WO2014073095A1 - Thermoelectric conversion module and method for manufacturing same - Google Patents

Thermoelectric conversion module and method for manufacturing same Download PDF

Info

Publication number
WO2014073095A1
WO2014073095A1 PCT/JP2012/079173 JP2012079173W WO2014073095A1 WO 2014073095 A1 WO2014073095 A1 WO 2014073095A1 JP 2012079173 W JP2012079173 W JP 2012079173W WO 2014073095 A1 WO2014073095 A1 WO 2014073095A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
vanadium oxide
type
conversion element
glass layer
Prior art date
Application number
PCT/JP2012/079173
Other languages
French (fr)
Japanese (ja)
Inventor
正 藤枝
内藤 孝
拓也 青柳
沢井 裕一
護 吉本
晃史 松田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/079173 priority Critical patent/WO2014073095A1/en
Priority to JP2014545525A priority patent/JPWO2014073095A1/en
Publication of WO2014073095A1 publication Critical patent/WO2014073095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a thermoelectric conversion module and a method of manufacturing the same.
  • thermoelectric conversion material generates electricity when the temperature difference is given (Seebeck effect) and cools when electricity flows (Peltier effect). Therefore, it is used as a thermoelectric conversion element such as a power generation element or a cooling element. There is. According to the Seebeck effect, since heat can be directly converted to electricity, power generation and the like using exhaust heat can be performed, and a thermoelectric conversion element is expected as one of clean energy technologies.
  • a thermoelectric conversion material forming the thermoelectric conversion element for example, a bismuth-tellurium material, a bismuth-antimony material, a bismuth-tellurium-antimony material, etc. are known.
  • thermoelectric conversion module provided with a thermoelectric conversion element
  • a bulk type thermoelectric conversion element is often used.
  • microfabrication is difficult, and therefore, there are cases where miniaturization of the thermoelectric conversion elements is difficult.
  • the power output density is low and the unit price of power generation is high.
  • Patent Document 1 describes a thermoelectric conversion element having thermoelectric conversion material particles having a diameter of 1 ⁇ m to 10 ⁇ m and a coating layer having an average film thickness of 1 ⁇ m or less, which coats the periphery of the thermoelectric conversion material particles. .
  • thermoelectric conversion element In the thermoelectric conversion element described in Patent Document 1, metal oxide fine particles are used as a binder. However, such metal oxide particles do not have the thermoelectric conversion ability, and the thermoelectric conversion efficiency may be lowered. Further, Patent Document 1 does not describe reducing the size of the thermoelectric conversion element to improve the output density of electric power.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a thermoelectric conversion module capable of improving the output density of electric power as compared with the prior art and a method of manufacturing the same.
  • thermoelectric conversion element material containing vanadium oxide crystallized glass is used, and the electrode and the thermoelectric conversion element are joined by at least amorphous vanadium oxide contained in the vanadium oxide crystallized glass. I found that I could solve the problem.
  • thermoelectric conversion module which can improve the output density of electric power conventionally can be provided, and its manufacturing method.
  • thermoelectric conversion module It is a perspective view of a thermoelectric conversion module concerning this embodiment. It is a graph obtained in the temperature rising process of the differential thermal analysis with respect to the vanadium oxide crystallized glass used for the thermoelectric conversion element which concerns on this embodiment. They are a cross-sectional photograph by (a) electron microscope, and the (b) schematic diagram of the junction interface vicinity of the electrode and vanadium oxide crystallized glass in the thermoelectric conversion element which concerns on this embodiment. It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 1st Embodiment. It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 2nd Embodiment. It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 3rd Embodiment. It is a figure explaining the thermoelectric-characteristics evaluation method about the thermoelectric conversion module produced in Example 1.
  • thermoelectric conversion element according to the present embodiment will be described, and then a method of manufacturing the same will be described.
  • some members may be omitted or simplified for convenience of description and for convenience of illustration, or may be changed or modified without departing from the scope of the invention.
  • FIG. 1 is a perspective view of a thermoelectric conversion module according to the present embodiment.
  • the thermoelectric conversion module 100 includes a plurality of thermoelectric conversion element materials 10 configured by including vanadium oxide crystallized glass containing vanadium oxide crystals and an amorphous material, and the thermoelectric conversion element material 10.
  • a support substrate 11 to be supported and fixed (arranged), and an electrode 12 connected to the thermoelectric conversion element material 10 and connected to an external load 20 consuming the electromotive force generated in the thermoelectric conversion element material 10 Become.
  • the thermoelectric conversion element is configured to include the thermoelectric conversion element materials 10 a and 10 b and the electrode 12.
  • thermoelectric conversion element material 10 in this embodiment contains the vanadium oxide crystallized glass as mentioned above, the vanadium oxide crystallized glass contains a vanadium oxide crystal and an amorphous material. It contains amorphous vanadium oxide.
  • the thermoelectric conversion element material 10 and the electrode 12 are joined via at least the amorphous material contained in the thermoelectric conversion element material 10.
  • thermoelectric conversion element material 10 in the present embodiment is configured to include N-type vanadium oxide crystallized glass or P-type vanadium oxide crystallized glass. These vanadium oxide crystallized glasses can be obtained by heat treating amorphous vanadium oxide glasses under predetermined conditions.
  • thermoelectric conversion module 100 is comprised by the thermoelectric conversion element containing the thermoelectric conversion element material 10.
  • thermoelectric conversion element materials 10 a and the thermoelectric conversion element materials 10 b are alternately arranged in a matrix on the support substrate 11. Then, in the y direction, the anode of the thermoelectric conversion element material 10a and the cathode of the thermoelectric conversion element material 10b are electrically connected via the electrode 12b, and the cathode of the thermoelectric conversion element material 10a and the anode of the thermoelectric conversion element material 10b And are electrically connected via the electrode 12b. Further, at the end in the y direction, the anode of the thermoelectric conversion element material 10a and the cathode of the thermoelectric conversion element material 10b adjacent in the x direction are electrically connected via the electrode 12b.
  • thermoelectric conversion element material 10 included in the thermoelectric conversion module 100 is an N-type thermoelectric conversion element material (hereinafter referred to as “N-type material”) 10 a configured to include N-type vanadium oxide crystallized glass; And P-type thermoelectric conversion element material (hereinafter, referred to as "P-type material”) 10b configured to include P-type vanadium oxide crystallized glass.
  • N-type material N-type thermoelectric conversion element material
  • P-type material P-type thermoelectric conversion element material
  • the N-type material 10 a is an N-type semiconductor containing free electrons. In the N-type material 10a, free electrons generated on the high temperature side move toward the low temperature. As a result, current can flow through the N-type material 10a.
  • the P-type material 10 b is a P-type semiconductor containing holes. In the P-type material 10 b, the contained holes move to a lower temperature. Thus, current can flow through the P-type material 10b.
  • power generation is performed by connecting the N-type material 10a and the P-type material 10b by the electrode 12 (described later). The electromotive force obtained by the power generation is used in the external load 20 (resistor, storage battery, etc.).
  • the N-type material 10 a and the P-type material 10 b are alternately connected in series by the electrodes 12 fixed to the substrate 11.
  • the N-type material 10a is fixed to the end of the current extraction negative electrode 12c (electrode 12) fixed to the support substrate 11a.
  • the N-type material 10a is fixed to the adjacent P-type material 10b by the electrode 12b fixed to the support substrate 11b.
  • the P-type material 10b is fixed to an adjacent N-type material 10a other than the N-type material 10a by an electrode 12a fixed to a support substrate 11a.
  • the N-type material 10a and the P-type material 10b are connected in series in the same manner, and it is more preferable than connecting the positive electrode 12d and the negative electrode 12c for current extraction in parallel. High electromotive force can be taken out.
  • thermoelectric conversion element material 10 the vanadium oxide crystallized glass contained in the thermoelectric conversion element material 10 will be described with reference to FIG.
  • FIG. 2 is a graph obtained in the temperature rising process of differential thermal analysis (DTA) for the vanadium oxide crystallized glass contained in the thermoelectric conversion element material 10.
  • the DTA measurement was performed using a vanadium oxide crystallized glass (target sample) and ⁇ -alumina (reference sample) contained in the thermoelectric conversion element material 10 at a temperature rising rate of 5 K / min in the air atmosphere.
  • the amounts of the target sample and the reference sample used for the measurement were each 650 mg.
  • T c the starting temperature of the first exothermic peak crystallization temperature T c.
  • each temperature be temperature calculated
  • the characteristic temperatures (glass transition point T g , yield point T d , softening point T s and crystallization temperature T c ) described in the present specification are based on the above-mentioned definitions.
  • the thermoelectric conversion element material 10 contains crystallized vanadium oxide glass which normally has a softening point and is crystallized. This is because the vanadium oxide glass is fired by heating it at a temperature higher than the softening point and lower than the crystallization temperature, and then heat treated at a temperature higher than the crystallization temperature to precipitate vanadium oxide crystals. It is possible to use a vanadium oxide crystallized glass (that is, a thermoelectric conversion element material) in which the crystal and the mixture are mixed.
  • the vanadium oxide crystallized glass is contained in the thermoelectric conversion element material 10 in the present embodiment.
  • the thermoelectric conversion element material 10 contains a vanadium oxide crystal and an amorphous vanadium oxide as an amorphous material.
  • the amorphous material contained in the thermoelectric conversion element material 10 is not limited to amorphous vanadium oxide, and may be another material.
  • the amorphous material is preferably an amorphous vanadium oxide.
  • thermoelectric conversion element material 10 may contain any material as long as the effects of the present invention are not significantly impaired.
  • the N-type element 10a V 2 O 5 , M x V 2 O 5 , M 3 Fe 4 (PO 4 ) 6 , M 2 (PO 4 ) O, V 2 (PO 4 ) O And at least one crystal selected from the group consisting of M 2 CuO 4 and MAl 2 O 4 .
  • M is a metal element of any of aluminum, iron, arsenic, antimony, bismuth, tungsten, molybdenum, manganese, nickel, copper, silver, an alkali metal and an alkaline earth metal.
  • the P-type element 10b may include at least one crystal selected from the group consisting of VO 2 and V 2 O 3 .
  • thermoelectric conversion element material 10 may contain glass other than vanadium oxide glass.
  • the amorphous material (this point will be described later with reference to FIG. 3) present at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12 Not limited to amorphous vanadium oxide, it may be an amorphous material composed of another glass material.
  • vanadium oxide glass having no softening point can be used in combination.
  • thermoelectric conversion element material 10 containing vanadium oxide crystallized glass can be produced by applying, for example, a paste containing powdered amorphous vanadium oxide glass onto the electrode 12 and heat treating it. By this heat treatment, the amorphous vanadium oxide glass is crystallized to obtain a vanadium oxide crystallized glass containing vanadium oxide crystals.
  • amorphous vanadium oxide usually remains at the grain boundaries of the obtained vanadium oxide crystal.
  • other arbitrary components can be used together to powder-form vanadium oxide glass to apply
  • the application method at the time of application may be any method.
  • a thick film dry film resist used in the production of a rib of a plasma display panel can be used.
  • a dry photoresist patterned at a position where the thermoelectric conversion element material 10 is to be formed can be placed on the support substrate 11, and the paste can be poured into the patterning and applied.
  • the dry film resist is insulating and has a low thermal conductivity, so that there is an advantage that the removal of the dry film resist which may remain after the preparation of the thermoelectric conversion material is unnecessary.
  • the film to be used may be a thin film laminated and laminated.
  • a high heat resistant resin film such as polyimide can be used.
  • the support substrate 11 supports and fixes the thermoelectric conversion element material 10 and the electrode 12. Specifically, the thermoelectric conversion element material 10 (10a, 10b) is formed to be sandwiched by the support substrate 11 (11a, 11b) to which the electrode 12 (12a, 12b) is fixed.
  • the support substrate 11 is configured of a low temperature side support substrate 11a in contact with a heat sink (not shown) and the like, and a high temperature side support substrate 11b in contact with a heater (not shown) and the like.
  • the support substrate 11 is made of an insulating substrate.
  • a conductive substrate may be used, and in this case, an insulating layer is provided between the conductive substrate and the electrode 11.
  • the support substrate 11 is preferably made of a material excellent in heat conductivity.
  • a substrate for example, a ceramic substrate made of alumina, aluminum nitride or the like, a silicon substrate having an oxide layer, a metal substrate and the like can be mentioned.
  • a substrate for example, a resin substrate or the like
  • excellent in flexibility can also be used.
  • the electrode 12 is configured in a pattern shape in the present embodiment, and connects the thermoelectric conversion element material 10 (the anode and the adjacent cathode) so as to bridge the electromotive force generated in the thermoelectric conversion element material 10 It supplies the external load 20.
  • the electrode 12 a material which hardly reacts with the vanadium oxide glass is used. Specifically, examples thereof include titanium, tungsten, tantalum, chromium, silicon, aluminum, and nitrides, silicides thereof, and alloys thereof.
  • the electrodes 12 may be arranged and fixed to the support substrate 11 in any manner.
  • a metal film can be formed on the support substrate 11 by vapor deposition, sputtering or the like.
  • the formed metal film is patterned into a desired shape by photolithography, etching or the like to form an electrode 12 with a desired shape.
  • the electrode 12 may be formed by printing an electrode pattern on the support substrate 11 using, for example, screen printing, inkjet printing, a dispenser, or the like using a metal paste and baking it.
  • a metal paste used when printing on the support substrate 11 for example, a general-purpose metal paste, a paste composed of a conductive filler and a vanadium oxide glass, and the like can be used. Examples of the metal used include silver, copper and aluminum.
  • thermoelectric conversion element material 10 and the electrode 12 are bonded to a part of the bonding interface by containing an amorphous material (amorphous vanadium oxide in this embodiment). This will be specifically described with reference to FIG.
  • FIG. 3 is (a) a sectional photograph by an electron microscope and (b) a schematic view in the vicinity of the bonding interface between the electrode and the vanadium oxide crystallized glass in the thermoelectric conversion element according to the present embodiment.
  • crystallization 101 (vanadium oxide crystal) contained in the thermoelectric conversion element material 10 is partially abbreviate
  • FIG. 3 shows that vanadium oxide glass is coated on an electrode made of titanium and fired, and then heat treatment is performed in vacuum to form N-type vanadium oxide crystallized glass. is there.
  • thermoelectric conversion element material 10 is configured to include a large number of vanadium oxide crystals 101. However, at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12, an amorphous 102 of vanadium oxide is present. More specifically, in the present embodiment, the thermoelectric conversion element material 10 is joined to the electrode 12 at least through the amorphous 102 of the vanadium oxide contained.
  • thermoelectric conversion element material 10 is [2. Although it mentions later in the manufacturing method of a thermoelectric conversion element, it can form by, for example, forming the layer containing an amorphous vanadium oxide glass on the electrode 12, and heat-processing after that. Therefore, in the thermoelectric conversion module 100 of the present embodiment, the amorphous 102 can be made to exist at the bonding interface by controlling the heating condition at the time of the heat treatment.
  • thermoelectric conversion element material 10 of the present embodiment it is difficult to use the conventional method, for example, by using a low cost process such as screen printing, coating, etc.
  • a low cost process such as screen printing, coating, etc.
  • short element length (height is about 0.1 mm, for example) And so on can be produced.
  • the output density is generally proportional to the amount of heat flowing through the thermoelectric conversion element material as well as the thermoelectric conversion efficiency. Therefore, high output density can be achieved by increasing the heat flux passing through the thermoelectric conversion element material 10 of the present embodiment and forming the small thermoelectric conversion element material 10 at a high density per unit area. .
  • the cost in a manufacturing process is cheap, the power generation unit price can be reduced significantly.
  • thermoelectric conversion element a method of manufacturing a thermoelectric conversion element according to the present embodiment (hereinafter simply referred to as “the manufacturing method of the present embodiment”) will be described with reference to the drawings.
  • the amorphous material contained in the thermoelectric conversion element of this embodiment is preferably amorphous vanadium oxide. Therefore, in the following description, the manufacturing method of the present embodiment will be described by using amorphous vanadium oxide as an example of the amorphous material.
  • the manufacturing method of the present embodiment is formed in the glass layer forming step of forming a vanadium oxide glass layer containing vanadium oxide glass on the electrode 12 disposed and fixed on the support substrate 11 and the glass layer forming step.
  • a vanadium oxide glass layer is heat-treated to form a vanadium oxide crystallized glass layer containing vanadium oxide crystals and an amorphous material (in this embodiment, amorphous vanadium oxide), and And a heat treatment step of causing the amorphous material to exist in at least a part of the bonding interface.
  • a powder of vanadium oxide glass is made into a paste.
  • the powder contains amorphous vanadium oxide glass.
  • the paste is applied on the electrode by, for example, a stencil printing method, a screen printing method, or a patterning method using a thick film resist used in rib production of a plasma display panel. Thereby, a vanadium oxide glass layer containing vanadium oxide glass is formed.
  • the paste to be applied usually comprises vanadium oxide glass and a solvent.
  • a resin binder may be appropriately contained.
  • the particle size of the vanadium oxide glass to be contained is not particularly limited, but in consideration of the coating property at the time of coating, the average particle size is preferably 5 ⁇ m or less.
  • the solvent contained is not particularly limited, but butyl carbitol acetate and ⁇ -terpineol are preferable.
  • the resin binder to be contained is not particularly limited, but ethyl cellulose and nitrocellulose are preferable. However, when ⁇ -terpineol is used as the solvent, the resin binder may not be used.
  • ⁇ Heat treatment process> heat treatment is performed on the formed vanadium oxide glass layer.
  • the conditions of the heat treatment are not particularly limited as long as vanadium oxide crystals can be precipitated in the layer.
  • the substrate coated with the paste is dried at a temperature of about 423 K for 10 minutes to evaporate the solvent.
  • temporary baking is performed at a temperature of about 573 K for 30 minutes to remove the binder, and main baking is performed at a temperature equal to or higher than the softening point Ts of the glass, whereby a vanadium oxide glass layer is formed.
  • main baking is performed at a temperature equal to or higher than the softening point Ts of the glass, whereby a vanadium oxide glass layer is formed.
  • main baking is performed at a temperature equal to or higher than the softening point Ts of the glass, whereby a vanadium oxide glass layer is formed.
  • main baking is performed at a temperature equal to or higher than the softening point Ts of the glass, whereby a vanadium oxide glass layer is
  • the atmosphere during the heat treatment is not particularly limited, but in the case of forming an N-type crystallized vanadium oxide glass, for example, in the air, in vacuum or in an inert gas (nitrogen, argon, etc.) atmosphere is preferable.
  • a reducing atmosphere such as a hydrogen gas atmosphere is preferably used.
  • a glass powder of P and N which has been prepared in advance and another glass powder which softens at a temperature at which the glass powder melts are mixed,
  • the mixed glass powder may be made into a paste by the above method, and it may be applied and fired.
  • thermoelectric conversion module 100 In order to improve the durability of the thermoelectric conversion module 100, it is preferable to seal the ends of the pair of supporting substrates 11a and 11b with glass. Specifically, a glass paste for sealing (or a glass frit for sealing may be applied) is applied to the end portions of the support substrates 11a and 11b, and then it is fired and sealed in an electric furnace. At this time, it is preferable to seal the inside of the thermoelectric conversion module 100 while evacuating from the viewpoint of improving durability and heat insulation. Moreover, you may bake and seal, applying a load.
  • the glass for sealing is a glass excellent in water resistance.
  • thermoelectric conversion element material 10 can be reduced as compared to the case where N-type vanadium oxide crystallized glass is directly generated by heat treatment in vacuum or in an inert gas atmosphere.
  • N-type vanadium oxide crystallized glass can be newly formed continuously.
  • a paste containing vanadium oxide glass is applied onto a part of the electrodes 12 formed on the support substrate 11 and fired in a reducing atmosphere to obtain P-type vanadium oxide crystallized glass
  • the paste is again applied on the electrode at a position separated (for example, adjacent) to the P-type vanadium oxide crystallized glass, and then the whole is fired.
  • heat treatment is performed at a crystallization temperature of the glass in vacuum or in an inert gas atmosphere to form an N-type vanadium oxide crystallized glass.
  • thermoelectric conversion element materials 10 are connected in series so that the polarities of the elements 10 alternate. Thereafter, by firing at a softening point T s a temperature above the glass, it is possible to form the thermoelectric conversion module 100.
  • the supporting substrate 11a in which a plurality of N-type vanadium oxide crystallized glasses are formed on the electrode 12a, and the supporting substrate 11b in which the P-type vanadium oxide crystallized glass is formed on the electrode 12b are separated. Then, the support substrates 11a and 11b are bonded to each other so that the polarities of the thermoelectric conversion element material 10 are alternately connected in series. Thereafter, the same and fired at the softening point T s temperature above the glass, it is possible to form the thermoelectric conversion module 100.
  • thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b may be manufactured by using the same material but by changing the heat treatment conditions.
  • thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b can also be manufactured by using different materials and making the heat treatment conditions the same.
  • thermoelectric conversion element material 10 determination of the polarity (N-type and P-type) of the thermoelectric conversion element material 10 is performed by measuring the Seebeck coefficient of the thermoelectric conversion element material 10 using a Seebeck coefficient measuring machine. I went. If the Seebeck coefficient is positive it is P-type, and if the Seebeck coefficient is negative it is N-type.
  • thermoelectric conversion module containing individually manufactured N-type and P-type thermoelectric conversion element materials
  • Table 1 shows the raw material composition of the glass used, and the characteristic points (glass transition point, deformation point, softening point and crystallization temperature) of the glasses (TE1, TE2, EL1, and EL2) obtained from differential thermal analysis curves.
  • EL1 is sealing glass for sealing the edge part of a thermoelectric conversion module
  • EL2 is glass for electrode formation for forming the electrode provided on a support substrate.
  • the glasses TE1, TE2, EL1 and EL2 were prepared as follows.
  • the composition of the glass melt is uniform in an electric furnace in which 200 g of the mixed material powder having the composition of Table 1 is put in a platinum crucible and heated to 1373 K for TE1 glass and TE2 glass, and 1073 K for EL1 glass and EL2 glass.
  • the mixture was melted for 1 hour while being stirred. Then, it was cooled and solidified on a stainless steel plate heated to 423K to 475K. Furthermore, the melted glass was pulverized to about several ⁇ m by a stamp mill and a jet mill. In addition, it was confirmed by X-ray diffraction that all the glasses were also amorphous.
  • a mixed solution of 50% by mass of ethylcellulose (EC) and butyl carbitol acetate (BCA) (mass ratio of EC to BCA is 4%) is blended with TE2 glass powder having a softening point, and thermoelectric conversion is performed.
  • Glass paste A for device material was prepared.
  • a conductive paste B for electrode formation was prepared.
  • EL2 glass powder shown in Table 1 and silver particles with a particle diameter of several ⁇ m having a volume ratio of 80% with respect to the EL2 glass powder are mixed, and 50 mass% of ethyl cellulose ( A mixed solution of EC and butyl carbitol acetate (BCA) (weight ratio of EC to BCA is 4%) was formulated.
  • a glass paste for sealing upper and lower support substrates an appropriate amount of EL-glass powder having a softening point lower than the softening point of the N-type and P-type crystallized glass powder or the glass powder of the conductive paste.
  • An ⁇ -terpineol solvent was added to prepare a sealing glass paste C.
  • thermoelectric conversion module 100 was produced by the method shown in FIG. An aluminum plate was used as a supporting substrate, and two aluminum substrates 11a and 11b having an alumina layer formed on one surface by anodizing treatment were used. First, conductive paste B was applied by screen printing on an alumina layer (not shown in FIG. 4) formed on the surface of an aluminum substrate. Then, it was dried in the air at a temperature of about 423 K for 10 minutes to volatilize the solvent, and temporarily baked at a temperature of about 573 K for 30 minutes to remove the binder. Thereafter, at a temperature of 740K is the glass softening point T s or more make this baked for 30 minutes, the electrode 12a shown in FIG. 4 (a), to form 12b.
  • the patterned heat-dissipation dry film resist 301 was attached to the surfaces of the support substrates 11a and 11b.
  • the thickness of the film was slightly thicker than the desired thickness of the thermoelectric conversion module in consideration of the volatilization amount of the solvent and the like of the glass paste A.
  • the glass paste A portion indicated by reference numeral 303
  • the sealing glass paste C portion indicated by reference numeral 304
  • the poured portion of the sealing glass paste C is a pattern of the end.
  • the support substrate 11a and the support substrate 11b were separately worked.
  • the support substrate 11a was subjected to heat treatment in the air at a temperature of 823 K for 2 hours in an electric furnace.
  • a thermoelectric conversion element material including N-type vanadium oxide crystallized glass of 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm (height) on the support substrate 11a (corresponding to the first support substrate) 10a was obtained.
  • a sealing layer 305 was also obtained.
  • the dry film resist disappears during heat treatment, so that there is no deformation of the paste end (corner) that occurs when extruding the paste from the mask, which may occur in screen printing, and a thermoelectric conversion module with excellent film thickness uniformity is formed. We were able to.
  • thermoelectric conversion element material 10a was subjected to X-ray diffraction, and Fe 3 Fe 4 (PO 4 ) in addition to V 2 O 5 and Cu x V 2 O (0.26 ⁇ x ⁇ 0.55) 6 , it was found that crystals such as Cu 3 Fe 4 (PO 4 ) 6 , Al 2 CuO 4 , FeAl 2 O 4 (0 ⁇ x ⁇ 1) were precipitated.
  • thermoelectric conversion element material containing 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm (height) of P-type vanadium oxide crystallized glass on the support substrate 11 b (corresponding to the second support substrate) 10b was obtained.
  • the dry film resist 301 stuck on the support substrate 11b remained, it was made to melt
  • thermoelectric conversion element material 10b When X-ray diffraction was performed on the obtained thermoelectric conversion element material 10b, crystals of Fe 2 PO 5 , Fe 2 (PO 4 ) O, V 2 (PO 4 ) O, etc. were precipitated besides V 2 O 3 It turned out that I was doing.
  • thermoelectric conversion module 100 shown in FIG. 4F was obtained.
  • thermoelectric conversion element material 10 The bonding interface between the thermoelectric conversion element material 10 and the electrode 12 of the thermoelectric conversion module 100 was observed using an electron microscope. As a result, many vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. Moreover, since the thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b were separately manufactured, the non-staying could be made better.
  • Example 2 Production of a thermoelectric conversion module including N-type and P-type thermoelectric conversion element materials produced simultaneously]
  • the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion element material 10 b were separately manufactured, but in Example 2, the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion The conversion element material 10b was continuously produced. That is, first, the thermoelectric conversion element material 10b containing P-type vanadium oxide crystallized glass is formed, and the whole is newly fired while maintaining its polarity, and the thermoelectric conversion containing N-type vanadium oxide crystallized glass The element material 10a was formed. The same glass paste A, conductive paste B and sealing glass paste C as used in Example 1 were used.
  • thermoelectric conversion module 200 was produced by the method shown in FIG.
  • a dry film resist 301 patterned was attached onto a support substrate 11a shown in FIG. 5B.
  • every other glass paste A (portion indicated by reference numeral 303) for the thermoelectric conversion element was poured into the pattern 302 in the dry film resist 301.
  • the sealing paste C is poured into the end, nothing is poured at this time.
  • the binder was removed.
  • thermoelectric conversion element material 10 b containing 0.5 mm ⁇ 0.5 mm ⁇ 0.1 mm (height) of P-type vanadium oxide crystallized glass was obtained. .
  • a glass paste A for a thermoelectric conversion element (a portion indicated by reference numeral 303 in FIG. 5 (e)) and a sealing glass paste C (FIG. 5 (e))
  • a portion indicated by reference numeral 304 was poured. Then, in the same manner as in Example 1, the binder was removed.
  • Material 10a was obtained.
  • a sealing layer 305 was also obtained. At this time, even if the support substrate 11a is provided in the vacuum electric path, the polarity of the P-type thermoelectric conversion element material 10b which has already been formed is maintained without changing the polarity of the P-type thermoelectric conversion element material 10b. The remaining dry film resist was dissolved in a solvent and removed.
  • thermoelectric conversion module 200 shown in FIG. 5H was obtained.
  • Example 2 As in Example 1 described above, also in Example 2, the bonding interface between the thermoelectric conversion element material 10 of the thermoelectric conversion module 200 and the electrode 12 was observed using an electron microscope. As a result, a large amount of vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface as in Example 1. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. In addition, since both of the thermoelectric conversion element materials 10a and 10b are manufactured on a single support substrate 11a, positioning at the time of bonding the support substrate 11b can be facilitated.
  • Example 3 Preparation of a thermoelectric conversion module including N-type and P-type thermoelectric conversion element materials simultaneously manufactured.
  • the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion element material 10 b are both formed using the glass paste A. Therefore, in Example 3, the material for the N-type thermoelectric conversion element material 10a and the material for the P-type thermoelectric conversion element material 10b are different, and a thermoelectric conversion module is manufactured in the same manner as in Example 1 above. Three hundred were prepared.
  • the powder of TE1 glass was subjected to heat treatment at a temperature of 823 K for 2 hours in an electric furnace of hydrogen gas flow.
  • a powder of P-type vanadium oxide crystallized glass was obtained.
  • this powder is referred to as "P-type glass powder”.
  • crystals such as Fe 2 PO 5 , Fe 2 (PO 4 ) O, and V 2 (PO 4 ) O were precipitated. I found that.
  • thermoelectric conversion element material 10 A predetermined amount of TE2 glass in Table 1 was mixed with each of the N-type glass powder and the P-type glass powder to obtain a material of the thermoelectric conversion element material 10. Specifically, 10% to 20% by volume of TE2 glass powder is mixed with N-type glass powder, and further, 50% by mass of ethyl cellulose (EC) and butyl carbitol are mixed with these mixed powders.
  • the glass paste D is a material of the N-type thermoelectric conversion element material 10 a.
  • P-type glass powder was similarly compounded to prepare a glass paste E.
  • the glass paste E is a material of the P-type thermoelectric conversion element material 10 b.
  • thermoelectric conversion module 300 was produced by the method shown in FIG.
  • the dry film resist 301 patterned was attached onto the support substrate 11a. Then, in the pattern 302 of the dry resist film 301, as shown in FIG. 6C, the glass paste D (portion indicated by reference numeral 306 in FIG. 6C) and the glass paste E (FIG. 6 (FIG. c) In the middle, a portion indicated by reference numeral 307 is alternately poured. Furthermore, at the end, the sealing glass paste C prepared in Example 1 (the portion indicated by reference numeral 304 in FIG. 6C) was poured.
  • the main baking can also be performed in vacuum or in an inert gas atmosphere.
  • the dry film resist does not disappear but remains, but may remain as described above.
  • thermoelectric conversion module 300 shown in FIG. 6F was obtained.
  • Example 3 As in Example 1 described above, also in Example 3, the bonding interface between the thermoelectric conversion element material 10 of the thermoelectric conversion module 300 and the electrode 12 was observed using an electron microscope. As a result, a large amount of vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface as in Example 1. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. In addition, since both of the thermoelectric conversion element materials 10a and 10b are manufactured on the single support substrate 11a, positioning at the time of bonding the support substrate 11b can be facilitated. In addition, since the thermoelectric conversion element materials 10a and 10b can be manufactured by one heat treatment, the process can be simplified.
  • thermoelectric conversion modules 100, 200, and 300 manufactured in the first to third embodiments each include the N-type thermoelectric conversion element material 10a and the P-type thermoelectric conversion element material 10b. Therefore, as a representative of them, the thermoelectric characteristic evaluation was performed on the thermoelectric conversion module 100 manufactured in the first embodiment.
  • thermoelectric conversion module 100 in which 1000 N-type thermoelectric conversion element materials 10a and 1000 P-type thermoelectric conversion element materials 10b were connected in series was produced. And the produced thermoelectric conversion module 100 was installed as shown in FIG.
  • FIG. 7 is a diagram for explaining a method of evaluating the thermoelectric characteristics of the thermoelectric conversion module manufactured in the first embodiment.
  • FIG. 7 is partially changed and described from the shape of the thermoelectric conversion module 100 shown in FIG.
  • thermoelectric conversion module 100 was placed on the copper block 702, and the heater 701 was placed on the thermoelectric conversion module 100.
  • the copper block 702 is mounted on the heat sink 703. Therefore, the heat from the heater 701 is supplied to the thermoelectric conversion element material 10 from the supporting substrate 11 b side of the thermoelectric conversion module 100. That is, the supporting substrate 11b side is at the high temperature side. On the other hand, the supporting substrate 11a side is at the low temperature side.
  • thermoelectric characteristics were performed as follows.
  • the temperature of the heater 701 was set to 423 K (150 ° C.), and the temperature difference ⁇ T between the support substrates 11 a and 11 b in the thermoelectric conversion module 100 was set to 50 K.
  • the heat flux Q flowing from the thermoelectric conversion module 100 in the direction of the heat sink 703 and the output voltage (electromotive force) P measured by the voltmeter 704 were measured.
  • the heat flux Q was 10 W / cm 2 and the output voltage P was 8V.
  • conversion efficiency ⁇ was calculated based on these values.
  • the thermoelectric conversion module 100 includes the thermoelectric conversion element 12 including amorphous vanadium oxide glass (amorphous material) at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12. Therefore, as described above, downsizing can be achieved, and high output density can be achieved. Furthermore, the unit price of power generation can be significantly reduced.
  • a total of 2000 thermoelectric conversion element materials 10 of P-type and N-type were manufactured, but by further downsizing, for example, about 20,000 total thermoelectric conversion modules are to be manufactured. You can also. As a result, the output density can be further improved, and the conversion efficiency can be further improved.
  • thermoelectric conversion element material thermoelectric conversion element 11a, 11b Supporting substrate 12, 12a, 12b, 12c electrode (thermoelectric conversion element) 100 thermoelectric conversion module 200 thermoelectric conversion module 300 thermoelectric conversion module

Abstract

The present invention provides a thermoelectric conversion module capable of realizing higher power output density than the prior art and a method for manufacturing same. A thermoelectric conversion module characterized in being provided with a supporting substrate, a plurality of thermoelectric conversion element materials and an electrode. The thermoelectric conversion element materials are disposed on the supporting substrate and comprise vanadium oxide crystallized glass containing vanadium oxide crystal and an amorphous material. The electrode, which is disposed on the supporting substrate, interconnects the thermoelectric conversion element materials, and is connected to an external load consuming an electromotive force generated in the thermoelectric conversion element materials. The thermoelectric conversion element materials and the electrode are joined together via at least the amorphous material contained in the thermoelectric conversion element material.

Description

熱電変換モジュール及びその製造方法Thermoelectric conversion module and method of manufacturing the same
 本発明は、熱電変換モジュール及びその製造方法に関する。 The present invention relates to a thermoelectric conversion module and a method of manufacturing the same.
 熱電変換材料は、温度差を与えると発電し(ゼーベック効果)、逆に、電気を流すと冷える(ペルチェ効果)という性質を示すことから、発電素子、冷却素子等の熱電変換素子として利用されている。ゼーベック効果によれば、熱を電気に直接変換することができるため、排熱を利用した発電等が可能であり、熱電変換素子は、クリーンエネルギー技術の1つとして期待されている。熱電変換素子を構成する熱電変換材料としては、例えば、ビスマス-テルル系材料、ビスマス-アンチモン系材料、ビスマス-テルル-アンチモン系材料等が知られている。 The thermoelectric conversion material generates electricity when the temperature difference is given (Seebeck effect) and cools when electricity flows (Peltier effect). Therefore, it is used as a thermoelectric conversion element such as a power generation element or a cooling element. There is. According to the Seebeck effect, since heat can be directly converted to electricity, power generation and the like using exhaust heat can be performed, and a thermoelectric conversion element is expected as one of clean energy technologies. As a thermoelectric conversion material forming the thermoelectric conversion element, for example, a bismuth-tellurium material, a bismuth-antimony material, a bismuth-tellurium-antimony material, etc. are known.
 ゼーベック効果による起電力は、熱電変換素子の高温部と低温部との温度差に比例する。そのため、熱電変換素子を備える熱電変換モジュールにおいては、バルク形の熱電変換素子が用いられることが多い。しかしながら、バルク形の熱電変換素子においては、微細加工が困難であるため、熱電変換素子の小型化が困難なことがある。その結果、電力の出力密度が小さく、発電単価が高くなる。 The electromotive force due to the Seebeck effect is proportional to the temperature difference between the high temperature part and the low temperature part of the thermoelectric conversion element. Therefore, in a thermoelectric conversion module provided with a thermoelectric conversion element, a bulk type thermoelectric conversion element is often used. However, in the case of bulk thermoelectric conversion elements, microfabrication is difficult, and therefore, there are cases where miniaturization of the thermoelectric conversion elements is difficult. As a result, the power output density is low and the unit price of power generation is high.
 そこで、電力の出力密度をあげるため、高効率な熱電変換素子に関する技術が知られている。例えば特許文献1には、直径が1μm以上10μm以下の熱電変換材料粒子と、前記熱電変換材料粒子の周囲を被膜する、平均膜厚1μm以下の被膜層とを有する熱電変換素子が記載されている。 Then, in order to raise the output density of electric power, the technique regarding a highly efficient thermoelectric conversion element is known. For example, Patent Document 1 describes a thermoelectric conversion element having thermoelectric conversion material particles having a diameter of 1 μm to 10 μm and a coating layer having an average film thickness of 1 μm or less, which coats the periphery of the thermoelectric conversion material particles. .
特開2010-225719号公報Unexamined-Japanese-Patent No. 2010-225719
 特許文献1に記載の熱電変換素子においては、結着剤として金属酸化物微粒子を用いている。しかし、このような金属酸化物微粒子は熱電変換能を有さないため、熱電変換効率が低下することがある。また、特許文献1には、熱電変換素子を小型化させて電力の出力密度を向上させることは記載されていない。 In the thermoelectric conversion element described in Patent Document 1, metal oxide fine particles are used as a binder. However, such metal oxide particles do not have the thermoelectric conversion ability, and the thermoelectric conversion efficiency may be lowered. Further, Patent Document 1 does not describe reducing the size of the thermoelectric conversion element to improve the output density of electric power.
 本発明は前記課題に鑑みて為されたものであり、本発明の課題は、電力の出力密度を従来よりも向上可能な熱電変換モジュール及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a thermoelectric conversion module capable of improving the output density of electric power as compared with the prior art and a method of manufacturing the same.
 本発明者らは前記課題を解決するべく鋭意検討を行った。その結果、バナジウム酸化物結晶化ガラスを含む熱電変換素子材料とし、電極と熱電変換素子とを、前記バナジウム酸化物結晶化ガラスに含まれる、少なくとも非晶質のバナジウム酸化物によって接合することで前記課題を解決できることを見出した。 The present inventors diligently studied to solve the above problems. As a result, the thermoelectric conversion element material containing vanadium oxide crystallized glass is used, and the electrode and the thermoelectric conversion element are joined by at least amorphous vanadium oxide contained in the vanadium oxide crystallized glass. I found that I could solve the problem.
 本発明によれば、電力の出力密度を従来よりも向上可能な熱電変換モジュール及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion module which can improve the output density of electric power conventionally can be provided, and its manufacturing method.
本実施形態に係る熱電変換モジュールの斜視図である。It is a perspective view of a thermoelectric conversion module concerning this embodiment. 本実施形態に係る熱電変換素子に用いられるバナジウム酸化物結晶化ガラスに対する示差熱分析の昇温過程で得られるグラフである。It is a graph obtained in the temperature rising process of the differential thermal analysis with respect to the vanadium oxide crystallized glass used for the thermoelectric conversion element which concerns on this embodiment. 本実施形態に係る熱電変換素子における、電極とバナジウム酸化物結晶化ガラスとの接合界面近傍の(a)電子顕微鏡による断面写真及び(b)模式図である。They are a cross-sectional photograph by (a) electron microscope, and the (b) schematic diagram of the junction interface vicinity of the electrode and vanadium oxide crystallized glass in the thermoelectric conversion element which concerns on this embodiment. 第1実施形態に係る熱電変換モジュールの製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 1st Embodiment. 第2実施形態に係る熱電変換モジュールの製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 2nd Embodiment. 第3実施形態に係る熱電変換モジュールの製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric conversion module which concerns on 3rd Embodiment. 実施例1において作製した熱電変換モジュールについての熱電特性評価方法を説明する図である。It is a figure explaining the thermoelectric-characteristics evaluation method about the thermoelectric conversion module produced in Example 1. FIG.
 以下、本発明を実施するための形態(本実施形態)を説明するが、本実施形態は以下の内容に何ら制限されるものでない。 Hereinafter, although the form (this embodiment) for implementing this invention is demonstrated, this embodiment is not restrict | limited at all to the following content.
 はじめに、本実施形態に係る熱電変換素子について説明し、次いで、その製造方法について説明する。また、適宜参照する図は、説明の簡略化及び図示の便宜上、一部の部材を省略又は簡略化して記載したり、発明の要旨を逸脱しない範囲で変更して記載したりすることがある。 First, the thermoelectric conversion element according to the present embodiment will be described, and then a method of manufacturing the same will be described. In the drawings referred to as appropriate, some members may be omitted or simplified for convenience of description and for convenience of illustration, or may be changed or modified without departing from the scope of the invention.
[1.熱電変換素子]
 図1は、本実施形態に係る熱電変換モジュールの斜視図である。本実施形態に係る熱電変換モジュール100は、バナジウム酸化物結晶と非晶質材料とを含むバナジウム酸化物結晶化ガラスを含んで構成される複数の熱電変換素子材料10と、熱電変換素子材料10が支持固定(配置)される支持基板11と、熱電変換素子材料10同士を接続するとともに、熱電変換素子材料10において発生した起電力が消費される外部負荷20に接続される電極12とを備えてなる。なお、熱電変換素子は、熱電変換素子材料10a,10bと電極12とを備えて構成される。
[1. Thermoelectric conversion element]
FIG. 1 is a perspective view of a thermoelectric conversion module according to the present embodiment. The thermoelectric conversion module 100 according to the present embodiment includes a plurality of thermoelectric conversion element materials 10 configured by including vanadium oxide crystallized glass containing vanadium oxide crystals and an amorphous material, and the thermoelectric conversion element material 10. A support substrate 11 to be supported and fixed (arranged), and an electrode 12 connected to the thermoelectric conversion element material 10 and connected to an external load 20 consuming the electromotive force generated in the thermoelectric conversion element material 10 Become. The thermoelectric conversion element is configured to include the thermoelectric conversion element materials 10 a and 10 b and the electrode 12.
 また、本実施形態における熱電変換素子材料10は、前記のようにバナジウム酸化物結晶化ガラスを含んでいるが、バナジウム酸化物結晶化ガラスには、バナジウム酸化物結晶と、非晶質材料としての非晶質のバナジウム酸化物とが含まれている。そして、熱電変換素子材料10と電極12とは、熱電変換素子材料10に含まれる少なくとも前記非晶質材料を介して接合している。 Moreover, although the thermoelectric conversion element material 10 in this embodiment contains the vanadium oxide crystallized glass as mentioned above, the vanadium oxide crystallized glass contains a vanadium oxide crystal and an amorphous material. It contains amorphous vanadium oxide. The thermoelectric conversion element material 10 and the electrode 12 are joined via at least the amorphous material contained in the thermoelectric conversion element material 10.
 なお、詳細は後記するが、本実施形態における熱電変換素子材料10は、N型のバナジウム酸化物結晶化ガラス、又は、P型のバナジウム酸化物結晶化ガラスを含んで構成されるものである。これらのバナジウム酸化物結晶化ガラスは、非晶質のバナジウム酸化物ガラスを所定条件下で熱処理することにより、得ることができる。そして、熱電変換素子材料10を含む熱電変換素子により、熱電変換モジュール100が構成される。 Although details will be described later, the thermoelectric conversion element material 10 in the present embodiment is configured to include N-type vanadium oxide crystallized glass or P-type vanadium oxide crystallized glass. These vanadium oxide crystallized glasses can be obtained by heat treating amorphous vanadium oxide glasses under predetermined conditions. And the thermoelectric conversion module 100 is comprised by the thermoelectric conversion element containing the thermoelectric conversion element material 10.
 図1に示すように、本実施形態に係る熱電変換モジュール100においては、熱電変換素子材料10aと熱電変換素子材料10bとは、支持基板11上に、交互にマトリックス状に配置されている。そして、y方向において、熱電変換素子材料10aのアノードと熱電変換素子材料10bのカソードとが、電極12bを介して電気的に接続され、熱電変換素子材料10aのカソードと熱電変換素子材料10bのアノードとが、電極12bを介して電気的に接続されている。また、y方向の端部においては、熱電変換素子材料10aのアノードとx方向に隣接する熱電変換素子材料10bのカソードとが、電極12bを介して電気的に接続されている。 As shown in FIG. 1, in the thermoelectric conversion module 100 according to the present embodiment, the thermoelectric conversion element materials 10 a and the thermoelectric conversion element materials 10 b are alternately arranged in a matrix on the support substrate 11. Then, in the y direction, the anode of the thermoelectric conversion element material 10a and the cathode of the thermoelectric conversion element material 10b are electrically connected via the electrode 12b, and the cathode of the thermoelectric conversion element material 10a and the anode of the thermoelectric conversion element material 10b And are electrically connected via the electrode 12b. Further, at the end in the y direction, the anode of the thermoelectric conversion element material 10a and the cathode of the thermoelectric conversion element material 10b adjacent in the x direction are electrically connected via the electrode 12b.
<熱電変換素子材料10>
 熱電変換モジュール100に備えられる熱電変換素子材料10は、N型のバナジウム酸化物結晶化ガラスを含んで構成されるN型の熱電変換素子材料(以下、「N型材料」という」)10aと、P型のバナジウム酸化物結晶化ガラスを含んで構成されるP型の熱電変換素子材料(以下、「P型材料」という」)10bとを含んで構成されている。このように、N型材料とP型材料とが併用されることで、より大きな起電力が利用可能になっている。また、これらはいずれも断面矩形状であり、N型材料10aとP型材料10bとは離間して支持基板11に配置固定されている。
 以下、「N型材料10a」と「P型材料10b」とをまとめて「熱電変換素子材料10」と呼称するものとする。
<Thermoelectric conversion element material 10>
The thermoelectric conversion element material 10 included in the thermoelectric conversion module 100 is an N-type thermoelectric conversion element material (hereinafter referred to as “N-type material”) 10 a configured to include N-type vanadium oxide crystallized glass; And P-type thermoelectric conversion element material (hereinafter, referred to as "P-type material") 10b configured to include P-type vanadium oxide crystallized glass. Thus, a larger electromotive force can be used by using the N-type material and the P-type material in combination. In addition, these are all rectangular in cross section, and the N-type material 10 a and the P-type material 10 b are arranged and fixed on the support substrate 11 separately from each other.
Hereinafter, "N-type material 10a" and "P-type material 10b" are collectively referred to as "thermoelectric conversion element material 10".
 N型材料10aは、自由電子を含むN型の半導体である。N型材料10aにおいては、高温側で発生する自由電子が低温の方へ移動するようになっている。これにより、N型材料10aを電流が通流可能になっている。また、P型材料10bは、正孔を含むP型の半導体である。P型材料10bにおいては、含まれる正孔が低温の方へ移動するようになっている。これにより、P型材料10bを電流が通流可能になっている。熱電変換モジュール100においては、N型材料10aとP型材料10bとが電極12(後記する)により接続されることにより、発電が行われるようになっている。発電により得られた起電力は、外部負荷20(抵抗、蓄電池等)において利用されるようになっている。 The N-type material 10 a is an N-type semiconductor containing free electrons. In the N-type material 10a, free electrons generated on the high temperature side move toward the low temperature. As a result, current can flow through the N-type material 10a. The P-type material 10 b is a P-type semiconductor containing holes. In the P-type material 10 b, the contained holes move to a lower temperature. Thus, current can flow through the P-type material 10b. In the thermoelectric conversion module 100, power generation is performed by connecting the N-type material 10a and the P-type material 10b by the electrode 12 (described later). The electromotive force obtained by the power generation is used in the external load 20 (resistor, storage battery, etc.).
 N型材料10aとP型材料10bとは、基板11に固定された電極12により、交互に直列になって接続されている。具体的には、支持基板11aに固定された、電流取出用の負極12c(電極12)の端部に、N型材料10aが固定されている。そして、このN型材料10aは、隣接するP型材料10bに対して、支持基板11bに固定された電極12bにより固定されている。さらに、このP型材料10bは、前記のN型材料10aとは別の隣接するN型材料10aに対して、支持基板11aに固定された電極12aにより固定されている。そして、他の熱電変換素子材料10においても同様にしてN型材料10aとP型材料10bとが直列に接続され、電流取出用の正極12d、及び負極12cから、これらを並列に接続するよりも高い起電力が取り出し可能になっている。 The N-type material 10 a and the P-type material 10 b are alternately connected in series by the electrodes 12 fixed to the substrate 11. Specifically, the N-type material 10a is fixed to the end of the current extraction negative electrode 12c (electrode 12) fixed to the support substrate 11a. The N-type material 10a is fixed to the adjacent P-type material 10b by the electrode 12b fixed to the support substrate 11b. Further, the P-type material 10b is fixed to an adjacent N-type material 10a other than the N-type material 10a by an electrode 12a fixed to a support substrate 11a. Then, similarly to the other thermoelectric conversion element materials 10, the N-type material 10a and the P-type material 10b are connected in series in the same manner, and it is more preferable than connecting the positive electrode 12d and the negative electrode 12c for current extraction in parallel. High electromotive force can be taken out.
 ここで、熱電変換素子材料10に含まれるバナジウム酸化物結晶化ガラスについて、図2を参照しながら説明する。 Here, the vanadium oxide crystallized glass contained in the thermoelectric conversion element material 10 will be described with reference to FIG.
 図2は、熱電変換素子材料10に含まれるバナジウム酸化物結晶化ガラスについて、示差熱分析(DTA)の昇温過程で得られるグラフである。DTA測定は、熱電変換素子材料10に含まれるバナジウム酸化物結晶化ガラス(対象試料)及びα-アルミナ(参照試料)を用い、大気雰囲気で5K/minの昇温速度で行った。測定に供した対象試料及び参照試料の量は、それぞれ650mgとした。 FIG. 2 is a graph obtained in the temperature rising process of differential thermal analysis (DTA) for the vanadium oxide crystallized glass contained in the thermoelectric conversion element material 10. The DTA measurement was performed using a vanadium oxide crystallized glass (target sample) and α-alumina (reference sample) contained in the thermoelectric conversion element material 10 at a temperature rising rate of 5 K / min in the air atmosphere. The amounts of the target sample and the reference sample used for the measurement were each 650 mg.
 本明細書においては、図2に示す、第1吸熱ピークの開始温度をガラス転移点Tg(粘度=1013.3poiseに相当)、該第1吸熱ピークのピーク温度を屈伏点Td(粘度=1011.0poiseに相当)、第2吸熱ピークのピーク温度を軟化点Ts(粘度=107.65poiseに相当)、第1発熱ピークの開始温度を結晶化温度Tcと定義する。なお、それぞれの温度は、接線法によって求められる温度とする。そして、本明細書に記載の特性温度(ガラス転移点Tg、屈伏点Td、軟化点Ts及び結晶化温度Tc)は前記の定義に基づくものである。 In this specification, it is shown in FIG. 2, (corresponding to a viscosity = 10 13.3 poise) first glass transition onset temperature of the endothermic peak T g, yield point T d (viscosity peak temperature of the first endothermic peak = corresponds to 10 11.0 poise), it corresponds to the second softening point peak temperature of the endothermic peak T s (viscosity = 10 7.65 poise), defines the starting temperature of the first exothermic peak crystallization temperature T c. In addition, let each temperature be temperature calculated | required by the tangent method. And, the characteristic temperatures (glass transition point T g , yield point T d , softening point T s and crystallization temperature T c ) described in the present specification are based on the above-mentioned definitions.
 熱電変換素子材料10には、通常は軟化点を有し、結晶化するバナジウム酸化物結晶化ガラスが含まれている。これは、バナジウム酸化物ガラスを軟化点以上、結晶化温度以下で加熱することにより焼成した後、さらに、結晶化温度以上で熱処理することにより、バナジウム酸化物結晶を析出させることで、非晶質と結晶が混在したバナジウム酸化物結晶化ガラス(即ち熱電変換素子材料)とすることが可能である。 The thermoelectric conversion element material 10 contains crystallized vanadium oxide glass which normally has a softening point and is crystallized. This is because the vanadium oxide glass is fired by heating it at a temperature higher than the softening point and lower than the crystallization temperature, and then heat treated at a temperature higher than the crystallization temperature to precipitate vanadium oxide crystals. It is possible to use a vanadium oxide crystallized glass (that is, a thermoelectric conversion element material) in which the crystal and the mixture are mixed.
 本実施形態における熱電変換素子材料10には、前記のように、バナジウム酸化物結晶化ガラスが含まれている。具体的には、熱電変換素子材料10には、バナジウム酸化物結晶と、非晶質材料としての非晶質のバナジウム酸化物とが含まれている。ただし、熱電変換素子材料10に含まれる非晶質材料は非晶質のバナジウム酸化物に何ら限られず、他の材料であってもよい。ただし、比較的低温で軟化流動するため、製造工程が容易になるとともに、熱起電力が発生するという観点から、非晶質材料は非晶質のバナジウム酸化物であることが好ましい。 As described above, the vanadium oxide crystallized glass is contained in the thermoelectric conversion element material 10 in the present embodiment. Specifically, the thermoelectric conversion element material 10 contains a vanadium oxide crystal and an amorphous vanadium oxide as an amorphous material. However, the amorphous material contained in the thermoelectric conversion element material 10 is not limited to amorphous vanadium oxide, and may be another material. However, since the softening flow occurs at a relatively low temperature, the manufacturing process becomes easy, and from the viewpoint of the generation of the thermoelectromotive force, the amorphous material is preferably an amorphous vanadium oxide.
 また、熱電変換素子材料10には、バナジウム酸化物ガラス以外にも、本発明の効果を著しく損なわない範囲で、任意の材料が含まれていてもよい。 In addition to the vanadium oxide glass, the thermoelectric conversion element material 10 may contain any material as long as the effects of the present invention are not significantly impaired.
 具体的には例えば、N型素子10aには、V25、Mx25、M3Fe4(PO46、M2(PO4)O、V2(PO4)O、M2CuO4、MAl24からなる群より選ばれる少なくとも一種の結晶が含まれていてもよい。ただし、Mは、アルミニウム、鉄、ヒ素、アンチモン、ビスマス、タングステン、モリブデン、マンガン、ニッケル、銅、銀、アルカリ金属、アルカリ土類金属のいずれかの金属元素である。また、0<x<1である。また、P型素子10bには、VO2、V23からなる群より選ばれる少なくとも一種の結晶が含まれていてもよい。これらの金属酸化物結晶が含まれることにより、熱電変換素子材料10の電気抵抗を小さくすることができ、電力の出力密度をより向上させることができる。 Specifically, for example, in the N-type element 10a, V 2 O 5 , M x V 2 O 5 , M 3 Fe 4 (PO 4 ) 6 , M 2 (PO 4 ) O, V 2 (PO 4 ) O And at least one crystal selected from the group consisting of M 2 CuO 4 and MAl 2 O 4 . However, M is a metal element of any of aluminum, iron, arsenic, antimony, bismuth, tungsten, molybdenum, manganese, nickel, copper, silver, an alkali metal and an alkaline earth metal. Also, 0 <x <1. In addition, the P-type element 10b may include at least one crystal selected from the group consisting of VO 2 and V 2 O 3 . By including these metal oxide crystals, the electrical resistance of the thermoelectric conversion element material 10 can be reduced, and the power output density can be further improved.
 さらに例えば、熱電変換素子材料10には、バナジウム酸化物ガラス以外のガラスが含まれていてもよい。バナジウム酸化物ガラス以外のガラスが含まれている場合、熱電変換素子材料10と電極12との接合界面に存在する非晶質材料(この点の詳細は、図3を参照しながら後記する)は、非晶質のバナジウム酸化物に限られず、別のガラス材料により構成される非晶質材料でもよい。軟化点を有する別のガラスが含まれる場合、軟化点を有さないバナジウム酸化物ガラスを併用することができる。 Furthermore, for example, the thermoelectric conversion element material 10 may contain glass other than vanadium oxide glass. When glass other than vanadium oxide glass is contained, the amorphous material (this point will be described later with reference to FIG. 3) present at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12 Not limited to amorphous vanadium oxide, it may be an amorphous material composed of another glass material. When another glass having a softening point is included, vanadium oxide glass having no softening point can be used in combination.
 バナジウム酸化物結晶化ガラスを含む熱電変換素子材料10は、粉末状の非晶質のバナジウム酸化物ガラスを含む例えばペーストを電極12上に塗布して、熱処理することで作製することができる。この熱処理により、非晶質のバナジウム酸化物ガラスが結晶化して、バナジウム酸化物結晶を含むバナジウム酸化物結晶化ガラスが得られる。ちなみに、得られたバナジウム酸化物結晶の粒界には、通常、非晶質のバナジウム酸化物が残存する。なお、塗布する、粉末状のバナジウム酸化物ガラスには、他の任意の成分を併用することができる。このような成分としては、例えば、ガラスの流動性、熱膨張を制御するためのフィラー等が挙げられる。 The thermoelectric conversion element material 10 containing vanadium oxide crystallized glass can be produced by applying, for example, a paste containing powdered amorphous vanadium oxide glass onto the electrode 12 and heat treating it. By this heat treatment, the amorphous vanadium oxide glass is crystallized to obtain a vanadium oxide crystallized glass containing vanadium oxide crystals. Incidentally, amorphous vanadium oxide usually remains at the grain boundaries of the obtained vanadium oxide crystal. In addition, other arbitrary components can be used together to powder-form vanadium oxide glass to apply | coat. As such a component, for example, the fluidity of glass, a filler for controlling thermal expansion, and the like can be mentioned.
 塗布時の塗布方法は、どのようにしてもよい。例えばプラズマディスプレイパネルのリブ製造で使われる厚膜のドライフィルムレジストを用いることができる。具体的には、熱電変換素子材料10を形成したい箇所にパターニングしたドライフォトレジストを支持基板11に載置し、パターニング内に前記ペーストを流し込んで塗布することができる。ドライフィルムレジストは絶縁性で低熱伝導率のため、熱電変換材料作製後に残存しうるドライフィルムレジストの除去が不要になるという利点がある。なお、用いられるフィルムは、薄いフィルムを何枚か重ねて貼りあわせたものでもよい。さらに、ドライフィルムレジストの代わりに、ポリイミド等の高耐熱性の樹脂フィルムを用いることもできる。 The application method at the time of application may be any method. For example, a thick film dry film resist used in the production of a rib of a plasma display panel can be used. Specifically, a dry photoresist patterned at a position where the thermoelectric conversion element material 10 is to be formed can be placed on the support substrate 11, and the paste can be poured into the patterning and applied. The dry film resist is insulating and has a low thermal conductivity, so that there is an advantage that the removal of the dry film resist which may remain after the preparation of the thermoelectric conversion material is unnecessary. In addition, the film to be used may be a thin film laminated and laminated. Furthermore, instead of the dry film resist, a high heat resistant resin film such as polyimide can be used.
<支持基板11>
 支持基板11は、熱電変換素子材料10と電極12とを支持固定するものである。具体的には、熱電変換素子材料10(10a,10b)は、電極12(12a,12b)が固定された支持基板11(11a,11b)により挟まれて形成されている。支持基板11は、ヒートシンク(図示しない)等に接触される低温側の支持基板11aと、加熱ヒータ(図示しない)等に接触される高温側の支持基板11bとにより構成される。
<Support substrate 11>
The support substrate 11 supports and fixes the thermoelectric conversion element material 10 and the electrode 12. Specifically, the thermoelectric conversion element material 10 (10a, 10b) is formed to be sandwiched by the support substrate 11 (11a, 11b) to which the electrode 12 (12a, 12b) is fixed. The support substrate 11 is configured of a low temperature side support substrate 11a in contact with a heat sink (not shown) and the like, and a high temperature side support substrate 11b in contact with a heater (not shown) and the like.
 支持基板11は、絶縁性の基板により構成されている。ただし、導電性の基板が用いられてもよく、この場合には、導電性基板と電極11との間に絶縁層が設けられる。さらに、支持基板11は、例えば熱源からの熱を効率よく発電に利用するため、伝熱性に優れた材料により構成することが好ましい。このような基板としては、例えば、アルミナ、窒化アルミニウム等により構成されるセラミックス基板、酸化物層を有するシリコン基板、金属基板等が挙げられる。さらに、熱電変換モジュール100を湾曲させて設置する場合には、可撓性に優れた基板(例えば樹脂基板等)を用いることもできる。 The support substrate 11 is made of an insulating substrate. However, a conductive substrate may be used, and in this case, an insulating layer is provided between the conductive substrate and the electrode 11. Furthermore, in order to efficiently use the heat from the heat source for power generation, for example, the support substrate 11 is preferably made of a material excellent in heat conductivity. As such a substrate, for example, a ceramic substrate made of alumina, aluminum nitride or the like, a silicon substrate having an oxide layer, a metal substrate and the like can be mentioned. Furthermore, when the thermoelectric conversion module 100 is installed by being curved, a substrate (for example, a resin substrate or the like) excellent in flexibility can also be used.
<電極12>
 電極12は、本実施形態においてはパターン形状に構成され、熱電変換素子材料10(アノードと、隣接するカソード)同士を橋渡しするように接続することで、熱電変換素子材料10において発生した起電力を外部負荷20に供給するものである。電極12は、バナジウム酸化物ガラスと反応しにくいものが用いられる。具体的には例えば、チタン、タングステン、タンタル、クロム、ケイ素、アルミニウム、及び、これらの窒化物、ケイ化物、並びに、これらの合金等が挙げられる。ただし、これらの中で抵抗の大きいものを用いる場合、例えば銅、金等の低抵抗の電極層と前記金属からなる層との二層構造の電極が用いられるようにすることが好ましい。
<Electrode 12>
The electrode 12 is configured in a pattern shape in the present embodiment, and connects the thermoelectric conversion element material 10 (the anode and the adjacent cathode) so as to bridge the electromotive force generated in the thermoelectric conversion element material 10 It supplies the external load 20. As the electrode 12, a material which hardly reacts with the vanadium oxide glass is used. Specifically, examples thereof include titanium, tungsten, tantalum, chromium, silicon, aluminum, and nitrides, silicides thereof, and alloys thereof. However, when using the thing with large resistance among these, it is preferable to make it use the electrode of 2 layer structure of the electrode layer of low resistance, such as copper and gold | metal | money, and the layer which consists of said metal, for example.
 電極12は、どのような方法で支持基板11に配置固定されてもよい。例えば、はじめに、金属膜が、蒸着、スパッタ等により支持基板11上に形成されることができる。次いで、形成された金属膜が、フォトリソグラフィ、エッチング等により所望の形状にパターニングすることで、所望の形状の電極12が形成される。 The electrodes 12 may be arranged and fixed to the support substrate 11 in any manner. For example, first, a metal film can be formed on the support substrate 11 by vapor deposition, sputtering or the like. Next, the formed metal film is patterned into a desired shape by photolithography, etching or the like to form an electrode 12 with a desired shape.
 さらには、電極12は、金属ペーストを用い、例えばスクリーン印刷、インクジェット印刷、ディスペンサ等により電極パターンを支持基板11上に印刷し、焼成することで形成するようにしてもよい。この方法において、支持基板11上に印刷する際に用いられる金属ペーストとしては、例えば、汎用の金属ペースト、導電性フィラーとバナジウム酸化物ガラスとからなるペースト等が使用可能である。用いられる金属は、例えば銀、銅、アルミニウムが挙げられる。 Furthermore, the electrode 12 may be formed by printing an electrode pattern on the support substrate 11 using, for example, screen printing, inkjet printing, a dispenser, or the like using a metal paste and baking it. In this method, as a metal paste used when printing on the support substrate 11, for example, a general-purpose metal paste, a paste composed of a conductive filler and a vanadium oxide glass, and the like can be used. Examples of the metal used include silver, copper and aluminum.
 ここで、熱電変換素子材料10と電極12との接合界面について、説明する。熱電変換素子材料10と電極12とは、接合界面の一部に非晶質材料(本実施形態では非晶質のバナジウム酸化物)を含んで接合している。図3を参照しながら、具体的に説明する。 Here, the bonding interface between the thermoelectric conversion element material 10 and the electrode 12 will be described. The thermoelectric conversion element material 10 and the electrode 12 are bonded to a part of the bonding interface by containing an amorphous material (amorphous vanadium oxide in this embodiment). This will be specifically described with reference to FIG.
 図3は、本実施形態に係る熱電変換素子における、電極とバナジウム酸化物結晶化ガラスとの接合界面近傍の(a)電子顕微鏡による断面写真及び(b)模式図である。なお、図3(b)において、図示の簡略化のために、熱電変換素子材料10に含まれる結晶101(バナジウム酸化物結晶)の図示を一部省略している。なお、図3は、一例として、チタンからなる電極上にバナジウム酸化物ガラスを塗布して焼成した後、真空中で熱処理を行って、N型のバナジウム酸化物結晶化ガラスを生成させたものである。 FIG. 3 is (a) a sectional photograph by an electron microscope and (b) a schematic view in the vicinity of the bonding interface between the electrode and the vanadium oxide crystallized glass in the thermoelectric conversion element according to the present embodiment. In addition, in FIG.3 (b), illustration of the crystal | crystallization 101 (vanadium oxide crystal) contained in the thermoelectric conversion element material 10 is partially abbreviate | omitted for the simplification of illustration. As an example, FIG. 3 shows that vanadium oxide glass is coated on an electrode made of titanium and fired, and then heat treatment is performed in vacuum to form N-type vanadium oxide crystallized glass. is there.
 図3に示すように、熱電変換素子材料10は、多くのバナジウム酸化物結晶101を含んで構成されている。しかし、熱電変換素子材料10と電極12との接合界面には、バナジウム酸化物の非晶質102が存在している。より具体的には、本実施形態においては、熱電変換素子材料10は、含まれるバナジウム酸化物の非晶質102を少なくとも介して、電極12と接合している。 As shown in FIG. 3, the thermoelectric conversion element material 10 is configured to include a large number of vanadium oxide crystals 101. However, at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12, an amorphous 102 of vanadium oxide is present. More specifically, in the present embodiment, the thermoelectric conversion element material 10 is joined to the electrode 12 at least through the amorphous 102 of the vanadium oxide contained.
 熱電変換素子材料10は、[2.熱電変換素子の製造方法]において後記するが、例えば非晶質のバナジウム酸化物ガラスを含む層を電極12上に形成し、その後熱処理することで形成することができる。そこで、本実施形態の熱電変換モジュール100においては、この熱処理時の加熱条件を制御することで、接合界面に非晶質102を存在させることができる。 The thermoelectric conversion element material 10 is [2. Although it mentions later in the manufacturing method of a thermoelectric conversion element, it can form by, for example, forming the layer containing an amorphous vanadium oxide glass on the electrode 12, and heat-processing after that. Therefore, in the thermoelectric conversion module 100 of the present embodiment, the amorphous 102 can be made to exist at the bonding interface by controlling the heating condition at the time of the heat treatment.
 このような、本実施形態によれば、例えばスクリーン印刷、塗布等の低コストプロセスを用いて、従来の方法では困難なことがあった、例えば短エレメント長(高さが例えば0.1mm程度)等の小型の熱電変換素子材料10を作製することができる。ここで、出力密度は、通常は、熱電変換効率とともに、熱電変換素子材料に流れる熱量にも比例する。したがって、本実施形態の熱電変換素子材料10を通過する熱流束を増やすこと、及び、単位面積あたりに小さな熱電変換素子材料10を高密度に形成させることにより、高出力密度化を図ることができる。また、製造工程でのコストが安いため、発電単価を大幅に低減することができる。 According to this embodiment, it is difficult to use the conventional method, for example, by using a low cost process such as screen printing, coating, etc. For example, short element length (height is about 0.1 mm, for example) And so on can be produced. Here, the output density is generally proportional to the amount of heat flowing through the thermoelectric conversion element material as well as the thermoelectric conversion efficiency. Therefore, high output density can be achieved by increasing the heat flux passing through the thermoelectric conversion element material 10 of the present embodiment and forming the small thermoelectric conversion element material 10 at a high density per unit area. . Moreover, since the cost in a manufacturing process is cheap, the power generation unit price can be reduced significantly.
[2.熱電変換素子の製造方法]
 次に、本実施形態に係る熱電変換素子の製造方法(以下、単に「本実施形態の製造方法」という)を、図面を参照しながら説明する。なお、前記のように、本実施形態の熱電変換素子に含まれる非晶質材料は、非晶質のバナジウム酸化物が好ましい。そこで、以下の説明においては、非晶質材料として、非晶質バナジウム酸化物を例に本実施形態の製造方法を説明する。
[2. Method of manufacturing thermoelectric conversion element]
Next, a method of manufacturing a thermoelectric conversion element according to the present embodiment (hereinafter simply referred to as “the manufacturing method of the present embodiment”) will be described with reference to the drawings. As described above, the amorphous material contained in the thermoelectric conversion element of this embodiment is preferably amorphous vanadium oxide. Therefore, in the following description, the manufacturing method of the present embodiment will be described by using amorphous vanadium oxide as an example of the amorphous material.
 本実施形態の製造方法は、支持基板11に配置固定された電極12上に、バナジウム酸化物ガラスを含むバナジウム酸化物ガラス層を形成するガラス層形成工程と、前記ガラス層形成工程において形成されたバナジウム酸化物ガラス層を熱処理し、バナジウム酸化物結晶と非晶質材料(本実施形態では、非晶質のバナジウム酸化物)とを含むバナジウム酸化物結晶化ガラス層を形成するとともに、前記電極との接合界面の少なくとも一部に前記非晶質材料を存在させる熱処理工程と、を含むものである。 The manufacturing method of the present embodiment is formed in the glass layer forming step of forming a vanadium oxide glass layer containing vanadium oxide glass on the electrode 12 disposed and fixed on the support substrate 11 and the glass layer forming step. A vanadium oxide glass layer is heat-treated to form a vanadium oxide crystallized glass layer containing vanadium oxide crystals and an amorphous material (in this embodiment, amorphous vanadium oxide), and And a heat treatment step of causing the amorphous material to exist in at least a part of the bonding interface.
<ガラス層形成工程>
 本工程においては、まず、バナジウム酸化物ガラスの粉末をペースト化する。本実施形態においては、この粉末中に、非晶質のバナジウム酸化物ガラスが含まれている。そして、例えばステンシル印刷法、スクリーン印刷法、プラズマディスプレイパネルのリブ製造で使われる厚膜のフィルムレジストを用いたパターニング方法等により、ペーストが電極上に塗布される。これにより、バナジウム酸化物ガラスを含むバナジウム酸化物ガラス層が形成される。
<Glass layer formation process>
In the present step, first, a powder of vanadium oxide glass is made into a paste. In this embodiment, the powder contains amorphous vanadium oxide glass. Then, the paste is applied on the electrode by, for example, a stencil printing method, a screen printing method, or a patterning method using a thick film resist used in rib production of a plasma display panel. Thereby, a vanadium oxide glass layer containing vanadium oxide glass is formed.
 塗布するペーストは、バナジウム酸化物ガラスと溶剤とを通常は含む。さらに、適宜樹脂バインダが含まれていてもよい。含まれるバナジウム酸化物ガラスの粒径は特に制限されないが、塗布時の塗布性を考慮すると、平均粒径として5μm以下とすることが好ましい。さらに、含まれる溶剤も特に制限されないが、ブチルカルビトールアセテート及びα-テルピネオールが好ましい。加えて、含まれる樹脂バインダも特に制限されないが、エチルセルロース及びニトロセルロースが好ましい。ただし、溶剤としてα-テルピネオールを用いた場合には、樹脂バインダを用いなくてもよい。 The paste to be applied usually comprises vanadium oxide glass and a solvent. Furthermore, a resin binder may be appropriately contained. The particle size of the vanadium oxide glass to be contained is not particularly limited, but in consideration of the coating property at the time of coating, the average particle size is preferably 5 μm or less. Further, the solvent contained is not particularly limited, but butyl carbitol acetate and α-terpineol are preferable. In addition, the resin binder to be contained is not particularly limited, but ethyl cellulose and nitrocellulose are preferable. However, when α-terpineol is used as the solvent, the resin binder may not be used.
<熱処理工程>
 本工程においては、形成されたバナジウム酸化物ガラス層に対して、熱処理が行われる。熱処理の条件は、層内にバナジウム酸化物結晶を析出可能な条件であれば特に制限されず、例えば、まず、ペーストを塗布した基板を423K程度の温度で10分間乾燥して溶剤を揮発させる。その後、573K程度の温度で30分間仮焼成してバインダを除去し、ガラスの軟化点Ts以上の温度で本焼成することにより、バナジウム酸化物ガラス層が形成される。さらにその後、結晶化温度Tc以上の温度で熱処理することにより、バナジウム酸化物結晶を含むバナジウム酸化物結晶化ガラスが生成する。ただし、全ての非晶質が結晶化するわけではなく、一部は結晶化せずに残存する。本実施形態においては、非晶質のバナジウム酸化物ガラスを用いているため、非晶質のバナジウム酸化物を介して、電極12と接合するようになる。
<Heat treatment process>
In this step, heat treatment is performed on the formed vanadium oxide glass layer. The conditions of the heat treatment are not particularly limited as long as vanadium oxide crystals can be precipitated in the layer. For example, first, the substrate coated with the paste is dried at a temperature of about 423 K for 10 minutes to evaporate the solvent. Thereafter, temporary baking is performed at a temperature of about 573 K for 30 minutes to remove the binder, and main baking is performed at a temperature equal to or higher than the softening point Ts of the glass, whereby a vanadium oxide glass layer is formed. Furthermore, by heat treatment at a temperature higher than the crystallization temperature Tc, a vanadium oxide crystallized glass containing vanadium oxide crystals is formed. However, not all the amorphous is crystallized, but a part remains without crystallization. In this embodiment, since the amorphous vanadium oxide glass is used, the electrode 12 is joined via the amorphous vanadium oxide.
 熱処理時の雰囲気は特に制限されないが、N型のバナジウム酸化物結晶化ガラスを生成させる場合には、例えば大気中、真空中又は不活性ガス(窒素、アルゴン等)雰囲気とすることが好ましい。また、P型のバナジウム酸化物結晶化ガラスを生成させる場合には、例えば水素ガス雰囲気等の還元性雰囲気とすることが好ましい。還元性雰囲気とすることにより、少なくともバナジウムが3価、4価等の低価数のバナジウム酸化物VO2またはV23を析出させることができる。 The atmosphere during the heat treatment is not particularly limited, but in the case of forming an N-type crystallized vanadium oxide glass, for example, in the air, in vacuum or in an inert gas (nitrogen, argon, etc.) atmosphere is preferable. When P-type vanadium oxide crystallized glass is to be produced, for example, a reducing atmosphere such as a hydrogen gas atmosphere is preferably used. By setting a reducing atmosphere, it is possible to precipitate vanadium oxide VO 2 or V 2 O 3 of low valence such as trivalent or tetravalent at least vanadium.
 軟化点を有さないバナジウム酸化物ガラスを用いる場合には、予め調製したP、N両極性のガラス粉末と、これらのガラス粉末が溶融する温度以下で軟化する別のガラス粉末とを混合し、前記方法により混合ガラス粉末をペースト化して塗布、焼成してもよい。 When using vanadium oxide glass which does not have a softening point, a glass powder of P and N which has been prepared in advance and another glass powder which softens at a temperature at which the glass powder melts are mixed, The mixed glass powder may be made into a paste by the above method, and it may be applied and fired.
 なお、熱電変換モジュール100の耐久性を向上させるために、対となる2枚の支持基板11a,11bの端部をガラス封着することが好ましい。具体的には、支持基板11a,11bの端部に封着用ガラスペースト(封着用ガラスフリットでもよい)を塗布した後、電気炉中で焼成、封着する。このとき、耐久性及び断熱性向上の観点から、熱電変換モジュール100内部を真空引きしながら封着することが好ましい。また、荷重をかけながら焼成、封着してもよい。封着用ガラスペーストに用いるガラスとしては制限されないが、熱電変換素子材料10内のバナジウム酸化物結晶化ガラスが軟化溶融して型崩れしない温度領域で封着可能なガラスを用いることが望ましい。また、封着用のガラスは、耐水性に優れたガラスであることが好ましい。 In order to improve the durability of the thermoelectric conversion module 100, it is preferable to seal the ends of the pair of supporting substrates 11a and 11b with glass. Specifically, a glass paste for sealing (or a glass frit for sealing may be applied) is applied to the end portions of the support substrates 11a and 11b, and then it is fired and sealed in an electric furnace. At this time, it is preferable to seal the inside of the thermoelectric conversion module 100 while evacuating from the viewpoint of improving durability and heat insulation. Moreover, you may bake and seal, applying a load. Although it does not restrict | limit as glass used for the glass paste for sealing, It is desirable to use the glass which can be sealed in the temperature range which the vanadium oxide crystallized glass in the thermoelectric conversion element material 10 softens and melts and loses shape. Moreover, it is preferable that the glass for sealing is a glass excellent in water resistance.
<その他>
 本実施形態の製造方法においては、前記の工程以外にも、任意の工程を含めることができる。例えば、一旦、還元雰囲気で熱処理によりP型のバナジウム酸化物結晶化ガラスを生成させた後、真空中又は不活性ガス雰囲気で熱処理により、P型のバナジウム酸化物結晶化ガラスをN型のバナジウム酸化物結晶化ガラスに変換することもできる。この場合、真空中又は不活性ガス雰囲気での熱処理により、直接、N型のバナジウム酸化物結晶化ガラスを生成させた場合に比べ、熱電変換素子材料10の電気抵抗を低減させることができる。
<Others>
In the manufacturing method of this embodiment, arbitrary processes can be included besides the above-mentioned process. For example, once P-type vanadium oxide crystallized glass is formed by heat treatment in a reducing atmosphere, then P-type vanadium oxide crystallized glass is oxidized to N-type vanadium oxide by heat treatment in vacuum or in an inert gas atmosphere. It can also be converted to crystallized glass. In this case, the electric resistance of the thermoelectric conversion element material 10 can be reduced as compared to the case where N-type vanadium oxide crystallized glass is directly generated by heat treatment in vacuum or in an inert gas atmosphere.
 また、P型のバナジウム酸化物結晶化ガラスを生成させた後、連続して、新たにN型のバナジウム酸化物結晶化ガラスを生成させることもできる。具体的には例えば、支持基板11上に形成された一部の電極12上にバナジウム酸化物ガラスを含むペーストを塗布して還元性雰囲気で焼成することにより、P型のバナジウム酸化物結晶化ガラスを生成させた後、P型のバナジウム酸化物結晶化ガラスと離間(例えば隣接)する位置に、再度、ペーストを電極上に塗布した後、全体を焼成する。その後、真空中又は不活性ガス雰囲気でガラスの結晶化温度で熱処理を行い、N型のバナジウム酸化物結晶化ガラスを生成させる。このとき、前記P型のバナジウム酸化物結晶化ガラスの極性は変化せず、P型のままである。次に、電極が形成された新たな支持基板をその上に重ね合わせる。このとき、熱電変換素子材料10の極性が交互になるように、直列に接続されるようにする。その後、ガラスの軟化点Ts以上の温度で焼成することで、熱電変換モジュール100を形成することができる。 In addition, after P-type vanadium oxide crystallized glass is formed, N-type vanadium oxide crystallized glass can be newly formed continuously. Specifically, for example, a paste containing vanadium oxide glass is applied onto a part of the electrodes 12 formed on the support substrate 11 and fired in a reducing atmosphere to obtain P-type vanadium oxide crystallized glass The paste is again applied on the electrode at a position separated (for example, adjacent) to the P-type vanadium oxide crystallized glass, and then the whole is fired. Thereafter, heat treatment is performed at a crystallization temperature of the glass in vacuum or in an inert gas atmosphere to form an N-type vanadium oxide crystallized glass. At this time, the polarity of the P-type vanadium oxide crystallized glass does not change and remains P-type. Next, a new support substrate on which an electrode is formed is superimposed on it. At this time, the thermoelectric conversion element materials 10 are connected in series so that the polarities of the elements 10 alternate. Thereafter, by firing at a softening point T s a temperature above the glass, it is possible to form the thermoelectric conversion module 100.
 さらに、例えば、電極12a上に複数のN型のバナジウム酸化物結晶化ガラスを形成させた支持基板11aと、電極12b上にP型のバナジウム酸化物結晶化ガラスを形成させた支持基板11bを別々に作製した後、支持基板11a,11bを貼り合せ、熱電変換素子材料10の極性が交互に直列接続されるようにする。その後、前記同様、ガラスの軟化点Ts以上の温度で焼成することで、熱電変換モジュール100を形成することができる。 Furthermore, for example, the supporting substrate 11a in which a plurality of N-type vanadium oxide crystallized glasses are formed on the electrode 12a, and the supporting substrate 11b in which the P-type vanadium oxide crystallized glass is formed on the electrode 12b are separated. Then, the support substrates 11a and 11b are bonded to each other so that the polarities of the thermoelectric conversion element material 10 are alternately connected in series. Thereafter, the same and fired at the softening point T s temperature above the glass, it is possible to form the thermoelectric conversion module 100.
 また、熱電変換素子材料10aと熱電変換素子材料10bとは、同じ材料を用いて、熱処理条件を異なるものとすることで、作製するようにしてもよい。一方で、熱電変換素子材料10aと熱電変換素子材料10bとは、異なる材料を用いて、熱処理条件を同じものとすることでも、作製することができる。 Further, the thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b may be manufactured by using the same material but by changing the heat treatment conditions. On the other hand, the thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b can also be manufactured by using different materials and making the heat treatment conditions the same.
 次に、本発明を、実施例を挙げてより詳細に説明する。ただし、本発明は以下の実施例に何ら限定されるものではない。
 なお、以下の記載において、熱電変換素子材料10の極性(N型及びP型)の判断は、ゼーベック係数測定機を用いて熱電変換素子材料10のゼーベック係数を測定し、ゼーベック係数の正負に基づいて行った。ゼーベック係数が正であればP型であり、ゼーベック係数が負であればN型である。
The invention will now be described in more detail by way of examples. However, the present invention is not limited to the following examples.
In the following description, determination of the polarity (N-type and P-type) of the thermoelectric conversion element material 10 is performed by measuring the Seebeck coefficient of the thermoelectric conversion element material 10 using a Seebeck coefficient measuring machine. I went. If the Seebeck coefficient is positive it is P-type, and if the Seebeck coefficient is negative it is N-type.
[1.実施例1:個別に作製されたN型及びP型の熱電変換素子材料を含む熱電変換モジュールの作製]
<ペーストの調製>
 表1に、使用したガラスの原料組成、及び示差熱分析曲線から求めたガラス(TE1、TE2、EL1及びEL2)の特性点(ガラス転移点、屈伏点、軟化点及び結晶化温度)を示す。なお、EL1は、熱電変換モジュールの端部を封止するための封着用ガラス、EL2は、支持基板上に設けられる電極を形成するための電極形成用ガラスである。
Figure JPOXMLDOC01-appb-T000001
[1. Example 1: Preparation of a thermoelectric conversion module containing individually manufactured N-type and P-type thermoelectric conversion element materials]
<Preparation of paste>
Table 1 shows the raw material composition of the glass used, and the characteristic points (glass transition point, deformation point, softening point and crystallization temperature) of the glasses (TE1, TE2, EL1, and EL2) obtained from differential thermal analysis curves. In addition, EL1 is sealing glass for sealing the edge part of a thermoelectric conversion module, EL2 is glass for electrode formation for forming the electrode provided on a support substrate.
Figure JPOXMLDOC01-appb-T000001
 ガラスTE1、TE2、EL1及びEL2は、以下のようにして調製した。表1の組成の200gの混合原料粉を白金ルツボに入れ、TE1ガラス及びTE2ガラスの場合は1373K、EL1ガラス及びEL2ガラスの場合は1073Kに加熱した電気炉中で、ガラス溶融物の組成が均一になるように撹拌しながら1時間溶融した。その後、423K~475Kに加熱しておいたステンレス板上で冷却固化させた。さらに、溶解したガラスをスタンプミル及びジェットミルにより数μm程度まで微粉砕した。なお、いずれのガラスも非晶質になっていることをX線回折により確認した。 The glasses TE1, TE2, EL1 and EL2 were prepared as follows. The composition of the glass melt is uniform in an electric furnace in which 200 g of the mixed material powder having the composition of Table 1 is put in a platinum crucible and heated to 1373 K for TE1 glass and TE2 glass, and 1073 K for EL1 glass and EL2 glass. The mixture was melted for 1 hour while being stirred. Then, it was cooled and solidified on a stainless steel plate heated to 423K to 475K. Furthermore, the melted glass was pulverized to about several μm by a stamp mill and a jet mill. In addition, it was confirmed by X-ray diffraction that all the glasses were also amorphous.
 次いで、軟化点を有するTE2ガラス粉末に対して、50質量%のエチルセルロース(EC)とブチルカルビトールアセテート(BCA)との混合溶液(ECのBCAに対する質量比は4%)を配合し、熱電変換素子材料用のガラスペーストAを調製した。また、電極形成用の導電性ペーストBを調製した。具体的には、表1に示すEL2ガラス粉末と、EL2ガラス粉末に対する体積割合が80%の粒径数μmの銀粒子とを混合し、これらの混合粉末に対して、50質量%のエチルセルロース(EC)とブチルカルビトールアセテート(BCA)との混合溶液(ECのBCAに対する重量比は4%)を配合して調製した。 Next, a mixed solution of 50% by mass of ethylcellulose (EC) and butyl carbitol acetate (BCA) (mass ratio of EC to BCA is 4%) is blended with TE2 glass powder having a softening point, and thermoelectric conversion is performed. Glass paste A for device material was prepared. In addition, a conductive paste B for electrode formation was prepared. Specifically, EL2 glass powder shown in Table 1 and silver particles with a particle diameter of several μm having a volume ratio of 80% with respect to the EL2 glass powder are mixed, and 50 mass% of ethyl cellulose ( A mixed solution of EC and butyl carbitol acetate (BCA) (weight ratio of EC to BCA is 4%) was formulated.
 また、上下支持基板同士を封着するためのガラスペーストとして、前記N型、P型の結晶化ガラス粉末や前記導電性ペーストのガラス粉末の軟化点よりも低い軟化点を有するEL1ガラス粉末に適量のα-テルピネオール溶剤を添加して、封着用ガラスペーストCを調製した。 In addition, as a glass paste for sealing upper and lower support substrates, an appropriate amount of EL-glass powder having a softening point lower than the softening point of the N-type and P-type crystallized glass powder or the glass powder of the conductive paste. An α-terpineol solvent was added to prepare a sealing glass paste C.
<熱電変換モジュール100の製造工程>
 熱電変換モジュール100は、図4に示す方法によって作製した。支持基板としてアルミニウム板を用い、アルマイト処理により片側表面にアルミナ層を形成した、2枚のアルミニウム基板11a,11bを用いた。まず、アルミニウム基板表面に形成されたアルミナ層(図4では図示しない)上に、スクリーン印刷により導電性ペーストBを塗布した。そして、大気中で423K程度の温度で10分間乾燥して溶剤を揮発させ、573K程度の温度で30分間仮焼成してバインダを除去した。その後、ガラス軟化点Ts以上である740Kの温度で30分間本焼成を行い、図4(a)に示す電極12a,12bを形成した。
<Manufacturing process of thermoelectric conversion module 100>
The thermoelectric conversion module 100 was produced by the method shown in FIG. An aluminum plate was used as a supporting substrate, and two aluminum substrates 11a and 11b having an alumina layer formed on one surface by anodizing treatment were used. First, conductive paste B was applied by screen printing on an alumina layer (not shown in FIG. 4) formed on the surface of an aluminum substrate. Then, it was dried in the air at a temperature of about 423 K for 10 minutes to volatilize the solvent, and temporarily baked at a temperature of about 573 K for 30 minutes to remove the binder. Thereafter, at a temperature of 740K is the glass softening point T s or more make this baked for 30 minutes, the electrode 12a shown in FIG. 4 (a), to form 12b.
 次に、図4(b)に示すように、支持基板11a,11bの表面に、パターニングされた熱消失型のドライフィルムレジスト301を貼り付けた。フィルムの厚みは、ガラスペーストAの溶剤等が揮発する量を考慮して、所望の熱電変換モジュールの厚みより少し厚くした。 Next, as shown in FIG. 4B, the patterned heat-dissipation dry film resist 301 was attached to the surfaces of the support substrates 11a and 11b. The thickness of the film was slightly thicker than the desired thickness of the thermoelectric conversion module in consideration of the volatilization amount of the solvent and the like of the glass paste A.
 そして、ドライフィルムレジスト301のパターン302内に、図4(c)に示すように、ガラスペーストA(符号303で示される部分)及び封着用ガラスペーストC(符号304で示される部分)をそれぞれ流し込んだ。ここで、封着用ガラスペーストCの流し込んだ部分は端部のパターンである。その後、大気中で423K程度の温度で10分間乾燥して溶剤を揮発させ、573K程度の温度で30分間仮焼成してバインダを除去した。 Then, as shown in FIG. 4C, the glass paste A (portion indicated by reference numeral 303) and the sealing glass paste C (portion indicated by reference numeral 304) are poured into the pattern 302 of the dry film resist 301. It is. Here, the poured portion of the sealing glass paste C is a pattern of the end. Then, it was dried at a temperature of about 423 K in the air for 10 minutes to volatilize the solvent, and temporarily baked at a temperature of about 573 K for 30 minutes to remove the binder.
 以下の工程においては、支持基板11aと支持基板11bとで別々に作業した。まず、支持基板11aに関しては、電気炉により、温度823Kで2時間の大気中熱処理を施した。これにより、支持基板11a(第1の支持基板に相当)上に、0.5mm×0.5mm×0.1mm(高さ)の、N型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10aが得られた。また、封着層305も併せて得られた。 In the following steps, the support substrate 11a and the support substrate 11b were separately worked. First, the support substrate 11a was subjected to heat treatment in the air at a temperature of 823 K for 2 hours in an electric furnace. Thereby, a thermoelectric conversion element material including N-type vanadium oxide crystallized glass of 0.5 mm × 0.5 mm × 0.1 mm (height) on the support substrate 11a (corresponding to the first support substrate) 10a was obtained. In addition, a sealing layer 305 was also obtained.
 ドライフィルムレジストは熱処理時に消失するため、スクリーン印刷に発生しうる、マスクからペーストを押し出すときに発生するペースト端部(角)の形状崩れがなく、膜厚均一性の優れた熱電変換モジュールを形成することができた。 The dry film resist disappears during heat treatment, so that there is no deformation of the paste end (corner) that occurs when extruding the paste from the mask, which may occur in screen printing, and a thermoelectric conversion module with excellent film thickness uniformity is formed. We were able to.
 得られた熱電変換素子材料10aについてX線回折を行ったところ、V25、Cux2O(0.26<x<0.55)の他に、Fe3Fe4(PO46、Cu3Fe4(PO46、Al2CuO4、FeAl24(0<x<1)等の結晶が析出していることがわかった。 The obtained thermoelectric conversion element material 10a was subjected to X-ray diffraction, and Fe 3 Fe 4 (PO 4 ) in addition to V 2 O 5 and Cu x V 2 O (0.26 <x <0.55) 6 , it was found that crystals such as Cu 3 Fe 4 (PO 4 ) 6 , Al 2 CuO 4 , FeAl 2 O 4 (0 <x <1) were precipitated.
 次に、支持基板11bに関しては、水素ガスフロー(還元性雰囲気)の電気炉により、温度823Kで2時間の熱処理を施した。これにより、支持基板11b(第2の支持基板に相当)上に、0.5mm×0.5mm×0.1mm(高さ)の、P型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10bが得られた。なお、支持基板11bに貼り付けたドライフィルムレジスト301が残存していたため、有機溶剤により溶解させて除去した。 Next, with respect to the support substrate 11b, heat treatment was performed for 2 hours at a temperature of 823 K in a hydrogen gas flow (reducing atmosphere) electric furnace. Thus, a thermoelectric conversion element material containing 0.5 mm × 0.5 mm × 0.1 mm (height) of P-type vanadium oxide crystallized glass on the support substrate 11 b (corresponding to the second support substrate) 10b was obtained. In addition, since the dry film resist 301 stuck on the support substrate 11b remained, it was made to melt | dissolve and remove with the organic solvent.
 得られた熱電変換素子材料10bについてX線回折を行ったところ、V23の他に、Fe2PO5、Fe2(PO4)O、V2(PO4)O等の結晶が析出していることがわかった。 When X-ray diffraction was performed on the obtained thermoelectric conversion element material 10b, crystals of Fe 2 PO 5 , Fe 2 (PO 4 ) O, V 2 (PO 4 ) O, etc. were precipitated besides V 2 O 3 It turned out that I was doing.
 最後に図4(e)に示すように、N型の熱電変換素子材料10aとP型の熱電変換素子材料10bとが交互に直列に接続されるように、支持基板11aと支持基板11bとを張り合わせた。そして、真空引きしながら、TE2ガラスとEL1ガラスの軟化点Ts以上の640Kで30分間本焼成を行った。これにより、図4(f)に示す熱電変換モジュール100が得られた。 Finally, as shown in FIG. 4 (e), the supporting substrate 11a and the supporting substrate 11b are connected so that the N-type thermoelectric conversion element material 10a and the P-type thermoelectric conversion element material 10b are alternately connected in series. I put it together. Then, main firing was performed for 30 minutes at 640 K which is equal to or higher than the softening point T s of the TE 2 glass and the EL 1 glass while vacuuming. Thereby, the thermoelectric conversion module 100 shown in FIG. 4F was obtained.
 熱電変換モジュール100の熱電変換素子材料10と電極12との接合界面を、電子顕微鏡を用いて観察した。その結果、バナジウム酸化物結晶が多く観察されたが、接合界面の一部において、非晶質のバナジウム酸化物と電極12とが接合していることがわかった。これにより、前記したように小型化を図ることができ、高出力密度化を図ることができることがわかった。さらに、発電単価を大幅に低減することができることがわかった。また、熱電変換素子材料10aと熱電変換素子材料10bとを別々に作製しているため、不留まりをより良好にすることができた。 The bonding interface between the thermoelectric conversion element material 10 and the electrode 12 of the thermoelectric conversion module 100 was observed using an electron microscope. As a result, many vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. Moreover, since the thermoelectric conversion element material 10a and the thermoelectric conversion element material 10b were separately manufactured, the non-staying could be made better.
[2.実施例2:同時に作製されたN型及びP型の熱電変換素子材料を含む熱電変換モジュールの作製]
 前記の実施例1では、N型の熱電変換素子材料10aとP型の熱電変換素子材料10bとを別々に作製したが、実施例2では、N型の熱電変換素子材料10aとP型の熱電変換素子材料10bとを連続的に作製した。即ち、はじめにP型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10bを形成し、その極性を維持した状態で新たに全体を焼成し、N型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10aを形成した。
 なお、ガラスペーストA、導電性ペーストB及び封着用ガラスペーストCは、実施例1で調製したものと同じものを用いた。
[2. Example 2: Production of a thermoelectric conversion module including N-type and P-type thermoelectric conversion element materials produced simultaneously]
In Example 1 described above, the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion element material 10 b were separately manufactured, but in Example 2, the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion The conversion element material 10b was continuously produced. That is, first, the thermoelectric conversion element material 10b containing P-type vanadium oxide crystallized glass is formed, and the whole is newly fired while maintaining its polarity, and the thermoelectric conversion containing N-type vanadium oxide crystallized glass The element material 10a was formed.
The same glass paste A, conductive paste B and sealing glass paste C as used in Example 1 were used.
<熱電変換モジュール200の製造工程>
 熱電変換モジュール200は、図5に示す方法によって作製した。
<Manufacturing process of thermoelectric conversion module 200>
The thermoelectric conversion module 200 was produced by the method shown in FIG.
 はじめに、前記した実施例1と同様にして、図5(b)に示す、支持基板11a上に、パターニングされたドライフィルムレジスト301を貼り付けた。次いで、ドライフィルムレジスト301におけるパターン302内に、図5(c)に示すように、1つおきに熱電変換素子用のガラスペーストA(符号303で示される部分)を流し込んだ。なお、端部には封着用ペーストCを流し込むため、この時点では何も流し込んでいない。そして、実施例1と同様にしてバインダを除去した。 First, in the same manner as in Example 1 described above, a dry film resist 301 patterned was attached onto a support substrate 11a shown in FIG. 5B. Next, as shown in FIG. 5C, every other glass paste A (portion indicated by reference numeral 303) for the thermoelectric conversion element was poured into the pattern 302 in the dry film resist 301. In addition, since the sealing paste C is poured into the end, nothing is poured at this time. Then, in the same manner as in Example 1, the binder was removed.
 そして、水素ガスフロー(還元性雰囲気)の電気炉により、温度823Kで2時間の熱処理を施した。これにより、図5(d)に示すように、0.5mm×0.5mm×0.1mm(高さ)の、P型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10bが得られた。 Then, heat treatment was performed at a temperature of 823 K for 2 hours in an electric furnace of hydrogen gas flow (reducing atmosphere). As a result, as shown in FIG. 5 (d), a thermoelectric conversion element material 10 b containing 0.5 mm × 0.5 mm × 0.1 mm (height) of P-type vanadium oxide crystallized glass was obtained. .
 次に、ドライレジストフィルム301の残りのパターン302内に、熱電変換素子用のガラスペーストA(図5(e)中、符号303で示される部分)及び封着用ガラスペーストC(図5(e)中、符号304で示される部分)を流し込んだ。そして、実施例1と同様にしてバインダを除去した。 Next, in the remaining pattern 302 of the dry resist film 301, a glass paste A for a thermoelectric conversion element (a portion indicated by reference numeral 303 in FIG. 5 (e)) and a sealing glass paste C (FIG. 5 (e)) In the middle, a portion indicated by reference numeral 304 was poured. Then, in the same manner as in Example 1, the binder was removed.
 そして、10-6Pa台の真空電気炉により、温度823Kで2時間の熱処理を施した。これにより、図5(f)に示すように、支持基板11a上に、0.5mm×0.5mm×0.1mm(高さ)の、N型のバナジウム酸化物結晶化ガラスを含む熱電変換素子材料10aが得られた。また、封着層305も併せて得られた。このとき、真空電気路に支持基板11aを供しても、既に形成されていたP型の熱電変換素子材料10bの極性は変化することなく、熱電変換素子材料10bの極性は維持されていた。なお、残存したドライフィルムレジストを溶剤により溶解して除去した。 Then, heat treatment was performed for 2 hours at a temperature of 823 K in a vacuum electric furnace of 10 -6 Pa or so. As a result, as shown in FIG. 5 (f), a thermoelectric conversion element containing N-type vanadium oxide crystallized glass of 0.5 mm × 0.5 mm × 0.1 mm (height) on the support substrate 11a. Material 10a was obtained. In addition, a sealing layer 305 was also obtained. At this time, even if the support substrate 11a is provided in the vacuum electric path, the polarity of the P-type thermoelectric conversion element material 10b which has already been formed is maintained without changing the polarity of the P-type thermoelectric conversion element material 10b. The remaining dry film resist was dissolved in a solvent and removed.
 最後に図5(g)に示すように、支持基板11aと支持基板11bとを張り合わせた。そして、真空引きしながら、TE2ガラスとEL1ガラスの軟化点Ts以上の640Kで30分間本焼成を行った。これにより、図5(h)に示す熱電変換モジュール200が得られた。 Finally, as shown in FIG. 5 (g), the support substrate 11a and the support substrate 11b were pasted together. Then, main firing was performed for 30 minutes at 640 K which is equal to or higher than the softening point T s of the TE 2 glass and the EL 1 glass while vacuuming. Thereby, the thermoelectric conversion module 200 shown in FIG. 5H was obtained.
 前記の実施例1と同様、実施例2においても、熱電変換モジュール200の熱電変換素子材料10と電極12との接合界面を、電子顕微鏡を用いて観察した。その結果、バナジウム酸化物結晶が多く観察されたが、接合界面の一部において実施例1と同様、非晶質のバナジウム酸化物と電極12とが接合していることがわかった。これにより、前記したように小型化を図ることができ、高出力密度化を図ることができることがわかった。さらに、発電単価を大幅に低減することができることがわかった。また、熱電変換素子材料10a,10bの両方を単一の支持基板11a上で作製するため、支持基板11bを貼り合わせる際の位置決めを容易にすることができた。 As in Example 1 described above, also in Example 2, the bonding interface between the thermoelectric conversion element material 10 of the thermoelectric conversion module 200 and the electrode 12 was observed using an electron microscope. As a result, a large amount of vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface as in Example 1. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. In addition, since both of the thermoelectric conversion element materials 10a and 10b are manufactured on a single support substrate 11a, positioning at the time of bonding the support substrate 11b can be facilitated.
[3.実施例3:同時に作製されたN型及びP型の熱電変換素子材料を含む熱電変換モジュールの作製]
 前記の実施例1や実施例2においては、N型の熱電変換素子材料10aとP型の熱電変換素子材料10bとは、いずれも、ガラスペーストAを用いて形成されている。そこで、実施例3では、N型の熱電変換素子材料10a用の材料とP型の熱電変換素子材料10b用の材料とを異なるものとし、前記の実施例1と同様の方法により、熱電変換モジュール300を作製した。
[3. Example 3: Preparation of a thermoelectric conversion module including N-type and P-type thermoelectric conversion element materials simultaneously manufactured]
In Example 1 and Example 2 described above, the N-type thermoelectric conversion element material 10 a and the P-type thermoelectric conversion element material 10 b are both formed using the glass paste A. Therefore, in Example 3, the material for the N-type thermoelectric conversion element material 10a and the material for the P-type thermoelectric conversion element material 10b are different, and a thermoelectric conversion module is manufactured in the same manner as in Example 1 above. Three hundred were prepared.
<N型の熱電変換素子用材料のガラスペーストD、及び、P型の熱電変換素子用材料のガラスペーストEの調製>
 はじめに、表1に示したTE1ガラスの粉末を10-5Pa台の真空度の電気炉により、温度823Kで2時間の熱処理を施した。これにより、N型のバナジウム酸化物結晶化ガラスの粉末が得られた。以下、この粉末を「N型ガラス粉末」という。得られたN型ガラス粉末についてX線回折を行ったところ、V25、Cux2O(0.26 <x<0.55)の他に、Fe3Fe4(PO46、Cu3Fe4(PO46、Al2CuO4、FeAl24(0<x<1)等の結晶が析出していることがわかった。
<Preparation of Glass Paste D of N-Type Thermoelectric Conversion Element Material and Glass Paste E of P-Type Thermoelectric Conversion Element Material>
First, the powder of TE1 glass shown in Table 1 was subjected to heat treatment at a temperature of 823 K for 2 hours in an electric furnace at a degree of vacuum of 10 -5 Pa or so. Thus, a powder of N-type vanadium oxide crystallized glass was obtained. Hereinafter, this powder is referred to as "N-type glass powder". When X-ray diffraction was performed on the obtained N-type glass powder, Fe 3 Fe 4 (PO 4 ) 6 in addition to V 2 O 5 and Cu x V 2 O (0.26 <x <0.55) was obtained. It was found that crystals such as Cu 3 Fe 4 (PO 4 ) 6 , Al 2 CuO 4 , FeAl 2 O 4 (0 <x <1) were precipitated.
 また、TE1ガラスの粉末を水素ガスフローの電気炉により、温度823Kで2時間の熱処理を施した。これにより、P型のバナジウム酸化物結晶化ガラスの粉末が得られた。以下、この粉末を「P型ガラス粉末」という。得られたP型ガラス粉末についてX線回折を行ったところ、V23の他に、Fe2PO5、Fe2(PO4)O、V2(PO4)O等の結晶が析出していることがわかった。 Further, the powder of TE1 glass was subjected to heat treatment at a temperature of 823 K for 2 hours in an electric furnace of hydrogen gas flow. Thus, a powder of P-type vanadium oxide crystallized glass was obtained. Hereinafter, this powder is referred to as "P-type glass powder". When X-ray diffraction was performed on the obtained P-type glass powder, in addition to V 2 O 3 , crystals such as Fe 2 PO 5 , Fe 2 (PO 4 ) O, and V 2 (PO 4 ) O were precipitated. I found that.
 N型ガラス粉末及びP型ガラス粉末のそれぞれに対して、表1のTE2ガラスを所定量混合し、熱電変換素子材料10の材料とした。具体的には、まず、N型ガラス粉末に対してTE2ガラス粉末を体積比で10%~20%混合し、さらに、これらの混合粉末に対して50質量%のエチルセルロース(EC)とブチルカルビトールアセテート(BCA)との混合溶液(ECのBCAに対する重量比は4%)を配合したガラスペーストDを調製した。ガラスペーストDは、N型の熱電変換素子材料10aの材料となる。さらに、P型ガラス粉末についても同様にして配合を行い、ガラスペーストEを調製した。ガラスペーストEは、P型の熱電変換素子材料10bの材料となる。 A predetermined amount of TE2 glass in Table 1 was mixed with each of the N-type glass powder and the P-type glass powder to obtain a material of the thermoelectric conversion element material 10. Specifically, 10% to 20% by volume of TE2 glass powder is mixed with N-type glass powder, and further, 50% by mass of ethyl cellulose (EC) and butyl carbitol are mixed with these mixed powders. The glass paste D which mix | blended the mixed solution (The weight ratio with respect to BCA of EC is 4%) with acetate (BCA) was prepared. The glass paste D is a material of the N-type thermoelectric conversion element material 10 a. Further, P-type glass powder was similarly compounded to prepare a glass paste E. The glass paste E is a material of the P-type thermoelectric conversion element material 10 b.
<熱電変換モジュール300の製造工程>
 熱電変換モジュール300は、図6に示す方法によって作製した。
<Manufacturing process of thermoelectric conversion module 300>
The thermoelectric conversion module 300 was produced by the method shown in FIG.
 前記した実施例1と同様にして、図6(b)に示すように、支持基板11a上に、パターニングされたドライフィルムレジスト301を貼り付けた。そして、ドライレジストフィルム301のパターン302内に、図6(c)に示すように、前記のガラスペーストD(図6(c)中、符号306で示される部分)及びガラスペーストE(図6(c)中、符号307で示される部分)を交互に流し込んだ。さらに、端部には、実施例1で調製した封着用ガラスペーストC(図6(c)中、符号304で示される部分)を流し込んだ。 In the same manner as in Example 1 described above, as shown in FIG. 6B, the dry film resist 301 patterned was attached onto the support substrate 11a. Then, in the pattern 302 of the dry resist film 301, as shown in FIG. 6C, the glass paste D (portion indicated by reference numeral 306 in FIG. 6C) and the glass paste E (FIG. 6 (FIG. c) In the middle, a portion indicated by reference numeral 307 is alternately poured. Furthermore, at the end, the sealing glass paste C prepared in Example 1 (the portion indicated by reference numeral 304 in FIG. 6C) was poured.
 その後、大気中で423K程度の温度で10分間乾燥して溶剤を揮発させ、573K程度の温度で30分間仮焼成してバインダを除去した。次いで、TE2ガラスとEL1ガラスの軟化点Ts以上の640Kで30分間本焼成を行った。これにより、図6(d)に示すように、0.5mm×0.5mm×0.1mm(高さ)の、N型の熱電変換素子材料10a及びP型の熱電変換素子材料10bが形成された。また、併せて、封着層305が形成された。 Then, it was dried at a temperature of about 423 K in the air for 10 minutes to volatilize the solvent, and temporarily baked at a temperature of about 573 K for 30 minutes to remove the binder. Subsequently, main baking was performed for 30 minutes at 640 K which is higher than the softening point T s of the TE 2 glass and the EL 1 glass. As a result, as shown in FIG. 6D, an N-type thermoelectric conversion element material 10a and a P-type thermoelectric conversion element material 10b of 0.5 mm × 0.5 mm × 0.1 mm (height) are formed. The In addition, the sealing layer 305 was formed.
 なお、酸化により、P型の熱電変換素子材料10bの極性がN型に変化することをより確実に防止するために、本焼成を真空中又は不活性ガス雰囲気中で行うこともできる。この場合、ドライフィルムレジストが消失せず残存するが、前記のように残存しても構わない。 In addition, in order to prevent the polarity of the P-type thermoelectric conversion element material 10b from being changed to N-type more reliably by oxidation, the main baking can also be performed in vacuum or in an inert gas atmosphere. In this case, the dry film resist does not disappear but remains, but may remain as described above.
 最後に図6(e)に示すように、支持基板11aと支持基板11bとを張り合わせた。そして、真空引きしながら、TE2ガラスとEL1ガラスの軟化点Ts以上の640Kで30分間本焼成を行った。これにより、図6(f)に示す熱電変換モジュール300が得られた。 Finally, as shown in FIG. 6 (e), the support substrate 11a and the support substrate 11b were pasted together. Then, main firing was performed for 30 minutes at 640 K, which is equal to or higher than the softening point T s of TE 2 glass and EL 1 glass, while drawing a vacuum. Thereby, the thermoelectric conversion module 300 shown in FIG. 6F was obtained.
 前記の実施例1と同様、実施例3においても、熱電変換モジュール300の熱電変換素子材料10と電極12との接合界面を、電子顕微鏡を用いて観察した。その結果、バナジウム酸化物結晶が多く観察されたが、接合界面の一部において実施例1と同様、非晶質のバナジウム酸化物と電極12とが接合していることがわかった。これにより、前記したように小型化を図ることができ、高出力密度化を図ることができることがわかった。さらに、発電単価を大幅に低減することができることがわかった。また、熱電変換素子材料10a、10bの両方を単一の支持基板11a上で作製しているため、支持基板11bを貼り合わせる際の位置決めを容易にすることができた。また、一回の熱処理で熱電変換素子材料10a,10bを作製できるため、工程を簡便にすることができた。 As in Example 1 described above, also in Example 3, the bonding interface between the thermoelectric conversion element material 10 of the thermoelectric conversion module 300 and the electrode 12 was observed using an electron microscope. As a result, a large amount of vanadium oxide crystals were observed, but it was found that the amorphous vanadium oxide and the electrode 12 were joined at a part of the joining interface as in Example 1. As a result, it has been found that miniaturization can be achieved as described above, and high output density can be achieved. Furthermore, it turned out that the unit price of power generation can be significantly reduced. In addition, since both of the thermoelectric conversion element materials 10a and 10b are manufactured on the single support substrate 11a, positioning at the time of bonding the support substrate 11b can be facilitated. In addition, since the thermoelectric conversion element materials 10a and 10b can be manufactured by one heat treatment, the process can be simplified.
[4.熱電特性評価]
 実施例1~実施例3において作製した熱電変換モジュール100,200,300は、いずれも、N型の熱電変換素子材料10a及びP型の熱電変換素子材料10bを備えている。そこで、これらの代表として、実施例1において作製した熱電変換モジュール100について、熱電特性評価を行った。
[4. Thermoelectric property evaluation]
The thermoelectric conversion modules 100, 200, and 300 manufactured in the first to third embodiments each include the N-type thermoelectric conversion element material 10a and the P-type thermoelectric conversion element material 10b. Therefore, as a representative of them, the thermoelectric characteristic evaluation was performed on the thermoelectric conversion module 100 manufactured in the first embodiment.
 実施例1の方法に従って、1000個のN型の熱電変換素子材料10aと、1000個のP型の熱電変換素子材料10bとが直列に接続された熱電変換モジュール100を作製した。そして、作製した熱電変換モジュール100を、図7に示すように設置した。 According to the method of Example 1, a thermoelectric conversion module 100 in which 1000 N-type thermoelectric conversion element materials 10a and 1000 P-type thermoelectric conversion element materials 10b were connected in series was produced. And the produced thermoelectric conversion module 100 was installed as shown in FIG.
 図7は、実施例1において作製した熱電変換モジュールについての熱電特性評価方法を説明する図である。なお、図7は、構造を把握し易くするために、図1に示した熱電変換モジュール100の形状から一部変更して記載している。 FIG. 7 is a diagram for explaining a method of evaluating the thermoelectric characteristics of the thermoelectric conversion module manufactured in the first embodiment. In addition, in order to make a structure easy to grasp, FIG. 7 is partially changed and described from the shape of the thermoelectric conversion module 100 shown in FIG.
 熱電変換モジュール100は銅ブロック702上に載置し、熱電変換モジュール100の上には加熱ヒータ701を載置した。銅ブロック702は、ヒートシンク703に載置されている。従って、加熱ヒータ701からの熱は、熱電変換モジュール100の支持基板11b側から熱電変換素子材料10に供給されるようになっている。即ち、支持基板11b側が高温側になっている。一方で、支持基板11a側は低温側になっている。 The thermoelectric conversion module 100 was placed on the copper block 702, and the heater 701 was placed on the thermoelectric conversion module 100. The copper block 702 is mounted on the heat sink 703. Therefore, the heat from the heater 701 is supplied to the thermoelectric conversion element material 10 from the supporting substrate 11 b side of the thermoelectric conversion module 100. That is, the supporting substrate 11b side is at the high temperature side. On the other hand, the supporting substrate 11a side is at the low temperature side.
 熱電特性の評価は以下のようにして行った。加熱ヒータ701の温度を423K(150℃)、熱電変換モジュール100での支持基板11a,11b間の温度差ΔTを50Kに設定した。そして、銅ブロック702において、熱電変換モジュール100からヒートシンク703方向に流れる熱流束Q,及び、電圧計704により測定される出力電圧(起電力)Pを測定した。その結果、熱流束Qは10W/cm2、出力電圧Pは8Vであった。さらに、これらの値に基づき、変換効率ηを算出した。ηは、「η=P/(Q+P)」に基づいて算出した。その結果、変換効率ηは約2%であった。 The evaluation of the thermoelectric characteristics was performed as follows. The temperature of the heater 701 was set to 423 K (150 ° C.), and the temperature difference ΔT between the support substrates 11 a and 11 b in the thermoelectric conversion module 100 was set to 50 K. Then, in the copper block 702, the heat flux Q flowing from the thermoelectric conversion module 100 in the direction of the heat sink 703 and the output voltage (electromotive force) P measured by the voltmeter 704 were measured. As a result, the heat flux Q was 10 W / cm 2 and the output voltage P was 8V. Furthermore, conversion efficiency η was calculated based on these values. η was calculated based on “η = P / (Q + P)”. As a result, the conversion efficiency η was about 2%.
 本実施形態の熱電変換モジュール100は、熱電変換素子材料10と電極12との接合界面において非晶質のバナジウム酸化物ガラス(非晶質材料)を含む熱電変換素子12を備えている。そのため、前記したように小型化を図ることができ、高出力密度化を図ることができる。さらに、発電単価を大幅に低減することができる。また、本実施例では、P型及びN型で合計2000個の熱電変換素子材料10を作製したが、さらなる小型化を図ることで、例えば合計で2万個程度の熱電変換モジュールを作製することもできる。これにより、出力密度をさらに向上させることができるとともに、変換効率をもさらに向上させることができる。 The thermoelectric conversion module 100 according to the present embodiment includes the thermoelectric conversion element 12 including amorphous vanadium oxide glass (amorphous material) at the bonding interface between the thermoelectric conversion element material 10 and the electrode 12. Therefore, as described above, downsizing can be achieved, and high output density can be achieved. Furthermore, the unit price of power generation can be significantly reduced. In addition, in the present embodiment, a total of 2000 thermoelectric conversion element materials 10 of P-type and N-type were manufactured, but by further downsizing, for example, about 20,000 total thermoelectric conversion modules are to be manufactured. You can also. As a result, the output density can be further improved, and the conversion efficiency can be further improved.
10,10a,10b 熱電変換素子材料(熱電変換素子)
11,11a,11b 支持基板
12,12a,12b,12c 電極(熱電変換素子)
100 熱電変換モジュール
200 熱電変換モジュール
300 熱電変換モジュール
10, 10a, 10b Thermoelectric conversion element material (thermoelectric conversion element)
11, 11a, 11b Supporting substrate 12, 12a, 12b, 12c electrode (thermoelectric conversion element)
100 thermoelectric conversion module 200 thermoelectric conversion module 300 thermoelectric conversion module

Claims (12)

  1.  支持基板と、
     前記支持基板に配置され、バナジウム酸化物結晶と非晶質材料とを含むバナジウム酸化物結晶化ガラスを含んで構成される複数の熱電変換素子材料と、
     前記支持基板に配置され、前記熱電変換素子材料同士を接続するとともに、前記熱電変換素子材料において発生した起電力を消費する外部負荷が接続される電極と、を備え、
     前記熱電変換素子材料と前記電極とは、前記熱電変換素子材料に含まれる少なくとも前記非晶質材料を介して接合していることを特徴とする、熱電変換モジュール。
    A supporting substrate,
    A plurality of thermoelectric conversion element materials disposed on the support substrate and comprising vanadium oxide crystallized glass comprising vanadium oxide crystals and an amorphous material;
    And an electrode connected to an external load which is disposed on the support substrate and connects the thermoelectric conversion element materials to each other and which consumes an electromotive force generated in the thermoelectric conversion element material,
    The thermoelectric conversion module, wherein the thermoelectric conversion element material and the electrode are joined via at least the amorphous material contained in the thermoelectric conversion element material.
  2.  前記熱電変換素子材料は、N型のバナジウム酸化物結晶化ガラスを含んで構成されるN型の熱電変換素子材料と、前記N型の熱電変換素子とは離間して配置され、P型のバナジウム酸化物結晶化ガラスを含んで構成されるP型の熱電変換素子材料と、を含むことを特徴とする、請求の範囲第1項に記載の熱電変換モジュール。 In the thermoelectric conversion element material, an N-type thermoelectric conversion element material configured to include N-type vanadium oxide crystallized glass, and the N-type thermoelectric conversion element are disposed apart from each other, and P-type vanadium The P-type thermoelectric conversion element material comprised including oxide crystallization glass, and the thermoelectric conversion module of Claim 1 characterized by the above-mentioned.
  3.  前記N型の熱電変換素子材料が、V25、Mx25、M3Fe4(PO46、M2(PO4)O、V2(PO4)O、M2CuO4、MAl24(Mは、アルミニウム、鉄、ヒ素, アンチモン、ビスマス、タングステン、モリブデン、マンガン、ニッケル、銅、銀、アルカリ金属、アルカリ土類金属のいずれかの金属元素である。また、0<x<1である。)からなる群より選ばれる少なくとも一種の結晶を含んでいることを特徴とする、請求の範囲第2項に記載の熱電変換モジュール。 The N-type thermoelectric conversion element material is V 2 O 5 , M x V 2 O 5 , M 3 Fe 4 (PO 4 ) 6 , M 2 (PO 4 ) O, V 2 (PO 4 ) O, M 2 CuO 4 , MAl 2 O 4 (M is any metal element of aluminum, iron, arsenic, antimony, bismuth, tungsten, molybdenum, manganese, nickel, copper, silver, alkali metal and alkaline earth metal. The thermoelectric conversion module according to claim 2, comprising at least one crystal selected from the group consisting of 0 <x <1).
  4.  前記P型の熱電変換素子材料が、VO2,V23からなる群より選ばれる少なくとも一種の結晶を含んでいることを特徴とする、請求の範囲第2項又は第3項に記載の熱電変換モジュール。 The P-type thermoelectric conversion element material, characterized in that it contains at least one crystal selected from the group consisting of VO 2, V 2 O 3, according to paragraph 2 or claim 3 Thermoelectric conversion module.
  5.  支持基板に配置固定された電極上に、バナジウム酸化物ガラスを含むバナジウム酸化物ガラス層を形成するガラス層形成工程と、
     前記ガラス層形成工程において形成されたバナジウム酸化物ガラス層を熱処理し、バナジウム酸化物結晶と非晶質材料とを含むバナジウム酸化物結晶化ガラス層を形成するとともにに、前記電極との接合界面の少なくとも一部に前記非晶質材料を存在させる熱処理工程と、を含むことを特徴とする、熱電変換モジュールの製造方法。
    A glass layer forming step of forming a vanadium oxide glass layer containing vanadium oxide glass on an electrode disposed and fixed to a supporting substrate;
    The vanadium oxide glass layer formed in the glass layer forming step is heat-treated to form a vanadium oxide crystallized glass layer containing vanadium oxide crystals and an amorphous material, and at the bonding interface with the electrode A heat treatment step of causing the amorphous material to exist at least in part, and a method of manufacturing a thermoelectric conversion module.
  6.  前記熱処理工程は、
     前記ガラス層形成工程において形成されたバナジウム酸化物ガラス層を熱処理して、N型のバナジウム酸化物結晶化ガラス層を形成するN型結晶析出工程と、
     前記ガラス層形成工程において形成されたバナジウム酸化物ガラス層を熱処理して、P型のバナジウム酸化物結晶化ガラス層を形成するP型結晶析出工程と、を含むことを特徴とする、請求の範囲第5項に記載の熱電変換モジュールの製造方法。
    The heat treatment step is
    N-type crystal precipitation step of heat-treating the vanadium oxide glass layer formed in the glass layer forming step to form an N-type vanadium oxide crystallized glass layer;
    Heat-treating the vanadium oxide glass layer formed in the glass layer forming step to form a P-type vanadium oxide crystallized glass layer, and a P-type crystal precipitation step. The manufacturing method of the thermoelectric conversion module of Claim 5.
  7.  前記N型結晶析出工程は、大気中、真空中又は不活性ガス雰囲気で行われることを特徴とする、請求の範囲第6項に記載の熱電変換モジュールの製造方法。 The method for manufacturing a thermoelectric conversion module according to claim 6, wherein the N-type crystal deposition step is performed in the air, in a vacuum or in an inert gas atmosphere.
  8.  前記P型結晶析出工程は、還元性雰囲気で行われることを特徴とする、請求の範囲第6項又は第7項に記載の熱電変換モジュールの製造方法。 The method for manufacturing a thermoelectric conversion module according to claim 6, wherein the P-type crystal deposition step is performed in a reducing atmosphere.
  9.  還元性雰囲気で前記P型結晶析出工程が行われた後、形成されたP型のバナジウム酸化物結晶化ガラスに対して真空中又は不活性ガス雰囲気で熱処理を行って、N型のバナジウム酸化物結晶化ガラスを形成する前記N型結晶析出工程が行われることを特徴とする、請求の範囲第6項に記載の熱電変換モジュールの製造方法。 After the P-type crystal precipitation step is performed in a reducing atmosphere, the formed P-type vanadium oxide crystallized glass is heat-treated in vacuum or in an inert gas atmosphere to obtain an N-type vanadium oxide The method for manufacturing a thermoelectric conversion module according to claim 6, wherein the N-type crystal precipitation step of forming a crystallized glass is performed.
  10.  前記熱処理工程において、前記電極上にP型の前記バナジウム酸化物結晶化ガラス層を形成した後、形成された前記P型のバナジウム酸化物結晶化ガラス層に離間して、前記電極上にバナジウム酸化物ガラス層を形成する第2ガラス層形成工程と、
     前記第2ガラス層形成工程において形成されたバナジウム酸化物ガラス層を含む前記支持基板全体を熱処理して、前記P型のバナジウム酸化物結晶化ガラス層の半導体極性を維持したまま、前記バナジウム酸化物ガラス層内にN型のバナジウム酸化物結晶化ガラスを生成させる第2熱処理工程と、を含むことを特徴とする、請求の範囲第6項に記載の熱電変換モジュールの製造方法。
    In the heat treatment step, the P-type vanadium oxide crystallized glass layer is formed on the electrode, and then the formed P-type vanadium oxide crystallized glass layer is separated to form vanadium oxide on the electrode. A second glass layer forming step of forming a second glass layer;
    The entire supporting substrate including the vanadium oxide glass layer formed in the second glass layer forming step is heat-treated to maintain the semiconductor polarity of the P-type vanadium oxide crystallized glass layer while the vanadium oxide is maintained. 7. A method of manufacturing a thermoelectric conversion module according to claim 6, further comprising: a second heat treatment step of producing N-type vanadium oxide crystallized glass in the glass layer.
  11.  前記N型結晶析出工程は、前記支持基板のうちの第1の支持基板を用いて行われ、
     前記P型結晶析出工程は、前記支持基板のうちの第2の支持基板に用いて行われ、
     前記N型のバナジウム酸化物結晶化ガラス層が形成された前記第1の支持基板と、前記P型のバナジウム酸化物結晶化ガラス層が形成された前記第2の支持基板とを貼り合わせることにより、熱電変換モジュールを製造することを特徴とする、請求の範囲第6項に記載の熱電変換モジュールの製造方法。
    The N-type crystal deposition step is performed using the first support substrate of the support substrates,
    The P-type crystal deposition step is performed using the second support substrate of the support substrates,
    By bonding the first support substrate on which the N-type vanadium oxide crystallized glass layer is formed, and the second support substrate on which the P-type vanadium oxide crystallized glass layer is formed The method for producing a thermoelectric conversion module according to claim 6, wherein the thermoelectric conversion module is produced.
  12.  請求の範囲第5項又は第6項に記載の製造方法により製造されたことを特徴とする、熱電変換モジュール。 A thermoelectric conversion module manufactured by the manufacturing method according to claim 5 or 6.
PCT/JP2012/079173 2012-11-09 2012-11-09 Thermoelectric conversion module and method for manufacturing same WO2014073095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/079173 WO2014073095A1 (en) 2012-11-09 2012-11-09 Thermoelectric conversion module and method for manufacturing same
JP2014545525A JPWO2014073095A1 (en) 2012-11-09 2012-11-09 Thermoelectric conversion module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079173 WO2014073095A1 (en) 2012-11-09 2012-11-09 Thermoelectric conversion module and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014073095A1 true WO2014073095A1 (en) 2014-05-15

Family

ID=50684232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079173 WO2014073095A1 (en) 2012-11-09 2012-11-09 Thermoelectric conversion module and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2014073095A1 (en)
WO (1) WO2014073095A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011166A (en) * 2015-06-24 2017-01-12 リンテック株式会社 Thermoelectric semiconductor composition, and thermoelectric conversion material and method for producing the same
KR20180075936A (en) * 2016-12-27 2018-07-05 주식회사 엘지화학 Thermoelectric composite material and preparation method thereof
US11380832B2 (en) 2017-06-29 2022-07-05 Mitsubishi Materials Corporation Thermoelectric conversion module and method for producing thermoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040963A (en) * 2004-07-22 2006-02-09 Yamaha Corp Manufacturing method of thermoelectric module
WO2007114317A1 (en) * 2006-03-31 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Peltier device and temperature regulating container equipped with the peltier device
JP2008116445A (en) * 2006-10-11 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Thermocouple-type temperature sensor, and manufacturing method therefor
WO2012039265A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Semiconductor junction element, semiconductor device using same, and method for manufacturing semiconductor junction element
JP2012134409A (en) * 2010-12-24 2012-07-12 Hitachi Ltd Thermoelectric conversion material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040963A (en) * 2004-07-22 2006-02-09 Yamaha Corp Manufacturing method of thermoelectric module
WO2007114317A1 (en) * 2006-03-31 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Peltier device and temperature regulating container equipped with the peltier device
JP2008116445A (en) * 2006-10-11 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Thermocouple-type temperature sensor, and manufacturing method therefor
WO2012039265A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Semiconductor junction element, semiconductor device using same, and method for manufacturing semiconductor junction element
JP2012134409A (en) * 2010-12-24 2012-07-12 Hitachi Ltd Thermoelectric conversion material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011166A (en) * 2015-06-24 2017-01-12 リンテック株式会社 Thermoelectric semiconductor composition, and thermoelectric conversion material and method for producing the same
KR20180075936A (en) * 2016-12-27 2018-07-05 주식회사 엘지화학 Thermoelectric composite material and preparation method thereof
KR102088009B1 (en) * 2016-12-27 2020-03-11 주식회사 엘지화학 Thermoelectric composite material and preparation method thereof
US11380832B2 (en) 2017-06-29 2022-07-05 Mitsubishi Materials Corporation Thermoelectric conversion module and method for producing thermoelectric conversion module

Also Published As

Publication number Publication date
JPWO2014073095A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US10217922B2 (en) Methods for thick film thermoelectric device fabrication
TWI505523B (en) Thermoelectric conversion of composite materials, the use of its thermoelectric conversion material slurry, and the use of its thermoelectric conversion module
JP2009117792A (en) Thermoelectric conversion module and process for producing the same
US20150221845A1 (en) Thermoelectric conversion device
JP6249382B2 (en) Thermoelectric conversion element and thermoelectric conversion module
TWI652694B (en) Conductive paste and method for manufacturing semiconductor device using the same
JP2007258571A (en) Thermoelectric conversion module, and its manufacturing method
US20110048488A1 (en) Combined thermoelectric/photovoltaic device and method of making the same
EP2902518B1 (en) Thermoelectric material
EP4099411A1 (en) Thermoelectric conversion module
WO2014073095A1 (en) Thermoelectric conversion module and method for manufacturing same
EP3553838B1 (en) Thermoelectric module
JP2019525454A (en) Thermoelectric tape
JP6347025B2 (en) Thermoelectric conversion material, circuit manufacturing method, and thermoelectric conversion module
EP2903043B1 (en) Methods for thick film thermoelectric device fabrication
JP6467740B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2011198989A (en) Thermoelectric conversion material, method of manufacturing the same, and thermoelectric conversion module
WO2009024414A2 (en) Thermal power element or peltier elements comprising sintered nanocrystals of silicon, germanium or silicon-germanium alloys
WO2020071424A1 (en) Chip of thermoelectric conversion material
KR102409289B1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and manufacturing method of magnesium-based thermoelectric conversion material
JP2015126002A (en) Power module substrate, method of manufacturing the same, and power module
CN106571171A (en) Nta paste
JPH09116199A (en) Manufacture of thermoelectric transfer element
Mortazavinatanzi On the Manufacturing Processes of Flexible Thermoelectric Generators
WO2015115422A1 (en) Ptc element and heating module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887927

Country of ref document: EP

Kind code of ref document: A1