WO2014068875A1 - 分電盤及び電力制御方法 - Google Patents

分電盤及び電力制御方法 Download PDF

Info

Publication number
WO2014068875A1
WO2014068875A1 PCT/JP2013/006121 JP2013006121W WO2014068875A1 WO 2014068875 A1 WO2014068875 A1 WO 2014068875A1 JP 2013006121 W JP2013006121 W JP 2013006121W WO 2014068875 A1 WO2014068875 A1 WO 2014068875A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
distribution board
switch
state
Prior art date
Application number
PCT/JP2013/006121
Other languages
English (en)
French (fr)
Inventor
伊藤 基志
遠矢 正一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380004556.1A priority Critical patent/CN104011952B/zh
Priority to US14/368,612 priority patent/US9825487B2/en
Priority to JP2014504900A priority patent/JP6152844B2/ja
Publication of WO2014068875A1 publication Critical patent/WO2014068875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a distribution board for supplying AC power supplied from a system power supply to a load, and a power control method in the distribution board.
  • Patent Document 1 discloses a self-sustained operation support device that allows a fuel cell system to operate independently during a power failure.
  • the distribution board In a state where power is not supplied from the system power supply (power failure state), the distribution board needs to be controlled to switch to a self-supporting state that does not use the power supplied from the system power supply. However, there is a problem that it is not possible to appropriately detect a power failure state and switch to a self-sustaining state.
  • the present invention provides a distribution board or the like that appropriately detects a power failure state and switches to a self-sustaining state.
  • a distribution board includes a power line for supplying AC power supplied from a system power source to a load, a power storage unit that includes one or more storage batteries and is electrically connected to a predetermined load.
  • a detection unit that detects a power failure state in which power is not supplied from the system power source, a first switch provided between the system power source and the power storage unit, and controls at least the first switch A control unit, and when the detection unit detects the power failure state, the control unit cuts off the electrical connection between the power storage unit and the system power supply by turning off the first switch.
  • the power storage unit discharges the one or more storage batteries to supply power to the control unit to drive the control unit, and supplies the discharge power of the one or more storage batteries to the predetermined load. .
  • the distribution board of the present invention can automatically detect a power failure and switch to a self-sustaining state. In addition, it is possible to expand the use of electric power for operating the distribution board.
  • FIG. 1 is a functional block diagram of a distribution board in the assumed technology.
  • FIG. 2 is a first example of a functional block diagram of the distribution board in the first embodiment.
  • FIG. 3 is a second example of a functional block diagram of the distribution board in the first embodiment.
  • FIG. 4 is a first example of a functional block diagram of the distribution board in the second embodiment.
  • FIG. 5 is a functional block diagram showing the configuration of the storage battery in the second embodiment.
  • FIG. 6 is a second example of a functional block diagram of the distribution board in the second embodiment.
  • FIG. 7 is a diagram illustrating a first example of a determination table of the detection state of the distribution board in the second embodiment.
  • FIG. 8 is a diagram illustrating a second example of the determination table of the detection state of the distribution board in the second embodiment.
  • FIG. 9 is a flowchart of the power control method for the distribution board in the second embodiment.
  • FIG. 10 is a flowchart of the method for determining the detection state of the distribution board in the second embodiment.
  • FIG. 11 is an example of a functional block diagram of the distribution board in the third embodiment.
  • FIG. 12 is a flowchart of the power control method for the distribution board in the third embodiment.
  • FIG. 1 is a functional block diagram of the distribution board 100 in the assumed technology.
  • the distribution board 100 in the assumed technology is supplied with power from each of the system power supply 122 and the power supply device 126, and supplies the supplied power to the load 124.
  • distribution board 100 supplies power supplied from each of system power supply 122 and power supply device 126 to load 124.
  • power supplied from the power supply device 126 is supplied to the load 124.
  • control is performed so that the power supplied from the power supply device 126 is not output (reverse flow) to the system power supply 122. That is, in the power failure state, the distribution board 100 needs to be controlled to switch to a self-supporting state that does not use the power supplied from the system power supply 122.
  • the distribution board 100 in the assumed technology includes a detection unit 111, a current transformer 112, a self-supporting switch 113, a control unit 114, and a switch 116.
  • the detection unit 111 detects a power failure state based on the measured value of the current transformer 112 or the state (on or off) of the self-supporting switch 113.
  • the current transformer 112 is a power sensor that measures a current passing through the current transformer 112 and outputs a measured value (current value). In the power failure state, the current passing through the current transformer 112 is zero, and in the supply state, the current passing through the current transformer 112 is a value different from zero. That is, the power failure state or the supply state is detected based on whether or not the current value measured by the current transformer 112 is zero.
  • the self-supporting switch 113 is a switch for the user to specify whether or not it is in a power failure state.
  • the self-supporting switch 113 can be operated by the user. For example, it is set on in a power outage state and off in a supply state.
  • the user of the distribution panel 100 notices that power is not supplied from the system power supply 122, the user sets the self-supporting switch 113 to ON, and if the user notices that power is supplied from the system power supply 122, the self-supporting switch 113 is set off.
  • the control unit 114 makes the power line connecting the system power source 122 and the load 124 non-conductive when the detection unit 111 detects a power failure state. Specifically, when the detection unit 111 detects a power failure state, the control unit 114 turns off the switch 116, thereby turning off the power line connecting the system power supply 122 and the load 124.
  • the switch 116 is disposed on a power line that connects the system power supply 122 and the load 124. When the switch 116 is turned on, the power line is turned on, and when the switch 116 is turned off, the power line is turned off.
  • the current transformer 112 is required to have high accuracy. Therefore, the distribution board 100 is expensive. Further, since the self-supporting switch 113 is operated by the user, it is difficult for the distribution panel 100 to detect a power failure state and automatically perform control to switch to the operation at the time of the power failure. That is, in the assumed technology, there is a problem that the power failure state cannot be detected properly by a method realized at a low cost.
  • Patent Document 1 discloses a self-sustained operation support device that allows a fuel cell system to operate independently in a power failure state. However, there is no mention of a method for appropriately detecting a power failure state at a low cost.
  • the distribution board when the distribution board is provided with a storage battery in order to operate the distribution board in a self-supporting state, there is a problem that the usage of the power of the storage battery is limited.
  • a distribution board includes a power line for supplying AC power supplied from a system power supply to a load, and one or more storage batteries, and is provided with a predetermined load.
  • a power storage unit that is electrically connected; a detection unit that detects a power failure state in which power is not supplied from the system power source; and a first switch provided between the system power source and the power storage unit.
  • a control unit that controls at least the first switch, and when the detection unit detects the power failure state, the control unit turns off the first switch to turn off the power storage unit and the system power supply.
  • the power storage unit discharges the one or more storage batteries, thereby supplying power to the control unit to drive the control unit and discharging the one or more storage batteries. Power to the predetermined negative Supplied to.
  • the power of the storage battery provided in the distribution board can be used to control the distribution board and to supply a predetermined load.
  • the power storage unit further includes a DC terminal electrically connected to the control unit and the one or more storage batteries, an AC terminal electrically connected to the predetermined load and the first switch, A DC / AC inverter that converts direct current power output from the one or more storage batteries into alternating current power and outputs the alternating current power to the alternating current terminal, and the power storage unit receives from the one or more storage batteries during a power failure
  • the output DC power is supplied from the DC terminal to the control unit, the DC power output from the one or more storage batteries is converted into AC power in the DC / AC inverter, and the AC power is converted from the AC terminal.
  • the predetermined load may be supplied.
  • DC power can be supplied to control the distribution board, and AC power can be supplied to a predetermined load.
  • the DC / AC inverter further converts AC power into DC power to convert DC power and AC power bidirectionally, and when power is supplied from the system power supply to the distribution board,
  • the control unit turns on the first switch to electrically connect the AC terminal and the system power supply, and the power storage unit receives the system via the AC terminal in the DC / AC inverter.
  • the one or more storage batteries may be charged by converting AC power from a power source into DC power and supplying the DC power.
  • the control unit When power is supplied from the system power supply to the distribution board, the control unit turns on the first switch to electrically connect the AC terminal and the system power supply, and the power storage unit However, the AC power from the system power supply received via the AC terminal is converted to DC power in the DC / AC inverter, and the DC power is supplied to the control unit via the DC terminal,
  • the control unit may be driven by receiving the power supply of the DC power.
  • DC power when power is supplied from the system power supply to the distribution board, DC power can be supplied to control the distribution board.
  • the detection unit further detects power recovery indicating that the power failure state has changed to a supply state in which power is supplied from the system power supply, and the power storage unit is configured so that the detection unit recovers. For a predetermined period after detecting electricity, power may be supplied from the power storage unit to the control unit according to the voltage of the system power supply.
  • the power storage unit functions as a smoothing capacitor during power recovery.
  • a large-capacity capacitor can be separately provided to prevent the number of parts in the distribution board from increasing.
  • a normal load and an emergency load are connected to the distribution board, the predetermined load is the emergency load, and the power storage unit discharges electric power from the power storage unit during a power failure.
  • the emergency load may be supplied.
  • a normal load and an emergency load are connected to the distribution board, the predetermined load is the emergency load, and the control unit receives power from the system power supply.
  • the control unit receives power from the system power supply.
  • power from the system power supply may be supplied to the normal load.
  • the distribution board when the distribution board receives power supply from the system power supply, the power from the system power supply can be supplied to the normal load.
  • the distribution board further supplies AC power supplied from at least one power supply device provided outside to the load.
  • the power supply device includes a first power output terminal and a second power. An output terminal is provided, and power is supplied from the first power output terminal to the distribution board at the time of a power failure, and power is output from the second power output terminal to the distribution board at a normal time.
  • a second switch for switching the power supply device and the predetermined load between conduction and non-conduction, wherein the first switch further conducts the system power supply and the predetermined load. Switching between non-conduction and non-conduction, and the detection unit receives from the power supply device a power failure notification signal indicating that the power supply device has detected that power is not supplied from the system power supply.
  • the control unit turns off the first switch to shut off the system power supply, and turns on the second switch to turn on the second switch.
  • the first power output terminal of the power supply device is electrically connected to the predetermined load, and the second power output terminal of the power supply device and the predetermined load are connected via the first switch.
  • the first switch is on, the power supply device and the predetermined load are electrically connected.
  • the first switch is off, the power supply device and the predetermined switch are connected.
  • the load may be electrically disconnected.
  • first switch and the second switch may be configured by a single switch element.
  • first switch and the second switch may be composed of two different switch elements.
  • the distribution board can detect that the power supply device including the high-accuracy power sensor has detected a power outage, through the detection of the power outage. And if a power failure state is detected, it can control to supply the electric power which an electric power supply apparatus supplies to a load by switching the switch in a distribution board. Therefore, a power failure can be appropriately detected by a method realized at a low cost.
  • the distribution board is further connected to the power line at two or more connection points where the two or more power supply devices are different from each other, and the detection unit is connected to the power line among the two or more power supply devices.
  • the power failure state may be detected by receiving the power failure notification signal from a power supply device whose connection point is closest to the system power supply.
  • the detection unit has a reliability determined in advance for each of the power supply devices based on an attribute of the power supply device among the plurality of power supply devices.
  • the power failure state may be detected by receiving the power failure notification signal from the highest power supply device.
  • the detection unit further detects a power recovery indicating that the power failure state has changed to a supply state in which power is supplied from the system power supply, and the control unit is configured so that the detection unit When power recovery is detected, the second switch is turned off to turn off the connection between the first power output terminal of the power supply device and the predetermined load, and the first switch is turned on to connect the system.
  • a power source and the predetermined load may be electrically connected.
  • the power supplied from both the system power supply and the power supply device is switched by switching the first switch and the second switch in the distribution board. It can be controlled to supply a load. Therefore, it is possible to appropriately detect power recovery by a method realized at low cost.
  • the detection unit detects the power recovery by receiving from the power supply device a power recovery notification signal indicating that the power supply device has detected that power is supplied from the system power supply. May be.
  • the distribution board can detect that the power supply device including the high-precision power sensor is in a supply state through detection of power recovery. Therefore, power recovery can be detected with higher accuracy.
  • the detection unit sends a power recovery notification signal indicating that the power supply device has detected that power is supplied from the system power supply from a power company that manages power supply of the system power supply via a communication line.
  • the power recovery may be detected by receiving the signal.
  • the distribution board can detect the supply state based on the power recovery notification signal notified from the electric power company.
  • the power recovery notification signal notified from the electric power company is information from the supply source of the system power supply and is accurate information. Power recovery can be detected with higher accuracy.
  • a power control method is a power control method in a distribution board that supplies AC power supplied from a system power supply to a load, in a state where power is not supplied from the system power supply.
  • a detection step for detecting a certain power failure state a control step for controlling at least a first switch provided between the power storage unit including one or more storage batteries and electrically connected to a predetermined load, and the system power supply
  • the control step cuts off the electrical connection between the power storage unit and the system power supply by turning off the first switch, The discharge power of the one or more storage batteries is controlled so as to supply power to the distribution board and to the predetermined load.
  • a recording medium recording medium such as a system, method, integrated circuit, computer program, or computer-readable CD-ROM, and the system, method, integrated circuit, You may implement
  • FIG. 2 is a functional block diagram of distribution board 200 in the present embodiment.
  • the distribution board 200 in the present embodiment is supplied with power from each of the system power supply 122 and the power supply device 126 and supplies the supplied power to the load 124.
  • distribution board 200 supplies both power supplied from system power supply 122 and power supply device 126 to load 124.
  • the power supplied from the power supply device 126 is supplied to the load 124.
  • control is performed so that the power supplied from the power supply device 126 is not output (reverse flow) to the system power supply 122. That is, when the power supply from the system power supply 122 is stopped (power failure), the distribution board 200 automatically detects the power failure, disconnects from the system power supply 122, and the power supply device. Is supplied to the load 124.
  • the distribution board 200 in the present embodiment includes a detection unit 212, a control unit 214, and a switch 216.
  • a power line (first power line) that is connected to the system power supply 122 and supplies the power supplied from the system power supply 122 to the load 124, and the power supplied from the external power supply device 126 is supplied to the load 124.
  • a power line (second power line) for supply.
  • the power supply device 126 provided outside includes an output terminal a for supplying power to the first power line and an output terminal b for supplying power to the second power line.
  • the detection unit 212 detects a power failure state based on a power failure notification signal transmitted from the power supply device 126.
  • the control unit 214 turns off the first power line connecting the system power supply 122 and the load 124. Specifically, when the detection unit 212 detects a power failure state, the control unit 214 causes the switch 216 to turn off the first power line and turn on the second power line.
  • the switch 216 is connected to each of the system power supply 122, the load 124, and the power supply device. That is, the switch 216 is disposed on the first power line and the second power line. Then, the state is switched between a state in which the first power line is turned on and the second power line is turned off, and a state in which the first power line is turned off and the second power line is turned on.
  • the switch 216 may be configured by one switch element as described above, or may be configured by two or more switch elements.
  • the switch 216 includes a switch (first switch) for switching the first power line to be conductive or non-conductive, and a second power line. And a switch (second switch) for switching between conduction and non-conduction.
  • the function of the switch 216 is to switch between two states, a state in which the first switch is turned on and the second switch is turned off, and a state in which the first switch is turned off and the second switch is turned on. Equivalent to.
  • the external power supply device 126 may be a plurality of power supply devices. An example including a plurality of power supply devices is shown in FIG.
  • FIG. 3 is a second example (distribution panel 300) of the functional block diagram of the distribution panel in the present embodiment.
  • there are two power supply devices 126A and 126B and each of the power supply devices 126A and 126B is connected to the second power line.
  • each of the power supply devices 126A and 126B is connected to the second power line at a connection point different from each other.
  • the detection unit 112 receives a power failure notification signal from each of the power supply devices 126A and 126B, and detects a power failure state based on the power failure notification signal.
  • the number of power supply devices is not limited to two, and may be three or more.
  • a power failure state is detected by determining as follows.
  • a power supply device with high reliability detects a power failure.
  • the detection unit 112 when the detection unit 112 receives a power failure notification signal from the power supply device having the highest reliability predetermined based on the attribute of the power supply device for each of the power supply devices Detecting power outages.
  • the reliability of the power supply device indicates the degree of accuracy when the power supply device detects a power failure state.
  • the reliability is determined in advance based on the attribute of the power supply apparatus.
  • the reliability may be, for example, good performance (height) of the power supply device. That is, the higher the performance of the power supply device, the higher the reliability may be.
  • the reliability may be, for example, the date of manufacture. In other words, the power supply device whose manufacturing date is closer to the current time may have higher reliability.
  • the reliability may be, for example, the severity of acquired authentication. That is, the power supply apparatus that has acquired more strict authentication may have higher reliability.
  • the power supply device closest to the system power supply detects a power failure.
  • the detection unit 312 receives a power failure notification signal from the power supply device whose connection point with the second power line is closest to the system power supply 122, the power failure state is detected.
  • the current value near the system power source 122 includes a relatively small amount of noise, and the current value far from the system power source includes a relatively large amount of noise. It is considered that among the plurality of power supply devices, the power supply device whose connection point with the second power line is closer to the system power supply 122 has less noise and more appropriately detects the power failure state.
  • the power supply apparatus with the highest reliability is stopped due to maintenance or the like, the power supply apparatus with the next highest reliability is set to detect a power failure. That is, among the plurality of power supply devices, the power supply device having the highest reliability among those performing the power supply operation detects a power failure.
  • the detection unit 312 detects the power failure state.
  • the predetermined value may be, for example, half of the number of power supply devices.
  • the predetermined value may be 1/4 of the number of power supply devices.
  • the detection unit 112 detects a power failure state when a power failure notification signal is received from fewer power supply devices. That is, by setting the predetermined value to a small value, it becomes possible to detect the power failure state sensitively.
  • the reliability of the power supply device can also be considered for this method. Assume that each of the power supply devices has 1 to 5 points (three power supply devices with an average reliability), and totals the number of power supply devices that are the transmission source of the power failure notification signal received by the detection unit 112 When the value exceeds a predetermined value, the detection unit 312 may detect a power failure state. If it does in this way, both the number of the power supply apparatuses which detected the power failure state and transmitted the power failure notification signal and the reliability of the power supply apparatus can be considered.
  • the distribution board detects that the power supply device including the high-accuracy power sensor has detected a power outage, thereby detecting a power outage state. Can do. And if a power failure state is detected, it can control to supply the electric power which an electric power supply apparatus supplies to a load by switching the switch in a distribution board. Therefore, a power failure can be appropriately detected by a method realized at a low cost.
  • FIG. 4 is a first example (distribution panel 400) of a functional block diagram of the distribution panel in the present embodiment.
  • a distribution board 400 shown in FIG. 4 is a more specific configuration of the distribution board 300 shown in FIG. 3.
  • the distribution board 400 is supplied with power from the system power supply 122, a power conditioner (PCS) 426A that is a power supply device, and a fuel cell (FC) 426C that is a power supply device. Supply to loads 424A, 424B, 424C and 424D. In a state where power is supplied from the system power supply 122 (supply state), the distribution board 400 supplies power supplied from the system power supply 122 and the power supply devices (PCS 426A and FC426C) to the loads 424A, 424B, 424C and Supplied to 424D.
  • PCS power conditioner
  • FC fuel cell
  • the distribution board 400 When the power supply from the system power supply 122 is stopped (power failure), the distribution board 400 automatically detects the power failure, disconnects the connection with the system power supply 122, and the power supply device. Is supplied to the loads 424C and 424D. Further, when the distribution board 400 changes from the power failure state to the supply state (power recovery), the distribution board 400 is connected to the system power source 122 and supplies power supplied from the power supply device to the loads 424A, 424B, 424C, and 424D. To supply.
  • the distribution board 400 includes a detection unit 412, a control unit 414, a switch 416A, a switch 416B and a switch 416C, a storage battery 442, current transformers 432, 434 and 436, and a normal breaker.
  • a group 452 and a self-supporting breaker group 454 are provided.
  • the detection unit 412 detects a power failure state based on a power failure notification signal transmitted from the power supply devices (PCS 426A and FC426C). In addition, the detection unit 412 receives a power failure notification signal or a power recovery notification signal from the power company that manages the power supply of the system power supply 122 through the notification device 429 outside the distribution board 400.
  • the control unit 414 makes the power line connecting the system power supply 122, the load 424C, and the load 424D non-conductive, the power supply device (PCS 426A and FC 426C), the load 424C, The power line connecting 424D is made conductive.
  • the switch 416A is turned off, the switch 416B is turned on, and the switch 416C is set to b (independent side).
  • a PCS operation signal that is a signal for controlling the PCS 426A is transmitted to the PCS 426A.
  • the PCS operation signal is a signal for notifying the PCS 426A that it is in a supply state or a power outage state.
  • the switch 416A is a switch that switches between the independent breaker group 454 and the system power supply 122 being conductive or nonconductive.
  • the switch 416B is a switch for switching whether or not to output power (independent output) from the PCS 426A.
  • the switch 416C is a switch for switching whether the output destination of the power output from the FC 426C is the system side or the independent side.
  • switches 416A, 416B, and 416C correspond to the switch 116 in the first embodiment.
  • the storage battery 442 is a power source for supplying power to the control unit 414 and the detection unit 412.
  • the storage battery 442 can also supply power to the loads 424C and 424D through a group of self-supporting breakers.
  • FIG. 5 is a functional block diagram showing the configuration of the storage battery 442 in the present embodiment.
  • the storage battery 442 is configured as a power storage unit or power storage device including one or more storage batteries, and includes a storage battery 481, a DC terminal 482, an AC terminal 483, and a DC / AC inverter 484 as shown in FIG. ing.
  • Storage battery 481 accumulates supplied power and discharges the accumulated power.
  • DC terminal 482 is electrically connected to control unit 414, detection unit 412, and storage battery 481.
  • the AC terminal 483 is electrically connected to the loads 424C and 424D, the switch 416A, the switch 416B, and the switch 416C through a self-supporting breaker group.
  • DC / AC inverter 484 converts DC power and AC power bidirectionally. Specifically, DC / AC inverter 484 converts DC power output from storage battery 481 to AC power, and outputs AC power to AC terminal 483. Further, the DC / AC inverter 484 converts AC power input from the AC terminal 483 into DC power and supplies this DC power to the storage battery 481.
  • the storage battery 442 switches the direction of power conversion with respect to the DC-AC inverter 484 depending on whether or not the detection unit 412 detects a power failure. Specific examples of this operation will be described separately when power is supplied from the system power supply 122 to the distribution board 400, when there is a power outage, and when power is restored from the power outage.
  • the control unit 414 When power is supplied from the system power supply 122 to the distribution board 400, the control unit 414 turns on the switch 416A, turns off the switch 416B, and sets the switch 416C to a (normal side). Thereby, AC terminal 483 and system power supply 122 are electrically connected.
  • the storage battery 442 converts AC power from the system power supply 122 received via the AC terminal 483 into DC power, supplies this DC power to the storage battery 481, and charges the storage battery 481. To do.
  • the storage battery 442 converts, in the DC / AC inverter 484, AC power from the system power supply 122 received via the AC terminal 483 into DC power, and supplies the DC power to the control unit 414 via the DC terminal 482. .
  • the control unit 414 is driven by receiving DC power.
  • control unit 414 When in a power failure state, the control unit 414 turns off the switch 416A, turns on the switch 416B, and sets the switch 416C to b (independent side). Thereby, AC terminal 483 and system power supply 122 are not electrically connected.
  • the storage battery 442 supplies the DC power output from the storage battery 481 to the control unit 414 from the DC terminal 482. Further, the storage battery 442 converts the DC power output from the storage battery 481 into AC power in the DC / AC inverter 484, and supplies this AC power to the loads 424C and 424D from the AC terminal 483.
  • the control unit 414 turns on the switch 416A, turns off the switch 416B, and turns off the switch 416C. Side). Thereby, AC terminal 483 and system power supply 122 are electrically connected.
  • the storage battery 442 supplies power from the storage battery 481 to the control unit 414 according to the voltage of the system power supply 122 for a predetermined period after the power recovery is detected by the detection unit 412. This is because it generally takes time for the voltage of the system power supply 122 to stabilize immediately after the power recovery. That is, the voltage of the system power supply 122 is unstable for a predetermined time after the power is restored. Therefore, a case where a desired current cannot be supplied to the control unit 414 occurs.
  • the power supply to the control unit 414 is stabilized by supplying power from the storage battery 481 to the control unit 414 according to the voltage of the system power supply 122.
  • the storage battery 442 functions as a smoothing capacitor during power recovery. Thereby, for example, it is possible to prevent an increase in the number of parts in the distribution board 400 by separately providing a large-capacity capacitor.
  • control part 414 can be acquired via the signal wire
  • the single DC / AC inverter 484 is configured to convert DC power and AC power bidirectionally, but the present invention is not limited to this.
  • a DC / AC inverter that converts DC power to AC power and an AC / DC converter that converts AC power to DC power may be provided separately.
  • the power conversion in the DC / AC inverter and the AC / DC converter is turned on or off depending on the detection result of whether or not the detection unit 412 is a power failure. That is, when power is supplied from distribution power supply 122 to distribution board 400, power conversion in the DC / AC inverter is turned off and power conversion in the AC / DC converter is turned on. On the other hand, in a power failure state, power conversion in the DC / AC inverter is turned on, and power conversion in the AC / DC converter is turned off.
  • Current transformers 432, 434 and 436 are sensors for measuring current.
  • the normal breaker group 452 is a set of breakers that cut off a circuit when an overcurrent or a leakage current is detected, and is connected to a normal load.
  • the normal breaker group 452 includes one or more breakers (462 and 464).
  • the normal breaker group 452 is supplied with power in the supply state.
  • the self-sustained breaker group 454 is a set of breakers that cut off the circuit when an overcurrent or a leakage current is detected, and is connected to an emergency load.
  • the free-standing breaker group 454 includes one or more breakers (472 and 474).
  • the self-sustained breaker group 454 is supplied with power in the supply state and the power failure state.
  • a photovoltaic power generation panel (PV panel) 427 and a storage battery 428 are connected to the PCS 426A.
  • the PCS 426A adjusts the power supplied to the storage battery 428 or the power supplied from the storage battery 428. Specifically, the PCS 426A converts the power supplied to the storage battery 428 from alternating current to direct current.
  • the PCS 426A converts the power supplied from the storage battery 428 from direct current to alternating current.
  • the PCS 426A includes two terminals (a and b) for supplying power.
  • the PCS 426A supplies power from the terminal a in the supply state, and supplies power from the terminal b in the power failure state.
  • the PCS 426A detects a supply state or a power failure state by receiving a PCS operation signal transmitted from the control unit 414, and switches a terminal for supplying power.
  • the PV panel 427 and the storage battery 428 are connected to the PCS 426A.
  • one power conditioner is connected to each of the PV panel 427 and the storage battery 428. Also good. The above configuration will be described with reference to FIG.
  • FIG. 6 is a second example (distribution panel 500) of the functional block diagram of the distribution board in the present embodiment.
  • FIG. 6 is a distribution board 500 in the case where one power conditioner (PV-PCS 526A and SB-PCS 526B, respectively) is connected to each of the PV panel 427 and the storage battery 428.
  • one power conditioner PV-PCS 526A and SB-PCS 526B, respectively
  • the distribution board 500 is newly provided with a current transformer 433 with respect to the distribution board 400 shown in FIG.
  • the distribution board 500 includes a detection unit 512 instead of the detection unit 412 in the distribution board 400.
  • the current transformer 433 is a power sensor that measures a current passing through the current transformer 433 and outputs a measured value (current value). The current transformer 433 notifies the measured value to the PV-PCS 526A.
  • the detection unit 512 detects a power failure state based on a power failure notification signal transmitted from each of the power supply devices (PV-PCS 526A, SB-PCS 526B, and FC 426C).
  • the control unit 514 transmits a PV-PCS operation signal, which is a signal for controlling the PV-PCS 526A, to the PCS 426A.
  • the control unit 514 transmits an SB-PCS operation signal, which is a signal for controlling the SB-PCS 526B, to the SB-PCS 526B.
  • the detection unit 512 receives a power failure notification signal or a power recovery notification signal from the power company that manages the power supply of the system power supply 122 through the notification device 429 outside the distribution board 500.
  • control unit 514 in the configuration of the distribution board 500 will be described in more detail.
  • FIG. 7 is a diagram showing a first example of a determination table of the detection state of the distribution board in the present embodiment.
  • FIG. 7 shows a power failure determination method of the control unit 514 when the reliability of the SB-PCS 526B, the PV-PCS 526A, the FC 426C, and the current transformer 432 is high in this order.
  • the detection state includes a supply state where power is supplied (described as “supply” in FIG. 7), and a power outage state where power is not supplied (“power outage” in FIG. 7).
  • the control unit 514 determines that the power failure state has occurred.
  • the control unit 514 determines that the power failure state is present.
  • the control unit 514 determines that the power failure state is present.
  • the control unit 514 determines that the power outage state has occurred. To do.
  • the control unit 514 It is determined that it is in a state.
  • the control unit 514 determines that it is in a power failure state.
  • the control unit 514 determines with it being a supply state.
  • the determination using the power failure notification signal transmitted by the current transformer 432 may not be performed. In that case, a determination similar to the above may be performed using a portion excluding the column 611 in FIG.
  • control unit 514 determines that it is in a power failure state.
  • FIG. 8 is a diagram showing a second example of the determination table of the distribution board detection state in the present embodiment.
  • FIG. 8 shows a power failure determination method of the control unit 514 when PV-PCS 526A, SB-PCS 526B, FC 426C, and current transformer 432 are connected to the power line in this order at a connection point close to the power system. .
  • the control unit 514 determines that the power failure state has occurred.
  • the control unit 514 determines that the power failure state is present.
  • the control unit 514 determines that the state is a power failure state.
  • the control unit 514 Judge that there is.
  • the control unit 514 determines that it is in a power failure state.
  • the control unit 514 Judge that there is.
  • the detection unit 512 has received that the detection state of the PV-PCS 526A and the SB-PCS 526B is unknown, the FC 426C has detected the supply state, and the current transformer 432 is in a state other than the power failure state. In this case, the control unit 514 determines that the supply state is present.
  • the SB-PCS 526B detects the supply state, and the FC 426C and the current transformer 432 are in a state other than the power failure state, The control unit 514 determines that the supply state is present.
  • the control unit 514 When the detection unit 512 receives that the PV-PCS 526A detects the supply state and the SB-PCS 526B, the FC 426C, and the current transformer 432 are in a state other than the power failure state, the control unit 514 is in the supply state. Is determined.
  • the determination using the power failure notification signal transmitted by the current transformer 432 may not be performed. In that case, a determination similar to the above may be performed using a portion excluding the column 711 and the row 712 in FIG.
  • FIG. 9 is a flowchart of the power control method for the distribution board in the present embodiment.
  • the control state of the distribution board is set to the initial state (step S801).
  • the detection state (power failure state, supply state, or unknown) is determined (step S802). This determination method will be described later in detail.
  • step S803 the process branches based on the determination result of the detection state in step S802 (step S803).
  • the self-supporting state is a state in which the distribution board is supplied with power from at least one of the PV-PCS 526A, SB-PCS 526B, and FC 426C and supplies the supplied power to the self-sustaining breaker group 454. . And when it determines with having already been in the independent state, it moves to step S802.
  • step S804 If it is determined in step S804 that it is not in a self-supporting state, the switches 416A, 416B, and 416C are switched in order to configure a self-supporting circuit in the distribution board (step S805). Specifically, the control unit 514 turns off the switch 416A (SW1), turns on the switch 416B (SW2), and sets the switch 416C (SW3) to b (self-supporting side).
  • the power conditioners (PV-PCS 526A and SB-PCS 526B) are activated in the independent mode (step S806).
  • control state of the distribution board is changed to an independent state (step S807).
  • step S807 When the process of step S807 is completed, the process proceeds to step S802.
  • step S811 it is determined whether or not the control state of the distribution board is already in the system state.
  • the grid state is that the distribution board is supplied with power from the system power supply 122 and at least one of the PV-PCS 526A, SB-PCS 526B, and FC 426C, and the supplied power is supplied to the normal breaker group 452 and the independent breaker group 454. It is the state which is supplying to. And when it determines with having already been in a system
  • step S811 When it is determined in step S811 that the system state is not established, the switches 416A, 416B, and 416C are switched to configure the system state circuit in the distribution board (step S812). Specifically, the control unit 514 turns on the switch 416A (SW1), turns off the switch 416B (SW2), and sets the switch 416C (SW3) to a (normal side).
  • the power conditioners (PV-PCS 526A and SB-PCS 526B) are activated in the system mode (step S813).
  • control state of the distribution board is changed to the system state (step S814).
  • step S814 When the process of step S814 is completed, the process proceeds to step S802.
  • the control state (independent state or system state) of the distribution board can be changed based on the detection state (power failure state or supply state) of the distribution board.
  • FIG. 10 is a flowchart of a method for determining the detection state of the distribution board in the present embodiment.
  • the flowchart of the determination method shown in FIG. 10 is a detailed description of the processing in step S802 in FIG.
  • the detection unit 512 receives detection states (power failure state, supply state) in all power supplies (power supply device and system power supply 122), and determines whether or not the detected detection states match each other. 514 determines (step S901).
  • the detection part 512 receives the detection state in a power supply device by receiving the power failure notification signal etc. which are the signals transmitted when a power supply device detects a power failure state.
  • the detection part 512 receives the detection state in an electric power supply apparatus by receiving the power failure notification signal etc. which are the signals which an electric power company transmits when the system power supply 122 is in a power failure state through a communication line.
  • step S901 If it is determined in step S901 that the detection states of all the power sources are the same, the process proceeds to the distribution board detection state determination process (step S903).
  • step S901 If it is determined in step S901 that the detection states of all the power sources do not match, it is determined whether or not a predetermined time has elapsed (step S902). If it is determined that the predetermined time has not elapsed, the process proceeds to step S901. If it is determined that the predetermined time has elapsed, the process proceeds to the determination process of the distribution board detection state (step S903).
  • the predetermined time is, for example, about 1 second.
  • the detection state of all the power supplies becomes uneven because the supply of power is unstable. Even in such a case, the detection state after the instability is resolved can be received by waiting for a predetermined time to elapse.
  • step S903 The process for determining the distribution board detection state (step S903) will be described. First, when the detection states received by the detection unit 512 from each of the power supplies match and the detection state is a supply state or a power failure state, the detection state received by the detection unit 512 is defined as a detection state of the distribution board. To do.
  • the detection state of the distribution board is determined using the detection state determination table. Specifically, the detection state of the distribution board is determined using the determination table shown in FIG. 7 or FIG.
  • a power outage can be detected more accurately when a plurality of power supply devices are connected to the distribution board.
  • the noise contained in the supplied power increases as the distance from the system power supply increases, so the power supply device connected at the connection point closer to the system power supply can detect the power failure state more accurately. it can. Therefore, the power failure state can be detected more accurately.
  • the distribution board when a plurality of power supply devices are connected to the distribution board, it is possible to detect a power failure more accurately. This is because the power failure notification signal received from the power supply apparatus with higher reliability is considered to be more accurate. Therefore, the power failure state can be detected more accurately.
  • the power supplied from both the system power supply and the power supply device is controlled to be supplied to the load by switching the switch in the distribution board. can do. Therefore, it is possible to appropriately detect power recovery by a method realized at low cost.
  • the distribution board can detect that the power supply device including a high-precision power sensor is in a supply state through detection of power recovery. Therefore, power recovery can be detected with higher accuracy.
  • the distribution board can detect the supply state based on the power recovery notification signal notified from the electric power company.
  • the power recovery notification signal notified from the electric power company is information from the supply source of the system power supply and is accurate information. Power recovery can be detected with higher accuracy.
  • the suspected power outage state means a state having a high probability of being in a power outage state, although the accuracy is lower than that in the power outage state. For example, a case where “unknown” is asserted to a predetermined number or more in the determination table of FIG. 7 or FIG.
  • the distribution board In a power failure state, the distribution board needs to be controlled so that the power supplied from the power supply device is not output (reverse power flow) to the system power supply 122. Even when the probability of being in a power failure state is high, the distribution board according to the present embodiment performs control so that reverse power flow does not occur as in the power failure state. On the other hand, when not in a power failure state, the distribution board powers both the load (424A and 424B) connected to the normal breaker group 452 and the load (424C and 424D) connected to the independent breaker group 454. Supply.
  • FIG. 11 is an example of a functional block diagram of distribution board 600 in the present embodiment.
  • the functional block configuration of the distribution board in the present embodiment is newly provided with a switch 416D with respect to the functional block configuration of the second embodiment. Further, the control method (switch switching method) of the switch 416A, the switch 416B, and the switch 416C by the control unit 614 is different from that of the second embodiment.
  • switch 416A, the switch 416B, the switch 416C, and the switch 416D correspond to the switch 116 in the first embodiment.
  • the control unit 614 disconnects the power line connecting the system power supply 122 and the loads 424A, 424B, 424C, and 424D, and the power supply device (PCS 426A and FC 426C).
  • the power line connecting the loads 424A, 424B, 424C, and 424D is made conductive.
  • the control unit 614 turns on the switch 416A, turns on the switch 416B, sets the switch 416C to a (normal side), and turns off the switch 416D.
  • FIG. 12 is a flowchart of the power control method of distribution board 600 in the present embodiment.
  • steps S1001 to S1007 and S1021 to S1024 are steps S801 to S807 and S811 in the power control method in the second embodiment, respectively. Since it is the same as 814, description is abbreviate
  • the self-supporting 2 state means that the distribution board is supplied with power from at least one of the PV-PCS 526A, SB-PCS 526B, and FC 426C, and supplies the supplied power to the normal breaker group 452 and the stand-alone breaker group 454. It is a state of being. And when it determines with having already been in the self-supporting 2 state, it moves to step S1002.
  • step S1011 If it is determined in step S1011 that the self-standing 2 state is not established, the switches 416A, 416B, 416C, and 416D are switched in order to configure a self-standing 2 state circuit in the distribution board (step S1012). Specifically, the control unit 614 turns on the switch 416A (SW1), turns on the switch 416B (SW2), sets the switch 416C (SW3) to a (normal side), and turns off the switch 416D (SW4). To.
  • the power conditioners (PV-PCS 526A and SB-PCS 526B) are activated in the independent mode (step S1013).
  • control state of the distribution board is changed to the independent 2 state (step S1014).
  • step S1014 When the process of step S1014 is completed, the process proceeds to step S1002.
  • appropriate power control can be performed not only in a power failure state and a supply state but also in a power failure suspected state.
  • the power supply apparatus detects a power failure state or a power recovery state through detection of a power failure state or a power recovery state. Since the power supply device includes a highly accurate power sensor, it can be detected with high accuracy by such a method.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the distribution board and the like of each of the above embodiments is the following program.
  • this program is a power control method in a distribution board that supplies AC power supplied from a system power supply to a load to a computer, and detects a power failure state in which power is not supplied from the system power supply. And a control step of controlling at least a first switch provided between the power storage unit including one or more storage batteries and electrically connected to a predetermined load, and the system power supply, When the power outage state is detected in the detection step, the control step cuts off the electrical connection between the power storage unit and the system power supply by turning off the first switch, and the one or more storage batteries A power control method for controlling the discharge power of the power distribution board to control the distribution board and to supply the discharge power to the predetermined load.
  • the distribution board according to one or more aspects has been described based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the present invention can appropriately detect a power failure state and switch to a self-sustaining state, and can broaden the use of power for operating a distribution board, and includes a distribution board, a power control method, and a distribution board. It is useful for use in power supply systems and residential facilities including distribution boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Distribution Board (AREA)

Abstract

 適切に停電状態を検出して自立状態に切り替え、分電盤を動作させるための電力の利用用途を広げることができる分電盤等を提供する。分電盤(400)は、1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電池(442)と、系統電源(122)から電力が供給されていない状態である停電状態を検知する検知部(412)と、系統電源(122)と蓄電池(442)との間に設けられた第1スイッチ(416A)と、少なくとも第1スイッチ(416A)を制御する制御部(414)とを備え、検知部(412)が停電状態を検知した場合、制御部(414)は、第1スイッチ(416A)をオフすることにより蓄電池(442)と系統電源(122)との間の電気的接続を遮断し、蓄電池(442)は、1以上の蓄電池を放電することにより、制御部(414)および所定の負荷に電力を供給する。

Description

分電盤及び電力制御方法
 本発明は、系統電源から供給される交流電力を負荷に供給する分電盤及び分電盤における電力制御方法に関する。
 特許文献1には、停電時において、燃料電池システムを自立運転させる自立運転支援装置が示されている。
特開2008-22650号公報
 系統電源から電力が供給されない状態(停電状態)では、分電盤は、系統電源から供給される電力を用いない自立状態に切り替える制御が必要である。しかし、適切に停電状態を検出して自立状態に切り替えることができないという問題がある。
 また、自立状態において分電盤を動作させるための電力の利用用途が限られるという課題がある。
 そこで、本発明は、適切に停電状態を検出して自立状態に切り替える分電盤等を提供する。
 また、分電盤を動作させるための電力の利用用途を広げることができる分電盤等を提供する。
 本発明の一態様に係る分電盤は、系統電源から供給される交流電力を負荷に供給するための電力線と、1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、前記系統電源から電力が供給されていない状態である停電状態を検知する検知部と、前記系統電源と前記蓄電部との間に設けられた第1スイッチと、少なくとも前記第1スイッチを制御する制御部と、を備え、前記検知部が前記停電状態を検知した場合、前記制御部は、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、前記蓄電部は、前記1以上の蓄電池を放電することにより、前記制御部に電力を供給して前記制御部を駆動するとともに、前記1以上の蓄電池の放電電力を前記所定の負荷に供給する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明の分電盤は、自動的に停電を検出して自立状態に切り替えることができる。また、分電盤を動作させるための電力の利用用途を広げることができる。
図1は、想定技術における分電盤の機能ブロック図である。 図2は、実施の形態1における分電盤の機能ブロック図の第一例である。 図3は、実施の形態1における分電盤の機能ブロック図の第二例である。 図4は、実施の形態2における分電盤の機能ブロック図の第一例である。 図5は、実施の形態2における蓄電池の構成を示す機能ブロック図である。 図6は、実施の形態2における分電盤の機能ブロック図の第二例である。 図7は、実施の形態2における分電盤の検知状態の判定表の第一例を示す図である。 図8は、実施の形態2における分電盤の検知状態の判定表の第二例を示す図である。 図9は、実施の形態2における分電盤の電力制御方法のフローチャートである。 図10は、実施の形態2における分電盤の検知状態の判定方法のフローチャートである。 図11は、実施の形態3における分電盤の機能ブロック図の例である。 図12は、実施の形態3における分電盤の電力制御方法のフローチャートである。
 (本発明の基礎となった知見)
 近年、太陽光発電(PV)システムまたは燃料電池(FC)等が、一般住宅にも普及し始めている。本発明者は、これらの技術に関して、以下の問題が生じることを見出した。
 図1は、想定技術における分電盤100の機能ブロック図である。
 想定技術における分電盤100は、系統電源122と電力供給装置126とのそれぞれから電力を供給され、供給された電力を負荷124へ供給する。分電盤100は、系統電源122から電力が供給される状態(供給状態)では、系統電源122と電力供給装置126とのそれぞれから供給される電力を負荷124へ供給する。一方、系統電源122から電力が供給されない状態(停電状態)では、電力供給装置126から供給される電力を負荷124へ供給する。このとき、電力供給装置126から供給される電力を系統電源122へ出力(逆潮流)しないように制御を行う。つまり、停電状態では、分電盤100は、系統電源122から供給される電力を用いない自立状態に切り替える制御が必要である。
 図1に示されるように、想定技術における分電盤100は、検知部111と、変流器112と、自立スイッチ113と、制御部114と、スイッチ116とを備える。
 検知部111は、変流器112の測定値、又は、自立スイッチ113の状態(オン又はオフ)に基づいて停電状態を検知する。
 変流器112は、当該変流器112を通過する電流を測定し、測定値(電流値)を出力する電力センサである。停電状態では、変流器112を通過する電流は0であり、供給状態では、変流器112を通過する電流は0と異なる値である。つまり、変流器112が測定した電流値が0であるか否かに基づいて、停電状態又は供給状態を検知する。
 自立スイッチ113は、停電状態であるか否かをユーザが指定するためのスイッチである。自立スイッチ113は、ユーザによって操作されることが可能である。例えば、停電状態においてオンにセットされ、供給状態においてオフにセットされる。当該分電盤100のユーザは、系統電源122から電力が供給されていないことに気づいたら、自立スイッチ113をオンにセットし、系統電源122から電力が供給されていることに気づいたら、自立スイッチ113をオフにセットする。
 制御部114は、検知部111が停電状態を検知した場合に、系統電源122と負荷124とを接続する電力線を非導通とする。具体的には、制御部114は、検知部111が停電状態を検知した場合に、スイッチ116をオフとすることにより、系統電源122と負荷124とを接続する電力線を非導通とする。
 スイッチ116は、系統電源122と負荷124とを接続する電力線上に配置され、オンにセットされると当該電力線を導通とし、オフにセットされると当該電力線を非導通とする。
 上記の構成において、変流器112には高い精度が要求される。そのため、分電盤100は高コストである。また、自立スイッチ113はユーザによって操作されるため、分電盤100が停電状態を検知し、自動的に停電時の動作に切り替えるという制御を行うことは困難である。つまり、想定技術において、低コストで実現される方法により、適切に停電状態を検知することができないという問題がある。
 特許文献1には、停電状態において、燃料電池システムを自立運転させる自立運転支援装置が示されている。しかし、低コストで適切に停電状態を検知する方法については言及されていない。
 また、例えば、自立状態において分電盤を動作させるために、分電盤に蓄電池を備えた場合、蓄電池の電力の利用用途が限られるという課題がある。
 上記の問題を解決するために、本発明の一態様に係る分電盤は、系統電源から供給される交流電力を負荷に供給するための電力線と、1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、前記系統電源から電力が供給されていない状態である停電状態を検知する検知部と、前記系統電源と前記蓄電部との間に設けられた第1スイッチと、少なくとも前記第1スイッチを制御する制御部と、を備え、前記検知部が前記停電状態を検知した場合、前記制御部は、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、前記蓄電部は、前記1以上の蓄電池を放電することにより、前記制御部に電力を供給して前記制御部を駆動するとともに、前記1以上の蓄電池の放電電力を前記所定の負荷に供給する。
 これにより、例えば停電状態等において、分電盤に備えた蓄電池の電力を、分電盤を制御するため、および所定の負荷に供給するために用いることができる。
 また、前記蓄電部は、さらに、前記制御部および前記1以上の蓄電池と電気的に接続される直流端子と、前記所定の負荷および前記第1スイッチと電気的に接続される交流端子と、前記1以上の蓄電池から出力される直流電力を交流電力に変換し、当該交流電力を前記交流端子に出力するDC/ACインバータと、を備え、前記蓄電部は、停電時には、前記1以上の蓄電池から出力された直流電力を前記直流端子から前記制御部に供給するとともに、前記1以上の蓄電池から出力された直流電力を前記DC/ACインバータにおいて交流電力に変換し、当該交流電力を前記交流端子から前記所定の負荷に供給してもよい。
 これにより、例えば停電状態等において、分電盤を制御するために直流電力を、所定の負荷に交流電力を供給することができる。
 また、前記DC/ACインバータは、さらに交流電力を直流電力に変換することで、直流電力および交流電力を双方向に変換し、前記系統電源から前記分電盤に電力が供給されている場合、前記制御部は、前記第1スイッチをオンして前記交流端子と前記系統電源とを電気的に接続し、前記蓄電部は、前記DC/ACインバータにおいて、前記交流端子を介して受けた前記系統電源からの交流電力を直流電力に変換し、当該直流電力を供給して前記1以上の蓄電池を充電してもよい。
 これにより、系統電源から分電盤に電力が供給されている場合に、蓄電池を充電することができる。
 また、前記系統電源から前記分電盤に電力が供給されている場合、前記制御部は、前記第1スイッチをオンして前記交流端子と前記系統電源とを電気的に接続し、前記蓄電部が、前記交流端子を介して受けた前記系統電源からの交流電力を前記DC/ACインバータにおいて直流電力に変換し、前記直流端子を介して当該直流電力を前記制御部に供給することで、前記制御部は当該直流電力の電力供給を受けて駆動されてもよい。
 これにより、系統電源から分電盤に電力が供給されている場合に、分電盤を制御するために直流電力を供給することができる。
 また、前記検知部は、さらに、前記停電状態から、前記系統電源から電力が供給される状態である供給状態に変化したことを示す復電を検知し、前記蓄電部は、前記検知部が復電を検知してからの所定期間は、前記系統電源の電圧に応じて前記蓄電部から前記制御部に電力供給してもよい。
 これにより、分電盤を制御するための電力の供給を安定させることができる。この場合、蓄電部が復電時における平滑化コンデンサとして機能する。これにより、例えば、別途、大容量コンデンサを設けて分電盤内の部品点数が増加するのを防止することもできる。
 また、前記分電盤には、通常負荷と非常用負荷とが接続されており、前記所定の負荷は、前記非常用負荷であり、前記蓄電部は、停電時に前記蓄電部からの放電電力を前記非常用負荷に供給してもよい。
 これにより、停電時に蓄電部からの放電電力を非常用負荷に供給することができる。
 また、前記分電盤には、通常負荷と非常用負荷とが接続されており、前記所定の負荷は、前記非常用負荷であり、前記制御部は、前記系統電源から前記分電盤が電力供給を受けている場合、前記系統電源からの電力を前記通常負荷に供給してもよい。
 これにより、系統電源から分電盤が電力供給を受けている場合、系統電源からの電力を通常負荷に供給することができる。
 また、前記分電盤は、さらに、外部に設けられる少なくとも1つの電力供給装置から供給される交流電力を前記負荷に供給し、前記電力供給装置は、第1の電力出力端子および第2の電力出力端子を備え、停電時には前記第1の電力出力端子から前記分電盤に電力を供給し、通常時には前記第2の電力出力端子から前記分電盤に電力を出力し、前記分電盤は、さらに、前記電力供給装置と前記所定の負荷とを導通とするか非導通とするかを切り替える第2スイッチを備え、前記第1スイッチは、さらに、前記系統電源と前記所定の負荷とを導通とするか非導通とするかを切り替え、前記検知部は、前記系統電源から電力が供給されないことを前記電力供給装置が検知したことを示す停電通知信号を、前記電力供給装置から受信することで、前記停電状態を検知し、前記制御部は、前記検知部が前記停電通知信号を受信した場合に、前記第1スイッチをオフして前記系統電源を遮断し、前記第2スイッチをオンして前記電力供給装置の前記第1電力出力端子と前記所定の負荷とを電気的に接続し、さらに、前記電力供給装置の前記第2電力出力端子と前記所定の負荷とが前記第1スイッチを介して接続されており、前記第1スイッチがオンのときには、前記電力供給装置と前記所定の負荷とが電気的に接続されており、前記第1スイッチがオフのときには、前記電力供給装置と前記所定の負荷とが電気的に切り離されてもよい。
 ここで、前記第1スイッチと前記第2スイッチとが単一のスイッチ素子により構成されているとしてもよい。
 また、前記第1スイッチと前記第2スイッチとが互いに異なる2つのスイッチ素子で構成されているとしてもよい。
 これによれば、分電盤は、高精度の電力センサを備える電力供給装置が停電を検知したことを通じて、停電状態であることを検知することができる。そして、停電状態を検知したら、分電盤内のスイッチを切り替えることにより、電力供給装置が供給する電力を負荷に供給するように制御することができる。よって、低コストで実現される方法により、適切に停電を検知することができる。
 また、前記分電盤は、さらに、前記電力線には、2以上の前記電力供給装置が互いに異なる接続点において接続され、前記検知部は、2以上の前記電力供給装置のうち、前記電力線への接続点が前記系統電源に最も近い電力供給装置から前記停電通知信号を受信することで、前記停電状態を検知してもよい。
 これにより、複数の電力供給装置が分電盤に接続されている場合において、より正確に停電を検知することができる。電力線上において、系統電源から遠ざかるほど供給される電力に含まれるノイズが多くなるので、系統電源により近い接続点で接続している電力供給装置は、より正確に停電状態を検知することができる。よって、より正確に停電状態を検知することができる。
 また、前記検知部は、前記電力供給装置が複数ある場合に、複数の前記電力供給装置のうち、前記電力供給装置のそれぞれに対して当該電力供給装置の属性に基づいてあらかじめ定められる信頼度が最も高い前記電力供給装置から、前記停電通知信号を受信することによって、前記停電状態を検知してもよい。
 これにより、複数の電力供給装置が分電盤に接続されている場合において、より正確に停電を検知することができる。より信頼度が高い電力供給装置から受信した停電通知信号は、より正確であると考えられるためである。よって、より正確に停電状態を検知することができる。
 また、前記検知部は、さらに、前記停電状態から、前記系統電源から電力が供給される状態である供給状態に変化したことを示す復電を検知し、前記制御部は、前記検知部が前記復電を検知した場合に、前記第2スイッチをオフして前記電力供給装置の前記第1電力出力端子と前記所定の負荷との接続を非導通とし、前記第1スイッチをオンして前記系統電源と前記所定の負荷とを導通としてもよい。
 これにより、系統電源が停電状態から供給状態に変化したことを検知したら、分電盤内の第1スイッチおよび第2スイッチを切り替えることにより、系統電源と電力供給装置との両方が供給する電力を負荷に供給するように制御することができる。よって、低コストで実現される方法により、適切に復電を検知することができる。
 また、前記検知部は、前記系統電源から電力が供給されることを前記電力供給装置が検知したことを示す復電通知信号を、前記電力供給装置から受信することによって、前記復電を検知してもよい。
 これにより、分電盤は、高精度の電力センサを備える電力供給装置が復電を検知したことを通じて、供給状態であることを検知することができる。よって、より高精度に復電を検知することができる。
 また、前記検知部は、前記系統電源から電力が供給されることを前記電力供給装置が検知したことを示す復電通知信号を、前記系統電源の電力供給を管理する電力会社から通信回線を介して受信することによって、前記復電を検知してもよい。
 これにより、分電盤は、電力会社から通知される復電通知信号に基づいて、供給状態であることを検知することができる。電力会社から通知される復電通知信号は、系統電源の供給元からの情報であり、正確な情報である。より高精度に復電を検知することができる。
 また、本発明の一態様に係る電力制御方法は、系統電源から供給される交流電力を負荷に供給する分電盤における電力制御方法であって、前記系統電源から電力が供給されていない状態である停電状態を検知する検知ステップと、1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、前記系統電源との間に設けられた第1スイッチを少なくとも制御する制御ステップと、を含み、前記検知ステップにおいて前記停電状態が検知された場合、前記制御ステップでは、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、前記1以上の蓄電池の放電電力を、前記分電盤を制御するために電力を供給するとともに、前記所定の負荷に供給するように制御する。
 これにより、上記分電盤と同様の効果を奏する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 図2は、本実施の形態における分電盤200の機能ブロック図である。
 本実施の形態における分電盤200は、系統電源122と電力供給装置126とのそれぞれから電力を供給され、供給された電力を負荷124へ供給する。分電盤200は、系統電源122から電力が供給される状態(供給状態)では、系統電源122と電力供給装置126とのそれぞれから供給される電力の両方を負荷124へ供給する。一方、系統電源122から電力が供給されない状態(停電状態)では、電力供給装置126から供給される電力を負荷124へ供給する。このとき、電力供給装置126から供給される電力を系統電源122へ出力(逆潮流)しないように制御を行う。つまり、分電盤200は、系統電源122からの電力供給が停止(停電)した場合には、停電したことを自動的に検知し、系統電源122との接続を切断し、かつ、電力供給装置から供給される電力を負荷124に供給する。
 図2に示されるように、本実施の形態における分電盤200は、検知部212と、制御部214と、スイッチ216とを備える。また、系統電源122に接続し、系統電源122から供給される電力を負荷124に供給するための電力線(第一電力線)と、外部に設けられる電力供給装置126から供給される電力を負荷124に供給するための電力線(第二電力線)とを備える。外部に設けられる電力供給装置126は、第一電力線へ電力を供給するための出力端子aと、第二電力線へ電力を供給するための出力端子bとを備える。
 検知部212は、電力供給装置126から送信される停電通知信号に基づいて停電状態を検知する。
 制御部214は、検知部212が停電状態を検知した場合に、系統電源122と負荷124とを接続する第一電力線を非導通とする。具体的には、制御部214は、検知部212が停電状態を検知した場合に、スイッチ216により、第一電力線を非導通とするとともに、第二電力線を導通とする。
 スイッチ216は、系統電源122と負荷124と電力供給装置とのそれぞれと接続されている。つまり、スイッチ216は、第一電力線及び第二電力線上に配置されている。そして、第一電力線を導通とし第二電力線を非導通とする状態と、第一電力線を非導通とし第二電力線を導通とする状態とを切り替える。
 なお、スイッチ216は、上記のように1個のスイッチ素子で構成されてもよいし、2個以上のスイッチ素子で構成されてもよい。スイッチ216を2個のスイッチで構成する場合には、具体的には、スイッチ216は、第一電力線を導通とするか非導通とするかを切り替えるスイッチ(第一スイッチ)と、第二電力線を導通とするか非導通とするかを切り替えるスイッチ(第二スイッチ)とにより構成される。その場合、第一スイッチを導通とし第二スイッチを非導通とする状態と、第一スイッチを非導通とし第二スイッチを導通とする状態との2つの状態を切り替えることが、スイッチ216の機能に相当する。なお、2個のスイッチ(第一スイッチ及び第二スイッチ)を独立に動作させることも可能であるので、第一スイッチ及び第二スイッチの両方を導通とする状態、又は、第一スイッチ及び第二スイッチの両方を非導通とする状態を作り出すこともできる。このようにすることで、より柔軟な電力供給制御を行うことができる。
 なお、外部の電力供給装置126は、複数の電力供給装置であってもよい。複数の電力供給装置を備える例を図3に示す。
 図3は、本実施の形態における分電盤の機能ブロック図の第二例(分電盤300)である。図3では、2つの電力供給装置126A及び126Bがあり、電力供給装置126A及び126Bのそれぞれが第二電力線に接続されている。ここで、電力供給装置126A及び126Bのそれぞれは、互いに異なる接続点において第二電力線に接続されている。また、検知部112は、電力供給装置126A及び126Bのそれぞれから、停電通知信号を受信し、当該停電通知信号に基づいて停電状態を検知する。なお、電力供給装置は、2つに限られず、3つ以上あってもよい。
 ここで、検知部312が、複数の電力供給装置のうちの一部から停電通知信号を受信し、当該一部を除く電力供給装置からは停電通知信号を受信しない場合が生じうる。そのような場合には、以下のように判定することにより停電状態を検知する。
 (1)信頼度が高い電力供給装置が停電検知する。
 複数の電力供給装置のうち、電力供給装置のそれぞれに対して当該電力供給装置の属性に基づいてあらかじめ定められる信頼度が最も高い電力供給装置から、検知部112が停電通知信号を受信したときに、停電状態を検知する。
 ここで、電力供給装置の信頼度とは、電力供給装置が停電状態を検知する際の正確さの度合いを示すものである。信頼度は、電力供給装置の属性に基づいてあらかじめ定められる。信頼度は、例えば、電力供給装置の性能の良さ(高さ)としてもよい。つまり、性能が高い電力供給装置ほど、信頼度が高いとしてもよい。また、信頼度とは、例えば、製造年月日の新しさとしてもよい。つまり、製造年月日が現時点に近い電力供給装置ほど、信頼度が高いとしてもよい。また、信頼度とは、例えば、取得した認証の厳しさとしてもよい。つまり、より厳しい認証を取得した電力供給装置ほど、信頼度が高いとしてもよい。
 (2)最も系統電源に近い電力供給装置が停電検知する。
 複数の電力供給装置のうち、第二電力線との接続点が最も系統電源122に近い電力供給装置から、検知部312が停電通知信号を受信したときに、停電状態を検知する。
 分電盤内部の電力線上において、系統電源122に近い位置における電流値は、比較的少ない量のノイズを含み、系統電源から遠い位置における電流値は、比較的多い量のノイズを含む。複数の電力供給装置のうち、第二電力線との接続点が系統電源122により近い電力供給装置ほど、よりノイズが少なく、より適切に停電状態を検知すると考えられる。
 なお、最も信頼度が高い電力供給装置がメンテナンス等により停止している場合には、その次に信頼度が高い電力供給装置が停電検知するようにする。つまり、複数の電力供給装置のうち、電力供給動作を行っているもののうち、信頼度が最も高い電力供給装置が停電検知する。
 (3)より多くの電力供給装置が停電検知する(多数決)。
 複数の電力供給装置のうち、所定値を超える数の電力供給装置から停電通知信号を受信したときに、検知部312が停電状態を検知する。所定値とは、例えば、電力供給装置の数の半数としてもよい。また、所定値を電力供給装置の数の1/4としてもよい。所定値を小さい値に設定すると、より少ない電力供給装置から停電通知信号を受信したときに検知部112が停電状態を検知するようになる。つまり、所定値を小さい値に設定することにより、停電状態の検知を敏感に行うことができるようになる。
 さらに、この方法に対して、電力供給装置の信頼度を考慮することもできる。電力供給装置のそれぞれが1~5点(平均的な信頼度の電力供給装置が3点)を有するとし、検知部112が受信した停電通知信号の送信元の電力供給装置の点数を合計した値が、所定値を超えるときに、検知部312が停電状態を検知するようにしてもよい。このようにすると、停電状態を検知し停電通知信号を送信した電力供給装置の数と、その電力供給装置の信頼度との両方を考慮することができる。
 以上のように、本実施の形態に係る分電盤によれば、分電盤は、高精度の電力センサを備える電力供給装置が停電を検知したことを通じて、停電状態であることを検知することができる。そして、停電状態を検知したら、分電盤内のスイッチを切り替えることにより、電力供給装置が供給する電力を負荷に供給するように制御することができる。よって、低コストで実現される方法により、適切に停電を検知することができる。
 (実施の形態2)
 図4は、本実施の形態における分電盤の機能ブロック図の第一例(分電盤400)である。図4に示される分電盤400は、図3に示される分電盤300をより具体化した構成である。
 分電盤400は、系統電源122と、電力供給装置であるパワーコンディショナ(PCS)426Aと、電力供給装置である燃料電池(FC)426Cとのそれぞれから電力を供給され、供給された電力を負荷424A、424B、424C及び424Dへ供給する。分電盤400は、系統電源122から電力が供給される状態(供給状態)では、系統電源122と、電力供給装置(PCS426AとFC426C)のそれぞれから供給される電力を負荷424A、424B、424C及び424Dへ供給する。一方、系統電源122から電力が供給されない状態(停電状態)では、電力供給装置(PCS426AとFC426C)から供給される電力を負荷424C及び424Dへ供給する。このとき、電力供給装置(PCS426AとFC426C)から供給される電力を系統電源122へ出力(逆潮流)しないように制御を行う。
 そして、分電盤400は、系統電源122からの電力供給が停止(停電)した場合には、停電したことを自動的に検知し、系統電源122との接続を切断し、かつ、電力供給装置から供給される電力を負荷424C及び424Dに供給する。また、分電盤400は、停電状態から供給状態に変化(復電)した場合には、系統電源122と接続し、かつ、電力供給装置から供給される電力を負荷424A、424B、424C及び424Dに供給する。
 図4に示されるように、分電盤400は、検知部412と、制御部414と、スイッチ416A、スイッチ416B及びスイッチ416Cと、蓄電池442と、変流器432、434及び436と、通常ブレーカ群452と、自立ブレーカ群454とを備える。
 検知部412は、電力供給装置(PCS426AとFC426C)から送信される停電通知信号に基づいて停電状態を検知する。また、検知部412は、分電盤400の外部の通知装置429を通じて、系統電源122の電力供給を管理する電力会社からの停電通知信号又は復電通知信号を受信する。
 制御部414は、検知部412が停電状態を検知した場合に、系統電源122と負荷424C及び負荷424Dとを接続する電力線を非導通とするとともに、電力供給装置(PCS426AとFC426C)と負荷424C及び424Dとを接続する電力線を導通とする。具体的には、スイッチ416Aをオフにし、スイッチ416Bをオンにし、スイッチ416Cをb(自立側)にセットする。また、PCS426Aを制御するための信号であるPCS操作信号をPCS426Aに送信する。PCS操作信号とは、供給状態又は停電状態であることをPCS426Aに通知するための信号である。
 スイッチ416Aは、自立ブレーカ群454と系統電源122とを導通にするか、又は、非導通にするかを切り替えるスイッチである。
 スイッチ416Bは、PCS426Aから電力を出力(自立出力)させるか、又は、させないかを切り替えるスイッチである。
 スイッチ416Cは、FC426Cから出力される電力の出力先を、系統側とするか、又は、自立側とするかを切り替えるスイッチである。
 なお、スイッチ416A、スイッチ416B及びスイッチ416Cは、実施の形態1におけるスイッチ116に相当する。
 蓄電池442は、制御部414及び検知部412に電力を供給するための電源である。また、蓄電池442は、自立ブレーカ群を通じて負荷424C及び424Dに電力を供給することも可能である。
 図5は、本実施の形態における蓄電池442の構成を示す機能ブロック図である。
 蓄電池442は、具体的には、1以上の蓄電池を備える蓄電部或いは蓄電装置として構成され、図5に示すように、蓄電池481、直流端子482、交流端子483、およびDC/ACインバータ484を備えている。
 蓄電池481は、供給される電力を蓄積するとともに、蓄積した電力を放電する。
 直流端子482は、制御部414、検知部412、および蓄電池481と電気的に接続される。
 交流端子483は、自立ブレーカ群を通じて負荷424Cおよび424Dと、スイッチ416A、スイッチ416B、およびスイッチ416Cとに電気的に接続される。
 DC/ACインバータ484は、直流電力および交流電力を双方向に変換する。具体的には、DC/ACインバータ484は、蓄電池481から出力される直流電力を交流電力に変換し、交流電力を交流端子483に出力する。また、DC/ACインバータ484は、交流端子483から入力される交流電力を直流電力に変換し、この直流電力を蓄電池481に供給する。
 次に、上記のように構成された蓄電池442における電力の供給について説明する。蓄電池442は、検知部412の停電か否かの検知結果によって、DC-ACインバータ484に対して、電力変換の方向を切り替える。この動作の具体例について、系統電源122から分電盤400に電力が供給されている場合、停電状態である場合、および停電状態から復電した場合に分けて説明する。
 系統電源122から分電盤400に電力が供給されている場合、制御部414は、スイッチ416Aをオンにし、スイッチ416Bをオフにし、スイッチ416Cをa(通常側)にセットする。これにより、交流端子483と系統電源122とが電気的に接続される。
 この場合、蓄電池442は、DC/ACインバータ484において、交流端子483を介して受けた系統電源122からの交流電力を直流電力に変換し、この直流電力を蓄電池481に供給し、蓄電池481を充電する。また、蓄電池442は、DC/ACインバータ484において、交流端子483を介して受けた系統電源122からの交流電力を直流電力に変換し、直流端子482を介して直流電力を制御部414に供給する。制御部414は、直流電力の電力供給を受けて駆動される。
 停電状態である場合、制御部414は、スイッチ416Aをオフにし、スイッチ416Bをオンにし、スイッチ416Cをb(自立側)にセットする。これにより、交流端子483と系統電源122とは電気的に接続されない。
 この場合、蓄電池442は、蓄電池481から出力された直流電力を直流端子482から制御部414に供給する。また、蓄電池442は、蓄電池481から出力された直流電力をDC/ACインバータ484において交流電力に変換し、この交流電力を交流端子483から負荷424Cおよび424Dに供給する。
 停電状態から復電した場合、系統電源122から分電盤400に電力が供給されることになるので、制御部414は、スイッチ416Aをオンにし、スイッチ416Bをオフにし、スイッチ416Cをa(通常側)にセットする。これにより、交流端子483と系統電源122とが電気的に接続される。
 この場合、蓄電池442は、検知部412によって復電が検知されてからの所定期間は、系統電源122の電圧に応じて蓄電池481から制御部414に電力供給する。これは、一般的に復電直後は系統電源122の電圧が安定するまでに時間を要するためである。即ち、復電してから所定の時間は系統電源122の電圧が不安定である。そのため、制御部414に所望の電流を供給できない場合が生じる。
 そこで、検知部412によって復電が検知されてからの所定期間は、系統電源122の電圧に応じて蓄電池481から制御部414に電力供給することにより、制御部414への電力供給を安定させることができる。この場合、蓄電池442が復電時における平滑化コンデンサとして機能する。これにより、例えば、別途、大容量コンデンサを設けて分電盤400内の部品点数が増加するのを防止することもできる。
 なお、系統電源122の電圧については、例えば、制御部414が、変流器432と変流器434との間に接続される信号線を介して取得することができる。
 また、ここでは、DC/ACインバータ484は、1つで、直流電力および交流電力を双方向に変換する構成としているが、これに限られるものではない。例えば、直流電力から交流電力に変換するDC/ACインバータと、交流電力から直流電力に変換するAC/DCコンバータとを別々に備える構成としても構わない。この場合、検知部412の停電か否かの検知結果によって、DC/ACインバータおよびAC/DCコンバータにおける電力変換をそれぞれオンかオフする。すなわち、系統電源122から分電盤400に電力が供給されている場合、DC/ACインバータにおける電力変換をオフとし、AC/DCコンバータにおける電力変換をオンとする。一方、停電状態である場合、DC/ACインバータにおける電力変換をオンとし、AC/DCコンバータにおける電力変換をオフとする。
 変流器432、434及び436は、電流を測定するためのセンサである。
 通常ブレーカ群452は、過電流または漏電などが検知された場合に回路を遮断するブレーカの集合であり、通常負荷に接続される。通常ブレーカ群452は、1以上のブレーカ(462及び464)を含む。通常ブレーカ群452は、供給状態において電力が供給される。
 自立ブレーカ群454は、過電流または漏電などが検知された場合に回路を遮断するブレーカの集合であり、非常用負荷に接続される。自立ブレーカ群454は、1以上のブレーカ(472及び474)を含む。自立ブレーカ群454は、供給状態及び停電状態において電力が供給される。
 PCS426Aには、太陽光発電パネル(PVパネル)427と、蓄電池428とが接続されている。PCS426Aは、蓄電池428へ供給する電力、または、蓄電池428から供給される電力を調整する。具体的には、PCS426Aは、蓄電池428へ供給する電力を交流から直流に変換する。
 また、PCS426Aは、蓄電池428から供給される電力を直流から交流に変換する。PCS426Aは、電力を供給するための2つの端子(a及びb)を備える。PCS426Aは、供給状態では端子aから電力を供給し、停電状態では端子bから電力を供給する。PCS426Aは、制御部414が送信するPCS操作信号を受信することにより、供給状態又は停電状態を検知し、電力を供給する端子を切り替える。
 なお、図4では、PCS426Aに、PVパネル427と蓄電池428とが接続されている構成としたが、PVパネル427と蓄電池428とのそれぞれに1つずつのパワーコンディショナが接続される構成にしてもよい。上記の構成を図6において説明する。
 図6は、本実施の形態における分電盤の機能ブロック図の第二例(分電盤500)である。
 図6は、PVパネル427と蓄電池428とのそれぞれに1つずつのパワーコンディショナ(それぞれ、PV-PCS526A及びSB-PCS526B)が接続される場合の分電盤500である。
 分電盤500は、図4に示される分電盤400に対して、新たに、変流器433を備える。また、分電盤500は、分電盤400における検知部412の代わりに、検知部512を備える。
 変流器433は、当該変流器433を通過する電流を測定し、測定値(電流値)を出力する電力センサである。変流器433は、測定した測定値を、PV-PCS526Aに通知する。
 検知部512は、電力供給装置(PV-PCS526A、SB-PCS526B及びFC426C)のそれぞれから送信される停電通知信号に基づいて停電状態を検知する。
 制御部514は、PV-PCS526Aを制御するための信号であるPV-PCS操作信号をPCS426Aに送信する。また、制御部514は、SB-PCS526Bを制御するための信号であるSB-PCS操作信号をSB-PCS526Bに送信する。また、検知部512は、分電盤500の外部の通知装置429を通じて、系統電源122の電力供給を管理する電力会社からの停電通知信号又は復電通知信号を受信する。
 分電盤500の構成における制御部514の制御方法について、さらに詳しく説明する。
 図7は、本実施の形態における分電盤の検知状態の判定表の第一例を示す図である。
 図7は、SB-PCS526B、PV-PCS526A、FC426C、変流器432がこの順に信頼度が高い場合の制御部514の停電判定方法である。SB-PCS526B、PV-PCS526A、FC426C、電力会社、変流器432のそれぞれが検知状態を通知し、その通知を検知部512が受信した場合に、制御部514が、停電状態であるか、又は、供給状態であるかを判定するときに用いられる判定表である。ここで、検知状態には、電力が供給されている状態である供給状態(図7において「供給」と記載)、及び、電力が供給されていない状態である停電状態(図7において「停電」と記載)がある。また、及び、供給状態であるか停電状態であるかが不明である場合(図7において「不明」と記載)がある。なお、電力会社が送信する停電通知信号は、外部の通知装置429を通じて、検知部512が受信する。以下で具体的に説明する。
 SB-PCS526Bが停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、SB-PCS526Bの検知状態が不明であり、かつ、PV-PCS526Aが停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、SB-PCS526B及びPV-PCS526Aの検知状態が不明であり、かつ、FC426Cが停電状態を検知したことを検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、SB-PCS526B、PV-PCS526A及びFC426Cの検知状態が不明であり、かつ、電力会社が停電状態を検知したことを検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、SB-PCS526B、PV-PCS526A、FC426C及び電力会社の検知状態が不明であり、かつ、変流器432が停電状態を検知したことを検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、SB-PCS526B、PV-PCS526A、FC426C、電力会社及び変流器432の検知状態が不明であることを検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、電力会社が供給状態を通知し、かつ、SB-PCS526B、PV-PCS526A、FC426C及び変流器432が停電状態以外の状態であることを検知部512が受信した場合、制御部514は、供給状態であると判定する。
 なお、変流器432が送信する停電通知信号を用いた判定を行わないようにしてもよい。その場合、図7における列611を除く部分を用いて、上記と同様の判定を行えばよい。
 以上のように、検知状態が不明である装置を除く装置のうちで、最も信頼度が高い装置が停電状態を検知した場合に、制御部514が停電状態であると判定する。
 図8は、本実施の形態における分電盤の検知状態の判定表の第二例を示す図である。
 図8は、PV-PCS526A、SB-PCS526B、FC426C及び変流器432がこの順に、電力線上で電力系統に近い接続点において、電力線に接続している場合の制御部514の停電判定方法である。
 PV-PCS526Aが停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、PV-PCS526Aの検知状態が不明であり、かつ、SB-PCS526Bが停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、PV-PCS526A及びSB-PCS526Bの検知状態が不明であり、かつ、FC426Cが停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、PV-PCS526A、SB-PCS526B及びFC426Cの検知状態が不明であり、かつ、変流器432が停電状態を検知したことを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、PV-PCS526A、SB-PCS526B、FC426C及び変流器432の検知状態が不明であることを、検知部512が受信した場合、制御部514は、停電状態であると判定する。
 また、PV-PCS526A、SB-PCS526B及びFC426Cの検知状態が不明であり、かつ、変流器432が供給状態を検知したことを、検知部512が受信した場合、制御部514は、供給状態であると判定する。
 また、PV-PCS526A及びSB-PCS526Bの検知状態が不明であり、かつ、FC426Cが供給状態を検知し、かつ、変流器432が停電状態以外の状態であることを、検知部512が受信した場合、制御部514は、供給状態であると判定する。
 また、PV-PCS526Aが不明状態であり、かつ、SB-PCS526Bが供給状態を検知し、かつ、FC426C及び変流器432が停電状態以外の状態であることを、検知部512が受信した場合、制御部514は、供給状態であると判定する。
 PV-PCS526Aが供給状態を検知し、かつ、SB-PCS526B、FC426C及び変流器432が停電状態以外の状態であることを、検知部512が受信した場合、制御部514は、供給状態であると判定する。
 なお、変流器432が送信する停電通知信号を用いた判定を行わないようにしてもよい。その場合、図8における列711及び行712を除く部分を用いて、上記と同様の判定を行えばよい。
 なお、上記において、制御部514での検知状態の判定方法において、停電判定表を用いた方法を説明した。ここで、制御部514での検知状態の判定方法として、停電判定表を用いずに同様の結果を得られる方法であれば、同様に用いることができる。
 図9は、本実施の形態における分電盤の電力制御方法のフローチャートである。
 図9に示されるように、本実施の形態における分電盤の電力制御方法では、まず、分電盤の制御状態を初期状態とする(ステップS801)。
 次に、検知状態(停電状態、供給状態、又は、不明)の判定を行う(ステップS802)。この判定方法については、後で詳細に説明する。
 次に、ステップS802の検知状態の判定結果に基づいて、処理を分岐する(ステップS803)。
 ステップS802における検知状態の判定の結果、停電状態であると判定した場合には、分電盤の制御状態が既に自立状態になっているか否かを判定する(ステップS804)。ここで、自立状態とは、分電盤がPV-PCS526A、SB-PCS526B及びFC426Cの少なくとも1つから電力を供給され、供給された電力を自立ブレーカ群454に供給している状態のことである。そして、既に自立状態になっていると判定した場合には、ステップS802へ移る。
 ステップS804において自立状態になっていないと判定した場合には、分電盤内に自立状態の回路を構成するためにスイッチ416A、416B及び416Cを切り替える(ステップS805)。具体的には、制御部514が、スイッチ416A(SW1)をオフにし、スイッチ416B(SW2)をオンにし、スイッチ416C(SW3)をb(自立側)にセットする。
 次に、パワーコンディショナ(PV-PCS526A及びSB-PCS526B)を自立モードで起動する(ステップS806)。
 次に、分電盤の制御状態を自立状態に変更する(ステップS807)。
 ステップS807の処理を完了したら、ステップS802へ移る。
 一方、ステップS802における検知状態の判定の結果、供給状態であると判定した場合には、分電盤の制御状態が既に系統状態になっているか否かを判定する(ステップS811)。ここで、系統状態とは、分電盤が系統電源122と、PV-PCS526A、SB-PCS526B及びFC426Cの少なくとも1つとから電力を供給され、供給された電力を通常ブレーカ群452及び自立ブレーカ群454に供給している状態のことである。そして、既に系統状態になっていると判定した場合には、ステップS802へ移る。
 ステップS811において、系統状態になっていないと判定した場合には、分電盤内に系統状態の回路を構成するためにスイッチ416A、416B及び416Cを切り替える(ステップS812)。具体的には、制御部514が、スイッチ416A(SW1)をオンにし、スイッチ416B(SW2)をオフにし、スイッチ416C(SW3)をa(通常側)にセットする。
 次に、パワーコンディショナ(PV-PCS526A及びSB-PCS526B)を系統モードで起動する(ステップS813)。
 次に、分電盤の制御状態を系統状態に変更する(ステップS814)。
 ステップS814の処理を完了したら、ステップS802へ移る。
 以上のような分電盤の電力制御方法によって、分電盤の検知状態(停電状態又は供給状態)に基づいて、分電盤の制御状態(自立状態又は系統状態)を変更することができる。
 図10は、本実施の形態における分電盤の検知状態の判定方法のフローチャートである。図10に示される判定方法のフローチャートは、図9のステップS802の処理の詳細な説明である。
 まず、検知部512が全ての電源(電力供給装置及び系統電源122)での検知状態(停電状態、供給状態)を受信し、検知した検知状態のそれぞれが一致しているか否かを、制御部514が判定する(ステップS901)。なお、検知部512は、電力供給装置が停電状態を検知したときに送信する信号である停電通知信号などを受信することによって、電力供給装置での検知状態を受信する。また、検知部512は、系統電源122が停電状態であるときに電力会社が送信する信号である停電通知信号などを通信回線を通じて受信することによって、電力供給装置での検知状態を受信する。
 ステップS901において、全ての電源での検知状態が一致していると判定した場合には、分電盤の検知状態の判定処理(ステップS903)へ移る。
 ステップS901において、全ての電源での検知状態が一致していないと判定した場合には、所定時間が経過したか否かを判定する(ステップS902)。所定時間が経過していないと判定した場合にはステップS901へ移る。所定時間が経過したと判定した場合には、分電盤の検知状態の判定処理(ステップS903)へ移る。ここで、所定時間とは、例えば、1秒程度の時間である。ステップS902の処理によって、ステップS901で受信する検知状態が一致するまで、かつ、所定時間が経過するまで、検知状態の一致判定を繰り返し行うことになる。系統電源122の供給が停止した直後などには、電力の供給が不安定であるので、全ての電源での検知状態が不揃いになることが想定される。このような場合であっても、所定時間が経過するのを待つことにより、その不安定さが解消された後の検知状態を受信することができる。
 分電盤の検知状態の判定処理(ステップS903)について説明する。まず、電源のそれぞれから検知部512が受信した検知状態が一致し、その検知状態が供給状態又は停電状態である場合には、検知部512が受信した検知状態を、分電盤の検知状態とする。
 次に、電源のそれぞれから検知部512が受信した検知状態が一致していない場合には、検知状態の判定表を用いて、分電盤の検知状態を判定する。具体的には、図7又は図8で示した判定表を用いて、分電盤の検知状態を判定する。
 以上のように、本実施の形態に係る分電盤によれば、複数の電力供給装置が分電盤に接続されている場合において、より正確に停電を検知することができる。第二電力線上において、系統電源から遠ざかるほど供給される電力に含まれるノイズが多くなるので、系統電源により近い接続点で接続している電力供給装置は、より正確に停電状態を検知することができる。よって、より正確に停電状態を検知することができる。
 また、複数の電力供給装置が分電盤に接続されている場合において、より正確に停電を検知することができる。より信頼度が高い電力供給装置から受信した停電通知信号は、より正確であると考えられるためである。よって、より正確に停電状態を検知することができる。
 また、系統電源が停電状態から供給状態に変化したことを検知したら、分電盤内のスイッチを切り替えることにより、系統電源と電力供給装置との両方が供給する電力を負荷に供給するように制御することができる。よって、低コストで実現される方法により、適切に復電を検知することができる。
 また、分電盤は、高精度の電力センサを備える電力供給装置が復電を検知したことを通じて、供給状態であることを検知することができる。よって、より高精度に復電を検知することができる。
 また、分電盤は、電力会社から通知される復電通知信号に基づいて、供給状態であることを検知することができる。電力会社から通知される復電通知信号は、系統電源の供給元からの情報であり、正確な情報である。より高精度に復電を検知することができる。
 (実施の形態3)
 本実施の形態では、制御部が判定する検知状態について、停電状態及び供給状態に加えて、停電疑い状態がある場合の分電盤の電力制御方法の例を示す。停電疑い状態とは、停電状態とするよりは確度が低いものの、停電状態である蓋然性が高い状態のことを意味する。例えば、図7もしくは図8の判定表において「不明」が所定個数以上に表明された場合を、停電疑い状態としてもよい。
 停電状態においては、分電盤は、電力供給装置から供給される電力を系統電源122へ出力(逆潮流)しないように制御する必要がある。本実施の形態の分電盤は、停電状態である蓋然性が高い場合にも、停電状態と同様に、逆潮流しないように制御する。一方、停電状態ではない場合においては、分電盤は、通常ブレーカ群452に接続された負荷(424A及び424B)と、自立ブレーカ群454に接続された負荷(424C及び424D)との両方に電力を供給する。
 図11は、本実施の形態における分電盤600の機能ブロック図の例である。
 本実施の形態における分電盤の機能ブロック構成は、実施の形態2の機能ブロック構成に対して、新たにスイッチ416Dを備える。また、実施の形態2に対して、制御部614によるスイッチ416A、スイッチ416B及びスイッチ416Cの制御方法(スイッチの切り替え方法)が異なる。
 なお、スイッチ416A、スイッチ416B、スイッチ416C及びスイッチ416Dは、実施の形態1におけるスイッチ116に相当する。
 制御部614は、検知部512が停電疑い状態を検知した場合に、系統電源122と負荷424A、424B、424C及び424Dを接続する電力線を非導通とするとともに、電力供給装置(PCS426AとFC426C)と負荷424A、424B、424C及び424Dとを接続する電力線を導通とする。具体的には、制御部614は、スイッチ416Aをオンにし、スイッチ416Bをオンにし、スイッチ416Cをa(通常側)にセットし、スイッチ416Dをオフにする。
 図12は、本実施の形態における分電盤600の電力制御方法のフローチャートである。
 本実施の形態における分電盤600の電力制御方法では、実施の形態2の電力制御方法におけるステップS803の処理の分岐の際に、停電疑い状態の場合が加わる。以下で詳細に説明する。なお、図12に示される本実施の形態における分電盤600の電力制御方法において、ステップS1001~S1007及びS1021~S1024は、それぞれ、実施の形態2における電力制御方法におけるステップS801~S807及びS811~814と同様であるので説明を省略する。
 ステップS1002における検知状態の判定の結果、停電疑い状態であると判定した場合には、分電盤の制御状態が既に自立2状態になっているか否かを判定する(ステップS1011)。ここで、自立2状態とは、分電盤がPV-PCS526A、SB-PCS526B及びFC426Cの少なくとも1つから電力を供給され、供給された電力を通常ブレーカ群452及び自立ブレーカ群454に供給している状態のことである。そして、既に自立2状態になっていると判定した場合には、ステップS1002へ移る。
 ステップS1011において自立2状態になっていないと判定した場合には、分電盤内に自立2状態の回路を構成するためにスイッチ416A、416B、416C及び416Dを切り替える(ステップS1012)。具体的には、制御部614は、スイッチ416A(SW1)をオンにし、スイッチ416B(SW2)をオンにし、スイッチ416C(SW3)をa(通常側)にセットし、スイッチ416D(SW4)をオフにする。
 次に、パワーコンディショナ(PV-PCS526A及びSB-PCS526B)を自立モードで起動する(ステップS1013)。
 次に、分電盤の制御状態を自立2状態に変更する(ステップS1014)。
 ステップS1014の処理を完了したら、ステップS1002へ移る。
 以上のように、本実施の形態の分電盤600によれば、停電状態及び供給状態だけでなく、停電疑い状態においても、適切な電力制御を行うことができる。
 なお、上記各実施の形態で説明したように、本発明では、電力供給装置が停電状態又は復電状態を検知したことを通じて、系統電源の停電状態又は復電状態を検知する。電力供給装置は高精度の電力センサを備えているので、このような方法により高精度に検知することができる。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の分電盤などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、系統電源から供給される交流電力を負荷に供給する分電盤における電力制御方法であって、前記系統電源から電力が供給されていない状態である停電状態を検知する検知ステップと、1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、前記系統電源との間に設けられた第1スイッチを少なくとも制御する制御ステップと、を含み、前記検知ステップにおいて前記停電状態が検知された場合、前記制御ステップでは、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、前記1以上の蓄電池の放電電力を、前記分電盤を制御するために電力を供給するとともに、前記所定の負荷に供給するように制御する電力制御方法を実行させる。
 以上、一つまたは複数の態様に係る分電盤について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本発明は、適切に停電状態を検出して自立状態に切り替え、また、分電盤を動作させるための電力の利用用途を広げることができ、分電盤、電力制御方法、分電盤を含む電力供給システム、および、分電盤を含む住宅設備等に用いるのに有用である。
 100、200、300、400、500、600  分電盤
 111、212、312、412、512  検知部
 112、432、433、434、436  変流器
 114、214、414、514、614  制御部
 116、216、416A、416B、416C、416D スイッチ
 122  系統電源
 124、424A、424B、424C、424D  負荷
 126  電力供給装置
 126A  電力供給装置1
 126B  電力供給装置2
 426A  PCS
 426C  FC
 427  PVパネル
 428  蓄電池
 429  通知装置
 442  蓄電池
 452  通常ブレーカ群
 454  自立ブレーカ群
 462、464、472、474  ブレーカ
 481  蓄電池
 482  直流端子
 483  交流端子
 484  DC/ACインバータ
 526A  PV-PCS
 526B  SB-PCS
 

Claims (14)

  1.  系統電源から供給される交流電力を負荷に供給するための電力線と、
     1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、
     前記系統電源から電力が供給されていない状態である停電状態を検知する検知部と、
     前記系統電源と前記蓄電部との間に設けられた第1スイッチと、
     少なくとも前記第1スイッチを制御する制御部と、を備え、
     前記検知部が前記停電状態を検知した場合、
     前記制御部は、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、
     前記蓄電部は、前記1以上の蓄電池を放電することにより、前記制御部に電力を供給して前記制御部を駆動するとともに、前記1以上の蓄電池の放電電力を前記所定の負荷に供給する、
     分電盤。
  2.  前記蓄電部は、さらに、
     前記制御部および前記1以上の蓄電池と電気的に接続される直流端子と、
     前記所定の負荷および前記第1スイッチと電気的に接続される交流端子と、
     前記1以上の蓄電池から出力される直流電力を交流電力に変換し、当該交流電力を前記交流端子に出力するDC/ACインバータと、を備え、
     前記蓄電部は、停電時には、前記1以上の蓄電池から出力された直流電力を前記直流端子から前記制御部に供給するとともに、前記1以上の蓄電池から出力された直流電力を前記DC/ACインバータにおいて交流電力に変換し、当該交流電力を前記交流端子から前記所定の負荷に供給する、
     請求項1に記載の分電盤。
  3.  前記DC/ACインバータは、さらに交流電力を直流電力に変換することで、直流電力および交流電力を双方向に変換し、
     前記系統電源から前記分電盤に電力が供給されている場合、
     前記制御部は、前記第1スイッチをオンして前記交流端子と前記系統電源とを電気的に接続し、
     前記蓄電部は、前記DC/ACインバータにおいて、前記交流端子を介して受けた前記系統電源からの交流電力を直流電力に変換し、当該直流電力を供給して前記1以上の蓄電池を充電する、
     請求項2に記載の分電盤。
  4.  前記系統電源から前記分電盤に電力が供給されている場合、
     前記制御部は、前記第1スイッチをオンして前記交流端子と前記系統電源とを電気的に接続し、
     前記蓄電部が、前記交流端子を介して受けた前記系統電源からの交流電力を前記DC/ACインバータにおいて直流電力に変換し、前記直流端子を介して当該直流電力を前記制御部に供給することで、前記制御部は当該直流電力の電力供給を受けて駆動される、
     請求項2または3に記載の分電盤。
  5.  前記検知部は、さらに、前記停電状態から、前記系統電源から電力が供給される状態である供給状態に変化したことを示す復電を検知し、
     前記蓄電部は、前記検知部が復電を検知してからの所定期間は、前記系統電源の電圧に応じて前記蓄電部から前記制御部に電力供給する、
     請求項3または4に記載の分電盤。
  6.  前記分電盤には、通常負荷と非常用負荷とが接続されており、
     前記所定の負荷は、前記非常用負荷であり、
     前記蓄電部は、停電時に前記蓄電部からの放電電力を前記非常用負荷に供給する、
     請求項1~5のいずれか1項に記載の分電盤。
  7.  前記分電盤には、通常負荷と非常用負荷とが接続されており、
     前記所定の負荷は、前記非常用負荷であり、
     前記制御部は、前記系統電源から前記分電盤が電力供給を受けている場合、前記系統電源からの電力を前記通常負荷に供給する、
     請求項3~5のいずれか1項に記載の分電盤。
  8.  前記分電盤は、さらに、外部に設けられる少なくとも1つの電力供給装置から供給される交流電力を前記負荷に供給し、
     前記電力供給装置は、第1の電力出力端子および第2の電力出力端子を備え、停電時には前記第1の電力出力端子から前記分電盤に電力を供給し、通常時には前記第2の電力出力端子から前記分電盤に電力を出力し、
     前記分電盤は、さらに、
     前記電力供給装置と前記所定の負荷とを導通とするか非導通とするかを切り替える第2スイッチを備え、
     前記第1スイッチは、さらに、前記系統電源と前記所定の負荷とを導通とするか非導通とするかを切り替え、
     前記検知部は、前記系統電源から電力が供給されないことを前記電力供給装置が検知したことを示す停電通知信号を、前記電力供給装置から受信することで、前記停電状態を検知し、
     前記制御部は、前記検知部が前記停電通知信号を受信した場合に、前記第1スイッチをオフして前記系統電源を遮断し、前記第2スイッチをオンして前記電力供給装置の前記第1電力出力端子と前記所定の負荷とを電気的に接続し、
     さらに、前記電力供給装置の前記第2電力出力端子と前記所定の負荷とが前記第1スイッチを介して接続されており、
     前記第1スイッチがオンのときには、前記電力供給装置と前記所定の負荷とが電気的に接続されており、
     前記第1スイッチがオフのときには、前記電力供給装置と前記所定の負荷とが電気的に切り離される、
     請求項1~5のいずれか1項に記載の分電盤。
  9.  前記分電盤は、さらに、
     前記電力線には、2以上の前記電力供給装置が互いに異なる接続点において接続され、
     前記検知部は、
     2以上の前記電力供給装置のうち、前記電力線への接続点が前記系統電源に最も近い電力供給装置から前記停電通知信号を受信することで、前記停電状態を検知する、
     請求項8に記載の分電盤。
  10.  前記検知部は、
     前記電力供給装置が複数ある場合に、複数の前記電力供給装置のうち、前記電力供給装置のそれぞれに対して当該電力供給装置の属性に基づいてあらかじめ定められる信頼度が最も高い前記電力供給装置から、前記停電通知信号を受信することによって、前記停電状態を検知する、
     請求項8に記載の分電盤。
  11.  前記検知部は、さらに、
     前記停電状態から、前記系統電源から電力が供給される状態である供給状態に変化したことを示す復電を検知し、
     前記制御部は、
     前記検知部が前記復電を検知した場合に、前記第2スイッチをオフして前記電力供給装置の前記第1電力出力端子と前記所定の負荷との接続を非導通とし、前記第1スイッチをオンして前記系統電源と前記所定の負荷とを導通とする、
     請求項8に記載の分電盤。
  12.  前記検知部は、
     前記系統電源から電力が供給されることを前記電力供給装置が検知したことを示す復電通知信号を、前記電力供給装置から受信することによって、前記復電を検知する、
     請求項11に記載の分電盤。
  13.  前記検知部は、
     前記系統電源から電力が供給されることを前記電力供給装置が検知したことを示す復電通知信号を、前記系統電源の電力供給を管理する電力会社から通信回線を介して受信することによって、前記復電を検知する、
     請求項11に記載の分電盤。
  14.  系統電源から供給される交流電力を負荷に供給する分電盤における電力制御方法であって、
     前記系統電源から電力が供給されていない状態である停電状態を検知する検知ステップと、
     1以上の蓄電池を備え、所定の負荷に電気的に接続される蓄電部と、前記系統電源との間に設けられた第1スイッチを少なくとも制御する制御ステップと、を含み、
     前記検知ステップにおいて前記停電状態が検知された場合、
     前記制御ステップでは、前記第1スイッチをオフすることにより前記蓄電部と前記系統電源との間の電気的接続を遮断し、
     前記1以上の蓄電池の放電電力を、前記分電盤を制御するために電力を供給するとともに、前記所定の負荷に供給するように制御する、
     電力制御方法。
     
PCT/JP2013/006121 2012-10-31 2013-10-15 分電盤及び電力制御方法 WO2014068875A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380004556.1A CN104011952B (zh) 2012-10-31 2013-10-15 分电盘以及电力控制方法
US14/368,612 US9825487B2 (en) 2012-10-31 2013-10-15 Apparatus and electric power control method
JP2014504900A JP6152844B2 (ja) 2012-10-31 2013-10-15 分電盤及び電力制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-240630 2012-10-31
JP2012240630 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014068875A1 true WO2014068875A1 (ja) 2014-05-08

Family

ID=50626827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006121 WO2014068875A1 (ja) 2012-10-31 2013-10-15 分電盤及び電力制御方法

Country Status (4)

Country Link
US (1) US9825487B2 (ja)
JP (3) JP6152844B2 (ja)
CN (1) CN104011952B (ja)
WO (1) WO2014068875A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108482A (ja) * 2015-12-07 2017-06-15 日東工業株式会社 分電盤システム
US11076720B2 (en) 2014-03-28 2021-08-03 Gudpod Corp. System for mixing beverages and method of doing the same
KR20220097212A (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 저압 직류 분전반을 이용한 전력관리시스템

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163121B2 (ja) * 2014-02-26 2017-07-12 サンケン電気株式会社 自立運転システム
US9825461B2 (en) * 2015-02-18 2017-11-21 Liteideas, Llc Modular direct current power distribution network, and a method for its use
JP6436028B2 (ja) * 2015-09-17 2018-12-12 住友電気工業株式会社 電源装置及びそのスイッチ制御方法
CN116760041A (zh) 2017-03-06 2023-09-15 豪倍公司 用于电力分配的***和方法
JP7136541B2 (ja) * 2017-07-05 2022-09-13 東芝三菱電機産業システム株式会社 無停電電源装置および無停電電源装置の制御方法
US11165419B2 (en) * 2017-08-22 2021-11-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Failure detection of a semiconductor switch using first and second current detectors
CN107612394B (zh) * 2017-09-12 2019-11-22 爱士惟新能源技术(江苏)有限公司 用于具有h5拓扑结构的逆变器装置的控制处理方法
JP6830080B2 (ja) * 2018-05-11 2021-02-17 ニチコン株式会社 全負荷対応型分電盤および全負荷対応型分電盤に対応した蓄電システム
JP7292116B2 (ja) * 2019-06-10 2023-06-16 三菱電機株式会社 配線装置、及び、配線システム
JP6716005B1 (ja) * 2019-11-18 2020-07-01 西部電機株式会社 個別停電検出装置及び個別停電検出方法
CN110994721B (zh) * 2019-12-06 2021-08-13 盖士炎 一种变电站直流***蓄电池组核对性放电回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043802A (ja) * 2005-08-02 2007-02-15 Tokyo Electric Power Co Inc:The 無停電電源装置及び分電盤
JP2011188607A (ja) * 2010-03-08 2011-09-22 Seiko Electric Co Ltd 電力供給システム、電力供給方法及び制御装置
WO2012014410A1 (ja) * 2010-07-30 2012-02-02 三洋電機株式会社 二次電池の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701340B2 (ja) 1988-07-27 1998-01-21 スズキ株式会社 電気車の回生制動制御回路
JPH0241603U (ja) * 1988-09-14 1990-03-22
JP2001258176A (ja) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 電力消費制御システム
JP4453955B2 (ja) 2003-03-12 2010-04-21 日東工業株式会社 分電盤
JP2008022650A (ja) * 2006-07-13 2008-01-31 Univ Of Tsukuba 自立運転支援装置及び電源システム
JP4821495B2 (ja) 2006-08-10 2011-11-24 パナソニック電工株式会社 配電システム
US8896151B2 (en) * 2010-05-31 2014-11-25 Shimizu Corporation Electric power system
JP5599066B2 (ja) * 2010-12-28 2014-10-01 東京瓦斯株式会社 電流管理機能付分電盤
US9583942B2 (en) * 2011-04-20 2017-02-28 Reliance Controls Corporation Transfer switch for automatically switching between alternative energy source and utility grid
JP6019614B2 (ja) * 2012-02-28 2016-11-02 オムロン株式会社 蓄電制御装置、蓄電制御装置の制御方法、プログラム、および蓄電システム
JP5858236B2 (ja) 2012-06-01 2016-02-10 東芝ライテック株式会社 蓄電池システム
JP5364199B1 (ja) 2012-12-03 2013-12-11 積水化学工業株式会社 エネルギマネジメントシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043802A (ja) * 2005-08-02 2007-02-15 Tokyo Electric Power Co Inc:The 無停電電源装置及び分電盤
JP2011188607A (ja) * 2010-03-08 2011-09-22 Seiko Electric Co Ltd 電力供給システム、電力供給方法及び制御装置
WO2012014410A1 (ja) * 2010-07-30 2012-02-02 三洋電機株式会社 二次電池の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076720B2 (en) 2014-03-28 2021-08-03 Gudpod Corp. System for mixing beverages and method of doing the same
JP2017108482A (ja) * 2015-12-07 2017-06-15 日東工業株式会社 分電盤システム
KR20220097212A (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 저압 직류 분전반을 이용한 전력관리시스템
KR102611073B1 (ko) * 2020-12-30 2023-12-08 한국전자기술연구원 저압 직류 분전반을 이용한 전력관리시스템

Also Published As

Publication number Publication date
CN104011952B (zh) 2017-06-20
CN104011952A (zh) 2014-08-27
US9825487B2 (en) 2017-11-21
JP2015146720A (ja) 2015-08-13
JP5875015B2 (ja) 2016-03-02
JPWO2014068875A1 (ja) 2016-09-08
US20150108833A1 (en) 2015-04-23
JP2015146719A (ja) 2015-08-13
JP6152844B2 (ja) 2017-06-28
JP5857274B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
JP6152844B2 (ja) 分電盤及び電力制御方法
JP6797948B2 (ja) 動的に再構成可能なエネルギー貯蔵装置を作り出す方法および装置
KR101369697B1 (ko) 전력 변환 시스템 및 무정전 전원 시스템
US7932636B2 (en) Automatic start-up circuit and uninterruptible power supply apparatus having such automatic start-up circuit
US7982342B2 (en) Fuel cell power management system and anti-islanding method in the power management system
JP6288722B2 (ja) 電池システム
US20140232194A1 (en) Power supply system and method of controlling the same
JP6452331B2 (ja) 発電システムの制御方法、発電システム、及び発電装置
JP2012044733A (ja) 太陽光発電電力を利用した蓄電池システム
WO2014083788A1 (ja) 双方向コンバータ
WO2013046685A1 (ja) 電力供給システム及び電力制御方法
JP5717173B2 (ja) 電源システム、電源制御方法、電源制御装置、及び、プログラム
JP6092800B2 (ja) 無停電電源システム
JP2013046532A (ja) 電力平準化装置
KR20140087930A (ko) 배터리 에너지 저장 시스템 및 그의 제어 방법
JP5522378B2 (ja) 電源装置
KR20120046628A (ko) 배터리 재생장치
TWI552485B (zh) 直流備援設備
US20170093206A1 (en) Direct current backup system
JP2012060845A (ja) 無停電電源システムおよびこれに用いる予備無停電電源装置の動作制御方法
US20200067315A1 (en) Energy storage apparatus
KR20100074985A (ko) 계통연계형 연료전지시스템의 전원제어방법 및 장치
JP2011160639A (ja) 瞬低対策装置
JP6931811B2 (ja) 蓄電池ユニット
US20240097484A1 (en) Systems and methods for operating with secondary power sources

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368612

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851590

Country of ref document: EP

Kind code of ref document: A1