WO2014080641A1 - 蓄電池制御方法および蓄電池制御システム - Google Patents

蓄電池制御方法および蓄電池制御システム Download PDF

Info

Publication number
WO2014080641A1
WO2014080641A1 PCT/JP2013/006934 JP2013006934W WO2014080641A1 WO 2014080641 A1 WO2014080641 A1 WO 2014080641A1 JP 2013006934 W JP2013006934 W JP 2013006934W WO 2014080641 A1 WO2014080641 A1 WO 2014080641A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
amount
demand
battery
Prior art date
Application number
PCT/JP2013/006934
Other languages
English (en)
French (fr)
Inventor
福井 章人
英明 金剛寺
治之 石王
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/374,662 priority Critical patent/US20150039495A1/en
Priority to JP2014548467A priority patent/JP5834227B2/ja
Publication of WO2014080641A1 publication Critical patent/WO2014080641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/10Payment architectures specially adapted for electronic funds transfer [EFT] systems; specially adapted for home banking systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a control system for a large capacity storage battery.
  • Patent Document 1 discloses a power supply system that executes power control when an emergency power source is shared in such an apartment house.
  • a storage battery control method capable of enhancing the convenience of the storage battery when a large-capacity storage battery is shared by a plurality of households is disclosed.
  • the present invention is a storage battery control method by a control device that controls storage batteries prepared for a plurality of demand elements that require electric power, and is used per unit time in each demand element.
  • the detection step of detecting the electric energy the determination step of determining whether or not the electric energy used in one or more demand elements among the plurality of demand elements exceeds a predetermined threshold, and in the determination step Supply that causes the storage battery to supply power to a distribution network to which the one or more demand elements belong, when it is determined that the amount of power used by the one or more demand elements exceeds a predetermined threshold And a step.
  • the configuration as described above it is possible to perform peak cut of power in a certain demand factor. For example, in the case of a method in which the electricity rate is determined according to the peak of used power, such as high-voltage collective power reception, the payment fee can be reduced. it can.
  • FIG. Continuation of the flowchart in FIG.
  • Continuation of the flowchart of FIG. The system diagram which shows the structure of the storage battery control system which concerns on Embodiment 3.
  • FIG. Block diagram showing the functional configuration of the control server A table showing the amount of power available per hour for each community The flowchart which shows operation
  • the low-voltage power reception method is a method in which each household sequentially receives supply of low-voltage power from an electric power company.
  • the high-voltage collective power receiving method is a method for receiving a supply of high-voltage power all at once, and is often used in apartment buildings such as apartments.
  • the high-voltage collective power receiving method has a merit that the basic charge is cheaper than the low-voltage power receiving method, although it is necessary to step down the voltage to a low voltage in an apartment or the like and distribute it to each room because the power is received collectively at a high voltage.
  • the high-voltage power receiving method a method is adopted in which the electricity bill is increased according to the peak that uses a certain amount of power per month (for example, the number of occurrences of peak, the amount of power used at the peak, etc.) There are many things. For this reason, it is required to suppress the occurrence of peaks as much as possible in order to reduce electricity charges.
  • FIG. 1 is a system diagram showing a system configuration of a storage battery control system.
  • the storage battery control system includes an aggregator 100, a mega battery 110, apartments 120a, 120b, and 120c, a power company 130, a bank 140, a power distribution network 150, and a communication network 160.
  • the aggregator 100 is connected to the mega battery 110, the condominiums 120 a, 120 b, 120 c (more precisely, the common unit controller of each condominium described later) and the bank 140 via the communication network 160.
  • the mega battery 110 is a large-capacity storage battery, and is connected to the aggregator 100 via a communication network. In addition, the mega battery 110 is also connected to the power distribution network 150, and discharges to the power distribution network 150 and receives power from the power distribution network 150.
  • the condominiums 120a, 120b, and 120c are connected to the aggregator 100 via the communication network 160.
  • each apartment 120a, 120b, 120c receives supply of commercial power from the power company 130 via the power distribution network 150, and supplies the commercial power to each room in the apartment.
  • the entire apartments 120a, 120b, and 120c receive power supply from the power company 130 by the high-voltage collective power receiving method.
  • the electric power company 130 has a function of supplying commercial power of the condominiums 120a, 120b, and 120c via the power distribution network 150.
  • FIG. 2 is a block diagram showing a functional configuration of the aggregator 100.
  • the aggregator 100 includes a power consumption acquisition unit 101, a control unit 102, a storage unit 104, an instruction unit 105, and a power acquisition unit 106.
  • the used electric energy acquisition unit 101 is connected to the condominiums 120a, 120b, and 120c via the communication network 160, and has a function of acquiring the used electric energy used in each.
  • the power consumption is transmitted in association with a condominium ID indicating each apartment so that it can be distinguished in which apartment the power consumption is used.
  • the used power amount acquisition unit 101 acquires the used power amount transmitted from each condominium at regular time intervals (for example, in units of one minute), and transmits the acquired used power amount of each condominium to the control unit 102 each time it acquires. To do.
  • the control unit 102 includes a determination unit 103, has a function of controlling each functional unit of the aggregator 100, and controls determination processing for determining whether the mega battery 110 needs to be discharged and discharge of the mega battery 110. It has a function of executing storage battery control processing.
  • control unit 102 When the control unit 102 receives the power consumption of each apartment from the power consumption acquisition unit 101, the control unit 102 transmits the power consumption to the determination unit 103.
  • the determination unit 103 has a function of determining whether or not the sum of the power consumption exceeds a predetermined threshold (hereinafter referred to as the total power threshold) based on the transmitted power consumption of each apartment. Have. Specifically, the determination unit 103 calculates the total power consumption by performing a total calculation of the power consumptions of the transmitted apartments 120a, 120b, and 120c. Next, the determination unit 103 refers to the power control table 201 stored in the storage unit 104 and calculates a total power threshold that is the sum of the power thresholds set for each apartment. Then, the determination unit 103 determines whether or not the total power consumption exceeds the total power threshold.
  • a predetermined threshold hereinafter referred to as the total power threshold
  • the determination unit 103 When the total power consumption exceeds the total power threshold, the determination unit 103 further exceeds the power threshold set for each apartment with reference to the power control table 120 for the power consumption of each apartment. Judge whether it is. Then, the determination unit 103 transmits to the control unit 102 information (apartment ID) about the apartment in which the total power consumption exceeds the total power threshold and the power consumption exceeds the power threshold.
  • control unit 102 When the control unit 102 receives a notification from the determination unit 103 that the total power consumption exceeds the sum of the power thresholds, the control unit 102 uses the power used in the apartment for the apartment whose power usage exceeds the power threshold. A storage battery control process is executed to reduce the amount (perform peak cut).
  • the control unit 102 refers to the remaining power table 202 for a condominium determined to have exceeded the power threshold by the determination unit 103 and instructs the battery cells owned by the condominium to discharge. To the instruction unit 105.
  • a discharge instruction for a battery cell owned by another apartment or an apartment when the sub-battery is held, a discharge instruction for the sub-battery, or when the condominium has installed the HEMS, a request instruction for power usage suppression control by the HEMS is transmitted to the instruction unit 105.
  • control unit 102 performs incentive processing for paying incentives from other condominiums to other condominiums when borrowing power from other condominiums for condominiums that need to be discharged from the mega battery 110 to cut power peaks. Has the function to execute. As an incentive, money is paid.
  • This uses a mathematical formula (for example, a multiplication formula V ⁇ P of the borrowed power amount V per unit time and the unit price P of the charge per unit time) according to a predetermined borrowed power amount. To calculate. Then, the control unit 102 requests the bank 140 from the instruction unit 105 via the communication network 160 to transfer the calculated incentive from the account of the condominium that borrowed power to the account of the condominium that lent power. To do.
  • the storage unit 104 has a function of storing various programs and data necessary for the aggregator 100 to operate, and is realized by a recording medium such as a hard disk device or various memories.
  • the storage unit 104 holds a power control table 201 that is referred to by the determination unit 103 and the control unit 102 for determination processing and storage battery control processing, and a remaining power table 202 that indicates the amount of power of each battery cell of the mega battery 110. is doing. Details of the power control table 201 and the remaining power table 202 will be described later.
  • the instruction unit 105 has a function of transmitting a discharge instruction to each apartment 120a, 120b, 120c or the mega battery 110 via the communication network 160 in accordance with the content notified from the control unit 102.
  • the instruction unit 105 also transmits a discharge instruction for the sub-battery 123 and a request instruction for power suppression control of the HEMS 124 to each of the apartments 120a, 120b, and 120c via the communication network 160 according to the content notified from the control unit 102. It also has a function.
  • the instruction unit 105 also has a function of transmitting a money payment request, which is performed as a result of the incentive process, to the bank 140 via the communication network 160.
  • the power acquisition unit 106 has a function of acquiring the remaining power amount of each battery cell included in the mega battery 110 from the mega battery 110 and updating the remaining power table 202 of the storage unit 104.
  • the above is the functional configuration of the aggregator 100.
  • FIG. 3 is a block diagram showing the configuration of each apartment. Each apartment is assumed to have the same configuration, and here, the apartment 120a will be described.
  • the condominium 120a includes a smart meter group 121 corresponding to each room, a shared controller 302, a sub-battery 303, and a HEMS 124. Note that the sub battery 123 and the HEMS 124 may not be provided depending on the apartment.
  • Each smart meter of the smart meter group 121 is provided corresponding to each room (household) in the apartment, and has a function of sequentially notifying the shared unit controller 122 of the amount of power used.
  • the shared unit controller 122 has a function of controlling the power supply system in the apartment 120a.
  • the shared unit controller 122 has a function of receiving the power usage amount notified from the smart meter group 121, calculating the total sum thereof, and notifying the aggregator 100 of the calculated total power usage amount by condominium via the communication network 160.
  • the shared unit controller 122 has a function of discharging the sub-battery 123 according to an instruction received from the aggregator 100 via the communication network 160 and a function of causing the HEMS 124 to execute power suppression control.
  • the sub-battery 123 is a storage battery arranged in the apartment 120a, and has a function of supplying power to each room of the apartment 120a in accordance with an instruction from the shared unit controller 122.
  • the sub-battery 123 also has a function of performing charging by being supplied with electric power from the power distribution network 150 when not discharging.
  • the HEMS 124 has a function of executing control of electrical appliances in each room of the apartment 120a in accordance with an instruction from the common unit controller 122, and a function of executing control in a direction of suppressing the amount of power used.
  • HEMS is Home Energy Management System, and in recent years, various technologies have been disclosed for controlling electrical appliances using HEMS. Therefore, details of HEMS are omitted.
  • An example of HEMS is disclosed in Patent Document 2, for example.
  • common unit controllers 122 of the apartments 120a, 120b, and 120c will be referred to as common unit controllers 122a, 302b, and 302c, respectively, for convenience of explanation.
  • FIG. 4 is a block diagram showing a functional configuration of the mega battery 110.
  • the mega battery 110 includes a control unit 111, a secondary battery 112, a discharge unit 113, and a charging unit 114.
  • the control unit 111 has a function of controlling discharging and charging of each battery cell in accordance with instructions from the aggregator 100 via the communication network 160.
  • control unit 111 also has a function of detecting the remaining power amount of each battery cell 402a, 402b, 402c sequentially (for example, every minute) and notifying the aggregator 100 via the communication network 160.
  • the control unit 111 associates an identifier for identifying each battery cell with the corresponding remaining power amount, and notifies the aggregator 100 that the remaining power amount belongs to which battery cell. .
  • the secondary battery 112 includes battery cells 402a, 402b, and 402c.
  • the battery cell 402a is a battery cell owned by the apartment 120a
  • the battery cell 402b is owned by the apartment 120b
  • the battery cell 402c is owned by the apartment 120c.
  • each battery cell is owned by an apartment owner or a resident.
  • the discharging unit 113 has a function of discharging the power supplied from the secondary battery 112 to the power distribution network 150.
  • the charging unit 114 has a function of charging each battery cell of the secondary battery 112 using the commercial power supplied from the power distribution network 150.
  • the charging unit 114 is a case where the discharging unit 113 is not discharging, and when the remaining power amount of the battery cell falls below a predetermined threshold value, the charging of the battery cell whose remaining power amount falls below the predetermined threshold value Execute.
  • FIG. 5 is a conceptual diagram showing a data configuration example of the power control table 201.
  • the power control table 201 is data in which a condominium ID 501, a power threshold value 502, a power rented apartment ID 503, a sub-battery possession 504, and a HEMS possession 505 are associated with each other.
  • the apartment ID 501 is an identifier for the aggregator 100 to identify each apartment.
  • the codes assigned to each apartment are shown in FIG. 1, but in reality, the device number or the MAC address of the shared unit controller of each apartment is used.
  • the power threshold 502 is a value provided for realizing the peak cut of the set power consumption for the apartment corresponding to the apartment ID 501.
  • the threshold (kW) for the power consumption per minute is set.
  • the power threshold value 502 is set lower than a reference value that causes an increase in the electricity bill when each apartment receives power using the high-voltage collective power receiving method.
  • the power lease destination condominium ID 503 is an identifier indicating the other condominium from which the condominium corresponding to the condominium ID can borrow power from the battery cell owned by the other condominium.
  • the condominium ID shown in FIG. 1 is used as the power lease destination condominium ID 503.
  • the device number or MAC address of the shared unit controller of each condominium is used.
  • the sub battery possession 504 is information indicating whether or not the apartment corresponding to the apartment ID 501 has a sub battery.
  • “Yes” is described when the sub-battery is provided, and “No” is indicated when the sub-battery is not provided, but in actuality, “1 (with sub-battery)”, It is managed with a binary value of “0 (no sub-battery)”.
  • the HEMS ownership 505 is information indicating whether or not the apartment corresponding to the apartment ID 501 has introduced the HEMS.
  • “Yes” is described when HEMS is introduced, and “No” is indicated when HEMS is not introduced.
  • the power threshold value that is the peak of the power consumption is 220 kW, and the power consumption can be made equal to or lower than the power threshold by discharging from the battery cell 402a owned by the apartment 120a.
  • the rental condominiums that borrow power when they are unable to do so are condominiums 120b and 120c.
  • the apartment 120a has a sub-battery but does not introduce HEMS.
  • FIG. 6 is a conceptual diagram showing a data configuration example of the remaining power table 202.
  • the remaining power table 202 is data in which the apartment ID 601, the battery cell ID 602, and the remaining power amount 603 are associated with each other.
  • the condominium ID 601 is an identifier for the aggregator 100 to identify each condominium, similarly to the condominium ID 501.
  • the codes assigned to each apartment are shown in FIG. 1, but in reality, the device number or the MAC address of the shared unit controller of each apartment is used.
  • the battery cell ID 602 is an identifier for identifying the battery cell of the mega battery 110 owned by the apartment corresponding to the apartment ID 601.
  • the reference numerals assigned to the respective battery cells are described, but actually, the cell numbers set for the battery cells or assigned. Use some identifier.
  • the remaining power amount 603 indicates the remaining power amount (kW) of the battery cell owned by the apartment corresponding to the apartment ID 601.
  • the remaining power amount may be referred to as a battery remaining amount.
  • the battery cell which the apartment 120a owns is the battery cell 402a, and the remaining electric energy is 435 kW.
  • the operation of the storage battery control system according to the present embodiment will be described using the flowcharts shown in FIGS.
  • FIG. 7 and 8 are flowcharts showing operations in the determination process and the storage battery control process in the storage battery control system
  • FIG. 9 is a flowchart showing a detailed operation of the incentive process in the storage battery control process.
  • the power acquisition unit 106 of the aggregator 100 acquires the remaining power amount of each battery cell 402a, 402b, 402c from the mega battery 110 (step S701).
  • the power acquisition unit 106 updates the remaining power amount 603 corresponding to each apartment ID 601 in the remaining power table 202.
  • the used power amount acquisition unit 101 of the aggregator 100 acquires the used power amount used in each apartment from the common unit controllers 122a, 302b, and 302c of each apartment 120a, 120b, and 120c, and the control unit 102 (Step S702).
  • the determination unit 103 of the control unit 102 calculates the total power consumption (total power consumption). Further, the determination unit 103 calculates the sum of the power threshold values 502 (total power threshold value) of the power control table 201. Then, the determination unit 103 determines whether or not the total power consumption exceeds the total power threshold (step S703).
  • step S703 If the total power consumption does not exceed the total power threshold (NO in step S703), the process ends.
  • the determination unit 103 compares the power consumption of each apartment with the power threshold set for each apartment, It is determined whether or not the power consumption amount exceeds the power threshold value, and an apartment with a high power consumption amount is identified (step S704). That is, the determination unit 103 refers to the power control table 201 for each condominium, obtains a power threshold corresponding to the condominium ID, and compares the corresponding power consumption. Thereby, the determination part 103 specifies the apartment which is using electric power exceeding an electric power threshold value. The determination unit 103 transmits the apartment ID of the identified apartment and the fact that the total power consumption exceeds the total power threshold to the control unit 102.
  • control unit 102 refers to the remaining power table 202 and specifies the battery cell ID 602 corresponding to the notified apartment ID 601. Then, the control unit 102 requests the instruction unit 105 to instruct the discharge from the specified battery cell, and the instruction unit 105 causes the mega battery 110 to discharge the battery cell specified by the control unit 102. An instruction is given (step S705). Upon receiving the instruction, the control unit 111 of the mega battery 110 issues a discharge instruction for the designated battery cell, and the discharge unit 113 discharges the power discharged from the battery cell to the power distribution network 150.
  • the control unit 102 instructs the discharge of the battery cell, and acquires the remaining power amount of the battery cell at that time with reference to the remaining power amount 603 of the remaining power table 202. Then, the control unit 102 calculates a predicted total power consumption obtained by subtracting the total amount of discharged power from the total power consumption. Then, the determination unit 103 of the control unit 102 determines whether or not the predicted total power consumption is below the total power threshold (step S706).
  • step S706 When it is determined that the predicted total power consumption is lower than the total power threshold (YES in step S706), the control unit 102 performs incentive processing (step S707) and ends. Details of the incentive process will be described later.
  • control unit 102 refers to the power lease destination condominium ID 503 in the power control table 201, and identifies the apartment identified in step S704. It is determined whether or not there is an apartment that can borrow power (step S708).
  • step S708 If there is a condominium from which power can be borrowed (YES in step S708), the control unit 102 next determines whether the condominium specified in step S704 has borrowed power from all the condominiums that can rent power. Is determined (step S709).
  • step S709 When the power is not borrowed from all the condominiums that can rent power (NO in step S709), the control unit 102 executes the discharge instruction of the battery cell corresponding to the apartment that has not yet borrowed power (step S710). ), The process returns to step S706.
  • the predicted total power consumption is a value obtained by subtracting the power discharged in the discharges in steps S705 and S710 from the total power consumption.
  • step S708 If there is no apartment for borrowing power (NO in step S708), or if the apartment specified in step S704 is borrowed from all the apartments that can borrow power (YES in step S709), the steps in FIG. The process proceeds to S711.
  • the control unit 102 determines whether or not the apartment specified in step S704 has a sub-battery with reference to the sub-battery possession 504 of the power control table 201 (step S711).
  • control unit 102 determines whether or not a discharge instruction has already been executed for the sub-battery using the past log (step S712).
  • the control unit 102 When no discharge instruction is issued to the sub battery (NO in step S712), the control unit 102 requests the instruction unit 105 to transmit a discharge instruction for the sub battery, and the instruction unit 105 is connected via the communication network 160. Then, the common unit controller 122 of the apartment specified in step S704 is instructed to discharge the sub battery (step S713). Upon receiving the instruction, the shared unit controller 122 executes the discharge of the sub battery 123.
  • the shared unit controller 122 After executing the discharge instruction by the sub-battery 123, the shared unit controller 122 recalculates the amount of power used and transmits it to the aggregator 100 via the communication network 160.
  • the used power amount acquisition unit 101 of the aggregator 100 transmits the received used power amount to the control unit 102, and the control unit 102 recalculates the total used power amount (step S714) and returns to step S706 in FIG.
  • step S711 If the apartment does not have the sub battery 123 (NO in step S711), or if the sub battery 123 has already been instructed to discharge (YES in step S712), the control unit 102 determines the apartment specified in step S704. Whether or not HEMS is installed is determined with reference to the HEMS possession 505 of the power control table 201 (step S715).
  • control unit 102 determines whether or not the HEMS has already been instructed to control power suppression using the past log (step S716). .
  • control unit 102 issues an instruction to suppress power to HEMS of the specified apartment in step S704.
  • the instructing unit 105 requests the instructing unit 105 to transmit an instruction to suppress power to the common unit controller 122 of the apartment via the communication network 160 (step S717).
  • the common use controller 122 of the apartment instructs the HEMS 124 to execute control for suppressing power.
  • the shared unit controller 122 After the power suppression control by the HEMS 124, the shared unit controller 122 recalculates the amount of power used and transmits it to the aggregator 100 via the communication network 160.
  • the used power amount acquisition unit 101 of the aggregator 100 transmits the received used power amount to the control unit 102, and the control unit 102 recalculates the total used power amount (step S718), and returns to step S706 in FIG.
  • step S715 If HEMS has not been introduced into the condominium (NO in step S715), or if control for suppressing power is already instructed to HEMS (YES in step S716), the process returns to step S707 in FIG.
  • control unit 102 measures the amount of power used for each apartment (step S901).
  • control unit 102 discharges from the battery cells of the mega battery 110 that it owns in order to cut the peak of the power consumption used by the condominium itself.
  • the amount (discharge amount discharged in step S705 in FIG. 7) is measured (step S902).
  • control unit 102 discharges the battery cells owned by other condominiums (see FIG. 7).
  • the amount of discharge discharged in step S710 is measured (step S903).
  • control unit 102 measures the discharge amount (discharge amount discharged in step S710 in FIG. 7) discharged from the battery cells of the mega battery 110 owned by each condominium for the peak cut of other condominiums. (Step S904).
  • the control unit 102 calculates the incentive of each apartment by performing addition / subtraction based on the discharge amount in Steps S901 to S904 and a charge set in advance for each step. Then, the control unit 102 instructs to give the calculated incentive for each condominium, and the instruction unit 105 requests the bank 140 to execute the incentive grant to the account of each condominium via the communication network 160.
  • the charge generated for the discharge amount in steps S901 and S902 is determined according to the contract with the power company 130, and the charge generated for the discharge amount in steps S903 and S904 is between apartments. It depends on the contract.
  • the remaining power amounts of the battery cells 402a, 402b, and 402c owned by the condominiums 120a, 120b, and 120c are as shown in FIG. Further, it is assumed that the electricity threshold value set for each apartment 120a, 120b, 120c is as shown in FIG. In the case of FIG. 5, the total power threshold is 590 (220 + 300 + 170).
  • the power consumption amounts of the condominiums 120a, 120b, and 120c acquired by the control unit 102 in step S702 of FIG. 7 are 210 kW, 480 kW, and 130 kW, respectively.
  • the total power consumption is 820 kW (210 + 480 + 130) kW.
  • this total power consumption 820 kW exceeds the total power threshold 590 kW (YES in step S703).
  • the apartment specified in step S704 is It becomes an apartment 120b.
  • control unit 102 issues a discharge instruction to the battery cell 402b of the apartment 120b, and the mega battery 110 executes discharge according to the instruction (step S705).
  • the remaining power amount of the battery cell 402 is 120 kW from FIG.
  • the predicted total power consumption is 700 kW (820-120). Since this value is not lower than the total power threshold value of 590 kW (NO in step S706), the control unit 102 refers to the power control table 201 and the apartment 120a is an apartment that the apartment 120b can borrow power from. It is detected (YES in step S708).
  • control part 102 performs the discharge instruction
  • the target can be achieved by discharging from the battery cell 402a (step S706).
  • the condominium 120b can receive from the power company 130 an incentive for 120 kW discharged from the battery cell 402b in step S705 (the amount of discharge in step S902), and 110 kW (step 710) for the amount of power borrowed from the battery cell 402a in step S710.
  • the incentive of S903) is paid to the apartment 120a.
  • the apartment 120a since the apartment 120a has discharged 110 kW (the amount of discharge in step S904) for the apartment 120b, the incentive is received from the apartment 120b.
  • the storage battery control system shown in the first embodiment gives the following merits to condominium residents.
  • the peak target value can be expected to increase by receiving power supply from multiple condominiums using the high-voltage collective power reception method. For example, when a condominium 120a has a peak twice in the morning and at night for a certain target value, but the condominium 120b visits only in the daytime, the target value is the high-voltage collective power receiving system in two condominiums. Is expected to be high, and therefore peaks may be less likely to arrive.
  • the points different from the first embodiment will be described in detail, and the other points will be omitted as they are common to the first embodiment.
  • the determination unit 103 of the aggregator 100 determines whether or not the total power consumption exceeds the total power threshold. However, in the second embodiment, this determination is not performed. .
  • control unit 102 executes the storage battery control process when the amount of power used by any of the apartments 120a, 120b, and 120c exceeds the power threshold value 502 set for each.
  • Embodiment 2 the difference from Embodiment 1 is the trigger for the storage battery control process.
  • FIGS. 10 and 11 The operation of the storage battery control system according to Embodiment 2 is shown in the flowcharts of FIGS. 10 and 11, the same reference numerals are given to the contents common to those in FIGS. 7 and 8.
  • steps S1003 to S1006 of FIG. 10 are executed instead of steps S703 to S706 of FIG. 7, and steps S1014 and S1018 are executed instead of steps S714 and S718 of FIG. To do.
  • the determination unit 103 determines whether the power consumption of each apartment exceeds the power threshold 502. Is determined (step S1003).
  • step S1003 If the power consumption of any apartment does not exceed the corresponding power threshold 502 (NO in step S1003), the process is terminated.
  • the control unit 102 determines that the battery owned by the apartment whose power consumption exceeds the power threshold 502 is used.
  • An instruction to discharge the cell is transmitted to the instruction unit 105.
  • the instruction unit 105 instructs the mega battery 110 to discharge the battery cell.
  • the mega battery 110 discharges the corresponding battery cell according to the instruction, and the discharge unit 113 discharges to the power distribution network 150 (step). S1005).
  • step S1006 Determination is made (step S1006), and subsequent processing is executed according to the determination result.
  • steps S1014 and 1018 executed in place of steps S714 and S718, it is not necessary to acquire the total power consumption. Therefore, in the second embodiment, the power consumption exceeds the power threshold 502 in step S1003. For the condominium determined to be, the current power consumption is acquired.
  • the storage battery control system allows each condominium to share a mega battery among a plurality of condominiums and receive power supply by a high-voltage collective power receiving method individually for each apartment. Can contribute to the reduction of electricity bills.
  • ⁇ Embodiment 3> In each of the first embodiment and the second embodiment, an example of the method of power peak cut has been described. In the third embodiment, an example of a further peak cut technique will be described.
  • the power supply control that is performed in units of apartments in the first and second embodiments is performed in units of communities.
  • the community is one unit that separately owns the mega battery 110 as shown in the first and second embodiments, and is one or more demand elements (such as households and condominiums). Supply) and one or more mega batteries paired with one or more demand elements thereof.
  • FIG. 12 is a system diagram showing the configuration of the storage battery control system according to the third embodiment.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be simplified or omitted.
  • the storage battery control system includes communities 1200a, 1200b, and 1200c, a community-compatible mega battery 1210, and a control server 1220.
  • Each community and the control server 1220 are connected via a communication network 160. ing.
  • Each community is also connected to the power distribution network 150, and demand elements belonging to each community are supplied with commercial power from the power company 130 connected to the power distribution network 150.
  • a community-compatible mega battery 1210 is also connected to the power distribution network 150.
  • Each community includes an aggregator 100 connected to the communication network 160, a mega battery 110 connected to the power distribution network 150, and a group of demand elements connected to the power distribution network 150 as shown in the first and second embodiments. 1201 (condominium, house, factory, etc.).
  • the clear connection relationship between the community and the power distribution network 150 and the communication network 160 is not shown in order to prioritize the view, but each component constituting each community is shown in FIG. It shall have a connection relationship.
  • the communities 1200b and 1200c have the same configuration as the community 1200a.
  • a community may be a set of demand elements, mega batteries, and aggregators that require one or more electric powers.
  • the community-compatible mega battery 1210 is a large-capacity storage battery, and is connected to the control server 1220 via the communication network 160.
  • the community-compatible megabattery 1210 is also connected to the power distribution network 150, and discharges to the power distribution network 150 and receives power from the power distribution network 150.
  • the community-compatible mega battery 1210 has a configuration similar to that of the mega battery 110 shown in the first and second embodiments (see FIG. 4). However, unlike the mega battery 110 shown in FIG.
  • the control unit (corresponding to the control unit 111 of the mega battery 110) discharges power to the power distribution network 150 and receives power from the power distribution network 150 in accordance with instructions from the control server 1220.
  • the battery cell of the community-compatible mega battery 1210 is owned by each condominium in each of the mega battery 110 in the first and second embodiments, whereas in the third embodiment, each battery cell of the mega battery 110 is in each time zone. In order to determine the upper limit of the amount of power that can be used by each community and execute the discharge, at least one is sufficient.
  • the battery cell of the community-compatible mega battery 1210 is charged by receiving power from the power distribution network 150.
  • the control server 1220 is connected to the community-compatible mega battery 1210 and each community via the communication network 160.
  • Control server 1220 corresponds to aggregator 100 that controls mega battery 110 provided for each apartment shown in the first and second embodiments.
  • the control server 1220 controls the community-compatible mega battery 1210, and the aggregator 100 causes the mega battery 110 to discharge according to the power usage status in each condominium. It has a function of causing the community-compatible mega battery 1210 to execute discharge according to the power usage status.
  • FIG. 13 is a block diagram showing a functional configuration of the control server 1220.
  • the control server 1220 includes a power usage amount acquisition unit 1301, a control unit 1302, a storage unit 1304, an instruction unit 1305, a power acquisition unit 1306, and a timer unit 1307.
  • the used power amount acquisition unit 1301 has a function of acquiring the total amount of power used in each community and transmitting it to the control unit 1302. Since each aggregator 100 is arranged in each community and the aggregator 100 acquires the total power consumption used in the community, the power consumption acquisition unit 1301 is used from the aggregator 100 in the community. Get the total power consumption.
  • the control unit 1302 of the control server 1220 has a function of executing control based on the available electric energy that changes with time, in addition to the functions of the aggregator 100 shown in the first and second embodiments. That is, in the first and second embodiments, an example in which a battery cell is held for each condominium is shown, but in the present third embodiment, a mode in which the unit is owned in units of time is shown. That is, the case where the amount of power that can be used at one time in each community (the amount of discharge that can be discharged from the community-compatible mega battery 1210 when the power threshold is exceeded) will be described.
  • the control unit 1302 reads the power amount table 1342 and the timing unit 1307 described later. Based on the transmitted current time, the power amount that can be used by the community-compatible mega battery 1210 at the current time is specified, and the instruction unit 1305 is instructed to instruct the community-compatible mega battery 1210 to discharge with the specified power amount as an upper limit. introduce.
  • the storage unit 1304 has a function of storing various programs and data necessary for the control server 1220 to operate, and is realized by a recording medium such as a hard disk device or various memories.
  • the storage unit 1304 includes a power control table 1341 that is referred to by the determination unit 1303 and the control unit 1302 for determination processing and storage battery control processing, and a power amount table 1342 that indicates the amount of power that can be used by each community for each time period. Holding. Details of the power control table 1341 and the power amount table 1342 will be described later.
  • the instruction unit 1305 has a function of transmitting a discharge instruction to the community-compatible mega battery 1310 via the communication network 160 in accordance with the content notified from the control unit 1302.
  • the instruction unit 1305 also has a function of transmitting a payment request for money, which is performed as a result of incentive processing between communities, to the bank 140 via the communication network 160 in accordance with the content notified from the control unit 1302.
  • the power acquisition unit 1306 has a function of acquiring the remaining battery level of the community-compatible mega battery 1310.
  • the timekeeping unit 1307 has a function of sequentially transmitting the current time to the control unit 1302.
  • control server 1220 can realize the peak cut of power as shown in the first and second embodiments in units of communities.
  • the power control table 1341 and the power amount table 1342 stored in the storage unit 1304 will be described.
  • the power control table 1341 has substantially the same configuration as that of the power control unit 201 shown in Embodiment 1 and FIG.
  • the condominium ID 501 is a community ID
  • the power lease destination apartment ID 503 is a power lease destination community ID.
  • the power control table 1341 does not include the sub battery possession 504 and the HEMS possession 505. Therefore, the power control table 1341 is information in which a community ID, a power threshold set for the community, and a power lease destination community ID that identifies a community in which the community can rent power are associated with each other.
  • the storage unit 1304 of the control server 1220 holds a control table that defines the amount of power that can be used per unit time for each community.
  • FIG. 13 is a data conceptual diagram showing a configuration example of the control table.
  • a community ID 1401 for specifying each community is associated with an available power amount 1302 indicating the amount of power that can be used in each time zone of each day for each community. Information.
  • Community ID 1401 is an identifier for the control server 1220 to identify each community.
  • the community ID corresponds to the apartment ID in FIG.
  • the available power amount 1302 indicates the amount of power that can be discharged from the community-compatible mega battery 1210 over the power threshold for each community in each time slot of the day shown in FIG.
  • the usable power amounts 1302 of the communities 1200a, 1200b, and 1200c from 1 o'clock to 1:59 are set to 100 MW, 200 MW, and 30 MW, respectively. That is, for example, when the total power used between 1 and 1:59 in the community 1200a exceeds the power threshold determined for the community 1200a, the control server 1220 can control up to 100 MW. This means that the community-compatible mega battery 1210 can be discharged.
  • this numerical value is an example to the last, and the value according to the scale of each community is set.
  • FIG. 15 is a flowchart showing a control process of the community-compatible mega battery 1210 by the control server 1220 according to the third embodiment. Note that the operation of the control server 1220 will be described in a simplified manner assuming that the operation is the same as that of the aggregator 100 shown in the first embodiment. Needless to say, the control server 1220 may perform the same operation as the operation of the aggregator 100 shown in the second embodiment, not the first embodiment.
  • the used power amount acquisition unit 1301 of the control server 1220 acquires the total used power amount used in each community from the aggregator 100 of each community (step S1502).
  • the determination unit 1303 calculates the total power consumption based on the time notified from the timekeeping unit 1307 when the power consumption of each community is transmitted. Then, the determination unit 1303 compares the total power consumption with the total power threshold and determines whether the total power consumption exceeds the total power threshold (step S1503).
  • step S1503 If the total power consumption does not exceed the total power threshold (NO in step S1503), the process ends.
  • the determination unit 1303 compares the power usage of each community with the power threshold set for each community, It is determined whether the used power amount exceeds the power threshold value, and a community having a high used power amount is specified (step S1504). That is, the determination unit 1303 refers to the power control table 1341 for each community, acquires a power threshold corresponding to the community ID, and compares it with the corresponding power consumption. Thereby, the determination part 1303 specifies the community which is using electric power exceeding a power threshold value. The determination unit 1303 transmits to the control unit 1302 the community ID of the identified community and the fact that the total power consumption exceeds the total power threshold.
  • control unit 1302 specifies the available power amount 1402 corresponding to the transmitted community ID 1401 using the current time and the power amount table 1342 transmitted from the time measuring unit 1307. Then, the control unit 1302 requests the instruction unit 1305 to instruct the discharge with the specified usable power amount as an upper limit, and the instruction unit 1305 instructs the community-compatible mega battery 1210 to perform the discharge (step) S1505). Upon receiving the instruction, the control unit of the community-compatible mega battery 1210 discharges the power discharged from the battery cells to the power distribution network 150 with the designated power amount as an upper limit.
  • the control unit 1302 instructs the discharge, and calculates the predicted total used electric energy obtained by subtracting the total electric power discharged by the community-compatible mega battery 1210 (difference value between the electric energy before and after discharging) from the total electric energy used. calculate. Then, the determination unit 1303 of the control unit 1302 determines whether or not the predicted total power consumption is below the total power threshold (step S1506).
  • step S1506 When it is determined that the predicted total power consumption is less than the total power threshold (YES in step S1506), the control unit 1302 performs an incentive process (step S1507) and ends.
  • the details of the incentive process will be omitted because it is based on the flowchart of FIG. 9 shown in the first embodiment, but the calculation is made for an apartment in FIG. It will be calculated for the community.
  • control unit 1302 refers to the power lease destination community ID in the power control table 1341, and identifies the community identified in step S1504. It is determined whether or not there is a community that can borrow power (step S1508).
  • control unit 1302 determines whether the community specified in step S1504 has borrowed electric power from all the communities that can rent electric power. Is determined (step S1509).
  • step S1509 When power is not borrowed from all the communities that can rent power (NO in step S1509), the control unit 1302 issues a discharge instruction with the upper limit of the amount of power that can be used by a community that has not yet borrowed power. Execute (step S1510) and return to step S1506. In this case, in step S1506, the predicted total power consumption is a value obtained by subtracting the power discharged in the discharges in steps S1505 and S1510 from the total power consumption.
  • step S1508 If there is no community from which power can be borrowed (NO in step S1508) or borrowed from all communities (YES in step S1509), the process proceeds to step S1507.
  • control server 1220 can execute a power peak cut that is larger than the range controlled by the aggregator 100.
  • more fluid control can be realized by determining the amount of power that can be used per unit time. Accordingly, it is possible to provide a storage battery control system that is less burdensome and highly convenient for a user who uses the storage battery control system.
  • the aggregator 100 of each community is described in the first and second embodiments according to the amount of power used in the demand element group belonging to each community.
  • the control of the mega battery 110 shared by each community is executed.
  • the supply destination to which the mega battery 110 supplies power is the distribution network 150, but this is not the only case. It may be directly delivered to the power company 130 which is the commercial power business owner, or may be directly supplied to each of the condominiums 120a, 120b and 120c. In the case of direct delivery to the power distribution network 150 or the power company 130, it is possible to realize a peak cut apparently, and depending on the form of contract in the power company 130, the electricity bill can be reduced. In addition, when power is supplied directly from the mega battery 110 to each of the condominiums 120a, 120b, and 120c, this power can be used preferentially, so that the amount of commercial power used can be reduced. This can reduce the electricity bill.
  • the amount of power to be used may be detected separately from the commercial power and the power from the mega battery 110. By doing so, for example, it is possible to contribute to assisting calculation of the electricity bill.
  • each apartment 120a, 120b, 120c owns and uses one battery cell 402a, 402b, 402c in the mega battery 110, respectively.
  • the form was shown.
  • the number of battery cells owned by each apartment is not limited to one, and a plurality of battery cells may be owned. Further, the number of battery cells owned by each apartment may be different.
  • a condominium owns a battery cell
  • this may be in the form of a rental rather than possession, and may have the right to use a battery cell.
  • Good For example, it is good also as having obtained the right to use the battery cell in the mega battery 110 by the financial contract with respect to the business owner who performs the business which leases the mega battery 110.
  • each of the condominiums 120a, 120b, and 120c owns the battery cell in the mega battery 110.
  • this may not take the form of owning a battery cell.
  • a method may be adopted in which the amount of electric power that can be used per unit time is set for each apartment. In this case, it becomes possible to set the amount of supplied power more fluidly than when the battery cell is owned.
  • the resident of the apartment pays the rent to the resident of the apartment on the side that supplied power.
  • this does not have to be money itself, and as an incentive, power is supplied to the condominium that supplied the power (the amount of power borrowed is supplied from commercial power or mega battery cells)
  • a point such as a point at which some other product can be purchased, a product, a reduction in the price of electricity required by the power company 130, or the like may be used.
  • the apartment is described as an example that owns the mega battery 110 and benefits from the discharge of the electric power of the mega battery 110. However, this does not need to be an apartment but requires electric power. As long as it is a facility, it may take any form. For example, it may be a form owned by a plurality of general households, not a condominium, a form owned by a plurality of factories, or a form in which they are combined. Any form in which the mega battery 110 is owned by a plurality of facilities that require electric power may be used.
  • the aggregator 100 is configured to be provided separately from the mega battery 110 and the condominiums 120a, 120b, and 120c. However, this is not limited to this, and the aggregator 100 may be provided in the mega battery 110 or provided in the common unit controller 122 of the apartment 120a as long as it performs the function described in the above embodiment. It may be done.
  • the determination unit 103 executes the above-described control depending on whether the total power used in each apartment exceeds a threshold value. And as a threshold value, in the payment of the electricity bill in high-voltage collective power reception, a peak value is acquired in advance and set lower than this. By doing this, the power used is (apparently) suppressed before reaching the peak, aiming to reduce the electricity bill, but if peak cut can be realized, other than judgment by threshold You may use the method of.
  • a configuration may be adopted in which the mega battery 110 is discharged by performing a prediction calculation of the amount of power used.
  • the power suppression control by HEMS when the power discharge of the mega battery is not sufficient to be discharged from the battery cells held by other apartments, the power suppression control by HEMS is executed.
  • the power suppression control by HEMS need not be at this timing as long as peak cut can be realized as a result.
  • the power suppression control by HEMS when the amount of power used in a condominium exceeds the power threshold value 502 set in the apartment, the power suppression control is performed first, and still power is insufficient. When there is no (the peak cut is not reached), the mega battery 110 may be discharged. Alternatively, the discharge from the corresponding battery cell is executed, and if the power is still insufficient, the power suppression control by HEMS is performed. If the power is still insufficient, the power of the battery cell of another apartment is You may take the form of borrowing.
  • steps S708, S709, and S710 are the first discharge process
  • steps S711, S712, S713, and S714 are the second discharge process
  • steps S715, S716, S717, and S718 are the third discharge process.
  • the execution order of the first discharge process, the second discharge process, and the third discharge process may be in any order.
  • the second discharge process, the third discharge process, and the first discharge process are performed in this order.
  • a processing order such as a first discharge process, a third discharge process, and a second discharge process may be employed.
  • a smart meter is provided to detect the amount of power used in the entire apartment provided in each apartment, and the aggregator 100 reads the value and sets it as the threshold value. We decided to make a comparison. In addition to this, the following configuration may be adopted.
  • the aggregator 100 may be configured to acquire the power consumption of the smart meter in each room.
  • the aggregator 100 holds a table in which the ID of each room's smart meter is associated with each apartment, acquires the power consumption of the room belonging to each apartment for each apartment, and performs the summation calculation. Run to get power usage for each condominium.
  • the total power threshold value is the total power threshold value set for each apartment. However, this is not limited to this, and the total power threshold value may be set in advance separately from the total power threshold value set for each apartment.
  • the total power consumption amount may exceed the total power threshold value, but may not exceed the respective power threshold value for each apartment.
  • step S704 instead of specifying a condominium exceeding the power threshold value, a condominium having the highest power consumption may be specified, and the processing subsequent to step S705 may be executed for the specified condominium.
  • the power control by the aggregator 100 is executed in units of one minute when a notification of the amount of power is received from the common unit controller of each apartment.
  • time may be a unit of 10 minutes or a unit of 1 hour, or may be shortened to a unit of 30 seconds.
  • an actual operation time may be simulated by actually operating the storage battery control system.
  • the storage battery control system according to the present invention can be used not in the high-voltage collective power receiving method but in the low-voltage power receiving method. That is, in the above-described embodiment, the power threshold value of the power control table 201 is set to a value lower than the peak determined in the high-voltage collective power receiving method. The same effect can be obtained by calculating and setting the power threshold so as to be an electricity bill.
  • the electric energy measured in steps S901 to S904 is the measurement for calculating the incentive in step S905.
  • the order of the measurement is shown in FIG.
  • the processing order of steps S901 to S904 may be interchanged, or may be executed in parallel.
  • the incentive process is executed every time, but for the incentive process, when discharging from the mega battery 110, the log is left, for example, on a monthly basis. It is good also as giving an incentive by processing by.
  • the bank is requested to pay the incentive.
  • the aggregator 100 is provided with a display means such as a monitor and the calculated incentive fee is displayed. Good.
  • it is possible to select a payment method in which the fee related to the incentive is, for example, handed by a resident of an apartment.
  • the charging unit 114 of the mega battery 110 is supplied with electric power from the power distribution network 150 and performs charging of the battery cell.
  • the charging unit 114 is not supplied with power from the power distribution network 150, but is charged in the battery cell by being supplied with power from the power generator connected to the mega battery 110 or provided in the mega battery 110 itself. It is good also as performing.
  • the mega battery 110 may include a solar panel, and charge the battery cell with electric power generated using the solar panel.
  • incentives may be generated as follows.
  • Embodiment 1 when power is supplied by a high-voltage collective power receiving method in a plurality of condominiums, it can be said that the power used is averaged in the plurality of condominiums as a whole.
  • a single condominium unit is receiving power supply using the high-voltage collective power receiving method, even if the amount of power used is recognized to cause a power peak, multiple condominiums must supply power using the high-voltage collective power receiving method. If received, it may be recognized that no peak has occurred.
  • the apartment 120a has a peak twice in the morning and at night, whereas the apartment 120b has a peak once in the day.
  • the condominium 120a has an extra power charge due to two peaks, and the condominium 120b has an extra power charge due to one peak.
  • the threshold for detecting the peak will be increased by receiving power supply by the high-voltage collective power receiving method in a plurality of condominiums, it is recognized that no peak has occurred in both apartments 120a and 120b. Is done. From another viewpoint, in the morning and at night, the condominium 120a borrows more power from the condominium 120b because the condominium 120b does not use power. At noon, the reverse is true.
  • the control unit 102 of the aggregator 100 further determines that the total power consumption does not exceed the total power threshold value in step S703 in the flow shown in FIGS. 7 and 8 (NO in step S703). For each apartment, it is detected whether or not the power threshold 502 is exceeded. Then, when there is a condominium that exceeds the power threshold 502, the control unit 102 calculates the surplus power amount, regards the surplus power amount as borrowed from another condominium, It is good also as performing the incentive process which pays the corresponding incentive from the apartment which exceeded the power threshold value 502 to the apartment which has not exceeded.
  • the amount of power used that exceeds the power threshold 502 is divided by the number of condominiums that do not exceed the power threshold, and the amount of power that has been exceeded is divided, and the charge corresponding to the amount of power obtained by division It is good also as performing the incentive process which pays with respect to the apartment which does not exceed (incentive) from the apartment which exceeds the electric power threshold value 502.
  • FIG. 502. if the power amount calculated by the division is added to the power usage amount used in the apartment and exceeds the power threshold value 502 set for the apartment, the power threshold value 502 is used.
  • the condominium may receive an incentive for the amount of power obtained by subtracting the amount of power.
  • the incentive process shown in the present modification (17) may be configured to generate incentive payments even when the total power consumption exceeds the total power threshold (YES in step S703).
  • the power control table 201 is stored in the storage unit 104 in advance. These data may be input by the operator of the aggregator 100, or when the common unit controller of each condominium holds information on the power threshold, the presence / absence of a sub-battery, the presence / absence of HEMS introduction, etc.
  • the aggregator 100 may automatically acquire and create the power control table 201.
  • the mega battery 110 In the first to third embodiments, details of the capacities of the mega battery 110, the sub battery 303, and the community-compatible mega battery 1210 are not described. However, these batteries are the minimum required for operation. All you need is capacity. That is, for example, in the case of the above-described first embodiment, the mega battery 110 only needs to have a capacity that the condominiums 120a, 120b, and 120c have in contract. For example, if the apartment 120a can use 120 kW, 120b can use 80 kW, and 120c can use 200 kW per unit time, the battery only needs to have a capacity sufficient to discharge 400 kW per unit time. That is, in the above embodiment, the name “mega battery” is used, but it should be noted that this is merely a failure, and the mega here does not represent a unit.
  • each community determines the amount of power that can be used by the community-compatible megabattery 1210 for each hour, and the control server 1220 executes control according to the time.
  • what is determined for each time is not limited to the power consumption of the community-compatible mega battery 1210, and the power threshold value of each community may be determined for each time zone in the same manner as the available power.
  • the sub-battery and the HEMS are not considered.
  • the implementation is performed.
  • power peak cutting using these may be performed.
  • the example is shown in which the amount of power of the community-compatible mega battery 1210 that can be used by each community is controlled in units of one hour.
  • the unit may be any unit that can vary the amount, and may not be an hour unit. For example, a unit of 30 minutes may be used, and a unit of 2 hours may be used.
  • control processing (see FIGS. 7, 8, 10, 11, and 15) and incentive processing (see FIG. 9) related to the control of the mega battery by the aggregator shown in the above-described embodiment are performed by an aggregator, etc.
  • a control program comprising program codes to be executed by various circuits connected to the processor can be recorded on a recording medium, or can be distributed and distributed via various communication paths.
  • Such recording media include IC cards, hard disks, optical disks, flexible disks, ROMs, and the like.
  • the distributed and distributed control program is used by being stored in a memory or the like that can be read by the processor, and the processor executes the control program, thereby realizing various functions as shown in the embodiment. Will come to be.
  • Each functional component shown in the above embodiment may be realized as a circuit that executes the function, or may be realized by executing a program by one or a plurality of processors.
  • the audio processing apparatus according to the above-described embodiment may be configured as an IC (Integrated Circuit), LSI (Large Scale Integration), or other integrated circuit package. This package is incorporated into various devices for use, whereby the various devices realize the functions as shown in the embodiments.
  • Each functional block is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the storage battery control method according to the present invention is a storage battery (mega battery 110, community-compatible mega battery) prepared for a plurality of demand elements (condominiums 120a, 120b, 120c, communities 1200a, 1200b, 1200c) that require electric power.
  • Step 1210) is a storage battery control method by a control device for detecting the amount of power used per unit time in each demand element (used power amount acquisition unit 101, step S702, step S1502), A determination step (determination unit 103, step S703, step S1003, step S1503) for determining whether or not the amount of power used by one or more of the demand elements exceeds a predetermined threshold; In the determination step, used in the one or more demand factors A supply step (control unit 102, discharge unit 113, step S705) that causes the storage battery to supply power to a distribution network to which the one or more demand elements belong when it is determined that the competence exceeds a predetermined threshold. Step S1005 and Step S1505).
  • the demand element may be any facility that requires electric power, such as an apartment, an apartment, a factory, a general house, or a community that is an aggregate of elements that require electric power. And so on.
  • supplying power to the distribution network to which the demand element belongs refers to the discharge of power to the distribution network 150 in the above embodiment, but also includes the case of supplying power directly to the demand element. .
  • the commercial power used in the demand element exceeds a certain threshold, the commercial power used is discharged from the storage battery to the distribution network to which the demand element belongs.
  • Electricity charges can be expected to be reduced by trading power by discharging power from storage batteries.
  • a large effect of reducing the electricity bill can be expected.
  • the threshold value is an integrated threshold value provided for the total amount of power used in the plurality of demand factors (the total power threshold value of the first embodiment, ⁇ The threshold value shown in (11) of ⁇ Modification>], and the determination step may determine whether or not a total amount of electric power used in the plurality of demand factors exceeds the integrated threshold value.
  • the storage battery is discharged with respect to the total amount of power used by a plurality of demand factors, and a plurality of apartment houses are grouped together to collect power in a high-voltage collective power reception system. It is possible to expect an effective reduction in electricity charges when receiving supply.
  • each of the plurality of demand elements has an amount of power that can be used per unit time of the storage battery (the mega battery 110 according to the first embodiment owns the apartment Battery cell capacity and ⁇ variation example> (2) and (3)) are determined, and the determination step further determines each demand when it is determined that the total amount exceeds the one threshold value. It is determined whether or not the amount of electric power used in an element exceeds an individual threshold value (power threshold value 502) set for each demand factor, and in the supplying step, the amount of electric power used is set It is good also as supplying the electric power within the range shown with the said usable usage amount set with respect to the demand element determined to have exceeded the individual threshold value to the said distribution network.
  • a demand factor that uses power exceeding an individual threshold that is, a demand factor that uses more power than usual is identified, and the demand factor is By using the amount of power that can be used for the set storage battery, the electricity used can be reduced (apparently) to reduce the electricity bill.
  • the determination step further subtracts the amount of power supplied from the storage battery from the amount of power used by a demand element supplied with power from the storage battery. It is determined whether the value still exceeds an individual threshold set for the demand factor, and the supplying step is after power is supplied from the storage battery, and power is supplied from the storage battery.
  • Power may be supplied to the distribution network from the amount of power that can be used.
  • the storage battery control method is further defined for the other demand elements because the supply step exceeds a power threshold.
  • the method may include a payment step of paying an incentive from the demand factor to the other demand factor when electric power is supplied from the available amount of electricity.
  • This configuration has the advantage that other demand factors can receive incentives, and power can be lent and borrowed between the demand factors without dissatisfaction.
  • At least one of the plurality of demand elements includes a small storage battery (sub-battery 123) provided for the demand element, and supplies power from the storage battery.
  • At least one of the plurality of demand elements includes a HEMS (Home Energy Management Management System) that executes control of an electrical device used in the demand element, After the power is supplied from the storage battery, the value obtained by subtracting the amount of power supplied from the large capacity battery from the total amount is still determined to exceed the integrated threshold, and the amount of power used When the demand element determined to exceed the set individual threshold value is provided with the HEMS, it further includes a control step for instructing the HEMS to suppress the power used in the electric device. It is good as well.
  • HEMS Home Energy Management Management System
  • the threshold value is an individual threshold value (power threshold value 502) provided individually for the amount of power used in each of the plurality of demand elements, and the determination The step may determine whether or not the amount of electric power used for each of the plurality of demand elements exceeds the individual threshold set for each demand element.
  • the storage battery control method further includes a time measuring step for obtaining a time when the detection step performs the detection, and a time measured by the time measuring step.
  • the storage battery control system according to the present invention can be used as an aggregator that contributes to power supply as one usage pattern when a storage battery is shared by a plurality of households.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Power Engineering (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 本発明に係る蓄電池制御方法は、電力を必要とする複数の需要素向けに準備された蓄電池を制御する制御装置による蓄電池制御方法であって、各需要素で単位時間当たりに使用される電力量を検出する検出ステップと、需要素で使用される電力量が予め定められた閾値を超えるか否かを判定する判定ステップと、前記判定ステップにおいて、前記需要素で使用される電力量が予め定められた閾値を超えていると判定された場合に、前記蓄電池から、前記需要素が属する配電網に電力を供給させる供給ステップとを含む。

Description

蓄電池制御方法および蓄電池制御システム
 本発明は大容量蓄電池の制御システムに関する。
 近年、停電や災害等に備えて、非常用電源を備える家庭が増加している。
 また、家庭に限らず、マンションなど、集合住宅単位で一つの大容量蓄電池を有する非常用電源を備えることもある。
 特許文献1には、そのような集合住宅で非常用電源を共有する場合の電力制御を実行する電力供給システムが開示されている。
特開2011-205871号公報 特開2012-191825号公報
 本発明においては、複数世帯で大容量の蓄電池を共有する場合に、当該蓄電池の利便性を高めることができる蓄電池制御方法を開示する。
 上記課題を解決するため、本発明は、電力を必要とする複数の需要素向けに準備された蓄電池を制御する制御装置による蓄電池制御方法であって、各需要素で単位時間当たりに使用される電力量を検出する検出ステップと、前記複数の需要素のうち、1以上の需要素で使用される電力量が予め定められた閾値を超えるか否かを判定する判定ステップと、前記判定ステップにおいて、前記1以上の需要素で使用される電力量が予め定められた閾値を超えていると判定された場合に、前記蓄電池に、前記1以上の需要素が属する配電網に電力を供給させる供給ステップとを含むことを特徴としている。
 上述のような構成によって、ある需要素における電力のピークカットを実行でき、例えば、高圧一括受電のような使用電力のピークに応じて電気料金が定まる方式の場合に、支払料金を低減することができる。
蓄電池制御システムの構成を示すシステム図 アグリゲーター100の機能構成を示すブロック図 マンション120aの構成を示すブロック図 メガバッテリー110の機能構成を示すブロック図 電力制御テーブル201のデータ構成例を示す概念図 残余電力テーブル202のデータ構成例を示す概念図 実施の形態1に係る蓄電池制御システムの動作を示すフローチャート 図7のフローチャートの続き インセンティブ処理に係るアグリゲーター100の動作を示すフローチャート 実施の形態2に係るアグリゲーター100の動作を示すフローチャート 図10のフローチャートの続き 実施の形態3に係る蓄電池制御システムの構成を示すシステム図 コントロールサーバの機能構成を示すブロック図 各コミュニティの時間毎の使用可能電力量を示す表 実施の形態3に係る蓄電池制御システムの動作を示すフローチャート
<発明者らが得た知見>
 現在、マンションやアパート等の集合住宅において、メガバッテリーを備えるものが増加している。今後、これは、複数の集合住宅で、一つのメガバッテリーを共有するといった手法をとることも考えられる。
 ところで、電力会社から商用電力の供給を受けるにあたって、低圧受電方式と、高圧一括受電方式というサービスが受けられる。低圧受電方式は、各家庭が個別に電力会社から、低圧の電力の供給を逐次受ける方式である。また、高圧一括受電方式は、高圧の電力の供給を一度にまとめて受ける方式であり、マンション等の集合住宅などで利用されることが多い。高圧一括受電方式は、電力を高圧で一括で受電するため、マンションなどで低圧に降圧して、各部屋に配分する必要があるものの、低圧受電方式よりも基本料金が安いというメリットがある。
 一方で、高圧一括受電方式の場合、月に一定以上電力量を使用するピークに応じて(例えば、ピークの発生回数や、ピーク時の使用電力量等)、電気料金が割り増しされる方式をとるものが多い。そのため、電気料金の低減には、ピークの発生をなるべく抑制することが要求される。
 そのための一手法として、発明者らは、マンションなどの集合住宅複数で共有するメガバッテリーを用いることで、このピークカットを実現できることに想到した。
 以下、本発明に係る蓄電池制御システムについて説明する。
<実施の形態1>
 以下、本発明の一実施形態である蓄電池制御システムについて図面を用いて説明する。
<構成>
 図1は、蓄電池制御システムのシステム構成を示すシステム図である。
 図1に示すように、蓄電池制御システムは、アグリゲーター100と、メガバッテリー110と、マンション120a、120b、120cと、電力会社130と、銀行140と、配電網150と、通信網160とから構成される。
 アグリゲーター100は、通信網160を介して、メガバッテリー110と、各マンション120a、120b、120c(より正確には後述する各マンションの共用部コントローラ)と、銀行140とに接続されている。
 メガバッテリー110は、大容量の蓄電池であり、通信網を介してアグリゲーター100と接続される。また、メガバッテリー110は、配電網150にも接続され、配電網150への放電、配電網150からの受電を行う。
 マンション120a、120b、120cは、通信網160を介して、アグリゲーター100と接続されている。また、各マンション120a、120b、120cは、配電網150を介して電力会社130から商用電力の供給を受け、当該商用電力を、マンション内の各部屋に各種電気機器に供給する。なお、ここで、マンション120a、120b、120c全体で、高圧一括受電方式による電力供給を、電力会社130から受けているものとする。
 電力会社130は、配電網150を介して、各マンション120a、120b、120cの商用電力を供給する機能を有する。
 ここから、アグリゲーター100の詳細について説明する。
 図2は、アグリゲーター100の機能構成を示すブロック図である。
 図2に示すようにアグリゲーター100は、使用電力量取得部101と、制御部102と、記憶部104と、指示部105と、電力取得部106とから構成される。
 使用電力量取得部101は、各マンション120a、120b、120cと通信網160を介して接続され、それぞれで使用している使用電力量を取得する機能を有する。使用電力量は、どのマンションでの使用電力量かを区別できるように、各マンションを示すマンションIDと対応付けられて、送信される。使用電力量取得部101は、一定時間毎(例えば1分単位)に各マンションから送信される使用電力量を取得し、取得する毎に、取得した各マンションの使用電力量を制御部102に伝達する。
 制御部102は、判定部103を含んで構成され、アグリゲーター100の各機能部を制御する機能を有し、メガバッテリー110の放電の要否を判定する判定処理およびメガバッテリー110の放電を制御する蓄電池制御処理を実行する機能を有する。
 制御部102は、使用電力量取得部101から各マンションの使用電力量を受け取ると、判定部103に各使用電力量を伝達する。
 判定部103は、伝達された各マンションの使用電力量に基づいて、その使用電力量の総和が予め定められた閾値(以下、総和電力閾値と呼称する)を超えるか否かを判定する機能を有する。具体的には、判定部103は、伝達された各マンション120a、120b、120cの使用電力量の総和演算を行い、総使用電力量を算出する。次に、判定部103は、記憶部104に記憶されている電力制御テーブル201を参照して、各マンションに対して設定されている電力閾値の総和である総和電力閾値を算出する。そして、判定部103は、総使用電力量が総和電力閾値を超えているか否かを判定する。
 総使用電力量が総和電力閾値を超えている場合には、判定部103は、更に、各マンションの使用電力量について、電力制御テーブル120を参照して各マンションに設定されている電力閾値を超えているかを判定する。そして、判定部103は、総使用電力量が総和電力閾値を超えていることと、使用電力量が電力閾値を超えているマンションについての情報(マンションID)を制御部102に伝達する。
 制御部102は、判定部103から、総使用電力量が電力閾値の総和を超えているとの通知を受けた場合に、使用電力量が電力閾値を超えているマンションについて、そのマンションにおける使用電力量を低減する(ピークカットを行う)ための蓄電池制御処理を実行する。
 制御部102は、蓄電池制御処理として、判定部103により電力閾値を超えていると判定されたマンションについて、残余電力テーブル202を参照して、そのマンションが所有している電池セルに放電を指示するよう指示部105に伝達する。また電池セルの残余電力量と電力閾値を加算した値が、なお、使用電力量を下回る場合に、電力制御テーブル201を参照して、他のマンションが所有する電池セルに対する放電指示や、マンションがサブバッテリーを保持していた場合にそのサブバッテリーに対する放電指示や、マンションがHEMSを登載していた場合に、HEMSによる使用電力抑制制御の依頼指示を指示部105に伝達する。
 蓄電池制御処理についての詳細は、図7、図8のフローチャートを用いて後述する。
 また、制御部102は、電力のピークカットのためにメガバッテリー110からの放電が必要なマンションについて、他のマンションから電力を借りた場合に、そのマンションから他のマンションにインセンティブを払うインセンティブ処理を実行する機能を有する。インセンティブとしては、金銭が支払われる。これは、予め定められた借りた電力量に応じた料金を算出する数式(例えば、借りた単位時間当たりの電力量Vと、単位時間当たりの料金の単価Pの乗算式V×P)を用いて算出する。そして、制御部102は、算出したインセンティブを、電力を借りたマンションの口座から電力を貸したマンションの口座に算出した料金の振り込みを、通信網160を介して、指示部105から銀行140に要求する。
 記憶部104は、アグリゲーター100が動作するために必要な各種プログラムおよびデータを記憶する機能を有し、ハードディスク装置や各種メモリ等の記録媒体により実現される。記憶部104は、判定部103および制御部102により判定処理や蓄電池制御処理のために参照される電力制御テーブル201と、メガバッテリー110の各電池セルの電力量を示す残余電力テーブル202とを保持している。電力制御テーブル201と残余電力テーブル202の詳細については後述する。
 指示部105は、制御部102から通知された内容に従って、通信網160を介して、各マンション120a、120b、120cあるいはメガバッテリー110に対して、放電指示を送信する機能を有する。また、指示部105は、制御部102から通知された内容に従って、通信網160を介して、各マンション120a、120b、120cにサブバッテリー123の放電指示やHEMS124の電力抑制制御の依頼指示を送信する機能も有する。また、指示部105は、通信網160を介して、銀行140にインセンティブ処理の結果行われる金銭の支払要求を送信する機能も有する。
 電力取得部106は、メガバッテリー110から、メガバッテリー110が備える各電池セルについて、それぞれの残余電力量を取得し、記憶部104の残余電力テーブル202を更新する機能を有する。
 以上が、アグリゲーター100の機能構成である。
 図3は、各マンションの構成を示すブロック図である。各マンションは同様の構成を備えるものとし、ここでは、マンション120aについて説明する。
 マンション120aは、各部屋に対応したスマートメーター群121と、共用コントローラ302と、サブバッテリー303と、HEMS124とを備える。なお、サブバッテリー123やHEMS124については、マンションによっては備えていない場合もある。
 スマートメーター群121の各スマートメーターは、マンション内の各部屋(世帯)に対応して設けられ、逐次、共用部コントローラ122に使用電力量を通知する機能を有する。
 共用部コントローラ122は、マンション120a内の電源系統を制御する機能を有する。共用部コントローラ122は、スマートメーター群121から通知された使用電力量を受け、その総和を算出し、算出したマンション別総和使用電力量を、通信網160を介してアグリゲーター100に通知する機能を有する。また、共用部コントローラ122は、通信網160を介して、アグリゲーター100から受け付けた指示に従って、サブバッテリー123の放電を実行する機能や、HEMS124に電力抑制制御を実行させる機能を有する。
 サブバッテリー123は、マンション120aに配された蓄電池であり、共用部コントローラ122からの指示に従って、マンション120aの各部屋に電力を供給する機能を有する。サブバッテリー123は、放電を行っていない時には配電網150から電力を供給されて充電を実行する機能も有する。
 HEMS124は、共用部コントローラ122からの指示に従って、マンション120aの各部屋の電化製品の制御を実行する機能を有し、使用電力量を抑制する方向での制御を実行する機能を有する。HEMSとは、Home Energy Management Systemのことであり、近年では、HEMSによる電化製品の制御手法については各種様々な技術が開示されている。したがって、HEMSの詳細については省略する。なお、HEMSとしては、例えば、特許文献2にその一例が開示されている。
 なお、以降、マンション120a、120b、120cの共用部コントローラ122を、説明の便宜上必要に応じて、それぞれ共用部コントローラ122a、302b、302cと記載する。
 以上が、マンションの構成である。
 図4は、メガバッテリー110の機能構成を示すブロック図である。
 メガバッテリー110は、制御部111と、二次電池112と、放電部113と、充電部114とを備える。
 制御部111は、通信網160を介して、アグリゲーター100からの指示に従って、各電池セルの放電および充電を制御する機能を有する。
 また、制御部111は、逐次(例えば、1分毎)、各電池セル402a、402b、402cの残余電力量を検出し、通信網160を介して、アグリゲーター100に通知する機能も有する。なお、制御部111は、各電池セルを識別する識別子と、対応する残余電力量を対応付けて、どの残余電力量がどの電池セルのものであるかをアグリゲーター100が区別可能なように通知する。
 二次電池112は、電池セル402a、402b、402cとから構成される。電池セル402aはマンション120aの、電池セル402bはマンション120bの、電池セル402cはマンション120cの所有する電池セルである。なお、正確には、各電池セルは、マンションのオーナーもしくは住人の所有となる。
 放電部113は、配電網150に対して、二次電池112から供給された電力の放電を実行する機能を有する。
 充電部114は、配電網150から供給された商用電力を用いて、二次電池112の各電池セルの充電を実行する機能を有する。充電部114は、放電部113が放電を実行していない場合であって、電池セルの残余電力量を所定の閾値を下回ったときに、残余電力量が所定の閾値を下回った電池セルの充電を実行する。
 以上が、メガバッテリー110の構成である。
<データ>
 ここから、アグリゲーター100が活用するデータについて説明する。
 図5は、電力制御テーブル201のデータ構成例を示す概念図である。
 図5に示すように、電力制御テーブル201は、マンションID501と、電力閾値502と、電力賃貸先マンションID503と、サブバッテリー所有504と、HEMS所有505が対応付けられたデータである。
 マンションID501は、各マンションをアグリゲーター100が識別するための、識別子である。ここでは、理解しやすくするために、図1において、各マンションに対して割り振った符号を記載しているが、実際には、各マンションの共用部コントローラの機器番号あるいはMACアドレスなどを用いる。
 電力閾値502は、マンションID501に対応するマンションに対して、設定されている使用電力量のピークカットを実現するために設けた値であり、ここでは、1分あたりの使用電力量に対する閾値(kW)を示している。ここでは、電力閾値502は、それぞれのマンションにおいて高圧一括受電方式で受電を行った場合に、電気料金の割り増しが発生することになる基準となる値よりも低く設定されている。
 電力賃貸先マンションID503は、マンションIDに対応するマンションが、他のマンションが所有する電池セルから電力を借りることができる当該他のマンションを示す識別子である。電力賃貸先マンションID503は、ここではマンションID501と同様に、図1に示すマンションの符号を記載しているが、実際には、各マンションの共用部コントローラの機器番号あるいはMACアドレスなどを用いる。
 サブバッテリー所有504は、マンションID501に対応するマンションがサブバッテリーを有しているか否かを示す情報である。図5においては、サブバッテリーを有している場合に「有」、サブバッテリーを有してない場合に「無」と記載しているが、実際には、「1(サブバッテリー有り)」、「0(サブバッテリー無し)」の2値で管理される。
 HEMS所有505は、マンションID501に対応するマンションがHEMSを導入しているか否かを示す情報である。図5においては、HEMSを導入している場合に「有」、HEMSを導入してない場合に「無」と記載しているが、実際には、「1(HEMS有り)」、「0(HEMS無し)」の2値で管理される。
 図5によれば、マンション120aにおいて、使用電力量のピークとなる電力閾値は、220kWであり、マンション120aが所有している電池セル402aからの放電で使用電力量を電力閾値以下にすることができない場合に電力を借りる賃貸先のマンションは、マンション120b、120cとなっている。また、マンション120aは、サブバッテリーを有しているものの、HEMSは導入していない。
 図6は、残余電力テーブル202のデータ構成例を示す概念図である。
 残余電力テーブル202は、マンションID601と、電池セルID602と、残余電力量603とが対応付けられたデータである。
 マンションID601は、マンションID501と同様に、各マンションをアグリゲーター100が識別するための、識別子である。ここでは、理解しやすくするために、図1において、各マンションに対して割り振った符号を記載しているが、実際には、各マンションの共用部コントローラの機器番号あるいはMACアドレスなどを用いる。
 電池セルID602は、マンションID601に対応するマンションが所有するメガバッテリー110の電池セルを識別するための識別子である。ここでは、理解しやすくするために、図4において、各電池セルに対して割り振った符号を記載しているが、実際には、電池セルに対して設定されているセル番号ないしは、割り振っている何らかの識別子を用いる。
 残余電力量603は、マンションID601に対応するマンションが所有する電池セルの残余電力量(kW)を示すものである。残余電力量は電池残量と呼称されることもある。
 図6によれば、マンション120aが所有する電池セルは、電池セル402aであり、その残余電力量は、435kWとなっている。
<動作>
 次に、本実施の形態に係る蓄電池制御システムの動作を図7~図9に示すフローチャートを用いて説明する。
 図7、図8は、蓄電池制御システムにおける判定処理および蓄電池制御処理における動作を示すフローチャートであり、図9は、蓄電池制御処理におけるインセンティブ処理の詳細動作を示すフローチャートである。
 まず、アグリゲーター100の電力取得部106は、メガバッテリー110から、各電池セル402a、402b、402cの残余電力量を取得する(ステップS701)。電力取得部106は、各電池セル402a、402b、402cの残余電力量を取得すると、残余電力テーブル202の、各マンションID601に対応する残余電力量603を更新する。
 次に、アグリゲーター100の使用電力量取得部101は、各マンション120a、120b、120cの共用部コントローラ122a、302b、302cから、それぞれのマンションで使用している使用電力量を取得し、制御部102に伝達する(ステップS702)。
 各マンション120a、120b、120cの使用電力量が伝達されると、制御部102の判定部103は、使用電力量の総和(総使用電力量)を算出する。また、判定部103は、電力制御テーブル201の電力閾値502の総和(総和電力閾値)を算出する。そして、判定部103は、総使用電力量が総和電力閾値を超えているか否かを判定する(ステップS703)。
 総使用電力量が総和電力閾値を超えていない場合には(ステップS703のNO)、処理を終了する。
 総使用電力量が総和電力閾値を超えている場合には(ステップS703のYES)、判定部103は、各マンションの使用電力量と、それぞれに設定されている電力閾値とを比較して、マンションの使用電力量がその電力閾値を超えているかを判定し、使用電力量が高いマンションを特定する(ステップS704)。即ち、判定部103は、各マンションについて、電力制御テーブル201を参照して、マンションIDに対応する電力閾値を取得し、対応する使用電力量とを比較する。これにより、判定部103は、電力閾値を超えて電力を使用しているマンションを特定する。判定部103は、特定したマンションのマンションIDと、総使用電力量が総和電力閾値を超えている旨とを制御部102に伝達する。
 すると、制御部102は、残余電力テーブル202を参照し、通知されたマンションID601に対応する電池セルID602を特定する。そして、制御部102は、特定した電池セルからの放電を指示するように指示部105に依頼し、指示部105は、メガバッテリー110に対して、制御部102により指定された電池セルの放電を指示する(ステップS705)。当該指示を受けて、メガバッテリー110の制御部111は、指定されている電池セルの放電指示を行い、放電部113は電池セルから放電された電力を配電網150に放電する。
 制御部102は、電池セルの放電を指示すると共に、そのときの当該電池セルの残余電力量を、残余電力テーブル202の残余電力量603を参照して取得する。そして、制御部102は、総使用電力量から放電した電力の総計を減算した予測総使用電力量を算出する。そして、制御部102の判定部103は、予測総使用電力量が総和電力閾値を下回るかを判定する(ステップS706)。
 予測総使用電力量が総和電力閾値を下回ると判定された場合には(ステップS706のYES)、制御部102は、インセンティブ処理を行って(ステップS707)終了する。インセンティブ処理の詳細については、後述する。
 予測総使用電力量が総和電力閾値を下回っていない場合には(ステップS706のNO)、制御部102は、電力制御テーブル201の電力賃貸先マンションID503を参照して、ステップS704で特定されたマンションが電力を借りることができるマンションがあるか否かを判定する(ステップS708)。
 電力を借りることができるマンションがある場合には(ステップS708のYES)、制御部102は、次に、ステップS704で特定されたマンションが電力を賃貸可能なマンション全てから、電力を借りたか否かを判定する(ステップS709)。
 電力を賃貸可能なマンション全てから、電力を借りていない場合には(ステップS709のNO)、制御部102は、まだ電力を借りていないマンションに対応する電池セルの放電指示を実行し(ステップS710)、ステップS706に戻る。この場合ステップS706においては、予測総使用電力量は、総使用電力量から、ステップS705およびステップS710における放電で放電された電力量を減算した値になる。
 電力を借りるマンションがない場合(ステップS708のNO)や、ステップS704で特定されたマンションが電力を借りることができる全てのマンションから借りている場合(ステップS709のYES)には、図8のステップS711に移行する。
 制御部102は、ステップS704で特定されたマンションがサブバッテリーを有しているか否かを、電力制御テーブル201のサブバッテリー所有504を参照して、判定する(ステップS711)。
 サブバッテリーがある場合には(ステップS711)、制御部102は、そのサブバッテリーに対して既に放電指示を実行しているか否かを、過去ログを用いて判定する(ステップS712)。
 サブバッテリーに放電指示を行っていない場合に(ステップS712のNO)、制御部102は、当該サブバッテリーに対する放電指示を送信するよう指示部105に依頼し、指示部105は、通信網160を介して、ステップS704で特定されたマンションの共用部コントローラ122に、サブバッテリーの放電を指示する(ステップS713)。当該指示を受けた共用部コントローラ122は、サブバッテリー123の放電を実行する。
 サブバッテリー123による放電の指示を実行した後、共用部コントローラ122は、使用電力量の再計算を行い、通信網160を介して、アグリゲーター100に伝達する。アグリゲーター100の使用電力量取得部101は、受信した使用電力量を制御部102に伝達し、制御部102は、総使用電力量を再計算し(ステップS714)、図7のステップS706に戻る。
 マンションにサブバッテリー123がない場合(ステップS711のNO)や、サブバッテリー123に既に放電の指示を行っている場合(ステップS712のYES)には、制御部102は、ステップS704で特定されたマンションにHEMSが導入されているか否かを、電力制御テーブル201のHEMS所有505を参照して判定する(ステップS715)。
 HEMSが導入されている場合には(ステップS715のYES)、制御部102は、既に当該HEMSに電力を抑制する制御を指示しているか否かを、過去ログを用いて判定する(ステップS716)。
 まだ、HEMSに電力を抑制する制御を指示していない場合には(ステップS716のNO)、制御部102は、ステップS704において、特定されたマンションのHEMSに対して、電力を抑制する指示を出すよう指示部105に依頼し、指示部105は、電力を抑制する指示を、通信網160を介してマンションの共用部コントローラ122に送信する(ステップS717)。これを受けて、マンションの共用部コントローラ122は、HEMS124に対して、電力を抑制する制御を実行するように指示する。
 HEMS124による電力抑制制御の後、共用部コントローラ122は、使用電力量を再計算し、通信網160を介して、アグリゲーター100に送信する。アグリゲーター100の使用電力量取得部101は、受信した使用電力量を制御部102に伝達し、制御部102は、総使用電力量を再計算し(ステップS718)、図7のステップS706に戻る。
 マンションにHEMSが導入されていない場合や(ステップS715のNO)、HEMSに既に電力を抑制する制御を指示している場合には(ステップS716のYES)、図7のステップS707に戻る。
 ここから、図7のステップS707におけるインセンティブ処理の詳細について、図9に示すフローチャートを用いて説明する。
 まず、制御部102は、各マンションについて、その使用電力量を計測する(ステップS901)。
 各マンションの使用電力量を計算すると、制御部102は、マンションが自身で使用している使用電力量のピークカットを行うために、自らで所有しているメガバッテリー110の電池セルから放電した放電量(図7のステップS705で放電した放電量)を計測する(ステップS902)。
 次に、制御部102は、各マンションが自身で使用している使用電力量のピークカットを行うために、他のマンションが所有している電池セルから放電してもらった放電量(図7のステップS710で放電した放電量)を計測する(ステップS903)。
 次に、制御部102は、各マンションが他のマンションのピークカットのために、自らで所有するメガバッテリー110の電池セルから放電した放電量(図7のステップS710で放電した放電量)を計測する(ステップS904)。
 そして、制御部102は、ステップS901~ステップS904での放電量と、各ステップに対して予め定められている料金に基づく加減算を行って、各マンションのインセンティブを算出する。そして、制御部102は、各マンション毎に算出したインセンティブを付与するように指示し、指示部105は、通信網160を介して各マンションの口座に当該インセンティブの付与を実行するよう銀行140に依頼する。なお、基本的に、ステップS901およびS902における放電量に対して発生する料金は、電力会社130との契約に応じて定まり、ステップS903、S904における放電量に対して発生する料金は、マンション間の契約に応じて定まる。
 なお、図7~図9に示す動作は、繰り返し実行される。
 では、一具体例を用いて、図7から図9における放電量とそれによって発生するインセンティブ処理について、図7から図9におけるステップと対応させながら説明する。
 まず、各マンション120a、120b、120cが所有する電池セル402a、402b、402cの残余電力量は図6に示す通りであるとする。また、各マンション120a、120b、120cに対して設定されている電量閾値は図5に示す通りであるとする。図5の場合、総和電力閾値は、590(220+300+170)となる。
 そして、図7のステップS702において制御部102が取得する各マンション120a、120b、120cの使用電力量が、それぞれ、210kW、480kW、130kWであったとする。すると、総使用電力量は、820kW(210+480+130)kWとなる。すると、この総使用電力量820kWは、総和電力閾値590kWを超えていることになる(ステップS703のYES)。このとき、各マンションの電力閾値との比較により、マンション120bの使用電力量480kWは、マンション120bに対して設定されている電力閾値300kWを超えていることから、ステップS704で特定されるマンションは、マンション120bとなる。
 すると、制御部102は、マンション120bの電池セル402bに対して放電指示を行い、メガバッテリー110は当該指示に従って放電を実行する(ステップS705)。
 このとき、電池セル402の残余電力量は、図6から120kWとなる。すると、予測総使用電力量は、700kW(820-120)となる。この値は、総和電力閾値の590kWを下回っていないので(ステップS706のNO)、制御部102は、電力制御テーブル201を参照して、マンション120bが電力を借りることができるマンションとして、マンション120aがあることを検出する(ステップS708のYES)。
 そして、制御部102は、マンション120aが所有する電池セル402aの放電指示を行う。この場合、110kW(700-590)の放電指示を行えば、ピークカットを実現でき、電池セル402aには、435kW残っていることから、電池セル402aからの放電で、目標を達成できる(ステップS706のYES)。
 この時、マンション120bは、ステップS705で電池セル402bから放電した120kW分(ステップS902の放電量)のインセンティブを電力会社130から受け取れるとともに、ステップS710で電池セル402aから借りた電力量110kW分(ステップS903の放電量)のインセンティブをマンション120aに支払うことになる。一方、マンション120aは、マンション120bのために110kW(ステップS904の放電量)の電力の放電を行ったので、その分のインセンティブをマンション120bから受け取ることになる。
<まとめ>
 上記実施の形態1に示す蓄電池制御システムは、マンションの住人達に以下のようなメリットを齎す。
 まず、マンション複数で、高圧一括受電方式による電力の供給を受けることで、ピークの目標値が上がることが見込めることから、ピークの到来自体が少なくなることが予想される。例えば、ある目標値に対して、マンション120aが朝と夜の2回にピークが訪れるのに対し、マンション120bでは昼にのみ訪れるような場合、2つのマンションでの高圧一括受電方式だと目標値が高くなることが予想され、従って、ピークの到来が少なくなる可能性がある。
 一方で、ピークが発生したとしても、自身が保持しているメガバッテリー110の電池セルから配電網に放電を行うことで、見かけ上使用電力が目標値を超えていないように見せることができるため、ピークが訪れていないと判定され、料金の割り増しの発生を抑制することができる。
 そして、自身で所有している電池セルからの放電で足りなかった場合でも他のマンションの電池セルからの放電を依頼することで、同様に料金の割り増しの発生を抑制することができる。
<実施の形態2>
 上記実施の形態1においては、メガバッテリーを所有する各マンションの使用電力量の総和が、総和電力閾値を超えているかを判定することとした。これは、複数のマンションを対象に高圧一括受電方式で、電力の供給を受けることを想定しているが、ここでは、各マンション単位で高圧一括受電方式による電力の供給を受けている場合であっても、実施の形態1と同様にピークカットを実現する手法について説明する。
 なお、本実施の形態2においては、実施の形態1と相異する点について詳細に述べることとし、その他の点については、実施の形態1と共通するものとして、説明を割愛する。
<構成>
 実施の形態1においては、アグリゲーター100の判定部103は、総使用電力量が、総和電力閾値を超えているか否かを判定することとしていたが、本実施の形態2においては、これを実行しない。
 また、制御部102は、マンション120a、120b、120cのいずれかが使用している使用電力量が、それぞれに設定されている電力閾値502を超えている場合に、蓄電池制御処理を実行する。
 即ち、実施の形態2に係る蓄電池制御システムにおいて、実施の形態1と異なる点は、蓄電池制御処理のトリガである。
<動作>
 実施の形態2に係る蓄電池制御システムの動作を、図10、図11のフローチャートに示す。図10、図11においては、図7、図8と共通する内容については、同じ符号を付している。
 実施の形態2に係る蓄電池制御システムでは、図7のステップS703~S706の換わりに、図10のステップS1003~S1006を実行し、図8のステップS714、S718の換わりに、ステップS1014、S1018を実行する。
 アグリゲーター100の使用電力量取得部101から各マンション120a、120b、120cの使用電力量を伝達されると、判定部103は、各マンションの使用電力量が、それぞれの電力閾値502を超えているか否かを判定する(ステップS1003)。
 いずれのマンションの使用電力量も、対応する電力閾値502を超えていない場合には(ステップS1003のNO)、処理を終了する。
 いずれかのマンションの使用電力量が、対応する電力閾値502を超えている場合には(ステップS1003のYES)、制御部102は、使用電療量が電力閾値502を超えていたマンションが所有する電池セルへの放電指示を指示部105に指示するよう伝達する。そして指示部105は、メガバッテリー110に当該電池セルの放電を指示し、メガバッテリー110は、この指示に従って、対応する電池セルの放電を実行し、放電部113が配電網150に放電する(ステップS1005)。
 そして、使用電力量が電力閾値502を超えていたマンションについて、対応する電池セルから放電した放電量を使用電力量から減算した値である予測使用電力量が、電力閾値502を下回ったか否かを判定し(ステップS1006)、当該判定結果に従って以降の処理を実行する。
 また、ステップS714、S718の換わりに実行するステップS1014、1018においては、総使用電力量を取得する必要がないことから、実施の形態2においては、ステップS1003において使用電力量が電力閾値502を超えると判定されたマンションについての、その時点での使用電力量を取得する。
 この構成によって、実施の形態2に係る蓄電池制御システムは、複数のマンションでメガバッテリーを共有しつつ、各マンション単位で、個別に高圧一括受電方式で電力の供給を受けている場合に、各マンションでの電気料金の低減に貢献することができる。
<実施の形態3>
 上記実施の形態1と実施の形態2それぞれで、電力のピークカットの手法の一例を説明した。本実施の形態3においては、更なるピークカットの手法の一例を説明する。
 実施の形態3に係る蓄電池制御システムでは、上記実施の形態1、2において、マンション単位で行っていた電力の供給制御を、コミュニティ単位で実行する。本実施の形態3においてコミュニティとは、上記実施の形態1、2に示したような、メガバッテリー110を区分所有する1つの単位のことであり、1以上の需要素(家庭やマンションなど電力の供給を受けるもの)と、その1以上の需要素と対になる1以上のメガバッテリーとを含む。
 上記実施の形態1や2では、1つのコミュニティに属する複数の需要素(マンション)における電力のピークカットの例を説明したのに対し、本実施の形態3においては、複数のコミュニティで、複数の需要素からなるコミュニティ単位でのピークカットを実現する例を説明する。
 図12は、実施の形態3に係る蓄電池制御システムの構成を示すシステム図である。図12において、図1と共通する構成については、同一の符号を付し、説明を簡略化あるいは省略することとする。
 図12に示すように、蓄電池制御システムは、コミュニティ1200a、1200b、1200cと、コミュニティ対応メガバッテリー1210と、コントロールサーバ1220とからなり、各コミュニティとコントロールサーバ1220は、通信網160を介して接続されている。また、各コミュニティは、配電網150にも接続され、各コミュニティに属する需要素は、配電網150に接続されている電力会社130から商用電力の供給を受ける。また、コミュニティ対応メガバッテリー1210も配電網150に接続されている。
 各コミュニティは、実施の形態1や2に示したように、通信網160に接続されたアグリゲーター100と、配電網150に接続されたメガバッテリー110と、当該配電網150に接続された需要素群1201(マンションや家、工場など)とを含む。図12においては、図の見易さを優先してコミュニティ内と配電網150や通信網160との明確な接続関係は示していないが、各コミュニティを構成する構成要素それぞれは、図1に示す接続関係を有するものとする。また、同様に図12には示していないが、コミュニティ1200b、コミュニティ1200cも、コミュニティ1200aと同様の構成を備えるものとする。なお、ここではコミュニティと呼称しているが、これは、便宜上の名称であり、例えば、エリア(電力を必要とする家屋等が存在する区域)で管理することとしてもよい。コミュニティは、1以上の電力を必要とする需要素、メガバッテリー、アグリゲーターの集合であればよい。
 コミュニティ対応メガバッテリー1210は、大容量の蓄電池であり、通信網160を介してコントロールサーバ1220と接続されている。また、コミュニティ対応メガバッテリー1210は、配電網150にも接続され、配電網150への放電、配電網150からの受電を行う。コミュニティ対応メガバッテリー1210は、上記実施の形態1、2に示したメガバッテリー110と同様の構成を有するが(図4参照)、図4に示したメガバッテリー110とは異なり、コミュニティ対応メガバッテリー1210の制御部(メガバッテリー110の制御部111に相当)は、コントロールサーバ1220からの指示に従って配電網150への放電、配電網150からの受電を行う。また、コミュニティ対応メガバッテリー1210の電池セルは、上記実施の形態1、2においてメガバッテリー110の各電池セルが各マンションによって所有されていたのに対し、本実施の形態3においては時間帯ごとに各コミュニティが使用可能な電力量の上限を定めて放電を実行するため、最低1つあればよい。コミュニティ対応メガバッテリー1210の電池セルは、配電網150からの受電により充電される。
 コントロールサーバ1220は、通信網160を介してコミュニティ対応メガバッテリー1210および各コミュニティと接続されている。コントロールサーバ1220は、上記実施の形態1、2に示した各マンションに対して設けられたメガバッテリー110を制御するアグリゲーター100に相当する。即ち、コントロールサーバ1220は、コミュニティ対応メガバッテリー1210を制御するものであり、アグリゲーター100が各マンションでの電力使用状況に応じた放電をメガバッテリー110に実行させていたのに対し、各コミュニティでの電力使用状況に応じた放電をコミュニティ対応メガバッテリー1210に実行させる機能を有する。
 図13は、コントロールサーバ1220の機能構成を示すブロック図である。図13に示すようにコントロールサーバ1220は、使用電力量取得部1301と、制御部1302と、記憶部1304と、指示部1305と、電力取得部1306と、計時部1307とを備える。
 使用電力量取得部1301は、各コミュニティで使用している電力量の総和を取得し、制御部1302に伝達する機能を有する。各コミュニティにはアグリゲーター100が配されており、当該アグリゲーター100がコミュニティ内で使用されている総使用電力量を取得しているので、使用電力量取得部1301は、アグリゲーター100からコミュニティで使用されている総使用電力量を取得する。
 コントロールサーバ1220の制御部1302は、上記実施の形態1、2に示すアグリゲーター100が有する機能に加え、時間毎に変化する使用可能な電力量に基づく制御を実行する機能を有する。即ち、上記実施の形態1、2においては、マンション毎に電池セルを保有するという実施例を示したが、本実施の形態3では、時間単位での区分所有という形態を示す。即ち、各コミュニティで一時に使用できる電力量(電力閾値を超えた場合にコミュニティ対応メガバッテリー1210から放電できる放電量)が定められている場合について説明する。
 コントロールサーバ1220の判定部1303が、コミュニティでの使用電力量が、そのコミュニティに対して設定されている閾値を超えた場合には、制御部1302は、後述する電力量テーブル1342と計時部1307から伝達された現在時刻に基づき、当該現在時刻においてコミュニティ対応メガバッテリー1210で使用可能な電力量を特定し、特定した電力量を上限とする放電をコミュニティ対応メガバッテリー1210に指示するよう指示部1305に伝達する。
 記憶部1304は、コントロールサーバ1220が動作するために必要な各種プログラムおよびデータを記憶する機能を有し、ハードディスク装置や各種メモリ等の記録媒体により実現される。記憶部1304は、判定部1303および制御部1302により判定処理や蓄電池制御処理のために参照される電力制御テーブル1341と、各コミュニティが使用可能な電力量を時間帯ごとに示す電力量テーブル1342とを保持している。電力制御テーブル1341と電力量テーブル1342の詳細については後述する。
 指示部1305は、制御部1302から通知された内容に従って、通信網160を介して、コミュニティ対応メガバッテリー1310に対して、放電指示を送信する機能を有する。また、指示部1305は、制御部1302から通知された内容に従って、通信網160を介して、銀行140にコミュニティ間のインセンティブ処理の結果行われる金銭の支払要求を送信する機能も有する。
 電力取得部1306は、コミュニティ対応メガバッテリー1310の電池残量を取得する機能を有する。
 計時部1307は、制御部1302に現在時刻を逐次伝達する機能を有する。
 これにより、コントロールサーバ1220は、コミュニティを単位とする上記実施の形態1や2に示したような電力のピークカットを実現できる。
<データ>
 本実施の形態3において、記憶部1304に格納される電力制御テーブル1341と、電力量テーブル1342とについて説明する。
 電力制御テーブル1341は、図示しないが、実施の形態1、図5に示した電力制御部201と略同等の構成を備える。ただし、マンションID501は、コミュニティIDになり、電力賃貸先マンションID503は、電力賃貸先コミュニティIDになる。また、電力制御テーブル1341においてはサブバッテリー所有504とHEMS所有505は含まない構成となる。したがって、電力制御テーブル1341は、コミュニティIDと、そのコミュニティに対して設定されている電力閾値と、そのコミュニティが電力を賃貸できるコミュニティを特定する電力賃貸先コミュニティIDが対応づけられた情報である。
 コントロールサーバ1220の記憶部1304は、各コミュニティについて、単位時間毎に使用可能な電力量を定めた制御テーブルを保持している。図13は、その制御テーブルの構成例を示したデータ概念図である。
 図13に示すように、制御テーブルは、各コミュニティを特定するためのコミュニティID1401と、各コミュニティについての一日の各時間帯に使用可能な電力量を示す使用可能電力量1302とが対応付けられた情報である。
 コミュニティID1401は、各コミュニティをコントロールサーバ1220が識別するための、識別子である。コミュニティIDは、図5でいえば、マンションIDに対応するものである。
 使用可能電力量1302は、図13に示す1日の各時間帯における、各コミュニティに対して電力閾値を超えてコミュニティ対応メガバッテリー1210から放電させることができる電力量を示している。例えば、図13の例では、1時~1時59分までのコミュニティ1200a、1200b、1200cそれぞれの使用可能電力量1302は、100MW、200MW、30MWに設定されている。つまり、例えば、コミュニティ1200aにおいて、1時~1時59分の間に使用された総使用電力が、コミュニティ1200aに対して定められた電力閾値を超えた場合には、コントロールサーバ1220は、100MWまでであればコミュニティ対応メガバッテリー1210から放電させることができることを意味している。なお、この数値は、あくまで一例であり、各コミュニティの規模に応じた値が設定される。
 コントロールサーバ1220は、図13に示す電力量テーブル1342を用いて、1時間単位で変動する使用可能な電力量に従って、図15に示す制御を実行する。
<動作>
 図15は、本実施の形態3に係るコントロールサーバ1220によるコミュニティ対応メガバッテリー1210の制御処理を示すフローチャートである。なお、コントロールサーバ1220の動作については、ここでは実施の形態1に示したアグリゲーター100の動作と同様の動作をするものとして、簡略化して記載する。なお、コントロールサーバ1220は、実施の形態1ではなく、実施の形態2に示したアグリゲーター100の動作と同様の動作をするものであってもよいのはもちろんである。
 図15に示すように、コントロールサーバ1220の使用電力量取得部1301は、各コミュニティのアグリゲーター100からそれぞれのコミュニティで使用されている総使用電力量を取得する(ステップS1502)。
 判定部1303は、各コミュニティの使用電力量が伝達されると、計時部1307から通知された時刻に基づき、総使用電力量を算出する。そして、判定部1303は、総使用電力量と、総和電力閾値とを比較し、総使用電力量が総和電力閾値を超えているか否かを判定する(ステップS1503)。
 総使用電力量が総和電力閾値を超えていない場合には(ステップS1503のNO)、処理を終了する。
 総使用電力量が総和電力閾値を超えている場合には(ステップS1503のYES)、判定部1303は、各コミュニティの使用電力量と、それぞれに設定されている電力閾値とを比較して、コミュニティの使用電力量がその電力閾値を超えているかを判定し、使用電力量が高いコミュニティを特定する(ステップS1504)。即ち、判定部1303は、各コミュニティについて、電力制御テーブル1341を参照して、コミュニティIDに対応する電力閾値を取得し、対応する使用電力量と比較する。これにより、判定部1303は、電力閾値を超えて電力を使用しているコミュニティを特定する。判定部1303は、特定したコミュニティのコミュニティIDと、総使用電力量が総和電力閾値を超えている旨とを制御部1302に伝達する。
 すると、制御部1302は、伝達されたコミュニティID1401に対応する使用可能電力量1402を、計時部1307から伝達された現在時刻と電力量テーブル1342とを用いて特定する。そして、制御部1302は、特定した使用可能電力量を上限とする放電を指示するように指示部1305に依頼し、指示部1305は、コミュニティ対応メガバッテリー1210に対して、放電を指示する(ステップS1505)。当該指示を受けて、コミュニティ対応メガバッテリー1210の制御部は、指定されている電力量を上限として、電池セルから放電された電力を配電網150に放電する。
 制御部1302は、放電を指示すると共に、総使用電力量から、コミュニティ対応メガバッテリー1210が放電した電力の総計(放電前と放電後の電力量の差分値)を減算した予測総使用電力量を算出する。そして、制御部1302の判定部1303は、予測総使用電力量が総和電力閾値を下回るかを判定する(ステップS1506)。
 予測総使用電力量が総和電力閾値を下回ると判定された場合には(ステップS1506のYES)、制御部1302は、インセンティブ処理を行って(ステップS1507)終了する。インセンティブ処理の詳細については、実施の形態1に示した図9のフローチャートに準ずるものとして説明を省略するが、図9においてマンションを対象にして算出していたのに対し、実施の形態3においてはコミュニティを対象にして算出することとなる。
 予測総使用電力量が総和電力閾値を下回っていない場合には(ステップS1506のNO)、制御部1302は、電力制御テーブル1341の電力賃貸先コミュニティIDを参照して、ステップS1504で特定されたコミュニティが電力を借りることができるコミュニティがあるか否かを判定する(ステップS1508)。
 電力を借りることができるコミュニティがある場合には(ステップS1508のYES)、制御部1302は、次に、ステップS1504で特定されたコミュニティが電力を賃貸可能なコミュニティ全てから、電力を借りたか否かを判定する(ステップS1509)。
 電力を賃貸可能なコミュニティ全てから、電力を借りていない場合には(ステップS1509のNO)、制御部1302は、まだ電力を借りていないコミュニティが使用可能な電力量分を上限とする放電指示を実行し(ステップS1510)、ステップS1506に戻る。この場合ステップS1506においては、予測総使用電力量は、総使用電力量から、ステップS1505およびステップS1510における放電で放電された電力量を減算した値になる。
 電力を借りることができるコミュニティがない場合(ステップS1508のNO)や、全コミュニティから借りた(ステップS1509のYES)は、ステップS1507に移行する。
 これにより、コントロールサーバ1220は、アグリゲーター100が制御した範囲よりも大規模な電力ピークカットを実行することができる。
 また、単位時間当たりで使用可能な電力量を定めることで、より流動的な制御を実現できる。これによって、蓄電池制御システムを使用するユーザにとって、より負担の少なく、利便性の高い蓄電池制御システムを提供することができる。
 なお、本実施の形態3では詳細は説明しないが、各コミュニティのアグリゲーター100は、それぞれのコミュニティに属する需要素群で使用される電力量に応じて、上記実施の形態1、2で説明したような、それぞれのコミュニティで共有されるメガバッテリー110の制御を実行する。

<変形例>
 上記実施の形態に従って、本発明に係る蓄電池制御システムについて説明してきたが、本発明はこれに限られるものではない。以下、本発明の思想として含まれる各種変形例について説明する。
 (1)上記実施の形態においては、メガバッテリー110が電力を供給する供給先を配電網150としているが、これはその限りではない。商用電力の事業主である電力会社130に直接渡してもよいし、あるいは、各マンション120a、120b、120cそれぞれに直接に供給することとしてもよい。配電網150や電力会社130に直接渡す場合には、見かけ上ピークカットが実現できることになり、電力会社130における契約の形態によっては電気料金を低減できる。また、メガバッテリー110から直接各マンション120a、120b、120cに電力を供給した場合には、この電力を優先的に使用することで、使用する商用電力量を低減できるので、実際にピークカットが実現でき、電気料金を低減できる。
 また、各マンションにおいては、メガバッテリー110から直接電力の供給を受ける場合には、使用する電力量について、商用電力と、メガバッテリー110からの電力とで、個別に検出するようにしてもよい。こうすることで、例えば、電気料金の算出の補助に貢献することができる。
 (2)上記実施の形態においては、メガバッテリー110を区分所有する手法として、各マンション120a、120b、120cは、メガバッテリー110内の1つの電池セル402a、402b、402cをそれぞれ所有して使用する形態を示した。しかし、各マンションが所有する電池セルの個数は1つに限定されるものではなく、複数所有してもよい。また、マンション毎で所有する電池セルの個数が異なっていてもよい。
 また、上記実施の形態においては、マンションが電池セルを所有すると記載したが、これは、所有ではなく、賃貸という形であってもよく、電池セルを使用する権利を有するという形態であってもよい。例えば、メガバッテリー110を賃貸する事業を行う事業主に対して、金銭契約により、メガバッテリー110内の電池セルを使用する権利を得ていることとしてもよい。
 (3)上記実施の形態においては、メガバッテリー110を区分所有する手法として、各マンション120a、120b、120cは、メガバッテリー110内の電池セルを所有していることとした。しかし、これは電池セルを所有という形式をとらなくてもよい。例えば、メガバッテリーにおける電力について、単位時間あたりに使用可能な電力量をマンション毎に設定しておく方式をとってもよい。この場合、電池セルを所有する場合よりも流動的な供給電力量の設定が可能になる。
 (4)上記実施の形態においては、インセンティブとして、マンションの住人が、電力を供給した側のマンションの住人に料金を支払うこととした。しかし、これは、金銭そのものである必要はなく、インセンティブとしては、電力を供給した側のマンションに対して電力を供給(借りた分の電力量を、商用電力ないしメガバッテリーの電池セルから供給)してもよいし、あるいは何らかの他の商品を購入可能なポイントや、物品、電力会社130から要求される電気料金の値下げなどといった方式をとってもよい。
 (5)上記実施の形態においては、メガバッテリー110を所有し、メガバッテリー110の電力の放電による恩恵にあずかれるものとしてマンションを例に説明したが、これはマンションである必要なく、電力が必要な施設であればどのような形態をとっていてもよい。例えば、マンションではなく、一般家庭複数で所有する形態であってもよいし、複数の工場が所有する形態であってもよいし、それらが組み合わさった形態などであってもよい。電力を必要とする施設複数でメガバッテリー110を所有する形態であればよい。
 (6)上記実施の形態においては、アグリゲーター100は、メガバッテリー110やマンション120a、120b、120cとは別個に設けるように構成した例を示した。しかし、これはその限りではなく、アグリゲーター100は、上記実施の形態で示した機能を果たすのであれば、メガバッテリー110内に設けられてもよいし、あるいは、マンション120aの共用部コントローラ122に設けられることとしてもよい。
 (7)上記実施の形態1においては、判定部103は、各マンションで使用している電力の総和が閾値を超えたか否かに応じて、上述の制御を実行することとした。そして、閾値として、高圧一括受電における電気料金の支払いにおいて、ピークとなる値を予め取得し、これよりも低く設定することとしている。これによって、ピークに達する前に、使用している電力の(見かけ上の)抑制を行って、電気料金の抑制を狙ったものであるが、ピークカットを実現できるのであれば、閾値による判定以外の手法を用いてもよい。
 例えば、使用電力量の総和のログを残しておき、これらの総和のログから、使用電力量の推移についての二次関数を算出し、それに基づき、上述のピークとなる値に一定以上近づいた場合に、即ち、使用電力量の予測演算を行ってメガバッテリー110に放電させるというような構成をとってもよい。
 (8)上記実施の形態においては、メガバッテリーの電力放電が、他のマンションの保持する電池セルからも放電させても足りない場合に、HEMSによる電力抑制制御を実行することとした。しかし、HEMSによる電力抑制制御は、結果的にピークカットが実現できるのであれば、このタイミングである必要はない。例えば、HEMSによる電力抑制制御は、マンションで使用される電力量が、そのマンションに設定されている電力閾値502を超えた時点で、先に電力抑制制御を行ってから、それでもなお、電力が足りない(ピークカットに至らない)場合に、メガバッテリー110に放電を実行させることとしてもよい。あるいは、対応する電池セルからの放電を実行させて、なお、電力が足りない場合に、HEMSによる電力抑制制御を行い、それでも、なお、電力が足りない場合に、他のマンションの電池セルの電力を借りるという形式をとってもよい。
 マンションに設置されているサブバッテリーからの放電についても同様のことが言える。
 即ち、図7、図8のフローチャートにおいて、ステップS708、S709、S710を第1放電処理、ステップS711、S712、S713、S714を第2放電処理、ステップS715、S716、S717、S718を第3放電処理とした場合、第1放電処理、第2放電処理、第3放電処理の実行順序は、順不同であってよく、例えば、第2放電処理、第3放電処理、第1放電処理の順に処理してもよいし、あるいは、第1放電処理、第3放電処理、第2放電処理といった処理順序であってもよい。
 (9)上記実施の形態においては、複数のマンションの使用電力量が、そのマンションに対して設定されている電力閾値を超えている場合について詳細には記載していないが、この場合には、マンション毎に、優先度を設定して、優先度の高いものから、図7~図9に示した処理を実行する構成とすればよい。あるいは、電力閾値を超えたマンションについて、それぞれの電池セルからの放電を行った後に、各マンションについて、優先度に従った電力の賃貸処理を行う構成とすればよい。
 (10)上記実施の形態においては、話を簡単にするために、各マンションに設けたマンション全体での電力使用量を検出するスマートメーターを設けて、アグリゲーター100が、その値を読み取って閾値との比較を行うこととした。これ以外にも以下のような構成をとってもよい。
 即ち、通常スマートメーターは、各マンションの各部屋に対して設けられることから、アグリゲーター100は、各部屋のスマートメーターの電力使用量を取得する構成としてもよい。この場合、アグリゲーター100は、各部屋のスマートメーターのID等を各マンション毎に対応付けたテーブルを保持し、各マンション毎に、それぞれのマンションに属する部屋の使用電力量を取得し、総和演算を実行して、各マンションの電力使用量を取得する。
 このような構成によっても、上記実施の形態に示した電力使用量の取得は実現できる。
 (11)上記実施の形態1においては、総和電力閾値を、各マンションに対して設定されている電力閾値の総和であるとしている。しかし、これはその限りではなく、総和電力閾値は、各マンションに対して設定されている電力閾値の総和ではなく別途に予め値が設定される構成としてもよい。
 この場合、総和電力閾値の値によっては、総和使用電力量が、総和電力閾値を超えているのに、各マンションについてそれぞれの電力閾値を超えない場合も考えられる。この場合、ステップS704においては、電力閾値を超えるマンションを特定するのではなく、使用電力量が最も高いマンションを特定し、その特定したマンションについて、ステップS705以降の処理を実行すればよい。
 (12)上記実施の形態においては、アグリゲーター100による電力制御を、各マンションの共用部コントローラから電力量の通知がくる1分単位で実行する構成としている。しかし、これは一例でしかなく、その他の時間でもよく、例えば、10分単位、あるいは、1時間単位などであってもよいし、逆に短くして30秒単位などであってもよい。当該時間の算出にあたっては、実際に蓄電池制御システムを運用してみて、適切な運用時間をシミュレートすればよい。
 (13)上記実施の形態においては、高圧一括受電方式を想定して説明しているが、本発明に係る蓄電池制御システムは、高圧一括受電方式ではなく、低圧受電方式において用いることもできる。即ち、上記実施の形態においては、電力制御テーブル201の電力閾値を、高圧一括受電方式において定められるピークよりも低い値に設定しているが、低圧受電方式の場合には、ユーザが目標とする電気料金になるように電力閾値を算出して設定することで、同様の効果を得ることができる。
 (14)上記実施の形態の図9に示すインセンティブ処理において、ステップS901~S904で計測している電力量は、ステップS905のインセンティブの算出のための計測であり、その計測の順序は、図9に示した通りである必要はなく、ステップS901~S904の処理は処理順序が入れ替わってもよいし、並列に実行されてもよい。
 (15)上記実施の形態においては、毎回インセンティブ処理を実行することになるが、インセンティブ処理については、メガバッテリー110からの放電を行った場合に、そのログを残しておき、例えば1か月単位で処理を行って、インセンティブの付与を行うこととしてもよい。
 また、上記実施の形態においては、銀行にインセンティブの支払いを依頼することとしているが、これは、アグリゲーター100にモニタ等の表示手段を備えさせ、算出したインセンティブの料金を表示することに留めてもよい。この場合には、インセンティブに係る料金は、例えば、マンションの住人間での手渡しで行うといった支払手法を選択することもできる。
 (16)上記実施の形態においては、メガバッテリー110の充電部114は、配電網150から電力の供給を受けて、電池セルの充電を実行することとした。しかし、充電部114は、配電網150から電力の供給を受けるのではなく、メガバッテリー110自身が備える、あるいは、メガバッテリー110に接続されている発電装置から電力の供給を受けて電池セルの充電を行うこととしてもよい。例えば、メガバッテリー110は、ソーラーパネルを備え、当該ソーラーパネルを用いて生成される電力で、電池セルの充電を実行することとしてもよい。
 (17)上記実施の形態1においては、記載していないが、以下のようにインセンティブを発生させてもよい。
 上記実施の形態1によれば、複数のマンションで高圧一括受電方式による電力の供給を受けている場合、複数のマンション全体では、使用している電力が平均化されると言える。つまり、マンション単体で高圧一括受電方式による電力の供給を受けている場合では、電力のピークが発生すると認識される電力使用量であっても、複数のマンションで高圧一括受電方式による電力の供給を受けている場合には、ピークが発生していないと認識される場合がある。
 例えば、マンション120aでは、朝と夜の2回ピークが訪れるのに対し、マンション120bでは、昼に1回ピークが訪れるとする。それぞれ、マンション単体でみた場合には、マンション120aでは、2回ピークが訪れたことによる電力料金の割り増しが、マンション120bでは、1回ピークが訪れたことによる電力料金の割り増しが発生する。これに対し、複数のマンションで高圧一括受電方式による電力の供給を受けることで、ピークを検出する閾値が高くなることが見込めることから、マンション120a、120b双方においてはピークが発生していないと認識される。これは、別の見方をすれば、朝、夜においては、マンション120bが電力を使用していない分、マンション120aが余分にマンション120bから電力を借りているともとれる。昼においては、この逆である。
 そこで、アグリゲーター100の制御部102は、図7、図8に示したフローにおいて、ステップS703において総使用電力量が総和電力閾値を超えていないと判定された場合に(ステップS703のNO)、更に、各マンションについて、それぞれの電力閾値502を超えているか否かを検出することとする。そして、制御部102は、電力閾値502を超えたマンションがあった場合に、その超えた電力量を算出し、超えた分の電力量を他のマンションから借りたものと見なし、その電力量に応じたインセンティブを、電力閾値502を超えたマンションから超えていないマンションに支払うインセンティブ処理を実行することとしてもよい。具体的には、例えば、電力閾値502を超えた使用電力量を、電力閾値を超えていないマンションの個数で、その超えた電力量を除算し、除算して得られた電力量に相当する料金(インセンティブ)を、電力閾値502を超えているマンションから超えていないマンションに対して支払うインセンティブ処理を実行することとしてもよい。なお、このとき、除算により算出された電力量をマンションで使用している電力使用量に加算して、当該マンションに設定されている電力閾値502を超えてしまう場合には、電力閾値502から使用電力量を減算した電力量分のインセンティブを当該マンションは受け取ることとしてもよい。
 また、本変形例(17)に示すインセンティブ処理は、総使用電力量が総和電力閾値を超えている場合(ステップS703のYES)であっても同様にインセンティブの支払いを発生させる構成としてよい。
 (18)上記実施の形態においては、電力制御テーブル201について、予め記憶部104に記憶していることとしている。これらのデータはアグリゲーター100のオペレータにより入力されることとしてもよいし、各マンションの共用部コントローラが電力閾値や、サブバッテリーの有無、HEMS導入の有無等に関する情報を保持ししている場合に、アグリゲーター100が自動的に取得して、電力制御テーブル201を作成することとしてもよい。
 (19)上記実施の形態1~3において、メガバッテリー110、サブバッテリー303、コミュニティ対応メガバッテリー1210それぞれの容量の詳細については記載していないが、これらバッテリーは、運用上必要となる最低限の容量さえあればよい。つまり、例えば、メガバッテリー110は、上記実施の形態1の場合であれば、マンション120a、120b、120cそれぞれが契約上保有する容量分だけあればよい。例えば、単位時間当たりで、マンション120aが120kW、120bが80kW、120cが200kWを使用可能であるとなっている場合には、バッテリーはその単位時間で、400kW放電できるだけの容量があればよい。即ち、上記実施の形態においては、メガバッテリーという呼称を用いているが、これは単なる故障であり、ここでのメガは単位を表すものではないことに留意されたい。
 これは、実施の形態3のコミュニティ対応メガバッテリー1210についても同様であり、コミュニティ対応メガバッテリー1210は、各コミュニティが契約上使用可能となるワット数の総計分だけの容量があればよい。
 (20)上記実施の形態3においては、各コミュニティがコミュニティ対応メガバッテリー1210の電力を使用できる量を時間毎に定め、コントロールサーバ1220が時間に応じた制御を実行する例を示している。
 しかし、時間毎に定めるのは、コミュニティ対応メガバッテリー1210の電力の使用量に限るものではなく、使用可能電力量と同様に、各コミュニティの電力閾値を時間帯毎に定めることとしてもよい。
 (21)上記実施の形態3においては、サブバッテリーやHEMSは考慮しないこととしたが、コミュニティに属する電力を必要とする需要素が、サブバッテリーやHEMSを備えているような場合には、実施の形態1、2と同様に、これらを用いた電力のピークカットを行うこととしてもよい。
 (22)上記実施の形態3においては、各コミュニティが使用可能なコミュニティ対応メガバッテリー1210の電力量を1時間単位で制御する例を示したが、この単位時間は、時間毎に使用可能な電力量を変動させることができる単位であればよく、1時間単位でなくともよい。例えば、30分単位であってもよいし、2時間単位などであってもよい。
 (23)上記実施の形態および各変形例に示した構成を適宜組み合わせることとしてもよい。
 (24)上述の実施形態で示したアグリゲーターによるメガバッテリーの制御に係る動作、制御処理(図7、図8、図10、図11、図15参照)やインセンティブ処理(図9参照)をアグリゲーター等のプロセッサ、及びそのプロセッサに接続された各種回路に実行させるためのプログラムコードからなる制御プログラムを、記録媒体に記録すること、又は各種通信路等を介して流通させ頒布させることもできる。このような記録媒体には、ICカード、ハードディスク、光ディスク、フレキシブルディスク、ROM等がある。流通、頒布された制御プログラムはプロセッサに読み出され得るメモリ等に格納されることにより利用に供され、そのプロセッサがその制御プログラムを実行することにより、実施形態で示したような各種機能が実現されるようになる。
 (25)上記実施の形態で示した各機能構成要素は、その機能を実行する回路として実現されてもよいし、1又は複数のプロセッサによりプログラムを実行することで実現されてもよい。また、上記実施の形態のオーディオ処理装置は、IC(Integrated Circuit)、LSI(Large Scale Integration)その他の集積回路のパッケージとして構成されるものとしてもよい。このパッケージは各種装置に組み込まれて利用に供され、これにより各種装置は、各実施形態で示したような各機能を実現するようになる。
 なお、各機能ブロックは典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
<補足>
 ここで、本実施の形態に係る蓄電池制御方法、蓄電池制御システムの一実施形態と、その効果について説明する。
 (a)本発明に係る蓄電池制御方法は電力を必要とする複数の需要素(マンション120a、120b、120c、コミュニティ1200a、1200b、1200c)向けに準備された蓄電池(メガバッテリー110、コミュニティ対応メガバッテリー1210)を制御する制御装置による蓄電池制御方法であって、各需要素で単位時間当たりに使用される電力量を検出する検出ステップ(使用電力量取得部101、ステップS702、ステップS1502)と、前記複数の需要素のうち、1以上の需要素で使用される電力量が予め定められた閾値を超えるか否かを判定する判定ステップ(判定部103、ステップS703、ステップS1003、ステップS1503)と、前記判定ステップにおいて、前記1以上の需要素で使用される電力量が予め定められた閾値を超えていると判定された場合に、前記蓄電池に、前記1以上の需要素が属する配電網に電力を供給させる供給ステップ(制御部102、放電部113、ステップS705、ステップS1005、ステップS1505)とを含むことを特徴としている。
 ここで、需要素とは、電力を必要とする施設であればどのようなものであってもよく、マンションやアパート、工場、一般家屋、あるいは、電力を必要とする要素の集合体であるコミュニティなど様々なものが該当する。
 また、需要素が属する配電網に電力を供給するとは、上記実施の形態で言えば、配電網150への電力の放電が該当するが、需要素に直接電力を供給する場合も含むこととする。
 この構成によれば、需要素で使用されている電力量がある閾値を超えている場合に、蓄電池から、電力を需要素が属している配電網に放電することで、使用している商用電力と蓄電池からの電力の放電による電力のトレードを行うことで、電気料金の低減を見込める。特に、高圧一括受電方式のように、電力のピークが訪れた回数に応じて電気料金の割り増しが発生する方式の場合に、大きな電気料金の低減効果が見込める。
 (b)上記(a)に係る蓄電池制御方法において、前記閾値は、前記複数の需要素で使用される電力量の総量に対して設けられた統合閾値(実施の形態1の総和電力閾値や、<変形例>の(11)に示す閾値)であり、前記判定ステップは、前記複数の需要素で使用される電力量の総量が前記統合閾値を超えるか否かを判定することとしてもよい。
 この構成によれば、複数の需要素で使用されている使用電力量の総和に対して、蓄電池からの放電が行われることになり、複数の集合住宅を一纏まりとして高圧一括受電方式で電力の供給を受ける場合に効果的な電気料金の低減を見込める。
 (c)上記(b)に係る蓄電池制御方法において、前記複数の需要素それぞれは、前記蓄電池の単位時間当たりに使用可能な電力量(実施の形態1のメガバッテリー110でマンションが所有している電池セルの容量や、<変形例>(2)、(3)参照)が定められており、前記判定ステップは、前記総量が前記一閾値を超えていると判定した場合に、更に、各需要素で使用される電力量が、それぞれの需要素に対して設定された個別閾値(電力閾値502)を超えるか否かを判定し、前記供給ステップは、使用している電力量が設定されている個別閾値を超えていると判定された需要素に対して設定されている前記使用可能な使用量で示される範囲内の電力を前記配電網に供給することとしてもよい。
 この構成によって、複数の需要素のうち、個別閾値を超えて電力を使用している需要素、即ち、通常よりも多くの電力を使用している需要素を特定し、その需要素に対して設定されている蓄電池の使用可能な電力量を用いて、使用している電力の(みかけ上の)低減を行うことで、電気料金の低減を見込める。
 (d)上記(c)に係る蓄電池制御方法において、前記判定ステップは、更に、前記蓄電池から電力を供給された需要素が使用している電力量から前記蓄電池から供給された電力量を減算した値がなお、当該需要素に対して設定された個別閾値を超えるか否かを判定し、前記供給ステップは、前記蓄電池から電力を供給された後であって、前記蓄電池から電力を供給された需要素が使用している電力量から前記蓄電池から供給された電力量を減算した値がなお、当該需要素に対して設定された個別閾値を超えると判定された場合に、他の需要素に対して定められている使用可能な電力量から、前記配電網に電力を供給することとしてもよい。
 この構成によれば、電力を多く使用している需要素が使用可能な電力量から放電を行っても、目標値(個別閾値)以下にできない場合に、他の需要素から電力を借りることで、使用している電力の(見かけ上の)低減を行うことで、電気料金の低減を見込める。
 (e)上記(b)に係る蓄電池制御方法において、前記蓄電池制御方法は、更に、前記供給ステップが、電力閾値を超えている需要素のために、前記他の需要素に対して定められている使用可能な電気量から電力を供給した場合に、前記需要素から前記他の需要素に対してインセンティブを支払う支払ステップを含むこととしてもよい。
 この構成によれば、他の需要素は、インセンティブを受けることができるというメリットがあり、需要素間で、不満なく電力の貸し借りを実行できるようになる。
 (f)上記(b)に係る蓄電池制御方法において、前記複数の需要素の少なくとも一つは、当該需要素に対して設けられた小型蓄電池(サブバッテリー123)を備え、前記蓄電池から電力を供給された後に、前記総量から、前記蓄電池から供給された電力量を減算した値がなお、前記統合閾値を超えると判定された場合であって、使用している電力量が設定されている個別閾値を超えると判定された需要素が前記小型蓄電池を備えているときに、当該小型蓄電池からの放電を指示する制御ステップを更に含むこととしてもよい。
 この構成によれば、需要素が電力を多く使用しており、蓄電池で所有している区分からの放電を行っても統合閾値を下回らない場合に、小型蓄電池から放電を行うことで、その足りない分を補うことができる。従って、その場合に、電気料金の低減を見込める。
 (g)上記(b)に係る蓄電池制御方法において、前記複数の需要素の少なくとも一つは、当該需要素において使用される電気機器の制御を実行するHEMS(Home Energy Management System)を備え、前記蓄電池から電力を供給された後に、前記総量から、前記大容量電池から供給された電力量を減算した値がなお、前記統合閾値を超えると判定された場合であって、使用している電力量が設定されている個別閾値を超えると判定された需要素が前記HEMSを備えているときに、当該HEMSに対して電気機器で使用されている電力を抑制する制御を指示する制御ステップを更に含むこととしてもよい。
 この構成によれば、需要素が電力を多く使用しており、蓄電池で所有している区分からの放電を行っても統合閾値を下回らない場合に、HEMSによる電力抑制制御を行うことで、その足りない分を補うことができる。従って、その場合に、電気料金の低減を見込める。
 (h)上記(a)に係る蓄電池制御方法において、前記閾値は、前記複数の需要素各々で使用される電力量に対して個別に設けられた個別閾値(電力閾値502)であり、前記判定ステップは、前記複数の需要素でそれぞれについて、使用されている電力量が、各需要素に対して設定されている前記個別閾値を超えるか否かを判定することとしてもよい。
 この構成によれば、集合住宅複数で蓄電池を共有していて、各集合住宅が個別に高圧一括受電方式での電力の供給を受けている場合に、電気料金の低減が見込める。
 (i)上記(a)に係る蓄電池制御方法において、前記蓄電池制御方法は、更に、前記検出ステップが前記検出を行った時の時刻を取得する計時ステップと、前記計時ステップにより計時された時刻が対応する単位時間で前記蓄電池に放電させることができる電力量を取得する電力量取得ステップを含み、前記供給ステップは、前記電力量取得ステップにおいて取得された電力量を上限として前記蓄電池から前記配電網に電力を供給させることとしてもよい。
 この構成によれば、蓄電池の電池セル単位ではなく、時間単位で複数の需要素間での蓄電池の区分所有を実現でき、流動性の高い蓄電池制御方法を提供することができる。
 本発明に係る蓄電池制御システムは、複数世帯で蓄電池を共有する場合の一使用形態として、電力供給に貢献するアグリゲーターとして活用することができる。
100 アグリゲーター
101 使用電力取得部
102 制御部
103 判定部
104 記憶部
105 指示部
106 電力取得部
110 メガバッテリー
111 制御部
112 二次電池
113 放電部
114 充電部
120a、120b、120c マンション
121 スマートメーター群
122 共用部コントローラ
123 サブバッテリー
124 HEMS
130 電力会社
140 銀行
150 配電網
160 通信網
201 電力制御テーブル
202 残余電力テーブル
402a、402b、402c 電池セル

Claims (15)

  1.  電力を必要とする複数の需要素向けに準備された蓄電池を制御する制御装置による蓄電池制御方法であって、
     各需要素で単位時間当たりに使用される電力量を検出する検出ステップと、
     前記複数の需要素のうち、1以上の需要素で使用される電力量が予め定められた閾値を超えるか否かを判定する判定ステップと、
     前記判定ステップにおいて、前記1以上の需要素で使用される電力量が予め定められた閾値を超えていると判定された場合に、前記蓄電池に、前記1以上の需要素が属する配電網に電力を供給させる供給ステップとを含む
     ことを特徴とする蓄電池制御方法。
  2.  前記閾値は、前記複数の需要素で使用される電力量の総量に対して設けられた統合閾値であり、
     前記判定ステップは、前記複数の需要素で使用される電力量の総量が前記統合閾値を超えるか否かを判定する
     ことを特徴とする請求項1記載の蓄電池制御方法。
  3.  前記複数の需要素それぞれは、前記蓄電池の単位時間当たりに使用可能な電力量が定められており、
     前記判定ステップは、前記総量が前記一閾値を超えていると判定した場合に、更に、各需要素で使用される電力量が、それぞれの需要素に対して設定された個別閾値を超えるか否かを判定し、
     前記供給ステップは、使用している電力量が設定されている個別閾値を超えていると判定された需要素に対して設定されている前記使用可能な使用量で示される範囲内から電力を前記配電網に供給させる
     ことを特徴とする請求項2記載の蓄電池制御方法。
  4.  前記判定ステップは、更に、前記総量から、前記電池から供給された電力量を減算した値がなお、前記統合閾値を超えるか否かを判定し、
     前記供給ステップは、前記蓄電池から電力を供給された後であって、前記総量から、前記蓄電池から供給された電力量を減算した値がなお、前記統合閾値を超えると判定された場合に、他の需要素に対して定められている使用可能な電力量から、前記配電網に電力を供給する
     ことを特徴とする請求項3記載の蓄電池制御方法。
  5.  前記蓄電池制御方法は、更に、
     前記供給ステップが、電力閾値を超えている需要素のために、前記他の需要素に対して定められている使用可能な電気量から電力を供給した場合に、前記需要素から前記他の需要素に対してインセンティブを支払う支払ステップを含む
     ことを特徴とする請求項4記載の蓄電池制御方法。
  6.  前記複数の需要素の少なくとも一つは、当該需要素に対して設けられた小型蓄電池を備え、
     前記蓄電池から電力を供給された後に、前記総量から、前記蓄電池から供給された電力量を減算した値がなお、前記統合閾値を超えると判定された場合であって、使用している電力量が設定されている個別閾値を超えると判定された需要素が前記小型蓄電池を備えているときに、当該小型蓄電池からの放電を指示する制御ステップを更に含む
     ことを特徴とする請求項3記載の蓄電池制御方法。
  7.  前記複数の需要素の少なくとも一つは、当該需要素において使用される電気機器の制御を実行するHEMS(Home Energy Management System)を備え、
     前記蓄電池から電力を供給された後に、前記総量から、前記蓄電池から供給された電力量を減算した値がなお、前記統合閾値を超えると判定された場合であって、使用している電力量が設定されている個別閾値を超えると判定された需要素が前記HEMSを備えているときに、当該HEMSに対して電気機器で使用されている電力を抑制する制御を指示する制御ステップを更に含む
     ことを特徴とする請求項3記載の蓄電池制御方法。
  8.  前記閾値は、前記複数の需要素各々で使用される電力量に対して個別に設けられた個別閾値であり、
     前記判定ステップは、前記複数の需要素でそれぞれについて、使用されている電力量が、各需要素に対して設定されている前記個別閾値を超えるか否かを判定する
     ことを特徴とする請求項1記載の蓄電池制御方法。
  9.  前記複数の需要素それぞれは、前記蓄電池の単位時間当たりに使用可能な電力量が定められており、
     前記供給ステップは、使用している電力量が設定されている個別閾値を超えていると判定された需要素に対して設定されている前記使用可能な使用量で示される範囲内から電力を前記配電網に供給する
     ことを特徴とする請求項8記載の蓄電池制御方法。
  10.  前記判定ステップは、更に、使用している電力量が設定されている個別閾値を超えていると判定された需要素が使用している電力量から、前記蓄電池から放電された電力量を減算した値がなお、当該個別閾値を超える否かを判定し、
     前記供給ステップは、前記蓄電池から電力を供給された後であって、使用している電力量が設定されている個別閾値を超えていると判定された需要素が使用している電力量から、前記蓄電池から放電された電力量を減算した値がなお、当該個別閾値を超えると判定された場合に、他の需要素に対して定められている使用可能な電力量から、前記配電網に電力を供給する
     ことを特徴とする請求項9記載の蓄電池制御方法。
  11.  前記蓄電池制御方法は、更に、
     前記供給ステップが、個別閾値を超えている需要素のために、前記他の需要素に対して定められている使用量から電力を供給した場合に、前記需要素から前記他の需要素に対してインセンティブを支払う支払ステップを含む
     ことを特徴とする請求項10記載の蓄電池制御方法。
  12.  前記複数の需要素の少なくとも一つは、当該需要素に対して設けられた小型蓄電池を備え、
     前記蓄電池から電力を供給された後に、前記蓄電池から電力を供給された需要素が使用している電力量から前記蓄電池から供給された電力量を減算した値がなお、当該需要素に対して設定された個別閾値を超えると判定された場合であって、当該需要素が前記小型蓄電池を備えているときに、当該小型蓄電池からの放電を指示する制御ステップを更に含む
     ことを特徴とする請求項8記載の蓄電池制御方法。
  13.  前記複数の需要素の少なくとも一つは、当該需要素において使用される家電機器の制御を実行するHEMS(Home Energy Management System)を備え、
     前記蓄電池から電力を供給された後に、前記蓄電池から電力を供給された需要素が使用している電力量から前記蓄電池から供給された電力量を減算した値がなお、当該需要素に対して設定された個別閾値を超えると判定された場合であって、当該需要素が前記HEMSを備えているときに、当該HEMSに対して家電機器で使用されている電力を抑制する制御を指示する制御ステップを更に含む
     ことを特徴とする請求項8記載の蓄電池制御方法。
  14.  前記蓄電池制御方法は、更に、
     前記検出ステップが前記検出を行った時の時刻を取得する計時ステップと、
     前記計時ステップにより計時された時刻が対応する単位時間で前記蓄電池に放電させることができる電力量を取得する電力量取得ステップを含み、
     前記供給ステップは、前記電力量取得ステップにおいて取得された電力量を上限として前記蓄電池から前記配電網に電力を供給させる
     ことを特徴とする請求項1記載の蓄電池制御方法。
  15.  電力を必要とする複数の需要素向けに準備された蓄電池を制御する蓄電池制御システムであって、
     各需要素で単位時間当たりに使用される電力量を検出する検出手段と、
     前記複数の需要素のうち、1以上の需要素で使用される電力量が予め定められた閾値を超えるか否かを判定する判定手段と、
     前記判定手段により、前記1以上の需要素で使用される電力量が予め定められた閾値を超えていると判定された場合に、前記蓄電池から、前記1以上の需要素が属する配電網に電力を供給させる供給手段とを備える
     ことを特徴とする蓄電池制御システム。
PCT/JP2013/006934 2012-11-26 2013-11-26 蓄電池制御方法および蓄電池制御システム WO2014080641A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/374,662 US20150039495A1 (en) 2012-11-26 2013-11-26 Storage battery control method and storage battery control system
JP2014548467A JP5834227B2 (ja) 2012-11-26 2013-11-26 蓄電池制御方法および蓄電池制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012257936 2012-11-26
JP2012-257936 2012-11-26

Publications (1)

Publication Number Publication Date
WO2014080641A1 true WO2014080641A1 (ja) 2014-05-30

Family

ID=50775836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006934 WO2014080641A1 (ja) 2012-11-26 2013-11-26 蓄電池制御方法および蓄電池制御システム

Country Status (3)

Country Link
US (1) US20150039495A1 (ja)
JP (1) JP5834227B2 (ja)
WO (1) WO2014080641A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046829A (ja) * 2014-08-19 2016-04-04 株式会社デンソー 電力供給システム
WO2016063948A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063946A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
JP2018019482A (ja) * 2016-07-26 2018-02-01 株式会社グローバルエンジニアリング 電力制御システム、電力制御方法及び電力制御装置
JP2020005351A (ja) * 2018-06-26 2020-01-09 大和ハウス工業株式会社 電力供給システム
JP2022003850A (ja) * 2020-06-23 2022-01-11 三菱電機株式会社 制御装置、制御方法及び制御プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985813B2 (ja) * 2017-05-08 2021-12-22 株式会社日立製作所 蓄電池運用装置及び蓄電池運用方法
JP6945723B2 (ja) * 2018-03-19 2021-10-06 本田技研工業株式会社 電力融通装置、プログラム及び電力融通方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333751A (ja) * 2004-05-20 2005-12-02 Tokyo Electric Power Co Inc:The 電力供給システム及び電力供給方法
JP2006288014A (ja) * 2005-03-31 2006-10-19 Tokyo Electric Power Co Inc:The エネルギー供給システム、および供給制御システム
WO2008047400A1 (en) * 2006-10-16 2008-04-24 Vpec, Inc. Electric power system
WO2011065498A1 (ja) * 2009-11-30 2011-06-03 京セラ株式会社 制御システム、補正装置、及び電力制御方法
JP2012095424A (ja) * 2010-10-26 2012-05-17 Panasonic Corp 電力管理システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502460B1 (de) * 2004-02-19 2009-01-15 Siemens Ag Oesterreich Einrichtung zur spitzenlast-abdeckung
AU2008251352A1 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
JP5520574B2 (ja) * 2009-11-06 2014-06-11 パナソニック株式会社 電力融通システム
US20110153100A1 (en) * 2009-12-22 2011-06-23 General Electric Company Demand response appliance power consumption feedback
US8671876B2 (en) * 2010-03-05 2014-03-18 Thierica Equipment Corporation System and method for managing energy usage in a manufacturing facility
JP5587641B2 (ja) * 2010-03-10 2014-09-10 パナソニック株式会社 電力供給システム
JP5073033B2 (ja) * 2010-09-28 2012-11-14 株式会社東芝 グリーン電力需要管理装置
US20120206274A1 (en) * 2011-02-11 2012-08-16 General Electric Company System for sending utility meter alerts
JP5569643B2 (ja) * 2011-09-15 2014-08-13 日本電気株式会社 二次電池システム及びその充放電方法
US8849715B2 (en) * 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333751A (ja) * 2004-05-20 2005-12-02 Tokyo Electric Power Co Inc:The 電力供給システム及び電力供給方法
JP2006288014A (ja) * 2005-03-31 2006-10-19 Tokyo Electric Power Co Inc:The エネルギー供給システム、および供給制御システム
WO2008047400A1 (en) * 2006-10-16 2008-04-24 Vpec, Inc. Electric power system
WO2011065498A1 (ja) * 2009-11-30 2011-06-03 京セラ株式会社 制御システム、補正装置、及び電力制御方法
JP2012095424A (ja) * 2010-10-26 2012-05-17 Panasonic Corp 電力管理システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046829A (ja) * 2014-08-19 2016-04-04 株式会社デンソー 電力供給システム
WO2016063948A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
WO2016063946A1 (ja) * 2014-10-23 2016-04-28 日本電気株式会社 分散蓄電システム、電力制御方法、及びプログラム
JP2018019482A (ja) * 2016-07-26 2018-02-01 株式会社グローバルエンジニアリング 電力制御システム、電力制御方法及び電力制御装置
JP2020005351A (ja) * 2018-06-26 2020-01-09 大和ハウス工業株式会社 電力供給システム
JP7090488B2 (ja) 2018-06-26 2022-06-24 大和ハウス工業株式会社 電力供給システム
JP2022003850A (ja) * 2020-06-23 2022-01-11 三菱電機株式会社 制御装置、制御方法及び制御プログラム

Also Published As

Publication number Publication date
US20150039495A1 (en) 2015-02-05
JP5834227B2 (ja) 2015-12-16
JPWO2014080641A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5834227B2 (ja) 蓄電池制御方法および蓄電池制御システム
US11989069B2 (en) Power distribution management based on distributed networking protocol analytics
JP7460701B2 (ja) 電力供給システムおよび電力供給方法
Sundstrom et al. Flexible charging optimization for electric vehicles considering distribution grid constraints
JP6703447B2 (ja) 電力データ管理システム、需要家集合体及び電力融通街区
US20160164313A1 (en) Power supply and demand adjustment system and power supply and demand adjustment method
JP6133447B2 (ja) 電力融通管理システムおよび電力融通管理方法
JP6218703B2 (ja) 蓄電池共用システム
KR101463391B1 (ko) 수용가 전력 사용 요금 최소화를 위한 에너지 관리 방법 및 그 시스템
JP6653177B2 (ja) 電力デマンドレスポンス管理装置、電力デマンドレスポンス管理方法および電力デマンドレスポンス管理システムならびに電力需要管理装置。
JP2016156532A (ja) 給電計画装置、給電計画方法、およびプログラム
JP2016018504A (ja) 蓄電池管理装置及びその方法
JP6316715B2 (ja) 電力需要管理装置および電力需要管理方法
JP7205421B2 (ja) 電力供給システム及び、電気料金の管理方法
JP7259558B2 (ja) 電力供給システム及び、電力管理方法
JP2014096867A (ja) スマートコミュニティシステム
JP2020018091A (ja) 充電システム、充電方法および電力管理装置
Raths et al. Market potential analysis for the provision of balancing reserve with a fleet of electric vehicles
JP7065291B2 (ja) 電力制御方法、プログラム、電力制御システム、及び電力管理システム
KR101364242B1 (ko) 직접부하제어 시스템 및 이를 이용한 직접부하제어량 배분 방법
CN110210848A (zh) 基于区块链的储能***计费平台及计费方法
KR102526109B1 (ko) Ess 장치를 이용하여 절감되는 전력 요금을 공유하는 방법
KR102427848B1 (ko) 이동형 ess를 이용한 충전 종별 요금제 자동 과금 처리 방법, 장치 및 시스템
JP7162819B2 (ja) 電力制御装置、電力制御システム及び電力制御方法
KR20200057320A (ko) 배터리 열화요금를 고려한 다중 전력 요금환경에서의 에너지 운영 시스템과 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548467

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14374662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857110

Country of ref document: EP

Kind code of ref document: A1