WO2014079177A1 - 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法 - Google Patents

用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法 Download PDF

Info

Publication number
WO2014079177A1
WO2014079177A1 PCT/CN2013/072585 CN2013072585W WO2014079177A1 WO 2014079177 A1 WO2014079177 A1 WO 2014079177A1 CN 2013072585 W CN2013072585 W CN 2013072585W WO 2014079177 A1 WO2014079177 A1 WO 2014079177A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
secondary battery
coating
separator
ion secondary
Prior art date
Application number
PCT/CN2013/072585
Other languages
English (en)
French (fr)
Inventor
邱钧锋
王松钊
蔡朝辉
吴耀根
廖凯明
Original Assignee
佛山市金辉高科光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市金辉高科光电材料有限公司 filed Critical 佛山市金辉高科光电材料有限公司
Publication of WO2014079177A1 publication Critical patent/WO2014079177A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a coating composition for a lithium ion secondary battery separator, and to a method for producing a lithium ion secondary battery separator using the coating composition.
  • Lithium ion secondary batteries are widely used because of their long life and high energy density.
  • the separator is an important part of a lithium-ion battery and acts to isolate the positive and negative electrodes and ion conduction.
  • Most of the membrane materials currently used on the market are polyolefin materials, mainly including polymethylene and polypropylene.
  • the diaphragm's Shut-down temperature is relatively low.
  • the microporous structure inside the diaphragm rises rapidly with temperature. It is destroyed and melted closed, blocking the current in time.
  • the inadequacy is that the Melt-down temperature is also low.
  • the melting point exceeds the melting point of about 15 °C, and the separator is thermally ruptured, causing the internal structure of the battery to collapse and causing an explosion.
  • the separator made of polypropylene has a high melting point of raw materials, usually above 160 °C, and has good high temperature breaking ability, but its current closing temperature is also relatively high, which is also not conducive to improving battery safety. performance. Therefore, the development direction of lithium battery enamel film is now three-layer composite film (PP/PE/PP).
  • PP/PE/PP three-layer composite film
  • the middle layer of PE melts and shrinks at 130 °C, causing thermal shutdown, but due to external PP With a melting temperature of 160 °C, the diaphragm also maintains a certain level of safety. But the three-layer diaphragm does not completely solve the hidden danger of melting and shrinking. As the temperature continues to rise, the PP film will still melt, causing a short circuit inside the battery.
  • Cia 1 01471432 discloses a composite film comprising a PET film as a substrate and a surface coated with a heat resistant organic polymer material for the purpose of providing a high temperature resistant and high rate battery requirement.
  • the diaphragm Although the PET base film has good heat resistance and its melting point is 256-265 ° C, the low closed cell temperature which should be provided as a lithium ion secondary battery separator is neglected based on the safety consideration of the lithium ion secondary battery. Therefore, it is difficult to think that such a diaphragm has reliable safety performance.
  • a first object of the present invention is to overcome the above problems and to provide a coating composition for a lithium ion secondary battery separator, the secondary battery separator prepared by using the coating composition, which has low closed cell temperature High membrane rupture temperature, low thermal shrinkage, high heat-resistant coating and substrate adhesion, and good surface wetting properties of heat-resistant coatings. It is more excellent as a separator for lithium ion secondary batteries. Comprehensive performance and reliable safety.
  • a second object of the present invention is to provide a lithium ion secondary battery separator Method of making.
  • a coating composition for a lithium ion secondary battery separator comprising a heat resistant resin and inorganic non-conductive insulating particles, characterized in that: the molecular chain of the heat resistant resin comprises a lipophilic structural unit, and a hydrophilic a structural unit and a functional group structural unit having a thermal decomposition temperature greater than
  • the weight ratio of the oleophilic structural unit, the hydrophilic structural unit and the functional group structural unit is from 1 0 to 90 : 80 to 9 : 1 0 to 1.
  • the lipophilic structural unit, the hydrophilic structural unit, and the functional group structural unit contained in the heat resistant resin molecular chain are respectively converted from an oleophilic monomer, a hydrophilic monomer, and a functional group monomer.
  • the oleophilic monomer is an acrylate having an atomic number of 4 to 20 and a glass transition temperature Tg of from -70 ° C to 1 20 ° C.
  • it may be exemplified by one monomer or a mixture of two or more monomers: methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, isooctyl acrylate, acrylic acid - ⁇ -hydroxyethyl ester, acrylic acid - ⁇ -hydroxypropyl ester, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, hexyl methacrylate, methacrylic acid _ ⁇ - Hydroxyethyl ester, ⁇ -hydroxypropyl methacrylate, vinyl acetate or acrylonitrile, etc., but the
  • the hydrophilic monomer is an acrylic derivative having not more than 8 carbon atoms, which contains at least one hydrophilic group of a gas group, a hydroxyl group or an amide group.
  • it can be exemplified by at least one compound selected from the group consisting of sodium acrylate, lithium acrylate, propyl amide, 2-acrylamide 2 - methyl propane sulfonic acid, hydrazine - isopropyl acrylamide, hydrazine, hydrazine - diethyl Base-2-acrylamide, hydrazine, hydrazine-dimethyl acrylamide, hydrazine-methacrylamide, hydrazine-ethyl acrylamide or hydrazine-hydroxymethyl propyl Enamide and the like.
  • the functional group monomer is an acrylic derivative imparting a reaction property to the adhesive, which contains one or several active functional groups of an acid anhydride, an epoxy group, a hydroxyl group, an amino group or an amide group.
  • active functional groups of an acid anhydride, an epoxy group, a hydroxyl group, an amino group or an amide group include one or more of the following compounds: methacrylic acid, acrylic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, N-butoxymethyl acrylamide, dimethylaminoethyl methyl Acrylate, diaminoethyl methacrylate, methacrylamide, glycidyl methacrylate, etc., but are not limiting.
  • the weight ratio of the oleophilic monomer, the hydrophilic monomer and the functional group monomer is 10 to 90: 80 ⁇ 9: 10 - L, and is only limited to the ratio range and synthesized
  • the heat resistant resin can satisfy the requirements of the present invention.
  • the lipophilic unit, the hydrophilic unit, and the functional group unit have different roles in the heat resistant resin, but a synergistic effect can be produced.
  • the lipophilic unit enhances the interfacial interaction between the heat resistant coating and the non-polar polyolefin substrate while imparting good processing flexibility to the heat resistant coating;
  • the hydrophilic unit increases the interaction between the hydrophilic fillers in the heat resistant coating, ie Improve the cohesion of the heat-resistant coating;
  • the functional monomer can further chemically crosslink, improve the adhesion, cohesion, heat resistance, solvent resistance and electrochemical stability of the heat-resistant coating.
  • the proportion of the lipophilic unit in the polymer molecular chain may be appropriately increased, and more preferably the lipophilic monomer accounts for the lipophilic monomer, the hydrophilic monomer, and 50-80% of the total weight of the functional group monomer, the proportion of the hydrophilic monomer can be appropriately adjusted to account for 20-50% of the total weight of the lipophilic monomer, the hydrophilic monomer and the functional monomer; Strong polarity and further chemical cross-linking, although the cohesive force of the heat-resistant coating can be further improved, the crosslinking effect causes the coating to become hard and brittle, which is not conducive to processing, so the proportion of functional group monomers is generally Lipophilic monomer, hydrophilic single The total weight of the monomer and the functional group monomer is 10% or less, and more preferably 5% or less.
  • the inorganic non-conductive insulating particles have the following performance parameters: heat resistance greater than 400 ° C, true density less than 3 g / cm 3 , Knoop hardness less than 600 kgf / mm 2 , air drying at 100 ° C 4. Oh, The water content per unit volume is less than 5 mg/cm 3 .
  • the inorganic non-conductive insulating particles have the characteristics of high temperature resistance, low density, low hardness and low water absorption.
  • the heat resistance of the inorganic non-conductive insulating particles in the present invention is more than 400 ° C, which means that it is stable at least at 400 ° C, and no quality change occurs, and there is no particular limitation on the test method.
  • the thermogravimetric analysis method can be used to measure the relationship between the mass of the inorganic non-conductive insulating particles and the temperature change, and the temperature is raised to 400 ° C or higher at a heating rate of 10 ° C / min, and the inorganic non-conductive insulating particles have no quality change.
  • the upper limit of the heat resistant temperature is not particularly limited in accordance with the requirements of the present invention.
  • the true density of the inorganic non-conductive insulating particles in the present invention is less than 3 g/cm 3 , and the density of the inorganic non-conductive insulating particles is particularly limited, mainly considering the specific gravity of the coating layer and the composite separator, and more specifically considering The problem of the energy density of the coating and the composite separator produced by applying the present invention in a lithium ion secondary battery.
  • alumina is widely used, and the true density of alumina is 3.9 g/cm 3 , that is, the density of the inorganic non-conductive insulating particles in the present invention is reduced by 20% or more. It can be theoretically estimated that the application of the inorganic non-conductive insulating particles in the present invention can achieve the characteristics of improving the energy density of the lithium ion secondary battery.
  • the inorganic non-conductive insulating particles in the present invention have a Knoop hardness of less than 600 kgf/mm 2 , and the hardness reduction ratio exceeds 50% with respect to the alumina material used in the known heat-resistant coating film separator, and the inorganic substance used in the present invention Material reduces heat resistant coating due to low hardness Wear in the slurry manufacturing and coating processing, which in turn can extend the life of the apparatus, is preferred.
  • the inorganic non-conductive insulating particles in the present invention have a characteristic of low water absorption, that is, they are dried under air at 100 ° C. 4.
  • the water content per unit volume is less than 5 mg/cm 3 .
  • the regulation of this feature mainly considers the danger of moisture in a lithium ion secondary battery. For example, due to trace moisture, the electrolyte in the lithium ion battery reacts with water to generate hydrogen fluoride gas, thereby causing the battery to bulge or the like. Safety features, while dissolving hydrogen fluoride in the electrolyte, lowers the pH of the electrolyte and worsens battery performance. Therefore, moisture control is very important in the battery manufacturing process.
  • the water content of the separator is strictly controlled, and it is preferable to have inorganic non-conductive insulating particles having a low water absorption.
  • the non-conductive inorganic insulating particles at 100 ° C for air-dried 4.
  • the water content per unit volume is less than 5mg / cm 3, and more preferably less than above lmg / cm 3, the non-conductive inorganic insulating particles
  • the water content should be said to be as small as possible, most preferably Omg/cm 3 , but this has only theoretical possibilities, and the actual situation is very difficult to achieve.
  • the inorganic non-conductive insulating particles are silicate compounds. It may be a compound of silicon, oxygen and other chemical elements (such as aluminum, iron, calcium, magnesium, potassium, sodium, lead, titanium, etc.), and may be selected from one or more of the following: silicon Natural or synthetic compounds such as sodium, asbestos, feldspar, glass, cement, clay, olivine, attapulgite, tourmaline, pyroxene, hornblende, mica, attapulgite, feldspar, quartz, etc.
  • silicon Natural or synthetic compounds such as sodium, asbestos, feldspar, glass, cement, clay, olivine, attapulgite, tourmaline, pyroxene, hornblende, mica, attapulgite, feldspar, quartz, etc.
  • the inorganic non-conductive insulating particles are glass frits.
  • the average particle size is 0. 8-1. 5 ⁇ ⁇
  • the pore size distribution ⁇ ⁇ is 0. 1-2. 2 ⁇ ⁇ . That is, the particle size distribution of the inorganic non-conductive insulating particles should satisfy: 0. 8 ⁇ D50 ⁇ 1. 5 ⁇ ⁇ , 0. K DO , D100 ⁇ 2. 2 ⁇ ⁇ 0
  • the average particle diameter satisfies: 0. 8 ⁇ D50 ⁇ 1. 2 ⁇ ⁇ , D1 00 2. 0 m of inorganic non-conductive insulating particles.
  • the particle size of the inorganic non-conductive insulating particles is less than 0.1 ⁇ m, there is a problem that the inorganic non-conductive insulating particles are difficult to disperse when preparing the heat-resistant coating slurry, thereby affecting the uniformity of the heat-resistant coating;
  • the inorganic non-conductive insulating particle diameter is larger than 2. ⁇ ⁇ ⁇ , there is a flaw in the thickness of the heat-resistant coating which is uncontrollable, resulting in deterioration of battery performance using the separator.
  • the coating composition of the present invention is dispersed in a solvent, it is dried and solidified to form a heat-resistant coating layer; wherein, the inorganic non-conductive insulating particles account for 60- of the total weight of the inorganic non-conductive insulating particles and the heat-resistant resin. 95%.
  • a method for producing a lithium ion secondary battery separator comprising: coating a coating liquid containing a heat resistant resin and inorganic non-conductive insulating particles on at least one surface of a polyolefin substrate, and drying to form heat resistance After the coating, a composite microporous film is finally obtained; the coating liquid contains the coating composition of the first object of the present invention and a solvent.
  • the method for producing the lithium ion secondary battery separator according to the present invention can be exemplified by the production method described below, but the present invention is not limited thereto.
  • a method for manufacturing a lithium ion secondary battery separator comprising the steps of:
  • the solvent is preferably a solvent which is a good solvent with respect to the heat resistant resin, i.e., a similar solvent is used to find a suitable solvent, preferably a solvent having a similar polarity and solubility parameter to the heat resistant resin binder. More preferably, the solvent has a low boiling point characteristic at the same time, which is particularly advantageous for the drying and curing process after the coating is sized.
  • Such a solvent can be roughly exemplified by one of the following solvents or a mixture of two or more solvents: ethanol, acetone, butanone, dichloromethane, petroleum ether, tetrahydrofuran, N,N-dimethylformamide, N,N- Dimethylacetamide, water, N-methylpyrrolidone, and the like. Based on environmental protection requirements and economical principles, it is preferred to use a mixture of water and ethanol as a solvent for the heat resistant resin binder, and it is more preferred to use water alone as a solvent.
  • the ratio of the inorganic non-conductive insulating particles to the heat-resistant resin binder may be 60 to 95% of the total weight of the inorganic non-conductive insulating particles and the heat-resistant resin binder, and more preferably 75-95%.
  • the solid content of the coating liquid (slurry) containing the heat resistant resin binder and the inorganic non-conductive insulating particles may be 10-50%, more preferably 20-45%.
  • the dispersing device for the solution containing the inorganic non-conductive insulating particles and the binder may be, for example, a high-speed disperser, a sand mill, a three-roll mill, a ball mill, a colloid mill or the like.
  • the particle size distribution of the inorganic non-conductive insulating particles after the dispersion of the slurry is in accordance with the method of the present invention, and the dispersion time of the slurry is preferably 0.5 to 20 hours. Preferably, the range of 0.1 to 2. 2 ⁇ ⁇ of the claims of the present invention is preferred.
  • non-limiting examples are: blade coating, spray coating, conformal roll coating, bar coating, air knife coating, plate Roll coating, slit die extrusion coating, and the like.
  • the coating may be carried out by using one or a combination of the above two or more, as long as the slurry can be uniformly coated on the polyethylene substrate, and is not particularly limited.
  • the polyolefin substrate is an ultra high molecular weight polyethylene separator whose surface is photochemically treated.
  • the polyolefin substrate in general, may be a dry prepared polypropylene separator, a PP/PE/PP three-layer separator or a polyethylene separator prepared by a wet process, and the present invention preferably uses a polyethylene membrane prepared by a wet process. Because the wet diaphragm has the advantages of uniform pore distribution, uniform pore size, uniform thickness, good porosity and gas permeability, high puncture strength and biaxial tensile strength. More preferably, the present invention employs an ultrahigh molecular weight polyethylene separator prepared by a wet process which has all the advantages of a wet separator, and is particularly improved in strength and heat resistance.
  • the thickness and porosity of the ultrahigh molecular weight polyethylene separator used in the present invention are not particularly limited, and a known range can be employed: thickness 9 to 30 ⁇ ⁇ , void ratio 30 - 60%, but not limited thereto Thus, it is possible to flexibly select according to the needs of the composite microporous membrane of the present invention.
  • the ultrahigh molecular weight polyethylene substrate of the present invention has a surface subjected to photochemical treatment.
  • Common types of polyolefins such as ruthenium and osmium
  • ruthenium and osmium are non-polar molecules, and it is difficult to attach polar ink molecules on their surfaces.
  • chemical or physical treatment is carried out prior to the polyolefin film printing to form a polar surface layer to improve the bonding fastness to the polar ink.
  • the surface treatment method of the polyolefin film can be exemplified by: solvent treatment method, chromic acid oxidation method, flame treatment method, corona discharge treatment method, low temperature plasma treatment method, ultraviolet irradiation, radiation irradiation, radiation grafting, gas heat Oxidation, chemical treatment, coating And maleic anhydride graft surface method and the like.
  • the photochemical treatment method is particularly preferred in the present invention to achieve the purpose of improving surface tension and improving wettability and adhesion.
  • the surface of the polyethylene is pretreated with the photosensitizer benzophenone, and the surface of the polyethylene is irradiated with ultraviolet light having a wavelength of 184 ⁇ to crosslink the surface, and then the benzophenone can be removed by sublimation without residue.
  • the composite microporous film of the present invention has a heat-resistant coating having a contact angle with respect to water droplets of less than 30°.
  • the contact angle is a measure of the wettability, and the wettability can reflect the surface tension of the interface.
  • the outermost heat-resistant coating of the composite microporous membrane of the present invention has excellent hydrophilic wetting properties, since the electrolyte is The strong polar solvent, similar to the polarity of water, shows that the heat resistant coating also has excellent lipophilic properties.
  • the good electrolyte wetting property of the separator can increase the contact area between the separator and the electrolyte, thereby increasing the ionic conductivity and improving the charge and discharge performance and capacity of the battery.
  • the test method for the contact angle of water droplets of the heat-resistant coating can be exemplified by: dropping the deionized water droplet on the surface of the heat-resistant coating, and then testing the contact angle of the water droplet with a contact angle measuring instrument, which can be tested in multiple sets of parallel The data is finally averaged to obtain the contact angle of the heat-resistant coating to water droplets.
  • the heat-resistant coating of the present invention has a basis weight (adhesion between the heat-resistant coating and the substrate) greater than U ON/m, and a cohesive force (force between the heat-resistant coating molecules) is greater than 100 N/m. .
  • a cohesive force force between the heat-resistant coating molecules
  • the heat-resistant coating of the present invention has a basis force and a cohesive force of more than 100 N/m, which can avoid the occurrence of the above problems.
  • the test instrument for the adhesive force and the cohesive force may be exemplified by a peel strength tester, an adhesion tester, etc., and a tape 180 degree peel strength tester is preferably used.
  • the composite microporous membrane of the present invention has tensile strengths in both MD and TD directions of more than 12 ⁇ Pa, 1 50-18 0 °C, and is heated for 1 hour, and the heat shrinkage ratio in the MD and TD directions is maintained at 1-5. Within the range of %. It is well known that the separator manufactured by the wet process has the characteristics of being significantly stronger than the dry process, and the tensile strength of the TD and the MD is relatively uniform, which is advantageous for improving the safety performance of the battery.
  • the composite microporous membrane base film of the present invention is an ultrahigh molecular weight polyethylene which has all the advantages of the wet membrane, and is particularly improved in strength and heat resistance, thereby imparting the composite microporous membrane of the present invention.
  • the tensile strength in both the MD and TD directions is greater than the characteristics of 12 ⁇ Pa.
  • the composite porous membrane has a remarkable characteristic that the heat shrinkage ratio in the MD and TD directions is maintained in the range of 1 - 5% in the temperature range of 150 to 180 ° C for 1 hour, so that even the electrochemical device is caused by abnormal use.
  • Excessive heat generation causes overheating of the separator, and the separator of the present invention has excellent heat resistance and does not cause internal short circuit of the battery. Even if a short circuit occurs, the short-circuit area will not continue to expand, thus ensuring the safety of the battery.
  • the heat resistant resin molecular chain of the coating composition of the present invention comprises an oleophilic structural unit, a hydrophilic structural unit and a functional group structural unit, and the thermal decomposition temperature is greater than 250 °C.
  • the inorganic filler has the characteristics of high temperature resistance, low density, low hardness, and low water absorption, and the coating formed by the coating composition of the present invention is attached to one or both sides of the substrate of the composite microporous film.
  • the composite microporous membrane not only has a low closed cell temperature, a high film rupture temperature, but also has a small heat shrinkage rate, a high heat-resistant coating bond with a substrate, and a surface wettability of the heat-resistant coating.
  • the separator for lithium ion secondary battery has a more excellent comprehensive Performance, reliable safety performance, specific performance parameters can refer to Table 1.
  • the composite microporous membrane of the present invention can also solve the following problems: Most plastic films (such as polyolefin films) are non-polar polymers with low surface tension, generally 29-30 mN/m, in theory, If the surface tension of an object is lower than 33 mN/m, according to the adsorption theory of one of the theory of bonding action, there is a problem that the ink and the adhesive which are currently known cannot be firmly adhered thereon, and therefore, generally, heat-resistant coating There is also a problem that the layer cannot form a reliable bond on the polyolefin separator substrate, and the heat-resistant layer cannot effectively exhibit the effect of suppressing heat shrinkage.
  • the heat-resistant coating of the present invention has a basis force and a cohesive force of more than 100 N/m, which can avoid the above problems, and effectively solve the problem that the above-mentioned interface bonding is not reliable, thereby greatly improving the safety of the composite microporous membrane. performance.
  • the composite microporous membrane of the present invention has a heat-resistant coating having a contact angle with water droplets of less than 30°, so that the heat-resistant coating has excellent lipophilic wettability and good electrolyte wettability of the separator.
  • the contact area between the separator and the electrolyte can be enlarged, thereby increasing the ionic conductivity and improving the charge and discharge performance and capacity of the battery.
  • the tensile strength of both the MD and TD directions of the composite microporous membrane of the present invention is greater than 12 ⁇ Pa, and the heat shrinkage ratio in the MD and TD directions is maintained at 1 in the temperature range of 150-180 ° C for 1 hour. In the range of -5%, it has excellent strength and heat resistance, and does not cause internal short circuit of the battery. Even if a short circuit occurs, the short-circuit area will not continue to expand, thus ensuring the safety of the battery. And the tensile strength of TD and MD are relatively high, which is beneficial to improve the safety performance of the battery.
  • n-butyl acrylate: sodium acrylate: acrylic acid 6: 3: 1
  • weight ratio It is a heat-resistant resin binder, and water is used as a solvent, and it is dissolved and dispersed at room temperature for 1 hour. Then, 80 parts of glass frit (average particle diameter of 0.8 ⁇ m) and 20 parts of the above heat resistant resin binder solution are added to 100 parts of deionized water, and then dispersed and mixed by a sand mill for 3 hours. Coating solution.
  • the coating liquid prepared above was coated on the two surfaces of a 20 ⁇ m ultra-high molecular weight polyethylene base film (UHMWPE, the same below) with a wire rod, and then dried in a blast drying oven at a drying temperature of 50 ° C.
  • a composite microporous membrane having a total thickness of 6 ⁇ m (3 ⁇ 3 ) was obtained.
  • Example 2 This example is different from Example 1 in that the coating liquid prepared in Example 1 was coated on one surface of a UHMWPE base film and then dried in an oven at 50 °C. A composite microporous membrane having a single-sided coating thickness of 6 ⁇ m was produced.
  • This embodiment is different from the embodiment 1 in that the inorganic non-conductive insulating particles (glass frit) have an average particle diameter of 1.2 ⁇ m, which is the same as in the first embodiment.
  • This embodiment differs from Example 1 in that the ratio of the components in the heat resistant resin binder is changed to: oleophilic monomer n-butyl acrylate, hydrophilic monomer sodium acrylate, functional group monomer acrylic
  • This embodiment differs from Example 1 in that the type and ratio of the heat-resistant resin binder are simultaneously changed to: oleophilic monomer acrylonitrile, hydrophilic monomer N, N-dimethyl acrylamide,
  • a UHMWPE separator not coated with a heat resistant coating was selected as Comparative Example 1.
  • This comparative example is different from Example 1 in that the kind and ratio of the heat resistant resin binder are simultaneously changed to: butadiene-styrene copolymer (SBR) and sodium carboxymethylcellulose (CMC)
  • SBR butadiene-styrene copolymer
  • CMC sodium carboxymethylcellulose
  • the present comparative example was different from Example 1 in that the inorganic particles were replaced with alumina, and the rest were the same as in Example 1.
  • Types of heat resistant resin A: n-butyl acrylate/sodium acrylate/acrylic acid copolymer; B: acrylonitrile/N,N-dimethylacrylamide/acrylic acid; C: SBR/CMC.
  • Test conditions 180 °C, 1. 0 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

一种用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法,涂层组合物包括耐热性树脂和无机不导电绝缘粒子,所述耐热性树脂的分子链包含亲油结构单元、亲水结构单元和官能团结构单元,热分解温度大于250℃。无机不导电绝缘粒子具有耐高温、密度小、硬度低和吸水率低等特点,用该涂层组合物制造的复合微多孔膜不但具有低的闭孔温度、高的破膜温度,同时其热收缩率小,耐热涂层与基材结合力高、耐热涂层表面润湿性能好等特点,用作锂离子二次电池的隔膜具有更加优良的综合性能、具有可靠的安全性能。

Description

用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法 技术领域
本发明涉及一种用于锂离子二次电池隔膜的涂层组合物,同时还 涉及一种使用该涂层组合物的锂离子二次电池隔膜的制造方法。
背景技术
锂离子二次电池具有寿命长、 能量密度高等优点而被广泛应用。 隔膜是锂离子电池的重要组成部分,起着隔离正负极和离子传导的作 用。 目前市场上所用的隔膜材料大多数为聚烯烃材料, 主要包括聚乙 婦和聚丙婦。
由于聚乙烯和聚丙烯的热性能差异,以聚乙烯为材料生产的隔膜 电流关闭温度( Shut-down temperature )相对较氐, 在电池发生过 载时, 随着温度上升隔膜内部的微孔结构很快被破坏并熔融闭合, 及 时阻断电流。 然而, 不足之处是其熔体破裂温度 ( Mel t-down temperature )也低, 随着电池温度的上升, 超过熔点 15 °C左右, 隔 膜受热发生破裂, 致使电池内部结构崩溃而导致***, 所以, 通常我 们希望材料具有较低的电流遮断温度和较高的熔体破裂温度。而以聚 丙烯为材料生产的隔膜其原料熔点较高, 通常在 160 °C以上, 具有很 好的耐高温破膜性能,但同时其电流关闭温度也相应较高, 同样不利 于提高电池的安全性能。 因此, 现在锂电池膈膜的发展方向是三层复 合膜 ( PP/PE/PP ) , 三层膜在温度升高时, 中部的 PE在 130 °C熔化 收缩造成热关闭, 但是由于外部的 PP熔化温度为 160 °C , 隔膜还可 以保持一定的安全性。 但三层隔膜没有完全解决熔化收缩的隐患问 题, 当温度继续升高时, PP膜依然会融化, 导致电池内部短路。 为了提高隔膜的耐热性, 减少隔板热收缩引起的短路等安全问 题, 提高电池的可靠性技术。 例如提出了以廉价的无纺布为基材的各 种隔膜制造技术方案, 公开号为 " 1 01425570" 的中国专利公开了利 用耐热玻璃或陶瓷材料制造的织造或无纺布的基础上涂布含有无机 填料的耐热层,从而完成发明。 虽然该专利制造的无机隔膜具有一定 的耐热性, 但却存在基材脆性大, 强度差的缺点, 难以认为这样的隔 膜具有可靠的安全性能。
公开号为 " 1 01471432 "的中国专利公开了一种以 PET膜为基材, 在其表面覆盖一层耐热有机高分子材料的复合膜, 目的是提供一种耐 高温、 满足高倍率电池要求的隔膜。 然而 PET基膜虽然具有很好的耐 热性, 其熔点为 256-265 °C , 但基于锂离子二次电池的安全考虑, 忽 略了作为锂离子二次电池隔膜所应提供的低闭孔温度,是故难以认为 这样的隔膜具有可靠的安全性能。
发明内容
本发明的第一个目的是为了克服上述问题,提供一种用于锂离子 二次电池隔膜的涂层组合物, 采用该涂层组合物制备的二次电池隔 膜,不但具有低的闭孔温度、高的破膜温度, 同时还具有热收缩率小、 耐热涂层与基材结合力高、 耐热涂层表面润湿性能好等特点, 用作锂 离子二次电池的隔膜具有更加优良的综合性能、 具有可靠的安全性 能。
本发明的第二个目的是为了提供一种锂离子二次电池隔膜的制 造方法。
本发明的第一个目的采用如下技术方案:
一种用于锂离子二次电池隔膜的涂层组合物,它含有耐热性树脂 和无机不导电绝缘粒子, 其特点是: 所述耐热性树脂的分子链包含亲 油结构单元、 亲水结构单元和官能团结构单元, 其热分解温度大于
250 °C ; 其中, 亲油结构单元、 亲水结构单元和官能团结构单元的重 量比为 1 0 ~ 90 : 80 ~ 9 : 1 0 ~ 1。
优选地, 所述耐热性树脂分子链包含的亲油结构单元、 亲水的结 构单元和官能团结构单元分别由亲油单体、亲水单体和官能团单体转 化而来。
优选地, 亲油单体为原子数为 4-20的丙烯酸酯, 其玻璃化转变 温度 Tg为 -70 °C ~ 1 20 °C。 具体的可列举为如下一种单体或两种以上 单体的混合物: 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸正丁酯、 丙烯酸异 丁酯、 丙烯酸正辛酯、 丙烯酸异辛酯、 丙烯酸 - β -羟乙酯、 丙烯酸- β -羟丙酯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸异丙酯、 甲基丙烯酸丁酯、 甲基丙烯酸己酯、 甲基丙烯酸 _ β -羟乙酯、 甲基丙 烯酸 - β -羟丙酯、 醋酸乙烯酯或丙烯腈等, 但本发明并不限于此。
优选地, 亲水单体为碳原子数不多于 8个的丙烯酸类衍生物, 其 含有氣基、 羟基或酰胺基中的至少一种亲水基团。 具体的可列举为至 少选自如下一种化合物: 丙烯酸钠、 丙烯酸锂、 丙婦酰胺、 2-丙烯酰 胺 _2_甲基丙磺酸、 Ν -异丙基丙烯酰胺、 Ν, Ν -二乙基- 2 -丙烯酰胺、 Ν, Ν- 二甲基丙烯酰胺、 Ν -甲基丙烯酰胺、 Ν -乙基丙烯酰胺或 Ν-羟甲基丙 烯酰胺等。
优选地, 官能团单体为赋予胶粘剂反应特性的丙烯酸类衍生物, 其含有酸酐、 ½、 环氧基、 羟基、 氨基或酰胺基中的一种或几种活 性官能团。 具体的可列举为如下一种或几种化合物: 甲基丙烯酸、 丙 烯酸、 甲基丙烯酸羟乙酯、 甲基丙烯酸羟丙酯、 N-丁氧基甲基丙烯酰 胺、 二甲氨基乙基甲基丙烯酸酯、 二胺基乙基甲基丙烯酸酯、 甲基丙 烯酰胺、 甲基丙烯酸缩水甘油酯等, 但并不是限制性的。
上述耐热性树脂的三种共聚单体: 亲油单体、 亲水单体和官能团 单体的重量比为 10 ~ 90: 80 ~ 9: 10 - L 只有被限定在该比例范围内 而合成的耐热性树脂才能满足本发明的要求。 耐热性树脂中亲油单 元、亲水单元和官能团单元发挥的作用各不相同,但能产生协同效应。 亲油单元提高耐热涂层与非极性聚烯烃基底的界面作用,同时赋予耐 热涂层良好的加工柔韧性;亲水单元提高耐热涂层中亲水填料间的相 互作用力, 即提高耐热涂层内聚力; 官能单体可以进一步发生化学交 联作用, 提高耐热涂层胶粘力、 内聚力、 耐热性、 耐溶剂性能及电化 学稳定性。 一般地, 为了提高耐热涂层的粘基力和加工柔韧性, 可以 适当提高亲油单元在聚合物分子链中的比例,更优选亲油单体占亲油 单体、 亲水单体和官能团单体总重量的 50-80%, 亲水单体的比例可 适当的调整为占亲油单体、 亲水单体和官能团单体总重量的 20-50%; 而官能团单体往往具有强极性和可以进一步发生化学交联作用,虽然 可以进一步提高耐热涂层的内聚力,但交联的作用会导致涂层变得硬 而脆, 不利于加工, 故而官能团单体比例一般的占亲油单体、 亲水单 体和官能团单体总重量的 10%以下, 更优选的占 5%以下。
优选地, 所述无机不导电绝缘粒子具有以下性能参数: 耐热性大 于 400°C, 真密度小于 3g/cm3, 努氏硬度小于 600kgf/mm2, 100°C下 空气干燥 4. Oh, 每单位体积含水量小于 5mg/cm3。 无机不导电绝缘粒 子具有耐高温、 密度小、 硬度低和吸水率低等特点。
本发明中的无机不导电绝缘粒子的耐热性大于 400°C, 是指至少 在 400°C下是稳定的, 没有发生质量变化, 关于测试方法没有特别规 定。 例如, 可以采用热重分析方法, 测量无机不导电绝缘粒子的质量 与温度变化的关系, 以 10°C/min的升温速率加热到 400°C以上, 无 机不导电绝缘粒子没有发生质量变化, 便可认为符合本发明的要求, 关于耐热温度的上限并没有特别限制。
另外, 本发明中的无机不导电绝缘粒子的真密度小于 3g/cm3, 针 对无机不导电绝缘粒子的密度进行特别限定,主要是考虑到涂层与复 合隔膜的比重问题,更具体的是考虑到应用本发明制造的涂层与复合 隔膜于锂离子二次电池中的能量密度问题。 已公知的耐热涂层隔膜 中, 氧化铝被广泛的应用, 氧化铝的真密度为 3.9g/cm3, 即本发明中 的无机不导电绝缘粒子密度与之相比较, 降低 20%以上, 可以理论推 算出,应用本发明中的无机不导电绝缘粒子可以达到提高锂离子二次 电池能量密度的特点。
另外, 本发明中的无机不导电绝缘粒子的努氏硬度小于 600kgf/ mm2, 相对于已公知的耐热涂层隔膜中应用的氧化铝材料, 硬度降低 比例超过 50%, 本发明使用的无机材料由于硬度低, 可减少耐热涂层 浆料制造和涂布加工中的磨损, 进而可以延长设备的使用寿命, 因而 被优选。
此外, 本发明中的无机不导电绝缘粒子具有吸水率低的特征, 即 其在 100°C下空气下干燥 4. Oh, 每单位体积含水量小于 5mg/cm3。 关 于本特征的规定, 主要是考虑到水分在锂离子二次电池中的危害性, 例如, 由于微量水分的原因,锂离子电池中的电解质与水发生反应产 生氟化氢气体,从而导致电池鼓胀等不安全特征, 同时氟化氢溶解于 电解液中, 会降低电解液 pH值, 进而恶化电池性能。 因此, 电池制 造过程中,水分控制非常重要。 因此, 隔膜的含水量是需要严格控制, 优选具有吸水率低的无机不导电绝缘粒子, 这点尤为重要。 本发明中 的无机不导电绝缘粒子在 100 °C下空气下干燥 4. Oh,每单位体积含水 量小于 5mg/cm3, 更优选的是少于 lmg/cm3, 无机不导电绝缘粒子的上 述含水量应当说是越少越好, 最优选是 Omg/cm3, 但这个只存在理论 可能性, 实际情况非常难以实现。
优选地, 所述无机不导电绝缘粒子是硅酸盐类化合物。 可为硅、 氧与其它化学元素(例如铝、 铁、 钙、 镁、 钾、 钠、 铅、 钛等)结合 而成的化合物,具体的可选自以下一种或一种以上的混合物:硅酸钠、 石棉、 长石、 玻璃、 水泥、 黏土、 橄榄石、 绿帘石、 电气石、 辉石、 角闪石、 云母、 白土、 长石、 石英等天然的或者人工合成的化合物。
更优选的, 所述无机不导电绝缘粒子是玻璃粉。 其平均粒径为 0. 8-1. 5 μ ηι, 孔径分布 μ ηι为 0. 1-2. 2 μ ηι。 即无机不导电绝缘粒子的 粒径分布应该满足: 0. 8 < D50 < 1. 5 μ ηι, 0. K DO , D100 < 2. 2 μ ηι0 其中, 更优选平均粒径满足: 0. 8 < D50 < 1. 2 μ ηι, D1 00 2. 0 m 的 无机不导电绝缘粒子。 一方面, 如果无机不导电绝缘粒子粒径小于 0. 1 μ ιη, 则在制备耐热涂层浆料时,存在无机不导电绝缘粒子分散困 难的问题, 从而影响耐热涂层的均匀性; 另一方面, 如果无机不导电 绝缘粒子粒径大于 2. Ο μ ηι, 则存在耐热涂层厚度无法控制之虞, 从 而导致使用该隔膜的电池性能的恶化。
将本发明所述的涂层组合物于溶剂中分散后,经干燥固化后形成 耐热性涂层; 其中, 无机不导电绝缘粒子占无机不导电绝缘粒子与耐 热性树脂总重量的 60-95%。
本发明的第二个目的采用如下技术方案:
一种锂离子二次电池隔膜的制造方法, 该方法包括: 在聚烯烃基 底的至少一个表面涂布包含耐热性树脂和无机不导电绝缘粒子的涂 布液, 经干燥固化后形成耐热性涂层后, 最终得到复合微多孔膜; 所 述涂布液包含本发明的第一个目的所述的涂层组合物以及溶剂。
本发明所述的锂离子二次电池隔膜的制造方法可举例为下文所 述的制备方法, 但本发明并不限于此。
锂离子二次电池隔膜的制造方法, 包括以下步骤:
1 )将亲油单体、 亲水单体、 官能团单体的共聚乳液作为耐热性 树脂粘结剂溶解于溶剂中, 制备聚合物粘结剂溶液;
2 )将无机不导电绝缘粒子加入到上述聚合物粘结剂溶液中, 进 行分散后制成涂布液;
3 )将分散好的浆料涂布于聚烯烃基底的单面或双面后, 经过干 燥固化的工序, 即得。
溶剂优选相对于耐热性树脂来说为良溶剂的溶剂,即运用相似相 容的原理去寻找合适的溶剂,优选与耐热性树脂粘结剂具有相似极性 和溶度参数的溶剂。 更优选的是, 该溶剂同时具有低沸点的特性, 这 样特别有利于涂层上胶后的干燥固化工序。这样的溶剂可大致列举为 以下的一种溶剂或者两者以上溶剂的混合物: 乙醇、 丙酮、 丁酮、 二 氯甲烷、石油醚、四氢呋喃、 N,N -二甲基甲酰胺、 N,N -二甲基乙酰胺、 水、 N -甲基吡咯烷酮等。 基于环保需求和经济性原则, 优选的是以水 和乙醇的混合物作为耐热性树脂粘结剂的溶剂,更优选的是单独以水 作为溶剂。
无机不导电绝缘粒子与耐热性树脂粘结剂的比例,可以为无机不 导电绝缘粒子占无机不导电绝缘粒子与耐热性树脂粘结剂总重量的 60-95%, 更优选的是占 75-95%。 关于包含有耐热性树脂粘结剂和无 机不导电绝缘粒子的涂布液(浆料) 的固含量, 可以为 10-50% , 更 优选的是 20-45%。 关于含有无机不导电绝缘粒子及粘结剂的溶液的 分散设备, 可以列举为: 高速分散机、砂磨机、 三辊研磨机、球磨机、 胶体磨等。针对湿式分散的特点和本发明的要求,优选采用砂磨机进 行分散的方法, 此时合适的分散时间是 0. 5-20小时, 浆料分散后无 机不导电绝缘粒子的粒径分布以符合本发明权利要求的 0. 1 ~ 2. 2 μ ηι 范围内为佳。
对于本领域已公知的涂布方式, 可列举非限制性的例子为: 刮板 涂布、 喷雾涂布、 吻合辊式涂布、 刮棒式涂布、 空气刮刀涂布、 版 辊式涂布、狭缝式模头挤出涂布等。 本发明中可以采用以上一种或两 种以上的组合形式进行涂布,只要能实现浆料在聚乙婦基材上均匀涂 布即可, 没有特别限定。
优选地, 所述聚烯烃基底为超高分子量聚乙烯隔膜, 其表面经过 光化学处理。 所述聚烯烃基底, 一般的说, 可以采用干法制备的聚丙 烯隔膜、 PP/PE/PP 三层隔膜或湿法工艺制备的聚乙烯隔膜, 本发明 优选采用湿法工艺制备的聚乙烯隔膜, 因为湿法隔膜具有孔分布均 匀、 孔大小均匀、 厚度均匀、 孔隙率和透气度好、 穿刺强度和双向拉 伸强度高等优点。 更优选的, 本发明采用湿法工艺制备的超高分子量 聚乙烯隔膜, 该隔膜具备湿法隔膜的所有优点外, 特别的在强度和耐 热性上进一步提高。
另夕卜,对于本发明采用的超高分子量聚乙烯隔膜的厚度和孔隙率 并没有特别限定, 可以采用已公知的范围: 厚度 9 ~ 30 μ ηι, 空隙率 30 - 60% , 但并不限于此, 可以根据本发明的复合微多孔膜的需要进 行灵活选择。
此夕卜,本发明中的超高分子量聚乙婦基底,表面经过光化学处理。 常见的各类聚烯烃 (例如 ΡΡ、 ΡΕ ) 为非极性分子, 在其表面难以附 着极性的油墨分子。一般地, 在进行聚烯烃薄膜印刷之前进行化学或 物理方法处理, 使其形成极性的表面层以提高与极性油墨的结合牢 度。 一般地, 聚烯烃薄膜表面处理方法可列举为: 溶剂处理法、 铬酸 氧化法、 火焰处理法、 电晕放电处理法、 低温等离子体处理法、 紫外 线照射、 放射线照射、 辐射接枝、 气体热氧化、 力化学处理、 涂覆法 和马来酸酐接枝表面方法等。 本发明中特别优选光化学处理法,从而 达到改善表面张力, 提高润湿性和粘合性的目的。 例如, 使用光敏剂 二苯甲酮预处理聚乙烯表面,用波长为 184匪的紫外线照射聚乙烯表 面, 能使其表面发生交联, 之后二苯甲酮亦可被升华除去, 无残留。
本发明的复合微多孔膜,其耐热性涂层对水滴的接触角小于 30°。 接触角是润湿度的一种量度, 而润湿度可以反映界面的表面张力, 可 本发明的复合微多孔膜的最外层耐热性涂层具有优异的亲水润湿性 能, 由于电解液是强极性溶剂, 与水极性相似, 可知, 耐热性涂层同 样具有优异的亲电解液润湿性能。 隔膜良好的电解液润湿性能, 则可 扩大隔膜与电解液的接触面积, 从而增加离子导电性, 提高电池的充 放电性能和容量。对于耐热涂层的水滴接触角的测试方法,可列举为: 将去离子水滴落在耐热涂层表面,然后用接触角测量仪测试对水滴的 接触角进行测试, 可采取测试多组平行数据, 最后取平均值的方法, 从而得到耐热涂层对水滴的接触角。
本发明中的耐热性涂层的粘基力 (耐热涂层与基材之间的附着 力)大于 U ON/m,内聚力(耐热涂层分子之间的作用力)大于 100N/m。 一般地, 如果耐热性涂层无法在聚烯烃隔膜基底上形成可靠粘结, 则 在电池制程中, 会出现隔膜掉粉问题, 导致不良品的产生, 同时这样 的耐热层无法有效发挥抑制热收缩的作用。本发明的耐热性涂层粘基 力和内聚力均大于 100N/m, 可避免上述问题的发生。 关于粘基力与 内聚力的测试仪器, 可列举为: 剥离强度测试机、 附着力测试仪等, 优选采用胶带 180度剥离强度试验机。 本发明的复合微多孔膜的 MD 和 TD 方向的拉伸强度均大于 12幌 Pa , 1 50-18 0 °C温度范围内, 加热 1小时, MD和 TD方向的热收 缩率保持在 1-5%范围内。 已公知的, 湿法工艺制造的隔膜具有强度 明显好于干法的特点, 并且 TD和 MD拉伸强度比较均匀, 这样有利于 提高电池的安全性能。本发明的复合微多孔膜基膜为超高分子量聚乙 烯, 该隔膜具备湿法隔膜的所有优点外, 特别的在强度和耐热性上进 一步提高,因此赋予了本发明的复合微多孔膜的 MD和 TD方向的拉伸 强度均大于 12幌 Pa的特征。
复合 多孔膜具有在 150-180 °C温度范围内, 加热 1小时, MD和 TD方向的热收缩率保持在 1 -5%范围内的显著特征, 这样, 即使电化 学器件因非正常使用导致的过度发热, 从而引起隔膜的过热, 由于本 发明的隔膜具有优异的耐热性能, 也不会导致电池内部短路的发生。 即使发生了短路, 短路区域也不会继续扩大, 从而保证了电池的安全 性能。
本发明的有益效果在于:
1、 本发明所述的涂层组合物的耐热性树脂分子链包含亲油结构 单元、 亲水的结构单元和官能团结构单元, 热分解温度大于 250 °C。 所述无机填料具有耐高温、 密度小、 硬度低和吸水率低等特点, 由于 在复合微多孔膜的基底的单面或双面附着了由本发明所述涂层组合 物形成的涂层,使得该复合微多孔膜不但具有低的闭孔温度、 高的破 膜温度, 同时其热收缩率小, 耐热涂层与基材结合力高、 耐热涂层表 面润湿性能好等特点,用作锂离子二次电池的隔膜具有更加优良的综 合性能、 具有可靠的安全性能, 具体性能参数可参照表一。
2、 本发明的复合微多孔膜还可解决如下问题: 大多数塑料薄膜 (如聚烯烃薄膜)属非极性聚合物,表面张力较低,一般在 29-30mN/m, 从理论上讲, 若某物体的表面张力低于 33mN/m, 根据胶接作用理论 之一的吸附理论,存在目前已知的油墨与粘合剂都无法在上面附着牢 固的问题, 故而一般地, 耐热性涂层也存在无法在聚烯烃隔膜基底上 形成可靠粘结的问题,进而会导致耐热层无法有效发挥抑制热收缩的 作用。 而本发明的耐热性涂层粘基力和内聚力均大于 100N/m, 可避 免上述问题的发生, 有效的解决上述界面粘结不牢靠的问题, 因而可 以大大的提高复合微多孔膜的安全性能。
3、 本发明的复合微多孔膜, 其耐热性涂层对水滴的接触角小于 30°, 使得耐热性涂层具有优异的亲电解液润湿性能, 隔膜良好的电 解液润湿性能, 则可扩大隔膜与电解液的接触面积, 从而增加离子导 电性, 提高电池的充放电性能和容量。
4、 本发明所述复合微多孔膜的 MD和 TD方向的拉伸强度都大于 12幌 Pa , 在 150-180°C温度范围内, 加热 1小时, MD和 TD方向的热 收缩率保持在 1-5%范围内, 具有优异的强度和耐热性能, 不会导致 电池内部短路的发生。 即使发生了短路, 短路区域也不会继续扩大, 从而保证了电池的安全性能。 并且 TD和 MD拉伸强度比较均勾, 这样 有利于提高电池的安全性能。
具体实施方式
为更好的说明本发明中的内容,下面结合具体实施例作进一步说 明。
实施例 1:
选用亲油单体丙烯酸正丁酯、 亲水单体丙烯酸钠、 官能团单体丙 烯酸的共聚乳液作为 (共聚物的组成为, 丙烯酸正丁酯: 丙烯酸钠: 丙烯酸 =6: 3: 1, 重量比)为耐热性树脂粘结剂, 以水作为溶剂, 室 温下溶解分散 1个小时。 然后按 80份玻璃粉(平均粒径为 0.8μηι)、 20份上述耐热性树脂粘结剂溶液的比例加入到 100份去离子水中, 然后通过砂磨机分散混合 3个小时, 从而制得涂布液。
将上述制得的涂布液用线棒涂覆在 20μηι 的超高分子量聚乙烯 基膜(筒称 UHMWPE, 下同 ) 的两个表面上, 然后在鼓风干燥烘箱内 进行干燥, 干燥温度为 50°C。 制得双面涂层总厚度为 6μηι (分别为 3μηι) 的复合微多孔膜。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。
实施例 2
本实施例与实施例 1的不同之处在于:将实施例 1制得的涂布液 涂布于 UHMWPE基膜的一个表面上, 然后在 50°C的烘箱内干燥而得。 制得单面涂层厚度为 6 μηι的复合微多孔膜。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。
实施例 3
本实施例与实施例 1 的不同之处在于: 其无机不导电绝缘粒子 (玻璃粉) 的平均粒径为 1.2μηι, 其于与实施例 1相同。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。 实施例 4
本实施例与实施例 1的不同之处在于:将耐热性树脂粘结剂中组 份的比例更换为: 亲油单体丙烯酸正丁酯、 亲水单体丙烯酸钠、 官能 团单体丙烯酸的共聚乳液作为耐热性树脂粘结剂 (共聚物的组成为, 丙烯酸正丁酯: 丙烯酸钠: 丙烯酸 =16 : 3: 1 ) , 其余与实施例 1相 同。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。
实施例 5
本实施例与实施例 1的不同之处在于:将耐热性树脂粘结剂的种 类和比例同时改变为: 亲油单体丙烯腈、 亲水单体 N, N-二甲基丙烯 酰胺、 官能团单体丙烯酸的共聚乳液作为耐热性树脂粘结剂(共聚物 的组成为, 丙烯腈: N,N-二甲基丙烯酰胺: 丙烯酸 =10 : 9 : 1 ) , 其 余与实施例 1相同。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。
对比例 1
选择未涂覆耐热涂层的 UHMWPE隔膜作为对比例 1。
UHMWPE隔膜性能见表 1。
对比例 2
本对比例与实施例 1的不同之处在于:将耐热性树脂粘结剂的种 类和比例同时改变为: 丁二烯-苯乙烯共聚物(SBR )和羧甲基纤维素 钠(CMC )的组合物(组合物的比例为, SBR: CMC=1 : 1 ) , 其余与实 施例 1相同。 对比例 3
本对比例与实施例 1不同之处在于: 将无机粒子更换为氧化铝, 其余与实施例 1同。
上述所制得的锂离子二次电池用复合微多孔膜性能见表 1。
实施例及对比例的复合隔膜的性能对照表
Figure imgf000016_0001
备注: 1、耐热性树脂种类: A: 丙烯酸正丁酯 /丙烯酸钠 /丙烯酸共聚物; B: 丙烯腈 /N,N -二甲基丙烯酰胺 /丙烯酸; C: SBR/CMC。
2、 测试条件: 180 °C, 1. 0小时。
3、 表示测试中隔膜发生卷曲, 无法测量。
4、 单位: N/m。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构 思, 做出其它各种相应的改变以及变形, 而所有的这些改变以及变形 都应该属于本发明权利要求的保护范围之内。

Claims

权 利 要 求 书
1、 用于锂离子二次电池隔膜的涂层组合物, 它含有耐热性树脂 和无机不导电绝缘粒子, 其特征在于: 所述耐热性树脂的分子链包含 亲油结构单元、 亲水结构单元和官能团结构单元, 其热分解温度大于
250 °C ; 其中, 亲油结构单元、 亲水结构单元和官能团结构单元的重 量比为 10 ~ 90 : 80 ~ 9: 10 ~ 1。
2、 根据权利要求 1所述的用于锂离子二次电池隔膜的涂层组合 物, 其特征是: 所述无机不导电绝缘粒子具有如下性能参数: 耐热性 大于 400 °C , 真密度小于 3g/cm3, 努氏硬度小于 600kgf/mm2, 1 00 °C 下空气干燥 4. Oh, 每单位体积含水量小于 5mg/cm3
3、 根据权利要求 1或 2所述的用于锂离子二次电池隔膜的涂层 组合物, 其特征是: 耐热性树脂分子链包含的亲油结构单元、 亲水结 构单元和官能团结构单元分别由亲油单体、亲水单体和官能团单体转 化而来, 其中, 亲油单体、 亲水单体和官能团单体的重量比为 10 ~ 90: 80 ~ 9: 10 ~ 1。
4、 根据权利要求 3所述的用于锂离子二次电池隔膜的涂层组合 物, 其特征是: 所述亲油单体为碳原子数为 4-20的丙烯酸酯, 其玻 璃化转变温度 Tg为 -70 °C ~ 120 °C ; 所述亲水单体为碳原子数不多于 8个的丙烯酸类衍生物, 其含有羧基、 羟基或酰胺基中的任意一种亲 水基团; 所述官能团单体为丙烯酸类衍生物, 其含有酸酐、 羧基、 环 氧基、 羟基、 氨基或酰胺基中的任意一种活性官能团。
5、 根据权利要求 2所 i -二次电池隔膜的涂层组合 物, 其特征是: 所述无机不导电绝缘粒子是硅酸盐类化合物。
6、根据权利要求 5述的用于锂离子二次电池隔膜的涂层组合物, 其特征是: 所述无机不导电绝缘粒子是玻璃粉; 平均粒径为 0. 8-1. 5 μ ΐΉ , 孑 L径分布为 0. 1 -2. 2 μ ηι。
7、根据权利要求 1述的用于锂离子二次电池隔膜的涂层组合物, 其特征是:无机不导电绝缘粒子占无机不导电绝缘粒子与耐热性树脂 总重量的 60-95%。
8、 锂离子二次电池隔膜的制造方法, 该方法包括: 在聚烯烃基 底的至少一个表面涂布包含耐热性树脂和无机不导电绝缘粒子的涂 布液, 经干燥固化后形成耐热性涂层, 最终得到复合微多孔膜; 其特 征是:所述涂布液包含权利要求 1-7中任一项所述的涂层组合物和溶 剂。
9、 根据权利要求 8所述的锂离子二次电池隔膜的制造方法, 其 特征是: 所述聚烯烃基底为超高分子量聚乙烯隔膜,其表面经过光化 学处理。
1 0、 根据权利要求 8所述的锂离子二次电池隔膜的制造方法, 其特征是: 所述耐热性涂层对水滴的接触角小于 30°; 所述耐热性涂 层的粘基力大于 120N/m , 内聚力大于 1 00N/m; 所述复合微多孔膜的 MD和 TD方向的拉伸强度都大于 12幌 Pa , 在 150_1 80 °C温度范围内, 加热 1小时, MD和 TD方向的热收缩率保持在 1-5%范围内。
PCT/CN2013/072585 2012-11-21 2013-03-14 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法 WO2014079177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210476760.0A CN102942831B (zh) 2012-11-21 2012-11-21 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法
CN201210476760.0 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014079177A1 true WO2014079177A1 (zh) 2014-05-30

Family

ID=47725829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072585 WO2014079177A1 (zh) 2012-11-21 2013-03-14 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法

Country Status (2)

Country Link
CN (1) CN102942831B (zh)
WO (1) WO2014079177A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163653A4 (en) * 2014-06-26 2018-01-03 Zeon Corporation Laminate for nonaqueous secondary cell, method for producing same, and nonaqueous secondary cell
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
US20220021078A1 (en) * 2018-11-30 2022-01-20 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942831B (zh) * 2012-11-21 2014-10-29 佛山市金辉高科光电材料有限公司 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法
CN103811702B (zh) * 2014-02-12 2016-02-10 佛山市金辉高科光电材料有限公司 一种新型陶瓷涂层聚烯烃复合膜及其制备方法
JP5918455B1 (ja) * 2014-07-11 2016-05-18 帝人株式会社 セパレータロールの製造方法
CN104505484B (zh) * 2014-12-16 2017-12-22 东莞新能源科技有限公司 一种有机‑无机复合电解质膜,其制备方法及应用
CN104868081A (zh) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 锂离子电池用的水性多层隔膜
CN105789538A (zh) * 2016-04-20 2016-07-20 宁德时代新能源科技股份有限公司 一种隔膜,其制备方法及含有该隔膜的二次电池
TWI624105B (zh) * 2017-06-13 2018-05-11 中興應用材料科技股份有限公司 用於儲能裝置內的防火絕緣複合薄膜及其製造方法
KR102477422B1 (ko) * 2017-10-17 2022-12-14 에스케이아이이테크놀로지주식회사 이차전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102414896B1 (ko) * 2017-11-29 2022-07-01 에스케이이노베이션 주식회사 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지
CN109524601B (zh) * 2018-10-16 2021-09-24 上海恩捷新材料科技有限公司 一种动力锂离子电池隔膜及其制备方法
US20220094019A1 (en) 2019-01-04 2022-03-24 Ceigard, LLC Coated microporous membranes, and battery separators, batteries, vehicles, and devices comprising the same
CN112952289B (zh) * 2021-01-27 2022-07-01 江苏厚生新能源科技有限公司 一种高性能的锂离子电池隔膜及其制备方法
CN113416270B (zh) * 2021-05-31 2024-01-16 珠海辰玉新材料科技有限公司 一种聚合物及其制备方法和应用
CN114231105A (zh) * 2021-12-10 2022-03-25 河北金力新能源科技股份有限公司 低水分高绝缘锂离子电池隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262366A (ja) * 1986-05-08 1987-11-14 Ejison Watanabe 鉛蓄電池
JPH01267960A (ja) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd 水素吸蔵合金電極とその製造法
CN101246958A (zh) * 2008-03-21 2008-08-20 成都中科来方能源科技有限公司 锂离子电池用复合电极及其制备方法和锂离子电池
CN102394282A (zh) * 2011-11-25 2012-03-28 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
CN102942831A (zh) * 2012-11-21 2013-02-27 佛山市金辉高科光电材料有限公司 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262366A (ja) * 1986-05-08 1987-11-14 Ejison Watanabe 鉛蓄電池
JPH01267960A (ja) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd 水素吸蔵合金電極とその製造法
CN101246958A (zh) * 2008-03-21 2008-08-20 成都中科来方能源科技有限公司 锂离子电池用复合电极及其制备方法和锂离子电池
CN102394282A (zh) * 2011-11-25 2012-03-28 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
CN102942831A (zh) * 2012-11-21 2013-02-27 佛山市金辉高科光电材料有限公司 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163653A4 (en) * 2014-06-26 2018-01-03 Zeon Corporation Laminate for nonaqueous secondary cell, method for producing same, and nonaqueous secondary cell
US10388930B2 (en) 2014-06-26 2019-08-20 Zeon Corporation Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
US11824225B2 (en) * 2018-02-06 2023-11-21 Byd Company Limited Separator including substrate, hydrophilic blocking layer, and polar polymer bonding with nodal structure, and method of preparing the same
US20220021078A1 (en) * 2018-11-30 2022-01-20 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
CN102942831A (zh) 2013-02-27
CN102942831B (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2014079177A1 (zh) 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法
CN103811702B (zh) 一种新型陶瓷涂层聚烯烃复合膜及其制备方法
JP6872932B2 (ja) 蓄電デバイス用セパレータ
JP6031179B2 (ja) 蓄電デバイス用セパレータ、積層体、及び多孔膜
CN106252565B (zh) 一种复合涂覆处理的锂离子电池隔膜及其制备方法
JP5932161B1 (ja) 積層体、セパレータ及び非水二次電池
CN110048056B (zh) 层叠多孔膜、非水电解液二次电池用间隔件及非水电解液二次电池
JP5457460B2 (ja) 水性ポリマーによって修飾された微孔性ポリマー膜、その製造及び使用
CN104521028B (zh) 用于锂离子电池的改进的隔膜和相关方法
CN103066231B (zh) 一种锂离子电池用耐高温复合隔膜的制备方法
JP6850941B2 (ja) リチウムイオン電池用セパレータ
TW201208179A (en) Microporous composite film with high thermostable organic/inorganic coating layer
CN112795184B (zh) 一种聚合物颗粒、含有该聚合物颗粒的隔膜及锂离子电池
WO2013075524A1 (zh) 一种锂离子二次电池多孔多层隔膜及其制造方法
CN104638217A (zh) 一种复合改性隔膜及其制备方法
CN104993084A (zh) 一种生物质纳米晶涂层聚烯烃锂离子电池隔膜及其制备方法
US10385180B2 (en) Package of porous film
WO2024139315A1 (zh) 一种复合隔膜及其制备方法和应用
JP5439772B2 (ja) 多孔性フィルムおよび蓄電デバイス
CN112531291A (zh) 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池
JP2016072247A (ja) 蓄電デバイス用セパレータ
CN106898720B (zh) 一种锂离子电池隔膜及其制备方法
JP2023514269A (ja) 組成物、複合セパレータおよびその作製方法、リチウムイオン電池
WO2012119361A1 (zh) 含有纳米预交联橡胶微粉的共挤复合隔膜以及使用其的锂离子电池
KR20160117109A (ko) 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856982

Country of ref document: EP

Kind code of ref document: A1