WO2014083788A1 - 双方向コンバータ - Google Patents

双方向コンバータ Download PDF

Info

Publication number
WO2014083788A1
WO2014083788A1 PCT/JP2013/006664 JP2013006664W WO2014083788A1 WO 2014083788 A1 WO2014083788 A1 WO 2014083788A1 JP 2013006664 W JP2013006664 W JP 2013006664W WO 2014083788 A1 WO2014083788 A1 WO 2014083788A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control
unit
efficiency
power supply
Prior art date
Application number
PCT/JP2013/006664
Other languages
English (en)
French (fr)
Inventor
仁 吉澤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014083788A1 publication Critical patent/WO2014083788A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a bidirectional converter that is used by being inserted in a circuit between different power systems.
  • the power conversion device described in Literature 1 is a device that controls charging and discharging of a battery (storage battery) of an electric vehicle.
  • the power conversion device described in Literature 1 includes a first power supply circuit and a second power supply circuit that generate an operating voltage of the control circuit.
  • the first power supply circuit generates an operating voltage for the control circuit from the AC voltage supplied from the power system.
  • the second power supply circuit generates an operating voltage for the control circuit from a DC voltage supplied from a DC power supply of the electric vehicle.
  • the power conversion device described in Document 1 selects the first power supply circuit as the power supply for supplying the operating voltage to the control circuit when power is supplied from the power system, and the power supply from the power system is performed.
  • the second power supply circuit is selected in the case of interruption.
  • the conventional power conversion device described in Document 1 does not consider the efficiency of power used in power conversion when selecting a power supply circuit that supplies an operation voltage to the control circuit. There was a case where a bad power supply circuit was selected.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a bidirectional converter capable of improving the efficiency of power used during power conversion.
  • the bidirectional converter according to the present invention is a bidirectional converter that is used by being inserted into an electric circuit between a first power system and a second power system, and the first power system and the second power system.
  • a power conversion unit that bi-directionally converts power a control unit that controls the power conversion unit, and each of which receives power from the first power system or the second power system and performs the control Among the first control power source and the second control power source provided so as to be able to supply the drive power of the unit to the control unit, and the first control power source and the second control power source, the efficiency of the power used is high
  • a selection unit that selects the control power source as a power source that supplies the driving power to the control unit.
  • a first measurement unit that measures a first voltage on the first power system side
  • a second measurement unit that measures a second voltage on the second power system side
  • An acquisition unit that acquires scheduled power to be converted between the first power system and the second power system, the first voltage measured by the first measurement unit, and the second measurement
  • the first control power source is used as a power source for supplying the driving power to the control unit in the combination of the second voltage measured by the unit and the scheduled power acquired by the acquisition unit
  • a calculation unit that obtains efficiency and efficiency when the second control power source is used as the power source
  • the selection unit includes the first control power source and the second control power source among the first control power source and the second control power source.
  • the efficiency calculated by the calculation unit is The control power of illegal, it is preferable to select as the power source for supplying the driving power to the control unit.
  • a power supply provided separately from the first power system and the second power system and supplying power to at least one of the first control power supply and the second control power supply at startup
  • Preferably further means are provided.
  • the first table in which the first voltage and the efficiency of the first control power supply are associated with each other, and the second voltage and the efficiency of the second control power supply correspond to each other.
  • a first control unit corresponding to the first voltage measured by the first measurement unit using the first table stored in the storage unit.
  • the first determination unit that determines the efficiency of the power supply and the second table stored in the storage unit, and the second voltage corresponding to the second voltage measured by the second measurement unit.
  • a second determining unit for determining the efficiency of the second control power supply Using the third table stored in the storage unit, the first voltage measured by the first measurement unit, the second voltage measured by the second measurement unit, and A third determination unit that determines the efficiency of the power conversion unit corresponding to the combination of the planned power acquired by the acquisition unit, and the efficiency of the first control power source determined by the first determination unit.
  • the scheduled power obtained by the first power system is A1
  • the efficiency of the first control power supply is ⁇ 1
  • the efficiency of the second control power supply is ⁇ 2
  • the efficiency of the power conversion unit is ⁇ 3
  • the drive power is supplied to the control unit.
  • the efficiency when the first control power source is used as the power source to be supplied is A1 / [(A1 / ⁇ 3) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 1) ⁇ ]
  • the driving power is supplied to the control unit.
  • the efficiency when the second control power supply is used as the power supply is preferably A1 / ⁇ (A1 / ⁇ 3) + (B1 / ⁇ 2) ⁇ .
  • the planned power obtained by the second power system is A2.
  • the drive power is B1
  • the efficiency of the first control power supply is ⁇ 1
  • the efficiency of the second control power supply is ⁇ 2
  • the efficiency of the power conversion unit is ⁇ 3, the drive power is supplied to the control unit.
  • the efficiency when the first control power source is used as the power source to be supplied is A2 / ⁇ (A2 / ⁇ 3) + (B1 / ⁇ 1) ⁇
  • the first power source for supplying the driving power to the control unit is the second power source.
  • the efficiency when the control power source 2 is used is preferably A2 / [(A2 / ⁇ 3) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 2) ⁇ ].
  • the first power system includes a storage battery
  • the second power system includes a power system
  • direct current is converted into alternating current in the direction from the first power system side to the second power system side, and from the second power system side to the first power system side.
  • a DC / AC converter that converts alternating current into direct current with respect to the direction is preferable.
  • a control power supply that supplies drive power to the control unit can be selected according to the use situation, so that the efficiency of power used during power conversion can be improved.
  • FIG. 3 is a flowchart illustrating an operation of the power conditioner according to the first embodiment. It is a block diagram which shows the structure of the power conditioner which concerns on Embodiment 2.
  • FIG. 3 is a flowchart illustrating an operation of the power conditioner according to the first embodiment. It is a block diagram which shows the structure of the power conditioner which concerns on Embodiment 2.
  • the bidirectional converter includes a first control power source and a second control power source provided so as to be able to supply drive power (operating power) of the control unit to the control unit.
  • Each of the first control power supply and the second control power supply receives power supply from the first power system or the second power system and supplies drive power to the control unit. Then, the bidirectional converter selects a control power source having higher efficiency of power used by the bidirectional converter as a power source for supplying driving power to the control unit, out of the first control power source and the second control power source.
  • the control power supply that supplies the driving power to the control unit can be selected according to the use situation, so that the efficiency of the bidirectional converter at the time of power conversion can be improved.
  • the power conditioner 1 As shown in FIG. 1, the power conditioner 1 according to Embodiment 1 is a charge / discharge bidirectional converter that controls the storage and discharge of a storage battery (first power system) 2.
  • the power conditioner 1 of the present embodiment is used by being inserted into an electric circuit between the storage battery 2 and the system side system (second electric power system) 3 in a consumer to which electric power is supplied from, for example, an electric power company.
  • a consumer there are a detached house, each dwelling unit of a housing complex, a factory, an office, etc., for example.
  • a solid line indicates an electric circuit
  • a broken line indicates a signal line other than the electric circuit.
  • V2H Vehicle to Home
  • the V2H system not only charges a large-capacity storage battery mounted on an electric vehicle from a home power system, but also uses (discharges) the power stored in the storage battery in conjunction with the home power system. It is.
  • the power conditioner 1 is a charge for electric vehicles that mutually converts DC power (DC voltage, DC current) of the storage battery 2 and AC power (AC voltage, AC current) of the system side system 3 during charging and discharging. It is a discharger.
  • DC power DC voltage, DC current
  • AC power AC voltage, AC current
  • the power conditioner 1 converts AC power from the system side system 3 into DC power, and outputs the DC power to the storage battery 2.
  • the power conditioner 1 converts the DC power of the storage battery 2 into AC power and outputs the AC power to the system side system 3.
  • the storage battery 2 is a large-capacity storage battery for an electric vehicle such as a nickel metal hydride battery or a lithium ion battery, and is mounted on the electric vehicle.
  • the storage battery 2 is connected to the power conditioner 1 and is charged with electric power supplied from the system side system 3 via the power conditioner 1. Further, when it is desired to operate a load device (not shown) connected to the system side system 3 at the time of a power failure, the storage battery 2 is discharged to the system side system 3 through the power conditioner 1.
  • the system side system 3 is a system connected to the power system 31.
  • the grid-side system 3 includes a distribution board connected to the power grid 31, and supplies power to the load device.
  • the distribution board is connected to the power conditioner 1 by a second electric circuit 52.
  • the load device is connected to the distribution board and operates when power is supplied from the power system 31 or the storage battery 2.
  • the power conditioner 1 of the present embodiment includes a first connection unit 11, a second connection unit 12, a disconnector 13, a power conversion unit 14, and a first control power source. 15, a second control power supply 16, and a control device 4.
  • the 1st connection part 11 is a terminal provided in order to connect the electric circuit 171 by the side of the power converter 14, and the 1st electric circuit 51 by the side of the storage battery 2.
  • the switch 21 is provided by being inserted into a first electric circuit 51 between the power conditioner 1 and the storage battery 2. Then, the switch 21 is closed so as to electrically connect the power conditioner 1 and the storage battery 2, or is opened so as to electrically disconnect the power conditioner 1 and the storage battery 2. The switch 21 is opened when charging / discharging of the storage battery 2 is not performed or when an abnormality occurs during charging / discharging of the storage battery 2, for example.
  • the second connection unit 12 is a terminal provided to connect the electric circuit 172 on the power conversion unit 14 side and the second electric circuit 52 on the system side system 3 side. That is, the system side system 3 is electrically connected to the second connection unit 12.
  • the disconnector 13 is provided by being inserted into an electric path 172 between the second connection unit 12 and the power conversion unit 14, and opens and closes under the control of the control unit 41 described later. That is, the circuit breaker 13 is closed so that the second connection unit 12 and the power conversion unit 14 are electrically connected, or the second connection unit 12 and the power conversion unit 14 are electrically connected. Or open to block.
  • the power conversion unit 14 bi-directionally converts power (voltage, current) between the storage battery 2 and the system side system 3.
  • the power conversion unit 14 includes a DC / AC inverter (DC / AC conversion unit) 141, a smoothing capacitor 142, and a DC / DC converter (DC / DC conversion unit) 143.
  • the power conversion unit 14 operates under the control of the control unit 41 described later.
  • the DC / AC inverter 141 is a bidirectional DC / AC inverter that converts between DC power (DC voltage, DC current) and AC power (AC voltage, AC current) under the control of the control unit 41.
  • the DC / AC inverter 141 operates by turning on / off a switching element (not shown).
  • This switching element is, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor: IGBT, hereinafter referred to as “IGBT”), and is switched on and off in accordance with a control signal from the control unit 41.
  • IGBT Insulated Gate Bipolar Transistor
  • the DC / AC inverter 141 converts AC power supplied from the system side system 3 through the second connection unit 12 and the disconnector 13 into DC power, and passes through the smoothing capacitor 142. The DC power is output to the DC / DC converter 143.
  • the DC / AC inverter 141 converts the DC power output from the DC / DC converter 143 into AC power and outputs the AC power to the system side system 3.
  • the smoothing capacitor 142 is provided between the DC / AC inverter 141 and the DC / DC converter 143.
  • the smoothing capacitor 142 smoothes the output voltage of the DC / AC inverter 141 when the storage battery 2 is charged, and smoothes the output voltage of the DC / DC converter 143 when the storage battery 2 is discharged.
  • the DC / DC converter 143 is a bidirectional DC / DC converter that converts the magnitude of DC power (DC voltage, DC current) under the control of the control unit 41.
  • the DC / DC converter 143 operates by turning on and off a switching element (not shown). This switching element is, for example, an IGBT or the like, and switches on / off according to a control signal from the control unit 41.
  • the DC / DC converter 143 is an insulated DC / DC converter using a transformer, for example.
  • the DC / DC converter 143 is not limited to an insulating type, and may be a non-insulating type.
  • the DC / DC converter 143 converts the DC power output from the DC / AC inverter 141 and outputs it to the storage battery 2 when the storage battery 2 is charged. On the other hand, when the storage battery 2 is discharged, the DC / DC converter 143 converts the DC power of the storage battery 2 and outputs it to the DC / AC inverter 141 via the smoothing capacitor 142.
  • the first control power supply 15 is a power supply circuit that supplies drive power for driving the control device 4 (including the control unit 41) to the control device 4.
  • the first control power supply 15 is connected to an electric circuit 171 between the first connection unit 11 and the power conversion unit 14. That is, the first control power supply 15 is provided so as to be able to receive drive power from the storage battery 2 and supply drive power to the control device 4.
  • the first control power supply 15 can also receive power supply from the system side system 3 via the power conversion unit 14 and supply drive power to the control device 4.
  • the second control power supply 16 is a power supply circuit that supplies drive power for driving the control device 4 (including the control unit 41) to the control device 4.
  • the second control power supply 16 is connected to an electric circuit 172 between the second connection unit 12 and the power conversion unit 14. That is, the second control power supply 16 is provided so as to receive power supply from the system side system 3 and supply drive power to the control device 4. Further, the second control power supply 16 can also receive drive power from the storage battery 2 via the power converter 14 and supply drive power to the control device 4.
  • the control device 4 includes a control unit 41, a first measurement unit 42, a second measurement unit 43, an acquisition unit 44, a calculation unit 45, a selection unit 46, and a storage unit 47.
  • the control device 4 includes, for example, a computer (including a microcomputer) on which a CPU (Central Processing Unit) and a memory are mounted as main components.
  • a computer including a microcomputer
  • CPU Central Processing Unit
  • the control unit 41 controls the power conversion unit 14. That is, the control unit 41 controls the circuit breaker 13, the DC / AC inverter 141, and the DC / DC converter 143. Thereby, the control unit 41 controls charging and discharging of the storage battery 2. At this time, the control unit 41 has a grid-connected operation function for coordinating AC power supplied from the second connection unit 12 to the grid-side system 3 with commercial power supplied by the power grid 31. Further, the control unit 41 detects whether the storage battery 2 is charged or discharged.
  • the control unit 41 has a CPU mounted on a computer as a main component, and operates according to a program.
  • the 1st measurement part 42 measures the both-ends voltage between the 1st connection part 11 and the power converter part 14 as the battery voltage (1st voltage) V1 by the side of the storage battery 2.
  • the second measuring unit 43 measures the voltage between both ends of the second connecting unit 12 and the power conversion unit 14 as a system voltage (second voltage) V2 on the power system 31 side.
  • the acquisition unit 44 acquires planned power (scheduled power information) for charging / discharging the storage battery 2.
  • the acquisition unit 44 acquires planned charging information (scheduled power information) indicating planned charging power (scheduled power).
  • the scheduled charging power is obtained, for example, by the product of the current flowing through the electric circuit 171 or the first electric circuit 51 and the battery voltage V1.
  • the acquisition unit 44 acquires scheduled discharge information (scheduled power information) indicating the scheduled discharge power (scheduled power).
  • the planned discharge power is obtained by, for example, the product of the current flowing in the electric circuit 172 or the second electric circuit 52 and the system voltage V2.
  • the means for obtaining the planned charging power and the planned discharging power may be in the power conditioner 1 or may be different from the power conditioner 1.
  • the acquisition unit 44 may acquire the planned power information from the storage battery 2 or a HEMS (You can also obtain it from Home (Energy Management (System)).
  • the planned charging power and the planned discharging power may be set in advance in the power conditioner 1 or outside the power conditioner 1 before the start of charging / discharging.
  • the calculation unit 45 controls the combination of the battery voltage V1 measured by the first measurement unit 42, the system voltage V2 measured by the second measurement unit 43, and the planned power acquired by the acquisition unit 44.
  • the efficiency when the first control power supply 15 is used as a power supply for supplying drive power to the device 4 and the efficiency when the second control power supply 16 is used as the power supply are obtained.
  • the calculation unit 45 includes a first determination unit 451, a second determination unit 452, a third determination unit 453, and a calculation unit 454.
  • the first determination unit 451 shown in FIG. 1 uses the first table 471 stored in the storage unit 47 and uses the first control power supply corresponding to the battery voltage V1 measured by the first measurement unit 42.
  • the efficiency ⁇ 1 of 15 is determined.
  • the efficiency ⁇ 1 of the first control power supply 15 varies depending on the battery voltage V1.
  • FIG. 3 shows the first table 471.
  • the battery voltage V1 and the efficiency ⁇ 1 of the first control power supply 15 are associated with each other. In the example of FIG. 3, the case where the battery voltage V1 is m is shown.
  • the second determination unit 452 illustrated in FIG. 1 uses the second table 472 stored in the storage unit 47 and uses the second control power supply corresponding to the system voltage V2 measured by the second measurement unit 43.
  • the efficiency ⁇ 2 of 16 is determined.
  • the efficiency ⁇ 2 of the second control power supply 16 varies depending on the system voltage V2.
  • FIG. 4 shows the second table 472.
  • the system voltage V2 and the efficiency ⁇ 2 of the second control power supply 16 are associated with each other.
  • the system voltage V2 is shown for n types.
  • the third determination unit 453 illustrated in FIG. 1 uses the third table 473 stored in the storage unit 47 and the battery voltage V ⁇ b> 1 measured by the first measurement unit 42 and the second measurement unit 43.
  • the efficiency ⁇ 3 of the power conversion unit 14 corresponding to the combination of the system voltage V2 measured in step 1 and the planned power acquired by the acquisition unit 44 is determined.
  • the efficiency ⁇ 3 of the power conversion unit 14 varies depending on the battery voltage V1, the system voltage V2, and the planned power.
  • FIG. 5 shows the third table 473.
  • the combination of the battery voltage V1, the system voltage V2, and the scheduled power is associated with the efficiency ⁇ 3 of the power conversion unit 14.
  • z cases are shown.
  • the planned power is four ways of 1000 [W], 2000 [W], 3000 [W], and 4000 [W]
  • z becomes (m ⁇ n ⁇ 4).
  • the calculation unit 454 shown in FIG. 1 includes the efficiency ⁇ 1 of the first control power supply 15 determined by the first determination unit 451, the efficiency ⁇ 2 of the second control power supply 16 determined by the second determination unit 452, and Then, the efficiency ⁇ 3 of the power conversion unit 14 determined by the third determination unit 453 is acquired. Furthermore, the calculation unit 454 acquires the scheduled power acquired by the acquisition unit 44 and the driving power. Then, the calculation unit 454 calculates the efficiency of the power conditioner 1 using the efficiency ⁇ 1, the efficiency ⁇ 2, the efficiency ⁇ 3, the scheduled power, and the drive power. That is, the calculation unit 454 uses the efficiency of the power conditioner 1 when the first control power supply 15 is used as a power supply for supplying driving power to the control device 4 and the second control power supply 16 as the power supply. The efficiency of the power conditioner 1 is calculated.
  • the efficiency of the power conditioner 1 is the ratio (A1 / A2) of the planned charging power A1 on the storage battery 2 side to the power A2 on the system side system 3 side when the storage battery 2 is charged.
  • the power A2 on the system side system 3 side is the power C1 necessary for charging the storage battery 2.
  • the power C1 is (A1 / ⁇ 3)
  • the power D1 is B1 / ( ⁇ 3 ⁇ ⁇ 1).
  • ⁇ 1 is the efficiency of the first control power supply 15, and ⁇ 3 is the efficiency of the power conversion unit 14.
  • the power A2 on the system side system 3 side includes the power C1 necessary for charging the storage battery 2 and the second control power.
  • This is the sum (C1 + D2) with the power D2 necessary for the power supply 16 to supply the driving power B1 to the control device 4. Therefore, the efficiency of the power conditioner 1 is A1 / (C1 + D2).
  • the power C1 is (A1 / ⁇ 3)
  • the power D2 is (B1 / ⁇ 2).
  • ⁇ 2 is the efficiency of the second control power supply 16
  • ⁇ 3 is the efficiency of the power conversion unit 14.
  • the efficiency of the power conditioner 1 is the ratio (A2 / A1) of the planned discharge power A2 on the system side system 3 side to the power A1 on the storage battery 2 side.
  • the power A ⁇ b> 1 on the storage battery 2 side is the power C ⁇ b> 1 necessary for discharging to the system side system 3 and the first control power supply 15. Is the sum (C1 + D1) with the power D1 required to supply the drive power B1 to the control device 4. Therefore, the efficiency of the power conditioner 1 is A2 / (C1 + D1). At this time, the power C1 is (A1 / ⁇ 3), and the power D1 is (B1 / ⁇ 1).
  • the second control power supply 16 is used as a power supply for supplying drive power to the control device 4, the power A1 on the storage battery 2 side is the power C1 necessary for discharging to the system side system 3 and the second control power. This is the sum (C1 + D2) with the power D2 necessary for the power supply 16 to supply the driving power B1 to the control device 4. Therefore, the efficiency of the power conditioner 1 is A2 / (C1 + D2). At this time, the power C1 is (A2 / ⁇ 3), and the power D2 is (B1 / ( ⁇ 3 ⁇ ⁇ 2)).
  • the efficiency of the power conditioner 1 is A1 / [(A1 / ⁇ 3) when the first control power supply 15 is used as a power supply for supplying drive power to the control device 4 in the case of charging. ) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 1)) ⁇ , and when the second control power supply 16 is used as the power supply, A1 / ⁇ (A1 / ⁇ 3) + (B1 / ⁇ 2) ⁇ .
  • the efficiency of the power conditioner 1 is A2 / ⁇ (A2 / ⁇ 3) + (B1 / ⁇ 1) ⁇ when the first control power supply 15 is used as a power supply for supplying drive power to the control device 4.
  • the second control power supply 16 is used as the power supply, A2 / [(A2 / ⁇ 3) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 2) ⁇ ].
  • the selection unit 46 illustrated in FIG. 1 selects the control power source having the higher power consumption efficiency among the first control power source 15 and the second control power source 16 as the power source for supplying drive power to the control device 4. .
  • the selection unit 46 of the present embodiment supplies drive power to the control device 4 of the first control power supply 15 and the second control power supply 16 that has the higher efficiency calculated by the calculation unit 45. Select as power source.
  • the storage unit 47 stores the first table 471, the second table 472, and the third table 473. In addition to the above, the storage unit 47 stores various types of information as necessary.
  • control part 41 cannot operate the power conversion part 14 at the time of starting the power conditioner 1 of this embodiment, the efficiency of the power conditioner 1 is considered and the 1st control power supply 15 or 2nd The control power supply 16 cannot be selected.
  • the power conditioner 1 of the present embodiment preferentially selects the second control power supply 16 on the system side system 3 side as a power supply for supplying drive power to the control device 4 at the time of startup.
  • the power conditioner 1 is supplied with driving power from the second control power supply 16 to the control device 4.
  • the first measuring unit 42 measures the battery voltage V1 (S1). Then, the first determination unit 451 determines the efficiency ⁇ 1 of the first control power supply 15 (S2). The second measuring unit 43 (measures the system voltage V2 (S3). Then, the second determining unit 452 determines the efficiency ⁇ 2 of the second control power supply 16 (S4). 44 acquires the planned power information (S5) The planned power information indicates the planned charge power in the case of charging, indicates the planned discharge power in the case of discharge, and the third determination unit 453 performs the power conversion unit 14 (S6) After that, the calculation unit 454 uses the first control power source 15 as a power source for supplying driving power to the control device 4, and uses the second power as the power source. (S7) Then, the selection unit 46 has the highest power consumption efficiency of the first control power supply 15 and the second control power supply 16. This control power supply provides drive power to the control device 4 It selects as a power supply to supply (S8).
  • the first control power supply 15 when the first control power supply 15 is used as a power supply for supplying drive power to the control device 4 at the time of discharging, B1 / ⁇ 1 power is supplied from the storage battery 2 to the first control power supply 15.
  • the power supplied from the storage battery 2 to the first control power supply 15 is 111 [W].
  • the differential power 11 [W] (111 [W] ⁇ 100 [W]) is a loss.
  • B1 / ⁇ 2 power is supplied from the power converter 14 to the second control power supply 16.
  • the bidirectional converter (power conditioner 1) of the present embodiment described above is used by being inserted into an electric circuit between the first power system (storage battery 2) and the second power system (system side system 3). Bidirectional converter.
  • the bidirectional converter of this embodiment includes a power conversion unit 14, a control unit 41, a first control power supply 15 and a second control power supply 16, and a selection unit 46.
  • the power conversion unit 14 converts power bidirectionally between the first power system and the second power system.
  • the control unit 41 controls the power conversion unit 14.
  • the first control power supply 15 and the second control power supply 16 are provided so that each can receive power supply from the first power system or the second power system and supply drive power of the control unit 41 to the control unit 41.
  • the selection unit 46 selects a control power source having higher power consumption efficiency among the first control power source 15 and the second control power source 16 as a power source for supplying driving power to the control unit 41.
  • the power conditioner 1 of the present embodiment selects the control power source having the higher efficiency of the used power from the first control power source 15 and the second control power source 16. Thereby, in the power conditioner 1, since the control power supply which supplies drive electric power to the control apparatus 4 (including the control part 41) can be selected according to a use condition, the power conditioner 1 in the case of power conversion Efficiency can be improved.
  • the efficiency of the power conditioner 1 can be improved depending on the conditions of use, that is, charging or discharging.
  • the power charge can be reduced when the storage battery 2 is charged, and the discharge time of the storage battery 2 can be extended when the storage battery 2 is discharged.
  • the bidirectional converter preferably further includes a first measurement unit 42, a second measurement unit 43, an acquisition unit 44, and a calculation unit 45.
  • the 1st measurement part 42 measures the 1st voltage by the side of the 1st electric power system (storage battery 2).
  • the second measurement unit 43 measures the second voltage on the second power system (system side system 3) side.
  • the acquisition unit 44 acquires scheduled power to be converted between the first power system and the second power system.
  • the calculation unit 45 is a combination of the first voltage measured by the first measurement unit 42, the second voltage measured by the second measurement unit 43, and the scheduled power acquired by the acquisition unit 44.
  • the selection unit 46 supplies the control power having the higher efficiency calculated by the calculation unit 45 out of the first control power supply 15 and the second control power supply 16 to the control unit 41. Choose as.
  • the bidirectional converter (power conditioner 1) preferably further includes a storage unit 47, and the calculation unit 45 includes the following components.
  • the storage unit 47 stores a first table 471, a second table 472, and a third table 473.
  • the first table 471 the first voltage (battery voltage V1) and the efficiency of the first control power supply 15 are associated with each other.
  • the second table 472 the second voltage (system voltage V2) and the efficiency of the second control power supply 16 are associated with each other.
  • the combination of the first voltage, the second voltage, and the scheduled power is associated with the efficiency of the power conversion unit 14.
  • the calculation unit 45 includes a first determination unit 451, a second determination unit 452, a third determination unit 453, and a calculation unit 454.
  • the first determination unit 451 uses the first table 471 stored in the storage unit 47 and the efficiency of the first control power supply 15 corresponding to the first voltage measured by the first measurement unit 42. To decide.
  • the second determination unit 452 uses the second table 472 stored in the storage unit 47, and the efficiency of the second control power supply 16 corresponding to the second voltage measured by the second measurement unit 43. To decide.
  • the third determination unit 453 uses the third table 473 stored in the storage unit 47 to measure the first voltage measured by the first measurement unit 42 and the second measurement unit 43. The efficiency of the power conversion unit 14 corresponding to the combination of the second voltage and the scheduled power acquired by the acquisition unit 44 is determined.
  • the calculation unit 454 includes the efficiency of the first control power source 15 determined by the first determination unit 451, the efficiency of the second control power source 16 determined by the second determination unit 452, and the third determination unit 453.
  • the first control power source 15 is used as a power source for supplying drive power to the control unit 41 using the determined efficiency of the power conversion unit 14, the scheduled power acquired by the acquisition unit 44, and the drive power.
  • the efficiency and the efficiency when the second control power supply 16 is used as the power supply are calculated.
  • the bidirectional converter (power conditioner 1) of this embodiment electric power is supplied from the second power system (system side system 3) to the first power system (storage battery 2) via the power conversion unit 14.
  • the following conditions are preferably satisfied.
  • the planned power obtained by the first power system is A1
  • the drive power is B1
  • the efficiency of the first control power supply 15 is ⁇ 1
  • the efficiency of the second control power supply 16 is ⁇ 2
  • the efficiency of the power conversion unit 14 Is ⁇ 3.
  • the efficiency when the first control power supply 15 is used as a power supply for supplying drive power to the control unit 41 is A1 / [(A1 / ⁇ 3) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 1) ⁇ ].
  • the efficiency when the second control power supply 16 is used as a power supply for supplying drive power to the control unit 41 is A1 / ⁇ (A1 / ⁇ 3) + (B1 / ⁇ 2) ⁇ .
  • the bidirectional converter (power conditioner 1) of the present embodiment power is supplied from the first power system (storage battery 2) to the second power system (system side system 3) via the power conversion unit 14.
  • the planned power obtained by the second power system is A2, the drive power is B1, the efficiency of the first control power supply 15 is ⁇ 1, the efficiency of the second control power supply 16 is ⁇ 2, and the efficiency of the power conversion unit 14 Is ⁇ 3.
  • the efficiency when the first control power supply 15 is used as a power supply for supplying drive power to the control unit 41 is A2 / ⁇ (A2 / ⁇ 3) + (B1 / ⁇ 1) ⁇ .
  • the efficiency when the second control power supply 16 is used as the power supply for supplying drive power to the control unit 41 is A2 / [(A2 / ⁇ 3) + ⁇ B1 / ( ⁇ 3 ⁇ ⁇ 2) ⁇ ].
  • the first power system preferably includes the storage battery 2
  • the second power system preferably includes the power system 31.
  • the power conditioner 1 according to the second embodiment is different from the power conditioner 1 according to the first embodiment (see FIG. 1) in that the power conditioner 1 according to the second embodiment includes a power supply unit that is used at startup.
  • symbol is attached
  • the power conditioner 1 of the present embodiment includes power supply means.
  • the power supply means is provided separately from the storage battery 2 and the system side system 3 and supplies power to the first control power supply 15 and the second control power supply 16 at the time of startup.
  • the power conditioner 1 of the present embodiment is provided with an internal battery 18 as power supply means.
  • a solid line indicates an electric circuit
  • a broken line indicates a signal line other than the electric circuit.
  • the operation of the power conditioner 1 according to the present embodiment is the same as that of the first embodiment except that either the first control power supply 15 or the second control power supply 16 is operated by power supply from the internal battery 18 at the time of startup.
  • the operation is the same as that of the inverter 1.
  • the bidirectional converter preferably further includes power supply means (internal battery 18).
  • the power supply means is provided separately from the first power system (storage battery 2) and the second power system (system side system 3), and at least one of the first control power supply 15 and the second control power supply 16 at the time of startup. To supply power.
  • the power conditioner 1 of the present embodiment is internally provided as power supply means for supplying power to the first control power supply 15 and the second control power supply 16 separately from the storage battery 2 and the system side system 3 at the time of startup.
  • a battery 18 is provided.
  • the power conditioner 1 is started without receiving power supply from the storage battery 2 and the system side system 3. Can do.
  • the power conditioner 1 can be started even when not connected to the storage battery 2 or when the power system 31 is out of power.
  • the power supply means may be an external power supply input terminal (not shown) for connecting an external power supply (not shown) instead of the internal battery 18.
  • the power conditioner 1 operates either the first control power supply 15 or the second control power supply 16 by power supply from an external power supply connected to the external power supply input terminal at the time of startup.
  • the power conditioner 1 is started without receiving power supply from the storage battery 2 and the system side system 3. Can do.
  • the power supply means may only supply power to either the first control power supply 15 or the second control power supply 16. Also in this modified example, before selecting the higher one of the first control power supply 15 and the second control power supply 16, the power conditioner 1 is operated without receiving power supply from the storage battery 2 and the system side system 3. Can be activated.
  • the charge / discharge power conditioner 1 inserted between the storage battery 2 and the power system 31 has been described as a bidirectional converter.
  • the bidirectional converter includes the power conditioner 1. Not exclusively. That is, the bidirectional converter may be a DC / AC converter other than the power conditioner 1.
  • the DC / AC converter converts direct current (direct current power, direct current voltage, direct current) into alternating current (alternating current power, alternating voltage, alternating current) in the direction from the first power system side to the second power system side. And alternating current is converted to direct current in the direction from the second power system side to the first power system side.
  • the bidirectional converter may be a DC / DC converter.
  • the DC / DC converter converts direct current (direct current power, direct current voltage, direct current) into direct current (direct current power, direct current voltage, direct current) of different magnitudes in any direction. That is, the DC / DC converter is in any of the direction from the first power system side to the second power system side and the direction from the second power system side to the first power system side. Also, the direct current is converted into a direct current having a magnitude different from that of the direct current.
  • the bidirectional converter may be an AC / AC converter.
  • the AC / AC converter is, for example, a cycloconverter or the like, and alternating current (alternating current power, alternating voltage, alternating current) of alternating current (alternating current power, alternating voltage, alternating current) with a different magnitude or frequency in any direction ). That is, the AC / AC converter is in any of the direction from the first power system side to the second power system side and the direction from the second power system side to the first power system side. Also, alternating current is converted into alternating current having a magnitude or frequency different from that of the alternating current. For example, it can be used when a plug-in hybrid vehicle that inputs and outputs alternating current is connected to an electric power system.
  • the system side system 3 connected to the power conditioner 1 may include a photovoltaic power generation facility (solar cell panel, power conditioner).
  • the power conditioner 1 as a bidirectional converter may charge the storage battery 2 using the output from the photovoltaic power generation facility as a direct current. That is, you may charge the storage battery 2 with direct current, without converting the output from photovoltaic power generation equipment into alternating current.
  • the output from the photovoltaic power generation facility may be converted into alternating current, and the storage battery 2 may be charged using the alternating current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

 パワーコンディショナのような双方向コンバータは、電力変換部と、制御部と、第1の制御電源および第2の制御電源と、選択部とを備える。電力変換部は、蓄電池のような第1の電力システムと系統側システムのような第2の電力システムとの間において双方向で電力を変換する。制御部は、電力変換部を制御する。第1の制御電源および第2の制御電源は、第1の電力システムまたは第2の電力システムから電力供給を受けて制御部の駆動電力を制御部に供給可能に設けられている。選択部は、第1の制御電源および第2の制御電源のうち、使用電力の効率が高いほうの制御電源を、制御部に駆動電力を供給する電源として選択する。

Description

双方向コンバータ
 本発明は、異なる電力システム間の電路に挿入されて用いられる双方向コンバータに関する。
 従来から、蓄電池と電力系統側との間の電路に挿入されて用いられる双方向コンバータ(電力変換装置)が知られている(例えば日本国特許出願番号2012-70536(以下「文献1」という)参照)。
 文献1に記載された電力変換装置は、電気自動車のバッテリ(蓄電池)の充放電を制御する装置である。文献1に記載された電力変換装置は、制御回路の動作電圧を生成する第1電源回路および第2電源回路を備える。第1電源回路は、電力系統から供給される交流電圧から制御回路の動作電圧を生成する。第2電源回路は、電気自動車の直流電源から供給される直流電圧から制御回路の動作電圧を生成する。そして、文献1に記載された電力変換装置は、制御回路に動作電圧を供給する電源として、電力系統から電力が供給されている場合に第1電源回路を選択し、電力系統からの電力供給が途絶えた場合に第2電源回路を選択する。
 しかしながら、文献1に記載された従来の電力変換装置は、制御回路に動作電圧を供給する電源回路を選択する際に、電力変換の際の使用電力の効率を考慮していないため、当該効率の悪い電源回路を選択する場合があった。
 本発明は上記の点に鑑みて為された発明であり、本発明の目的は、電力変換の際の使用電力の効率を改善することができる双方向コンバータを提供することにある。
 本発明の双方向コンバータは、第1の電力システムと第2の電力システムとの間の電路に挿入されて用いられる双方向コンバータであって、前記第1の電力システムと前記第2の電力システムとの間において双方向で電力を変換する電力変換部と、前記電力変換部を制御する制御部と、各々が前記第1の電力システムまたは前記第2の電力システムから電力供給を受けて前記制御部の駆動電力を当該制御部に供給可能に設けられた第1の制御電源および第2の制御電源と、前記第1の制御電源および前記第2の制御電源のうち、使用電力の効率が高いほうの制御電源を、前記制御部に前記駆動電力を供給する電源として選択する選択部とを備えることを特徴とする。
 この双方向コンバータにおいて、前記第1の電力システム側の第1の電圧を計測する第1の計測部と、前記第2の電力システム側の第2の電圧を計測する第2の計測部と、前記第1の電力システムと前記第2の電力システムとの間で変換される予定電力を取得する取得部と、前記第1の計測部で計測された前記第1の電圧、前記第2の計測部で計測された前記第2の電圧、および、前記取得部で取得された前記予定電力の組み合わせにおいて、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率、および、当該電源として前記第2の制御電源を用いた場合の効率を求める演算部とをさらに備え、前記選択部は、前記第1の制御電源および前記第2の制御電源のうち、前記演算部で演算された前記効率が高いほうの制御電源を、前記制御部に前記駆動電力を供給する電源として選択することが好ましい。
 この双方向コンバータにおいて、前記第1の電力システムおよび前記第2の電力システムとは別に設けられて起動時に前記第1の制御電源および前記第2の制御電源の少なくとも一方に電力を供給する電力供給手段をさらに備えることが好ましい。
 この双方向コンバータにおいて、前記第1の電圧と前記第1の制御電源の効率とが対応付けられている第1のテーブルと、前記第2の電圧と前記第2の制御電源の効率とが対応付けられている第2のテーブルと、前記第1の電圧、前記第2の電圧および前記予定電力の組み合わせと前記電力変換部の効率とが対応付けられている第3のテーブルとを記憶する記憶部をさらに備え、前記演算部は、前記記憶部に記憶されている前記第1のテーブルを用いて、前記第1の計測部で計測された前記第1の電圧に対応する前記第1の制御電源の効率を決定する第1の決定部と、前記記憶部に記憶されている前記第2のテーブルを用いて、前記第2の計測部で計測された前記第2の電圧に対応する前記第2の制御電源の効率を決定する第2の決定部と、前記記憶部に記憶されている前記第3のテーブルを用いて、前記第1の計測部で計測された前記第1の電圧、前記第2の計測部で計測された前記第2の電圧、および、前記取得部で取得された前記予定電力の組み合わせに対応する前記電力変換部の効率を決定する第3の決定部と、前記第1の決定部で決定された前記第1の制御電源の効率、前記第2の決定部で決定された前記第2の制御電源の効率、前記第3の決定部で決定された前記電力変換部の効率、前記取得部で取得された前記予定電力、および、前記駆動電力を用いて、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率と、当該電源として前記第2の制御電源を用いた場合の効率とを算出する算出部とを含むことが好ましい。
 この双方向コンバータにおいて、前記電力変換部を介して前記第2の電力システムから前記第1の電力システムに電力が供給される場合、前記第1の電力システムで得られる前記予定電力をA1とし、前記駆動電力をB1とし、前記第1の制御電源の効率をη1とし、前記第2の制御電源の効率をη2とし、前記電力変換部の効率をη3とすると、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率は、A1/〔(A1/η3)+{B1/(η3・η1)}〕であり、前記制御部に前記駆動電力を供給する電源として前記第2の制御電源を用いた場合の効率は、A1/{(A1/η3)+(B1/η2)}であることが好ましい。
 この双方向コンバータにおいて、前記電力変換部を介して前記第1の電力システムから前記第2の電力システムに電力が供給される場合、前記第2の電力システムで得られる前記予定電力をA2とし、前記駆動電力をB1とし、前記第1の制御電源の効率をη1とし、前記第2の制御電源の効率をη2とし、前記電力変換部の効率をη3とすると、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率は、A2/{(A2/η3)+(B1/η1)}であり、前記制御部に前記駆動電力を供給する電源として前記第2の制御電源を用いた場合の効率は、A2/〔(A2/η3)+{B1/(η3・η2)}〕であることが好ましい。
 この双方向コンバータにおいて、前記第1の電力システムは、蓄電池を含み、前記第2の電力システムは、電力系統を含むことが好ましい。
 この双方向コンバータにおいて、前記第1の電力システム側から前記第2の電力システム側への方向に対して直流を交流に変換し、前記第2の電力システム側から前記第1の電力システム側への方向に対して交流を直流に変換するDC/AC変換器であることが好ましい。
 この双方向コンバータにおいて、前記第1の電力システム側から前記第2の電力システム側への方向、および、前記第2の電力システム側から前記第1の電力システム側への方向のいずれに対しても、直流を当該直流とは異なる大きさの直流に変換するDC/DC変換器であることが好ましい。
 この双方向コンバータにおいて、前記第1の電力システム側から前記第2の電力システム側への方向、および、前記第2の電力システム側から前記第1の電力システム側への方向のいずれに対しても、交流を当該交流とは異なる大きさまたは周波数の交流に変換するAC/AC変換器であることが好ましい。
 本発明の双方向コンバータでは、制御部に駆動電力を供給する制御電源を使用状況に応じて選択することができるので、電力変換の際の使用電力の効率を改善することができる。
 本発明の好ましい実施形態をより詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層よく理解される。
実施形態1に係るパワーコンディショナの構成を示すブロック図である。 実施形態1に係るパワーコンディショナの効率を示す図である。 実施形態1に係る第1の制御電源の効率を示す図である。 実施形態1に係る第2の制御電源の効率を示す図である。 実施形態1に係る電力変換部の効率を示す図である。 実施形態1に係るパワーコンディショナの動作を示すフローチャートである。 実施形態2に係るパワーコンディショナの構成を示すブロック図である。
 以下の実施形態1,2において、双方向コンバータは、制御部の駆動電力(動作電力)を当該制御部に供給可能に設けられた第1の制御電源および第2の制御電源を備える。第1の制御電源および第2の制御電源の各々は、第1の電力システムまたは第2の電力システムから電力供給を受けて制御部に駆動電力を供給する。そして、双方向コンバータは、第1の制御電源および第2の制御電源のうち、双方向コンバータの使用電力の効率が高いほうの制御電源を、制御部に駆動電力を供給する電源として選択する。
 これにより、双方向コンバータでは、制御部に駆動電力を供給する制御電源を使用状況に応じて選択することができるので、電力変換の際の双方向コンバータの効率を改善することができる。
 以下、図面を参照しながら、実施形態1,2について説明する。
 (実施形態1)
 実施形態1に係るパワーコンディショナ1は、図1に示すように、蓄電池(第1の電力システム)2の蓄電および放電を制御する充放電用の双方向コンバータである。本実施形態のパワーコンディショナ1は、例えば電力会社から電力が供給されている需要家において、蓄電池2と系統側システム(第2の電力システム)3との間の電路に挿入されて用いられる。需要家としては、例えば戸建住宅、集合住宅の各住戸、工場、事務所などがある。なお、図1において、実線は電路を示し、破線は電路以外の信号線などを示す。
 本実施形態では、パワーコンディショナ1がV2H(Vehicle to Home)システムに用いられる場合について説明する。V2Hシステムは、電気自動車に搭載されている大容量蓄電池に家庭の電力系統から充電するのみではなく、当該蓄電池に貯めた電力を家庭の電力系統と連係して使用(放電)することができるシステムである。
 本実施形態のパワーコンディショナ1は、充放電時に蓄電池2の直流電力(直流電圧、直流電流)と系統側システム3の交流電力(交流電圧、交流電流)とを相互に変換する電気自動車用充放電器である。このパワーコンディショナ1は、蓄電池2の充電時には、系統側システム3からの交流電力を直流電力に変換し、当該直流電力を蓄電池2へ出力する。一方、蓄電池2の放電時には、パワーコンディショナ1は、蓄電池2の直流電力を交流電力に変換し、当該交流電力を系統側システム3へ出力する。
 蓄電池2は、例えばニッケル水素電池またはリチウムイオン電池などの電気自動車用大容量蓄電池であり、電気自動車に搭載されている。蓄電池2は、パワーコンディショナ1に接続され、パワーコンディショナ1を介して系統側システム3から供給される電力によって充電される。また、停電時に系統側システム3に接続されている負荷機器(図示せず)を動作させたい場合に、蓄電池2は、パワーコンディショナ1を介して系統側システム3に放電する。
 系統側システム3は、電力系統31に接続されているシステムである。図示しないが、系統側システム3は、電力系統31に接続されている分電盤を備えており、負荷機器に電力を供給する。当該分電盤は、第2の電路52によってパワーコンディショナ1に接続されている。当該負荷機器は、当該分電盤に接続されており、電力系統31または蓄電池2から電力が供給されると動作する。
 本実施形態のパワーコンディショナ1は、図1に示すように、第1の接続部11と、第2の接続部12と、解列器13と、電力変換部14と、第1の制御電源15と、第2の制御電源16と、制御装置4とを備えている。
 第1の接続部11は、電力変換部14側の電路171と蓄電池2側の第1の電路51とを接続するために設けられた端子である。すなわち、第1の接続部11には、蓄電池2が電気的に接続されている。
 開閉器21は、パワーコンディショナ1と蓄電池2との間の第1の電路51に挿入されて設けられている。そして、開閉器21は、パワーコンディショナ1と蓄電池2との間を電気的に接続させるように閉じたり、パワーコンディショナ1と蓄電池2との間を電気的に遮断させるように開いたりする。開閉器21は、例えば蓄電池2の充放電が行われない場合、または、蓄電池2の充放電中に異常が発生した場合に開く。
 第2の接続部12は、電力変換部14側の電路172と系統側システム3側の第2の電路52とを接続するために設けられた端子である。すなわち、第2の接続部12には、系統側システム3が電気的に接続されている。
 解列器13は、第2の接続部12と電力変換部14との間の電路172に挿入されて設けられており、後述の制御部41の制御によって開閉する。すなわち、解列器13は、第2の接続部12と電力変換部14との間を電気的に接続させるように閉じたり、第2の接続部12と電力変換部14との間を電気的に遮断させるように開いたりする。
 電力変換部14は、蓄電池2と系統側システム3との間において双方向で電力(電圧、電流)を変換する。電力変換部14は、DC/ACインバータ(DC/AC変換部)141と、平滑コンデンサ142と、DC/DCコンバータ(DC/DC変換部)143とを備えている。電力変換部14は、後述の制御部41の制御によって動作する。
 DC/ACインバータ141は、制御部41の制御によって直流電力(直流電圧、直流電流)と交流電力(交流電圧、交流電流)との間を変換する双方向DC/ACインバータである。DC/ACインバータ141は、スイッチング素子(図示せず)のオンオフによって動作する。このスイッチング素子は、例えば絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT、以下「IGBT」という)などであり、制御部41からの制御信号に従ってオンオフを切り替える。
 DC/ACインバータ141は、蓄電池2の充電時には、系統側システム3から第2の接続部12および解列器13を介して供給される交流電力を直流電力に変換し、平滑コンデンサ142を介して当該直流電力をDC/DCコンバータ143へ出力する。一方、蓄電池2の放電時には、DC/ACインバータ141は、DC/DCコンバータ143から出力された直流電力を交流電力に変換して系統側システム3へ出力する。
 平滑コンデンサ142は、DC/ACインバータ141とDC/DCコンバータ143との間に設けられている。平滑コンデンサ142は、蓄電池2の充電時において、DC/ACインバータ141の出力電圧を平滑し、蓄電池2の放電時において、DC/DCコンバータ143の出力電圧を平滑する。
 DC/DCコンバータ143は、制御部41の制御によって直流電力(直流電圧、直流電流)の大きさを変換する双方向DC/DCコンバータである。DC/DCコンバータ143は、スイッチング素子(図示せず)のオンオフによって動作する。このスイッチング素子は、例えばIGBTなどであり、制御部41からの制御信号に従ってオンオフを切り替える。また、DC/DCコンバータ143は、例えばトランスを用いた絶縁型DC/DCコンバータである。なお、DC/DCコンバータ143は、絶縁型に限らず、非絶縁型であってもよい。
 DC/DCコンバータ143は、蓄電池2の充電時には、DC/ACインバータ141から出力された直流電力を変換して蓄電池2へ出力する。一方、蓄電池2の放電時には、DC/DCコンバータ143は、蓄電池2の直流電力を変換し、平滑コンデンサ142を介してDC/ACインバータ141へ出力する。
 第1の制御電源15は、制御装置4(制御部41を含む)を駆動するための駆動電力を制御装置4に供給する電源回路である。第1の制御電源15は、第1の接続部11と電力変換部14との間の電路171に接続されている。すなわち、第1の制御電源15は、蓄電池2から電力供給を受けて制御装置4に駆動電力を供給することができるように設けられている。また、第1の制御電源15は、電力変換部14を介して系統側システム3から電力供給を受けて制御装置4に駆動電力を供給することもできる。
 第2の制御電源16は、制御装置4(制御部41を含む)を駆動するための駆動電力を制御装置4に供給する電源回路である。第2の制御電源16は、第2の接続部12と電力変換部14との間の電路172に接続されている。すなわち、第2の制御電源16は、系統側システム3から電力供給を受けて制御装置4に駆動電力を供給することができるように設けられている。また、第2の制御電源16は、電力変換部14を介して蓄電池2から電力供給を受けて制御装置4に駆動電力を供給することもできる。
 制御装置4は、制御部41と、第1の計測部42と、第2の計測部43と、取得部44と、演算部45と、選択部46と、記憶部47とを備えている。制御装置4は、例えばCPU(Central Processing Unit:中央処理装置)およびメモリが搭載されたコンピュータ(マイクロコンピュータを含む)を主構成要素とする。
 制御部41は、電力変換部14を制御する。すなわち、制御部41は、解列器13と、DC/ACインバータ141と、DC/DCコンバータ143とを制御する。これにより、制御部41は、蓄電池2の充電および放電を制御する。この際、制御部41は、第2の接続部12から系統側システム3へ供給する交流電力を、電力系統31が供給する商用電力に協調させる系統連系運転機能を有している。また、制御部41は、蓄電池2に対して充電と放電のいずれを行うのかについて検知する。制御部41は、コンピュータに搭載されたCPUを主構成要素とし、プログラムに従って動作する。
 第1の計測部42は、第1の接続部11と電力変換部14との間の両端電圧を、蓄電池2側の電池電圧(第1の電圧)V1として計測する。
 第2の計測部43は、第2の接続部12と電力変換部14との間の両端電圧を、電力系統31側の系統電圧(第2の電圧)V2として計測する。
 取得部44は、蓄電池2に対する充放電の予定電力(予定電力情報)を取得する。充電の場合、取得部44は、予定充電電力(予定電力)を示す予定充電情報(予定電力情報)を取得する。予定充電電力は、例えば電路171または第1の電路51に流れる電流と電池電圧V1との積で求められる。放電の場合、取得部44は、予定放電電力(予定電力)を示す予定放電情報(予定電力情報)を取得する。予定放電電力は、例えば電路172または第2の電路52に流れる電流と系統電圧V2との積で求められる。なお、予定充電電力および予定放電電力を求める手段は、パワーコンディショナ1内にあってもよいし、パワーコンディショナ1とは別であってもよい。予定充電電力および予定放電電力を求める手段がパワーコンディショナ1とは別である場合、取得部44は、予定電力情報を蓄電池2から取得してもよいし、複数の負荷機器を管理するHEMS(Home Energy Management System)などから取得してもよい。また、予定充電電力および予定放電電力は、パワーコンディショナ1内またはパワーコンディショナ1外において、充放電の開始前に予め設定されていてもよい。
 演算部45は、第1の計測部42で計測された電池電圧V1と、第2の計測部43で計測された系統電圧V2と、取得部44で取得された予定電力との組み合わせにおいて、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いた場合の効率と、当該電源として第2の制御電源16を用いた場合の効率とを求める。演算部45は、第1の決定部451と、第2の決定部452と、第3の決定部453と、算出部454とを備えている。
 図1に示す第1の決定部451は、記憶部47に記憶されている第1のテーブル471を用いて、第1の計測部42で計測された電池電圧V1に対応する第1の制御電源15の効率η1を決定する。第1の制御電源15の効率η1は、電池電圧V1によって変化する。図3は、第1のテーブル471を示す。図3に示すように、第1のテーブル471では、電池電圧V1と第1の制御電源15の効率η1とが対応付けられている。図3の例では、電池電圧V1がm通りの場合について示されている。
 図1に示す第2の決定部452は、記憶部47に記憶されている第2のテーブル472を用いて、第2の計測部43で計測された系統電圧V2に対応する第2の制御電源16の効率η2を決定する。第2の制御電源16の効率η2は、系統電圧V2によって変化する。図4は、第2のテーブル472を示す。図4に示すように、第2のテーブル472では、系統電圧V2と第2の制御電源16の効率η2とが対応付けられている。図4の例では、系統電圧V2がn通りの場合について示されている。
 図1に示す第3の決定部453は、記憶部47に記憶されている第3のテーブル473を用いて、第1の計測部42で計測された電池電圧V1と、第2の計測部43で計測された系統電圧V2と、取得部44で取得された予定電力との組み合わせに対応する電力変換部14の効率η3を決定する。電力変換部14の効率η3は、電池電圧V1と、系統電圧V2と、予定電力とによって変化する。図5は、第3のテーブル473を示す。図5に示すように、第3のテーブル473では、電池電圧V1、系統電圧V2および予定電力の組み合わせと電力変換部14の効率η3とが対応付けられている。図5の例では、z通りの場合について示されている。予定電力が1000[W]、2000[W]、3000[W]、4000[W]の4通りである場合、zは(m×n×4)通りとなる。
 図1に示す算出部454は、第1の決定部451で決定された第1の制御電源15の効率η1と、第2の決定部452で決定された第2の制御電源16の効率η2と、第3の決定部453で決定された電力変換部14の効率η3とを取得する。さらに、算出部454は、取得部44で取得された予定電力と、駆動電力とを取得する。そして、算出部454は、当該効率η1と、当該効率η2と、当該効率η3と、当該予定電力と、当該駆動電力とを用いて、パワーコンディショナ1の効率を算出する。すなわち、算出部454は、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いた場合のパワーコンディショナ1の効率と、当該電源として第2の制御電源16を用いた場合のパワーコンディショナ1の効率とを算出する。
 パワーコンディショナ1の効率は、蓄電池2の充電時には、系統側システム3側の電力A2に対する蓄電池2側の予定充電電力A1の比率(A1/A2)である。制御装置4(制御部41を含む)に駆動電力を供給する電源として第1の制御電源15を用いる場合、系統側システム3側の電力A2は、蓄電池2を充電するのに必要な電力C1と、第1の制御電源15が制御装置4に駆動電力B1を供給するのに必要な電力D1との総和(C1+D1)である。したがって、パワーコンディショナ1の効率は、A1/(C1+D1)である。このとき、電力C1は(A1/η3)となり、電力D1はB1/(η3・η1)となる。η1は第1の制御電源15の効率であり、η3は電力変換部14の効率である。
 一方、制御装置4に駆動電力を供給する電源として第2の制御電源16を用いる場合、系統側システム3側の電力A2は、蓄電池2を充電するのに必要な電力C1と、第2の制御電源16が制御装置4に駆動電力B1を供給するのに必要な電力D2との総和(C1+D2)である。したがって、パワーコンディショナ1の効率は、A1/(C1+D2)である。このとき、電力C1は(A1/η3)となり、電力D2は(B1/η2)となる。η2は第2の制御電源16の効率であり、η3は電力変換部14の効率である。
 また、蓄電池2の放電時には、パワーコンディショナ1の効率は、蓄電池2側の電力A1に対する系統側システム3側の予定放電電力A2の比率(A2/A1)である。制御装置4に駆動電力を供給する電源として第1の制御電源15を用いる場合、蓄電池2側の電力A1は、系統側システム3に放電するのに必要な電力C1と、第1の制御電源15が制御装置4に駆動電力B1を供給するのに必要な電力D1との総和(C1+D1)である。したがって、パワーコンディショナ1の効率は、A2/(C1+D1)である。このとき、電力C1は(A1/η3)となり、電力D1は(B1/η1)となる。
 一方、制御装置4に駆動電力を供給する電源として第2の制御電源16を用いる場合、蓄電池2側の電力A1は、系統側システム3に放電するのに必要な電力C1と、第2の制御電源16が制御装置4に駆動電力B1を供給するのに必要な電力D2との総和(C1+D2)である。したがって、パワーコンディショナ1の効率は、A2/(C1+D2)である。このとき、電力C1は(A2/η3)となり、電力D2は(B1/(η3・η2))となる。
 したがって、パワーコンディショナ1の効率は、図2に示すように、充電の場合、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いるときでは、A1/〔(A1/η3)+{B1/(η3・η1))}となり、当該電源として第2の制御電源16を用いるときでは、A1/{(A1/η3)+(B1/η2)}となる。
 放電の場合、パワーコンディショナ1の効率は、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いるときでは、A2/{(A2/η3)+(B1/η1)}となり、当該電源として第2の制御電源16を用いるときでは、A2/〔(A2/η3)+{B1/(η3・η2)}〕となる。
 図1に示す選択部46は、第1の制御電源15および第2の制御電源16のうち、使用電力の効率が高いほうの制御電源を、制御装置4に駆動電力を供給する電源として選択する。本実施形態の選択部46は、第1の制御電源15および第2の制御電源16のうち、演算部45で演算された効率が高いほうの制御電源を、制御装置4に駆動電力を供給する電源として選択する。
 記憶部47は、上述したように、第1のテーブル471と、第2のテーブル472と、第3のテーブル473とを記憶している。なお、記憶部47は、上記以外にも、必要に応じて各種の情報を記憶している。
 ところで、本実施形態のパワーコンディショナ1は、起動時に制御部41が電力変換部14を動作させることができないため、パワーコンディショナ1の効率を考慮して第1の制御電源15または第2の制御電源16を選択することができない。
 そこで、本実施形態のパワーコンディショナ1は、起動時に駆動電力を制御装置4に供給する電源として、系統側システム3側の第2の制御電源16を優先的に選択する。
 これにより、パワーコンディショナ1の動作を開始させることができる。たとえパワーコンディショナ1に蓄電池2が接続されていない場合であっても、パワーコンディショナ1を起動させることができる。そして、パワーコンディショナ1の状態(異常など)を把握することできる。
 次に、本実施形態に係るパワーコンディショナ1の動作について図6を用いて説明する。起動時において、パワーコンディショナ1は、第2の制御電源16が制御装置4に駆動電力を供給している。
 まず、第1の計測部42が電池電圧V1を計測する(S1)。そして、第1の決定部451が第1の制御電源15の効率η1を決定する(S2)。また、第2の計測部43が(系統電圧V2を計測する(S3)。そして、第2の決定部452が第2の制御電源16の効率η2を決定する(S4)。続いて、取得部44が予定電力情報を取得する(S5)。予定電力情報は、充電の場合に予定充電電力を示し、放電の場合に予定放電電力を示す。そして、第3の決定部453が電力変換部14の効率η3を決定する(S6)。その後、算出部454が、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いた場合の使用電力の効率と、当該電源として第2の制御電源16を用いた場合の使用電力の効率とを算出する(S7)。そして、選択部46が、第1の制御電源15および第2の制御電源16のうち、使用電力の効率が高いほうの制御電源を、制御装置4に駆動電力を供給する電源として選択する(S8)。
 例えば放電時において、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いる場合、蓄電池2から第1の制御電源15へB1/η1の電力が供給される。B1=100[W]、η1=0.90(90%)とすると、蓄電池2から第1の制御電源15への供給電力は111[W]となる。このとき、差分電力11[W](111[W]-100[W])が損失となる。一方、制御装置4に駆動電力を供給する電源として第2の制御電源16を用いる場合、電力変換部14から第2の制御電源16へB1/η2の電力が供給される。このとき、蓄電池2から電力変換部14へ(B1/η2)/η3の電力が供給される。B1=100[W]、η2=0.85(85%)、η3=0.95(95%)とすると、蓄電池2から第2の制御電源16への供給電力は123[W]となる。このとき、差分電力23[W](123[W]-100[W])が損失となる。したがって、この例では、制御装置4に駆動電力を供給する電源として第1の制御電源15を用いるほうが好ましい。
 以上説明した本実施形態の双方向コンバータ(パワーコンディショナ1)は、第1の電力システム(蓄電池2)と第2の電力システム(系統側システム3)との間の電路に挿入されて用いられる双方向コンバータである。本実施形態の双方向コンバータは、電力変換部14と、制御部41と、第1の制御電源15および第2の制御電源16と、選択部46とを備える。電力変換部14は、第1の電力システムと第2の電力システムとの間において双方向で電力を変換する。制御部41は、電力変換部14を制御する。第1の制御電源15および第2の制御電源16は、各々が第1の電力システムまたは第2の電力システムから電力供給を受けて制御部41の駆動電力を制御部41に供給可能に設けられている。選択部46は、第1の制御電源15および第2の制御電源16のうち、使用電力の効率が高いほうの制御電源を、制御部41に駆動電力を供給する電源として選択する。
 本実施形態のパワーコンディショナ1は、第1の制御電源15および第2の制御電源16のうち、使用電力の効率が高いほうの制御電源を選択する。これにより、パワーコンディショナ1では、制御装置4(制御部41を含む)に駆動電力を供給する制御電源を使用状況に応じて選択することができるので、電力変換の際のパワーコンディショナ1の効率を改善することができる。
 この際に、本実施形態のパワーコンディショナ1では、使用時すなわち充電時または放電時の条件によって、パワーコンディショナ1の効率を改善することができる。その結果、蓄電池2の充電時には電力料金を削減することができ、蓄電池2の放電時には蓄電池2の放電時間を延ばすことができる。
 本実施形態のように、双方向コンバータ(パワーコンディショナ1)は、第1の計測部42と、第2の計測部43と、取得部44と、演算部45とをさらに備えることが好ましい。第1の計測部42は、第1の電力システム(蓄電池2)側の第1の電圧を計測する。第2の計測部43は、第2の電力システム(系統側システム3)側の第2の電圧を計測する。取得部44は、第1の電力システムと第2の電力システムとの間で変換される予定電力を取得する。演算部45は、第1の計測部42で計測された第1の電圧、第2の計測部43で計測された第2の電圧、および、取得部44で取得された予定電力の組み合わせにおいて、制御部41に駆動電力を供給する電源として第1の制御電源15を用いた場合の効率、および、当該電源として第2の制御電源16を用いた場合の効率を求める。この場合、選択部46は、第1の制御電源15および第2の制御電源16のうち、演算部45で演算された効率が高いほうの制御電源を、制御部41に駆動電力を供給する電源として選択する。
 本実施形態のように、双方向コンバータ(パワーコンディショナ1)は、記憶部47をさらに備え、演算部45が以下の構成要素を含むことが好ましい。記憶部47は、第1のテーブル471と、第2のテーブル472と、第3のテーブル473とを記憶する。第1のテーブル471は、第1の電圧(電池電圧V1)と第1の制御電源15の効率とが対応付けられている。第2のテーブル472は、第2の電圧(系統電圧V2)と第2の制御電源16の効率とが対応付けられている。第3のテーブルは、第1の電圧、第2の電圧および予定電力の組み合わせと電力変換部14の効率とが対応付けられている。演算部45は、第1の決定部451と、第2の決定部452と、第3の決定部453と、算出部454とを含む。第1の決定部451は、記憶部47に記憶されている第1のテーブル471を用いて、第1の計測部42で計測された第1の電圧に対応する第1の制御電源15の効率を決定する。第2の決定部452は、記憶部47に記憶されている第2のテーブル472を用いて、第2の計測部43で計測された第2の電圧に対応する第2の制御電源16の効率を決定する。第3の決定部453は、記憶部47に記憶されている第3のテーブル473を用いて、第1の計測部42で計測された第1の電圧、第2の計測部43で計測された第2の電圧、および、取得部44で取得された予定電力の組み合わせに対応する電力変換部14の効率を決定する。算出部454は、第1の決定部451で決定された第1の制御電源15の効率、第2の決定部452で決定された第2の制御電源16の効率、第3の決定部453で決定された電力変換部14の効率、取得部44で取得された予定電力、および、駆動電力を用いて、制御部41に駆動電力を供給する電源として第1の制御電源15を用いた場合の効率と、当該電源として第2の制御電源16を用いた場合の効率とを算出する。
 本実施形態の双方向コンバータ(パワーコンディショナ1)のように、電力変換部14を介して第2の電力システム(系統側システム3)から第1の電力システム(蓄電池2)に電力が供給される場合、以下の条件を満たすことが好ましい。第1の電力システムで得られる予定電力をA1とし、駆動電力をB1とし、第1の制御電源15の効率をη1とし、第2の制御電源16の効率をη2とし、電力変換部14の効率をη3とする。制御部41に駆動電力を供給する電源として第1の制御電源15を用いた場合の効率は、A1/〔(A1/η3)+{B1/(η3・η1)}〕である。制御部41に駆動電力を供給する電源として第2の制御電源16を用いた場合の効率は、A1/{(A1/η3)+(B1/η2)}である。
 本実施形態の双方向コンバータ(パワーコンディショナ1)のように、電力変換部14を介して第1の電力システム(蓄電池2)から第2の電力システム(系統側システム3)に電力が供給される場合、以下の条件を満たすことが好ましい。第2の電力システムで得られる予定電力をA2とし、駆動電力をB1とし、第1の制御電源15の効率をη1とし、第2の制御電源16の効率をη2とし、電力変換部14の効率をη3とする。制御部41に駆動電力を供給する電源として第1の制御電源15を用いた場合の効率は、A2/{(A2/η3)+(B1/η1)}である。制御部41に駆動電力を供給する電源として第2の制御電源16を用いた場合の効率は、A2/〔(A2/η3)+{B1/(η3・η2)}〕である。
 本実施形態のように、第1の電力システムは、蓄電池2を含み、第2の電力システムは、電力系統31を含むことが好ましい。
 (実施形態2)
 実施形態2に係るパワーコンディショナ1は、起動時に用いられる電力供給手段を備えている点で、実施形態1に係るパワーコンディショナ1(図1参照)と相違する。なお、実施形態1のパワーコンディショナ1と同様の構成要素については、同一の符号を付して説明を省略する。
 本実施形態のパワーコンディショナ1は、電力供給手段を備えている。電力供給手段は、蓄電池2および系統側システム3とは別に設けられており、起動時に第1の制御電源15および第2の制御電源16に電力を供給する。本実施形態のパワーコンディショナ1には、図7に示すように、電力供給手段として、内部電池18が設けられている。なお、図7において、実線は電路を示し、破線は電路以外の信号線などを示す。
 本実施形態に係るパワーコンディショナ1の動作は、起動時に内部電池18からの電力供給によって第1の制御電源15または第2の制御電源16のいずれかを動作させる点以外において、実施形態1のパワーコンディショナ1の動作と同様である。
 以上説明した本実施形態のように、双方向コンバータ(パワーコンディショナ1)は、電力供給手段(内部電池18)をさらに備えることが好ましい。電力供給手段は、第1の電力システム(蓄電池2)および第2の電力システム(系統側システム3)とは別に設けられて起動時に第1の制御電源15および第2の制御電源16の少なくとも一方に電力を供給する。
 上述のように、本実施形態のパワーコンディショナ1は、起動時に蓄電池2および系統側システム3とは別に第1の制御電源15および第2の制御電源16に電力を供給する電力供給手段として内部電池18を備える。これにより、第1の制御電源15および第2の制御電源16のうち効率の高いほうを選択する前に、蓄電池2および系統側システム3から電力供給を受けずにパワーコンディショナ1を起動させることができる。例えば、蓄電池2に接続されていないとき、または、電力系統31が停電であるときでも、パワーコンディショナ1を起動させることができる。
 なお、本実施形態の変形例として、電力供給手段は、内部電池18に代えて、外部電源(図示せず)を接続するための外部電源入力端子(図示せず)であってもよい。本変形例の場合、パワーコンディショナ1は、起動時に、外部電源入力端子に接続された外部電源からの電力供給によって第1の制御電源15または第2の制御電源16のいずれかを動作させる。これにより、第1の制御電源15および第2の制御電源16のうち効率の高いほうを選択する前に、蓄電池2および系統側システム3から電力供給を受けずにパワーコンディショナ1を起動させることができる。
 また、本実施形態の変形例として、電力供給手段は、第1の制御電源15または第2の制御電源16のいずれか一方に電力を供給するのみであってもよい。本変形例においても、第1の制御電源15および第2の制御電源16のうち効率の高いほうを選択する前に、蓄電池2および系統側システム3から電力供給を受けずにパワーコンディショナ1を起動させることができる。
 なお、各実施形態では、双方向コンバータとして、蓄電池2と電力系統31との間に挿入された充放電用のパワーコンディショナ1について説明したが、双方向コンバータは、当該パワーコンディショナ1には限らない。すなわち、双方向コンバータは、パワーコンディショナ1以外のDC/AC変換器であってもよい。当該DC/AC変換器は、第1の電力システム側から第2の電力システム側への方向に対して直流(直流電力、直流電圧、直流電流)を交流(交流電力、交流電圧、交流電流)に変換し、第2の電力システム側から第1の電力システム側への方向に対して交流を直流に変換する。
 また、双方向コンバータは、DC/DC変換器であってもよい。当該DC/DC変換器は、いずれの方向に対しても直流(直流電力、直流電圧、直流電流)を異なる大きさの直流(直流電力、直流電圧、直流電流)に変換する。すなわち、当該DC/DC変換器は、第1の電力システム側から第2の電力システム側への方向、および、第2の電力システム側から第1の電力システム側への方向のいずれに対しても、直流を当該直流とは異なる大きさの直流に変換する。
 さらに、双方向コンバータは、AC/AC変換器であってもよい。当該AC/AC変換器は、例えばサイクロコンバータなどであり、いずれの方向に対しても交流(交流電力、交流電圧、交流電流)を異なる大きさまたは周波数の交流(交流電力、交流電圧、交流電流)に変換する。すなわち、当該AC/AC変換器は、第1の電力システム側から第2の電力システム側への方向、および、第2の電力システム側から第1の電力システム側への方向のいずれに対しても、交流を当該交流とは異なる大きさまたは周波数の交流に変換する。例えば、交流の入出力を行うプラグインハイブリッド車を電力系統に連系する場合などに用いることができる。
 なお、各実施形態において、パワーコンディショナ1に接続される系統側システム3は、太陽光発電設備(太陽電池パネル、パワーコンディショナ)を備えてもよい。この場合、双方向コンバータとしてのパワーコンディショナ1は、当該太陽光発電設備からの出力を直流のままで用いて蓄電池2を充電してもよい。すなわち、太陽光発電設備からの出力を交流に変換することなく、直流のままで蓄電池2を充電してもよい。一方、当該太陽光発電設備からの出力を交流に変換し、当該交流を用いて蓄電池2を充電してもよい。
 本発明をいくつかの好ましい実施形態によって記述したが、本発明の本来の精神および範囲、すなわち請求の範囲を逸脱することなく、当業者によってさまざまな修正および変形が可能である。

Claims (10)

  1.  第1の電力システムと第2の電力システムとの間の電路に挿入されて用いられる双方向コンバータであって、
     前記第1の電力システムと前記第2の電力システムとの間において双方向で電力を変換する電力変換部と、
     前記電力変換部を制御する制御部と、
     各々が前記第1の電力システムまたは前記第2の電力システムから電力供給を受けて前記制御部の駆動電力を当該制御部に供給可能に設けられた第1の制御電源および第2の制御電源と、
     前記第1の制御電源および前記第2の制御電源のうち、使用電力の効率が高いほうの制御電源を、前記制御部に前記駆動電力を供給する電源として選択する選択部と
     を備えることを特徴とする双方向コンバータ。
  2.  前記第1の電力システム側の第1の電圧を計測する第1の計測部と、
     前記第2の電力システム側の第2の電圧を計測する第2の計測部と、
     前記第1の電力システムと前記第2の電力システムとの間で変換される予定電力を取得する取得部と、
     前記第1の計測部で計測された前記第1の電圧、前記第2の計測部で計測された前記第2の電圧、および、前記取得部で取得された前記予定電力の組み合わせにおいて、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率、および、当該電源として前記第2の制御電源を用いた場合の効率を求める演算部とをさらに備え、
     前記選択部は、前記第1の制御電源および前記第2の制御電源のうち、前記演算部で演算された前記効率が高いほうの制御電源を、前記制御部に前記駆動電力を供給する電源として選択する
     ことを特徴とする請求項1記載の双方向コンバータ。
  3.  前記第1の電力システムおよび前記第2の電力システムとは別に設けられて起動時に前記第1の制御電源および前記第2の制御電源の少なくとも一方に電力を供給する電力供給手段をさらに備えることを特徴とする請求項1または2記載の双方向コンバータ。
  4.  前記第1の電圧と前記第1の制御電源の効率とが対応付けられている第1のテーブルと、前記第2の電圧と前記第2の制御電源の効率とが対応付けられている第2のテーブルと、前記第1の電圧、前記第2の電圧および前記予定電力の組み合わせと前記電力変換部の効率とが対応付けられている第3のテーブルとを記憶する記憶部をさらに備え、
     前記演算部は、
     前記記憶部に記憶されている前記第1のテーブルを用いて、前記第1の計測部で計測された前記第1の電圧に対応する前記第1の制御電源の効率を決定する第1の決定部と、
     前記記憶部に記憶されている前記第2のテーブルを用いて、前記第2の計測部で計測された前記第2の電圧に対応する前記第2の制御電源の効率を決定する第2の決定部と、
     前記記憶部に記憶されている前記第3のテーブルを用いて、前記第1の計測部で計測された前記第1の電圧、前記第2の計測部で計測された前記第2の電圧、および、前記取得部で取得された前記予定電力の組み合わせに対応する前記電力変換部の効率を決定する第3の決定部と、
     前記第1の決定部で決定された前記第1の制御電源の効率、前記第2の決定部で決定された前記第2の制御電源の効率、前記第3の決定部で決定された前記電力変換部の効率、前記取得部で取得された前記予定電力、および、前記駆動電力を用いて、前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率と、当該電源として前記第2の制御電源を用いた場合の効率とを算出する算出部とを含む
     ことを特徴とする請求項2記載の双方向コンバータ。
  5.  前記電力変換部を介して前記第2の電力システムから前記第1の電力システムに電力が供給される場合、前記第1の電力システムで得られる前記予定電力をA1とし、前記駆動電力をB1とし、前記第1の制御電源の効率をη1とし、前記第2の制御電源の効率をη2とし、前記電力変換部の効率をη3とすると、
     前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率は、A1/〔(A1/η3)+{B1/(η3・η1)}〕であり、
     前記制御部に前記駆動電力を供給する電源として前記第2の制御電源を用いた場合の効率は、A1/{(A1/η3)+(B1/η2)}である
     ことを特徴とする請求項4記載の双方向コンバータ。
  6.  前記電力変換部を介して前記第1の電力システムから前記第2の電力システムに電力が供給される場合、前記第2の電力システムで得られる前記予定電力をA2とし、前記駆動電力をB1とし、前記第1の制御電源の効率をη1とし、前記第2の制御電源の効率をη2とし、前記電力変換部の効率をη3とすると、
     前記制御部に前記駆動電力を供給する電源として前記第1の制御電源を用いた場合の効率は、A2/{(A2/η3)+(B1/η1)}であり、
     前記制御部に前記駆動電力を供給する電源として前記第2の制御電源を用いた場合の効率は、A2/〔(A2/η3)+{B1/(η3・η2)}〕である
     ことを特徴とする請求項4または5記載の双方向コンバータ。
  7.  前記第1の電力システムは、蓄電池を含み、
     前記第2の電力システムは、電力系統を含む
     ことを特徴とする請求項1~6のいずれか1項に記載の双方向コンバータ。
  8.  前記第1の電力システム側から前記第2の電力システム側への方向に対して直流を交流に変換し、前記第2の電力システム側から前記第1の電力システム側への方向に対して交流を直流に変換するDC/AC変換器であることを特徴とする請求項1~6のいずれか1項に記載の双方向コンバータ。
  9.  前記第1の電力システム側から前記第2の電力システム側への方向、および、前記第2の電力システム側から前記第1の電力システム側への方向のいずれに対しても、直流を当該直流とは異なる大きさの直流に変換するDC/DC変換器であることを特徴とする請求項1~6のいずれか1項に記載の双方向コンバータ。
  10.  前記第1の電力システム側から前記第2の電力システム側への方向、および、前記第2の電力システム側から前記第1の電力システム側への方向のいずれに対しても、交流を当該交流とは異なる大きさまたは周波数の交流に変換するAC/AC変換器であることを特徴とする請求項1~6のいずれか1項に記載の双方向コンバータ。
PCT/JP2013/006664 2012-11-30 2013-11-13 双方向コンバータ WO2014083788A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263276A JP5938679B2 (ja) 2012-11-30 2012-11-30 双方向コンバータ
JP2012-263276 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083788A1 true WO2014083788A1 (ja) 2014-06-05

Family

ID=50827451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006664 WO2014083788A1 (ja) 2012-11-30 2013-11-13 双方向コンバータ

Country Status (3)

Country Link
JP (1) JP5938679B2 (ja)
MY (1) MY169416A (ja)
WO (1) WO2014083788A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552543B2 (en) 2020-01-22 2023-01-10 Psemi Corporation Input voltage selecting auxiliary circuit for power converter circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011952A (ja) * 2015-06-25 2017-01-12 株式会社デンソー 電力変換装置
KR102239678B1 (ko) * 2019-04-25 2021-04-14 한국생산기술연구원 농업용 전기 차량과 이에 적용된 배터리 충방전 회로 및 충방전 방법
US11381108B2 (en) 2020-01-15 2022-07-05 Solaredge Technologies Ltd. Versatile uninterruptable power supply
JP7490779B2 (ja) * 2020-06-23 2024-05-27 寧徳時代新能源科技股▲分▼有限公司 電源変換器、電源変換システム及び電源変換方法
JP7379298B2 (ja) * 2020-08-28 2023-11-14 本田技研工業株式会社 電源システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180085A (ja) * 2001-12-10 2003-06-27 Toshiba Corp 電力変換装置
JP2004350371A (ja) * 2003-05-21 2004-12-09 Sharp Corp インバータ装置
JP2008054473A (ja) * 2006-08-28 2008-03-06 Sharp Corp 蓄電機能を有するパワーコンディショナ
JP2012070536A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 電力システム
JP2012175801A (ja) * 2011-02-21 2012-09-10 Sanyo Electric Co Ltd 蓄電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180085A (ja) * 2001-12-10 2003-06-27 Toshiba Corp 電力変換装置
JP2004350371A (ja) * 2003-05-21 2004-12-09 Sharp Corp インバータ装置
JP2008054473A (ja) * 2006-08-28 2008-03-06 Sharp Corp 蓄電機能を有するパワーコンディショナ
JP2012070536A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 電力システム
JP2012175801A (ja) * 2011-02-21 2012-09-10 Sanyo Electric Co Ltd 蓄電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552543B2 (en) 2020-01-22 2023-01-10 Psemi Corporation Input voltage selecting auxiliary circuit for power converter circuit
TWI805988B (zh) * 2020-01-22 2023-06-21 美商派賽股份有限公司 輔助電路、電源轉換器、閘驅動器電路、轉換器電路、選擇子電路的方法以及提供電源的方法
US11863055B2 (en) 2020-01-22 2024-01-02 Psemi Corporation Power converters with integrated bidirectional startup

Also Published As

Publication number Publication date
MY169416A (en) 2019-04-02
JP5938679B2 (ja) 2016-06-22
JP2014110665A (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
US9735619B2 (en) Power conversion device
WO2014083788A1 (ja) 双方向コンバータ
JP5756903B2 (ja) 配電システム
US11241975B2 (en) Electric vehicle home microgrid power system
JP2015106962A (ja) 充放電制御装置及び充放電システム
JP7165953B2 (ja) 電力変換システム
US10135282B2 (en) Storage battery control apparatus, power storage system, and method for charging storage battery
WO2011051765A1 (ja) 電力供給システムの電源最適化装置
JP2017118598A (ja) 電力供給システム
JP2017184607A (ja) 配電システム及び電力合成回路
JP5661075B2 (ja) 充放電装置
WO2013094396A1 (ja) 充放電装置およびこれを用いた充放電システム
JP6145777B2 (ja) 電力変換装置
US10916946B2 (en) Energy storage apparatus
JP2013135475A (ja) 給電装置、充電装置及び充電システム
US20220037898A1 (en) Controller, electricity storage system, and recording medium
KR101856628B1 (ko) 에너지 저장 시스템의 비상 제어 장치 및 그 방법
JP7222318B2 (ja) パワーコンディショナ
JP2014042418A (ja) 非常時電力供給方法
JP6076381B2 (ja) 電力供給システム
WO2017145338A1 (ja) 電力変換装置
JP6136684B2 (ja) 電力供給システム、電力供給方法および負荷用変換装置
JP2019193444A (ja) 電力変換システム
JP6165191B2 (ja) 電力供給システム
JP2019033601A (ja) 分散型電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858939

Country of ref document: EP

Kind code of ref document: A1