2015-12-08 Infineon Technologies Ag Method of manufacturing a device by locally heating one or more metallization layers and by means of selective etching
WO2009013914A1 (ja) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. SiCエピタキシャル基板およびその製造方法
JP2010040973A (ja) * 2008-08-08 2010-02-18 Sony Corp 半導体装置およびその製造方法
US8188538B2 (en) * 2008-12-25 2012-05-29 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
IT1401755B1 (it) * 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato a conduzione verticale e relativo metodo di fabbricazione.
CN202009004U (zh) * 2011-04-12 2011-10-12 盛况 新型碳化硅肖特基二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118746A1 (en) * 2001-10-26 2005-06-02 Sumakeris Joseph J. Minimizing degradation of SiC bipolar semiconductor devices
JP2005079232A (ja) * 2003-08-29 2005-03-24 Shindengen Electric Mfg Co Ltd 高速スイッチングダイオードおよびその製造法
US20070015308A1 (en) * 2004-07-15 2007-01-18 Fairchild Semiconductor Corporation Schottky diode structure to reduce capacitance and switching losses and method of making same
US20070292999A1 (en) * 2006-06-16 2007-12-20 Cree, Inc. Transistors Having Implanted Channel Layers and Methods of Fabricating the Same
US20120049902A1 (en) * 2010-08-30 2012-03-01 Stmicroelectronics S.R.L. Integrated electronic device and method for manufacturing thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260581A4 (en) * 2015-02-18 2018-08-29 Showa Denko K.K. Method for producing silicon carbide single crystal epitaxial wafer and silicon carbide single crystal epitaxial wafer
US10727047B2 (en) 2015-02-18 2020-07-28 Showa Denko K.K. Epitaxial silicon carbide single crystal wafer and process for producing the same
US11114295B2 (en) 2015-02-18 2021-09-07 Showa Denko K.K. Epitaxial silicon carbide single crystal wafer and process for producing the same
KR20180075525A (ko) * 2015-11-02 2018-07-04 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법
KR102547562B1 (ko) 2015-11-02 2023-06-23 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법

Also Published As

Publication number Publication date
CN104919571B (zh) 2018-01-23
US20150311290A1 (en) 2015-10-29
CN104919571A (zh) 2015-09-16
US9793355B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2014084549A1 (ko) 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
WO2009128669A2 (ko) 발광 소자 및 그 제조방법
WO2014098510A1 (en) Light emitting diode and method of fabricating the same
WO2013089459A1 (en) Semiconductor device and method of fabricating the same
WO2013089417A1 (en) Semiconductor device and method of fabricating the same
WO2019088763A1 (ko) 반도체 소자
WO2009126010A2 (ko) 발광 소자
WO2020149529A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2020091171A1 (ko) 발광 소자 구조물 및 발광 소자의 제조방법
WO2011027951A1 (en) Solar cell
WO2020218740A1 (ko) 태양전지 및 그 제조 방법
WO2014084550A1 (ko) 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
WO2018128419A1 (ko) 반도체 소자 및 이를 포함하는 발광소자 패키지
WO2014109506A1 (ko) 반도체 기판
WO2020054938A1 (ko) 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치
WO2011065665A2 (en) Method of manufacturing nitride semiconductor device
WO2023127991A1 (ko) 태양 전지 및 이의 제조 방법
WO2016186364A1 (en) Light detection device
WO2024096487A1 (ko) 반도체 성장용 템플릿을 이용한 반도체 소자 제조 방법
WO2022260190A1 (ko) 적색 발광 반도체 발광 소자 및 그 제조 방법
WO2022265395A1 (ko) 비발광 3족 질화물 반도체 적층체를 제조하는 방법
WO2021157761A1 (ko) 금속-산화막 반도체 전계효과 트랜지스터 소자 및 그 제조 방법
WO2019112370A1 (ko) 2단자 수직형 1t-디램 및 그 제조 방법
WO2020218841A1 (ko) 태양 전지
WO2024117715A1 (ko) 초박형 반도체 다이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648704

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859141

Country of ref document: EP

Kind code of ref document: A1