WO2014069361A1 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
WO2014069361A1
WO2014069361A1 PCT/JP2013/078959 JP2013078959W WO2014069361A1 WO 2014069361 A1 WO2014069361 A1 WO 2014069361A1 JP 2013078959 W JP2013078959 W JP 2013078959W WO 2014069361 A1 WO2014069361 A1 WO 2014069361A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
case
support member
diameter
valve device
Prior art date
Application number
PCT/JP2013/078959
Other languages
French (fr)
Japanese (ja)
Inventor
昭夫 石水
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2014069361A1 publication Critical patent/WO2014069361A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors

Definitions

  • the present invention relates to a valve device.
  • Patent Document 1 discloses a valve device including a screw feed mechanism that converts the rotation of a motor into an axial movement of an operating member.
  • This valve device is provided with one bottom-shaped cylindrical portion and the other case portion, and the one case portion and the other case portion overlap each other with a flange provided on each opening side. By joining together, a main body case having a sealed space is formed.
  • the space inside the main body case is divided into two parts by a partition wall provided on the mating surface of the collar part of one case part and the collar part of the other case part.
  • a valve chamber into which fluid flows is defined, and a housing chamber for housing the rotor of the motor is defined on the other case portion side.
  • One end of the rotor disposed in the other case portion is rotatably supported by the other case portion, and the other end is rotatably supported by a partition wall fixed to the one case portion side. Yes.
  • the axial center accuracy of the other end of the rotor is influenced by the fixing position of the partition wall with respect to one case part and the assembly position of one case part and the other case part. Due to the slight deviation of the position, it may be difficult to improve the axial accuracy of the entire rotor.
  • valve device it is required to further improve the axial center accuracy of the rotor.
  • a valve body driven by a motor opens and closes a fluid supply / exhaust port provided in the second case portion in a sealed case formed by joining the first case portion and the second case portion to each other.
  • the rotor of the motor is disposed in the first case portion, and the stator portion for driving the rotor is disposed outside the hermetic case, and the permanent magnet, the first case portion, and the stator portion provided on the rotor.
  • the position of the stator core in the direction of the axis X is configured to overlap with the stator core when viewed from the radial direction perpendicular to the rotation axis of the rotor,
  • a first support member that regulates a radial position while rotatably supporting one end of the rotor; and a second support member that regulates a radial position while rotatably supporting the other end of the rotor. , Each of which is supported by the first case portion.
  • the first support member that rotatably supports one end side of the rotor and the second support member that rotatably supports the other end side of the rotor are fixed to the common first case portion.
  • the center accuracy is determined based on the common first case portion. Therefore, the axial center accuracy of the rotor can be further improved.
  • valve apparatus It is sectional drawing of the valve apparatus concerning embodiment. It is a disassembled perspective view of the principal part of a valve apparatus. It is an expanded sectional view of the important section of a valve device. It is a figure explaining the rotor part of a stepping motor. It is a figure explaining a Geneva gear. It is a figure explaining the function of a Geneva gear. It is a figure explaining a supporting member. It is a figure explaining a partition wall. It is sectional drawing of a partition wall. It is a figure explaining the combined state of a partition wall and a supporting member. It is the perspective view which looked at the partition wall from the rotor part side. It is a figure explaining a valve body. It is a figure explaining fitting of a supporting member and a fixing member, and positioning of an operation member.
  • the embodiment of the present invention will be described by taking as an example a case where it is applied to a valve device 1 for adjusting a gas flow rate.
  • a space in the main body case 2 formed by the first case portion 10 and the second case portion 20 is partitioned by a partition wall 30, and the gas inflow pipe 3 and
  • the valve case 5 side which is the valve chamber case body connected to the gas discharge pipe 4, is the valve chamber 5, and the first case portion 10, which is the motor rotor case body, is the rotor portion 90 of the motor rotor. It is a containment room.
  • valve body 6 for opening and closing the opening 3 a of the gas inflow pipe 3 is attached to the tip of the operating member 7 penetrating the partition wall 30.
  • the rotation of the rotor portion 90 of the stepping motor 8 is converted into a forward / backward movement in the axis X direction of the rotor portion 90 by a screw feed mechanism described later.
  • the valve body 6 attached to the tip of the actuating member 7 moves forward and backward to open and close the opening 3 a of the gas inflow pipe 3.
  • a gas or liquid high-pressure fluid such as a heat medium (refrigerant) is guided into the valve chamber 5 through the gas inflow pipe 3.
  • the second case portion 20 includes a disc-shaped bottom portion 21, a cylindrical peripheral wall portion 22 extending in the direction of the axis X surrounding the bottom portion 21, and a radially outer side from the end of the peripheral wall portion 22 opposite to the bottom portion 21.
  • An extending collar 23 is provided.
  • an attachment member 27 for the gas inflow pipe 3 is provided so as to penetrate the bottom portion 21 in the thickness direction.
  • the attachment member 27 is a cylindrical member having a through hole 28, and a distal end portion 27 a located in the valve chamber 5 is an annular shape surrounding the opening 3 a of the gas inflow pipe, and a contact portion with which the valve body 6 contacts. It has become. Therefore, in order to ensure that the opening 3 a is closed by the valve body 6, the distal end portion 27 a is formed thicker than the gas inflow pipe 3 and can be easily applied by the pressing force acting from the valve body 6. It does not deform.
  • the inner diameter Da closer to the distal end portion 27a than the reduced diameter portion 28a is formed with a diameter smaller than the inner diameter of the gas inflow pipe 3 extending linearly on the axis X.
  • the peripheral wall portion 22 is provided with an opening 22a that opens in a direction orthogonal to the axis X, and the distal end 4a side of the gas discharge pipe 4 extending in the direction orthogonal to the axis X is inserted into the opening 22a.
  • the gas exhaust pipe 4 is welded and fixed to the peripheral wall portion 22 in a state where the tip 4a side is inserted into the opening 22a.
  • the outer peripheral edge 232 of the flange 23 is located on the first case part 10 side (upward) from the base 231 provided in a ring shape on the inner diameter side, and the outer peripheral edge 232 is the first case part over the entire periphery. 10 abutments 13.
  • the contact portion of the outer peripheral edge 232 with the flange portion 13 is welded over the entire periphery, whereby the first case portion 10 and the second case portion 20 are joined to each other, and the main body case 2 is attached. It is composed.
  • the contact part with the collar part 13 of the outer periphery 232 is joined by TIG welding which welds, always blowing inactive gas.
  • the first case portion 10 is a rotor case body for housing the rotor portion 90, is formed by press-molding a stainless steel plate, and has a disk-shaped bottom portion 11, a peripheral wall portion 12 surrounding the bottom portion 11, And a flange 13 that extends radially outward from the end opposite to the bottom 11 of the peripheral wall 12 and is integrally formed.
  • the collar part 13 is formed in the same size as the outer diameter of the collar part 23 of the second case part 20.
  • a bottomed cylindrical support 111 is provided protruding in a direction away from the rotor 90 (upper side in the figure).
  • the support portion 111 protruding toward the outside of the first rotor case portion is formed to have an outer diameter D3 that is smaller than the outer diameter D1 of the permanent magnet 100 that is the rotor magnet of the rotor portion 90.
  • the bearing member 24 as a first support member that rotatably supports the shaft portion 92 on one end side of the rotor portion 90 is positioned and held, for example, by press-fitting.
  • the partition wall 30 is the second support member, and the partition wall 30 will be described later.
  • the peripheral wall portion 12 of the first case portion 10 includes a small-diameter portion 12a on the cylindrical bottom portion 11 side and a large-diameter portion 12b on the flange portion 13 side, both extending in the axis X direction.
  • the small-diameter portion 12a faces the permanent magnet 100, which is a rotor magnet, with a slight gap
  • the large-diameter portion 12b has a small-diameter in order to dispose the Geneva gear 110 and the like that constitute a rotation restricting mechanism for the rotor portion 90.
  • the diameter is larger than that of the portion 12a.
  • the small-diameter portion 12a and the large-diameter portion 12b are connected by an annular portion extending in the radial direction orthogonal to the axis X to form a step.
  • the small diameter portion 12a is formed to have an inner diameter D2 slightly larger than the outer diameter D1 of the rotor portion 90, that is, the permanent magnet 100 that is a rotor magnet.
  • a stator portion 80 of the stepping motor 8 is provided on the radially outer side of the axis X of the small diameter portion 12a, and a rotor portion 90 is provided on the radially inner side.
  • the first case portion 10 sandwiches the small diameter portion 12a.
  • the stepping motor 8 is configured by the stator portion 80 and the rotor portion 90 located on the outer side and the inner side of the rotor.
  • the stator portion 80 of the stepping motor 8 includes a stator core 81, a bobbin 82, a drive coil 83, and a motor case 88.
  • the inner peripheral portion 81a of the stator core 81 has a cylindrical shape in which pole teeth (not shown) are arranged at predetermined intervals in the circumferential direction around the axis X.
  • stator portion 80 a set of stator cores 81 are provided with the disk portions 81b in contact with each other and the inner peripheral portions 81a facing in opposite directions. In this state, the poles of one stator core 81 are provided. The teeth and the pole teeth of the other stator core 81 are arranged alternately in the circumferential direction around the axis X.
  • a bobbin 82 around which a drive coil 83 is wound is provided on the outer periphery of the inner peripheral portion 81a of the stator core 81.
  • the ends of the drive coil 83 are wound around terminals 84 and 84, respectively, and the distal ends of the terminals 84 and 84 are connected to a circuit board 86 to which a connector terminal 85 is connected.
  • the motor cover 87 that accommodates the stator portion 80 is made of a resin material (for example, PPS (polyphenylene sulfide)), and engages with the engaging claw 87a on the engaging portion 26a of the mounting member 26 that extends from the flange portion 13 to the stepping motor 8 side.
  • a resin material for example, PPS (polyphenylene sulfide)
  • the rotor portion 90 is configured to include a permanent magnet 100 as a ring-shaped rotor magnet on the outer periphery of a cylindrical main body portion 91 whose one end is sealed, and rotates around the axis X in the first case portion 10. It is provided as possible.
  • the main body portion 91 and the permanent magnet 100 of the rotor portion 90 are integrally formed by insert molding.
  • a cylindrical shaft portion 92 protrudes integrally with the main body 91 toward the bottom 11 side (upper side in the drawing) of the first case portion 10. Is provided.
  • the support portion 111 is provided at the center of the bottom portion 11 that faces the shaft portion 92 of the rotor portion 90 in the axial direction of the axis X, and the support portion 111 has a bottom as a first support member.
  • a cylindrical bearing member 24 is fixed by press-fitting.
  • the bearing member 24 includes a thrust bearing portion 241 that restricts the axial position of the rotor portion 90 (shaft portion 92), and a radial bearing portion 242 that restricts the radial position of the rotor portion 90 (shaft portion 92).
  • the shaft member 92 of the rotor portion 90 is rotatably supported by the bearing member 24 in a state where the shaft portion 92 is supported in the thrust direction and the radial direction.
  • Ring-shaped projecting portions 91b and 91b are provided over the entire circumference in a substantially central portion in the longitudinal direction of the main body 91 and in the vicinity of the shaft portion 92, as viewed from the axial direction of the axis X.
  • the permanent magnet 100 is located between 91 b and 91 b and is attached to the main body 91.
  • FIG. 2 is an exploded perspective view showing the main part of the valve device 1
  • FIG. 3 is an enlarged view showing a cross section of the main part of the valve device 1.
  • FIG. 4A is a perspective view of the rotor unit 90
  • FIG. 4B is a plan view of the rotor unit 90 viewed from the partition wall 30 side.
  • the rotor unit 90 will be described with reference to FIGS. As shown in FIG. 3, in the main body 91 of the rotor 90, a small-diameter shaft 93 having a diameter smaller than that of the projecting portion 91b is provided on the partition wall 30 (second support member) side opposite to the shaft 92. It has been.
  • a Geneva pin 93a (see FIGS. 2 and 4) extending along the axial direction of the axis X (longitudinal direction of the rotor portion 90) is provided on the outer periphery of the small-diameter shaft portion 93.
  • the Geneva pin 93a is connected to the protruding portion 91b. It is formed in the range from the vicinity to the tip portion 93e.
  • the small-diameter shaft portion 93 is provided with a substantially C-shaped bulging portion 93b on the outer periphery on the protruding portion 91b side when viewed from the axial direction.
  • the bulging portion 93b is formed at the same radial height as the Geneva pin 93a, and a tooth portion 112b (see FIG. 6B) of the Geneva gear 110 described later is engaged with the Geneva pin 93a.
  • a tooth gap portion 93d (see FIG. 4B) is provided.
  • the stoppers 93c and 93c which are the vicinity of the tooth groove part 93d in the bulging part 93b, are brought into contact with the contact part 112d and 112e per degree of the Geneva gear 110 to be described later, thereby restricting the rotational position of the rotor part 90. It has become.
  • the geneva pin 93a, the bulging portion 93b including the stopper portions 93c and 93c, and the tooth groove portion 93d, together with the geneva gear 110 described later, constitute a motor rotation regulating mechanism.
  • a Geneva gear 110 that defines the rotation angle around the axis X of the rotor portion 90, that is, the amount of rotation of the rotor portion 90 is provided. Yes.
  • the rotation shaft 116 of the Geneva gear 110 is rotatably supported by the bearing hole 38 a of the bearing portion 38 of the partition wall 30 and the bearing hole 115 a of the bracket member 115, and the Geneva gear 110 is an axis of the rotor portion 90. It is rotatably provided around an axis X ′ parallel to X. Further, the Geneva gear 110 and the permanent magnet 100 are provided at positions overlapping each other when viewed in the axial direction of the axis X. That is, the Geneva gear 100 and the permanent magnet 100 are provided on the axis of the axis parallel to the axis X. For this reason, the diameter of the large diameter part 12b of the 1st case part 10 can be made small.
  • FIG. 5A is a perspective view of the Geneva gear 110 viewed from the partition wall 30 side
  • FIG. 5B is a plan view of the Geneva gear 110 viewed from the partition wall 30 side.
  • the Geneva gear 110 includes a ring-shaped support portion 111 through which the rotation shaft 116 is inserted, and a large-diameter portion 112 having a larger diameter than the support portion 111.
  • a tooth groove portion 112a and a tooth portion 112b are formed on a semicircular portion on one side with a straight line L (see FIG. 5B) passing through the rotation center (axis line X ′) of the Geneva gear 110 as a boundary. And a protruding portion 112c.
  • the tooth part 112b and the protrusion part 112c are alternately provided in the circumferential direction of the large diameter part 112.
  • the tooth portion 112b is formed over the entire length in the thickness direction of the large diameter portion 112 (the axial direction of the axis X ′), and the protruding portion 112c is a rotor in order not to inhibit the rotation of the rotor portion 90.
  • the portion 90 is formed with a thickness (height Hz) that avoids contact with the bulging portion 93b.
  • both side parts 112d and 112e which are parts facing the tooth groove part 112a, constitute a degree that defines the rotation range (rotation angle) of the rotor part 90. Yes.
  • FIG. 6 is a diagram for explaining the engagement between the Geneva gear 110 and the Geneva pin 93a of the rotor unit 90, and the regulation of the rotation range (rotation angle, rotation amount) of the rotor unit 90 by the Geneva gear 110.
  • (b) is a state where the tooth groove part 112a of the Geneva gear 110 and the Geneva pin 93a of the rotor part 90 are engaged.
  • It is a figure which shows a state
  • (c) is a figure which shows the state by which rotation of the rotor part 90 was controlled by 112d per other degree of the Geneva gear 110.
  • the Geneva pin 93a of the rotor part 90 is inserted into the tooth groove part 112a of the Geneva gear 110 and engages with the tooth part 112b, and each time the rotor part 90 makes one rotation around the axis X.
  • the Geneva gear 110 is rotated around the axis line X ′ by a predetermined angle by the Geneva pin 93a, and the rotor part 90 can be rotated a plurality of times.
  • the rotor portion 90 In the angular position shown in FIG. 6 (a), the rotor portion 90 is restricted from rotating further in the counterclockwise direction CCW, and can only rotate in the clockwise direction CW.
  • the rotor 90 In the angular position shown in FIG. 6C, the rotor 90 is restricted from rotating in the clockwise direction CW and can only rotate in the counterclockwise direction CCW.
  • the protrusion 112c of the Geneva gear 110 is formed at a height that avoids interference with the bulging portion 93b of the rotor portion 90, the Geneva gear 110 and the rotor portion 90 can rotate relative to each other without interference.
  • valve body 6 becomes the distal end portion 27a of the attachment member 27 of the gas inflow pipe 3. (See FIG. 1), the valve body 6 and the actuating member 7 are moved by the spring 76 (until the rotor portion 90 further makes one rotation and reaches the position shown in FIG. 6A). The relative movement is performed in the axial direction of the axis X while compressing (see FIG. 3).
  • the rotation of the rotor portion 90 of the stepping motor 8 is converted into the axial movement of the actuating member 7 by the screw feed mechanism.
  • the screw feed mechanism is attached to the engaging portion 35 of the partition wall 30 so as not to rotate, and supports the operation member 7 so as not to rotate and to be movable back and forth in the direction of the axis X.
  • a female screw 95 provided on the inner periphery of the rotor portion 90 and a male screw 71 a provided on the outer periphery of the shaft member 71 extending from the operating member 7 are configured.
  • the female screw 95 and the shaft member 71 are disposed on the axis X of the rotor portion 90.
  • FIG. 7A is a plan view of the support member 120 viewed from the partition wall 30 side
  • FIG. 7B is a plan view viewed from the valve body 6 side
  • FIG. 7C is a side view.
  • (D) is a perspective view of the support member 120 taken along the line AA in (a).
  • the support member 120 is detachable from the valve body 6 side in the axis X direction with respect to the engaging portion 35 protruding from the partition wall 30 to the valve body 6 side.
  • the support member 120 includes a cylindrical base 121 and a flange portion 122 that extends radially outward from one end of the base 121 on the valve body 6 side.
  • the central opening 123 penetrating the base 121 in the longitudinal direction has an inner diameter that matches the outer diameter of the fitting portion 72 of the actuating member 7.
  • Protrusions 121a projecting radially inward are provided on the inner peripheral surface of the central opening 123.
  • Two projecting parts 121a are provided at intervals of 180 ° in the circumferential direction around the axis X.
  • the fitting portion 72 of the actuating member 7 described later is inserted into the central opening 123 of the support member 120, and at this time, the protruding portion 121 a is inserted into the concave groove 72 a of the fitting portion 72.
  • the fitting portion 72 of the actuating member 7 described later is inserted into the central opening 123 of the support member 120, and at this time, the protruding portion 121 a is inserted into the concave groove 72 a of the fitting portion 72.
  • an engagement protrusion 124 is provided so as to protrude radially outward on the flange portion 122 side.
  • a plurality of engagement protrusions 124 are provided at equal intervals in the circumferential direction around the axis X. It has been.
  • the engagement projection 124 is fitted into an engagement projection 35 a of the engagement portion 35 described later, and the support member 120 is attached to the partition wall 30.
  • the engagement protrusion 35 a is fitted into a recess formed between the adjacent engagement protrusions 124.
  • the mounting position of the support member 120 with respect to the partition wall 30 can be adjusted by the interval at which the engagement protrusions 124 (the recesses formed between the adjacent engagement protrusions 124) are formed.
  • 12 engaging protrusions 124 are provided at equal intervals (30 degree intervals) in the circumferential direction, so that the mounting position of the support member 120 with respect to the partition wall 30 can be changed by a multiple of 30 degrees.
  • FIG. 8A and 8B are diagrams illustrating the partition wall 30, where FIG. 8A is a plan view viewed from the valve body 6 side, and FIG. 8B is a plan view viewed from the rotor unit 90 side.
  • FIG. 9 is a cross-sectional view taken along the line AA in FIG. 8A, and shows the first case portion 10, the second case portion 20, and the small-diameter shaft portion 93 of the rotor portion 90 indicated by phantom lines in the drawing. is there.
  • FIG. 10 is a diagram for explaining an engagement state between the support member 120 and the engaging portion 35 of the partition wall 30, and FIG. 10A is a perspective view of the partition wall 30 as viewed from the valve body 6 side.
  • (B) is sectional drawing which cut
  • the partition wall 30 has a base portion 31 made of a disk-shaped plate member, and an insertion hole 32 through which the shaft member 71 of the operating member 7 is inserted penetrates in the thickness direction in the center portion of the base portion 31. Is provided.
  • a cylindrical wall 33 surrounding the insertion hole 32 is provided on the surface 31b of the partition wall 30 on the rotor part 90 side so as to protrude toward the rotor part 90. It is formed with a predetermined length L1 in the axial direction of the axis X.
  • the shaft member 71 inserted through the insertion hole 32 of the partition wall 30 is supported by the insertion hole 32 of the cylindrical wall 33 so as to be movable back and forth in the axis X direction.
  • the shaft member 71 is prevented from being touched by the insertion hole 32 of the cylindrical wall 33 when the shaft member 71 is touched.
  • the end 33 a side of the cylindrical wall 33 is inserted into the fitting hole 91 c of the main body portion 91 of the rotor portion 90, and the fitting hole 91 c on the small diameter shaft portion 93 side that is the other end side of the rotor portion 90 is formed.
  • the cylindrical wall 33 is rotatably supported on the outer peripheral surface. Thereby, the axial center alignment of the other end side of the rotor portion 90 rotating around the axis X is performed by the cylindrical wall 33 formed integrally with the partition wall 30.
  • a fitting hole 91 c formed in the distal end portion 93 e of the main body 91 is opened at the end of the main body 91 of the rotor 90 on the side of the partition wall 30, and the shaft member 71 is formed in the partition wall 30.
  • a cylindrical wall 32 surrounding the insertion hole 32 is provided.
  • the main-body part 91 is supported so that sliding rotation is possible in the state which inserted the inner periphery of the fitting hole 91c formed in the front-end
  • the inner peripheral surface of the fitting hole 91c and the outer peripheral surface of the cylindrical wall 32 constitute a radial bearing on the distal end portion 93e side of the main body 91.
  • annular wall 34 formed concentrically with the cylindrical wall 33 surrounding the cylindrical wall 33 at a predetermined interval is provided on the surface 31b of the partition wall 30 on the rotor portion 90 side. That is, the annular wall 34 is disposed to face the cylindrical wall 33 at a predetermined interval.
  • the annular wall 34 is formed with a predetermined length L2 in the axial direction of the axis X on the radially outer side of the Geneva gear 110 described above.
  • the outer diameter D4 of the annular wall 34 arranged in an annular shape matches the inner diameter of the large diameter portion 12b in the peripheral wall portion 12 of the first case portion 10, and the partition wall 30 has a large diameter on the outer peripheral surface of the annular wall 34.
  • the first case portion 10 is positioned by being brought into contact with the portion 12b by, for example, press fitting. Accordingly, the distal end portion 93 e of the main body 91 that is the other end of the rotor 90 is positioned on the first case portion 10 via the cylindrical wall 33 and the annular wall 34.
  • the annular wall 34 is formed over the entire circumference, but a plurality of annular walls 34 may be arranged in an annular shape. More preferably, if three or more annular walls are arranged, the positioning accuracy in the radial direction perpendicular to the axis X is high.
  • a groove 31e is formed along a straight line N passing through the axis X in the portion between the cylindrical wall 33 and the annular wall 34. Three are provided at intervals of 120 ° in the circumferential direction.
  • a leaf spring 140 for preventing rattling in the axial direction of the rotor portion 90 is disposed between the partition wall 30 and the tip end portion 93 e of the rotor portion 90.
  • a leg portion 141 (see FIG. 11) of the leaf spring 140 is disposed in the groove 31e and comes into contact with the partition wall 30.
  • a through hole 31c that penetrates the partition wall 30 in the thickness direction is provided at the inner diameter side end of the groove 31e, and the space in the first case portion 10 and the space in the second case portion 20 pass through this through hole 31c.
  • the holes 31c communicate with each other.
  • plate-like support members 39, 39 are provided at a portion between the cylindrical wall 33 and the annular wall 34 so as to protrude toward the rotor portion 90.
  • the support members 39 and 39 are provided on both sides of a bearing hole 38 a provided in the partition wall 30, and are provided to attach the bracket member 115 (see FIG. 2) to the partition wall 30.
  • the support members 39 and 39 have a substantially rectangular shape in a side view, and a protrusion 39a is provided on the side surface opposite to the bearing hole 38a.
  • the bracket member 115 is attached to the support members 39, 39 by engaging an opening 115c provided in an arm portion 115b extending in the axial direction of the axis X 'with the protrusion 39a.
  • through holes 31c and 31d penetrating the partition wall 30 in the thickness direction are provided in the base portion of the support members 39 and 93 on the partition wall 30 side, and the space in the first case portion 10 and the second case portion are provided.
  • the space in 20 communicates with each other through the through holes 31c and 31d.
  • a bearing portion 38 for supporting the rotating shaft 116 of the Geneva gear 110 is provided on the valve 31 side surface 31 a of the partition wall 30 on the side opposite to the support member 39. It protrudes on the body 6 side (left side in the figure).
  • a cylindrical engagement protrusion 311 is provided on the outer side in the radial direction of the bearing portion 38 so as to protrude toward the valve body 6 (left side in the figure).
  • the engagement protrusion 311 is formed in the circumferential direction around the axis X. Are provided at intervals of 180 ° (see FIG. 8A).
  • the engaging protrusion 311 is inserted into the engaging recess 233 of the second case portion 20 when the main body case 2 is configured with the partition wall 30 sandwiched between the first case portion 10 and the second case portion 20.
  • the partition wall 30 is provided to prevent the partition wall 30 from rotating about the axis X.
  • a space (gap) S is formed between the first case portion 10 and the second case portion 20 on the radially outer side of the outer peripheral edge 31 f of the partition wall 30, and the flange portion 13 of the first case portion 10 is formed.
  • the outer peripheral edge 13a and the outer peripheral edge 232 of the second case portion 20 are joined to each other by welding at a position separated from the outer peripheral edge 31f of the partition wall 30 by a predetermined distance h3 radially outward.
  • the main body case 2 is configured in a state where the partition wall 30 is sandwiched between the portion 20 and the body 20. That is, the partition wall 30 is held by the first case portion 10 and the second case portion 20.
  • the partition wall 30 is made of a resin material such as PPS (polyphenylene sulfide). Therefore, the welding position (see symbol W in FIG. 9) between the first case portion 10 (outer peripheral edge 13a) and the second case portion 20 (outer peripheral edge 232) is a predetermined distance from the outer peripheral edge 31f of the partition wall 30 to the radially outer side. By setting at a position away from h3, the partition wall 30 is preferably prevented from being deformed by welding heat.
  • PPS polyphenylene sulfide
  • the partition wall 30 is attached by press-fitting the annular wall 34 into the large-diameter portion 12 b that is the peripheral wall portion 12 of the first case portion 10, and the first case portion of the partition wall 30 is formed by the outer peripheral surface of the annular wall 34. Positioning in the radial direction with respect to 10 is performed.
  • the welding position W is positioned on the radially outer side of the partition wall 30. There is no problem of deformation.
  • a space S is secured between the first case portion 10 and the second case portion 20 so that the partition wall 30 is not adjacent to the welding position W.
  • a step is formed between the base portion 231 and the outer peripheral edge 232 of the second case portion 20, so that the partition is made from the welding position W via the outer peripheral edge 232 and the base portion 231.
  • the thermal resistance transmitted to the outer peripheral edge 31f of the wall 30 is increased.
  • the space S on the outer peripheral side from the outer peripheral edge 31 f of the partition wall 30, it is possible to suppress transmission of welding heat to the partition wall 30 side.
  • the space S functions as a heat insulating layer and the transmission of welding heat to the partition wall 30 side can be suppressed, deformation of the partition wall 30 (annular wall 34) can be suitably prevented, and The radial direction perpendicular to the axis X can be reduced in size.
  • An engaging portion 35 surrounding the insertion hole 32 is provided on the surface 31a of the partition wall 30 on the valve body 6 side.
  • the opening 36 of the engaging portion 35 is enlarged in two steps in a direction away from the base portion 31 (leftward in FIG. 9), and the small diameter portion 361 on the base portion 31 side and the valve body 6 side (left side in the drawing).
  • the large diameter part 362 is located.
  • the inner diameter D5 of the small diameter portion 361 is aligned with the outer diameter of the base 121 (see FIG. 7) of the support member 120 described above, and when the support member 120 is assembled to the partition wall 30, the base 121 of the support member 120 is The small diameter portion 361 is fitted inside.
  • a plurality of engagement protrusions 35a protruding radially inward are provided on the inner peripheral surface of the large diameter portion 362 at intervals in the circumferential direction around the axis X.
  • the engaging projection 35a extends over the entire length of the large diameter portion 362 in the axial direction of the axis X.
  • the number of the engagement protrusions 35 a of the base 121 is smaller than the number of the engagement protrusions 124. For this reason, the engagement protrusion 35a and the fitting portion 72 can be arranged on the engagement portion 35 of the partition wall 30 at a position that does not overlap when viewed from the radial direction orthogonal to the axis X.
  • the engaging portion 35 is provided with notches 35b at intervals of 120 degrees in the circumferential direction around the axis X.
  • a through hole 31c is exposed at the bottom of the notch 35b, and an arm portion 37 is provided on the radially outer side of the through hole 31c so as to protrude in the same direction as the engaging portion 35. ing.
  • the arm portion 37 extends along the axial direction of the axis X, and the height h1 of the arm portion 37 from the base portion 31 is the height h2 of the engaging portion 35 from the base portion 31.
  • a claw portion 37 a that protrudes radially inward is provided at the tip of the arm portion 37.
  • the support member 120 is held in a state in which the base portion 121 is fitted to the small diameter portion 361 of the engaging portion 35 and the contact surface 122b is in contact with the distal end 35b of the engaging portion 35. ing.
  • the support member 120 includes two engaging protrusions 124, 124 that are adjacent in the circumferential direction, and the engaging portions 35 that are adjacent in the circumferential direction of the engaging portion 35. , 35, and the support member 120 and the engaging portion 35 (partition wall 30) are connected in a state where they are prevented from rotating.
  • the fitting portion 72 that is fitted to the support member 120, the connecting portion 73 to the valve body 6, and the spring support portion 74 are made of the same resin material (for example, it is made of PPS (polyphenylene sulfide), and the shaft member 71 made of SUS material is integrally formed by insert molding.
  • PPS polyphenylene sulfide
  • a male screw 71 a that engages with the female screw 95 of the rotor portion 90 is provided on the outer periphery on the tip side of the shaft member 71.
  • the base end side of the shaft member 71 extends through the fitting portion 72 to the spring support portion 74.
  • the cylindrical fitting portion 72 is provided.
  • a groove 72a extending along the axial direction is provided over the entire length in the longitudinal direction.
  • the concave grooves 72a are provided at symmetrical positions with respect to the axis X, and are provided at intervals of 120 ° in the circumferential direction around the axis X.
  • the spring support portion 74 includes a columnar portion 74a having a diameter larger than that of the fitting portion 72, and a flange portion 74b provided at an end of the columnar portion 74a on the fitting portion 72 side. .
  • the outer diameter of the cylindrical portion 74a is substantially the same as the inner diameter of the spring 76, and one end side of the spring 76 is attached to the cylindrical portion 74a by being extrapolated.
  • the outer diameter of the flange portion 74 b is slightly larger than the outer diameter of the spring 76, and one end of the spring 76 comes into contact therewith.
  • the connecting portion 73 adjacent to the spring support portion 74 has a cylindrical shape as a basic shape, and a protrusion 73 a protruding radially outward protrudes in the opposite direction across the axis X on the outer periphery of the tip of the connecting portion 73. Is provided.
  • the distal end side of the connecting portion 73 provided with the protrusion 73a is inserted into the opening 62a of the valve body 6 so that the valve body 6 and the connecting portion 73 are connected.
  • the valve body 6 includes an engaging member 61 made of a resin material (for example, PPS (polyphenylene sulfide)) and an abutting member 65 that is externally fitted to the engaging member 61.
  • PPS polyphenylene sulfide
  • FIG. 12A is a plan view of the valve body 6 as viewed from the operating member 7 side
  • FIG. 12B is a cross-sectional view taken along the line AA in FIG. 12A
  • FIG. 12C is a cross-sectional view taken along the line BB in FIG. FIG.
  • the engaging member 61 includes a disc portion 62, and a peripheral wall portion 63 that extends from the outer periphery of the disc portion 62 in the direction opposite to the operation member 7 (leftward in FIG. 12C).
  • the flange part 64 is provided.
  • the peripheral wall portion 63 includes a small-diameter portion 63a and a large-diameter portion 63b, and is formed in a step shape so that the inner diameter increases as the distance from the disc portion 62 increases.
  • the disk part 62 is provided with an opening 62a penetrating the disk part 62 in the thickness direction.
  • an opening 62a In the opening 62a, two-sided width parts 62b and 62b that are parallel to each other across the axis X are formed. Has been.
  • the opening 62a is formed in a shape and size that can be inserted through the tip of the connecting portion 73 provided with the protrusion 73a.
  • the maximum diameter La of the distal end portion of the connecting portion 73 is set slightly smaller than the inner diameter Da of the small diameter portion 63a of the peripheral wall portion 63.
  • the protrusion 73a is locked to the disc portion 62 by rotating the valve body 6 by 90 degrees ((( c)), the drop-off of the valve body 6 from the connecting portion 73 is prevented.
  • valve body 6 and the connecting portion 73 of the operating member 7 are relatively movable in the axial direction of the axis X.
  • the outer diameter of the small-diameter portion 63a of the peripheral wall portion 63 is substantially the same as the inner diameter of the spring 76, and the other end side of the spring 76 is extrapolated and attached.
  • the outer diameter of the large-diameter portion 63b is slightly larger than the outer diameter of the spring 76, and the other end of the spring 76 comes into contact therewith.
  • a flange portion 64 is provided over the entire circumference on the outer periphery of the end portion of the peripheral wall portion 63 opposite to the disc portion 62.
  • the flange portion 64 extends outward in the radial direction.
  • An abutting member 65 (see FIG. 3) made of a rubber material such as NBR is externally fitted to the flange portion 64, and the valve body 6 is attached to the gas inflow pipe 3 as shown in FIG. When moved to the side, the opening 3 a of the gas inflow pipe 3 is closed by the contact member 65.
  • the outer diameter of the contact member 65 is larger than the opening diameter of the gas inflow pipe 3.
  • the valve body 6, the operation member 7, the rotor portion 90, and the gas inflow pipe 3 are arranged on the same axis.
  • the opening 3a is opened and closed by a valve body 6 that moves back and forth in a direction orthogonal to the opening surface (the axial direction of the axis X).
  • the operation member 7 and the valve body 6 are moved stepwise in the axial direction by the stepping motor 8, the gas inflow pipe 3 is changed according to the positional relationship with the opening 3 a of the valve body 6 that changes stepwise. The amount of gas flowing into the valve chamber 5 and discharged from the gas discharge pipe 4 is adjusted.
  • valve body 6 actuating member 7
  • valve device 1 The positioning of the valve body 6 (actuating member 7) when the valve device 1 is assembled will be described.
  • FIG. 13 is a view for explaining the positioning of the actuating member 7 (valve element 6) when the valve device 1 is assembled.
  • FIG. 13A is a diagram showing how the support member 120 is attached to and detached from the engaging portion 35 (partition wall 30).
  • FIG. 6B is a view for explaining the position adjustment of the valve body 6, and
  • FIG. 7B is a view for explaining the rotation restriction of the rotor portion 90 by the Geneva gear 110 during the position adjustment.
  • the support member 120 and the actuating member 7 are assembled by fitting the protruding portion 121a of the support member 120 and the concave groove 72a of the fitting portion 72 of the actuating member 7 ((( b)), the support member 120 is fitted to the actuating member 7 in a non-rotating manner.
  • the support member 120 is movable in the axial direction of the axis X along the protruding portion 121a, and is detachable from the axial direction of the axis X with respect to the engaging portion 35 of the partition wall 30. Yes.
  • the supporting member 120 is rotated around the axis line X shown by arrow S1 in the figure, and the operating member 7 and the rotor part 90 are rotated relative to each other, thereby The length of the meshing portion (see FIG. 3) between the male screw 71a and the female screw 95 of the rotor portion 90 is changed.
  • the operation member 7 and the valve body 6 move forward and backward in the direction shown by arrow S2 according to the rotation direction of the support member 120, the valve body 6 can be positioned at a predetermined initial position.
  • the support member 120 is slid to the engaging part 35 side in the state which hold
  • the claw portion 37 a of the arm portion 37 is locked to the engagement step portion 122 a of the support member 120.
  • the motor is driven by a stepping motor 8 in a main body case 2 (sealed case) formed by joining together a first case portion 10 which is a rotor case body of a motor and a second case portion 20 which is a case body for a valve chamber.
  • a first case portion 10 which is a rotor case body of a motor
  • a second case portion 20 which is a case body for a valve chamber.
  • the rotor portion 90 (rotor) of the stepping motor 8 is disposed in the first case portion 10, and the stator portion 80 that drives the rotor portion 90 is disposed outside the first case portion 10 (main body case 2).
  • the positions of the permanent magnet 100 provided in the portion 90, the first case portion 10 and the stator core 81 of the stator portion 80 in the axis X direction are configured to overlap with each other when viewed from the radial direction orthogonal to the axis X, and the rotor portion
  • the bearing member 24 (first support member) that regulates the radial position while rotatably supporting the shaft portion 92 on one end side of the 90 and the small diameter shaft portion 93 on the other end side of the rotor portion 90 are rotatably supported.
  • the partition wall 30 (second support member) provided with the cylindrical wall 33 that regulates the position in the radial direction is supported by the first case portion 10.
  • the bearing member 24 which rotatably supports the shaft part 92 of the one end side of the rotor part 90, and the cylindrical wall 33 which rotatably supports the small diameter shaft part 93 of the other end side of the rotor part 90 are provided. Since the partition wall 30 is fixed to the common first case part 10, the axial center accuracy of the rotor part 90 is determined based on the common first case part 10. Therefore, the axial center accuracy of the rotor part 90 can be further improved. For this reason, even if the radial gap between the permanent magnet 100 and the first case portion 10 is reduced, the contact between the permanent magnet 100 and the first case portion 10 can be prevented. Therefore, since the permanent magnet 100 and the stator core 81 can be brought close to each other, the efficiency of the stepping motor 8 can be increased.
  • a screw feed mechanism that converts the rotation of the rotor portion 90 into the forward and backward movement of the shaft member 71 connected to the valve body 6;
  • This screw feed mechanism is composed of a female screw 95 provided on the inner periphery of the rotor portion 90 and a male screw 71a provided on the outer periphery of the shaft member 71.
  • the female screw 95 and the male screw 71a are composed of a rotor.
  • the partition wall 30 (second support member) has an insertion hole 32 through which the shaft member 71 is inserted, and a cylindrical wall 33 surrounding the insertion hole 32.
  • the other end side of the rotor part 90 is provided with a fitting hole 91c that is supported by extrapolation to the cylindrical wall 33.
  • the other end side of the rotor part 90 is provided with an inner peripheral surface of the fitting hole 91c and a cylindrical wall. It was set as the structure supported by 33 small diameter parts 361 (outer peripheral surface).
  • the radial position can be regulated at both ends of the rotor portion 90.
  • rotation of the rotor part 90 can be converted into the advancing / retreating movement of the valve body 6 without using a tooth wheel train, the first case part 10 can be reduced in size.
  • the outer shapes of the shaft portion 92 and the partition wall 30 viewed from the direction of the axis X are each circular.
  • the first case portion 10 includes an outer diameter D1 of the rotor portion 90, that is, a cylindrical support portion 111 having an outer diameter D3 smaller than the outer diameter D1 of the permanent magnet 100 that is a rotor magnet, and the outer diameter D1 of the rotor portion 90.
  • the cylindrical large-diameter portion 12b having a larger outer diameter D4 (see FIG. 9), and the bearing member 24 and the partition wall 30 are respectively pressed into the support portion 111 and the large-diameter portion 12b by press-fitting. It was set as the structure positioned in the direction.
  • the bearing member 24 (first support member) includes a thrust bearing portion 241 that regulates the position of the rotor portion 90 in the axial direction.
  • the thrust bearing portion 241, the shaft member 71, the valve body 90, and the opening 3 a of the gas inflow pipe 3 ( (Supply / discharge port) is arranged on the axis of the rotor portion 90.
  • the first case portion 10 and the second case portion 20 each have a bottomed cylindrical shape
  • the large diameter portion 12b is located on the second case portion 20 side
  • the opening on the second case portion 20 side of the large diameter portion 12b (first case portion 10) and the opening on the first case portion 10 side of the second case portion 20 respectively have flange portions 13 and 23 extending outward in the radial direction.
  • the first case portion 10 and the second case portion 20 constitute the main body case 2 by joining the outer diameter sides of the flange portions 13 and 23 overlapped with each other by welding.
  • the partition wall 30 is made of a resin material (for example, PPS (polyphenylene sulfide)).
  • the welding position W of the collar part 13 of the 1st case part 10 and the collar part 23 of the 2nd case part 20 will fix the partition wall 30 to the large diameter part 12b of the 1st case part 10 by press fit. Therefore, the outer diameter side of the partition wall 30 made of a resin material is preferably prevented from being deformed by heat acting during welding.
  • PPS polyphenylene sulfide
  • a resin part (part) in the valve device 1 is composed of PPS, for example, even when the fluid flowing into the valve chamber 5 is a high-temperature heat medium.
  • the influence on resin parts (parts) due to high temperature can be suppressed.
  • the valve device in which the design performance is not distorted by heat can be obtained.
  • the flange portion 13 of the first case portion 10 and the flange portion 23 of the second case portion 20 are joined to each other at a position separated by a predetermined distance h3 from the outer peripheral edge 31f of the partition wall 30 radially outward.
  • the heat acting during welding can be further prevented from acting on the partition wall 30, so that the outer diameter side of the partition wall 30 made of a resin material is preferably prevented from being deformed.
  • annular wall 34 is provided on the radially inner side of the outer peripheral edge 31 f so as to protrude toward the first case portion 10, and the partition wall 30 is formed on the large diameter portion 12 b of the first case portion 10.
  • the annular wall 34 is press-fitted and attached, and the annular wall 34 is configured to position the partition wall 30 with respect to the first case portion 10.
  • the present embodiment it is configured as described above, and the heat at the time of welding is hardly transmitted to the annular wall 34, so that the deformation of the annular wall 34 is prevented, and the partition wall 30 and the rotor Since it is possible to prevent the positioning of the other end side (small-diameter shaft portion 93 side) of the portion 90 from being impaired, it is possible to suitably prevent deterioration of the axial center accuracy of the rotor portion 90.
  • the partition wall 30 divides the inside of the main body case 2 into a space on the first case portion 10 side (rotor accommodating chamber) and a space on the second case portion 20 side (valve chamber 5).
  • the through holes 31c and 31d (communication holes) for communicating the space on the first case portion 10 side and the space on the second case portion 20 side are provided.
  • a fluid such as a heat medium flows into the space (valve chamber 5) in the second case portion 20, and the space on the first case portion 10 side by the fluid flowing into the valve chamber 5. If a pressure difference is generated between the space on the second case portion 20 side (valve chamber 5), the partition wall 30 may be deformed.
  • the pressure in the space on the first case portion 10 side and the pressure in the space on the second case portion 20 side (in the valve chamber 5) can be made equal, resulting in a pressure difference.
  • the deformation of the partition wall 30 is suitably prevented, and deterioration of the axial center accuracy of the rotor portion 90 can be prevented.
  • the partition wall 30 is configured to be provided with an engagement protrusion 311 (engagement portion) that engages with the flange portion 23 of the second case portion 20 to prevent the partition wall 30 from rotating.
  • a screw feed mechanism that converts the rotation of the rotor portion 90 of the stepping motor 8 into an axial movement of the actuating member 7 and a rotation restriction that restricts the rotation angle of the rotor portion 90, that is, the amount of rotation relative to the rotor portion 90.
  • a screw feed mechanism fixed to the cylindrical wall 33 of the partition wall 30 to support the operating member 7 so as not to rotate and to be movable in the axial direction, and to the operating member 7 and the rotor portion 90.
  • the support member 120 is configured to be detachable from the engaging portion 35 formed integrally with the partition wall 30.
  • the operating member 7 can be rotated relative to the rotor portion 90 in a state where the support member 120 is not attached to the engaging portion 35.
  • the support member 120 is detachable from the valve body 6 side with respect to the engaging portion 35, the first case portion 10 and the second case portion 20 are welded to each other even after the valve device 1 is assembled. If it is before joining, the support member 120 can be removed as appropriate, and the position of the actuating member 7 in the axial direction can be easily adjusted in a state where the partition wall 30 is attached to the first case portion 10.
  • a concave groove 72 a supported by the support member 120 is provided along the axial direction, and the support member 120 supports a part of the concave groove 72 a in the axial direction,
  • the operating member 7 is supported by being slid in the axial direction and attached to and detached from the engaging portion 35.
  • the support member 120 can be attached to the engagement portion 35 simply by sliding the support member 120 in the axial direction, so that the attachment of the support member 120 to the engagement portion 35 can be easily performed.
  • the support member 120 is attached to the engagement portion 35 by locking the claw portion 37a provided at the tip of the arm portion 37 of the engagement portion 35 to the engagement step portion 122a of the support member 120, the support member 120 is supported.
  • the member 120 can be easily attached to the engaging portion 35 without using a special tool or the like.
  • the support member 120 and the engaging portion 35 are configured such that relative rotation is restricted by the engaging protrusions 124 and 35a meshing with each other.
  • the operation member 7 Since the operation member 7 is supported by the support member 120 so as not to rotate, the operation member 7 also rotates when the support member 120 rotates, and the length of the biting portion between the male screw 71a and the female screw 95 changes. Thus, the axial position of the actuating member 7 changes.
  • the support member 120 when the support member 120 is attached to the engaging portion 35 after adjusting the position of the actuating member 7, the support member 120 is slightly moved with respect to the engaging portion 35 in order to align the engaging protrusions 124 and 35 a. The position of the operating member 7 deviates from the adjusted position due to this slight rotation.
  • the resolution of one engagement protrusion 124 is the resolution of the angle of the support member 120 when the support member 120 is attached to the engagement portion 35.
  • the resolution of one engagement protrusion 124 is a resolution that defines the minimum amount of movement when adjusting the position of the actuating member 7 in the axial direction. Therefore, by restricting the relative rotation by the engagement protrusions 124 and 35a, the resolution (accuracy) of the axial position adjustment of the operating member 7 is improved as well as the resolution around the axis X of the support member 120.
  • the valve device 5 includes a valve chamber 5 to which the gas inflow pipe 3 and the gas exhaust pipe 4 are connected, and a valve body 6 for opening and closing the opening 3 a of the gas inflow tube 3 in the valve chamber 5.
  • the valve drive device moves the valve body 6 forward and backward in the opening / closing direction of the opening 3a by the member 7, and the rotor portion 90 has a rotation angle at which rotation is restricted by 112d and 112e per degree of the Geneva gear 110.
  • the position of the valve body 6 when the opening 3a is closed can be accurately adjusted without providing a sensor or the like for detecting the position of the valve body 6 in the valve chamber 5.
  • valve body 6 is urged by the spring 76 in the direction to close the opening 3a, the valve body 6 is urged by the opening 3a serving as a gas inlet, and the opening 3a is urged.
  • the urging force (the force that closes the opening 3a) in a state where is closed can be made constant.
  • valve body 6 comes into contact with the attachment member 27 (see FIG. 1) of the gas inflow pipe 3, From then on, until the rotor portion 90 further rotates and reaches the position shown in FIG. 6A, the valve body 6 and the actuating member 7 compress the spring 76 (see FIG. 3), Since the valve body 6 is configured to relatively move in the axial direction of the axis X, the valve body 6 is disposed at a position to close the opening 3 a while receiving the urging force of the spring 76.
  • the engagement protrusion 311 provided on the partition wall 30 is engaged with the engagement recess 233 provided on the flange portion 23 of the second case portion 20 to prevent the partition wall 30 from rotating.
  • the engaging protrusion 311 may be protruded toward the rotor portion 90 and engaged with the engaging recess provided in the flange portion 13 of the first case portion 10 to prevent the partition wall 30 from rotating.
  • the engagement protrusions are provided on both the first case part 10 side and the second case part 20 side in the base part 31 of the partition wall 30, and these are provided on the first case part 10 and the second case part 20, respectively.
  • the partition wall 30 may be prevented from rotating by engaging with the engaging recess.
  • first case portion 10 and / or the second case portion 20 may be provided with an engagement protrusion that protrudes toward the partition wall 30 and the partition wall 30 may be provided with an engagement recess that engages with the engagement protrusion. good.
  • Valve device 1
  • Body case (sealed case) DESCRIPTION OF SYMBOLS 3
  • Gas inflow pipe 4
  • Valve chamber 6
  • Valve body 7
  • Actuating member 8 Stepping motor 10 1st case part 11
  • Bottom part 12 Peripheral wall part 12a Small diameter part 12b Large diameter part 13 Girder part 13a
  • Second case part 21
  • Bottom part 22 peripheral wall portion 22a opening 23
  • flange portion 24
  • bearing member 26
  • mounting member 26a locking portion 27 mounting member 27a distal end portion 28 through hole 28a reduced diameter portion
  • partition wall 31 base portion 31c through hole 31d through hole 31e groove 31f outer peripheral edge 32
  • insertion hole 33
  • cylindrical wall 34 annular wall 35 engaging part 35a engaging protrusion 36 opening 37 arm part 37a claw part 38 bearing part 38a bearing hole 39 support member 39a protrusion 61 engaging member 62 disk part 62a opening 62b two-sided width part 63 peripheral wall Part 63a Small diameter part 63b Large diameter part 64

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Transmission Devices (AREA)

Abstract

A valve device (1) in which a valve element (6) driven by a stepping motor (8) opens and closes an aperture (3a) in a gas inlet tube (3) in a main body case (2) composed of a first case unit (10) and a second case unit (20) that are joined together, wherein a rotor unit (90) of the stepping motor (8) is disposed inside the first case unit (10), and a bearing member (24) for rotatably supporting a shaft unit (92) at one end side of the rotor unit (90) and a partition wall (30) provided with a cylindrical wall (33) for rotatably supporting a small-diameter shaft unit (93) at the other end side of the rotor unit (90) are supported by the first case unit (10).

Description

バルブ装置Valve device
 本発明は、バルブ装置に関する。 The present invention relates to a valve device.
 特許文献1には、モータの回転を作動部材の軸方向の進退移動に変換するネジ送り機構を備えるバルブ装置が開示されている。 Patent Document 1 discloses a valve device including a screw feed mechanism that converts the rotation of a motor into an axial movement of an operating member.
特開2011-169438号公報JP 2011-169438 A
 このバルブ装置は、有底筒形状の一方のース部と他方のケース部とを備えており、これら一方のケース部と他方のケース部は、各々の開口側に設けた鍔部を重ね合わせて互いに接合することで、内部に密閉された空間を有する本体ケースを構成している。 This valve device is provided with one bottom-shaped cylindrical portion and the other case portion, and the one case portion and the other case portion overlap each other with a flange provided on each opening side. By joining together, a main body case having a sealed space is formed.
 本体ケース内の空間は、一方のケース部の鍔部と他方のケース部の鍔部の合わせ面に設けた仕切壁により2つに区画されており、この本体ケースでは、一方のケース部側に流体が流入するバルブ室が画成され、他方のケース部側にモータのロータを収容する収容室が画成されている。 The space inside the main body case is divided into two parts by a partition wall provided on the mating surface of the collar part of one case part and the collar part of the other case part. A valve chamber into which fluid flows is defined, and a housing chamber for housing the rotor of the motor is defined on the other case portion side.
 他方のケース部内に配置されたロータは、その一端が、他方のケース部で回転可能に支持されており、他端が、一方のケース部側に固定された仕切壁で回転可能に支持されている。 One end of the rotor disposed in the other case portion is rotatably supported by the other case portion, and the other end is rotatably supported by a partition wall fixed to the one case portion side. Yes.
 そのため、ロータの他端側の軸心精度は、仕切壁の一方のケース部に対する固定位置と、一方のケース部と他方のケース部との組付け位置の影響を受けるようになっており、これらの位置の僅かなズレによって、ロータ全体の軸心精度を高めることが困難となるおそれがある。 Therefore, the axial center accuracy of the other end of the rotor is influenced by the fixing position of the partition wall with respect to one case part and the assembly position of one case part and the other case part. Due to the slight deviation of the position, it may be difficult to improve the axial accuracy of the entire rotor.
 そこで、バルブ装置において、ロータの軸心精度をより向上させることが求められている。 Therefore, in the valve device, it is required to further improve the axial center accuracy of the rotor.
 本発明は、第1ケース部と第2ケース部とを互いに接合して構成した密閉ケース内で、モータにより駆動される弁体が、前記第2ケース部に設けた流体の給排口を開閉するバルブ装置において、
 前記モータのロータを前記第1ケース部内に配置すると共に、前記ロータを駆動するステータ部を前記密閉ケース外に配置して、前記ロータに設けられた永久磁石と前記第1ケース部と前記ステータ部のステータコアとの軸線X方向の位置は、とが前記ロータの回転軸に直交する径方向から見て重なる位置に構成し、
 前記ロータの一端側を回転可能に支持しながら径方向の位置を規制する第1支持部材と、前記ロータの他端側を回転可能に支持しながら径方向の位置を規制する第2支持部材を、それぞれ前記第1ケース部で支持させた構成とした。
According to the present invention, a valve body driven by a motor opens and closes a fluid supply / exhaust port provided in the second case portion in a sealed case formed by joining the first case portion and the second case portion to each other. In the valve device to
The rotor of the motor is disposed in the first case portion, and the stator portion for driving the rotor is disposed outside the hermetic case, and the permanent magnet, the first case portion, and the stator portion provided on the rotor. The position of the stator core in the direction of the axis X is configured to overlap with the stator core when viewed from the radial direction perpendicular to the rotation axis of the rotor,
A first support member that regulates a radial position while rotatably supporting one end of the rotor; and a second support member that regulates a radial position while rotatably supporting the other end of the rotor. , Each of which is supported by the first case portion.
 ロータの一端側を回転可能に支持する第1支持部材と、ロータの他端側を回転可能に支持する第2支持部材とが、共通の第1ケース部に固定されているので、ロータの軸心精度が、共通の第1ケース部を基準として決まることになる。よって、ロータの軸心精度をより向上させることができる。 The first support member that rotatably supports one end side of the rotor and the second support member that rotatably supports the other end side of the rotor are fixed to the common first case portion. The center accuracy is determined based on the common first case portion. Therefore, the axial center accuracy of the rotor can be further improved.
実施の形態にかかるバルブ装置の断面図である。It is sectional drawing of the valve apparatus concerning embodiment. バルブ装置の要部の分解斜視図である。It is a disassembled perspective view of the principal part of a valve apparatus. バルブ装置の要部の拡大断面図である。It is an expanded sectional view of the important section of a valve device. ステッピングモータのロータ部を説明する図である。It is a figure explaining the rotor part of a stepping motor. ゼネバ歯車を説明する図である。It is a figure explaining a Geneva gear. ゼネバ歯車の機能を説明する図である。It is a figure explaining the function of a Geneva gear. 支持部材を説明する図である。It is a figure explaining a supporting member. 仕切壁を説明する図である。It is a figure explaining a partition wall. 仕切壁の断面図である。It is sectional drawing of a partition wall. 仕切壁と支持部材との結合状態を説明する図である。It is a figure explaining the combined state of a partition wall and a supporting member. 仕切壁をロータ部側から見た斜視図である。It is the perspective view which looked at the partition wall from the rotor part side. 弁体を説明する図である。It is a figure explaining a valve body. 支持部材と固定部材の嵌合と、作動部材の位置決めを説明する図である。It is a figure explaining fitting of a supporting member and a fixing member, and positioning of an operation member.
 本発明の実施の形態を、ガス流量を調整するためのバルブ装置1に適用した場合を例に挙げて説明する。 The embodiment of the present invention will be described by taking as an example a case where it is applied to a valve device 1 for adjusting a gas flow rate.
 図1に示すように、バルブ装置1では、第1ケース部10と第2ケース部20とから形成される本体ケース2内の空間が、仕切壁30により区分けされており、ガス流入管3とガス排出管4とが接続されたバルブ室用ケース体である第2ケース部20側がバルブ室5、モータのロータ用ケース体である第1ケース部10が、モータのロータとしてのロータ部90の収容室となっている。 As shown in FIG. 1, in the valve device 1, a space in the main body case 2 formed by the first case portion 10 and the second case portion 20 is partitioned by a partition wall 30, and the gas inflow pipe 3 and The valve case 5 side, which is the valve chamber case body connected to the gas discharge pipe 4, is the valve chamber 5, and the first case portion 10, which is the motor rotor case body, is the rotor portion 90 of the motor rotor. It is a containment room.
 バルブ室5内では、ガス流入管3の開口3aを開閉するための弁体6が、仕切壁30を貫通した作動部材7の先端に取り付けられている。 In the valve chamber 5, a valve body 6 for opening and closing the opening 3 a of the gas inflow pipe 3 is attached to the tip of the operating member 7 penetrating the partition wall 30.
 このバルブ装置1では、ステッピングモータ8のロータ部90の回転が、後記するネジ送り機構により、ロータ部90の軸線X方向の進退移動に変換されるようになっており、作動部材7の軸方向の進退移動に伴って、作動部材7の先端部に取り付けられた弁体6が、進退移動してガス流入管3の開口3aを開閉するようになっている。 In this valve device 1, the rotation of the rotor portion 90 of the stepping motor 8 is converted into a forward / backward movement in the axis X direction of the rotor portion 90 by a screw feed mechanism described later. As the valve moves forward and backward, the valve body 6 attached to the tip of the actuating member 7 moves forward and backward to open and close the opening 3 a of the gas inflow pipe 3.
 このバルブ装置1では、熱媒体(冷媒)などの気体もしくは液体状の高圧流体がガス流入管3を介して、バルブ室5内に導かれるようになっている。 In this valve device 1, a gas or liquid high-pressure fluid such as a heat medium (refrigerant) is guided into the valve chamber 5 through the gas inflow pipe 3.
 以下、バルブ装置1の各部の構成を詳細に説明する。 Hereinafter, the configuration of each part of the valve device 1 will be described in detail.
 第2ケース部20は、円板形状の底部21と、底部21を囲む軸線X方向に延びる筒状の周壁部22と、周壁部22の底部21とは反対側の端部から径方向外側に延びる鍔部23とを、備える。 The second case portion 20 includes a disc-shaped bottom portion 21, a cylindrical peripheral wall portion 22 extending in the direction of the axis X surrounding the bottom portion 21, and a radially outer side from the end of the peripheral wall portion 22 opposite to the bottom portion 21. An extending collar 23 is provided.
 底部21の中央には、ガス流入管3の取付部材27が、底部21を厚み方向に貫通して設けられている。 At the center of the bottom portion 21, an attachment member 27 for the gas inflow pipe 3 is provided so as to penetrate the bottom portion 21 in the thickness direction.
 取付部材27は、貫通穴28を有する筒状の部材であり、バルブ室5内に位置する先端部27aは、ガス流入管の開口3aを取り囲む環状で、弁体6が当接する当接部となっている。そのため、弁体6による開口3aの閉鎖が確実に行われるようにするために、先端部27aは、ガス流入管3よりも厚肉で形成されて、弁体6から作用する押圧力で容易に変形しないようになっている。 The attachment member 27 is a cylindrical member having a through hole 28, and a distal end portion 27 a located in the valve chamber 5 is an annular shape surrounding the opening 3 a of the gas inflow pipe, and a contact portion with which the valve body 6 contacts. It has become. Therefore, in order to ensure that the opening 3 a is closed by the valve body 6, the distal end portion 27 a is formed thicker than the gas inflow pipe 3 and can be easily applied by the pressing force acting from the valve body 6. It does not deform.
 貫通穴28の途中には、ガス流入管3の先端3bが当接する縮径部28aが設けられている。 In the middle of the through hole 28, a reduced diameter portion 28a with which the tip 3b of the gas inflow tube 3 abuts is provided.
 取付部材27では、縮径部28aよりも先端部27a側の内径Daは、軸線X上を直線状に延びるガス流入管3の内径よりも小さい径で形成されている。 In the mounting member 27, the inner diameter Da closer to the distal end portion 27a than the reduced diameter portion 28a is formed with a diameter smaller than the inner diameter of the gas inflow pipe 3 extending linearly on the axis X.
 周壁部22には、軸線Xに直交する方向に開口する開口22aが設けられており、この開口22aには、軸線Xに直交する方向に延びるガス排出管4の先端4a側が挿入されている。ガス排出管4は、その先端4a側を開口22aに挿通させた状態で、周壁部22に溶接されて固定されている。 The peripheral wall portion 22 is provided with an opening 22a that opens in a direction orthogonal to the axis X, and the distal end 4a side of the gas discharge pipe 4 extending in the direction orthogonal to the axis X is inserted into the opening 22a. The gas exhaust pipe 4 is welded and fixed to the peripheral wall portion 22 in a state where the tip 4a side is inserted into the opening 22a.
 鍔部23の外周縁232は、内径側のリング状に設けた基部231よりも第1ケース部10側(上方)に位置しており、外周縁232は、全周に亘って第1ケース部10の鍔部13に当接している。 The outer peripheral edge 232 of the flange 23 is located on the first case part 10 side (upward) from the base 231 provided in a ring shape on the inner diameter side, and the outer peripheral edge 232 is the first case part over the entire periphery. 10 abutments 13.
 この外周縁232の鍔部13との当接部分は、全周に亘って溶接されており、これにより、第1ケース部10と第2ケース部20とが互い接合されて、本体ケース2を構成している。ここで、実施の形態では、外周縁232の鍔部13との当接部分は、不活性ガスを常時吹き付けながら溶接するTIG溶接により接合される。 The contact portion of the outer peripheral edge 232 with the flange portion 13 is welded over the entire periphery, whereby the first case portion 10 and the second case portion 20 are joined to each other, and the main body case 2 is attached. It is composed. Here, in embodiment, the contact part with the collar part 13 of the outer periphery 232 is joined by TIG welding which welds, always blowing inactive gas.
 第1ケース部10は、ロータ部90を収納するためのロータ用ケース体であり、ステンレス板をプレス成型することで形成され、円板形状の底部11と、底部11を囲む周壁部12と、周壁部12の底部11とは反対側の端部から径方向外側に延びる鍔部13と、を備えており、一体に構成されている。 The first case portion 10 is a rotor case body for housing the rotor portion 90, is formed by press-molding a stainless steel plate, and has a disk-shaped bottom portion 11, a peripheral wall portion 12 surrounding the bottom portion 11, And a flange 13 that extends radially outward from the end opposite to the bottom 11 of the peripheral wall 12 and is integrally formed.
 鍔部13は、第2ケース部20の鍔部23の外径と同じサイズで形成されている。 The collar part 13 is formed in the same size as the outer diameter of the collar part 23 of the second case part 20.
 ロータ用ケース体である第1ケース部10の底部11の中央部には、有底円筒形状の支持部111が、ロータ部90から離れる方向(図中上側)に突出して設けられている。第1ロータケース部の外側に向かって突出した支持部111は、ロータ部90のロータマグネットである永久磁石100の外径D1よりも小さい外径D3に形成されており、この支持部111には、ロータ部90の一端側の軸部92を回転可能に支持する第1支持部材としての軸受部材24が、例えば圧入により位置決めされて保持されている。本発明の実施の形態において、仕切壁30が第2支持部材であるが、この仕切壁30については後述する。 At the center of the bottom 11 of the first case 10 that is a rotor case body, a bottomed cylindrical support 111 is provided protruding in a direction away from the rotor 90 (upper side in the figure). The support portion 111 protruding toward the outside of the first rotor case portion is formed to have an outer diameter D3 that is smaller than the outer diameter D1 of the permanent magnet 100 that is the rotor magnet of the rotor portion 90. The bearing member 24 as a first support member that rotatably supports the shaft portion 92 on one end side of the rotor portion 90 is positioned and held, for example, by press-fitting. In the embodiment of the present invention, the partition wall 30 is the second support member, and the partition wall 30 will be described later.
 第1ケース部10の周壁部12は、ともに軸線X方向に延びる筒状の底部11側の小径部12aと、鍔部13側の大径部12bとを備えている。小径部12aは、ロータマグネットである永久磁石100と僅かな隙間を介して対向しており、大径部12bは、ロータ部90に対する回転規制機構を構成するゼネバ歯車110等を配置するために小径部12aよりも大径に構成されている。小径部12aと大径部12bは、軸線Xと直交する径方向に延びる環状部によって連結され、段差を構成する。 The peripheral wall portion 12 of the first case portion 10 includes a small-diameter portion 12a on the cylindrical bottom portion 11 side and a large-diameter portion 12b on the flange portion 13 side, both extending in the axis X direction. The small-diameter portion 12a faces the permanent magnet 100, which is a rotor magnet, with a slight gap, and the large-diameter portion 12b has a small-diameter in order to dispose the Geneva gear 110 and the like that constitute a rotation restricting mechanism for the rotor portion 90. The diameter is larger than that of the portion 12a. The small-diameter portion 12a and the large-diameter portion 12b are connected by an annular portion extending in the radial direction orthogonal to the axis X to form a step.
 小径部12aは、ロータ部90、即ち、ロータマグネットである永久磁石100の外径D1よりも僅かに大きい内径D2に形成されている。この小径部12aの軸線Xの径方向外側には、ステッピングモータ8のステータ部80が、径方向内側にはロータ部90が、それぞれ設けられており、小径部12aを挟んで第1ケース部10の外側と内側に位置するステータ部80とロータ部90とにより、ステッピングモータ8が構成されている。 The small diameter portion 12a is formed to have an inner diameter D2 slightly larger than the outer diameter D1 of the rotor portion 90, that is, the permanent magnet 100 that is a rotor magnet. A stator portion 80 of the stepping motor 8 is provided on the radially outer side of the axis X of the small diameter portion 12a, and a rotor portion 90 is provided on the radially inner side. The first case portion 10 sandwiches the small diameter portion 12a. The stepping motor 8 is configured by the stator portion 80 and the rotor portion 90 located on the outer side and the inner side of the rotor.
 ステッピングモータ8のステータ部80は、ステータコア81と、ボビン82と、駆動コイル83と、モータケース88とから構成される。 The stator portion 80 of the stepping motor 8 includes a stator core 81, a bobbin 82, a drive coil 83, and a motor case 88.
 ステータコア81の内周部81aは、図示しない極歯が、軸線X周りの周方向に所定間隔で並べられた筒形状を有している。 The inner peripheral portion 81a of the stator core 81 has a cylindrical shape in which pole teeth (not shown) are arranged at predetermined intervals in the circumferential direction around the axis X.
 ステータ部80では、一組のステータコア81が、円板部81bを互いに接触させると共に、内周部81aを互いに反対方向に向けた状態で設けられており、この状態で、一方のステータコア81の極歯と、他方のステータコア81の極歯とが、軸線X周りの周方向において交互に並ぶように配置されている。 In the stator portion 80, a set of stator cores 81 are provided with the disk portions 81b in contact with each other and the inner peripheral portions 81a facing in opposite directions. In this state, the poles of one stator core 81 are provided. The teeth and the pole teeth of the other stator core 81 are arranged alternately in the circumferential direction around the axis X.
 ステータコア81の内周部81aの外周には、駆動コイル83が巻き付けられたボビン82が外嵌して設けられている。 A bobbin 82 around which a drive coil 83 is wound is provided on the outer periphery of the inner peripheral portion 81a of the stator core 81.
 駆動コイル83の端部は、それぞれ端子84、84に巻き付けられており、この端子84、84の先端側が、コネクタ端子85が接続された回路基板86に接続している。 The ends of the drive coil 83 are wound around terminals 84 and 84, respectively, and the distal ends of the terminals 84 and 84 are connected to a circuit board 86 to which a connector terminal 85 is connected.
 ステータ部80を収容するモータカバー87は、樹脂材料(例えば、PPS(ポリフェニレンサルファイド))から構成され、鍔部13からステッピングモータ8側に延びる取付部材26の係止部26aに、係合爪87aを係止させて設けられている。 The motor cover 87 that accommodates the stator portion 80 is made of a resin material (for example, PPS (polyphenylene sulfide)), and engages with the engaging claw 87a on the engaging portion 26a of the mounting member 26 that extends from the flange portion 13 to the stepping motor 8 side. Are provided.
 ロータ部90は、一端が封止された筒状の本体部91の外周に、リング状のロータマグネットとしての永久磁石100を備えて構成され、第1ケース部10内で、軸線X周りに回転可能に設けられている。このロータ部90の本体部91と永久磁石100とは、インサート成形により一体に形成されている。 The rotor portion 90 is configured to include a permanent magnet 100 as a ring-shaped rotor magnet on the outer periphery of a cylindrical main body portion 91 whose one end is sealed, and rotates around the axis X in the first case portion 10. It is provided as possible. The main body portion 91 and the permanent magnet 100 of the rotor portion 90 are integrally formed by insert molding.
 永久磁石100を取り付けた本体部91の封止端91aの中央部には、円筒形状の軸部92が、本体部91と一体に第1ケース部10の底部11側(図中上側)に突出して設けられている。 At the center of the sealing end 91 a of the main body 91 to which the permanent magnet 100 is attached, a cylindrical shaft portion 92 protrudes integrally with the main body 91 toward the bottom 11 side (upper side in the drawing) of the first case portion 10. Is provided.
 ロータ部90の軸部92と軸線Xの軸方向で対向する底部11の中央部には、前記した支持部111が設けられており、この支持部111には、第1支持部材としての有底円筒形状の軸受部材24が圧入により固定されている。軸受部材24は、ロータ部90(軸部92)の軸線方向の位置を規制するスラスト軸受部241と、ロータ部90(軸部92)の径方向の位置を規制するラジアル軸受部242と、を備えており、この軸受部材24によってロータ部90の軸部92がスラスト方向及びラジアル方向に軸受された状態で回転可能に支持されている。 The support portion 111 is provided at the center of the bottom portion 11 that faces the shaft portion 92 of the rotor portion 90 in the axial direction of the axis X, and the support portion 111 has a bottom as a first support member. A cylindrical bearing member 24 is fixed by press-fitting. The bearing member 24 includes a thrust bearing portion 241 that restricts the axial position of the rotor portion 90 (shaft portion 92), and a radial bearing portion 242 that restricts the radial position of the rotor portion 90 (shaft portion 92). The shaft member 92 of the rotor portion 90 is rotatably supported by the bearing member 24 in a state where the shaft portion 92 is supported in the thrust direction and the radial direction.
 これにより、軸線X周りに回転するロータ部90の一端側の軸心合わせが、第1ケース部10の支持部111に固定された軸受部材24により行われるようになっている。 Thus, the shaft centering on one end side of the rotor portion 90 rotating around the axis X is performed by the bearing member 24 fixed to the support portion 111 of the first case portion 10.
 本体部91の長手方向における略中央部と、軸部92の近傍には、軸線Xの軸方向から見てリング状の突出部91b、91bが全周に亘って設けられており、この突出部91b、91bの間に永久磁石100が位置し、本体部91に取り付けられている。 Ring-shaped projecting portions 91b and 91b are provided over the entire circumference in a substantially central portion in the longitudinal direction of the main body 91 and in the vicinity of the shaft portion 92, as viewed from the axial direction of the axis X. The permanent magnet 100 is located between 91 b and 91 b and is attached to the main body 91.
 図2は、バルブ装置1の要部を分解して示す斜視図であり、図3は、バルブ装置1の要部の断面を拡大して示す図である。 FIG. 2 is an exploded perspective view showing the main part of the valve device 1, and FIG. 3 is an enlarged view showing a cross section of the main part of the valve device 1.
 図4の(a)は、ロータ部90の斜視図であり、(b)は、ロータ部90を仕切壁30側から見た平面図である。 4A is a perspective view of the rotor unit 90, and FIG. 4B is a plan view of the rotor unit 90 viewed from the partition wall 30 side.
 図2から図4を参照して、ロータ部90を説明する。図3に示すように、ロータ部90の本体部91では、軸部92とは反対側の仕切り壁30(第2支持部材)側に、突出部91bよりも径が小さい小径軸部93が設けられている。 The rotor unit 90 will be described with reference to FIGS. As shown in FIG. 3, in the main body 91 of the rotor 90, a small-diameter shaft 93 having a diameter smaller than that of the projecting portion 91b is provided on the partition wall 30 (second support member) side opposite to the shaft 92. It has been.
 小径軸部93の外周には、軸線Xの軸方向(ロータ部90の長手方向)に沿って延びるゼネバピン93a(図2、図4参照)が設けられており、ゼネバピン93aは、突出部91bの近傍から先端部93eまでの範囲に形成されている。 A Geneva pin 93a (see FIGS. 2 and 4) extending along the axial direction of the axis X (longitudinal direction of the rotor portion 90) is provided on the outer periphery of the small-diameter shaft portion 93. The Geneva pin 93a is connected to the protruding portion 91b. It is formed in the range from the vicinity to the tip portion 93e.
 図4に示すように、小径軸部93では、突出部91b側の外周に、軸方向から見て略C字形状の膨出部93bが設けられている。膨出部93bは、ゼネバピン93aと同じ径方向高さで形成されており、ゼネバピン93aとの間には、後記するゼネバ歯車110の歯部112b(図6の(b)参照)が係合するための歯溝部93d(図4の(b)参照)が設けられている。 As shown in FIG. 4, the small-diameter shaft portion 93 is provided with a substantially C-shaped bulging portion 93b on the outer periphery on the protruding portion 91b side when viewed from the axial direction. The bulging portion 93b is formed at the same radial height as the Geneva pin 93a, and a tooth portion 112b (see FIG. 6B) of the Geneva gear 110 described later is engaged with the Geneva pin 93a. A tooth gap portion 93d (see FIG. 4B) is provided.
 そして、この膨出部93bにおける歯溝部93dの近傍部分であるストッパ部93c、93cが、後記するゼネバ歯車110の度当たり112d、112eが当接してロータ部90の回転位置を規制する当接部となっている。これらのゼネバピン93a、ストッパ部93c、93cを含む膨出部93b、歯溝部93dは、後述するゼネバ歯車110とともにモータの回転規制機構を構成している。 The stoppers 93c and 93c, which are the vicinity of the tooth groove part 93d in the bulging part 93b, are brought into contact with the contact part 112d and 112e per degree of the Geneva gear 110 to be described later, thereby restricting the rotational position of the rotor part 90. It has become. The geneva pin 93a, the bulging portion 93b including the stopper portions 93c and 93c, and the tooth groove portion 93d, together with the geneva gear 110 described later, constitute a motor rotation regulating mechanism.
 図2および図3に示すように、小径軸部93の径方向外側には、ロータ部90の軸線X周りの回転角度、即ち、ロータ部90の回転量を規定するゼネバ歯車110が設けられている。 As shown in FIGS. 2 and 3, on the radially outer side of the small-diameter shaft portion 93, a Geneva gear 110 that defines the rotation angle around the axis X of the rotor portion 90, that is, the amount of rotation of the rotor portion 90 is provided. Yes.
 ゼネバ歯車110の回転軸116は、仕切壁30の軸受部38の軸受穴38aと、ブラケット部材115の軸受穴115aとで、回転可能に支持されており、ゼネバ歯車110は、ロータ部90の軸線Xに平行な軸線X’周りに回転可能に設けられている。また、ゼネバ歯車110と永久磁石100は、軸線Xの軸方向から見て重なる位置に設けられている。すなわち、ゼネバ歯車100と永久磁石100は、軸線Xと平行な軸線の軸線上に設けられている。このため第1ケース部10の大径部12bの径を小さくすることができる。 The rotation shaft 116 of the Geneva gear 110 is rotatably supported by the bearing hole 38 a of the bearing portion 38 of the partition wall 30 and the bearing hole 115 a of the bracket member 115, and the Geneva gear 110 is an axis of the rotor portion 90. It is rotatably provided around an axis X ′ parallel to X. Further, the Geneva gear 110 and the permanent magnet 100 are provided at positions overlapping each other when viewed in the axial direction of the axis X. That is, the Geneva gear 100 and the permanent magnet 100 are provided on the axis of the axis parallel to the axis X. For this reason, the diameter of the large diameter part 12b of the 1st case part 10 can be made small.
 図5の(a)は、ゼネバ歯車110を仕切壁30側から見た斜視図であり、(b)は仕切壁30側から見た平面図である。 5A is a perspective view of the Geneva gear 110 viewed from the partition wall 30 side, and FIG. 5B is a plan view of the Geneva gear 110 viewed from the partition wall 30 side.
 図5に示すように、ゼネバ歯車110は、回転軸116が挿通されるリング状の支持部111と、支持部111よりも大径の大径部112とを備える。 As shown in FIG. 5, the Geneva gear 110 includes a ring-shaped support portion 111 through which the rotation shaft 116 is inserted, and a large-diameter portion 112 having a larger diameter than the support portion 111.
 大径部112では、ゼネバ歯車110の回転中心(軸線X’)を通る直線L(図5の(b)参照)を境にして一方側の半円部に、歯溝部112aと、歯部112bと、突出部112cと、が設けられている。 In the large diameter portion 112, a tooth groove portion 112a and a tooth portion 112b are formed on a semicircular portion on one side with a straight line L (see FIG. 5B) passing through the rotation center (axis line X ′) of the Geneva gear 110 as a boundary. And a protruding portion 112c.
 歯部112bと突出部112cとは、大径部112の周方向で交互に設けられている。歯部112bは、大径部112の厚み方向(軸線X’の軸方向)における全長に亘って形成されており、突出部112cは、ロータ部90の回転を阻害しないようにするために、ロータ部90の膨出部93bとの接触を避ける厚み(高さHz)で形成されている。 The tooth part 112b and the protrusion part 112c are alternately provided in the circumferential direction of the large diameter part 112. The tooth portion 112b is formed over the entire length in the thickness direction of the large diameter portion 112 (the axial direction of the axis X ′), and the protruding portion 112c is a rotor in order not to inhibit the rotation of the rotor portion 90. The portion 90 is formed with a thickness (height Hz) that avoids contact with the bulging portion 93b.
 直線Lを境にして反対側の半円部のうち、歯溝部112aに面した部分である両側部112d、112eは、ロータ部90の回転範囲(回転角度)を規定する度当たりを構成している。 Of the semicircular parts on the opposite side with respect to the straight line L, both side parts 112d and 112e, which are parts facing the tooth groove part 112a, constitute a degree that defines the rotation range (rotation angle) of the rotor part 90. Yes.
 図6は、ゼネバ歯車110と、ロータ部90のゼネバピン93aとの噛合と、ゼネバ歯車110によるロータ部90の回転範囲(回転角度、回転量)の規制を説明する図であって、(a)は、ゼネバ歯車110の一方の度当たり112eで、ロータ部90の回転が規制された状態を、(b)は、ゼネバ歯車110の歯溝部112aと、ロータ部90のゼネバピン93aとが係合した状態を示す図であり、(c)は、ゼネバ歯車110の他方の度当たり112dで、ロータ部90の回転が規制された状態を示す図である。 FIG. 6 is a diagram for explaining the engagement between the Geneva gear 110 and the Geneva pin 93a of the rotor unit 90, and the regulation of the rotation range (rotation angle, rotation amount) of the rotor unit 90 by the Geneva gear 110. Is a state where the rotation of the rotor part 90 is restricted at 112e per degree of the Geneva gear 110, and (b) is a state where the tooth groove part 112a of the Geneva gear 110 and the Geneva pin 93a of the rotor part 90 are engaged. It is a figure which shows a state, (c) is a figure which shows the state by which rotation of the rotor part 90 was controlled by 112d per other degree of the Geneva gear 110. FIG.
 実施の形態では、ロータ部90のゼネバピン93aは、ゼネバ歯車110の歯溝部112aに挿入されて歯部112bと係合するようになっており、ロータ部90が軸線X周りに1回転する毎に、ゼネバ歯車110が、ゼネバピン93aにより所定角度ずつ軸線X’周りに回転させられるようになっており、ロータ部90は複数回の回転ができるようになっている。 In the embodiment, the Geneva pin 93a of the rotor part 90 is inserted into the tooth groove part 112a of the Geneva gear 110 and engages with the tooth part 112b, and each time the rotor part 90 makes one rotation around the axis X. The Geneva gear 110 is rotated around the axis line X ′ by a predetermined angle by the Geneva pin 93a, and the rotor part 90 can be rotated a plurality of times.
 図6の(b)に示す状態で、ロータ部90が反時計回り方向CCWに回転すると、ゼネバ歯車110の度当たり112eが、膨出部93bのストッパ部93cに当接した時点で、ロータ部90の回転が阻止される(図6の(a)参照)。 In the state shown in FIG. 6B, when the rotor portion 90 rotates counterclockwise CCW, when the degree 112e of the Geneva gear 110 abuts against the stopper portion 93c of the bulging portion 93b, the rotor portion The rotation of 90 is prevented (see FIG. 6A).
 この図6の(a)に示す角度位置では、ロータ部90は、反時計回り方向CCWへのそれ以上の回転が規制されて、時計回り方向CWにしか回転できない状態となっている。 In the angular position shown in FIG. 6 (a), the rotor portion 90 is restricted from rotating further in the counterclockwise direction CCW, and can only rotate in the clockwise direction CW.
 この状態からロータ部90が時計回り方向CWに回転すると、ロータ部90が2回転した時点で、図6の(b)に示す状態となり、この状態からさらに時計回り方向CWに1回転して、ゼネバ歯車110の度当たり112dが、膨出部93bのストッパ部93cに当接した時点で、ロータ部90のそれ以上の回転が阻止される(図6の(c)参照)。以上のように、ロータ部90の軸部92とは反対側に設けられた小径軸部93の外周に形成されたゼネバピン93aと、小径軸部93の径方向外側に配置されたゼネバ歯車と110とにより、ロータ部90に対する回転規制機構が構成されている。 When the rotor unit 90 rotates in the clockwise direction CW from this state, when the rotor unit 90 rotates twice, the state shown in FIG. 6B is obtained, and from this state, the rotation in the clockwise direction CW further makes one rotation. When 112d per degree of the Geneva gear 110 comes into contact with the stopper portion 93c of the bulging portion 93b, further rotation of the rotor portion 90 is prevented (see FIG. 6C). As described above, the Geneva pin 93a formed on the outer periphery of the small diameter shaft portion 93 provided on the opposite side of the shaft portion 92 of the rotor portion 90, and the Geneva gear 110 arranged on the radially outer side of the small diameter shaft portion 93 and 110. Thus, a rotation restricting mechanism for the rotor unit 90 is configured.
 この図6の(c)に示す角度位置では、ロータ部90は、時計回り方向CWへの回転が規制されて、反時計回り方向CCWにしか回転できない状態となる。 In the angular position shown in FIG. 6C, the rotor 90 is restricted from rotating in the clockwise direction CW and can only rotate in the counterclockwise direction CCW.
 なお、ゼネバ歯車110の突出部112cは、ロータ部90の膨出部93bとの干渉を避ける高さで形成されているので、ゼネバ歯車110とロータ部90とが干渉することなく相対回転できる。 In addition, since the protrusion 112c of the Geneva gear 110 is formed at a height that avoids interference with the bulging portion 93b of the rotor portion 90, the Geneva gear 110 and the rotor portion 90 can rotate relative to each other without interference.
 さらに、実施の形態では、ロータ部90が、図6の(b)に示す位置から反時計回り方向に1回転した時点で、弁体6が、ガス流入管3の取付部材27の先端部27a(図1参照)に当接し、そこからロータ部90がさらに1回転して、図6の(a)に示す位置に達するまでの間は、弁体6と作動部材7とが、スプリング76(図3参照)を圧縮しながら、軸線Xの軸方向で相対移動するようになっている。 Furthermore, in the embodiment, when the rotor portion 90 makes one rotation in the counterclockwise direction from the position shown in FIG. 6B, the valve body 6 becomes the distal end portion 27a of the attachment member 27 of the gas inflow pipe 3. (See FIG. 1), the valve body 6 and the actuating member 7 are moved by the spring 76 (until the rotor portion 90 further makes one rotation and reaches the position shown in FIG. 6A). The relative movement is performed in the axial direction of the axis X while compressing (see FIG. 3).
 前記したように、バルブ装置1では、ステッピングモータ8のロータ部90の回転が、ネジ送り機構により、作動部材7の軸方向の進退移動に変換されるようになっている。 As described above, in the valve device 1, the rotation of the rotor portion 90 of the stepping motor 8 is converted into the axial movement of the actuating member 7 by the screw feed mechanism.
 ネジ送り機構は、図3に示すように、仕切壁30の係合部35に回転不能に取り付けられて、作動部材7を回転不能かつ軸線X方向に進退移動可能に支持す支持部材120と、ロータ部90の内周に設けられた雌ネジ95と、作動部材7から延びる軸部材71の外周に設けられた雄ネジ71aとから構成される。なお、雌ネジ95および軸部材71は、ロータ部90の軸線X上に配置される。 As shown in FIG. 3, the screw feed mechanism is attached to the engaging portion 35 of the partition wall 30 so as not to rotate, and supports the operation member 7 so as not to rotate and to be movable back and forth in the direction of the axis X. A female screw 95 provided on the inner periphery of the rotor portion 90 and a male screw 71 a provided on the outer periphery of the shaft member 71 extending from the operating member 7 are configured. The female screw 95 and the shaft member 71 are disposed on the axis X of the rotor portion 90.
 図7の(a)は、支持部材120を仕切壁30側から見た平面図であり、(b)は、弁体6側から見た平面図であり、(c)は、側面図であり、(d)は、(a)におけるA-A断面で支持部材120を切断した斜視図である。 7A is a plan view of the support member 120 viewed from the partition wall 30 side, FIG. 7B is a plan view viewed from the valve body 6 side, and FIG. 7C is a side view. (D) is a perspective view of the support member 120 taken along the line AA in (a).
 図3に示すように、支持部材120は、仕切壁30から弁体6側に突出する係合部35に対して、軸線X方向の弁体6側から着脱自在とされている。 As shown in FIG. 3, the support member 120 is detachable from the valve body 6 side in the axis X direction with respect to the engaging portion 35 protruding from the partition wall 30 to the valve body 6 side.
 図7の(d)に示すように、支持部材120は、円筒形状の基部121と、この基部121の弁体6側の一端から径方向外側に延びるフランジ部122と、を備える。 7D, the support member 120 includes a cylindrical base 121 and a flange portion 122 that extends radially outward from one end of the base 121 on the valve body 6 side.
 基部121を長手方向に貫通する中央開口123は、作動部材7の嵌合部72の外径と整合する内径を有している。中央開口123の内周面には、径方向内側に突出する突出部121aが設けられており、この突出部121aは、軸線X周りの周方向で180°間隔で二つ設けられている。 The central opening 123 penetrating the base 121 in the longitudinal direction has an inner diameter that matches the outer diameter of the fitting portion 72 of the actuating member 7. Protrusions 121a projecting radially inward are provided on the inner peripheral surface of the central opening 123. Two projecting parts 121a are provided at intervals of 180 ° in the circumferential direction around the axis X.
 実施の形態では、支持部材120の中央開口123に、後記する作動部材7の嵌合部72が挿通されるようになっており、この際に突出部121aが嵌合部72の凹溝72aに嵌合することで、支持部材120と作動部材7との軸線X周りの相対回転が阻止されるようになっている。 In the embodiment, the fitting portion 72 of the actuating member 7 described later is inserted into the central opening 123 of the support member 120, and at this time, the protruding portion 121 a is inserted into the concave groove 72 a of the fitting portion 72. By fitting, relative rotation around the axis X between the support member 120 and the actuating member 7 is prevented.
 基部121の外周面におけるフランジ部122側には、径方向外側に突出して係合突起124が設けられており、この係合突起124は、軸線X周りの周方向で等間隔をあけて複数設けられている。 On the outer peripheral surface of the base 121, an engagement protrusion 124 is provided so as to protrude radially outward on the flange portion 122 side. A plurality of engagement protrusions 124 are provided at equal intervals in the circumferential direction around the axis X. It has been.
 この係合突起124は、支持部材120を仕切壁30の係合部35に取り付けた際に、後記する係合部35の係合突起35aに嵌合して、支持部材120を仕切壁30に対して、回り止めされた状態で取り付けるために設けられている。具体的には、隣接する係合突起124と係合突起124の間に構成される凹部に係合突起35aが嵌合する。このため、仕切壁30に対する支持部材120の取付け位置は、係合突起124(隣接する係合突起124と係合突起124の間に構成される凹部)が構成される間隔で調整可能となる。本実施例では係合突起124が周方向に12個等間隔(30度間隔)に設けられるため、仕切壁30に対する支持部材120の取付け位置を30度の倍数で変更できる。 When the support member 120 is attached to the engagement portion 35 of the partition wall 30, the engagement projection 124 is fitted into an engagement projection 35 a of the engagement portion 35 described later, and the support member 120 is attached to the partition wall 30. On the other hand, it is provided for mounting in a state of being prevented from rotating. Specifically, the engagement protrusion 35 a is fitted into a recess formed between the adjacent engagement protrusions 124. For this reason, the mounting position of the support member 120 with respect to the partition wall 30 can be adjusted by the interval at which the engagement protrusions 124 (the recesses formed between the adjacent engagement protrusions 124) are formed. In this embodiment, 12 engaging protrusions 124 are provided at equal intervals (30 degree intervals) in the circumferential direction, so that the mounting position of the support member 120 with respect to the partition wall 30 can be changed by a multiple of 30 degrees.
 図8は、仕切壁30を説明する図であって、(a)は、弁体6側から見た平面図、(b)はロータ部90側から見た平面図である。 8A and 8B are diagrams illustrating the partition wall 30, where FIG. 8A is a plan view viewed from the valve body 6 side, and FIG. 8B is a plan view viewed from the rotor unit 90 side.
 図9は、図8の(a)におけるA-A断面図であり、第1ケース部10、第2ケース部20、ロータ部90の小径軸部93を、図中仮想線で示した図である。 FIG. 9 is a cross-sectional view taken along the line AA in FIG. 8A, and shows the first case portion 10, the second case portion 20, and the small-diameter shaft portion 93 of the rotor portion 90 indicated by phantom lines in the drawing. is there.
 図10は、支持部材120と、仕切壁30の係合部35との係合状態を説明する図であり、(a)は、仕切壁30を弁体6側から見た斜視図であり、(b)は、(a)における面Aで、支持部材120と係合部35との係合部を切断した断面図である。 FIG. 10 is a diagram for explaining an engagement state between the support member 120 and the engaging portion 35 of the partition wall 30, and FIG. 10A is a perspective view of the partition wall 30 as viewed from the valve body 6 side. (B) is sectional drawing which cut | disconnected the engaging part of the supporting member 120 and the engaging part 35 in the surface A in (a).
 仕切壁30は、円盤形状の板部材からなる基部31を有しており、この基部31の中央部には、作動部材7の軸部材71を挿通させる挿通穴32が、厚み方向に貫通して設けられている。 The partition wall 30 has a base portion 31 made of a disk-shaped plate member, and an insertion hole 32 through which the shaft member 71 of the operating member 7 is inserted penetrates in the thickness direction in the center portion of the base portion 31. Is provided.
 図9に示すように、仕切壁30のロータ部90側の面31bには、挿通穴32を囲む円筒壁33がロータ部90側に突出するように設けられており、この円筒壁33は、軸線Xの軸方向に所定長さL1で形成されている。 As shown in FIG. 9, a cylindrical wall 33 surrounding the insertion hole 32 is provided on the surface 31b of the partition wall 30 on the rotor part 90 side so as to protrude toward the rotor part 90. It is formed with a predetermined length L1 in the axial direction of the axis X.
 実施の形態では、仕切壁30の挿通穴32に挿通された軸部材71が、この円筒壁33の挿通穴32で、軸線X方向に進退移動可能に支持されるようになっており、進退移動する際の軸部材71の軸心触れが、円筒壁33の挿通穴32により抑えられるようになっている。 In the embodiment, the shaft member 71 inserted through the insertion hole 32 of the partition wall 30 is supported by the insertion hole 32 of the cylindrical wall 33 so as to be movable back and forth in the axis X direction. The shaft member 71 is prevented from being touched by the insertion hole 32 of the cylindrical wall 33 when the shaft member 71 is touched.
 また、円筒壁33の先端33a側は、ロータ部90の本体部91の嵌合穴91cに内挿されており、ロータ部90の他端側である小径軸部93側の嵌合穴91cが、この円筒壁33の外周面で回転可能に支持されている。これにより、軸線X周りに回転するロータ部90の他端側の軸心合わせが、仕切壁30と一体に形成された円筒壁33により行われるようになっている。 Further, the end 33 a side of the cylindrical wall 33 is inserted into the fitting hole 91 c of the main body portion 91 of the rotor portion 90, and the fitting hole 91 c on the small diameter shaft portion 93 side that is the other end side of the rotor portion 90 is formed. The cylindrical wall 33 is rotatably supported on the outer peripheral surface. Thereby, the axial center alignment of the other end side of the rotor portion 90 rotating around the axis X is performed by the cylindrical wall 33 formed integrally with the partition wall 30.
 すなわち、ロータ部90の本体部91の仕切壁30側の端部には、本体部91の先端部93eに形成された嵌合穴91cが開口しており、仕切壁30には、軸部材71を軸方向に進退移動可能に挿通させる挿通穴32と、この挿通穴32を囲む円筒壁32が設けられている。そして、本体部91は、小径軸部93の先端部93eに形成した嵌合穴91cの内周を、円筒壁32の外周に外挿した状態で、摺動回転可能に支持されており、これら嵌合穴91cの内周面と円筒壁32の外周面とにより、本体部91の先端部93e側のラジアル軸受が構成されている。 That is, a fitting hole 91 c formed in the distal end portion 93 e of the main body 91 is opened at the end of the main body 91 of the rotor 90 on the side of the partition wall 30, and the shaft member 71 is formed in the partition wall 30. Are inserted in the axial direction so as to be movable forward and backward, and a cylindrical wall 32 surrounding the insertion hole 32 is provided. And the main-body part 91 is supported so that sliding rotation is possible in the state which inserted the inner periphery of the fitting hole 91c formed in the front-end | tip part 93e of the small diameter shaft part 93 in the outer periphery of the cylindrical wall 32, and these. The inner peripheral surface of the fitting hole 91c and the outer peripheral surface of the cylindrical wall 32 constitute a radial bearing on the distal end portion 93e side of the main body 91.
 仕切壁30のロータ部90側の面31bには、円筒壁33を所定間隔で囲む円筒壁33と同心に形成された環状壁34が設けられている。すなわち、環状壁34は、円筒壁33と所定間隔で対向して配置されている。また、環状壁34は、前記したゼネバ歯車110の径方向外側を、軸線Xの軸方向に所定長さL2で形成されている。 An annular wall 34 formed concentrically with the cylindrical wall 33 surrounding the cylindrical wall 33 at a predetermined interval is provided on the surface 31b of the partition wall 30 on the rotor portion 90 side. That is, the annular wall 34 is disposed to face the cylindrical wall 33 at a predetermined interval. The annular wall 34 is formed with a predetermined length L2 in the axial direction of the axis X on the radially outer side of the Geneva gear 110 described above.
 環状に配置された環状壁34の外径D4は、第1ケース部10の周壁部12における大径部12bの内径と整合しており、仕切壁30は、環状壁34の外周面を大径部12bに、例えば圧入により当接させることにより第1ケース部10に位置決めされるようになっている。従って、ロータ部90の他端側である本体部91の先端部93eは、円筒壁33、環状壁34を介して、第1ケース部10に位置決めされている。本実施例では、環状壁34を全周に渡り形成しているが、複数の環状壁34を環状に配置しても良い。より好ましくは、3つ以上の環状壁を配置すれば軸線Xに直交する径方向の位置決め精度が高い。 The outer diameter D4 of the annular wall 34 arranged in an annular shape matches the inner diameter of the large diameter portion 12b in the peripheral wall portion 12 of the first case portion 10, and the partition wall 30 has a large diameter on the outer peripheral surface of the annular wall 34. The first case portion 10 is positioned by being brought into contact with the portion 12b by, for example, press fitting. Accordingly, the distal end portion 93 e of the main body 91 that is the other end of the rotor 90 is positioned on the first case portion 10 via the cylindrical wall 33 and the annular wall 34. In this embodiment, the annular wall 34 is formed over the entire circumference, but a plurality of annular walls 34 may be arranged in an annular shape. More preferably, if three or more annular walls are arranged, the positioning accuracy in the radial direction perpendicular to the axis X is high.
 図8の(b)に示すように、円筒壁33と環状壁34との間の部分には、軸線Xを通る直線Nに沿って溝31eが形成されており、この溝31eは、軸線X周りの周方向で、120°間隔で三つ設けられている。 As shown in FIG. 8B, a groove 31e is formed along a straight line N passing through the axis X in the portion between the cylindrical wall 33 and the annular wall 34. Three are provided at intervals of 120 ° in the circumferential direction.
 実施の形態では、図3に示すように、仕切壁30とロータ部90の先端部93eとの間に、ロータ部90の軸方向におけるガタツキを防止するための板バネ140が配置されており、この板バネ140の脚部141(図11参照)が、この溝31e内に配置されて、仕切壁30に接触するようになっている。 In the embodiment, as shown in FIG. 3, a leaf spring 140 for preventing rattling in the axial direction of the rotor portion 90 is disposed between the partition wall 30 and the tip end portion 93 e of the rotor portion 90. A leg portion 141 (see FIG. 11) of the leaf spring 140 is disposed in the groove 31e and comes into contact with the partition wall 30.
 溝31eの内径側の端部には、仕切壁30を厚み方向に貫通する貫通穴31c設けられており、第1ケース部10内の空間と第2ケース部20内の空間とが、この貫通穴31cを介して互いに連通している。 A through hole 31c that penetrates the partition wall 30 in the thickness direction is provided at the inner diameter side end of the groove 31e, and the space in the first case portion 10 and the space in the second case portion 20 pass through this through hole 31c. The holes 31c communicate with each other.
 さらに、円筒壁33と環状壁34との間の部分には、ロータ部90側に突出して板状の支持部材39、39が設けられている。支持部材39、39は、仕切壁30に設けた軸受穴38aの両側に設けられており、前記したブラケット部材115(図2参照)を、仕切壁30に取り付けるために設けられている。 Furthermore, plate- like support members 39, 39 are provided at a portion between the cylindrical wall 33 and the annular wall 34 so as to protrude toward the rotor portion 90. The support members 39 and 39 are provided on both sides of a bearing hole 38 a provided in the partition wall 30, and are provided to attach the bracket member 115 (see FIG. 2) to the partition wall 30.
 支持部材39、39は、側面視において略矩形形状を有しており、軸受穴38aとは反対側の側面に突起39aが設けられている。ブラケット部材115は、軸線X’の軸方向に伸びる腕部115bに設けた開口部115cを、この突起39aに係合させて、支持部材39、39に取り付けられるようになっている。 The support members 39 and 39 have a substantially rectangular shape in a side view, and a protrusion 39a is provided on the side surface opposite to the bearing hole 38a. The bracket member 115 is attached to the support members 39, 39 by engaging an opening 115c provided in an arm portion 115b extending in the axial direction of the axis X 'with the protrusion 39a.
 また、支持部材39、93の仕切壁30側の基部には、仕切壁30を厚み方向に貫通する貫通穴31c、31dが設けられており、第1ケース部10内の空間と第2ケース部20内の空間とが、この貫通穴31c、31dを介して互いに連通している。 In addition, through holes 31c and 31d penetrating the partition wall 30 in the thickness direction are provided in the base portion of the support members 39 and 93 on the partition wall 30 side, and the space in the first case portion 10 and the second case portion are provided. The space in 20 communicates with each other through the through holes 31c and 31d.
 図9に示すように、仕切壁30の弁体6側の面31aにおける、支持部材39とは反対側の位置には、ゼネバ歯車110の回転軸116を支持するための軸受部38が、弁体6側(図中左側)に突出して設けられている。 As shown in FIG. 9, a bearing portion 38 for supporting the rotating shaft 116 of the Geneva gear 110 is provided on the valve 31 side surface 31 a of the partition wall 30 on the side opposite to the support member 39. It protrudes on the body 6 side (left side in the figure).
 この軸受部38の径方向外側には、弁体6側(図中左側)に突出して、円柱形状の係合突起311が設けられており、この係合突起311は、軸線X周りの周方向で180°間隔で2つ設けられている(図8の(a)参照)。 A cylindrical engagement protrusion 311 is provided on the outer side in the radial direction of the bearing portion 38 so as to protrude toward the valve body 6 (left side in the figure). The engagement protrusion 311 is formed in the circumferential direction around the axis X. Are provided at intervals of 180 ° (see FIG. 8A).
 この係合突起311は、第1ケース部10と第2ケース部20との間に仕切壁30を挟み込んで、本体ケース2を構成した際に、第2ケース部20の係合凹部233に嵌入するようになっており、仕切壁30が軸線X周りに回転することを防止するために設けられている。 The engaging protrusion 311 is inserted into the engaging recess 233 of the second case portion 20 when the main body case 2 is configured with the partition wall 30 sandwiched between the first case portion 10 and the second case portion 20. The partition wall 30 is provided to prevent the partition wall 30 from rotating about the axis X.
 仕切壁30の外周縁31fの径方向外側には、第1ケース部10と第2ケース部20との間に空間(隙間)Sが形成されており、第1ケース部10の鍔部13の外周縁13aと第2ケース部20の外周縁232とは、仕切壁30の外周縁31fから径方向外側に所定距離h3離間した位置で互いに溶接により接合され、第1ケース部10と第2ケース部20との間に仕切壁30を挟み込んだ状態で本体ケース2が構成される。即ち、仕切壁30は第1ケース部10と第2ケース部20とにより保持された状態となる。 A space (gap) S is formed between the first case portion 10 and the second case portion 20 on the radially outer side of the outer peripheral edge 31 f of the partition wall 30, and the flange portion 13 of the first case portion 10 is formed. The outer peripheral edge 13a and the outer peripheral edge 232 of the second case portion 20 are joined to each other by welding at a position separated from the outer peripheral edge 31f of the partition wall 30 by a predetermined distance h3 radially outward. The main body case 2 is configured in a state where the partition wall 30 is sandwiched between the portion 20 and the body 20. That is, the partition wall 30 is held by the first case portion 10 and the second case portion 20.
 実施の形態では、仕切壁30が樹脂材料例えば、PPS(ポリフェニレンサルファイド))で構成されている。そのため、第1ケース部10(外周縁13a)と第2ケース部20(外周縁232)の溶接位置(図9において符号W参照)を、仕切壁30の外周縁31fから径方向外側に所定距離h3離れた位置に設定することで、溶接熱で仕切壁30が変形することが好適に防止されるようになっている。 In the embodiment, the partition wall 30 is made of a resin material such as PPS (polyphenylene sulfide). Therefore, the welding position (see symbol W in FIG. 9) between the first case portion 10 (outer peripheral edge 13a) and the second case portion 20 (outer peripheral edge 232) is a predetermined distance from the outer peripheral edge 31f of the partition wall 30 to the radially outer side. By setting at a position away from h3, the partition wall 30 is preferably prevented from being deformed by welding heat.
 仕切壁30は、環状壁34を第1ケース部10の周壁部12である大径部12bに圧入して取り付けられており、この環状壁34の外周面により、仕切壁30の第1ケース部10に対する径方向の位置決めが行われるようになっている。 The partition wall 30 is attached by press-fitting the annular wall 34 into the large-diameter portion 12 b that is the peripheral wall portion 12 of the first case portion 10, and the first case portion of the partition wall 30 is formed by the outer peripheral surface of the annular wall 34. Positioning in the radial direction with respect to 10 is performed.
 そのため、溶接熱がこの環状壁34まで伝わって環状壁34が変形すると、仕切壁30の位置決めが損なわれることになるため、溶接位置Wを仕切壁30の径方向外側に位置させることで、かかる変形の問題が生じないようにされている。 Therefore, if the welding heat is transmitted to the annular wall 34 and the annular wall 34 is deformed, the positioning of the partition wall 30 is impaired. Therefore, the welding position W is positioned on the radially outer side of the partition wall 30. There is no problem of deformation.
 また、仕切壁30の径方向外側では、第1ケース部10と第2ケース部20との間に空間Sが確保されており、仕切壁30が溶接位置Wに隣接しないようにされている。この場合には、空間Sを形成する為に、第2ケース部20の基部231と外周縁232との間に段差が形成されるため溶接位置Wから外周縁232と基部231を経由して仕切り壁30の外周縁31fに伝わる熱抵抗が大きくなる。軸線Xの方向に段差を設けることにより、第2ケース部の軸線Xの径方向の大きさを小型化することができる。言い換えれば、空間Sを仕切り壁30の外周縁31fより外周側に形成することにより、溶接熱の仕切り壁30側への伝達を抑制できる。また、空間Sが断熱層として機能して、溶接熱の仕切壁30側への伝達を抑えることができるので、仕切壁30(環状壁34)の変形を好適に防止できるとともに、本体ケース2の軸線Xに直交する径方向を小型化できる。 Further, on the outer side in the radial direction of the partition wall 30, a space S is secured between the first case portion 10 and the second case portion 20 so that the partition wall 30 is not adjacent to the welding position W. In this case, in order to form the space S, a step is formed between the base portion 231 and the outer peripheral edge 232 of the second case portion 20, so that the partition is made from the welding position W via the outer peripheral edge 232 and the base portion 231. The thermal resistance transmitted to the outer peripheral edge 31f of the wall 30 is increased. By providing a step in the direction of the axis X, the size of the second case portion in the radial direction of the axis X can be reduced. In other words, by forming the space S on the outer peripheral side from the outer peripheral edge 31 f of the partition wall 30, it is possible to suppress transmission of welding heat to the partition wall 30 side. In addition, since the space S functions as a heat insulating layer and the transmission of welding heat to the partition wall 30 side can be suppressed, deformation of the partition wall 30 (annular wall 34) can be suitably prevented, and The radial direction perpendicular to the axis X can be reduced in size.
 仕切壁30の弁体6側の面31aには、挿通穴32を囲む係合部35が設けられている。この係合部35の開口36は、基部31から離れる方向(図9において左方向)に2段階に拡径しており、基部31側に小径部361、弁体6側(図中左側)に大径部362が位置している。 An engaging portion 35 surrounding the insertion hole 32 is provided on the surface 31a of the partition wall 30 on the valve body 6 side. The opening 36 of the engaging portion 35 is enlarged in two steps in a direction away from the base portion 31 (leftward in FIG. 9), and the small diameter portion 361 on the base portion 31 side and the valve body 6 side (left side in the drawing). The large diameter part 362 is located.
 小径部361の内径D5は、前記した支持部材120の基部121(図7参照)の外径と整合しており、支持部材120を仕切壁30に組み付けた際に、支持部材120の基部121がこの小径部361に内嵌して取り付けられるようになっている。 The inner diameter D5 of the small diameter portion 361 is aligned with the outer diameter of the base 121 (see FIG. 7) of the support member 120 described above, and when the support member 120 is assembled to the partition wall 30, the base 121 of the support member 120 is The small diameter portion 361 is fitted inside.
 図8の(a)に示すように、大径部362の内周面には、径方向内側に突出する係合突起35aが、軸線X周りの周方向で間隔をあけて複数設けられており、この係合突起35aは、軸線Xの軸方向で大径部362の全長に亘って延びている。なお、基部121の係合突起35aの数は係合突起124の数より少ない。このため、仕切壁30の係合部35に、係合突起35aと嵌合部72を軸線Xに直交する径方向から見て重ならない位置に配置することができる。 As shown in FIG. 8A, a plurality of engagement protrusions 35a protruding radially inward are provided on the inner peripheral surface of the large diameter portion 362 at intervals in the circumferential direction around the axis X. The engaging projection 35a extends over the entire length of the large diameter portion 362 in the axial direction of the axis X. Note that the number of the engagement protrusions 35 a of the base 121 is smaller than the number of the engagement protrusions 124. For this reason, the engagement protrusion 35a and the fitting portion 72 can be arranged on the engagement portion 35 of the partition wall 30 at a position that does not overlap when viewed from the radial direction orthogonal to the axis X.
 図8の(a)に示すように、係合部35には、軸線X周りの周方向において120度間隔で、切欠き35bが設けられている。 As shown in FIG. 8A, the engaging portion 35 is provided with notches 35b at intervals of 120 degrees in the circumferential direction around the axis X.
 軸方向から見て、切欠き35bの底部には、貫通穴31cが露出しており、この貫通穴31cの径方向外側には、係合部35と同方向に突出して腕部37が設けられている。 When viewed from the axial direction, a through hole 31c is exposed at the bottom of the notch 35b, and an arm portion 37 is provided on the radially outer side of the through hole 31c so as to protrude in the same direction as the engaging portion 35. ing.
 図9に示すように、腕部37は、軸線Xの軸方向に沿って延びており、この腕部37の基部31からの高さh1は、係合部35の基部31からの高さh2よりも高くなっており、腕部37の先端には、径方向内側に突出する爪部37aが設けられている。 As shown in FIG. 9, the arm portion 37 extends along the axial direction of the axis X, and the height h1 of the arm portion 37 from the base portion 31 is the height h2 of the engaging portion 35 from the base portion 31. A claw portion 37 a that protrudes radially inward is provided at the tip of the arm portion 37.
 この爪部37aは、支持部材120を仕切壁30(係合部35)に組み付けた際に、支持部材の係合段部122a(図3参照)に係合して、支持部材120の仕切壁30からの脱落を阻止するようになっている。 When the support member 120 is assembled to the partition wall 30 (engagement portion 35), the claw portion 37a engages with the engagement step portion 122a (see FIG. 3) of the support member, and the partition wall of the support member 120 The dropout from 30 is prevented.
 これにより、支持部材120は、その基部121を係合部35の小径部361に嵌合させ、当接面122bを係合部35の先端35bに当接させた状態で保持されるようになっている。 As a result, the support member 120 is held in a state in which the base portion 121 is fitted to the small diameter portion 361 of the engaging portion 35 and the contact surface 122b is in contact with the distal end 35b of the engaging portion 35. ing.
 さらに、図10の(b)に示すように、この状態において支持部材120は、周方向で隣接する2つの係合突起124、124を、係合部35の周方向で隣接する係合部35、35の間に位置させており、支持部材120と係合部35(仕切壁30)とが互いに回り止めされた状態で連結されている。 Furthermore, as shown in FIG. 10B, in this state, the support member 120 includes two engaging protrusions 124, 124 that are adjacent in the circumferential direction, and the engaging portions 35 that are adjacent in the circumferential direction of the engaging portion 35. , 35, and the support member 120 and the engaging portion 35 (partition wall 30) are connected in a state where they are prevented from rotating.
 図2および図3に示すように、作動部材7では、支持部材120に嵌合する嵌合部72と、弁体6への連結部73と、スプリング支持部74とが、同一の樹脂材料(例えば、PPS(ポリフェニレンサルファイド))で構成され、これらとSUS材からなる軸部材71とが、インサート成形により一体に形成されている。 As shown in FIG. 2 and FIG. 3, in the operating member 7, the fitting portion 72 that is fitted to the support member 120, the connecting portion 73 to the valve body 6, and the spring support portion 74 are made of the same resin material ( For example, it is made of PPS (polyphenylene sulfide), and the shaft member 71 made of SUS material is integrally formed by insert molding.
 軸部材71の先端側の外周には、ロータ部90の雌ネジ95に係合する雄ネジ71aが、設けられている。 A male screw 71 a that engages with the female screw 95 of the rotor portion 90 is provided on the outer periphery on the tip side of the shaft member 71.
 図3に示すように、軸部材71の基端側は、嵌合部72を貫通してスプリング支持部74まで及んで設けられており、図2に示すように、円筒状の嵌合部72の外周には、軸方向に沿って延びる凹溝72aが、長手方向の全長に亘って設けられている。この凹溝72aは、軸線Xを挟んで対称となる位置に設けられており、軸線X周りの周方向に120°間隔で設けられている。 As shown in FIG. 3, the base end side of the shaft member 71 extends through the fitting portion 72 to the spring support portion 74. As shown in FIG. 2, the cylindrical fitting portion 72 is provided. On the outer periphery, a groove 72a extending along the axial direction is provided over the entire length in the longitudinal direction. The concave grooves 72a are provided at symmetrical positions with respect to the axis X, and are provided at intervals of 120 ° in the circumferential direction around the axis X.
 図3に示すように、スプリング支持部74は、嵌合部72よりも大径の円柱部74aと、円柱部74aの嵌合部72側の端部に設けられたフランジ部74bと、を備える。 As shown in FIG. 3, the spring support portion 74 includes a columnar portion 74a having a diameter larger than that of the fitting portion 72, and a flange portion 74b provided at an end of the columnar portion 74a on the fitting portion 72 side. .
 円柱部74aの外径は、スプリング76の内径と略同じであり、この円柱部74aには、スプリング76の一端側が外挿されて取り付けられるようになっている。フランジ部74bの外径は、スプリング76の外径よりも僅かに大きい径を有しており、スプリング76の一端が当接するようになっている。 The outer diameter of the cylindrical portion 74a is substantially the same as the inner diameter of the spring 76, and one end side of the spring 76 is attached to the cylindrical portion 74a by being extrapolated. The outer diameter of the flange portion 74 b is slightly larger than the outer diameter of the spring 76, and one end of the spring 76 comes into contact therewith.
 スプリング支持部74に隣接する連結部73は、基本形状が円柱形状であり、この連結部73の先端の外周に、径方向外側に突出する突起73aが、軸線Xを挟んで反対方向に突出して設けられている。 The connecting portion 73 adjacent to the spring support portion 74 has a cylindrical shape as a basic shape, and a protrusion 73 a protruding radially outward protrudes in the opposite direction across the axis X on the outer periphery of the tip of the connecting portion 73. Is provided.
 連結部73の突起73aが設けられた先端側は、弁体6の開口62aに挿入されて、弁体6と連結部73とが連結されるようになっている。 The distal end side of the connecting portion 73 provided with the protrusion 73a is inserted into the opening 62a of the valve body 6 so that the valve body 6 and the connecting portion 73 are connected.
 図3に示すように、弁体6は、樹脂材料(例えば、PPS(ポリフェニレンサルファイド))からなる係合部材61と、係合部材61に外嵌して取り付けられた当接部材65と、を備える。 As shown in FIG. 3, the valve body 6 includes an engaging member 61 made of a resin material (for example, PPS (polyphenylene sulfide)) and an abutting member 65 that is externally fitted to the engaging member 61. Prepare.
 図12の(a)は、弁体6を作動部材7側から見た平面図、(b)は、(a)におけるA-A断面図、(c)は、(a)におけるB-B断面図である。 12A is a plan view of the valve body 6 as viewed from the operating member 7 side, FIG. 12B is a cross-sectional view taken along the line AA in FIG. 12A, and FIG. 12C is a cross-sectional view taken along the line BB in FIG. FIG.
 図12に示すように、係合部材61は、円板部62と、円板部62の外周から作動部材7とは反対方向(図12の(c)において左方向)に延びる周壁部63と、フランジ部64と、を備える。 As shown in FIG. 12, the engaging member 61 includes a disc portion 62, and a peripheral wall portion 63 that extends from the outer periphery of the disc portion 62 in the direction opposite to the operation member 7 (leftward in FIG. 12C). The flange part 64 is provided.
 周壁部63は、小径部63aと大径部63bとを備えており、円板部62から離れるにつれて内径が広がるように階段状に形成されている。 The peripheral wall portion 63 includes a small-diameter portion 63a and a large-diameter portion 63b, and is formed in a step shape so that the inner diameter increases as the distance from the disc portion 62 increases.
 円板部62には、円板部62を厚み方向に貫通する開口62aが設けられており、開口62aでは、軸線Xを挟んで互いに平行な2面である二面幅部62b、62bが形成されている。 The disk part 62 is provided with an opening 62a penetrating the disk part 62 in the thickness direction. In the opening 62a, two- sided width parts 62b and 62b that are parallel to each other across the axis X are formed. Has been.
 この開口62aは、連結部73の突起73aが設けられた先端部を挿通可能な形状および大きさで形成されている。 The opening 62a is formed in a shape and size that can be inserted through the tip of the connecting portion 73 provided with the protrusion 73a.
 また、連結部73の先端部の最大径Laは、周壁部63の小径部63aの内径Daよりも僅かに小さく設定されている。 Further, the maximum diameter La of the distal end portion of the connecting portion 73 is set slightly smaller than the inner diameter Da of the small diameter portion 63a of the peripheral wall portion 63.
 そのため、弁体6の開口62aに連結部73の先端部を挿入したのち、弁体6を90度回転させることで、突起73aが円板部62に係止させた状態となり(図12の(c)参照)、弁体6の連結部73からの脱落が防止されるようになっている。 Therefore, after inserting the distal end portion of the connecting portion 73 into the opening 62a of the valve body 6, the protrusion 73a is locked to the disc portion 62 by rotating the valve body 6 by 90 degrees ((( c)), the drop-off of the valve body 6 from the connecting portion 73 is prevented.
 この状態において、弁体6と、作動部材7の連結部73とは、軸線Xの軸方向で相対移動可能になっている。 In this state, the valve body 6 and the connecting portion 73 of the operating member 7 are relatively movable in the axial direction of the axis X.
 周壁部63の小径部63aの外径は、スプリング76の内径と略同じであり、スプリング76の他端側が外挿されて取り付けられるようになっている。大径部63bの外径は、スプリング76の外径よりも僅かに大きい径を有しており、スプリング76の他端が当接するようになっている。 The outer diameter of the small-diameter portion 63a of the peripheral wall portion 63 is substantially the same as the inner diameter of the spring 76, and the other end side of the spring 76 is extrapolated and attached. The outer diameter of the large-diameter portion 63b is slightly larger than the outer diameter of the spring 76, and the other end of the spring 76 comes into contact therewith.
 周壁部63の円板部62とは反対側の端部の外周には、フランジ部64が全周に亘って設けられている。フランジ部64は、径方向外側に延出している。 A flange portion 64 is provided over the entire circumference on the outer periphery of the end portion of the peripheral wall portion 63 opposite to the disc portion 62. The flange portion 64 extends outward in the radial direction.
 フランジ部64には、NBRなどのゴム材料からなる当接部材65(図3参照)が外嵌して取り付けられるようになっており、図1に示すように、弁体6がガス流入管3側に移動すると、ガス流入管3の開口3aが当接部材65により閉鎖されるようになっている。 An abutting member 65 (see FIG. 3) made of a rubber material such as NBR is externally fitted to the flange portion 64, and the valve body 6 is attached to the gas inflow pipe 3 as shown in FIG. When moved to the side, the opening 3 a of the gas inflow pipe 3 is closed by the contact member 65.
 そのため、当接部材65(フランジ部64)の外径は、ガス流入管3の開口径よりも大きくなっている。 Therefore, the outer diameter of the contact member 65 (flange portion 64) is larger than the opening diameter of the gas inflow pipe 3.
 ここで、図1に示すように、バルブ装置1では、弁体6と、作動部材7と、ロータ部90と、ガス流入管3とが、同軸上に配置されており、ガス流入管3の開口3aは、開口面に直交する方向(軸線Xの軸方向)に進退移動する弁体6により、開閉されるようになっている。また、実施の形態では、ステッピングモータ8により作動部材7および弁体6が軸方向にステップ移動するので、段階的に変化する弁体6の開口3aとの位置関係に応じて、ガス流入管3からバルブ室5内に流入してガス排出管4から排出されるガスの量が調整される。 Here, as shown in FIG. 1, in the valve device 1, the valve body 6, the operation member 7, the rotor portion 90, and the gas inflow pipe 3 are arranged on the same axis. The opening 3a is opened and closed by a valve body 6 that moves back and forth in a direction orthogonal to the opening surface (the axial direction of the axis X). In the embodiment, since the operation member 7 and the valve body 6 are moved stepwise in the axial direction by the stepping motor 8, the gas inflow pipe 3 is changed according to the positional relationship with the opening 3 a of the valve body 6 that changes stepwise. The amount of gas flowing into the valve chamber 5 and discharged from the gas discharge pipe 4 is adjusted.
 バルブ装置1の組み付け時における弁体6(作動部材7)の位置決めを説明する。 The positioning of the valve body 6 (actuating member 7) when the valve device 1 is assembled will be described.
 図13は、バルブ装置1の組み付け時における作動部材7(弁体6)の位置決めを説明する図であって、(a)は、支持部材120の係合部35(仕切壁30)への着脱と弁体6の位置調整を説明する図であり、(b)は、位置調整時におけるゼネバ歯車110によるロータ部90の回転規制を説明する図である。 FIG. 13 is a view for explaining the positioning of the actuating member 7 (valve element 6) when the valve device 1 is assembled. FIG. 13A is a diagram showing how the support member 120 is attached to and detached from the engaging portion 35 (partition wall 30). FIG. 6B is a view for explaining the position adjustment of the valve body 6, and FIG. 7B is a view for explaining the rotation restriction of the rotor portion 90 by the Geneva gear 110 during the position adjustment.
 実施の形態では、支持部材120の突出部121aと作動部材7の嵌合部72の凹溝72aとを嵌合させて、支持部材120と作動部材7とが組み付けられており(図10の(b)参照)、支持部材120は作動部材7に対して回り止め嵌合している。 In the embodiment, the support member 120 and the actuating member 7 are assembled by fitting the protruding portion 121a of the support member 120 and the concave groove 72a of the fitting portion 72 of the actuating member 7 ((( b)), the support member 120 is fitted to the actuating member 7 in a non-rotating manner.
 この状態において支持部材120は、突出部121aに沿って軸線Xの軸方向に移動可能となっており、仕切壁30の係合部35に対して、軸線Xの軸方向から着脱自在とされている。 In this state, the support member 120 is movable in the axial direction of the axis X along the protruding portion 121a, and is detachable from the axial direction of the axis X with respect to the engaging portion 35 of the partition wall 30. Yes.
 そのため、バルブ装置1におけるネジ送り機構の部分の組み付け時には、始めに、ロータ部90を回転させて、ゼネバ歯車110の度当たり112eが、ストッパ部93cに当接する角度位置に配置する(図13の(b)参照)。 Therefore, at the time of assembling the screw feed mechanism portion in the valve device 1, first, the rotor portion 90 is rotated and the 112e of the Geneva gear 110 is arranged at an angular position where it abuts against the stopper portion 93c (FIG. 13). (See (b)).
 そして、ロータ部90の回転を阻止した状態で、図中矢印S1で示す軸線X周りに支持部材120を回転させて、作動部材7とロータ部90とを相対回転させることで、作動部材7の雄ネジ71aとロータ部90の雌ネジ95との噛み合い部分(図3参照)の長さを変える。これにより、支持部材120の回転方向に応じて、作動部材7と弁体6とが矢印S2で示す方向に進退移動するので、弁体6を、所定の初期位置に位置決めできる。 And in the state which blocked | prevented rotation of the rotor part 90, the supporting member 120 is rotated around the axis line X shown by arrow S1 in the figure, and the operating member 7 and the rotor part 90 are rotated relative to each other, thereby The length of the meshing portion (see FIG. 3) between the male screw 71a and the female screw 95 of the rotor portion 90 is changed. Thereby, since the operation member 7 and the valve body 6 move forward and backward in the direction shown by arrow S2 according to the rotation direction of the support member 120, the valve body 6 can be positioned at a predetermined initial position.
 そして、初期位置に配置したのち、支持部材120(作動部材7)の軸線X周りの角度位置を保持した状態で、支持部材120を係合部35側にスライドさせて、係合部35から延びる腕部37の爪部37aを、支持部材120の係合段部122aに係止させる。 And after arrange | positioning in the initial position, the support member 120 is slid to the engaging part 35 side in the state which hold | maintained the angular position around the axis line X of the supporting member 120 (operation member 7), and is extended from the engaging part 35. The claw portion 37 a of the arm portion 37 is locked to the engagement step portion 122 a of the support member 120.
 この状態では、支持部材120の係合突起124と、係合部35の係合突起35aとが互いに嵌合しているので(図10(b)参照)、支持部材120は、固定側部材である仕切壁30の係合部35に回り止め嵌合された状態となる。 In this state, since the engagement protrusion 124 of the support member 120 and the engagement protrusion 35a of the engagement portion 35 are fitted to each other (see FIG. 10B), the support member 120 is a fixed-side member. It will be in the state where the rotation stop fitting was carried out to the engaging part 35 of a certain partition wall 30. FIG.
 また、支持部材120と係合部35とを回り止め嵌合したのちに、弁体6(作動部材7)の位置を再度調整する場合には、支持部材120を係合部35から取り外すことで、作動部材7の位置の調整を行うことができる状態(図12の(a)に示す状態)になる。 Further, when the position of the valve body 6 (actuating member 7) is adjusted again after the support member 120 and the engagement portion 35 are non-rotatingly fitted, the support member 120 is removed from the engagement portion 35. In this state, the position of the actuating member 7 can be adjusted (the state shown in FIG. 12A).
 この際、仕切壁30から延びる可撓性の腕部37の爪部37aと支持部材120の係合段部122aとの係合を解除して、支持部材120を軸方向にスライドさせるだけで、支持部材120を係合部35から簡単に取り外すことができる。 At this time, by simply releasing the engagement between the claw portion 37a of the flexible arm portion 37 extending from the partition wall 30 and the engagement step portion 122a of the support member 120 and sliding the support member 120 in the axial direction, The support member 120 can be easily removed from the engaging portion 35.
 以上の通り、実施形態では、
 モータのロータ用ケース体である第1ケース部10とバルブ室用ケース体である第2ケース部20とを互いに接合して構成した本体ケース2(密閉ケース)内で、ステッピングモータ8により駆動される弁体6が、第2ケース部20に設けた流体の給排口(ガス流入管3の開口3a)を開閉するバルブ装置1において、
 ステッピングモータ8のロータ部90(ロータ)を、第1ケース部10内に配置すると共に、ロータ部90を駆動するステータ部80を第1ケース部10(本体ケース2)外に配置して、ロータ部90に設けられた永久磁石100と、第1ケース部10と前記ステータ部80のステータコア81の軸線X方向の位置は、軸線Xに直交する径方向から見て重なる位置に構成し、 ロータ部90の一端側の軸部92を回転可能に支持しながら径方向の位置を規制する軸受部材24(第1支持部材)と、ロータ部90の他端側の小径軸部93を回転可能に支持しながら径方向の位置を規制する円筒壁33を備える仕切壁30(第2支持部材)を、それぞれ第1ケース部10で支持させた構成とした。
As described above, in the embodiment,
The motor is driven by a stepping motor 8 in a main body case 2 (sealed case) formed by joining together a first case portion 10 which is a rotor case body of a motor and a second case portion 20 which is a case body for a valve chamber. In the valve device 1 in which the valve body 6 opens and closes the fluid supply / exhaust port (the opening 3a of the gas inflow pipe 3) provided in the second case portion 20,
The rotor portion 90 (rotor) of the stepping motor 8 is disposed in the first case portion 10, and the stator portion 80 that drives the rotor portion 90 is disposed outside the first case portion 10 (main body case 2). The positions of the permanent magnet 100 provided in the portion 90, the first case portion 10 and the stator core 81 of the stator portion 80 in the axis X direction are configured to overlap with each other when viewed from the radial direction orthogonal to the axis X, and the rotor portion The bearing member 24 (first support member) that regulates the radial position while rotatably supporting the shaft portion 92 on one end side of the 90 and the small diameter shaft portion 93 on the other end side of the rotor portion 90 are rotatably supported. However, the partition wall 30 (second support member) provided with the cylindrical wall 33 that regulates the position in the radial direction is supported by the first case portion 10.
 このように構成すると、ロータ部90の一端側の軸部92を回転可能に支持する軸受部材24と、ロータ部90の他端側の小径軸部93を回転可能に支持する円筒壁33を備える仕切壁30が、共通の第1ケース部10に固定されているので、ロータ部90の軸心精度が、共通の第1ケース部10を基準として決まることになる。よって、ロータ部90の軸心精度をより向上させることができる。このため、永久磁石100と第1ケース部10の径方向の隙間を小さくしても永久磁石100と第1ケース部10の接触を防止できる。よって、永久磁石100とステータコア81を近づけることができるので、ステッピングモータ8の効率を高めることができる。 If comprised in this way, the bearing member 24 which rotatably supports the shaft part 92 of the one end side of the rotor part 90, and the cylindrical wall 33 which rotatably supports the small diameter shaft part 93 of the other end side of the rotor part 90 are provided. Since the partition wall 30 is fixed to the common first case part 10, the axial center accuracy of the rotor part 90 is determined based on the common first case part 10. Therefore, the axial center accuracy of the rotor part 90 can be further improved. For this reason, even if the radial gap between the permanent magnet 100 and the first case portion 10 is reduced, the contact between the permanent magnet 100 and the first case portion 10 can be prevented. Therefore, since the permanent magnet 100 and the stator core 81 can be brought close to each other, the efficiency of the stepping motor 8 can be increased.
 ロータ部90の回転を弁体6に連結された軸部材71の進退移動に変換するネジ送り機構を備え、
 このネジ送り機構は、ロータ部90の内周に設けられた雌ネジ95と、軸部材71の外周に設けられた雄ネジ71aから構成されると共に、これら雌ネジ95と雄ネジ71aとはロータ部90の軸線上に配置されており、
 仕切壁30(第2支持部材)は、軸部材71を挿通させる挿通穴32と、この挿通穴32を囲む円筒壁33を有しており、
 ロータ部90の他端側には、円筒壁33に外挿支持される嵌合孔91cが設けられており、ロータ部90の他端側は、嵌合穴91cの内周面と、円筒壁33の小径部361(外周面)で支持されている構成とした。
A screw feed mechanism that converts the rotation of the rotor portion 90 into the forward and backward movement of the shaft member 71 connected to the valve body 6;
This screw feed mechanism is composed of a female screw 95 provided on the inner periphery of the rotor portion 90 and a male screw 71a provided on the outer periphery of the shaft member 71. The female screw 95 and the male screw 71a are composed of a rotor. Arranged on the axis of the part 90,
The partition wall 30 (second support member) has an insertion hole 32 through which the shaft member 71 is inserted, and a cylindrical wall 33 surrounding the insertion hole 32.
The other end side of the rotor part 90 is provided with a fitting hole 91c that is supported by extrapolation to the cylindrical wall 33. The other end side of the rotor part 90 is provided with an inner peripheral surface of the fitting hole 91c and a cylindrical wall. It was set as the structure supported by 33 small diameter parts 361 (outer peripheral surface).
 このように構成すると、ロータ部90の軸線上に、ロータ部90の軸線方向に移動する部材を配置した構成であっても、ロータ部90の両端で径方向の位置を規制することができる。また、歯車輪列を用いることなくロータ部90の回転を弁体6の進退移動に変換することができるので、第1ケース部10を小型化させることができる。 With this configuration, even if the member that moves in the axial direction of the rotor portion 90 is arranged on the axis of the rotor portion 90, the radial position can be regulated at both ends of the rotor portion 90. Moreover, since rotation of the rotor part 90 can be converted into the advancing / retreating movement of the valve body 6 without using a tooth wheel train, the first case part 10 can be reduced in size.
 軸線X方向から見た軸部92と仕切壁30の外形は、それぞれ円形を成しており、
 第1ケース部10は、ロータ部90の外径D1、即ち、ロータマグネットである永久磁石100の外径D1よりも小さい外径D3の円筒状の支持部111と、ロータ部90の外径D1よりも大きい外径D4(図9参照)の円筒状の大径部12bと、を有しており、軸受部材24と仕切壁30は、支持部111と大径部12bに、それぞれ圧入により径方向に位置決めされている構成とした。
The outer shapes of the shaft portion 92 and the partition wall 30 viewed from the direction of the axis X are each circular.
The first case portion 10 includes an outer diameter D1 of the rotor portion 90, that is, a cylindrical support portion 111 having an outer diameter D3 smaller than the outer diameter D1 of the permanent magnet 100 that is a rotor magnet, and the outer diameter D1 of the rotor portion 90. The cylindrical large-diameter portion 12b having a larger outer diameter D4 (see FIG. 9), and the bearing member 24 and the partition wall 30 are respectively pressed into the support portion 111 and the large-diameter portion 12b by press-fitting. It was set as the structure positioned in the direction.
 このように構成すると、ロータ部90の一端側と他端側の位置決めが、それぞれ円と円との当接により行われることになるので、回転方向の位置決めが不要になると共に、軸心精度が向上する。 If comprised in this way, since positioning of the one end side and other end side of the rotor part 90 will be performed by contact | abutting with a circle | round | yen, respectively, while positioning in a rotation direction becomes unnecessary, an axial center precision is improved. improves.
 軸受部材24(第1支持部材)は、ロータ部90の軸線方向の位置を規制するスラスト軸受部241を備え、スラスト軸受部241と軸部材71と弁体90とガス流入管3の開口3a(給排口)が、ロータ部90の軸線上に配置されている構成とした。 The bearing member 24 (first support member) includes a thrust bearing portion 241 that regulates the position of the rotor portion 90 in the axial direction. The thrust bearing portion 241, the shaft member 71, the valve body 90, and the opening 3 a of the gas inflow pipe 3 ( (Supply / discharge port) is arranged on the axis of the rotor portion 90.
 このように構成すると、弁体90が開口3aを押し付ける反力によってロータ部90が径方向に傾く力を低減できる。また、弁体90が開口3aを押し付ける反力を、軸受部材24のスラスト軸受部241で支持することができるため、弁体の反力を支持する部材をロータのスラスト軸受と共用できる。 With this configuration, it is possible to reduce the force by which the rotor 90 is inclined in the radial direction by the reaction force of the valve body 90 pressing the opening 3a. In addition, since the reaction force that the valve body 90 presses the opening 3a can be supported by the thrust bearing portion 241 of the bearing member 24, the member that supports the reaction force of the valve body can be shared with the thrust bearing of the rotor.
 第1ケース部10および第2ケース部20は、それぞれ有底筒形状を有しており、
 第1ケース部10において大径部12bは、第2ケース部20側に位置しており、
 大径部12b(第1ケース部10)の第2ケース部20側の開口と、第2ケース部20の第1ケース部10側の開口には、それぞれ径方向外側に延びる鍔部13、23が全周に亘って設けられており、第1ケース部10と第2ケース部20は、互いに重ね合わせた鍔部13、23同士の外径側を溶接により接合して、本体ケース2を構成しており、仕切壁30は、樹脂材料(例えば、PPS(ポリフェニレンサルファイド))から構成されている構成とした。
The first case portion 10 and the second case portion 20 each have a bottomed cylindrical shape,
In the first case portion 10, the large diameter portion 12b is located on the second case portion 20 side,
The opening on the second case portion 20 side of the large diameter portion 12b (first case portion 10) and the opening on the first case portion 10 side of the second case portion 20 respectively have flange portions 13 and 23 extending outward in the radial direction. Is provided over the entire circumference, and the first case portion 10 and the second case portion 20 constitute the main body case 2 by joining the outer diameter sides of the flange portions 13 and 23 overlapped with each other by welding. The partition wall 30 is made of a resin material (for example, PPS (polyphenylene sulfide)).
 このように構成すると、第1ケース部10の鍔部13と第2ケース部20の鍔部23との溶接位置Wは、仕切壁30が第1ケース部10の大径部12bに圧入により固定される位置よりも径方向外側になるので、溶接時に作用する熱により、樹脂材料からなる仕切壁30の外径側が変形することが好適に防止される。 If comprised in this way, the welding position W of the collar part 13 of the 1st case part 10 and the collar part 23 of the 2nd case part 20 will fix the partition wall 30 to the large diameter part 12b of the 1st case part 10 by press fit. Therefore, the outer diameter side of the partition wall 30 made of a resin material is preferably prevented from being deformed by heat acting during welding.
 ここで、仕切壁30のみならず、バルブ装置1において用いられている総ての樹脂材料を、PPS(ポリフェニレンサルファイド)にすることが好ましい。 Here, it is preferable that not only the partition wall 30 but also all the resin materials used in the valve device 1 are PPS (polyphenylene sulfide).
 PPS(ポリフェニレンサルファイド)は、耐熱性に優れているので、バルブ装置1における樹脂製の部品(部位)をPPSで構成すると、例えばバルブ室5に流入する流体が、高温の熱媒体である場合でも、高温に起因する樹脂製の部品(部位)への影響を抑えることができる。具体的には、熱の変化に起因する部品(部位)の寸法変化が小さくなるので、熱により設計性能が狂うことのないバルブ装置とすることができる。 Since PPS (polyphenylene sulfide) is excellent in heat resistance, if a resin part (part) in the valve device 1 is composed of PPS, for example, even when the fluid flowing into the valve chamber 5 is a high-temperature heat medium. The influence on resin parts (parts) due to high temperature can be suppressed. Specifically, since the dimensional change of the component (part) due to the change in heat is small, the valve device in which the design performance is not distorted by heat can be obtained.
 第1ケース部10の鍔部13と第2ケース部20の鍔部23は、仕切壁30の外周縁31fから径方向外側に所定距離h3離間した位置で互いに接合されており、
 仕切壁30の外周縁31fの径方向外側に、第1ケース部10の鍔部13と第2ケース部20の鍔部23との間に形成された空間S(隙間)が設けられている構成とした。
The flange portion 13 of the first case portion 10 and the flange portion 23 of the second case portion 20 are joined to each other at a position separated by a predetermined distance h3 from the outer peripheral edge 31f of the partition wall 30 radially outward.
A configuration in which a space S (gap) formed between the flange portion 13 of the first case portion 10 and the flange portion 23 of the second case portion 20 is provided on the radially outer side of the outer peripheral edge 31f of the partition wall 30. It was.
 このように構成すると、溶接時に作用する熱が、仕切壁30に作用することをいっそう防止できるので、樹脂材料からなる仕切壁30の外径側が変形することが好適に防止される。 With this configuration, the heat acting during welding can be further prevented from acting on the partition wall 30, so that the outer diameter side of the partition wall 30 made of a resin material is preferably prevented from being deformed.
 特に、仕切壁30では、外周縁31fの径方向内側に、第1ケース部10側に突出して環状壁34が設けられており、仕切壁30は、第1ケース部10の大径部12bに、環状壁34を圧入して取り付けられており、この環状壁34により、仕切壁30の第1ケース部10に対する位置決めが行われるようになっている構成とした。 In particular, in the partition wall 30, an annular wall 34 is provided on the radially inner side of the outer peripheral edge 31 f so as to protrude toward the first case portion 10, and the partition wall 30 is formed on the large diameter portion 12 b of the first case portion 10. The annular wall 34 is press-fitted and attached, and the annular wall 34 is configured to position the partition wall 30 with respect to the first case portion 10.
 そのため、例えば、溶接熱がこの環状壁34まで伝わって環状壁34が変形すると、仕切壁30の位置決めが損なわれることになる。 Therefore, for example, if the welding heat is transmitted to the annular wall 34 and the annular wall 34 is deformed, the positioning of the partition wall 30 is impaired.
 そうすると、この仕切壁30と一体に形成されている円筒壁33で回転可能に支持されているロータ部90の他端側の位置決めも損なわれることになる。 Then, the positioning on the other end side of the rotor portion 90 that is rotatably supported by the cylindrical wall 33 formed integrally with the partition wall 30 is also impaired.
 これに対して、本実施の形態では、上記のように構成して、溶接時の熱が環状壁34まで伝わり難くすることで、環状壁34の変形を防止して、仕切壁30と、ロータ部90の他端側(小径軸部93側)の位置決めが損なわれることを防止できるので、ロータ部90の軸心精度が悪化することを好適に防止できる。 On the other hand, in the present embodiment, it is configured as described above, and the heat at the time of welding is hardly transmitted to the annular wall 34, so that the deformation of the annular wall 34 is prevented, and the partition wall 30 and the rotor Since it is possible to prevent the positioning of the other end side (small-diameter shaft portion 93 side) of the portion 90 from being impaired, it is possible to suitably prevent deterioration of the axial center accuracy of the rotor portion 90.
 仕切壁30は、本体ケース2内を第1ケース部10側の空間(ロータ収容室)と、第2ケース部20側の空間(バルブ室5)とに区画しており、仕切壁30には、第1ケース部10側の空間と、第2ケース部20側の空間とを連通させる貫通穴31c、31d(連通穴)が設けられている構成とした。 The partition wall 30 divides the inside of the main body case 2 into a space on the first case portion 10 side (rotor accommodating chamber) and a space on the second case portion 20 side (valve chamber 5). The through holes 31c and 31d (communication holes) for communicating the space on the first case portion 10 side and the space on the second case portion 20 side are provided.
 第2ケース部20内の空間(バルブ室5)内には、熱媒体などの流体が流入するようになっており、このバルブ室5内に流入する流体により、第1ケース部10側の空間と第2ケース部20側の空間(バルブ室5)との間に圧力差が発生すると、仕切壁30が変形する虞がある。 A fluid such as a heat medium flows into the space (valve chamber 5) in the second case portion 20, and the space on the first case portion 10 side by the fluid flowing into the valve chamber 5. If a pressure difference is generated between the space on the second case portion 20 side (valve chamber 5), the partition wall 30 may be deformed.
 仕切壁30が変形すると、この仕切壁30で支持されているロータ部90の他端側(小径軸部93)の位置がズレることがあり、かかる場合には、ロータ部90の軸心精度が悪化してしまう。 When the partition wall 30 is deformed, the position of the other end side (small diameter shaft portion 93) of the rotor portion 90 supported by the partition wall 30 may be displaced. In such a case, the axial center accuracy of the rotor portion 90 is reduced. It will get worse.
 貫通穴31c、31dを設けることで、第1ケース部10側の空間内の圧力と第2ケース部20側の空間内(バルブ室5内)の圧力とを均等にできるので、圧力差に起因する仕切壁30の変形を好適に防止して、ロータ部90の軸心精度の悪化を防止できる。 By providing the through holes 31c and 31d, the pressure in the space on the first case portion 10 side and the pressure in the space on the second case portion 20 side (in the valve chamber 5) can be made equal, resulting in a pressure difference. The deformation of the partition wall 30 is suitably prevented, and deterioration of the axial center accuracy of the rotor portion 90 can be prevented.
 仕切壁30には、第2ケース部20の鍔部23に係合して、仕切壁30を回り止めする係合突起311(係合部)が設けられている構成とした。 The partition wall 30 is configured to be provided with an engagement protrusion 311 (engagement portion) that engages with the flange portion 23 of the second case portion 20 to prevent the partition wall 30 from rotating.
 このように構成すると、第1ケース部10側の空間内と第2ケース部20側の空間内との圧力差などにより、仕切壁30の第1ケース部10の大径部12bに圧入されている環状壁34圧入強度が弱くなったとしても、仕切壁30がロータ部90と一体に回転することを好適に防止できる。 If comprised in this way, it will be press-fitted in the large diameter part 12b of the 1st case part 10 of the partition wall 30 by the pressure difference etc. in the space in the 1st case part 10 side, and the space in the 2nd case part 20 side. Even if the press-fitting strength of the annular wall 34 is weakened, the partition wall 30 can be suitably prevented from rotating integrally with the rotor portion 90.
 特に、ステッピングモータ8のロータ部90の回転を、作動部材7の軸方向の進退移動に変換するネジ送り機構と、ロータ部90の回転角度、即ち、ロータ部90に対する回転量を規制する回転規制機構と、を備え、ネジ送り機構が、仕切壁30の円筒壁33に固定されて作動部材7を回転不能かつ軸方向に移動可能に支持する支持部材120と、作動部材7とロータ部90に設けられて互いに噛み合う雄ネジ71aおよび雌ネジ95と、から構成される場合には、ロータ部90の回転を作動部材7の進退移動に確実に変換できることになる。 In particular, a screw feed mechanism that converts the rotation of the rotor portion 90 of the stepping motor 8 into an axial movement of the actuating member 7 and a rotation restriction that restricts the rotation angle of the rotor portion 90, that is, the amount of rotation relative to the rotor portion 90. And a screw feed mechanism fixed to the cylindrical wall 33 of the partition wall 30 to support the operating member 7 so as not to rotate and to be movable in the axial direction, and to the operating member 7 and the rotor portion 90. When the male screw 71a and the female screw 95 that are provided and mesh with each other are configured, the rotation of the rotor portion 90 can be reliably converted into the forward and backward movement of the operating member 7.
 さらに、実施の形態では、支持部材120を、仕切壁30と一体に形成された係合部35に着脱可能に構成した。 Further, in the embodiment, the support member 120 is configured to be detachable from the engaging portion 35 formed integrally with the partition wall 30.
 このように構成すると、支持部材120が係合部35に取り付けられていない状態では、作動部材7をロータ部90に対して相対回転させることができる。 With this configuration, the operating member 7 can be rotated relative to the rotor portion 90 in a state where the support member 120 is not attached to the engaging portion 35.
 よって、この状態で、ロータ部90の回転を阻止しつつ作動部材7を回転させることで、作動部材7を軸方向に移動させて、作動部材7の雄ネジ71aと、ロータ部90の雌ネジ95との咬み合い部分の長さを変更できるので、作動部材7の軸方向における位置を、所望の位置に調整でき、作動部材7の軸方向の位置決めを正確に行うことができる。 Therefore, in this state, by rotating the operating member 7 while preventing the rotation of the rotor portion 90, the operating member 7 is moved in the axial direction, and the male screw 71a of the operating member 7 and the female screw of the rotor portion 90 are moved. Since the length of the biting portion with 95 can be changed, the position of the operating member 7 in the axial direction can be adjusted to a desired position, and the positioning of the operating member 7 in the axial direction can be performed accurately.
 また、支持部材120は、係合部35に対して弁体6側から着脱可能であるので、バルブ装置1を組み立てたあとでも、第1ケース部10と第2ケース部20とが互いに溶接で接合される前であれば、支持部材120を適宜取り外して、第1ケース部10に仕切壁30が取り付けられた状態で作動部材7の軸方向における位置調整を簡単に行うことができる。 Moreover, since the support member 120 is detachable from the valve body 6 side with respect to the engaging portion 35, the first case portion 10 and the second case portion 20 are welded to each other even after the valve device 1 is assembled. If it is before joining, the support member 120 can be removed as appropriate, and the position of the actuating member 7 in the axial direction can be easily adjusted in a state where the partition wall 30 is attached to the first case portion 10.
 作動部材7の嵌合部72では、支持部材120に支持される凹溝72aが軸方向に沿って設けられており、支持部材120は、凹溝72aの軸方向における一部を支持すると共に、作動部材7を支持した状態で軸方向にスライドさせて、係合部35に対して着脱される構成とした。 In the fitting portion 72 of the actuating member 7, a concave groove 72 a supported by the support member 120 is provided along the axial direction, and the support member 120 supports a part of the concave groove 72 a in the axial direction, The operating member 7 is supported by being slid in the axial direction and attached to and detached from the engaging portion 35.
 このように構成すると、支持部材120を軸方向にスライドさせるだけで、係合部35に取り付けることができるので、支持部材120の係合部35への取り付けを、簡単に行うことができる。 With this configuration, the support member 120 can be attached to the engagement portion 35 simply by sliding the support member 120 in the axial direction, so that the attachment of the support member 120 to the engagement portion 35 can be easily performed.
 特に、支持部材120は、係合部35の腕部37の先端に設けられた爪部37aを支持部材120の係合段部122aに係止させて、係合部35に取り付けられるので、支持部材120の係合部35への取り付けを、特別な工具などを用いることなく、簡単に行うことができる。 In particular, since the support member 120 is attached to the engagement portion 35 by locking the claw portion 37a provided at the tip of the arm portion 37 of the engagement portion 35 to the engagement step portion 122a of the support member 120, the support member 120 is supported. The member 120 can be easily attached to the engaging portion 35 without using a special tool or the like.
 また、支持部材120と係合部35とは、互いに噛み合う係合突起124、35aにより相対回転が規制されている構成とした。 Further, the support member 120 and the engaging portion 35 are configured such that relative rotation is restricted by the engaging protrusions 124 and 35a meshing with each other.
 作動部材7は、支持部材120に回転不能に支持されているので、支持部材120が回転すると作動部材7もまた回転し、雄ネジ71aと雌ネジ95との咬み合い部分の長さが変化して、作動部材7の軸方向の位置が変化する。 Since the operation member 7 is supported by the support member 120 so as not to rotate, the operation member 7 also rotates when the support member 120 rotates, and the length of the biting portion between the male screw 71a and the female screw 95 changes. Thus, the axial position of the actuating member 7 changes.
 例えば、作動部材7の位置を調整したのちに支持部材120を係合部35に取り付ける場合、係合突起124、35a同士の位置合わせのために、支持部材120を係合部35に対して僅かに回転させる必要があり、この僅かな回転により作動部材7の位置が調整された位置から外れてしまう。 For example, when the support member 120 is attached to the engaging portion 35 after adjusting the position of the actuating member 7, the support member 120 is slightly moved with respect to the engaging portion 35 in order to align the engaging protrusions 124 and 35 a. The position of the operating member 7 deviates from the adjusted position due to this slight rotation.
 これに対して、本実施の形態では、上記のように構成すると、係合突起124の1つ分の分解能が、係合部35に支持部材120を取り付けるときの支持部材120の角度の分解能となり、係合突起124の数を増やすことで分解能をより向上させて、作動部材7が調整後の位置から大きく外れることを防ぐことができる。 On the other hand, in the present embodiment, when configured as described above, the resolution of one engagement protrusion 124 is the resolution of the angle of the support member 120 when the support member 120 is attached to the engagement portion 35. By increasing the number of engagement protrusions 124, the resolution can be further improved, and the actuating member 7 can be prevented from greatly deviating from the adjusted position.
 また、係合突起124の1つ分の分解能が、作動部材7の軸方向の位置調整を行う際の最小の移動量を規定する分解能となる。よって、係合突起124、35aにより相対回転を規制することで、支持部材120の軸線X周りの分解能と共に、作動部材7の軸方向の位置調整の分解能(精度)が向上する。 Also, the resolution of one engagement protrusion 124 is a resolution that defines the minimum amount of movement when adjusting the position of the actuating member 7 in the axial direction. Therefore, by restricting the relative rotation by the engagement protrusions 124 and 35a, the resolution (accuracy) of the axial position adjustment of the operating member 7 is improved as well as the resolution around the axis X of the support member 120.
 また、ガス流入管3とガス排出管4とが接続されたバルブ室5と、バルブ室5内で、ガス流入管3の開口3aを開閉する弁体6と、を備え、バルブ装置1の作動部材7で、弁体6を開口3aの開閉方向に進退移動させるバルブ駆動装置であって、ロータ部90には、ゼネバ歯車110の度当たり112d、112eで回転が規制される回転角度が、ロータ部90が時計回り方向に回転する場合と、反時計回り方向に回転する場合とに一つずつ、合計2つ設定されており、作動部材7は、ロータ部90が2つの回転角度のうちの一方の回転角度に達したときに、弁体6を開口3aを閉じる位置に配置させるように設定されている構成とした。 The valve device 5 includes a valve chamber 5 to which the gas inflow pipe 3 and the gas exhaust pipe 4 are connected, and a valve body 6 for opening and closing the opening 3 a of the gas inflow tube 3 in the valve chamber 5. The valve drive device moves the valve body 6 forward and backward in the opening / closing direction of the opening 3a by the member 7, and the rotor portion 90 has a rotation angle at which rotation is restricted by 112d and 112e per degree of the Geneva gear 110. There are two sets in total, one each for the case where the part 90 rotates in the clockwise direction and the case where it rotates in the counterclockwise direction. When one rotation angle is reached, the valve body 6 is set to be disposed at a position where the opening 3a is closed.
 このように構成すると、バルブ室5内に弁体6の位置を検出するためのセンサなどを設けずに、開口3aを閉状態にするときの弁体6の位置を正確に合わせることができる。 With such a configuration, the position of the valve body 6 when the opening 3a is closed can be accurately adjusted without providing a sensor or the like for detecting the position of the valve body 6 in the valve chamber 5.
 また、弁体6は、スプリング76により、開口3aを閉じる方向に付勢されている構成としたので、弁体6が、ガスの流入口となる開口3aに付勢された状態で、開口3aを閉鎖している状態での付勢力(開口3aを閉じる力)を一定にすることができる。 Further, since the valve body 6 is urged by the spring 76 in the direction to close the opening 3a, the valve body 6 is urged by the opening 3a serving as a gas inlet, and the opening 3a is urged. The urging force (the force that closes the opening 3a) in a state where is closed can be made constant.
 特に、ロータ部90が、図6の(b)に示す位置から反時計回り方向に1回転した時点で、弁体6が、ガス流入管3の取付部材27(図1参照)に当接し、そこからロータ部90がさらに1回転して、図6の(a)に示す位置に達するまでの間は、弁体6と作動部材7とが、スプリング76(図3参照)を圧縮しながら、軸線Xの軸方向で相対移動するように構成したので、弁体6はスプリング76の付勢力を受けつつ開口3aを閉鎖する位置に配置される。 In particular, when the rotor portion 90 makes one rotation in the counterclockwise direction from the position shown in FIG. 6B, the valve body 6 comes into contact with the attachment member 27 (see FIG. 1) of the gas inflow pipe 3, From then on, until the rotor portion 90 further rotates and reaches the position shown in FIG. 6A, the valve body 6 and the actuating member 7 compress the spring 76 (see FIG. 3), Since the valve body 6 is configured to relatively move in the axial direction of the axis X, the valve body 6 is disposed at a position to close the opening 3 a while receiving the urging force of the spring 76.
 よって、ガス流入管3内の流体(ガス)の圧力に抗しつつ、弁体6による開口3aの閉鎖を確実に行うことができる。 Therefore, it is possible to reliably close the opening 3a by the valve body 6 while resisting the pressure of the fluid (gas) in the gas inflow pipe 3.
 前記した実施の形態では、仕切壁30に設けた係合突起311を、第2ケース部20の鍔部23に設けた係合凹部233に係合させて、仕切壁30を回り止めする構成としたが、係合突起311をロータ部90側に突出させて、第1ケース部10の鍔部13に設けた係合凹部に係合させて仕切壁30を回り止めするようにしても良い。 In the above-described embodiment, the engagement protrusion 311 provided on the partition wall 30 is engaged with the engagement recess 233 provided on the flange portion 23 of the second case portion 20 to prevent the partition wall 30 from rotating. However, the engaging protrusion 311 may be protruded toward the rotor portion 90 and engaged with the engaging recess provided in the flange portion 13 of the first case portion 10 to prevent the partition wall 30 from rotating.
 また、係合突起を、仕切壁30の基部31における第1ケース部10側と第2ケース部20側の両方に設け、これらを、第1ケース部10と第2ケース部20にそれぞれ設けた係合凹部に係合させて、仕切壁30を回り止めするようにしても良い。 Further, the engagement protrusions are provided on both the first case part 10 side and the second case part 20 side in the base part 31 of the partition wall 30, and these are provided on the first case part 10 and the second case part 20, respectively. The partition wall 30 may be prevented from rotating by engaging with the engaging recess.
 さらに、第1ケース部10および/または第2ケース部20に仕切壁30側に突出する係合突起を設け、仕切壁30にこの係合突起が係合する係合凹部を設けた構成としても良い。
Further, the first case portion 10 and / or the second case portion 20 may be provided with an engagement protrusion that protrudes toward the partition wall 30 and the partition wall 30 may be provided with an engagement recess that engages with the engagement protrusion. good.
 1   バルブ装置
 2   本体ケース(密閉ケース)
 3   ガス流入管
 4   ガス排出管
 5   バルブ室
 6   弁体
 7   作動部材
 8   ステッピングモータ
 10  第1ケース部
 11  底部
 12  周壁部
 12a 小径部
 12b 大径部
 13  鍔部
 13a 外周縁
 20  第2ケース部
 21  底部
 22  周壁部
 22a 開口
 23  鍔部
 24  軸受部材
 26  取付部材
 26a 係止部
 27  取付部材
 27a 先端部
 28  貫通穴
 28a 縮径部
 30  仕切壁
 31  基部
 31c 貫通穴
 31d 貫通穴
 31e 溝
 31f 外周縁
 32  挿通穴
 33  円筒壁
 34  環状壁
 35  係合部
 35a 係合突起
 36  開口
 37  腕部
 37a 爪部
 38  軸受部
 38a 軸受穴
 39  支持部材
 39a 突起
 61  係合部材
 62  円板部
 62a 開口
 62b 二面幅部
 63  周壁部
 63a 小径部
 63b 大径部
 64  フランジ部
 65  当接部材
 71  軸部材
 71a 雄ネジ
 72  嵌合部
 72a 凹溝
 73  連結部
 73a 突起
 74  スプリング支持部
 74a 円柱部
 74b フランジ部
 76  スプリング
 80  ステータ部
 81  ステータコア
 81a 内周部
 81b 円板部
 82  ボビン
 83  駆動コイル
 84  端子
 85  コネクタ端子
 86  回路基板
 87  モータカバー
 87a 係合爪
 88  モータケース
 90  ロータ部
 91  本体部
 91a 封止端
 91b 突出部
 91c 嵌合穴
 92  軸部
 93  小径軸部
 93a ゼネバピン
 93b 膨出部
 93c ストッパ部
 93d 歯溝部
 93e 先端部
 95  雌ネジ
 100 永久磁石
 110 ゼネバ歯車
 111 支持部
 112 大径部
 112a 歯溝部
 112b 歯部
 112c 突出部
 112d 両側部
 115 ブラケット部材
 115a 軸受穴
 115b 腕部
 115c 開口部
 116 回転軸
 120 支持部材
 121 基部
 121a 突出部
 122 フランジ部
 122a 係合段部
 122b 当接面
 123 中央開口
 124 係合突起
 140 板バネ
 141 脚部
 231 基部
 232 外周縁
 233 係合凹部
 241 スラスト軸受部
 242 ラジアル軸受部
 311 係合突起
 361 小径部
 362 大径部
 S   空間
 W   溶接位置
 X   軸線
 X’  軸線
 h3  所定距離
1 Valve device 2 Body case (sealed case)
DESCRIPTION OF SYMBOLS 3 Gas inflow pipe 4 Gas exhaust pipe 5 Valve chamber 6 Valve body 7 Actuating member 8 Stepping motor 10 1st case part 11 Bottom part 12 Peripheral wall part 12a Small diameter part 12b Large diameter part 13 Girder part 13a Outer periphery 20 Second case part 21 Bottom part 22 peripheral wall portion 22a opening 23 flange portion 24 bearing member 26 mounting member 26a locking portion 27 mounting member 27a distal end portion 28 through hole 28a reduced diameter portion 30 partition wall 31 base portion 31c through hole 31d through hole 31e groove 31f outer peripheral edge 32 insertion hole 33 cylindrical wall 34 annular wall 35 engaging part 35a engaging protrusion 36 opening 37 arm part 37a claw part 38 bearing part 38a bearing hole 39 support member 39a protrusion 61 engaging member 62 disk part 62a opening 62b two-sided width part 63 peripheral wall Part 63a Small diameter part 63b Large diameter part 64 Flange part 65 Contact part Material 71 Shaft member 71a Male thread 72 Fitting part 72a Concave groove 73 Connecting part 73a Projection 74 Spring support part 74a Column part 74b Flange part 76 Spring 80 Stator part 81 Stator core 81a Inner peripheral part 81b Disc part 82 Bobbin 83 Drive coil 84 Terminal 85 Connector terminal 86 Circuit board 87 Motor cover 87a Engaging claw 88 Motor case 90 Rotor part 91 Main body part 91a Sealed end 91b Protruding part 91c Fitting hole 92 Shaft part 93 Small diameter shaft part 93a Geneva pin 93b Protruding part 93c Stopper part 93d Tooth groove portion 93e Tip portion 95 Female screw 100 Permanent magnet 110 Geneva gear 111 Support portion 112 Large diameter portion 112a Tooth groove portion 112b Tooth portion 112c Protruding portion 112d Both side portions 115 Bracket member 115a Bearing hole 115b Arm 115c Opening 116 Rotating shaft 120 Support member 121 Base 121a Protruding part 122 Flange part 122a Engaging step part 122b Abutting surface 123 Central opening 124 Engaging protrusion 140 Leaf spring 141 Leg part 231 Base part 232 Outer peripheral edge 233 Engaging concave part 241 Thrust Bearing portion 242 Radial bearing portion 311 Engaging projection 361 Small diameter portion 362 Large diameter portion S Space W Welding position X Axis X 'Axis h3 Predetermined distance

Claims (19)

  1.  第1ケース部と第2ケース部とを互いに接合して構成した密閉ケース内で、モータにより駆動される弁体が、前記第2ケース部に設けた流体の給排口を開閉するバルブ装置において、
     前記モータのロータを前記第1ケース部内に配置すると共に、前記ロータを駆動するステータ部を前記密閉ケース外に配置して、前記ロータに設けられた永久磁石と前記第1ケース部と前記ステータ部のステータコアとが前記ロータの回転軸の径方向から見て重なる位置に構成し、
     前記ロータの一端側を回転可能に支持しながら径方向の位置を規制する第1支持部材と、前記ロータの他端側を回転可能に支持しながら径方向の位置を規制する第2支持部材を、それぞれ前記第1ケース部で支持させたことを特徴とするバルブ装置
    In a valve device in which a valve body driven by a motor opens and closes a fluid supply / exhaust port provided in the second case portion in a sealed case configured by joining the first case portion and the second case portion to each other ,
    The rotor of the motor is disposed in the first case portion, and the stator portion for driving the rotor is disposed outside the hermetic case, and the permanent magnet, the first case portion, and the stator portion provided on the rotor. The stator core of the rotor is configured to overlap with the rotor when viewed from the radial direction of the rotating shaft,
    A first support member that regulates a radial position while rotatably supporting one end of the rotor; and a second support member that regulates a radial position while rotatably supporting the other end of the rotor. , Each of which is supported by the first case portion.
  2.  前記ロータの回転を、前記弁体に連結された軸部材の進退移動に変換する変換機構を備え、
     前記第2支持部材は、前記軸部材を挿通させる挿通穴と、該挿通穴を囲む円筒壁を有しており、
     前記ロータの他端側には、前記円筒壁に外挿支持される嵌合穴が設けられており、
     前記ロータの他端側は、前記嵌合穴の内周面と、前記円筒壁の外周面で支持されていることを特徴とする請求項1に記載のバルブ装置。
    A conversion mechanism that converts the rotation of the rotor into advancing and retracting movement of a shaft member connected to the valve body;
    The second support member has an insertion hole for inserting the shaft member, and a cylindrical wall surrounding the insertion hole.
    On the other end side of the rotor, a fitting hole that is supported by extrapolation to the cylindrical wall is provided,
    The valve device according to claim 1, wherein the other end side of the rotor is supported by an inner peripheral surface of the fitting hole and an outer peripheral surface of the cylindrical wall.
  3.  前記変換機構は、
      前記ロータの内周に設けられた雌ネジと、
      前記軸部材の外周に設けられた雄ネジと、から構成されるネジ送り機構であり、
     前記雌ネジと前記雌ネジは、前記ロータの軸線上に配置されていることを特徴とする請求項2に記載のバルブ装置。
    The conversion mechanism is
    A female screw provided on the inner periphery of the rotor;
    A screw feed mechanism comprising a male screw provided on the outer periphery of the shaft member,
    The valve device according to claim 2, wherein the female screw and the female screw are arranged on an axis of the rotor.
  4.  前記第1ケース部は、有底円筒形状を有すると共に、前記ロータの外径よりも小径の円筒状の支持部と、前記ロータの外径よりも大径の円筒状の大径部と、を有しており、
     前記第1支持部材は前記支持部に位置決めされ、前記第2支持部材は前記大径部に位置決めされていることを特徴とする請求項1に記載のバルブ装置。
    The first case portion has a bottomed cylindrical shape, a cylindrical support portion having a diameter smaller than the outer diameter of the rotor, and a cylindrical large diameter portion having a diameter larger than the outer diameter of the rotor. Have
    2. The valve device according to claim 1, wherein the first support member is positioned on the support portion, and the second support member is positioned on the large-diameter portion.
  5. 前記第1支持部材は、前記ロータの一端側の軸部を回転可能に支持する軸受部材であり、
    前記第1ケース部は、前記軸受部材を保持する前記支持部と、ロータマグネットと対向する小径部と、前記ロータに対する回転規制機構を配置するための前記小径部より大径の前記大径部と、該大径部の端部から径方向外側に延びる鍔部とを備えており、
    前記第2支持部材には前記円筒壁と所定間隔で対向する環状壁が設けられており、
    前記環状壁の外周面が前記大径部の内周面に当接することにより、前記第2支持部材は前記第1ケース部に径方向に位置決めされていることを特徴とする請求項4に記載のバルブ装置。
    The first support member is a bearing member that rotatably supports a shaft portion on one end side of the rotor,
    The first case portion includes the support portion that holds the bearing member, a small-diameter portion that faces the rotor magnet, and the large-diameter portion that is larger in diameter than the small-diameter portion for disposing a rotation restricting mechanism for the rotor. , And a flange extending radially outward from the end of the large diameter portion,
    The second support member is provided with an annular wall facing the cylindrical wall at a predetermined interval,
    The outer peripheral surface of the annular wall is in contact with the inner peripheral surface of the large-diameter portion, so that the second support member is positioned in the radial direction on the first case portion. Valve device.
  6. 前記ロータに対する前記回転規制機構は、前記ロータの前記軸部とは反対側に設けられた小径軸部の外周に形成されたゼネバピンと、前記小径軸部の径方向外側に配置された前記ロータの回転量を規定するゼネバ歯車とを備え、
    前記ゼネバ歯車は、前記ゼネバピンが挿入される歯溝部と、前記ゼネバピンと係合して前記ゼネバ歯車を回転させる歯部と、周方向において前記歯溝部と前記歯部との両側に配置され前記ロータの回転を阻止する度当たりとを備えていることを特徴とする請求項5に記載のバルブ装置。
    The rotation restricting mechanism for the rotor includes a Geneva pin formed on an outer periphery of a small diameter shaft portion provided on a side opposite to the shaft portion of the rotor, and a rotor disposed on a radially outer side of the small diameter shaft portion. A Geneva gear that regulates the amount of rotation,
    The Geneva gear is disposed on both sides of the tooth groove portion and the tooth portion in the circumferential direction, the tooth groove portion into which the Geneva pin is inserted, the tooth portion that engages with the Geneva pin and rotates the Geneva gear, and the rotor. The valve device according to claim 5, further comprising: a degree that prevents rotation of the valve.
  7.  前記第2ケース部は有底筒形状を有しており、前記第2ケース部の前記第1ケース部側の開口には、径方向外側に延びる鍔部が全周に亘って設けられており、前記第1ケース部と前記第2ケース部は、互いに重ね合わせた前記鍔部同士を溶接により接合して、前記密閉ケースを構成しており、
     前記第2支持部材は、樹脂材料から構成されていることを特徴とする請求項5に記載のバルブ装置。
    The second case portion has a bottomed cylindrical shape, and an opening on the first case portion side of the second case portion is provided with a flange extending outward in the radial direction over the entire circumference. The first case portion and the second case portion are joined together by welding the flange portions overlapped with each other to constitute the sealed case,
    The valve device according to claim 5, wherein the second support member is made of a resin material.
  8.  前記第1ケース部の前記鍔部と前記第2ケース部の前記鍔部は、前記第2支持部材から径方向外側に離間した位置で互いに接合されており、
     前記第2支持部材の径方向外側に、前記第1ケース部の前記鍔部と前記第2ケース部の前記鍔部との間に形成された隙間が設けられていることを特徴とする請求項7に記載のバルブ装置。
    The flange portion of the first case portion and the flange portion of the second case portion are joined to each other at a position spaced radially outward from the second support member,
    The clearance gap formed between the said collar part of the said 1st case part and the said collar part of the said 2nd case part is provided in the radial direction outer side of the said 2nd support member, It is characterized by the above-mentioned. 8. The valve device according to 7.
  9.  前記樹脂材料は、PPS(ポリフェニレンサルファイド)であることを特徴とする請求項7に記載のバルブ装置。 The valve device according to claim 7, wherein the resin material is PPS (polyphenylene sulfide).
  10.  前記第1支持部材は、前記ロータの軸線方向の位置を規制するスラスト軸受部を備え、
     前記スラスト軸受部と前記軸部材と前記弁体と前記給排口が、前記ロータの軸線上に配置されていることを特徴とする請求項3から請求項9の何れか一項に記載のバルブ装置。
    The first support member includes a thrust bearing portion that regulates a position in an axial direction of the rotor,
    The valve according to any one of claims 3 to 9, wherein the thrust bearing portion, the shaft member, the valve body, and the supply / exhaust port are disposed on an axis of the rotor. apparatus.
  11.  前記第2支持部材には、前記第1ケース部と前記第2ケース部のうちの少なくとも一方に係合して、前記第2支持部材を回り止めする係合部が設けられていることを特徴とする請求項1から請求項9の何れか一項に記載のバルブ装置。 The second support member is provided with an engaging portion that engages with at least one of the first case portion and the second case portion to prevent the second support member from rotating. The valve device according to any one of claims 1 to 9.
  12.  前記第1ケース部および前記第2ケース部は、それぞれ有底筒形状を有しており、
     前記第1ケース部の前記第2ケース部側の開口と、前記第2ケース部の前記第1ケース部側の開口には、それぞれ径方向外側に延びる鍔部が全周に亘って設けられており、前記第1ケース部と前記第2ケース部は、互いに重ね合わせた前記鍔部同士を溶接により接合して、前記密閉ケースを構成しており、
     前記第2支持部材は、樹脂材料から構成されていることを特徴とする請求項1に記載のバルブ装置。
    Each of the first case part and the second case part has a bottomed cylindrical shape,
    The opening on the second case portion side of the first case portion and the opening on the first case portion side of the second case portion are respectively provided with flanges extending radially outward over the entire circumference. The first case part and the second case part are joined to each other by welding the flanges overlapped with each other to constitute the sealed case,
    The valve device according to claim 1, wherein the second support member is made of a resin material.
  13.  前記第1ケース部の鍔部と前記第2ケース部の鍔部は、前記第2支持部材から径方向外側に離間した位置で互いに接合されており、
     前記第2支持部材の径方向外側に、前記第1ケース部の鍔部と前記第2ケース部の鍔部との間に形成された隙間が設けられていることを特徴とする請求項12に記載のバルブ装置。
    The collar part of the first case part and the collar part of the second case part are joined to each other at a position spaced radially outward from the second support member,
    13. The clearance gap formed between the collar part of the said 1st case part and the collar part of the said 2nd case part is provided in the radial direction outer side of the said 2nd supporting member. The valve device as described.
  14.  前記樹脂材料は、PPS(ポリフェニレンサルファイド)であることを特徴とする請求項13に記載のバルブ装置。 14. The valve device according to claim 13, wherein the resin material is PPS (polyphenylene sulfide).
  15. 前記第1支持部材は、前記ロータの一端側の軸部を回転可能に支持する軸受部材であり、
    有底円筒形状を有する前記第1ケース部は、前記ロータのロータマグネットの外径よりも小径の円筒状であって前記軸受部材を保持する支持部と、前記ロータマグネットと対向する小径部と、前記ロータに対する回転規制機構を配置するための前記小径部より大径の前記大径部と、該大径部の端部から径方向外側に延びる前記鍔部とを備えており、
    前記第2支持部材は、前記大径部の内周面に当接することにより径方向に位置決めされていることを特徴とする請求項13に記載のバルブ装置。
    The first support member is a bearing member that rotatably supports a shaft portion on one end side of the rotor,
    The first case portion having a bottomed cylindrical shape is a cylindrical shape having a smaller diameter than the outer diameter of the rotor magnet of the rotor, and a supporting portion for holding the bearing member, a small diameter portion facing the rotor magnet, The large-diameter portion having a larger diameter than the small-diameter portion for disposing a rotation restricting mechanism for the rotor, and the flange portion extending radially outward from an end portion of the large-diameter portion,
    The valve device according to claim 13, wherein the second support member is positioned in a radial direction by abutting against an inner peripheral surface of the large-diameter portion.
  16.  前記ロータの回転を、前記弁体に連結された軸部材の進退移動に変換する変換機構を備え、
    前記第2支持部材は、前記軸部材を挿通させる挿通穴と、該挿通穴を形成するように前記ロータ側に突出する円筒壁と、該円筒壁と所定間隔で対向する環状壁とを備え、
     前記ロータの前記軸部とは反対側には、前記円筒壁に外挿支持される嵌合穴が設けられた小径軸部が設けられ、
    前記第2支持部材の前記環状壁の外周面を前記第1ケース部の前記大径部の内周面に当接させるとともに、前記円筒壁の外周面で前記小径軸部の前記嵌合穴の内周面を支持するようにしたことを特徴とする請求項15に記載のバルブ装置。
    A conversion mechanism that converts the rotation of the rotor into advancing and retracting movement of a shaft member connected to the valve body;
    The second support member includes an insertion hole through which the shaft member is inserted, a cylindrical wall projecting toward the rotor so as to form the insertion hole, and an annular wall facing the cylindrical wall at a predetermined interval,
    On the opposite side to the shaft portion of the rotor, a small-diameter shaft portion provided with a fitting hole that is supported by extrapolation to the cylindrical wall is provided,
    The outer peripheral surface of the annular wall of the second support member is brought into contact with the inner peripheral surface of the large diameter portion of the first case portion, and the fitting hole of the small diameter shaft portion is formed on the outer peripheral surface of the cylindrical wall. The valve device according to claim 15, wherein an inner peripheral surface is supported.
  17. 前記ロータに対する前記回転規制機構は、前記小径軸部の外周に形成されたゼネバピンと、前記小径軸部の径方向外側に配置された前記ロータの回転量を規定するゼネバ歯車とを備え、
    前記ゼネバ歯車は、前記ゼネバピンが挿入される歯溝部と、前記ゼネバピンと係合して前記ゼネバ歯車を回転させる歯部と、周方向において前記歯溝部と前記歯部との両側に配置され前記ロータの回転を阻止する度当たりとを備えていることを特徴とする請求項16に記載のバルブ装置。
    The rotation restricting mechanism for the rotor includes a Geneva pin formed on an outer periphery of the small-diameter shaft portion, and a Geneva gear that defines a rotation amount of the rotor disposed on the radially outer side of the small-diameter shaft portion,
    The Geneva gear is disposed on both sides of the tooth groove portion and the tooth portion in the circumferential direction, the tooth groove portion into which the Geneva pin is inserted, the tooth portion that engages with the Geneva pin and rotates the Geneva gear, and the rotor. The valve device according to claim 16, further comprising: a degree for preventing rotation of the valve.
  18.  前記第2支持部材は、前記密閉ケース内を、前記第1ケース部側の空間と前記第2ケース部側の空間とに区画しており、前記第2支持部材には、前記第1ケース部側の空間と、前記第2ケース部側の空間とを連通させる連通穴が設けられていることを特徴とする請求項12に記載のバルブ装置。 The second support member divides the inside of the sealed case into a space on the first case portion side and a space on the second case portion side, and the second support member includes the first case portion. 13. The valve device according to claim 12, wherein a communication hole that communicates a space on the side and a space on the second case portion side is provided.
  19.  前記第2支持部材には、前記第1ケース部と前記第2ケース部のうちの少なくとも一方に係合して、前記第2支持部材を回り止めする係合部が設けられていることを特徴とする請求項12から請求項18の何れか一項に記載のバルブ装置。 The second support member is provided with an engaging portion that engages with at least one of the first case portion and the second case portion to prevent the second support member from rotating. The valve device according to any one of claims 12 to 18.
PCT/JP2013/078959 2012-10-31 2013-10-25 Valve device WO2014069361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012241019A JP6080498B2 (en) 2012-10-31 2012-10-31 Valve device
JP2012-241019 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069361A1 true WO2014069361A1 (en) 2014-05-08

Family

ID=50627269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078959 WO2014069361A1 (en) 2012-10-31 2013-10-25 Valve device

Country Status (2)

Country Link
JP (1) JP6080498B2 (en)
WO (1) WO2014069361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671070A1 (en) 2018-12-20 2020-06-24 Danfoss A/S Valve, in particular expansion valve
EP4234996A1 (en) * 2022-02-28 2023-08-30 Fujikoki Corporation Electric valve

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124315A (en) * 2018-01-18 2019-07-25 株式会社不二工機 Motor-operated valve
JP7148381B2 (en) * 2018-12-10 2022-10-05 浜名湖電装株式会社 Flow control valve and evaporative fuel processor
EP3671071A1 (en) * 2018-12-20 2020-06-24 Danfoss A/S Valve, in particular expansion valve
EP3671073A1 (en) * 2018-12-20 2020-06-24 Danfoss A/S Electric expansion valve
KR102141501B1 (en) 2018-12-20 2020-08-05 (주)현대케피코 Valve apparatus and manufacturing method of the same
KR102487579B1 (en) * 2020-11-19 2023-01-12 대동모벨시스템 주식회사 Rotary solenoid actuator for exhausting foreign matters used in hydrogen fuel cell vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108228A (en) * 1997-10-01 1999-04-20 Saginomiya Seisakusho Inc Motor-driven control valve
JP2001221359A (en) * 1999-11-24 2001-08-17 Hansen Technologies Corp Hermetically sealed motor driven valve
JP2007024274A (en) * 2005-07-21 2007-02-01 Mikuni Corp Valve device
JP2010281422A (en) * 2009-06-08 2010-12-16 Panasonic Corp Cutoff valve flow passage unit
JP2011163376A (en) * 2010-02-05 2011-08-25 Fuji Koki Corp Motor-operated valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191255A (en) * 1985-02-19 1986-08-25 Nippon Parusumootaa Kk Pulse motor for electron control expansion valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108228A (en) * 1997-10-01 1999-04-20 Saginomiya Seisakusho Inc Motor-driven control valve
JP2001221359A (en) * 1999-11-24 2001-08-17 Hansen Technologies Corp Hermetically sealed motor driven valve
JP2007024274A (en) * 2005-07-21 2007-02-01 Mikuni Corp Valve device
JP2010281422A (en) * 2009-06-08 2010-12-16 Panasonic Corp Cutoff valve flow passage unit
JP2011163376A (en) * 2010-02-05 2011-08-25 Fuji Koki Corp Motor-operated valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671070A1 (en) 2018-12-20 2020-06-24 Danfoss A/S Valve, in particular expansion valve
EP4234996A1 (en) * 2022-02-28 2023-08-30 Fujikoki Corporation Electric valve

Also Published As

Publication number Publication date
JP6080498B2 (en) 2017-02-15
JP2014092172A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP6080498B2 (en) Valve device
JP6278684B2 (en) Valve body drive device
JP4303162B2 (en) Actuator
WO2017208785A1 (en) Valve device
KR102189050B1 (en) Motor and valve drive device
JP2020056467A (en) Flow regulating valve
JP2017180639A (en) Seal structure and motor valve
JP6307493B2 (en) Valve device
JP2008261432A (en) Valve element opening/closing device
JP2008261433A (en) Valve element opening/closing device
JP4522833B2 (en) Needle valve
JP7226796B2 (en) electric valve
JP5707073B2 (en) Motorized valve
JP2004239428A (en) Motor operated valve
JP2008261441A (en) Flow control valve
JP4728108B2 (en) Linear actuator
JP6192330B2 (en) Valve body drive device
JP5455702B2 (en) Linear actuator and valve device using linear actuator
WO2020045516A1 (en) Vehicular drive transmission device and oil passage formation unit
US20230243432A1 (en) Valve device
CN213451841U (en) Valve device
JP2010249148A (en) Disk valve
JP7244248B2 (en) Actuator fixing structure
CN220904617U (en) Valve device and thermal management system
JP4796452B2 (en) Valve body opening / closing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851630

Country of ref document: EP

Kind code of ref document: A1