WO2014069546A1 - 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置 - Google Patents

熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置 Download PDF

Info

Publication number
WO2014069546A1
WO2014069546A1 PCT/JP2013/079468 JP2013079468W WO2014069546A1 WO 2014069546 A1 WO2014069546 A1 WO 2014069546A1 JP 2013079468 W JP2013079468 W JP 2013079468W WO 2014069546 A1 WO2014069546 A1 WO 2014069546A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
group
particles
reflective
anisotropic conductive
Prior art date
Application number
PCT/JP2013/079468
Other languages
English (en)
French (fr)
Inventor
恵介 森田
友康 須永
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020157005900A priority Critical patent/KR102139124B1/ko
Priority to CN201380056560.2A priority patent/CN104736591A/zh
Publication of WO2014069546A1 publication Critical patent/WO2014069546A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting resin composition, a light-reflective anisotropic conductive adhesive using the thermosetting epoxy adhesive, and a light-emitting device in which a light-emitting element is mounted on a wiring board using the adhesive.
  • a thermosetting resin composition a thermosetting resin composition
  • a light-reflective anisotropic conductive adhesive using the thermosetting epoxy adhesive
  • a light-emitting device in which a light-emitting element is mounted on a wiring board using the adhesive.
  • Non-Patent Document 1 As an insulating adhesive component in an anisotropic conductive paste or anisotropic conductive film.
  • an LED element 33 is bonded to a substrate 31 with a die bond adhesive 32 as shown in FIG. 34 and the n-electrode 35 are wire-bonded to the connection terminal 36 of the substrate 31 with a gold wire 37, and the entire LED element 33 is sealed with a transparent mold resin 38.
  • LED blocking light emitting diode
  • the gold wire absorbs light having a wavelength of 400 to 500 nm emitted to the upper surface side, and part of the light emitted to the lower surface side is absorbed by the die bond adhesive 32. Since there is a problem that the luminous efficiency of the LED element 33 is lowered, as shown in FIG. 6, it is proposed to flip-chip mount the LED element 33 (Patent Document 1). .
  • bumps 39 are formed on the p electrode 34 and the n electrode 35, respectively, and further, the bump formation surface of the LED element 33 is insulated from the p electrode 34 and the n electrode 35.
  • the light reflecting layer 40 is provided on the surface.
  • the LED element 33 and the substrate 31 are connected and fixed by using an anisotropic conductive paste 41 or an anisotropic conductive film (not shown) and curing them. For this reason, in the light emitting device of FIG. 6, the light emitted upward of the LED element 33 is not absorbed by the gold wire, and most of the light emitted downward is reflected by the light reflecting layer 40 and emitted upward. The light emission efficiency (light extraction efficiency) does not decrease.
  • Non-Patent Document 1 when a two-component curable methylsilicone resin or a two-component curable phenylsilicone resin as described in Non-Patent Document 1 is used as an insulating adhesive component of an anisotropic conductive adhesive, it is insulated by heat or light. Although the discoloration of the adhesive adhesive component can be suppressed, there is a problem that the peel strength (die shear strength) of the LED element with respect to the mounting substrate becomes a level unsuitable for practical use.
  • the light reflecting layer 40 must be provided on the LED element 33 by a metal vapor deposition method or the like so as to be insulated from the p electrode 34 and the n electrode 35, and an increase in manufacturing cost is inevitable.
  • the surface of the conductive particles coated with gold, nickel or copper in the cured anisotropic conductive paste or anisotropic conductive film is brown or
  • the epoxy resin binder itself which exhibits a dark brown color and in which conductive particles are dispersed, also exhibits a brown color because of the imidazole-based latent curing agent that is commonly used for its curing. There is a problem that it is difficult to improve the light emission efficiency (light extraction efficiency).
  • a first object of the present invention is to solve the above-mentioned problems of the prior art, and to mount a light emitting element such as a light emitting diode (LED) element on a wiring board using an anisotropic conductive adhesive.
  • a thermosetting resin composition as an insulating adhesive component suitable for anisotropic conductive adhesives that are resistant to discoloration by heat and light and exhibit practically sufficient die shear strength when manufacturing light emitting devices
  • the second object is to provide a light-reflective anisotropic conductive adhesive that can improve the light emission efficiency without providing a light-reflective layer on the LED element that causes an increase in manufacturing cost.
  • it is to provide a light emitting device in which a light emitting element is flip-chip mounted on a wiring board using such a light reflective anisotropic conductive adhesive.
  • the present inventors have disclosed an epoxy group-containing siloxane compound having a specific structure as an insulating adhesive component of an anisotropic conductive adhesive, more specifically tetrakis (diglycidyl isocyanuryl-modified siloxy). It was found that the use of silane can prevent the anisotropic conductive adhesive from being discolored by heat or light, and exhibits practically sufficient die shear strength.
  • the inventors of the present invention have assumed that the anisotropic conductive adhesive itself has a light reflecting function, so that the luminous efficiency can be prevented from being lowered. Furthermore, it has been found that the light-emitting efficiency of the light-emitting element can be prevented from being lowered by blending light-reflective insulating particles. And based on these knowledge, it came to complete this invention.
  • this invention contains the epoxy group containing siloxane compound represented by Formula (1), and the hardening
  • the thermosetting resin composition characterized by the above-mentioned. I will provide a.
  • the substituent R is independently an alkyl group or a phenyl group.
  • the linking group A is independently a divalent hydrocarbon group.
  • the substituents R1 and R2 are independently an epoxy group-containing organic group, an alkyl group, or an aryl group, and at least one of R1 and R2 is an epoxy group-containing organic group.
  • the present invention also provides a light-reflective anisotropic conductive adhesive used for anisotropic conductive connection of a light emitting element to a wiring board in order to achieve the second object, represented by the formula (1).
  • a light-reflective anisotropy comprising the thermosetting resin composition of the present invention, the conductive particles, and the light-reflective insulating particles, comprising the epoxy group-containing siloxane compound and the epoxy resin curing agent
  • a conductive adhesive is provided.
  • a light-reflective anisotropic conductive adhesive which is a light-reflective conductive particle comprising a light-reflecting layer formed from at least one kind of inorganic particles selected from particles or aluminum oxide particles.
  • the present invention provides a light emitting device in which a light emitting element is mounted on a wiring board by a flip chip method through the above-described light reflective anisotropic conductive adhesive.
  • thermosetting resin composition of the present invention useful as a binder for an anisotropic conductive adhesive used for anisotropic conductive connection of a light emitting element to a wiring board is a formula (1) that cures with a curing agent for epoxy resin.
  • the epoxy group containing siloxane compound represented by these is contained.
  • this siloxane compound four silyleneoxy groups are bonded to the center silicon atom, and an isocyanurylalkyl group substituted with an epoxy group-containing organic group is bonded to the terminal of each silyleneoxy group. It has the structure. For this reason, it can prevent that an anisotropic conductive adhesive discolors with a heat
  • this thermosetting resin composition is useful not only as an anisotropic conductive adhesive but also as a binder for an insulating adhesive or a conductive adhesive.
  • the light-reflective anisotropic conductive adhesive of the present invention contains light-reflective insulating particles in addition to the effect of the thermosetting resin composition, it can reflect light.
  • the light-reflective insulating particles are at least one inorganic particle selected from the group consisting of titanium oxide, boron nitride, zinc oxide and aluminum oxide, or a resin in which the surface of scaly or spherical metal particles is coated with an insulating resin.
  • coated metal particles since the particles themselves are almost white, the wavelength dependency of the reflection characteristic with respect to visible light is small, so that the light emission efficiency can be improved and the light emission color of the light emitting element remains unchanged. Can be reflected by color.
  • conductive particles a core particle coated with a metal material, and a white to gray light reflecting layer formed on the surface thereof from titanium oxide particles, boron nitride particles, zinc oxide particles or aluminum oxide particles.
  • the light-reflective conductive particles themselves exhibit a white to gray color, so that the wavelength dependence of the reflection characteristics with respect to visible light is small, thus further improving the luminous efficiency.
  • the emission color of the light emitting element can be reflected as it is.
  • FIG. 1A is a cross-sectional view of light-reflective conductive particles for a light-reflective anisotropic conductive adhesive.
  • FIG. 1B is a cross-sectional view of light-reflective conductive particles for a light-reflective anisotropic conductive adhesive.
  • FIG. 2 is a cross-sectional view of the light emitting device of the present invention.
  • FIG. 3 is an FT-IR measurement chart of the epoxy group-containing siloxane compound of the formula (1a) produced in Example 1.
  • FIG. 4 is a 1 H-NMR measurement chart of the epoxy group-containing siloxane compound of the formula (1a) produced in Example 1.
  • FIG. 5 is a cross-sectional view of a conventional light emitting device.
  • FIG. 6 is a cross-sectional view of a conventional light emitting device.
  • thermosetting resin composition of the present invention contains an epoxy group-containing siloxane compound represented by the formula (1) and a curing agent for epoxy resin.
  • This thermosetting resin composition is useful as a binder for a light-reflective anisotropic conductive adhesive used for anisotropic conductive connection of a light emitting element to a wiring board.
  • thermosetting resin composition of the present invention contains an epoxy group-containing siloxane compound represented by formula (1) and a curing agent for epoxy resin.
  • an epoxy group-containing siloxane compound represented by the formula (1) it is possible to prevent the anisotropic conductive adhesive from being discolored by heat or light, and to achieve practically sufficient die shear strength. Can do.
  • R is an alkyl group or a phenyl group independently.
  • An alkyl group is preferred from the viewpoint of difficulty in discoloration.
  • Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms from the viewpoint of adhesion to a substrate, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert- A butyl group, a heptyl group, an isoheptyl group, and a hexyl group are preferable, and among them, a lower alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group are preferable.
  • a methyl group is preferable from the viewpoint of heat-resistant yellowing resistance.
  • A is independently a divalent hydrocarbon group, for example, an alkylene group having 2 or more carbon atoms, an arylene group, or an aralkylene group, and an alkylene group having 2 or more carbon atoms is preferable from the viewpoint of difficulty in discoloration.
  • an alkylene group having 2 or more carbon atoms for example, an alkylene group having up to 6 carbon atoms is preferable, and specific examples include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • An alkyl group such as a methyl group may be bonded to these alkylene groups.
  • arylene group examples include a 1,4-phenylene group, a 1,3-phenylene group, a 1,2-phenylene group, a 1,4-naphthalene group, and a 1,5-naphthalene group.
  • a 1,4-phenylene group is preferred.
  • Examples of the aralkylene group include a phenyl dimethylene group and a phenyl trimethylene group.
  • the substituents R1 and R2 are independently an epoxy group-containing organic group, an alkyl group, or an aryl group, but at least one of R1 and R2, preferably both, is an epoxy group-containing organic group.
  • Examples of the epoxy group-containing organic group include glycidyl group, 1,2-epoxy-5-hexenyl group, 2,6-dimethyl-2,3-epoxy-7-octenyl group, and 1,2-epoxy-9-decenyl. Groups. Among these, a glycidyl group is preferable from the viewpoint of adhesiveness with a substrate.
  • the substituent R is a lower alkyl group having 1 to 3 carbon atoms
  • the linking group A is an alkylene group having 2 to 6 carbon atoms.
  • the substituents R1 and R2 are both epoxy group-containing organic groups.
  • a particularly preferred embodiment of the epoxy group-containing siloxane compound represented by the formula (1) is a compound represented by the following formula (1a).
  • the amount is preferably 45 to 65% by mass, more preferably 50 to 60% by mass.
  • the epoxy group-containing siloxane compound represented by the formula (1) as shown in the following reaction formula (so-called hydrosilylation reaction), tetrakis (hydrogensilyleneoxysilane) of the formula (a) and the formula (b ) Isocyanurate, and then in the presence of a Karlstedt catalyst (1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum (0) complex solution) at room temperature to The compound of the formula (1) can be isolated from the reaction mixture by a conventional method (concentration treatment, column treatment, etc.).
  • R, A, R1 and R2 are as described in formula (1).
  • a ′ is a terminal alkenyl group corresponding to the linking group A.
  • A is a dimethylene group, it is a vinyl group, when it is a trimethylene group, it is an allyl group, and when it is a hexamethylene group, it is a 5-hexenyl group.
  • the compound of formula (1a) which is a particularly preferred embodiment of the epoxy group-containing siloxane compound of formula (1), is also represented by the following formula: tetrakis (hydrogendimethylsiloxy) silane of formula (a ′) and formula (b ′ ) Of 1-allyl-3,5-diglycidyl isocyanurate.
  • thermosetting resin composition of the present invention is a heterocyclic epoxy compound, an alicyclic epoxy compound, or a hydrogenated epoxy compound as long as the effects of the invention are not impaired. Etc. can be contained.
  • heterocyclic epoxy compound examples include epoxy compounds having a triazine ring, such as 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6- (1H, 3H , 5H) -trione (in other words, triglycidyl isocyanurate).
  • Preferred examples of the alicyclic epoxy compound include those having two or more epoxy groups in the molecule. These may be liquid or solid. Specific examples include glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, and the like. Among these, glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ′, 4 is preferable because it can ensure light transmission suitable for mounting LED elements on the cured product and is excellent in rapid curing. '-Epoxycyclohexenecarboxylate can be preferably used.
  • hydrogenated epoxy compound hydrogenated products of the aforementioned heterocyclic epoxy compounds and alicyclic epoxy compounds, and other known hydrogenated epoxy resins can be used.
  • alicyclic epoxy compounds, heterocyclic epoxy compounds and hydrogenated epoxy compounds may be used alone or in combination of two or more with respect to the epoxy group-containing siloxane compound of formula (1). Good. In addition to these epoxy compounds, other epoxy compounds may be used in combination as long as the effects of the present invention are not impaired.
  • epoxy resin curing agent a known epoxy resin curing agent can be used.
  • amine curing agent, polyamide curing agent, acid anhydride curing agent, imidazole curing agent, polymercaptan curing agent, polysulfide curing agent, boron trifluoride-amine complex curing agent, dicyandiamide, organic acid It can be selected from among hydrazides and the like.
  • acid anhydride curing agents can be preferably used from the viewpoints of light transmittance, heat resistance, and the like.
  • Acid anhydride curing agents include succinic anhydride, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydro Phthalic anhydride, or a mixture of 4-methyl-hexahydrophthalic anhydride and hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl-tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic acid An acid anhydride, methylnorbornane-2,3-dicarboxylic acid anhydride, methylcyclohexene dicarboxylic acid anhydride, etc. can be mentioned.
  • the amount of the epoxy resin curing agent such as an acid anhydride curing agent in the thermosetting resin composition is too small relative to 100 parts by mass of the epoxy group-containing siloxane compound represented by the formula (1),
  • the amount of the cured epoxy component increases, and if the amount is too large, the corrosion of the adherend material tends to be accelerated due to the influence of the excess curing agent. Therefore, the amount is preferably 50 to 120 parts by mass, more preferably 60 to 100 parts by mass. is there.
  • the thermosetting resin composition of the present invention can contain a known curing accelerator in order to complete the curing reaction smoothly and in a short time.
  • Preferred curing accelerators include quaternary phosphonium salt-based curing accelerators and imidazole-based curing accelerators. Specific examples include quaternary phosphonium bromide salts (“U-CAT5003” (trademark), manufactured by San Apro), 2-ethyl-4-methylimidazole, and the like.
  • U-CAT5003 quaternary phosphonium bromide salts
  • an imidazole curing accelerator can be preferably used as a curing accelerator for an acid anhydride curing agent.
  • the imidazole curing accelerator is preferably 0.20 to 2.00 parts by mass, and more preferably 0.60 to 1.00 parts by mass with respect to parts.
  • thermosetting resin composition of the present invention described above is as colorless and transparent as possible when used as a binder that is an insulating adhesive component of a light-reflective anisotropic conductive adhesive for mounting a light-emitting element. It is preferable. This is because the light-reflecting conductive particles in the light-reflective anisotropic conductive adhesive are reflected without lowering the light reflection efficiency and without changing the light color of the incident light.
  • colorless and transparent means that the light-reflective anisotropic conductive adhesive cured product has a light transmittance (JIS K7105) of 80% or more with respect to visible light having a wavelength of 380 to 780 nm, preferably 80% or more. It means 90% or more.
  • thermosetting resin composition of the present invention is produced by mixing the epoxy group-containing siloxane compound of formula (1), the curing agent for epoxy, and other components blended as necessary by a known method. can do.
  • This light-reflective anisotropic conductive adhesive contains a thermosetting resin composition, conductive particles and light-reflective insulating particles, and the thermosetting resin composition contains an epoxy group represented by the formula (1).
  • the thermosetting resin composition of the present invention contains a siloxane compound and an epoxy resin curing agent.
  • the light-reflective insulating particles contained in the light-reflective anisotropic conductive adhesive of the present invention are for reflecting light incident on the anisotropic conductive adhesive to the outside.
  • the light-reflective particles include metal particles, particles coated with metal particles, inorganic particles such as metal oxides, metal nitrides, and metal sulfides that are gray to white under natural light, resin core particles
  • corrugation on the surface are contained irrespective of the material of particle
  • the light-reflective insulating particles that can be used in the present invention do not include metal particles that are not covered with insulation because they are required to exhibit insulating properties.
  • Such light-reflective insulating particles include at least selected from the group consisting of titanium oxide (TiO 2 ), boron nitride (BN), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ).
  • TiO 2 titanium oxide
  • BN boron nitride
  • ZnO zinc oxide
  • Al 2 O 3 aluminum oxide
  • TiO 2 it is preferable to use TiO 2 from the viewpoint of a high refractive index.
  • the shape of the light-reflective insulating particles may be spherical, scaly, irregularly shaped, or needle-like, but considering the reflection efficiency, spherical and scaly are preferable. Further, in the case of a spherical shape, if it is too small, the reflectance is low, and if it is too large, the connection by anisotropic conductive particles tends to be inhibited.
  • the major axis is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and the minor axis is preferably 0.01 to 10 ⁇ m, and more preferably 0.8.
  • the thickness is preferably 1 to 5 ⁇ m, and the thickness is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the light-reflective insulating particles made of inorganic particles have a refractive index (JIS K7142) that is preferably larger than the refractive index of a cured product of the thermosetting resin composition (JIS K7142), more preferably at least 0.02. It is preferable that the degree is large. This is because when the difference in refractive index is small, the reflection efficiency at the interface between them decreases.
  • the inorganic particles described above may be used, but resin-coated metal particles obtained by coating the surface of scale-like or spherical metal particles with a transparent insulating resin may be used.
  • the metal particles include nickel, silver, and aluminum.
  • the shape of the particles include an amorphous shape, a spherical shape, a scaly shape, and a needle shape.
  • a spherical shape is preferable from the viewpoint of the light diffusion effect
  • a scaly shape is preferable from the viewpoint of the total reflection effect.
  • they are scaly silver particles or spherical silver particles.
  • the particle diameter is preferably from 0.1 to 30 ⁇ m, more preferably from 0.2 to 10 ⁇ m.
  • the long diameter is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to
  • the thickness at 50 ⁇ m is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the size of the light-reflective insulating particles is the size including the insulating coating when the insulating coating is applied.
  • a cured product of acrylic resin can be preferably used.
  • a preferable example is a resin obtained by radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate in the presence of a radical initiator such as an organic peroxide such as benzoyl peroxide.
  • a radical initiator such as an organic peroxide such as benzoyl peroxide.
  • it is more preferably crosslinked with an isocyanate-based crosslinking agent such as 2,4-tolylene diisocyanate.
  • the metal particles it is preferable to introduce a ⁇ -glycidoxy group, a vinyl group, or the like into the metal surface in advance with a silane coupling agent.
  • such resin-coated metal particles are prepared by adding metal particles and a silane coupling agent in a solvent such as toluene and stirring the mixture at room temperature for about 1 hour, and then, if necessary, a radical monomer and a radical polymerization initiator. Then, a crosslinking agent is added, and the mixture is stirred by heating to the radical polymerization starting temperature.
  • the light-reflective insulating particles in the light-reflective anisotropic conductive adhesive are preferably 1 to 50% by volume, more preferably 5 to 25% by volume.
  • conductive particles constituting the light-reflective anisotropic conductive adhesive of the present invention metal particles used in conventional conductive particles for anisotropic conductive connection can be used. Examples thereof include gold, nickel, copper, silver, solder, palladium, aluminum, alloys thereof, multilayered products thereof (for example, nickel plating / gold flash plating products), and the like. Above all, gold, nickel, and copper turn the conductive particles brown, so that the effects of the present invention can be enjoyed over other metal materials.
  • metal-coated resin particles obtained by coating resin particles with a metal material can be used.
  • resin particles include styrene resin particles, benzoguanamine resin particles, and nylon resin particles.
  • a method of coating the resin particles with a metal material a conventionally known method can be employed, and an electroless plating method, an electrolytic plating method, or the like can be used.
  • the layer thickness of the metal material to be coated is sufficient to ensure good connection reliability, and is usually 0.1 to 3 ⁇ m although it depends on the particle size of the resin particles and the type of metal.
  • the particle size of the resin particle is too small, poor conduction tends to occur, and if it is too large, there is a tendency for a short circuit between patterns to occur. Therefore, it is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m, and particularly preferably 3 to 5 ⁇ m. is there.
  • the shape of the core particle 1 is preferably a spherical shape, but may be a flake shape or a rugby ball shape.
  • the metal-coated resin particles have a spherical shape, and if the particle size is too large, the connection reliability is lowered. Therefore, it is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • 1A and 1B are sectional views of such light-reflective conductive particles 10 and 20. First, the light reflective conductive particles in FIG. 1A will be described.
  • the light-reflective conductive particles 10 include a core particle 1 coated with a metal material, and titanium oxide (TiO 2 ) particles, boron nitride (BN) particles, zinc oxide (ZnO) particles, or aluminum oxide (Al 2 ) on the surface thereof. And a light reflecting layer 3 formed of at least one kind of inorganic particles 2 selected from O 3 ) particles. Titanium oxide particles, boron nitride particles, zinc oxide particles, or aluminum oxide particles are inorganic particles that exhibit white under sunlight. Accordingly, the light reflecting layer 3 formed from them exhibits white to gray.
  • the expression of white to gray means that the wavelength dependency of the reflection characteristic for visible light is small and the visible light is easily reflected.
  • titanium oxide particles boron nitride particles, zinc oxide particles, or aluminum oxide particles
  • zinc oxide particles which are not catalytic to photodegradation and have a high refractive index.
  • the surface thereof is made of a metal material.
  • the surface is coated with a metal material, as described above, an aspect in which the core particle 1 itself is a metal material, or an aspect in which the surface of the resin particle is coated with a metal material can be given.
  • the thickness of the light reflecting layer 3 formed from the inorganic particles 2 is too low with respect to the particle size of the core particle 1. If it is too large, poor conduction will occur. Therefore, it is preferably 0.5 to 50%, more preferably 1 to 25%.
  • the particle size of the inorganic particles 2 constituting the light-reflecting layer 3 is preferably 0.02 to 4 ⁇ m, more preferably 0.1 to 1 ⁇ m, and particularly preferably 0.2 to 0.5 ⁇ m.
  • the particle size of the inorganic particles 2 is set so that the light to be reflected (that is, the light emitted from the light emitting element) is not transmitted. It is preferable that it is 50% or more.
  • examples of the shape of the inorganic particles 2 include an amorphous shape, a spherical shape, a scaly shape, and a needle shape.
  • a spherical shape is preferable from the viewpoint of the light diffusion effect
  • a scaly shape is preferable from the viewpoint of the total reflection effect.
  • the light-reflective conductive particles 10 in FIG. 1A are formed by a known film forming technique (so-called mechano-fusion method) in which a film composed of small-sized particles is formed on the surface of large-sized particles by physically colliding large and small powders. ).
  • the inorganic particles 2 are fixed so as to bite into the metal material on the surface of the core particle 1, and on the other hand, the inorganic particles monolithically constitute the light reflecting layer 3 because the inorganic particles are not easily fused and fixed together. Therefore, in the case of FIG. 1A, the layer thickness of the light reflecting layer 3 is considered to be equivalent to or slightly thinner than the particle size of the inorganic particles 2.
  • the light reflective conductive particles 20 in FIG. 1B will be described.
  • the light-reflecting layer 3 contains a thermoplastic resin 4 that functions as an adhesive
  • the inorganic particles 2 are also fixed together by this thermoplastic resin 4, and the inorganic particles 2 are multilayered (for example, It differs from the light-reflective conductive particle 10 of FIG. 1A in that it is multi-layered into two or three layers.
  • thermoplastic resin 4 By including such a thermoplastic resin 4, the mechanical strength of the light reflecting layer 3 is improved, and the inorganic particles are less likely to be peeled off.
  • thermoplastic resin 4 a halogen-free thermoplastic resin can be preferably used for the purpose of low environmental load, and for example, polyolefins such as polyethylene and polypropylene, polystyrene, acrylic resins and the like can be preferably used.
  • Such light-reflective conductive particles 20 can also be manufactured by a mechanofusion method. If the particle diameter of the thermoplastic resin 4 applied to the mechano-fusion method is too small, the adhesion function is lowered, and if it is too large, it is difficult to adhere to the core particles, so that it is preferably 0.02 to 4 ⁇ m, more preferably 0.1 ⁇ 1 ⁇ m. Further, if the amount of the thermoplastic resin 4 is too small, the adhesive function is lowered, and if it is too large, aggregates of particles are formed. The amount is 2 to 500 parts by mass, more preferably 4 to 25 parts by mass.
  • the blending amount of the conductive particles such as the light-reflective conductive particles in the light-reflective anisotropic conductive adhesive of the present invention is too small, conduction failure tends to occur, and if it is too large, there is a tendency to cause a short circuit between patterns. Therefore, the blending amount of conductive particles such as light-reflective conductive particles with respect to 100 parts by mass of the thermosetting resin composition is preferably 1 to 100 parts by mass, more preferably 10 to 50 parts by mass.
  • the light-reflective anisotropic conductive adhesive of the present invention can be produced by uniformly mixing the light-reflective insulating particles, the conductive particles, and the thermosetting resin composition described above according to a conventional method.
  • light-reflective anisotropic conductive films they are dispersed and mixed together with a solvent such as toluene, and applied to a peeled PET film so as to have a desired thickness, and a temperature of about 80 ° C. Just dry.
  • the reflection characteristic of the light-reflective anisotropic conductive adhesive of the present invention is such that the reflectance of the cured light-reflective anisotropic conductive adhesive to light having a wavelength of 450 nm (JIS) is improved in order to improve the light emission efficiency of the light-emitting element.
  • K7105 is at least 30%.
  • the reflection characteristics and blending amount of the light-reflective conductive particles to be used, the blending composition of the thermosetting resin composition, and the like may be appropriately adjusted. Usually, if the amount of the light-reflective conductive particles having good reflection characteristics is increased, the reflectance tends to increase.
  • the reflection characteristics of the light-reflective anisotropic conductive adhesive can be evaluated from the viewpoint of refractive index. That is, when the refractive index of the cured product is larger than the refractive index of the cured product of the thermosetting resin composition excluding the conductive particles and the light-reflective insulating particles, the light-reflective insulating particles and the heat surrounding them are obtained. This is because the amount of light reflection at the interface between the curable resin composition and the cured product increases.
  • the difference obtained by subtracting the refractive index of the cured product of the thermosetting resin composition (JIS K7142) from the refractive index of the light reflective particles (JIS K7142) is preferably 0.02 or more, more preferably It is desired to be 0.2 or more.
  • the refractive index of a thermosetting resin composition mainly composed of an epoxy resin is about 1.5.
  • the light-emitting device 200 includes the connection terminal 22 on the substrate 21 and the connection bumps 26 formed on the n-electrode 24 and the p-electrode 25 of the LED element 23 as light-emitting elements.
  • This is a light emitting device in which a light reflective anisotropic conductive adhesive is applied and the substrate 21 and the LED element 23 are flip-chip mounted.
  • the light-reflective anisotropic conductive adhesive cured product 100 is formed by dispersing the light-reflective insulating particles 10 in the cured product 11 of the thermosetting resin composition.
  • the light emitting device 200 configured as described above, among the light emitted from the LED element 23, the light emitted toward the substrate 21 is light in the cured product 100 of the light-reflective anisotropic conductive adhesive. The light is reflected by the reflective insulating particles 10 and emitted from the upper surface of the LED element 23. Accordingly, it is possible to prevent a decrease in luminous efficiency.
  • Configurations other than the light-reflective anisotropic conductive adhesive (the LED element 23, the bump 26, the substrate 21, the connection terminal 22, and the like) in the light-emitting device 200 of the present invention can be the same as the configuration of the conventional light-emitting device. .
  • the light emitting device 200 of the present invention can be manufactured by using a conventional anisotropic conductive connection technique except that the light reflective anisotropic conductive adhesive of the present invention is used.
  • a well-known light emitting element can be applied in the range which does not impair the effect of this invention other than an LED element.
  • FT-IR measurement FT-IR measurement (measurement) for the hydrosilylation reaction residue under reduced pressure and the raw materials 1-allyl-3,5-diglycidyl isocyanurate (MADGIC) and tetrakis (hydrogendimethylsiloxy) silane (SIT7278.0)
  • MADGIC 1-allyl-3,5-diglycidyl isocyanurate
  • SIT7278.0 tetrakis (hydrogendimethylsiloxy) silane
  • FIG. The starting material, tetrakis (hydrogen dimethylsiloxy) silane (SIT7278.0), as Si-H group-specific spectral, stretching peak around 2140 cm -1, is bending vibration peak near 900 cm -1 were detected.
  • thermosetting resin composition of the present invention was prepared as an insulating adhesive by uniformly mixing the components of the composition shown in Table 1 using the obtained epoxy group-containing siloxane compound.
  • an epoxy compound and an acid anhydride curing agent were blended so that the ratio of the number of functional groups of epoxy group / acid anhydride was 1 / 1.1.
  • thermosetting resin composition as the insulating adhesive of Comparative Example 1 is an example in which 1,3,5-triglycidyl isocyanate is used as the epoxy compound in place of the epoxy group-containing siloxane compound of the formula (1a).
  • the thermosetting resin composition as the insulating adhesive of Comparative Example 2 is a two-component curable dimethyl silicone resin (IVS4742, Momentive Materials), and the thermosetting as the insulating adhesive of Comparative Example 3
  • the conductive resin composition is a two-component curable phenyl silicone resin (SCR-1012, Shin-Etsu Chemical Co., Ltd.).
  • thermosetting resin composition as the obtained insulating adhesive was subjected to a die shear strength test, a heat resistance test, and a heat resistance light test. The obtained results are shown in Table 2.
  • a glass epoxy substrate for LED (special order product, Kansai Electronics Co., Ltd.) having a silver solid electrode with a thickness of 10 ⁇ m on which gold bumps (high 10 ⁇ m, diameter 80 ⁇ m, pitch 190 ⁇ m) are formed so that the diameter is 4 mm.
  • the LED element was placed on a held hot plate and heated for 2 minutes to temporarily fix the LED element on the glass epoxy substrate for LED.
  • the glass epoxy substrate for LED to which this LED element is temporarily fixed, is applied to a thermocompression bonding apparatus and subjected to thermocompression bonding at 230 ° C. for 15 seconds while applying a pressure of 80 gf / chip to the LED element.
  • An LED device having LED elements mounted on a substrate was created.
  • a reflow treatment at 260 ° C. for 20 seconds was further performed after the thermocompression treatment.
  • the die shear strength (gf / chip) was measured for the LED device thus prepared.
  • the die shear strength is desired to be at least 200 gf / chip, preferably 250 gf / chip or more.
  • Example 1 and Comparative Example 1 are sandwiched between two aluminum flat plates (length 100 mm ⁇ width 50.0 mm ⁇ thickness 0.50 mm) in which spacers having a height of 1 mm are arranged at the four corners.
  • a cured resin sheet sample was prepared by first heating at 120 ° C. for 30 minutes and then heating at 140 ° C. for 1 hour.
  • a cured resin sheet sample was prepared by first heating at 80 ° C. for 1 hour and then heating at 150 ° C. for 2 hours.
  • the obtained cured resin sheet sample was left in an oven set at 150 ° C. for 1000 hours, and the spectral characteristics (L * , a * , b * ) before and after being left were measured with a spectrocolorimeter (CM-3600d, Konica). Minolta Optics Co., Ltd.), and the color difference ( ⁇ E) was calculated from the measured values.
  • ⁇ E is desirably 35 or less.
  • ⁇ Heat-resistant light test> A cured resin sheet sample similar to the cured resin sheet sample subjected to the heat resistance test was prepared, and the cured resin sheet sample was prepared at a temperature of 120 ° C. with a light intensity of 16 mW / cm 2 (super win mini, die pla wintes ( ); Used in a metal halide lamp) for 1000 hours, and the resulting cured resin sheet is left in an oven set at 150 ° C. for 1000 hours to obtain spectral characteristics before and after being left (L * , a * , b *). ) was measured using a spectrocolorimeter (CM-3600d, Konica Minolta Optics, Inc.), and the color difference ( ⁇ E) was calculated from the obtained measured values. Practically, ⁇ E is desired to be 20 or less.
  • the cured resin sheet sample using the epoxy group-containing siloxane compound of Example 1 as a curing component was practically preferable in terms of die shear strength, heat resistance test and heat resistance light test.
  • Comparative Example 1 since a thermosetting epoxy resin composition was used, a favorable result was obtained for the die shear strength, but the epoxy-containing siloxane compound of the formula (1a) was not used. Satisfactory results were not obtained for the heat resistance test.
  • Example 2 For 100 parts by mass of the thermosetting resin composition of Example 1 as an insulating adhesive, light-reflective insulating particles (titanium dioxide powder having an average particle size of 0.5 ⁇ m (KR-380, Titanium Industry Co., Ltd.)) 24 0.0 parts by mass and conductive particles (gold-coated resin conductive particles having an average particle size of 5 ⁇ m (particles obtained by electroless gold plating of 0.2 ⁇ m thickness on spherical acrylic resin particles having an average particle size of 4.6 ⁇ m) (Light 20GNB4, Nippon Chemical The light-reflective anisotropic conductive adhesive of Example 2 was prepared by uniformly mixing 5.00 parts by mass with Kogyo Co., Ltd.).
  • light-reflective insulating particles titanium dioxide powder having an average particle size of 0.5 ⁇ m (KR-380, Titanium Industry Co., Ltd.)
  • conductive particles gold-coated resin conductive particles having an average particle size of 5 ⁇ m (particles obtained by electroless
  • Comparative Example 4 An anisotropic conductive adhesive was prepared by repeating the same operation as in Example 4 except that the light-reflective insulating particles were not used.
  • the obtained anisotropic conductive adhesives of Example 2 and Comparative Example 4 were applied to a ceramic white plate so as to have a dry thickness of 100 ⁇ m, and heated at 200 ° C. for 1 minute to be cured. About this hardened
  • the total luminous flux is desired to be practically 300 mlm or more
  • the light-reflective anisotropic conductive adhesive of Example 2 showed a reflectance exceeding 300 mlm, whereas the anisotropic conductive of Comparative Example 4 The adhesive did not show reflectivity above 300 mlm.
  • thermosetting resin composition of the present invention and the light-reflective anisotropic conductive adhesive containing the same as an insulating adhesive component include an anisotropic conductive adhesive for a light-emitting element such as a light-emitting diode (LED) element on a wiring board.
  • a light-emitting element such as a light-emitting diode (LED) element on a wiring board.
  • LED light-emitting diode
  • the thermosetting resin composition and the light-reflective anisotropic conductive adhesive of the present invention are useful when LED chips are flip-chip mounted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)

Abstract

熱硬化性樹脂組成物は、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有する。式(1)中、置換基Rは独立的にアルキル基又はフェニル基である。連結基Aは、独立的に2価の炭化水素基である。置換基R1及びR2は、独立的にエポキシ基含有有機基、アルキル基又はアリール基であるが、R1及びR2の少なくとも一方がエポキシ基含有有機基である。

Description

熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置
 本発明は、熱硬化性樹脂組成物、当該熱硬化型エポキシ系接着剤を利用した光反射性異方性導電接着剤、その接着剤を用いて発光素子を配線板に実装してなる発光装置に関する。
 従来、発光ダイオード(LED)素子の実装に用いた異方性導電ペーストや異方性導電フィルム等の異方性導電接着剤の絶縁性接着成分の熱や光による変色に伴ってLED素子の発光効率(光取り出し効率)が低下することを防止するために、LED封止用樹脂として上市されている、耐熱性、耐光性に優れた2液硬化型メチルシリコーン樹脂や2液硬化型フェニルシリコーン樹脂(非特許文献1)を、異方性導電ペーストや異方性導電フィルム中の絶縁性接着成分に採用することが試みられている。
 また、異方性導電接着剤の絶縁性接着成分の変色防止という観点とは別に、LED素子を構造的に改良することによりその発光効率を改善しようとすることも行われている。たとえば、阻止の発光ダイオード(LED)素子を使用した旧タイプの発光装置の構造は、図5に示すように、基板31上にダイボンド接着剤32でLED素子33を接合し、その上面のp電極34とn電極35とを、基板31の接続端子36に金ワイヤ37でワイヤボンディングし、LED素子33全体を透明モールド樹脂38で封止したものとなっているが、図5の発光装置の場合、LED素子33が発する光のうち、上面側に出射する400~500nmの波長の光を金ワイヤが吸収し、また、下面側に出射した光の一部がダイボンド接着剤32により吸収されてしまい、LED素子33の発光効率が低下するという問題があるところ、図6に示すように、LED素子33をフリップチップ実装することが提案されている(特許文献1)。
 このフリップチップ実装技術においては、p電極34とn電極35とにバンプ39がそれぞれ形成されており、更に、LED素子33のバンプ形成面には、p電極34とn電極35と絶縁されるように光反射層40が設けられている。そして、LED素子33と基板31とは、異方性導電ペースト41や異方性導電フィルム(図示せず)を用い、それらを硬化させて接続固定される。このため、図6の発光装置においては、LED素子33の上方への出射した光は金ワイヤで吸収されず、下方へ出射した光の殆どは光反射層40で反射して上方に出射するので、発光効率(光取り出し効率)が低下しない。
特開平11-168235号公報
http://www.silicone.jp/j/products/notice/118/index.shtml
 しかしながら、非特許文献1に記載されているような2液硬化型メチルシリコーン樹脂や2液硬化型フェニルシリコーン樹脂を異方性導電接着剤の絶縁性接着成分に採用した場合、熱や光により絶縁性接着成分の変色は抑制できるものの、実装基板に対するLED素子の剥離強度(ダイシェア強度)が実用に適さないレベルとなってしまうという問題があった。
 また、特許文献1の技術ではLED素子33に光反射層40を、p電極34とn電極35と絶縁するように金属蒸着法などにより設けなければならず、製造上、コストアップが避けられないという問題があり、他方、光反射層40を設けない場合には、硬化した異方性導電ペーストや異方性導電フィルム中の金、ニッケルあるいは銅で被覆された導電粒子の表面は茶色乃至は暗茶色を呈し、また、導電粒子を分散させているエポキシ樹脂バインダー自体も、その硬化のために常用されるイミダゾール系潜在性硬化剤のために茶色を呈しており、発光素子が発した光の発光効率(光取り出し効率)を向上させることが困難であるという問題がある。
 本発明の第1の目的は、以上の従来の技術の問題点を解決することであり、発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、熱や光により変色しにくい上に実用上十分なダイシェア強度を示す異方性導電接着剤に適した絶縁性接着成分としての熱硬化性樹脂組成物を提供することであり、更に、第2の目的は、製造コストの増大を招くような光反射層をLED素子に設けなくても発光効率を改善できる光反射性異方性導電接着剤を提供することであり、更に、そのような光反射性異方性導電接着剤を使用して発光素子を配線板にフリップチップ実装してなる発光装置を提供することである。
 本発明者らは、第1の目的に関し、異方性導電接着剤の絶縁性接着成分として、特定の構造を有するエポキシ基含有シロキサン化合物、より具体的にはテトラキス(ジグリシジルイソシアヌリル変性シロキシ)シランを使用することにより、熱や光により異方性導電接着剤が変色してしまうことを防止でき、しかも実用上十分なダイシェア強度を示すことを見出した。また、本発明者らは、第2の目的に関し、異方性導電接着剤そのものに光反射機能を持たせれば、発光効率を低下させないようにできるとの仮定の下、異方性導電接着剤に、光反射性絶縁粒子を配合することにより、発光素子の発光効率を低下させないようにできることを見出した。そして、これらの知見に基づき本発明を完成させるに至った。
 即ち、本発明は、第1の目的を達成すべく、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有することを特徴とする熱硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-I000002
 式(1)中、置換基Rは独立的にアルキル基又はフェニル基である。連結基Aは、独立的に2価の炭化水素基である。置換基R1及びR2は、独立的にエポキシ基含有有機基、アルキル基又はアリール基であるが、R1及びR2の少なくとも一方がエポキシ基含有有機基である。
 また、本発明は、第2の目的を達成すべく、発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤であって、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有する本発明の熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有することを特徴とする光反射性異方性導電接着剤を提供する。
 また、本発明は、この光反射性異方性導電接着剤の特に好ましい態様として、導電粒子が、金属材料により被覆されているコア粒子と、その表面に酸化チタン粒子、窒化ホウ素粒子、酸化亜鉛粒子又は酸化アルミニウム粒子から選択された少なくとも一種の無機粒子から形成された光反射層とからなる光反射性導電粒子である光反射性異方性導電接着剤を提供する。
 また、本発明は、上述の光反射性異方性導電接着剤を介して、発光素子をフリップチップ方式で配線板に実装されてなる発光装置を提供する。
 発光素子を配線板に異方性導電接続するために使用する異方性導電接着剤のバインダーとして有用な本発明の熱硬化性樹脂組成物は、エポキシ樹脂用硬化剤で硬化する式(1)で表されるエポキシ基含有シロキサン化合物を含有する。このシロキサン化合物は、その中心のケイ素原子に対して4つのシリレンオキシ基が結合しており、しかもそれぞれのシリレンオキシ基の末端に、エポキシ基含有有機基で置換されたイソシアヌリルアルキル基が結合した構造を有している。このため、熱や光により異方性導電接着剤が変色してしまうことを防止でき、しかも実用上十分なダイシェア強度を実現することができる。また、この熱硬化性樹脂組成物は、異方性導電接着剤だけでなく、絶縁性接着剤や導電接着剤のバインダーとしても有用である。
 また、本発明の光反射性異方性導電接着剤は、熱硬化性樹脂組成物の効果に加え、光反射性絶縁粒子を含有しているから、光を反射することができる。特に、光反射性絶縁粒子が、酸化チタン、窒化ホウ素、酸化亜鉛及び酸化アルミニウムからなる群より選択される少なくとも一種の無機粒子、又は鱗片状もしくは球状金属粒子の表面を絶縁性樹脂で被覆した樹脂被覆金属粒子である場合には、粒子自体がほぼ白色であるため、可視光に対する反射特性の波長依存性が小さく、従って、発光効率を向上させることができ、しかも発光素子の発光色をそのままの色で反射させることができる。
 また、更に、導電粒子として、金属材料で被覆されているコア粒子と、その表面に酸化チタン粒子、窒化ホウ素粒子、酸化亜鉛粒子又は酸化アルミニウム粒子から形成された白色~灰色の光反射層とから構成されている光反射性導電粒子を使用した場合、この光反射性導電粒子自体が白色~灰色を呈しているため、可視光に対する反射特性の波長依存性が小さく、従って、発光効率を更に向上させることができ、しかも発光素子の発光色をそのままの色で反射させることができる。
図1Aは、光反射性異方性導電接着剤用の光反射性導電粒子の断面図である。 図1Bは、光反射性異方性導電接着剤用の光反射性導電粒子の断面図である。 図2は、本発明の発光装置の断面図である。 図3は、実施例1で製造した式(1a)のエポキシ基含有シロキサン化合物のFT-IR測定チャートである。 図4は、実施例1で製造した式(1a)のエポキシ基含有シロキサン化合物のH-NMR測定チャートである。 図5は、従来の発光装置の断面図である。 図6は、従来の発光装置の断面図である。
 本発明の熱硬化性樹脂組成物は、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有する。この熱硬化性樹脂組成物は、発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤のバインダーとして有用なものである。
<熱硬化性樹脂組成物>
 前述したとおり、本発明の熱硬化性樹脂組成物は、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有する。式(1)で表されるエポキシ基含有シロキサン化合物を含有することにより、熱や光により異方性導電接着剤が変色してしまうことを防止でき、しかも実用上十分なダイシェア強度を実現することができる。
Figure JPOXMLDOC01-appb-I000003
<置換基R>
 式(1)中、Rは独立的にアルキル基又はフェニル基である。変色し難さの点からアルキル基が好ましい。アルキル基としては、基材への接着性の点から炭素数1~6のアルキル基、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、へプチル基、イソへプチル基、ヘキシル基が好ましく、中でも、炭素数1~3の低級アルキル基、例えば、メチル基、エチル基、プロピル基、イソプロピル基が好ましい。特に、熱光耐黄変性の点からメチル基が好ましい。
<連結基A>
 Aは、独立的に2価の炭化水素基、例えば、炭素数2以上のアルキレン基、アリーレン基、アラルキレン基であるが、変色し難さの点から炭素数2以上のアルキレン基が好ましい。
 炭素数2以上のアルキレン基としては、例えば、炭素数6までのアルキレン基が好ましく、具体的には、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基が挙げられる。これらのアルキレン基には、メチル基等のアルキル基が結合してもよい。
 アリーレン基としては、例えば、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,4-ナフタレン基、1,5-ナフタレン基が挙げられる。好ましくは、1,4-フェニレン基である。
 アラルキレン基としては、例えば、フェニルジメチレン基、フェニルトリメチレン基が挙げられる。
<置換基R1、R2>
 置換基R1、R2は、独立的にエポキシ基含有有機基、アルキル基又はアリール基であるが、R1及びR2の少なくとも一方、好ましくは双方がエポキシ基含有有機基である。
 エポキシ基含有有機基としては、例えば、グリシジル基、1,2-エポキシ-5-ヘキセニル基、2,6-ジメチル-2,3-エポキシ-7-オクテニル基、1,2-エポキシ-9-デセニル基が挙げられる。中でも、基材との接着性の点からグリシジル基が好ましい。
 従って、式(1)で表されるエポキシ基含有シロキサン化合物の好ましい態様は、置換基Rが炭素数1~3の低級アルキル基であり、連結基Aが炭素数2~6のアルキレン基であり、置換基R1、R2が共にエポキシ基含有有機基である態様である。
 式(1)で表されるエポキシ基含有シロキサン化合物の特に好ましい態様は、以下の式(1a)で表される化合物である。
Figure JPOXMLDOC01-appb-I000004
 式(1)乃至(1a)で表されるエポキシ基含有シロキサン化合物の熱硬化性樹脂組成物中の含有量は、少なすぎると接着機能が低下する傾向があり、多すぎると未硬化エポキシ成分が多くなるので、好ましくは45~65質量%、より好ましくは50~60質量%である。
 また、式(1)で表されるエポキシ基含有シロキサン化合物は、以下の反応式(いわゆるハイドロシリレーション反応)に示すように、式(a)のテトラキス(ハイドロジェンシリレンオキシシランと、式(b)のイソシアヌレートとを均一に混合した後、カールステッド(Karstedt)触媒(1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金(0)錯体溶液)の存在下で室温~150℃に加熱することにより製造することができる。反応混合物からは、常法(濃縮処理・カラム処理等)により式(1)の化合物を単離することができる。
Figure JPOXMLDOC01-appb-I000005
 化学反応式において、R、A、R1及びR2は、式(1)において説明したとおりである。A′は、連結基Aに対応した末端アルケニル基である。例えば、Aがジメチレン基である場合にはビニル基であり、トリメチレン基である場合にアリル基であり、ヘキサメチレン基である場合には、5-ヘキセニル基である。
 式(1)のエポキシ基含有シロキサン化合物の特に好ましい態様である式(1a)の化合物も、以下の反応式に従って、式(a′)のテトラキス(ハイドロジェンジメチルシロキシ)シランと、式(b′)の1-アリル-3,5-ジグリシジルイソシアヌレートとをハイドロシリレーション反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000006
 本発明の熱硬化性樹脂組成物は、式(1)のエポキシ基含有シロキサン化合物の他に、発明の効果を損なわない範囲で、複素環系エポキシ化合物や脂環式エポキシ化合物や水素添加エポキシ化合物などを含有することができる。
 複素環系エポキシ化合物としては、トリアジン環を有するエポキシ化合物、例えば1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン(換言すれば、トリグリシジルイソシヌレート)を挙げることができる。
 脂環式エポキシ化合物としては、分子内に2つ以上のエポキシ基を有するものが好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等を挙げることができる。中でも、硬化物にLED素子の実装等に適した光透過性を確保でき、速硬化性にも優れている点から、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレートを好ましく使用することができる。
 水素添加エポキシ化合物としては、前述の複素環系エポキシ化合物や脂環式エポキシ化合物の水素添加物や、その他公知の水素添加エポキシ樹脂を使用することできる。
 これらの脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物は、式(1)のエポキシ基含有シロキサン化合物に対し、単独で併用してもよいが、2種以上を併用してもよい。また、これらのエポキシ化合物に加えて本発明の効果を損なわない限り、他のエポキシ化合物を併用してもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル; グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル; p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル; フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル; アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル; アミノ安息香酸から得られるグリシジルアミノグリシジルエステル; アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホンなどから得られるグリシジルアミン; エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。
 エポキシ樹脂用硬化剤としては、公知のエポキシ樹脂用硬化剤を使用することができる。例えば、アミン系硬化剤、ポリアミド系硬化剤、酸無水物系硬化剤、イミダゾール系硬化剤、ポリメルカプタン系硬化剤、ポリスルフィド系硬化剤、三フッ化ホウ素-アミン錯体系硬化剤、ジシアンジアミド、有機酸ヒドラジッド等の中から選択して使用することができる。中でも、光透過性、耐熱性等の観点から酸無水物系硬化剤を好ましく使用することができる。
 酸無水物系硬化剤としては、無水コハク酸、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは4-メチル-ヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、メチル-テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、メチルシクロヘキセンジカルボン酸無水物等を挙げることができる。
 酸無水物系硬化剤等のエポキシ樹脂用硬化剤の熱硬化性樹脂組成物中の配合量は、式(1)で表されるエポキシ基含有シロキサン化合物100質量部に対して、少なすぎると未硬化エポキシ成分が多くなり、多すぎると余剰の硬化剤の影響で被着体材料の腐食が促進される傾向があるので、好ましくは、50~120質量部、より好ましくは60~100質量部である。
 本発明の熱硬化性樹脂組成物は、硬化反応を円滑に、かつ短時間で完了させるために、公知の硬化促進剤を含有することができる。好ましい硬化促進剤としては、第四級ホスホニウム塩系硬化促進剤やイミダゾール系硬化促進剤が挙げられる。具体的には、第四級ホスホニウムのブロマイド塩(「U-CAT5003」(商標)、サンアプロ社製)、2-エチル-4-メチルイミダゾール等を挙げることができる。特に、酸無水物系硬化剤用の硬化促進剤としては、イミダゾール系硬化促進剤を好ましく使用することができる。この場合、イミダゾール系硬化促進剤の添加量は、少なすぎると硬化が不十分となる傾向があり、多すぎると熱・光に対する変色が大きくなる傾向があるので、酸無水物系硬化剤100質量部に対し、イミダゾール系硬化促進剤を好ましくは0.20~2.00質量部、より好ましくは0.60~1.00質量部である。
 以上説明した本発明の熱硬化性樹脂組成物は、発光素子の実装のための光反射性異方性導電接着剤の絶縁性接着成分であるバインダーとして使用する場合には、なるべく無色透明であることが好ましい。光反射性異方性導電接着剤中の光反射性導電粒子の光反射効率を低下させず、しかも入射光の光色を代えずに反射させるためである。ここで、無色透明とは、光反射性異方性導電接着剤の硬化物が、波長380~780nmの可視光に対して光路長1mmの光透過率(JIS K7105)が80%以上、好ましくは90%以上となることを意味する。
 本発明の熱硬化性樹脂組成物は、式(1)のエポキシ基含有シロキサン化合物とエポキシ用硬化剤と、必要に応じて配合される他の成分とを、公知の手法で混合することにより製造することができる。
 次に、発光素子を配線板に異方性導電接続するために使用する本発明の光反射性異方性導電接着剤について説明する。この光反射性異方性導電接着剤は、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有し、熱硬化性樹脂組成物が、式(1)で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有する本発明の熱硬化性樹脂組成物であることを特徴とするものである。
<光反射性絶縁粒子>
 本発明の光反射性異方性導電接着剤が含有する光反射性絶縁粒子は、異方性導電接着剤に入射した光を外部に反射するためのものである。
 なお、光反射性を有する粒子には、金属粒子、金属粒子を樹脂被覆した粒子、自然光の下で灰色から白色である金属酸化物、金属窒素化物、金属硫化物等の無機粒子、樹脂コア粒子を無機粒子で被覆した粒子、粒子の材質によらず、その表面に凹凸がある粒子が含まれる。しかし、これらの粒子の中で、本発明で使用できる光反射性絶縁粒子には、絶縁性を示すことが求められている関係上、絶縁被覆されていない金属粒子は含まれない。また、金属酸化物粒子のうち、ITOのように導電性を有するものは使用できない。また、光反射性且つ絶縁性を示す無機粒子であっても、SiOのように、その屈折率が使用する熱硬化性樹脂組成物の屈折率よりも低いものは使用できない。
 このような光反射性絶縁粒子の好ましい具体例としては、酸化チタン(TiO)、窒化ホウ素(BN)、酸化亜鉛(ZnO)及び酸化アルミニウム(Al)からなる群より選択される少なくとも一種の無機粒子が挙げられる。中でも、高屈折率の点からTiOを使用することが好ましい。
 光反射性絶縁粒子の形状としては、球状、鱗片状、不定形条、針状等でもよいが、反射効率を考慮すると、球状、鱗片状が好ましい。また、その大きさとしては、球状である場合、小さすぎると反射率が低くなり、大きすぎると異方性導電粒子による接続を阻害する傾向があるので、好ましくは0.02~20μm、より好ましくは0.2~1μmであり、鱗片状である場合には、長径が好ましくは0.1~100μm、より好ましくは1~50μm、短径が好ましくは0.01~10μm、より好ましくは0.1~5μm、厚さが好ましくは0.01~10μm、より好ましくは0.1~5μmである。
 無機粒子からなる光反射性絶縁粒子は、その屈折率(JIS K7142)が、好ましくは熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)よりも大きいこと、より好ましくは少なくとも0.02程度大きいことが好ましい。これは、屈折率差が小さいとそれらの界面での反射効率が低下するからである。
 光反射性絶縁粒子としては、以上説明した無機粒子を使用してもよいが、鱗片状又は球状金属粒子の表面を透明な絶縁性樹脂で被覆した樹脂被覆金属粒子を使用してもよい。金属粒子としては、ニッケル、銀、アルミニウム等を挙げることができる。粒子の形状としては、無定型、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。特に、光の反射率の点から鱗片状銀粒子又は球状銀粒子である。
 光反射性絶縁粒子としての樹脂被覆金属粒子の大きさは、形状によっても異なるが、一般に大きすぎると、異方性導電粒子による接続を阻害するおそれがあり、小さすぎると光を反射しにくくなるので、好ましくは球状の場合には粒径0.1~30μm、より好ましくは0.2~10μmであり、鱗片状の場合には、長径が好ましくは0.1~100μm、より好ましくは1~50μmで厚みが好ましくは0.01~10μm、より好ましくは0.1~5μmである。ここで、光反射性絶縁粒子の大きさは、絶縁被覆されている場合には、その絶縁被覆も含めた大きさである。
 このような樹脂被覆金属粒子における当該樹脂としては、種々の絶縁性樹脂を使用することができる。機械的強度や透明性等の点からアクリル系樹脂の硬化物を好ましく利用することができる。好ましくは、ベンゾイルパーオキサイド等の有機過酸化物などのラジカル開始剤の存在下で、メタクリル酸メチルとメタクリル酸2-ヒドロキシエチルとをラジカル共重合させた樹脂を挙げることができる。この場合、2,4-トリレンジイソシアネート等のイソシアネート系架橋剤で架橋されていることがより好ましい。また、金属粒子としては、予めシランカップリング剤でγ-グリシドキシ基やビニル基等を金属表面に導入しておくことが好ましい。
 このような樹脂被覆金属粒子は、例えば、トルエンなどの溶媒中に金属粒子とシランカップリング剤とを投入し、室温で約1時間攪拌した後、ラジカルモノマーとラジカル重合開始剤と、必要に応じて架橋剤とを投入し、ラジカル重合開始温度に加温しながら撹拌することにより製造することができる。
 以上説明した光反射性絶縁粒子の、光反射性異方性導電接着剤中の配合量は、少なすぎると十分な光反射を実現することができず、また多すぎると併用している導電粒子に基づく接続が阻害されるので、光反射性異方性導電接着剤中に光反射性絶縁粒子を好ましくは1~50体積%、より好ましくは5~25体積%である。
<導電粒子>
 本発明の光反射性異方性導電接着剤を構成する導電粒子としては、異方性導電接続用の従来の導電粒子において用いられている金属の粒子を利用することができる。例えば、金、ニッケル、銅、銀、半田、パラジウム、アルミニウム、それらの合金、それらの多層化物(例えば、ニッケルメッキ/金フラッシュメッキ物)等を挙げることができる。中でも、金、ニッケル、銅は、導電粒子を茶色としてしまうことから、本発明の効果を他の金属材料よりも享受することができる。
 また、導電粒子として、樹脂粒子を金属材料で被覆した金属被覆樹脂粒子を使用することができる。このような樹脂粒子としては、スチレン系樹脂粒子、ベンゾグアナミン樹脂粒子、ナイロン樹脂粒子などが挙げられる。樹脂粒子を金属材料で被覆する方法としても従来公知の方法を採用することができ、無電解メッキ法、電解メッキ法等を利用することができる。また、被覆する金属材料の層厚は、良好な接続信頼性を確保するに足る厚さであり、樹脂粒子の粒径や金属の種類にもよるが、通常、0.1~3μmである。
 また、樹脂粒子の粒径は、小さすぎると導通不良が生じ、大きすぎるとパターン間ショートが生じる傾向があるので、好ましくは1~20μm、より好ましくは3~10μm、特に好ましくは3~5μmである。この場合、コア粒子1の形状としては球形が好ましいが、フレーク状、ラクビーボール状であってもよい。
 好ましい金属被覆樹脂粒子は球状形状であり、その粒径は大きすぎると接続信頼性の低下となるので、好ましくは1~20μm、より好ましくは3~10μmである。
 特に、本発明においては、上述したような導電粒子に対し光反射性を付与し、光反射性導電粒子とすることが好ましい。図1A、図1Bは、このような光反射性導電粒子10、20の断面図である。まず、図1Aの光反射性導電粒子から説明する。
 光反射性導電粒子10は、金属材料で被覆されているコア粒子1と、その表面に酸化チタン(TiO)粒子、窒化ホウ素(BN)粒子、酸化亜鉛(ZnO)粒子又は酸化アルミニウム(Al)粒子から選択された少なくとも一種の無機粒子2から形成された光反射層3とから構成される。酸化チタン粒子、窒化ホウ素粒子、酸化亜鉛粒子又は酸化アルミニウム粒子は、太陽光の下では白色を呈する無機粒子である。従って、それらから形成された光反射層3は白色~灰色を呈する。白色~灰色を呈しているということは、可視光に対する反射特性の波長依存性が小さく、且つ可視光を反射しやすいことを意味する。
 なお、酸化チタン粒子、窒化ホウ素粒子、酸化亜鉛粒子又は酸化アルミニウム粒子のうち、硬化した光反射性異方性導電接着剤の熱硬化性樹脂組成物の硬化物の光劣化が懸念される場合には、光劣化に対して触媒性がなく、屈折率も高い酸化亜鉛粒子を好ましく使用することができる。
 コア粒子1は、異方性導電接続に共されるものであるので、その表面が金属材料で構成されている。ここで、表面が金属材料で被覆されている態様としては、前述したように、コア粒子1そのものが金属材料である態様、もしくは樹脂粒子の表面が金属材料で被覆された態様が挙げられる。
 無機粒子2から形成された光反射層3の層厚は、コア粒子1の粒径との相対的大きさの観点からみると、コア粒子1の粒径に対し、小さすぎると反射率の低下が著しくなり、大きすぎると導通不良が生ずるので、好ましくは0.5~50%、より好ましくは1~25%である。
 また、光反射性導電粒子10において、光反射層3を構成する無機粒子2の粒径は、小さすぎると光反射現象が生じ難くなり、大きすぎると光反射層の形成が困難となる傾向があるので、好ましくは0.02~4μm、より好ましくは0.1~1μm、特に好ましくは0.2~0.5μmである。この場合、光反射させる光の波長の観点からみると、無機粒子2の粒径は、反射させるべき光(即ち、発光素子が発する光)が透過してしまわないように、その光の波長の50%以上であることが好ましい。この場合、無機粒子2の形状としては無定型、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。
 図1Aの光反射性導電粒子10は、大小の粉末同士を物理的に衝突させることにより大粒径粒子の表面に小粒径粒子からなる膜を形成させる公知の成膜技術(いわゆるメカノフュージョン法)により製造することができる。この場合、無機粒子2は、コア粒子1の表面の金属材料に食い込むように固定され、他方、無機粒子同士が融着固定されにくいから、無機粒子のモノレイヤーが光反射層3を構成する。従って、図1Aの場合、光反射層3の層厚は、無機粒子2の粒径と同等乃至はわずかに薄くなると考えられる。
 次に、図1Bの光反射性導電粒子20について説明する。この光反射性導電粒子20においては、光反射層3が接着剤として機能する熱可塑性樹脂4を含有し、この熱可塑性樹脂4により無機粒子2同士も固定され、無機粒子2が多層化(例えば2層あるいは3層に多層化)している点で、図1Aの光反射性導電粒子10と相違する。このような熱可塑性樹脂4を含有することにより、光反射層3の機械的強度が向上し、無機粒子の剥落などが生じにくくなる。
 熱可塑性樹脂4としては、環境低負荷を意図してハロゲンフリーの熱可塑性樹脂を好ましく使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンやポリスチレン、アクリル樹脂等を好ましく使用することができる。
 このような光反射性導電粒子20も、メカノフュージョン法により製造することができる。メカノフュージョン法に適用する熱可塑性樹脂4の粒子径は、小さすぎると接着機能が低下し、大きすぎるとコア粒子に付着しにくくなるので、好ましくは0.02~4μm、より好ましくは0.1~1μmである。また、このような熱可塑性樹脂4の配合量は、少なすぎると接着機能が低下し、多すぎると粒子の凝集体が形成されるので、無機粒子2の100質量部に対し、好ましくは0.2~500質量部、より好ましくは4~25質量部である。
 本発明の光反射性異方性導電接着剤中の光反射性導電粒子等の導電粒子の配合量は、少なすぎると導通不良が生じる傾向があり、多すぎるとパターン間ショートが生ずる傾向があるので、熱硬化性樹脂組成物100質量部に対し、光反射性導電粒子等の導電粒子の配合量は、好ましくは1~100質量部、より好ましくは10~50質量部である。
<光反射性異方性導電接着剤の製造>
 本発明の光反射性異方性導電接着剤は、以上説明した光反射性絶縁粒子と導電粒子と熱硬化性樹脂組成物とを、常法に従って均一に混合することにより製造することができる。また、光反射性異方性導電フィルムとする場合には、それらをトルエン等の溶媒とともに分散混合し、剥離処理したPETフィルムに所期の厚さとなるように塗布し、約80℃程度の温度で乾燥すればよい。
<光反射性異方性導電接着剤の反射特性>
 本発明の光反射性異方性導電接着剤の反射特性は、発光素子の発光効率を向上させるために、光反射性異方性導電接着剤の硬化物の波長450nmの光に対する反射率(JIS K7105)が、少なくとも30%であること望ましい。このような反射率とするためには、使用する光反射性導電粒子の反射特性や配合量、熱硬化性樹脂組成物の配合組成などを適宜調整すればよい。通常、反射特性の良好な光反射性導電粒子の配合量を増量すれば、反射率も増大する傾向がある。
 また、光反射性異方性導電接着剤の反射特性は屈折率という観点から評価することもできる。即ち、その硬化物の屈折率が、導電粒子と光反射性絶縁粒子とを除いた熱硬化性樹脂組成物の硬化物の屈折率よりも大きいと、光反射性絶縁電粒子とそれを取り巻く熱硬化性樹脂組成物の硬化物との界面での光反射量が増大するからである。具体的には、光反射性粒子の屈折率(JIS K7142)から、熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)を差し引いた差が、好ましくは0.02以上、より好ましくは0.2以上であることが望まれる。なお、通常、エポキシ樹脂を主体とする熱硬化性樹脂組成物の屈折率は約1.5である。
<発光装置>
 次に、本発明の発光装置について図2を参照しながら説明する。発光装置200は、基板21上の接続端子22と、発光素子としてLED素子23のn電極24とp電極25とのそれぞれに形成された接続用のバンプ26との間に、前述の本発明の光反射性異方性導電接着剤を塗布し、基板21とLED素子23とがフリップチップ実装されている発光装置である。ここで、光反射性異方性導電接着剤の硬化物100は、光反射性絶縁粒子10が熱硬化性樹脂組成物の硬化物11中に分散してなるものである。なお、必要に応じて、LED素子23の全体を覆うように透明モールド樹脂で封止してもよい。また、LED素子23に従来と同様に光反射層を設けてもよい。
 このように構成されている発光装置200においては、LED素子23は発した光のうち、基板21側に向かって発した光は、光反射性異方性導電接着剤の硬化物100中の光反射性絶縁粒子10で反射し、LED素子23の上面から出射する。従って、発光効率の低下を防止することができる。
 本発明の発光装置200における光反射性異方性導電接着剤以外の構成(LED素子23、バンプ26、基板21、接続端子22等)は、従来の発光装置の構成と同様とすることができる。また、本発明の発光装置200は、本発明の光反射性異方性導電接着剤を使用すること以外は、従来の異方性導電接続技術を利用して製造することができる。なお、発光素子としては、LED素子の他、本発明の効果を損なわない範囲で公知の発光素子を適用することができる。
  参考例(式(1a)のエポキシ基含有シロキサン化合物の製造)
 窒素気流中、還流冷却管と磁気撹拌子とを備えた100ml三口フラスコに、28.37g(100.88mmol)の1-アリル-3,5-ジグリシジルイソシアヌレート(MADGIC、四国化成工業(株))と、6.63g(20.17mmol)のテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7278.0、Gelest Inc.)]とを投入し、混合物を80℃で均一に溶融するまで撹拌した。続いて、この溶融混合物に2%Karstedt触媒溶液(キシレン溶液)30.2μLを添加し、撹拌しながら140℃になるまで加熱し、溶融混合物の温度が140℃に到達してから、その温度を9時間保持して、1-アリル-3,5-ジグリシジルイソシアヌレートとテトラキス(ハイドロジェンジメチルシロキシ)シランとを反応させた。
 反応終了後、反応混合物を冷却し、未反応モノマーを減圧下(150℃/0.1kPa)で留去し、式(1a)のエポキシ基含有シロキサン化合物を得た。
Figure JPOXMLDOC01-appb-I000007
<ヒドロシリル化反応の進行程度評価>
 ヒドロシリル化反応の進行具合を確認するために、以下に説明するようにFT-IR測定とHNMR測定とを行った。
(FT-IR測定)
 ヒドロシリル化反応物の減圧蒸留残渣、並びに原料の1-アリル-3,5-ジグリシジルイソシアヌレート(MADGIC)とテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7278.0)について、それぞれFT-IR測定(測定装置:フーリエ変換赤外分光光度計
FT-IR-460PLUS、日本分光(株)製)を行い、得られた結果を図3に示した。原料のテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7278.0)については、Si-H基特有のスペクトルとして、2140cm-1付近の伸縮ピーク、900cm-1付近の変角振動ピークが検出された。また、1690cm-1及び1460cm-1付近には、イソシアヌレート由来のシャープなカルボニル基伸縮ピークが検出された。反応物の減圧蒸留残渣については、Si-H基に特有な2140cm-1付近と900cm-1付近のピークは検出されず、一方、イソシアヌレートに由来する1690cm-1及び1460cm-1付近のピークが検出された。
 これらのことから、式(1a)のエポキシ基含有シロキサン化合物が生成していることが確認できた。即ち、ハイドロシリレーション(ハイドロシリル化反応)が完結していることが確認できた。
H-NMR測定)
 ヒドロシリル化反応物の減圧蒸留残渣について、H-NMR測定(測定装置:MERCURY300、VARIAN製)を行い、得られた結果を図4に示した。ケミカルシフトが0ppm付近には、シリコーン由来のSi-Me基に対応するシグナルが観測された。また、ケミカルシフトが4.12~2.66ppmには、グリシジルイソシアヌレート由来のシグナルが多数確認された。他方、アリル基のα,β位炭素隣接プロトンにみられる特有のシグナルとSi-H基のシグナル(両者とも、ケミカルシフト6.00~5.00ppm)とは、共に確認されなかった。
 これらのことからも、式(1a)のエポキシ基含有シロキサン化合物が生成していることが確認できた。即ち、ハイドロシリレーション(ハイドロシリル化反応)が完結していることが確認できた。なお、MADGICの投入量をコントロールすることにより、部分的にSi-H基が残存する化合物を意図的に製造できることが期待される。
  実施例1
 得られたエポキシ基含有シロキサン化合物を用い、表1に示す配合組成の成分を均一に混合することにより絶縁性接着剤として本発明の熱硬化性樹脂組成物を調製した。なお、実施例1においては、エポキシ基/酸無水物の官能基数の比が1/1.1となるように、エポキシ化合物と酸無水物系硬化剤とを配合した。
Figure JPOXMLDOC01-appb-T000008
  比較例1~3
 また、比較例1の絶縁性接着剤としての熱硬化性樹脂組成物は、エポキシ化合物として、式(1a)のエポキシ基含有シロキサン化合物に代えて1,3,5-トリグリシジルイソシアネートを使用した例であり、比較例2の絶縁性接着剤としての熱硬化性樹脂組成物は、2液硬化型ジメチルシリコーン樹脂(IVS4742、モメンティブマテリアル社)であり、比較例3の絶縁性接着剤としての熱硬化性樹脂組成物は、2液硬化型フェニルシリコーン樹脂(SCR-1012、信越化学工業(株))である。
<評価>
 得られた絶縁性接着剤としての熱硬化性樹脂組成物について、ダイシェア強度試験、耐熱試験と耐熱光試験とを行った。得られた結果を表2に示す。
<ダイシェア強度試験>
 金バンプ(高10μm、径80μm、ピッチ190μm)が形成された10μm厚の銀ベタ電極を有するLED用ガラスエポキシ基板(特注品、関西電子工業(株)))に、径が4mmとなるように絶縁性接着剤を塗布し、そこへ0.3mm角のフリップチップ型LED素子(GM35R460G、昭和電工(株))を載せ、フリップチップ型LED素子が表側となるようにガラスエポキシ基板を80℃に保持されたホットプレートに置き、2分間加熱してLED素子をLED用ガラスエポキシ基板に仮固定した。このLED素子が仮固定されたLED用ガラスエポキシ基板を熱圧着装置に適用し、LED素子に80gf/chipの圧力を印加しながら230℃で15秒間熱圧着処理を行うことにより、LED用ガラスエポキシ基板にLED素子が実装されたLED装置を作成した。実施例1又は比較例1の絶縁性接着剤を使用して作成したLED装置の場合、熱圧着処理後に更に260℃、20秒のリフロー処理を行った。
 このようにして作成したLED装置について、ダイシェア強度(gf/chip)を測定した。実用上、ダイシェア強度は少なくとも200gf/chip、好ましくは250gf/chip以上であることが望まれる。
<耐熱試験>
 1mm高さのスペーサが四隅に配置された2枚のアルミニウム平板(長100mm×幅50.0mm×厚0.50mm)で絶縁性接着剤を挟み、実施例1及び比較例1の絶縁性接着剤については、まず120℃で30分加熱し、続いて140℃で1時間加熱することにより硬化樹脂シートサンプルを作成した。また、比較例2及び3の絶縁性接着剤については、まず80℃で1時間加熱し、続いて150℃で2時間加熱することにより硬化樹脂シートサンプルを作成した。
 得られた硬化樹脂シートサンプルを、150℃に設定されたオーブン内に1000時間放置し、放置前後の分光特性(L、a、b)を、分光測色計(CM-3600d、コニカミノルタオプティクス(株))を用いて測定し、得られた測定値から色差(ΔE)を算出した。実用上、ΔEは35以下であることが望まれる。
<耐熱光試験>
 耐熱試験に供した硬化樹脂シートサンプルと同様の硬化樹脂シートサンプルを作成し、それを、温度120℃で光強度16mW/cmに設定された熱光試験機(スーパーウインミニ、ダイプラウィンテス(株);メタルハライドランプ使用)内に1000時間放置し、得られた硬化樹脂シートを、150℃に設定されたオーブン内に1000時間放置し、放置前後の分光特性(L、a、b)を、分光測色計(CM-3600d、コニカミノルタオプティクス(株))を用いて測定し、得られた測定値から色差(ΔE)を算出した。実用上、ΔEは20以下であることが望まれる。
Figure JPOXMLDOC01-appb-T000009
 表2から解るように、実施例1のエポキシ基含有シロキサン化合物を硬化成分として用いた硬化樹脂シートサンプルは、ダイシェア強度、耐熱試験及び耐熱光試験の結果がいずれも実用上好ましいものであったが、比較例1の場合には、熱硬化性エポキシ樹脂組成物を使用しているため、ダイシェア強度については好ましい結果が得られたが、式(1a)のエポキシ含有シロキサン化合物を使用していないため、耐熱試験に関し、満足できる結果が得られなかった。
 なお、比較例2及び3については、式(1a)のエポキシ基含有シロキサン化合物のみならず、熱硬化性エポキシ樹脂組成物を使用していないため、ダイシェア強度が著しく低く、耐熱試験、耐熱光試験をするまでもないものであった。
  実施例2
 絶縁性接着剤として実施例1の熱硬化性樹脂組成物100質量部に対し、光反射性絶縁粒子(平均粒径0.5μmの二酸化チタン酸粉末(KR-380、チタン工業(株))24.0質量部と、導電粒子(平均粒径5μmの金被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子(ライト20GNB4、日本化学工業(株))5.00質量部とを均一に混合することにより実施例2の光反射性異方性導電接着剤を調製した。
  比較例4
 光反射性絶縁粒子を使用しない以外は、実施例4と同様の操作を繰り返すことにより異方性導電接着剤を調製した。
(評価)
 得られた光反射性異方性導電接着剤の光反射率評価試験、LED実装サンプルにおける全光束量評価試験を以下に説明するように測定した。
(光反射率評価試験)
 得られた実施例2及び比較例4の異方性導電接着剤を、セラミック製の白色板に乾燥厚で100μmとなるように塗布し、200℃で1分間加熱し、硬化させた。この硬化物について、分光光度計(U3300、日立製作所(株))を用いて、波長450nmの光に対する反射率(JIS K7150)を測定した。反射率は、実用上30%以上であるところ、実施例2の光反射性異方性導電接着剤は30%を超える反射率を示したのに対し、比較例4の異方性導電接着剤は30%を超える反射率を示さなかった。
(LED実装サンプルにおける全光束量評価試験)
 100μmピッチの銅配線にNi/Au(5.0μm厚/0.3μm厚)メッキ処理した配線を有するガラスエポキシ基板に、バンプボンダー(FB700、カイジョー(株))を用いて15μm高の金バンプを形成した。この金バンプ付きエポキシ基板に、実施例2の光反射性異方性導電接着剤又は比較例4の異方性導電接着剤を用いて、青色LED(Vf=3.2(If=20mA))を200℃、60秒、1Kg/チップという条件でフィリップチップ実装し、テスト用LEDモジュールを得た。
 得られたテスト用LEDモジュールについて、全光束測定システム(積分全球)(LE-2100、大塚電子株式会社)を用いて全光束量を測定した(測定条件 If=20mA(定電流制御))。全光束量、実用上300mlm以上であることが望まれるところ、実施例2の光反射性異方性導電接着剤は300mlmを超える反射率を示したのに対し、比較例4の異方性導電接着剤は300mlmを超える反射率を示さなかった。
 本発明の熱硬化性樹脂組成物並びにそれを絶縁性接着成分として含有する光反射性異方性導電接着剤は、発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、製造コストの増大を招くような光反射層を発光素子に設けなくても、発光効率を低下させないようにすることができる。しかも、ダイシェア強度も高く維持でき、耐熱性、耐熱光性にも優れている。よって、本発明の熱硬化性樹脂組成物及び光反射性異方性導電接着剤は、LED素子をフリップチップ実装する際に有用である。
1 コア粒子
2 無機粒子
3 光反射層
4 熱可塑性樹脂
10、20 光反射性導電粒子
11 熱硬化性樹脂組成物の硬化物
21 基板
22 接続端子
23 LED素子
24 n電極
25 p電極
26 バンプ
100 光反射性異方性導電接着剤の硬化物
200 発光装置
 

Claims (16)

  1.  式(1)
    Figure JPOXMLDOC01-appb-I000001
    (式(1)中、置換基Rは独立的にアルキル基又はフェニル基である。連結基Aは、独立的に2価の炭化水素基である。置換基R1及びR2は、独立的にエポキシ基含有有機基、アルキル基又はアリール基であるが、R1及びR2の少なくとも一方がエポキシ基含有有機基である。)
    で表されるエポキシ基含有シロキサン化合物と、エポキシ樹脂用硬化剤とを含有することを特徴とする熱硬化性樹脂組成物。
  2.  置換基Rが炭素数1~3の低級アルキル基であり、連結基Aが炭素数2~6のアルキレン基であり、置換基R1、R2が共にエポキシ基含有有機基である請求項1記載の熱硬化性樹脂組成物。
  3.  置換基Rがメチル基であり、連結基Aがトリメチレン基であり、置換基R1、R2が共にグリシジル基である請求項2記載の熱硬化性樹脂組成物。
  4.  式(1)のエポキシ基含有シロキサン化合物100質量部に対し、エポキシ樹脂用硬化剤を50~120質量部含有する請求項1~3のいずれかに記載の熱硬化性樹脂組成物。
  5.  エポキシ樹脂用硬化剤が、酸無水物系硬化剤である請求項1~4のいずれかに記載の熱硬化性樹脂組成物。
  6.  更にイミダゾール系硬化促進剤を含有する請求項5記載の熱硬化性樹脂組成物。
  7.  酸無水物系硬化剤100質量部に対し、イミダゾール系硬化促進剤を0.20~2.00質量部含有する請求項6記載の熱硬化性樹脂組成物。
  8.  発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤であって、請求項1~7のいずれかに記載の熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有することを特徴とする光反射性異方性導電接着剤。
  9.  光反射性絶縁粒子が、酸化チタン、窒化ホウ素、酸化亜鉛及び酸化アルミニウムからなる群より選択される少なくとも一種の無機粒子である請求項8記載の光反射性異方性導電接着剤。
  10.  光反射性絶縁粒子の屈折率(JIS K7142)が、熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)よりも大きい請求項8又は9記載の光反射性異方性導電接着剤。
  11.  光反射性絶縁粒子が、鱗片状又は球状銀粒子の表面を絶縁性樹脂で被覆した樹脂被覆金属粒子である請求項8~10のいずれかに記載の光反射性異方性導電接着剤。
  12.  光反射性異方性導電接着剤が、光反射性絶縁粒子を1~50体積%で含有している請求項8~11のいずれかに記載の光反射性異方性導電接着剤。
  13.  導電粒子が、金属材料で被覆されているコア粒子と、その表面に酸化チタン粒子、窒化ホウ素粒子、酸化亜鉛粒子又は酸化アルミニウム粒子から選択された少なくとも一種の無機粒子から形成された光反射層とからなる光反射性導電粒子である請求項8~12のいずれかに記載の光反射性異方性導電接着剤。
  14.  熱硬化性樹脂組成物100質量部に対する光反射性導電粒子の配合量が、1~100質量部である請求項13記載の光反射性異方性導電接着剤。
  15.  請求項1~14のいずれかに記載の光反射性異方性導電接着剤を介して、発光素子をフリップチップ方式で配線板に実装されている発光装置。
  16.  発光素子が、発光ダイオードである請求項15記載の発光装置。
     
PCT/JP2013/079468 2012-10-30 2013-10-30 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置 WO2014069546A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157005900A KR102139124B1 (ko) 2012-10-30 2013-10-30 열경화성 수지 조성물, 광반사성 이방성 도전 접착제 및 발광 장치
CN201380056560.2A CN104736591A (zh) 2012-10-30 2013-10-30 热固性树脂组合物、光反射性各向异性导电粘接剂及发光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012238489 2012-10-30
JP2012-238489 2012-10-30
JP2013068302A JP6003763B2 (ja) 2012-10-30 2013-03-28 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置
JP2013-068302 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014069546A1 true WO2014069546A1 (ja) 2014-05-08

Family

ID=50627446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079468 WO2014069546A1 (ja) 2012-10-30 2013-10-30 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置

Country Status (5)

Country Link
JP (1) JP6003763B2 (ja)
KR (1) KR102139124B1 (ja)
CN (1) CN104736591A (ja)
TW (1) TWI636097B (ja)
WO (1) WO2014069546A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6684273B2 (ja) * 2014-06-19 2020-04-22 インクロン オサケユキチュアInkron Oy シロキサン粒子材料を用いたledランプ
TWI556478B (zh) 2014-06-30 2016-11-01 億光電子工業股份有限公司 發光二極體裝置
JP6721325B2 (ja) * 2015-12-14 2020-07-15 デクセリアルズ株式会社 熱硬化性接着シート、及び半導体装置の製造方法
JP6623121B2 (ja) * 2016-06-08 2019-12-18 デクセリアルズ株式会社 光硬化性樹脂組成物、並びに画像表示装置、及びその製造方法
CN109651425B (zh) * 2017-10-12 2021-02-26 弗洛里光电材料(苏州)有限公司 含多个硅氢键的异氰酸酯化合物及其应用
KR102167662B1 (ko) * 2017-11-28 2020-10-19 주식회사 엘지화학 디스플레이 패널용 시인성 개선 필름 및 이를 포함하는 디스플레이 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138380A (ja) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd 熱硬化性樹脂組成物
JP2012180489A (ja) * 2011-03-03 2012-09-20 Nippon Steel Chem Co Ltd エポキシシリコーン樹脂及びそれを用いた硬化性樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168235A (ja) 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
CN101538367B (zh) * 2008-01-28 2013-09-04 信越化学工业株式会社 二缩水甘油基异氰尿酸基改性有机聚硅氧烷以及含有该有机聚硅氧烷的组成物
JP5305452B2 (ja) 2009-06-12 2013-10-02 信越化学工業株式会社 光半導体素子封止用樹脂組成物
JP5617210B2 (ja) * 2009-09-14 2014-11-05 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
JP2011173951A (ja) * 2010-02-23 2011-09-08 Dic Corp エポキシ樹脂組成物、その硬化物、光半導体封止用樹脂組成物、及び光半導体装置
JP2012057006A (ja) 2010-09-07 2012-03-22 Shin-Etsu Chemical Co Ltd エポキシ樹脂組成物、その製造方法、並びに、それを用いた半導体装置
WO2012124724A1 (ja) 2011-03-16 2012-09-20 ソニーケミカル&インフォメーションデバイス株式会社 光反射性異方性導電接着剤及び発光装置
JP6052006B2 (ja) * 2012-10-30 2016-12-27 デクセリアルズ株式会社 新規なエポキシ基含有シロキサン化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138380A (ja) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd 熱硬化性樹脂組成物
JP2012180489A (ja) * 2011-03-03 2012-09-20 Nippon Steel Chem Co Ltd エポキシシリコーン樹脂及びそれを用いた硬化性樹脂組成物

Also Published As

Publication number Publication date
CN104736591A (zh) 2015-06-24
KR20150081247A (ko) 2015-07-13
KR102139124B1 (ko) 2020-07-29
TW201430067A (zh) 2014-08-01
JP6003763B2 (ja) 2016-10-05
JP2014111708A (ja) 2014-06-19
TWI636097B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
JP5958107B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP5888023B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP5617210B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP5914987B2 (ja) 光反射性異方性導電ペースト及び発光装置
JP5609716B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP6003763B2 (ja) 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置
WO2011045962A1 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
WO2014013984A1 (ja) 光反射性異方性導電接着剤及び発光装置
JP6115457B2 (ja) グリシジルイソシアヌリル変性ポリシロキサンの製造方法
JP6384046B2 (ja) 光反射性異方性導電接着剤及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005900

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850925

Country of ref document: EP

Kind code of ref document: A1