WO2014069802A1 - 항균 다공성 세라믹 타일 및 이의 제조방법 - Google Patents

항균 다공성 세라믹 타일 및 이의 제조방법 Download PDF

Info

Publication number
WO2014069802A1
WO2014069802A1 PCT/KR2013/008883 KR2013008883W WO2014069802A1 WO 2014069802 A1 WO2014069802 A1 WO 2014069802A1 KR 2013008883 W KR2013008883 W KR 2013008883W WO 2014069802 A1 WO2014069802 A1 WO 2014069802A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous ceramic
ceramic tile
active material
carbonate
antimicrobial
Prior art date
Application number
PCT/KR2013/008883
Other languages
English (en)
French (fr)
Inventor
강봉규
정승문
강길호
임호연
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to CN201380057173.0A priority Critical patent/CN104781210B/zh
Priority to JP2015539493A priority patent/JP6419705B2/ja
Publication of WO2014069802A1 publication Critical patent/WO2014069802A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/20Preparing or treating the raw materials individually or as batches for dry-pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm

Definitions

  • It relates to an antimicrobial porous ceramic tile and a method of manufacturing the same.
  • Conventional antimicrobial tiles were usually formed by mixing the antimicrobial material with water to make a suspension, applying it on the surface of the tile, or mixing it with the glaze and applying it to the surface together.
  • this method is difficult to distribute evenly over a large surface area inside the porous ceramic tile, and if some antimicrobial material is aggregated, it may have a negative effect of blocking the pores inside the porous ceramic tile, thereby reducing moisture absorption and moisture. It was difficult to apply to porous tiles showing moisture absorption and moisture absorption.
  • the antimicrobial material by the simple application method may be separated from the surface of the porous ceramic tile due to the change of physical contact, environment temperature, and humidity over time. There is a limit in terms of convenience and economy because work is required.
  • One embodiment of the present invention provides a porous ceramic tile comprising an antimicrobial active material.
  • Another embodiment of the present invention provides a method of manufacturing the porous ceramic tile.
  • a porous ceramic tile comprising ⁇ -alumina and an antimicrobial active material is provided.
  • the antimicrobial active material may be a metal carbonate.
  • the metal carbonate may include any one or more selected from the group consisting of calcium carbonate, potassium carbonate, barium carbonate, magnesium carbonate, sodium carbonate and combinations thereof.
  • the antimicrobial active material may include about 3 parts by weight to about 30 parts by weight based on 100 parts by weight of the parent material.
  • the parent material may include any one or more selected from the group consisting of clay, clay, loess and combinations thereof.
  • the porous ceramic tile may include pores having an average diameter of about 1 nm to about 1 mm.
  • the porosity of the pores may be about 30% to about 60%.
  • the pH of the pore surface may be about 11 or more.
  • the step of mixing the ⁇ -alumina and the antimicrobial active material to form a ceramic molded body Dry pressing the ceramic molded body to produce a porous ceramic tile; Drying the molded porous ceramic tile; Lubricating the dried porous ceramic tile with glaze; And it provides a method for producing a porous ceramic tile comprising the step of pyrolyzing and sintering the oiled porous ceramic tile.
  • the pyrolysis may be characterized in that it is carried out at a temperature of about 800 °C to about 1000 °C.
  • the pyrolysis may be characterized in that it is carried out for a time of about 1 minute to about 15 minutes.
  • the antimicrobial properties of the porous ceramic tile can suppress the growth of bacteria and fungi, can also reduce the generation of suspended microorganisms in the indoor air, it is possible to maintain a comfortable environment in the room.
  • FIG. 1 is a schematic diagram illustrating pores included in a porous ceramic tile and a porous ceramic tile.
  • FIG. 2 is a schematic view showing a method of manufacturing a porous ceramic tile.
  • a porous ceramic tile comprising ⁇ -alumina and an antimicrobial active material is provided.
  • the porous ceramic tile may be manufactured by compression molding ceramic powder, etc., and the raw material is mostly powder, which may be cured by hydration like a hardener of calcined gypsum or cement, but may be formed by sintering powder.
  • the porous ceramic tile may include ⁇ -alumina and an antimicrobial active material.
  • the porous ceramic tile When the porous ceramic tile is formed including the antimicrobial active material, antimicrobial activity may be given to the porous ceramic tile through the modified antimicrobial active material through the manufacturing process of the porous ceramic tile.
  • moisture absorption may be achieved through pores included in the porous ceramic tile, and moisture may be in contact with the antimicrobial active material uniformly distributed on the porous ceramic tile.
  • Chemical contact may occur to the modified antimicrobial active material through contact with moisture, thereby giving alkalinity to the pore surface of the porous ceramic tile, thereby exhibiting antimicrobial performance.
  • the antimicrobial properties of the porous ceramic tile can suppress the growth of bacteria and fungi, can also reduce the generation of suspended microorganisms in the indoor air, it is possible to maintain a comfortable environment in the room.
  • the antimicrobial active material may be a metal carbonate.
  • the metal carbonate refers to a salt in which hydrogen of carbonic acid is substituted with a metal, and means that the carbonate is agglomerated with a compound composed of carbon dioxide and a metal oxide or a metal hydroxide.
  • the metal carbonate may include any one or more selected from the group consisting of calcium carbonate, potassium carbonate, barium carbonate, magnesium carbonate, sodium carbonate and combinations thereof.
  • the antimicrobial active material is calcium carbonate (CaCO3) in the metal charsam salt
  • calcium carbonate (CaCO3) is decomposed into carbon dioxide (CO2) and quicklime (CaO) through the manufacturing process of the porous ceramic tile (CaCO3-> CO2 + CaO), and quicklime can be evenly distributed in the porous ceramic tile.
  • the moisture is absorbed through the pores of the porous ceramic tile, and the quicklime (CaO) undergoes chemical change to form calcined lime (Ca (OH) 2) (CaO + H 2 O—> Ca (OH) 2).
  • the produced slaked lime is dissolved in water and ionized (Ca (OH) 2)-> (OH-) + (Ca +)) with calcium ions (Ca +) and hydroxide ions (OH-), and the hydroxides have an alkali property.
  • the ions may alkalinize the pore surface to impart antimicrobial properties to the porous ceramic tile.
  • the antimicrobial active material may include about 3 parts by weight to about 30 parts by weight based on 100 parts by weight of the parent material.
  • the antimicrobial active material is included outside the above range, the strength of the porous ceramic tile itself is severely lowered, or the porosity of the pores is reduced, thereby preventing the role of the porous ceramic tile. Therefore, by including the antimicrobial active material within the above range it can be easily implemented the effect of maintaining the antimicrobial properties of the porous ceramic tile properly.
  • the parent material is a material used as the base base material constituting the porous ceramic tile, and may be variously applied depending on how the porous ceramic tile is manufactured.
  • the base material used as the base material of the ceramic tile may be selected from the group consisting of clay clay and loess, but is not limited to the examples described above, the porous ceramic It can include any material that can be used as the base material to construct the tile.
  • the content of the parent material is not particularly limited, and the content may vary as other additives are added depending on the application and use of the porous ceramic tile.
  • the total composition 100 forming the porous ceramic tile may be used.
  • the parent material may include about 30 parts by weight to about 70 parts by weight based on parts by weight. By including the parent material in the above range can maintain a certain level of the molding strength to the molded porous ceramic tile, and can exhibit a certain level of plastic strength even after the firing step.
  • the ⁇ -alumina can give a humidity control function as alumina in the transition state. It is a material that can be transformed into other structures by constant heat treatment, has a large specific surface area and fine pore holes, and can exhibit excellent properties as a separator, catalyst, catalyst carrier and adsorbent.
  • the ⁇ -alumina can have pores are formed on the surface has excellent humidity and deodorizing function. Accordingly, the ⁇ -alumina absorbs moisture through pores when the humidity is high to lower the humidity in the room, and conversely, when the humidity is low, it releases moisture stored in the pores to increase the indoor humidity.
  • the gamma -alumina may be commercially available gamma -alumina, but in terms of cost reduction and efficiency, more specifically, gamma -alumina in which a low-cost aluminum source is phase-shifted by heat treatment may be used.
  • the ⁇ -alumina may include about 5 parts by weight to about 40 parts by weight, specifically about 10 parts by weight to about 35 parts by weight, based on 100 parts by weight of the parent material.
  • the ⁇ -alumina is less than about 5 parts by weight with respect to 100 parts by weight of the parent material, there is a possibility that it is difficult to exhibit a sufficient humidity control function, when exceeding about 40 parts by weight, the sintering of the porous ceramic tile is reduced as the tile There is a possibility that the strength of the resin may decrease.
  • the specific surface area of the ⁇ -alumina is not particularly limited, but may be, for example, about 150 m 2 / g to about 350 m 2 / g.
  • the specific surface area of the ⁇ -alumina is less than about 150 m 2 / g, sufficient humidity control function may not be exhibited, and when it exceeds about 350 m 2 / g, it may cause difficulty in the manufacturing process and may increase the manufacturing cost. have.
  • Porous ceramic tile containing the above-described ⁇ -alumina and antimicrobial active material can be used in various forms as a functional molded body having a moisture-absorbing and deodorizing function with excellent moisture absorption and deodorization function, and is applied to various functional products because it has a great moisture absorption and moisture absorption. The damage caused by the syndrome, atopy and new building syndrome can be greatly reduced.
  • the porous ceramic tile is a tile containing pores, excellent in hygroscopicity that absorbs moisture, and maintains a certain level of mechanical strength, so its utilization as a building flooring and wall materials is very high.
  • the porous ceramic tile is formed including ⁇ -alumina and an antimicrobial active material, the details of each component is as described above.
  • the porous ceramic tile may further include a binding material or other additives in addition to ⁇ -alumina and an antimicrobial active material.
  • the binding material is not particularly limited in kind, but may contain, for example, frit powder and glass powder as the binding material.
  • frit powder used as the binding material frit powder having a degree of about 750 ° C. to about 850 ° C. may be used.
  • a frit powder having a degree of about 750 ° C. to about 850 ° C.
  • the frit powder is used above about 850 ° C., the strength may not be sufficiently exhibited.
  • the binding material may include about 3 parts by weight to about 20 parts by weight based on 100 parts by weight of the parent material.
  • the strength of the porous ceramic tile may be lowered, and when it exceeds about 20 parts by weight, the humidity control function may be lowered and the manufacturing cost This may increase.
  • the porous ceramic tile may further include one or more additives selected from the group consisting of frit powder, glass powder, diatomaceous earth, silica, feldspar, pottery stone, lime, loess and milky.
  • the content of the additive is not particularly limited and may be appropriately employed within the range in which the function of the porous ceramic tile is not impaired. For example, about 3 parts by weight to about 100 parts by weight of the parent material may be used. It may include 30 parts by weight.
  • Diatomaceous earth among the additives is a porous material rich in water absorption, and when added to the porous ceramic tile formation, the hygroscopic function can be further improved, and other silica, feldspar, pottery stone, and lime may be included in appropriate amounts, respectively.
  • the whitening agent is a powder added to give a white color to the glass product, the type is not particularly limited, but at least one selected from the group consisting of chloride, tin, titanium oxide, sulfate, phosphate, arsenate and fluoride It may include.
  • the porous ceramic tile may include pores having an average diameter of about 1 nm to about 1 mm.
  • the pores mean pores distributed in the porous ceramic tile, the average diameter of the pore refers to an arithmetic mean value of the pore diameter, it is to maintain the pore size within the above range to play a role of water absorption and release, harmful gas adsorption. Can be.
  • the pores include not only pores present on the surface of the particles forming the porous ceramic tile, but also pores existing between the particles and the particles forming the porous ceramic tile. In this case, the pores may serve as air passages.
  • the porosity of the pores may be about 30% to about 60%.
  • the porosity refers to a numerical value representing the degree of pore porosity, and refers to a percentage of the total volume of the pore volume.
  • the porosity may be calculated, for example, by using a porosity measurement principle using mercury penetration using a capillary phenomenon in which liquid penetrates into fine pores.
  • the pH of the pore surface may be about 11 or more.
  • the pH indicates the hydrogen ion index of the solution, that is, the hydrogen ion (H +) concentration as an index, and is a numerical value indicating the acidity or alkalinity of water.
  • the pH is about 7 at room temperature, the liquidity of the substance is neutral, and when the pH is less than about 7, it means acidic, and when the pH is greater than about 7, the pH of the pore surface is about 11 or more.
  • the porous ceramic tile is formed to include an antimicrobial active material, and when the porous ceramic tile is used at room temperature, moisture absorption may be made through pores included in the porous ceramic tile. In this case, a certain chemical change may occur through contact between the modified antimicrobial active material and moisture during the production of the porous ceramic tile, thereby generating hydroxide ions above a predetermined concentration, and the porous ceramic tile may be caused by the generated hydroxide ions.
  • the pore surface pH of can be about 11 or more.
  • the pore surface pH is less than about 11, it is close to a weak base or acid, and it is not possible to block the growth of microorganisms that may be harmful to the human body, such as yeast fungi and E. coli, due to moisture, it is not possible to reduce the generation of floating microorganisms. Therefore, by maintaining the pore surface at a pH of about 11 or more, it is possible to maintain a comfortable environment in the room using the porous ceramic tile.
  • the step of mixing the ⁇ -alumina and the antimicrobial active material to form a ceramic molded body Dry pressing the ceramic molded body to produce a porous ceramic tile; Drying the molded porous ceramic tile; applying a glaze to the dried porous ceramic tile; And it provides a method for producing a porous ceramic tile comprising the step of pyrolyzing and sintering the oiled porous ceramic tile.
  • the preparing of the ceramic formed body (S100) may include preparing a mixture of ⁇ -alumina and an antimicrobial active material, and molding the ceramic formed body using the mixture.
  • the method for preparing the mixture is not particularly limited, and may include all mixing methods known in the art, but, for example, first, the mixture may be pulverized to a uniform size and a suitable size using a ball mill. At the time of grinding, water, an organic binder, a dispersant, an antifoaming agent, and the like may be added in an appropriate amount. Subsequently, when the pulverized mixture is in the form of a slurry having an appropriate viscosity as described above, it may be prepared in the form of granule powder having spherical particles through a spray drying process.
  • Porous ceramic tiles may be manufactured through dry press molding the manufactured ceramic formed body (S200).
  • the prepared ceramic molded body that is, a mixture in the form of granule powder may be put into a dry press mold to prepare a ceramic molded body of a desired shape.
  • the method may include drying the molded porous ceramic tile (S300).
  • the drying temperature is not particularly limited, but drying may be performed at a temperature of about 200 ° C to about 250 ° C, in which case the molded body deforms or deforms during a short time passing through a hot gas continuous furnace. Defects such as body explosion can be suppressed.
  • the dried porous ceramic tile may include the step of lubricating with glaze (S300).
  • the step (S300) is to apply a glaze on the surface of the porous ceramic tile, there is no particular limitation in the oiling method, wet method using a slurry of the glaze, dry powder or granules of the glaze, dry method using a carpet of frit, etc. Can be.
  • the sintered porous ceramic tile may be thermally decomposed and fired (S400).
  • Pyrolysis refers to an operation of making a new material by breaking weak bonds when activating a molecule by applying heat from the outside
  • firing refers to an operation of heating a combined raw material to form a curable material.
  • the antimicrobial active material included in the porous ceramic tile is calcium carbonate (CaCO3)
  • carbon dioxide and quicklime may be decomposed (CaCO3-> CaO + CO2) through pyrolysis and calcining, wherein the generated quicklime is It can be evenly distributed inside the porous ceramic tile.
  • the generated quicklime comes into contact with moisture through a moisture absorption process of the porous ceramic tile, and thus, a process of providing antibacterial activity is as described above.
  • the pyrolysis may be carried out at a temperature of about 800 °C to about 1000 °C. Although not limited to the temperature of the pyrolysis, it is possible to form a porous ceramic tile of the previous stage exhibiting antimicrobial activity by performing pyrolysis at the temperature of the above range.
  • the pyrolysis may be performed for a time of about 1 minute to about 15 minutes.
  • the heat treatment outside the pyrolysis time may not be sufficiently pyrolysis. Therefore, by performing pyrolysis for the above range of time, it is possible to form a porous ceramic tile of the previous stage exhibiting antimicrobial properties, and may have advantages in terms of production and energy costs.
  • porous ceramic tile manufacturing method it is possible to deform the antimicrobial active material by undergoing the pyrolysis and firing step (S400), evenly distributed on the porous ceramic tile as a previous step that can exhibit antimicrobial activity. Thereafter, by using the porous ceramic tile, the surface of the pores is basified through a hygroscopic process, and thus the antimicrobial property may be naturally given to the porous ceramic tile.
  • the mixture of the components shown in Table 1 was ground using a ball mill, and the slurry thus obtained was uniformly mixed through a spray drying process to prepare spherical granular powder having a water content of 8% and an average particle size of 300 ⁇ m.
  • porous ceramic tiles having a width, length, and thickness of 7 cm, 7 cm, and 0.6 cm, respectively.
  • the porous ceramic tile was dried in a continuous drying furnace at 250 ° C., and frit powder and pigments having an average particle size of 15 ⁇ m and a degree of fluorescence of 750 ° C. were dispersed in water and spray-coated.
  • the oiled porous ceramic tile was introduced into a gas continuous furnace (RHK), and thermally decomposed and baked at a temperature of 850 ° C. for 10 minutes to prepare a porous ceramic tile having an average pore diameter of 5 nm and a porosity of 45%.
  • RHK gas continuous furnace
  • a porous ceramic tile was manufactured in the same manner as in the above example, except that the antimicrobial active material was not included in the components shown in Table 1 below.
  • the porous ceramic tiles of the examples and comparative examples were soaked in water (100 ml) at 25 ° C. for 10 minutes. Thereafter, the ions are present in the pores included in the porous ceramic tile over time. At this time, the pH value of the pore surface was measured using a pH meter, and the results are shown in Table 2 below.
  • the pore surface of the porous ceramic tile exhibits basicity of pH 11 or more at a relatively fast time, and the porous ceramic tile is room temperature. Due to moisture absorption during use, the surface of the pores is made basic, which can be inferred to increase antibacterial and antifungal performance.
  • the pH of the pore surface of the porous ceramic tile stopped at about 9, indicating no basicity.
  • they do not exhibit antimicrobial performance such as bacterial growth deterioration that may occur during use of the porous ceramic tile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Finishing Walls (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Road Paving Structures (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

γ-알루미나 및 항균 활성물질을 포함하는 다공성 세라믹 타일을 제공한다. γ-알루미나 및 항균활성물질을 혼합하여 세라믹 성형체를 형성하는 단계; 상기 세라믹 성형체를 건식 프레스 성형하여 다공성 세라믹 타일을 제조하는 단계;상기 성형된 다공성 세라믹 타일을 건조하는 단계; 상기 건조된 다공성 세라믹 타일에 유약으로 시유하는 단계; 및 상기 시유된 다공성 세라믹 타일을 열분해하여소성하는 단계를 포함하는 다공성 세라믹 타일 제조방법을 제공한다.

Description

항균 다공성 세라믹 타일 및 이의 제조방법
항균 다공성 세라믹 타일 및 이의 제조방법에 관한 것이다.
기존의 항균타일은 항균 물질을 물과 혼합하여 현탁액을 만들고 타일의 표면 위에 도포하거나 유약과 섞어 함께 표면에 바르는 방식으로 형성되는 것이 보통이었다. 그러나 이러한 방식은 다공성 세라믹 타일 내부에 넓은 표면적에 고르게 분포시키기 힘들며, 일부 항균 물질이 뭉쳐진 경우에는 다공성 세라믹 타일 내부의 기공을 막아 흡방습성을 떨어뜨리는 부작용을 낼 수 있기 때문에, 수많은 미세기공을 포함함으로써 흡방습성을 보이는 다공성 타일에 적용하기에는 어려운 점이 있었다.
또한 단순한 도포 방식에 의한 항균 물질은 시간이 지남에 따라 물리적인 접촉, 환경의 온도, 습도 변화에 의한 영향을 받아 다공성 세라믹 타일 표면에서 이탈된 우려가 있어 계속적인 효과를 보기에는 주기적인 재도포의 작업이 필요하기에 편의성, 경제성 측면에서 한계를 가지고 있다.
그러므로, 다공성 세라믹 타일 내부에 항균물질을 포함하여 이를 고르게 분포시킬 수 있는 방법에 대한 연구가 계속되고 있다.
본 발명의 일 구현예는 항균 활성물질을 포함하는 다공성 세라믹 타일을 제공한다.
본 발명의 다른 구현예는 상기 다공성 세라믹 타일의 제조방법을 제공한다.
본 발명의 일 구현예에서, γ-알루미나 및 항균 활성물질을 포함하는 다공성세라믹 타일을 제공한다.
상기 항균 활성물질은 금속 탄산염일 수 있다.
상기 금속 탄산염은 탄산칼슘, 탄산칼륨, 탄산바륨, 탄산마그네슘, 탄산나트륨 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다.
상기 항균 활성물질은 모물질 100중량부에 대하여 약 3중량부 내지 약 30중량부를 포함할 수 있다.
상기 모물질은 점토, 백토, 황토 및 이들의 조합으로 이루어진 군으로부터선택된 어느 하나 이상을 포함할 수 있다.
상기 다공성 세라믹 타일은 평균 직경이 약 1nm 내지 약 1mm인 기공을 포함할 수 있다.
상기 기공의 기공률이 약 30% 내지 약 60%일 수 있다.
상기 기공 표면의 pH가 약 11이상일 수 있다.
본 발명의 다른 구현예에서, γ-알루미나 및 항균활성물질을 혼합하여 세라믹 성형체를 형성하는 단계; 상기 세라믹 성형체를 건식 프레스 성형하여 다공성 세라믹 타일을 제조하는 단계; 상기 성형된 다공성 세라믹 타일을 건조하는 단계; 상기 건조된 다공성 세라믹 타일에 유약으로 시유하는 단계; 및 상기 시유된 다공성 세라믹 타일을 열분해하여 소성하는 단계를 포함하는 다공성 세라믹 타일 제조방법을 제공한다.
상기 열분해는 약 800℃ 내지 약 1000℃의 온도에서 수행되는 것을 특징으로 할 수 있다.
상기 열분해는 약 1분 내지 약 15분의 시간동안 수행되는 것을 특징으로 할수 있다.
상기 다공성 세라믹 타일의 항균성에 의해 세균 및 곰팡이의 증식을 억제할수 있고, 실내 공기 중 부유 미생물 발생도 저감시킬 수 있어, 실내의 쾌적한 환경을 유지시킬 수 있다.
상기 다공성 세라믹 타일의 제조방법에 의해 제조공정상 편의성, 경제성이 향상될 수 있다.
도 1은 다공성 세라믹 타일 및 다공성 세라믹 타일이 포함하는 기공을 도식화하여 나타낸 것이다.
도 2는 다공성 세라믹 타일의 제조방법을 도식화하여 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
다공성 세라믹 타일
본 발명의 일 구현예에서, γ-알루미나 및 항균 활성물질을 포함하는 다공성세라믹 타일을 제공한다.
상기 다공성 세라믹 타일은 세라믹 분말 등을 압축성형하여 제조될 수 있고,원료는 대부분 분체로, 소석고나 시멘트의 경화제처럼 수화에 의해 경화되는 것도있지만, 분체를 소결하여 형성될 수 있다. 상기 다공성 세라믹 타일은 γ-알루미나및 항균 활성물질을 포함할 수 있다.
항균 활성물질을 포함하여 다공성 세라믹 타일을 형성하는 경우, 다공성 세라믹 타일의 제조과정을 통해 변형된 항균 활성 물질을 통해 다공성 세라믹 타일에항균성을 부여할 수 있다. 다공성 세라믹 타일을 상온에 두고 사용하는데 있어서,다공성 세라믹 타일이 포함하는 기공을 통해 흡습이 이루어질 수 있고, 이 때 다공성 세라믹 타일에 균일하게 분포된 항균 활성물질과 수분이 접촉할 수 있다. 수분과의 접촉을 통해 변형된 항균 활성물질에 화학변화가 일어날 수 있고, 이로 인해다공성 세라믹 타일의 기공 표면에 알칼리성이 부여되어 항균성능을 발휘할 수 있다. 상기 다공성 세라믹 타일의 항균성에 의해 세균 및 곰팡이의 증식을 억제할 수있고, 실내 공기 중 부유 미생물 발생도 저감시킬 수 있어, 실내의 쾌적한 환경을유지시킬 수 있다.
상기 항균 활성물질은 금속 탄산염일 수 있다. 금속 탄산염은 탄산의 수소가금속으로 치환된 염을 일컫는바, 이산화탄소와 금속산화물 또는 금속수산화물로 구성되는 화합물로 탄산염이 덩어리진 것을 의미한다. 상기 금속 탄산염은 탄산칼슘,탄산칼륨, 탄산바륨, 탄산마그네슘, 탄산나트륨 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다.
구체적으로, 항균 활성물질이 금속 탄삼염 중 탄산칼슘(CaCO3)인 경우, 다공성 세라믹 타일의 제조과정을 통해 탄산칼슘(CaCO3)이 이산화탄소(CO2) 및 생석회(CaO)로 분해(CaCO3-> CO2+CaO)될 수 있고, 생석회가 다공성 세라믹 타일에 균일하게 분포될 수 있다. 상기 다공성 세라믹 타일의 기공을 통하여 수분을 흡습하는바, 상기 생석회(CaO)가 화학변화를 겪어 소석회(Ca(OH)2)를 형성하게 된다(CaO+H2O->Ca(OH)2). 이때, 생성된 소석회는 다시 수분에 녹아 칼슘이온(Ca+)과 수산화이온(OH-)으로 이온화(Ca(OH)2)->(OH-)+(Ca+))되고, 알칼리 성질을 띄게 하는 수산화이온으로 인해 기공 표면이 알칼리화 되어 다공성 세라믹 타일에 항균성을 부여할 수 있다.
보다 구체적으로, 상기 항균 활성물질은 모물질 100중량부에 대하여 약 3중량부 내지 약 30중량부를 포함할 수 있다. 상기 항균 활성물질을 상기 범위를 벗어나서 포함한 경우 다공성 세라믹 타일 자체의 강도가 심각하게 저하되거나, 기공의기공률이 줄어 들어, 다공성 세라믹 타일의 역할을 할 수 없는 문제점이 있다. 그러므로, 상기 범위 내의 항균 활성물질을 포함함으로써 다공성 세라믹 타일의 항균성을 적당하게 유지할 수 있는 효과를 용이하게 구현할 수 있다.
상기 모물질은 상기 다공성 세라믹 타일을 구성하는 기초 모재가 되는 물질로서, 상기 다공성 세라믹 타일이 어떤 형태로 제조되는지에 따라 그 종류가 다양하게 적용될 수 있다.
예를 들면, 상기 다공성 세라믹 타일용으로 제조되는 경우, 세라믹 타일의 모재로 사용되는 모물질은 점토 백토 및 황토로 이루어진 군으로부터 선택하여 사용될 수 있으나, 상기 기재된 예에 제한되는 것은 아니고, 상기 다공성 세라믹 타일을 구성하기 위하여 기초 재료로 사용될 수 있는 모든 물질을 포함할 수 있다.
상기 모물질의 함량은 특별히 제한되는 것은 아니고, 다공성 세라믹 타일의적용분야 및 용도에 따라 기타 다른 첨가물이 첨가됨에 따라 그 함량이 달라질 수있는 것으로, 예를 들면 상기 다공성 세라믹 타일을 형성하는 전체 조성물 100중량부에 대하여 상기 모물질을 약 30중량부 내지 약 70중량부를 포함할 수 있다. 상기범위의 모물질을 포함함으로써 성형된 다공성 세라믹 타일로의 일정수준의 성형강도를 유지할 수 있고, 소성단계를 거친 후에도 일정수준의 소성강도를 나타낼 수있다.
한편, 상기 γ-알루미나는 전이상태의 알루미나로써 조습기능을 부여할 수 있다. 일정한 열처리에 의하여 다른 구조상으로 변이가 가능하고, 넓은 비표면적과미세한 기공 홀을 가지고 있어서 분리막, 촉매, 촉매 담체 및 흡착제로서 우수한 특성을 나타낼 수 있는 물질이다.
상기 γ-알루미나는 기공이 표면에 형성되어 우수한 조습 및 탈취 기능을 가질 수 있다. 이에 따라, 상기 γ-알루미나는 습도가 높을 때에는 기공을 통하여 습기를 흡수하여 실내의 습도를 낮추는 기능을 하고, 반대로 습도가 낮을 때에는 기공 내에 저장되어 있던 습기를 방출하여 실내 습도를 높이는 기능을 한다. 또한, 상기 γ-알루미나는 상용 γ-알루미나를 사용할 수도 있으나, 비용절감 및 효율성의 측면에서, 보다 구체적으로는 저가의 알루미늄 소스를 열처리에 의하여 상 변이시킨 γ-알루미나를 사용할 수 있다.
상기 γ-알루미나는 상기 모물질 100중량부에 대하여 약 5중량부 내지 약 40중량부, 구체적으로 약 10중량부 내지 약 35중량부를 포함할 수 있다. 상기 γ-알루미나가 상기 모물질 100중량부에 대하여 약 5중량부 미만인 경우, 충분한 조습기능을 나타내기 어려워질 우려가 있으며, 약 40중량부를 초과하는 경우, 다공성세라믹 타일의 소결이 저하됨에 따라 타일의 강도가 저하될 우려가 있다.
또한, 상기 γ-알루미나의 비표면적이 특별히 제한되는 것은 아니지만, 예를들어 약 150㎡/g 내지 약 350㎡/g인 것일 수 있다. 상기 γ-알루미나의 비표면적이약 150㎡/g 미만인 경우, 충분한 조습기능을 나타낼 수가 없고, 약 350㎡/g를 초과하는 경우, 제조공정의 어려움을 초래할 수 있으며, 제조비용을 상승시킬 우려가있다.
전술한 γ-알루미나 및 항균 활성물질을 포함하는 다공성 세라믹 타일은 흡방습량이 우수하여 조습 및 탈취기능을 가지는 기능성 성형체로 다양한 형태로 사용될 수 있으며, 흡방습량이 크게 우수하므로 다양한 기능성 제품에 적용되어 새집증후군, 아토피 및 새빌딩증후군 등에 의한 피해를 크게 줄일 수 있다.
또한 상기 다공성 세라믹 타일은 기공을 포함하는 타일로, 수분을 빨아들이는 흡습성이 탁월하며, 일정수준의 기계적 강도를 유지함으로써, 건축용 바닥재 및벽재로 그 활용도가 매우 높다. 상기 다공성 세라믹 타일은 γ-알루미나 및 항균활성물질을 포함하여 형성되는바, 각각의 성분에 대한 사항은 전술한 바와 같다.
상기 다공성 세라믹 타일은 γ-알루미나 및 항균 활성물질 외에 바인딩 물질또는 기타 첨가제를 추가로 포함할 수 있다. 상기 바인딩 물질은 그 종류가 특별히제한되는 것은 아니지만, 예를 들어, 프리트 분말 및 유리 분말을 바인딩 물질로 함유할 수 있다.
상기 바인딩 물질로 사용되는 프리트 분말은 화도가 약 750℃ 내지 약 850℃의 프리트 분말이 사용될 수 있다. 이와 같은 프리트 분말을 바인딩 물질로 사용하는 경우, 낮은 온도에서 열처리하더라도 충분한 강도를 나타낼 수 있다는 장점이 있으나, 화도가 약 750℃ 미만의 프리트 분말을 사용할 경우 제조비용이 증가하는 단점이 있다. 또한, 약 850℃을 초과하여 프리트 분말을 사용할 경우는 강도가 충분히 나타나지 않을 수 있다.
상기 바인딩 물질은 상기 모물질 100 중량부에 대하여 약 3중량부 내지 약 20중량부를 포함할 수 있다. 상기 바인딩 물질이 상기 모물질 100 중량부에 대하여약 3중량부 미만으로 포함되는 경우, 다공성 세라믹 타일의 강도가 저하될 수 있으며, 약 20중량부를 초과하는 경우, 조습기능이 저하될 수 있고 제조비용이 증가할수 있다.
또한, 상기 다공성 세라믹 타일은 프리트 분말, 유리 분말, 규조토, 규석, 장석, 도석, 석회, 황토 및 유백제로 이루어지는 군으로부터 선택된 하나 이상의 첨가물을 추가로 포함할 수 있다. 상기 첨가물의 함량은 특별히 제한되는 것은 아니고, 상기 다공성 세라믹 타일의 기능이 손상되지 않는 범위 내에서 적절하게 채용할 수 있는 것이지만, 예를 들면, 상기 모물질 100 중량부에 대하여 약 3중량부내지 약 30 중량부를 포함할 수 있다.
상기 첨가물 중 규조토는 흡수성이 풍부한 다공질로서, 다공성 세라믹 타일형성에 첨가되는 경우, 흡습 기능을 보다 향상시킬 수 있고, 기타 규석, 장석, 도석 및 석회 등도 각각 적절한 양으로 내에 포함될 수 있다. 아울러, 상기 유백제는 유리 제품에 흰빛이 나게 하기 위하여 첨가하는 분말로서, 그 종류가 특별히 제한되는 것은 아니지만, 염화물, 주석, 티타늄 산화물, 황산염, 인산염, 비산염 및 불화물로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
상기 다공성 세라믹 타일은 평균직경이 약 1nm 내지 약 1mm인 기공을 포함할수 있다. 상기 기공은 상기 다공성 세라믹 타일에 분포된 기공을 의미하고, 기공의 평균직경은 기공 직경의 산술적인 평균치를 일컫는바, 상기 범위 내의 기공 크기를유지함으로써 수분 흡수 및 방출, 유해가스 흡착의 역할을 할 수 있다.
상기 기공은 다공성 세라믹 타일을 형성하는 입자 표면에 존재하는 기공뿐 아니라, 다공성 세라믹 타일을 형성하는 입자와 입자 사이에 존재하는 기공 또한 포함하는 것으로 이 때의 기공은 공기의 통로 역할을 할 수 있다.
또한, 상기 기공의 기공률이 약 30% 내지 약 60%일 수 있다. 상기 기공률은 기공의 공극의 정도를 나타내는 수치를 나타내는 바, 기공의 부피의 전 부피에 대한 백분율을 일컫는다. 상기 기공률은, 예를 들어, 미세한 기공에 액체가 침투하는모세관 현상을 이용하는 수은침투를 이용한 기공률 측정원리 등을 이용하여 기공률(%)을 산출할 수 있다.
또한, 상기 범위의 기공률을 유지함으로써 다공성 세라믹 타일의 강도를 적절하게 유지할 수 있고, 수분 및 유해가스의 통로 역할을 수행할 수 있다.
상기 기공 표면의 pH가 약 11이상일 수 있다. 상기 pH란 용액의 수소이온지수, 즉 수소이온(H+) 농도를 지수로 나타낸 것으로, 물의 산성이나 알칼리성 정도를 나타내는 수치이다. 상온에서 pH가 약 7인 경우 해당물질의 액성은 중성, pH가약 7보다 작은 경우 산성, pH가 약 7보다 큰 경우 염기성임을 의미하는바, 상기 기공 표면의 pH는 약 11이상으로 염기성을 가진다.
상기 다공성 세라믹 타일은 항균 활성물질을 포함하여 형성되는 것으로, 다공성 세라믹 타일을 상온에 두고 사용하는 경우, 다공성 세라믹 타일이 포함하는 기공을 통하여 흡습이 이루어질 수 있다. 이 때, 상기 다공성 세라믹 타일 제조시 변형된 상기 항균 활성물질과 수분과의 접촉을 통해 일정한 화학변화가 일어나, 일정농도 이상의 수산화이온을 발생하게 할 수 있고, 상기 발생된 수산화 이온으로 인해 다공성 세라믹 타일의 기공 표면 pH가 약 11이상이 될 수 있다.
구체적으로, 상기 기공 표면 pH가 약 11미만인 경우 약염기 또는 산성에 가깝게 되어 습기에 의한 누룩곰팡이, 대장균 등 인체에 해로울 수 있는 미생물의 서식을 차단할 수 없고, 부유 미생물 발생을 저감시킬 수 없다. 그러므로, 기공 표면을 pH 약 11이상 유지함으로써 상기 다공성 세라믹 타일을 사용하는 실내의 쾌적한환경을 유지시킬 수 있다.
다공성 세라믹 타일 제조방법
본 발명의 다른 구현예에서, γ-알루미나 및 항균활성물질을 혼합하여 세라믹 성형체를 형성하는 단계; 상기 세라믹 성형체를 건식 프레스 성형하여 다공성 세라믹 타일을 제조하는 단계; 상기 성형된 다공성 세라믹 타일을 건조하는 단계;상기 건조된 다공성 세라믹 타일에 유약으로 시유하는 단계; 및 상기 시유된 다공성 세라믹 타일을 열분해하여 소성하는 단계를 포함하는 다공성 세라믹 타일 제조방법을 제공한다.
상기 세라믹 성형체를 제조하는 단계(S100)는 γ-알루미나 및 항균활성물질의 혼합물을 제조하는 단계 및 상기 혼합물을 이용하여 세라믹 성형체를 성형하는단계를 포함할 수 있다.
상기 혼합물을 제조하는 방법은 특별히 제한되는 것은 아니고, 이 분야에서공지된 혼합 방법을 모두 포함할 수 있으나, 예를 들면, 우선, 상기 혼합물을 볼밀을 이용하여 균일한 혼합 및 적정한 크기로 분쇄할 수 있으며, 분쇄 시에는 물, 유기바인더, 분산제 및 소포제 등을 적절한 양으로 첨가할 수 있다. 이어서, 상기 전술한 바와 같이 분쇄된 혼합물이 적절한 점도를 가지는 슬러리 형태가 되면, 이를분무 건조 공정을 통하여 구형 입자를 가지는 과립 분말 형태로 제조할 수 있다.
상기 제조된 세라믹 형성체를 건식 프레스 성형하는 단계(S200)를 통하여 다공성 세라믹 타일을 제조할 수 있다. 상기 제조된 세라믹 성형체, 즉 과립분말 형태의 혼합물을 건식프레스 금형에 투입하여 원하는 형상의 세라믹 성형체를 제조할수 있다.
그 후, 상기 성형된 다공성 세라믹 타일을 건조하는 단계(S300)를 포함할 수있다. 상기 건조하는 단계에 있어서, 건조온도가 특별히 제한되는 것은 아니지만,약 200℃ 내지 약 250℃의 온도에서 건조를 수행할 수 있으며, 이 경우 고온의 가스 연속로를 통과하는 짧은 시간 동안에 성형체가 변형 또는 소지 폭발과 같은 불량을 억제할 수 있다.
상기 건조된 다공성 세라믹 타일은 유약으로 시유하는 단계(S300)를 포함할수 있다. 상기 단계(S300)는 다공성 세라믹 타일의 표면에 유약을 입히기 위한 것으로, 시유 방법에 특별히 제한이 있는 것은 아니며, 유약의 슬러리를 이용하는 습식법, 유약의 건분 또는 과립, 프리트의 칼리트를 이용하는 건식법 등을 사용할 수있다.
마지막으로, 상기 시유된 다공성 세라믹 타일을 열분해하여 소성하는 단계(S400)를 포함할 수 있다. 열분해란 외부에서 열을 가하여 분자를 활성화시켰을 때, 약한 결합이 끊어져 새로운 물질을 만드는 것을 의미하고, 소성이란 조합된 원료를 가열하여 경화성 물질을 만드는 조작을 일컫는바, 상기 다공성 세라믹 타일에 열을 가하여 분해과정 및 소성과정을 동시에 거침으로써, 다공성 세라믹 타일이 포함하는 물질을 변형 시켜 소성함으로써 항균성을 부여하는 전단계를 유지할 수 있다.
예를 들어, 다공성 세라믹 타일이 포함하는 항균 활성물질이 탄산칼슘(CaCO3)인 경우 열분해 및 소성과정을 통하여 이산화탄소 및 생석회로 분해(CaCO3-> CaO+CO2)될 수 있고, 이때 생성된 생석회는 상기 다공성 세라믹 타일 내부에 고르게 분포될 수 있다. 이 때, 상기 다공성 세라믹 타일의 흡습과정등을 통하여 상기 생성된 생석회가 수분과 접촉하게 되는바, 이로 인해 향균성이 부여되는과정은 전술한 바와 같다.
상기 열분해는 약 800℃ 내지 약 1000℃의 온도에서 수행될 수 있다. 상기 열분해의 온도에 제한되는 것은 아니나, 상기 범위의 온도에서 열분해를 수행함으로써 항균성을 발휘하는 전단계의 다공성 세라믹 타일을 형성할 수 있다.
또한, 상기 열분해는 약 1분 내지 약 15분의 시간동안 수행될 수 있다. 상기열분해 시간을 벗어나서 열처리 하는 경우 열분해가 충분히 이뤄지지 않을 수 있다. 그러므로 상기 범위의 시간동안 열분해를 수행함으로써 항균성을 발휘하는 전단계의 다공성 세라믹 타일을 형성할 수 있고, 생산량 및 에너지 비용 면에서 장점을 가질 수 있다.
상기 다공성 세라믹 타일 제조방법에 있어서, 열분해 및 소성단계(S400)를 거침으로써 항균 활성물질을 변형시킬 수 있고, 항균성을 발휘할 수 있는 전단계로 다공성 세라믹 타일에 고르게 분포하게 할 수 있다. 그 후, 상기 다공성 세라믹 타일을 사용하는 중 흡습과정을 통해 기공 표면을 염기화하여 다공성 세라믹 타일에 항균성이 자연스럽게 부여될 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예
하기 표 1에 기재된 성분들의 혼합물을 볼밀을 이용하여 분쇄하고, 이에 따라 얻어진 슬러리를 분무건조 공정을 통해 균일하게 혼합되고 함수율이 8%, 평균입도 300㎛인 구형의 과립분말을 제조하였다.
이어서, 상기 과립분말을 건식 프레스 성형하여 가로, 세로, 두께가 각각7cm, 7cm, 0.6cm인 다공성 세라믹 타일을 제조하였다. 다음으로, 상기 다공성 세라믹 타일을 250℃의 연속 건조로에서 건조한 후, 평균입도가 15um이고 화도가 750℃인 프리트 분말과 안료를 물에 분산하여 스프레이 도포하여 시유하였다.
마지막으로, 상기 시유된 다공성 세라믹 타일을 가스 연속로(RHK)에 투입하여 850℃의 온도로 10분 동안 열분해하고 소성하여 기공의 평균직경이 5nm이고 기공률이 45%인 다공성 세라믹 타일을 제조하였다.
비교예
하기 표 1에 기재된 성분 중 항균활성물질을 포함하지 않은 것을 제외하고는상기 실시예와 동일한 방법으로 다공성 세라믹 타일을 제조하였다.
표 1
실시예 비교예
점토 43.7 50.4
수산화알루미늄 13.8 15.5
Frit 4.0 4.7
규석 1.1 1.2
산청토 1.6 1.9
PVA혼합액/10% 0.0 1.1
삼인산소다 0.1 0.1
21.8 25.1
안료 0.6 0.0
항균활성물질 13.1(CaCO3) 0.0
<실험예> - 다공성 세라믹 타일의 pH 측정
상기 실시예 및 비교예의 다공성 세라믹 타일을 25℃의 물(100ml)에 10분 동안 담궈두었다. 그 후 시간에 따라 다공성 세라믹 타일이 포함하는 기공에 이온들이 존재하게 되는바 이때 기공 표면의 산도(pH)를 pH측정기를 이용하여 pH값을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
표 2
경과시간(분) 산도(pH)
실시예 비교예
0 8 8
2 9.21 8.08
3 10.42 8.14
4 11.2 8.21
5 11.32 8.28
10 11.45 8.34
상기 표 2를 참조하면, 항균 활성 물질을 포함한 실시예의 다공성 세라믹 타일의 경우 다공성 세라믹 타일이 포함하는 기공 표면이 상대적으로 상당히 빠른 시간에 pH11 이상의 염기성을 띄게 됨을 확인 할 수 있었으며, 다공성 세라믹 타일을상온에서 사용하는 중에 발생하는 흡습으로 인해 기공 표면이 염기화 되는바, 이로인해 항균 및 항곰팡이 성능이 증대됨을 유추할 수 있다.
이와 비교하여, 항균 활성 물질을 포함하지 않은 비교예의 다공성 세라믹 타일의 경우 10분이상 시간이 경과하여도, 다공성 세라믹 타일이 포함하는 기공 표면의 pH가 약 9정도에서 멈추었는바 염기성을 띄지 않음을 확인하였고, 다공성 세라믹 타일의 사용 중 발생할 수 있는 세균 번식 저하등의 항균성능을 발휘하지 못함을 유추할 수 있다.

Claims (11)

  1. γ-알루미나 및 항균 활성물질을 포함하는 다공성 세라믹 타일.
  2. 제 1항에 있어서,
    상기 항균 활성물질은 금속 탄산염인
    다공성 세라믹 타일.
  3. 제 2항에 있어서,
    상기 금속 탄산염은 탄산칼슘, 탄산칼륨, 탄산바륨, 탄산마그네슘, 탄산나트륨 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는
    다공성 세라믹 타일.
  4. 제 1항에 있어서,
    상기 항균 활성물질은 모물질 100중량부에 대하여 3중량부 내지 30중량부를포함하는
    다공성 세라믹 타일.
  5. 제 4항에 있어서,
    상기 모물질은 점토, 백토, 황토 및 이들의 조합으로 이루어진 군으로부터선택된 어느 하나 이상을 포함하는
    다공성 세라믹 타일.
  6. 제 1항에 있어서,
    상기 다공성 세라믹 타일은 평균 직경이 1nm 내지 1mm인 기공을 포함하는
    다공성 세라믹 타일.
  7. 제 6항에 있어서,
    상기 기공의 기공률이 30% 내지 60%인
    다공성 세라믹 타일.
  8. 제 6항에 있어서,
    상기 기공 표면의 pH가 11이상인
    다공성 세라믹 타일.
  9. γ-알루미나 및 항균활성물질을 혼합하여 세라믹 성형체를 형성하는 단계;
    상기 세라믹 성형체를 건식 프레스 성형하여 다공성 세라믹 타일을 제조하는단계;
    상기 성형된 다공성 세라믹 타일을 건조하는 단계;
    상기 건조된 다공성 세라믹 타일에 유약으로 시유하는 단계; 및
    상기 시유된 다공성 세라믹 타일을 열분해하여 소성하는 단계를 포함하는
    다공성 세라믹 타일 제조방법.
  10. 제 9항에 있어서,
    상기 열분해는 800℃ 내지 1000℃의 온도에서 수행되는 것을 특징으로 하는
    다공성 세라믹 타일 제조방법.
  11. 제 9항에 있어서,
    상기 열분해는 1분 내지 15분의 시간동안 수행되는 것을 특징으로 하는
    다공성 세라믹 타일 제조방법.
PCT/KR2013/008883 2012-10-30 2013-10-04 항균 다공성 세라믹 타일 및 이의 제조방법 WO2014069802A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380057173.0A CN104781210B (zh) 2012-10-30 2013-10-04 抗菌多孔性陶瓷砖及其制造方法
JP2015539493A JP6419705B2 (ja) 2012-10-30 2013-10-04 抗菌多孔性セラミックタイル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0121622 2012-10-30
KR1020120121622A KR101546240B1 (ko) 2012-10-30 2012-10-30 항균 다공성 세라믹 타일 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2014069802A1 true WO2014069802A1 (ko) 2014-05-08

Family

ID=50627653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008883 WO2014069802A1 (ko) 2012-10-30 2013-10-04 항균 다공성 세라믹 타일 및 이의 제조방법

Country Status (4)

Country Link
JP (1) JP6419705B2 (ko)
KR (1) KR101546240B1 (ko)
CN (1) CN104781210B (ko)
WO (1) WO2014069802A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527518A (ja) * 2014-09-03 2017-09-21 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 天然石の外観を具現する多孔性セラミックタイル及びその製造方法
CN113968674A (zh) * 2021-10-14 2022-01-25 广东欧文莱陶瓷有限公司 一种防污数码保护釉料

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711253B1 (ko) * 2014-05-16 2017-03-02 (주)엘지하우시스 색상을 발현하는 다공성 세라믹 타일 및 그의 제조방법
KR101942261B1 (ko) * 2014-09-24 2019-01-28 (주)엘지하우시스 가시광 활성 광촉매 타일
KR101909079B1 (ko) * 2016-02-15 2018-10-18 한국세라믹기술원 석분을 포함하는 다공성 세라믹 패널 제조용 소지 조성물 및 이를 이용해 제조된 다공성 세라믹 패널
KR101876747B1 (ko) * 2016-09-26 2018-07-11 부산대학교 산학협력단 다층 구조를 갖는 황토입자 및 이를 제조하는 방법
CN106747226A (zh) * 2016-12-30 2017-05-31 安徽华普环境修复材料科技有限公司 一种具有优异透水性陶瓷渗水砖
CN106747318A (zh) * 2016-12-30 2017-05-31 安徽华普环境修复材料科技有限公司 一种环保低成本陶瓷渗水砖
KR102327214B1 (ko) * 2019-12-31 2021-11-16 한국요업주식회사 광촉매 및 무기항균제를 포함하는 항균 타일 제조용 조성물
KR20230000453A (ko) 2021-06-24 2023-01-02 (주)엘엑스하우시스 다공성 타일을 이용한 자동 가습 장치
KR20230000429A (ko) 2021-06-24 2023-01-02 (주)엘엑스하우시스 다공성 타일을 이용한 가습 장치
KR102616186B1 (ko) 2021-08-18 2023-12-22 주식회사 한나눔산업 항균성과 원적외선 방사효과가 우수한 타일 조성물 및 그 제조방법
KR102608768B1 (ko) * 2022-09-26 2023-12-04 주식회사 티에스제이 항곰팡이 기능을 가지는 세라믹의 제조 방법
KR102604667B1 (ko) * 2022-09-26 2023-11-24 주식회사 티에스제이 탈취 기능을 가지는 세라믹 플레이트의 제조 방법
KR102604664B1 (ko) * 2022-09-26 2023-11-24 주식회사 티에스제이 항균 기능을 가지는 세라믹 플레이트의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717803A (ja) * 1991-03-27 1995-01-20 Shiraishi Chuo Kenkyusho:Kk 抗菌性炭酸カルシウム粉体
JP2001087645A (ja) * 1999-09-24 2001-04-03 Chafuroozu Corporation:Kk 吸着抗菌性粉体とその製造方法
JP2006232650A (ja) * 2005-02-24 2006-09-07 Entec Kk 多孔質構造軽量セラミックス、抗菌多孔質構造軽量セラミックス、止水防水多孔質構造軽量セラミックス、防水多孔質構造軽量セラミックス、融雪多孔質構造軽量セラミックス及びその製造方法。
KR20110068207A (ko) * 2009-12-15 2011-06-22 (주)엘지하우시스 조습성 세라믹 성형체, 이의 제조방법 및 이를 이용한 세라믹 타일
KR20120111048A (ko) * 2011-03-31 2012-10-10 (주)엘지하우시스 성에 및 결로 방지용 다공성 세라믹 구조체 및 이를 포함하는 냉장 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784240B2 (ja) * 1990-04-04 1998-08-06 株式会社萩原技研 アルミナを母体とする抗菌性組成物
CN1166290C (zh) * 1999-07-26 2004-09-15 查夫洛兹公司 吸附杀菌剂及制法,应用该杀菌剂的表面装饰材料与制法
JP2002255714A (ja) * 2001-02-27 2002-09-11 Koowa:Kk ホタテ貝殻粉焼成物からなる細菌抑制剤
JP2003081672A (ja) * 2001-09-07 2003-03-19 Sekisui Chem Co Ltd 無機質硬化体、無機質壁材
CN1657493A (zh) * 2004-02-19 2005-08-24 上海亚细亚陶瓷有限公司 一种抗静电、抗电磁辐射、抗菌陶瓷
JP2006027999A (ja) * 2004-07-21 2006-02-02 Kagawa Prefecture 調湿機能を有する炭酸固化体
WO2007004424A1 (ja) * 2005-07-06 2007-01-11 Maruishi Ceramic Materials Co., Ltd. セラミック多孔体の製造方法
KR20080080317A (ko) * 2005-11-30 2008-09-03 닛폰 텐넨소자이 가부시키가이샤 2단계 소성 패각 분말로 이루어진 항곰팡이·항균제
GB0800549D0 (en) * 2008-01-14 2008-02-20 Smith & Nephew Composite material
CN101891500B (zh) * 2010-07-05 2012-03-21 广西师范大学 用红辉沸石制备抗菌陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717803A (ja) * 1991-03-27 1995-01-20 Shiraishi Chuo Kenkyusho:Kk 抗菌性炭酸カルシウム粉体
JP2001087645A (ja) * 1999-09-24 2001-04-03 Chafuroozu Corporation:Kk 吸着抗菌性粉体とその製造方法
JP2006232650A (ja) * 2005-02-24 2006-09-07 Entec Kk 多孔質構造軽量セラミックス、抗菌多孔質構造軽量セラミックス、止水防水多孔質構造軽量セラミックス、防水多孔質構造軽量セラミックス、融雪多孔質構造軽量セラミックス及びその製造方法。
KR20110068207A (ko) * 2009-12-15 2011-06-22 (주)엘지하우시스 조습성 세라믹 성형체, 이의 제조방법 및 이를 이용한 세라믹 타일
KR20120111048A (ko) * 2011-03-31 2012-10-10 (주)엘지하우시스 성에 및 결로 방지용 다공성 세라믹 구조체 및 이를 포함하는 냉장 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527518A (ja) * 2014-09-03 2017-09-21 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 天然石の外観を具現する多孔性セラミックタイル及びその製造方法
KR101891370B1 (ko) 2014-09-03 2018-08-27 (주)엘지하우시스 천연석 외관을 구현하는 다공성 세라믹 타일 및 그의 제조방법
CN113968674A (zh) * 2021-10-14 2022-01-25 广东欧文莱陶瓷有限公司 一种防污数码保护釉料

Also Published As

Publication number Publication date
KR20140055188A (ko) 2014-05-09
CN104781210A (zh) 2015-07-15
JP6419705B2 (ja) 2018-11-07
CN104781210B (zh) 2018-09-18
KR101546240B1 (ko) 2015-08-27
JP2016503468A (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2014069802A1 (ko) 항균 다공성 세라믹 타일 및 이의 제조방법
CN104088137B (zh) 一种利用铁镁电气石与坡缕石制备功能型墙纸的方法
KR101149065B1 (ko) 포름알데히드 흡착과 수분 흡방습이 가능한 수열합성 건축내장용 패널 및 그 제조방법
US20240182373A1 (en) Antibacterial ceramic tile and preparation method thereof
KR101102936B1 (ko) 미세다공타일 및 이의 제조방법
CN107651851B (zh) 一种应用于调湿陶瓷砖的光催化釉料及其制备方法
KR101490195B1 (ko) 자연 친화적 원료로 제공되는 건축내장재 및 그 제조방법
CN105298009A (zh) 一种可释放负氧离子的蛭石硅酸钙复合板及其制备方法
CN102951925A (zh) 一种具有调湿功能的硅藻土基多孔材料及其制备方法
KR101322096B1 (ko) 조습성 세라믹 성형체, 이의 제조방법 및 이를 이용한 세라믹 타일
WO2011110965A1 (en) Humidity regulating material and production method thereof
CN101186508A (zh) 一种多孔质烧结功能性陶瓷砖的制造方法
KR100495571B1 (ko) 흡방습 건강타일 조성물 및 건강타일의 제조방법
WO2014107032A1 (ko) 정수 슬러지를 재활용한 다공성 조습보드용 조성물 및 이를 이용한 다공성 조습보드의 제조방법
KR20080076071A (ko) 감습 및 조습기능을 갖는 타일
KR100781712B1 (ko) 생화학적 처리 담체 제조방법
KR20120126202A (ko) 건축용 다공성 세라믹 내외장재 및 그 제조방법
WO2014193192A1 (ko) 고강도 및 고흡방습성을 갖는 다공성 세라믹 타일
WO2012172886A1 (ja) 内装用建材及びその製造方法
KR101228222B1 (ko) 조습성 세라믹 성형체 및 이의 제조방법
KR101511517B1 (ko) 천연 고기능 나노 광물을 융합한 내부용 점토 벽돌 및 이의 제조방법
KR100864130B1 (ko) 기능성 합성 세라믹 및 이의 제조방법
CN109650941B (zh) 一种以陶瓷抛光废料低温合成的具有调湿功能的陶瓷薄板
CN109704699B (zh) 一种以陶瓷非抛光废料低温合成的具有调湿功能的陶瓷薄板
KR101200161B1 (ko) 내장 벽체용 다공성 조성물 및 이를 이용하여 내장 벽체를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851565

Country of ref document: EP

Kind code of ref document: A1