WO2014067187A1 - 一种混合主动式防孤岛效应的检测方法及*** - Google Patents

一种混合主动式防孤岛效应的检测方法及*** Download PDF

Info

Publication number
WO2014067187A1
WO2014067187A1 PCT/CN2012/084992 CN2012084992W WO2014067187A1 WO 2014067187 A1 WO2014067187 A1 WO 2014067187A1 CN 2012084992 W CN2012084992 W CN 2012084992W WO 2014067187 A1 WO2014067187 A1 WO 2014067187A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
islanding
grid frequency
value
grid
Prior art date
Application number
PCT/CN2012/084992
Other languages
English (en)
French (fr)
Inventor
张东来
张华�
西珊⋅莫斯塔菲
苏珊⋅贝赫什提
吴斌
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Publication of WO2014067187A1 publication Critical patent/WO2014067187A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the invention relates to a method and a system for detecting an anti-islanding effect, in particular to a method and a system for detecting a hybrid active anti-islanding effect.
  • island detection methods can be divided into two categories: passive detection and active detection.
  • Passive main monitoring The islanding detection is caused by the abnormality of the voltage parameter of the common coupling point due to the disconnection of the grid; the active method periodically injects the interference signal into the common coupling point, and judges whether there is an islanding effect according to the inverter response information.
  • the technical problem solved by the invention is: constructing a hybrid active anti-islanding detection method and system, overcoming the technology of the prior art, continuously injecting interference signals into the power grid, affecting the power quality and the active anti-islanding method is easy to fail. problem.
  • the technical solution of the present invention is: Providing a hybrid active anti-islanding detection method, comprising the following steps:
  • A Get the change value of the grid frequency in each control cycle
  • the three-phase voltage at the output of the transformer and the three-phase current ⁇ further know the latest grid frequency through the digital phase-locked loop ⁇ then obtain the grid frequency change value ⁇ « of the next control cycle through step A, and finally complete the entire positive feedback process;
  • the active island detecting method comprises an RPV method.
  • a further technical solution of the invention is: Include a finite impulse response filter (FIR) and a derived filter (Su/St) in the acquisition of the grid frequency variation value ⁇ « to filter out possible DC components in the grid frequency.
  • FIR finite impulse response filter
  • Si/St derived filter
  • a further technical solution of the present invention is: To maintain the stability of the distributed power generation system, the maximum positive feedback reference value is limited to ⁇ 0.5% of the inverter output power.
  • a further technical solution of the invention is: The high-frequency interference and noise that may be present in the measured grid frequency are filtered by a low-pass filter before the change value ⁇ « of the grid frequency is obtained.
  • the technical solution of the present invention is: constructing a hybrid active anti-islanding detection system, and the positive feedback module includes a filter module for changing the grid frequency ⁇ «, and a gain for gain processing of the grid frequency variation value ⁇ « a processing module, a determination of an islanding effect, and a comparison triggering module for starting protection, the filtering module acquiring a variation value of the grid frequency in each control period, the gain processing module obtaining a variation value of the grid frequency ⁇ « versus a reactive power reference value
  • m GCC K pf ⁇ o , where: is the gain of the island effect pre-detection; when the grid frequency
  • the comparison trigger module determines that an islanding phenomenon may occur in the inverter, and initiates an active island detecting method for further islanding detection. Otherwise, the grid frequency is re-acquired.
  • the frequency acquisition module includes a filtering module that performs filtering processing on the acquired frequency.
  • a further technical solution of the present invention is: filtering the measured grid frequency by using a low-pass filter High frequency interference and noise.
  • a further technical solution of the invention is to use a finite impulse response filter (FIR) and a derived filter (Su/St) to filter out possible DC components in the grid frequency.
  • FIR finite impulse response filter
  • Si/St derived filter
  • the comparison triggering module includes a comparator and a trigger.
  • the technical effect of the present invention is: Providing a hybrid active anti-islanding detection method and system, comprising obtaining a variation value ⁇ « of a grid frequency in each control cycle; using a positive feedback frequency shift method to obtain a power grid through gain processing
  • GCC K p co , where: K pf It is the gain of the islanding pre-detection; when the frequency change of the grid frequency ⁇ « occurs with a frequency shift of 0.1 Hz, it is determined that an island may occur in the inverter, and the active island detection method is started for further island detection.
  • the invention relates to a hybrid active anti-islanding detection method and system.
  • the method only injects an interference signal into the power grid when detecting an islanding effect, and simultaneously triggers the active mode in all the inverters through an RS flip-flop.
  • the island detection method which keeps the synchronization between all the inverters, can eliminate the dilution effect in the distributed generation system and ultimately ensure the effectiveness of the islanding detection.
  • FIG. 1 is a schematic structural view of a power grid of the present invention.
  • FIG. 2 is a schematic structural view of a hybrid active anti-islanding system of the present invention. detailed description
  • a specific embodiment of the present invention is: a renewable energy source such as a photovoltaic system or a wind power generation system outputs DC power, which is input to an inverter, and the inverter converts the electric energy into an AC power and inputs the harmonics to the harmonics.
  • the filter filters the harmonics through the harmonic filter to meet the grid specifications, and then increases the output voltage of the distributed generation system through the transformer and filters out the DC component, ultimately delivering the power to the grid.
  • the inverter controller is used to monitor and control the operation of the inverter.
  • the required input parameters include an active power reference value provided by the Maximum Power Point Tracking (MPPT) module, and the grid side.
  • MPPT Maximum Power Point Tracking
  • Three-phase voltage ( ), three-phase current at the output of the inverter ( i g ) and through our hybrid active island inspection The reactive power reference value G re/ provided by the test method.
  • the detected three-phase voltage on the grid side ( ) is supplied to the digital phase-locked loop (PLL) module to ensure that the frequency and phase of the grid-connected current are synchronized with the grid voltage and output the grid frequency ⁇ , which is input to the PFFS (Positive) Feedback Frequency Shift, Method to complete island pre-detection.
  • PLL digital phase-locked loop
  • Step A Obtain the change value of the grid frequency ⁇ « in each control cycle.
  • the input parameter of the PFFS island pre-detection method is the grid frequency output by the digital phase-locked loop (PLL).
  • the PFFS method firstly filters the grid frequency through the filter module.
  • the output of the module is the frequency change value ⁇ « in each control cycle.
  • the specific process is as follows: First, the low-pass filter is called to filter the measured grid frequency. High-frequency interference and noise, the low-pass filter in the embodiment of the present invention uses an angular frequency of 25 ⁇ , and the corresponding response time is 0.04 sec; a finite impulse response filter (FIR) is applied in each control period. And the derived filter ⁇ filters out the DC component present in the grid frequency and monitors the variation of the grid frequency during each control cycle.
  • the output of the filter module is the change in frequency ⁇ « for each control cycle. In the specific embodiment, each control period is 0.2 seconds.
  • Step ⁇ Using the positive feedback frequency shift method, the gain processing is used to obtain the influence of the change value ⁇ « of the grid frequency on the reactive power reference value, and the change value of the reactive power reference value in each control period and ⁇ «
  • the specific process is as follows: The PFFS island pre-detection method obtains its output parameter through the gain processing module: Q ref , the correspondence between the change value of the reactive power reference value and ⁇ « in each control period is:
  • AQ GCC ⁇ ⁇ / ⁇ , where ⁇ is the gain of the PFFS islanding pre-detection method.
  • the lowest value can be derived as follows: The larger the min value, the greater the reactive power reference value in the case of the same frequency change. Interference, this will definitely make island detection more reliable. However, if the selected gain is too large, it will have a negative impact on the quality of the grid. In the present invention, the gain value is set to 0.08, which makes 5% ⁇ When the step of the grid frequency change is 0. 1Hz, the corresponding reactive power disturbance is 0.5%. It increases as the frequency of the grid measured by the phase-locked loop increases.
  • the anti-islanding method will proportionally increase the G re / generated by the inverter. Therefore, in order to maintain a balance with reactive power, the grid frequency will continue to increase. The increase in frequency will further drive the increase of the reactive power of the inverter. This is the so-called positive feedback frequency shift method.
  • the maximum value of the positive feedback reference value is limited to ⁇ 0.5% of the inverter output power. In our method, this part of the function is completed by a threshold limit part, The calculated result is summed with the predetermined reactive power ⁇ * to obtain a new G re / .
  • the grid frequency is almost constant.
  • Step C When the frequency change of the grid frequency ⁇ « occurs with a frequency shift of 0.1 Hz, it is determined that there may be an islanding phenomenon in the inverter, and the active island detection method is started for further island detection; otherwise, the above is repeated.
  • the RPV method introduces the disturbance to the input of the inverter, breaks the balance between the system and the load under the operation of the island, and causes the voltage of the common node to exceed the threshold range, thereby detecting the island.
  • the pre-detection time ( ⁇ .) is the time required for the PFFS island pre-detection method to shift the frequency by 0.1 Hz after detecting the occurrence of an island, T 0 is introduced by the low-pass filter, the time delay r PF , the grid is disconnected
  • the reactive power is 0. 5% 0. 1Hz offset and time offset required frequency of the grid and a current loop r e 7 settling time.
  • the low-pass filter uses an angular frequency of 25 Hz, and its corresponding response time is 0.04 seconds, that is, ⁇ ⁇ value is 40 ms, ⁇ value is about 33.3 ms, ⁇ ⁇ is the current control settling time, The value is related to the time constant ⁇ ⁇ of the harmonic filter, the total inductance of the filter and the total resistance. From this, T 0 ⁇ T LPF + T V0C + T Q , 100ms, which is the hybrid active island proposed by the present invention. The test method meets the requirements of this standard.
  • a specific implementation manner of the present invention is: constructing a hybrid active anti-islanding detection system, the positive feedback module obtains the latest reactive power reference value G re / , and feeds back to the inverter In the controller, this value affects the three-phase voltage at the output of the inverter and the three-phase current.
  • the latest grid frequency is further learned through the digital phase-locked loop.
  • the grid frequency change value ⁇ « of the next control cycle is obtained.
  • the positive feedback module includes a filtering module for the variation value of the grid frequency ⁇ «, a gain processing module for gain processing of the variation value ⁇ « of the grid frequency, a determination of the islanding effect, and a comparison triggering module for starting protection
  • the filtering module acquires a change value of the grid frequency in each control period, and the gain processing module obtains an influence of the change value ⁇ « of the grid frequency on the reactive power reference value, and the reactive power reference value is in each control period.
  • the comparison trigger module determines that an islanding phenomenon may occur in the inverter, and initiates an active island detecting method for further island detection, otherwise, reacquisition
  • the change value ⁇ « of the grid frequency is used for gain processing and positive feedback process for the change value ⁇ « of the grid frequency.
  • the low-pass filter is used to filter the high-frequency interference and noise existing in the measured grid frequency.
  • the low-pass filter in the embodiment of the present invention uses an angular frequency of 25 ⁇ , and the corresponding response time. It is 0.04 seconds; then a finite impulse response filter (FIR) and a derived filter ⁇ ⁇ ⁇ are applied in each control cycle to filter out the DC component present in the grid frequency and monitor the grid during each control cycle.
  • the frequency change, the output of the filter module is the change value ⁇ « of the frequency in each control cycle. 2 ⁇ In a specific embodiment, each control cycle is 0.2 seconds.
  • K pf (min) .
  • a larger value of K pf means that there is more interference with the reactive power reference value under the same frequency change, which will certainly make the island detection more reliable. However, if the selected gain is too large, it will have a negative impact on the quality of the grid. 5% ⁇ In the present invention, the value of the gain is set to 0.
  • the value of the grid power is 0. 1 Hz, the corresponding reactive power disturbance is 0.5%. It increases as the frequency of the grid measured by the phase-locked loop increases. When the measured frequency "increases, the anti-islanding method will proportionally increase the G re / generated by the inverter. Therefore, in order to maintain a balance with reactive power, the grid frequency will continue to increase. The increase in frequency will further drive the increase of the reactive power of the inverter. This is the so-called positive feedback frequency shift method. In order to maintain the stability of the DG system, the maximum value of the positive feedback reference value is limited to ⁇ 0.5% of the inverter output power. In our method, this part of the function is completed by a threshold limiting part.
  • Step C When the frequency change ⁇ « of the grid frequency occurs with a frequency shift of 0.1 Hz, it is determined that an island may occur in the inverter, and the active island detection method is activated for further island detection; otherwise, repeat the above, B, Step C.
  • This step first uses a comparator to detect whether the frequency shift meets the trigger condition. If a frequency shift of 0.1 Hz is detected, it indicates that an island may occur in the inverter, and then through an RS flip-flop in a short time. The internal frequency or voltage is set to exceed the acceptable range, and the active island detection method is started for further island detection; if the frequency shift does not satisfy the trigger condition, the change value of the grid frequency ⁇ « is obtained again, and the variation value of the grid frequency ⁇ « Perform gain processing.
  • the technical effect of the present invention is: Providing a hybrid active anti-islanding detection method and system, comprising obtaining a variation value ⁇ « of a grid frequency in each control cycle; using a positive feedback frequency shift method to obtain a power grid through gain processing
  • GCC K p co , where: K pf It is the gain of the islanding pre-detection; when the frequency change of the grid frequency ⁇ « occurs with a frequency shift of 0.1 Hz, it is determined that an island may occur in the inverter, and the active island detection method is started for further island detection.
  • the invention relates to a hybrid active anti-islanding detection method and system.
  • the method only injects an interference signal into the power grid when detecting an islanding effect, and simultaneously triggers the active mode in all the inverters through an RS flip-flop.
  • the island detection method which keeps the synchronization between all the inverters, can eliminate the dilution effect in the distributed generation system and ultimately ensure the effectiveness of the islanding detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种混合主动式防孤岛效应的检测方法及***。该方法包括下列步骤:获取每个控制周期内电网频率的变化值∆ω,采用正反馈频移方法,通过增益处理,获取电网频率的变化值∆ω对无功功率参考值Q ref 的影响,该无功功率参考值Q ref 在每个控制周期内的变化值∆Q GCC 和∆ω之间的对应关系为:∆Q GCC =Κ pf ω,其中:K pf 是孤岛效应预检测的增益;当电网频率的变化值∆ω发生了0.1Hz的频移时,则判定在逆变器中有可能产生孤岛现象,启动主动式孤岛检测方法进行进一步的孤岛检测;否则,重新获取电网频率的变化值∆ω,对∆ω进行增益处理。该方法只在检测到孤岛效应可能发生时才向电网注入干扰信号,并通过RS触发器在所有逆变器中同时触发主动式孤岛检测方法,能够保持所有逆变器之间的同步,从而消除分布式发电***中的稀释效应,最终保证孤岛效应检测的有效性。

Description

一种混合主动式防孤岛效应的检测方法及*** 技术领域
本发明涉及一种防孤岛效应的检测方法及***, 尤其涉及一种混合主动式防孤 岛效应的检测方法及***。 背景技术
常用的孤岛检测方法可分为两类: 被动式检测与主动式检测。 被动式主要监测 因电网断开连接造成公共耦合点电压参数出现异常进行孤岛检测; 主动式方法则周 期性向公共耦合点注入干扰信号, 据逆变器响应信息判断是否存在孤岛效应。
所有被动式方法面临的共性问题是如何调整阈值, 因为该类方法对阈值设置非 常敏感, 不合适的阈值会增加对逆变器造成损害的可能性, 同时增大被动式检测方 法的检测盲区 (NDZ)。
目前已有的主动式防孤岛方法存在两个主要的问题。 首先, 大部分的主动式防 孤岛方法, 例如无功功率扰动(RPV)、 频移、 电压偏移、 主动式频移脉冲斩波因子, 这些方法需要不断的向电网注入干扰信号, 影响了电能质量。 另外一个关键的问题 是, 一些主动式防孤岛方法在多逆变器并联时会产生稀释效应 。 例如在多逆变器级 联的分布式发电***中, 由于缺乏同步性, 当某一个逆变器向公共耦合点注入干扰 信号时可能抵消掉其他逆变器向公共耦合点注入的信号, 从而导致主动式防孤岛方 法失效。 发明内容
本发明解决的技术问题是: 构建一种混合主动式防孤岛效应的检测方法及***, 克服现有技术需要不断的向电网注入干扰信号, 影响了电能质量以及主动式防孤岛 方法容易失效的技术问题。
本发明的技术方案是: 提供一种混合主动式防孤岛效应的检测方法, 包括如下 步骤:
A: 获取每个控制周期内电网频率的变化值 B: 采用正反馈频移方法, 通过增益处理, 获取电网频率的变化值 Δ«对无功功率 参考值 的影响,该无功功率参考值 在每个控制周期内的变化值 和 Δ«之间 的对应关系为: GCC = 1^co , 其中: 是孤岛效应预检测的增益; 通过该步骤得 到最新的无功功率参考值 Gre/, 将 反馈至逆变器控制器中, 该值影响逆变器输出 端的三相电压 以及三相电流 ^, 进一步通过数字锁相环获知最新的电网频率^ 之 后通过步骤 A获取下个控制周期的电网频率变化值 Δ«, 最终完成整个正反馈过程;
C: 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在逆变器中有可能产 生孤岛现象, 启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重复上 ¾A、 B、 C步骤。
本发明的进一步技术方案是: 所述主动式孤岛检测方法包括 RPV方法。
本发明的进一步技术方案是: 在获取电网频率的变化值 Δ«中包括采用有限脉冲 响应滤波器(FIR)及派生的滤波器( Su/St )来滤除电网频率中可能存在的直流分量。
本发明的进一步技术方案是: 为维持分布式发电***的稳定性, 最大的正反馈 参考值限定在逆变器输出功率的 ± 0. 5%之内。
本发明的进一步技术方案是: 在获取电网频率的变化值 Δ«前, 用低通滤波器过 滤测量到的电网频率中可能存在的高频干扰和噪声。
本发明的技术方案是: 构建一种混合主动式防孤岛效应的检测***, 正反馈模 块包括对电网频率的变化值 Δ«获取的滤波模块、对电网频率的变化值 Δ«进行增益处 理的增益处理模块、 进行孤岛效应的判断和启动防护的比较触发模块, 所述滤波模 块获取每个控制周期内电网频率的变化值 所述增益处理模块获取电网频率的变 化值 Δ«对无功功率参考值 的影响, 该无功功率参考值 在每个控制周期内的变 化值 和 Δ«之间的对应关系为: mGCC = Kpf^o , 其中: 是孤岛效应预检测的 增益; 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 所述比较触发模块判定在逆 变器中有可能产生孤岛现象, 启动主动式孤岛检测方法进行进一步的孤岛检测, 否 则,重新获取电网频率的变化值 Δ«,对电网频率的变化值 Δ«进行增益处理以及正反 馈过程。
本发明的进一步技术方案是: 所述频率获取模块包括对获取的频率进行滤波处 理的滤波模块。
本发明的进一步技术方案是: 采用低通滤波器过滤测量到的电网频率中可能存 在的高频干扰和噪声。
本发明的进一步技术方案是: 采用有限脉冲响应滤波器 (FIR ) 及派生的滤波器 ( Su/St ) 来滤除电网频率中可能存在的直流分量。
本发明的进一步技术方案是: 所述比较触发模块包括比较器和触发器。
本发明的技术效果是: 提供一种混合主动式防孤岛效应的检测方法及***, 包 括获取每个控制周期内电网频率的变化值 Δ«;采用正反馈频移方法,通过增益处理, 获取电网频率的变化值 Δ«对无功功率参考值 的影响, 该无功功率参考值 在每 个控制周期内的变化值 和 Δ«之间的对应关系为: GCC = Kp co , 其中: Kpf是 孤岛效应预检测的增益; 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在 逆变器中一个孤岛有可能发生, 启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重新获取电网频率的变化值 Δ«, 对电网频率的变化值 Δ«进行增益处理。本发 明一种混合主动式防孤岛效应的检测方法及***, 该方法只在检测到孤岛效应可能 发生时才向电网注入干扰信号, 并通过一个 RS触发器在所有逆变器中同时触发主动 式孤岛检测方法, 这也就保持了所有逆变器之间的同步, 从而可以消除分布式发电 ***中的稀释效应, 最终保证了孤岛效应检测的有效性。 附图说明
图 1为本发明的电网结构示意图。
图 2为本发明混合主动式防孤岛效应***的结构示意图。 具体实施方式
下面结合具体实施例, 对本发明技术方案进一步说明。
如图 1 所示, 本发明的具体实施方式是: 光伏***或风力发电***等可再生能 源输出直流电能, 输入至逆变器, 由逆变器将电能逆变输出交流电能, 输入至谐波 滤波器, 通过谐波滤波器滤除谐波来满足电网规范, 之后再通过变压器提高分布式 发电***的输出电压并滤除直流分量, 最终将电能输送至电网。 逆变器控制器是用 来监测和控制逆变器的运行, 其所需要的输入参数包括由最大功率点跟踪 (Maximum Power Point Tracking,简称 MPPT ) 模块提供的一个有功功率参考值 、 电网侧的 三相电压 ( )、 逆变器输出端的三相电流 ( ig ) 以及通过我们的混合主动式孤岛检 测方法提供的无功功率参考值 Gre/。 检测到的电网侧的三相电压 ( ) 提供给数字锁 相环 (PLL) 模块, 以确保并网电流的频率和相位与电网电压的同步, 并输出电网频 率 ω, 该值输入至 PFFS (Positive Feedback Frequency Shift , 正反馈频移) 方法 以完成孤岛预检测。
如图 2、 图 3所示, 步骤 A : 获取每个控制周期内电网频率的变化值 Δ«。 PFFS孤岛 预检测方法的输入参数是由数字锁相环 (PLL) 输出的电网频率《。 PFFS方法首先是 通过滤波模块对电网频率进行滤波, 该模块输出结果是每个控制周期内频率的变化 值 Δ«, 具体过程如下: 首先是调用低通滤波器过滤测量到的电网频率中存在的高频 干扰和噪声, 本发明具体实施例中的低通滤波器使用的角频率为 25Ηζ, 其对应的响 应时间为 0. 04秒; 在每个控制周期内应用一个有限脉冲响应滤波器 (FIR) 及派生的 滤波器 ψ 来滤除电网频率中存在的直流分量, 并监测每个控制周期内电网频 率的变化情况, 滤波模块的输出结果是每个控制周期内频率的变化值 Δ«。 具体实施 例中, 每个控制周期为 0. 2秒。
步骤 Β : 采用正反馈频移方法, 通过增益处理, 获取电网频率的变化值 Δ«对无功 功率参考值 的影响,该无功功率参考值 在每个控制周期内的变化值 和 Δ« 之间的对应关系为: QGCC = Kp co , 其中: 是孤岛效应预检测的增益; 通过该步 骤得到最新的无功功率参考值 Gre/, 将 反馈至逆变器控制器中, 该值影响逆变器 输出端的三相电压 以及三相电流 ^,进一步通过数字锁相环获知最新的电网频率^ 之后通过步骤 A获取下个控制周期的电网频率变化值 Δ«, 最终完成整个正反馈过程; 具体过程如下: PFFS孤岛预检测方法通过增益处理模块得到其输出参数: Qref , 该 值在每个控制周期内无功功率参考值的变化值 和 Δ«之间的对应关系为:
AQGCC = Κρ/Αω , 这里 ^是 PFFS孤岛效应预检测方法的增益, 的最低值可以如下推 出: min 值越大意味着在相同频率变化情况下对无功功率参考值 存在着更大的干扰, 这样肯定会使得孤岛检测更可靠。 然而, 如果选择的增益过大 则会对电网质量产生一个相反地影响。 本发明中, 增益 值被设为 0. 08, 该值使得 在电网频率变化的步长为 0. 1Hz时, 相应的无功功率扰动为 0. 5%。 随着锁相环测 量到的电网频率的增大而增加。当测量到的频率《增加, 防孤岛方法会成比例的增大 逆变器产生的 Gre/。 因此, 为保持与无功功率的平衡, 电网频率会不断增加。 而频率 的增大会进一步驱使逆变器无功功率的提高, 这就是所谓的正反馈频移方法。 为维 持 DG***的稳定性, 正反馈参考值的最大值被限制到逆变器输出功率的 ± 0. 5%, 在 我们的方法中, 这部分功能是通过一个阈值限定部分来完成的, 将计算出的结果与 预定的无功功率 β*求和得到新的 Gre/。在电网正常运行时, 电网频率几乎是固定不变 的。 当电网发生故障并失去连接时, 电网频率将发生偏移, 其偏移量 Δ«与负载的功 率因数 Gf、 并网逆变器输出的有功功率 和无功功率 2eee、 负载的功率因数 2,以 及电网额定频率 ^有关, 其对应关系公式如等式所示:
Αω ^ 1 AQGCC
¾ 2Qf PGCC
步骤 C : 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在逆变器中有可 能产生孤岛现象, 启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重复上 述八、 B、 C步骤。 该步骤首先通过一个比较器来检测频移是否满足触发条件, 如果检 测到发生了 0. 1Hz的频移, 则表明在逆变器中一个孤岛有可能发生, 然后通过 RS触发 器启动主动式孤岛检测方法进行进一步的孤岛检测; 如果频移不满足触发条件, 则 转至歩骤 A, 重新开始孤岛预检测。
光伏***正常并网运行时无频率偏差,因此不存在扰动量,一旦电网出现故障, 逆变器输出的扰动将快速累积并超出允许范围,从而触发孤岛效应检测电路。因此, RPV方法通过对逆变器的输入引入扰动, 打破了孤岛运行下***和负载之间的平衡, 促使公共节点电压超出阈值范围, 从而检测出孤岛。
基于 IEEE标准 1547, 对于接入到分布式***中的额定功率不超过 10MVA的逆变器, 必须能够检测到孤岛效应并且能够在孤岛发生时在 2秒钟之内停止供电。 预检测时间 ( Γ。) 是 PFFS孤岛预检测方法在检测到孤岛可能发生之后将频率偏移 0. 1Hz所需要的 时间, T0由低通滤波器引入的时间延迟 rPF、 电网断开连接时无功功率发生 0. 5%的 偏移且电网频率发生 0. 1Hz的偏移所需要的时间 re以及电流环建立时间 7。 三部分组 成, BP : r。≤7^ +rve +re,低通滤波器使用的角频率为 25Hz,其对应的响应时间为 0. 04 秒, 即 Γ ^值为 40ms, ^值大约是 33.3ms, Γ ^是电流控制沉降时间, 其值与谐波滤 波器的时间常数 Γρ, 滤波器的总电感 和总电阻 有关, 由此可得, T0 < TLPF + TV0C + TQ , 100ms, 即本发明提出的混合主动式孤岛检测方法符合该标准要求。
如图 2所示, 本发明的具体实施方式是: 构建一种混合主动式防孤岛效应的检 测***, 所述正反馈模块得到最新的无功功率参考值 Gre/, 将 反馈至逆变器控制 器中, 该值影响逆变器输出端的三相电压 以及三相电流 进一步通过数字锁相环 获知最新的电网频率^ 之后通过步骤 A获取下个控制周期的电网频率变化值 Δ«, 最终完成整个正反馈过程;正反馈模块包括对电网频率的变化值 Δ«获取的滤波模块、 对电网频率的变化值 Δ«进行增益处理的增益处理模块、 进行孤岛效应的判断和启动 防护的比较触发模块, 所述滤波模块获取每个控制周期内电网频率的变化值 所 述增益处理模块获取电网频率的变化值 Δ«对无功功率参考值 的影响,该无功功率 参考值 在每个控制周期内的变化值 Δβ^和 Δ«之间的对应关系为: QGCC = Κ ω, 其中: 是孤岛效应预检测的增益;当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 所述比较触发模块判定在逆变器中有可能产生孤岛现象, 启动主动式孤岛检测方法 进行进一步的孤岛检测, 否则, 重新获取电网频率的变化值 Δ«, 对电网频率的变化 值 Δ«进行增益处理以及正反馈过程。
具体实施过程如下: 首先是调用低通滤波器过滤测量到的电网频率中存在的高 频干扰和噪声, 本发明具体实施例中的低通滤波器使用的角频率为 25Ηζ, 其对应的 响应时间为 0. 04秒;然后是在每个控制周期内应用一个有限脉冲响应滤波器(FIR) 及派生的滤波器 ί δψ 来滤除电网频率中存在的直流分量, 并监测每个控制周期 内电网频率的变化情况, 滤波模块的输出结果是每个控制周期内频率的变化值 Δ«。 具体实施例中, 每个控制周期为 0. 2秒。
PFFS孤岛预检测方法通过增益处理模块得到其输出参数: Qref, 该值在每个控制 周期内无功功率参考值的变化值 Δβ ^和 Δ«之间的对应关系为: QGCC = Kpf^o , 这里 f是 PFFS孤岛效应预检测方法的增益, f的最低值可以如下推出: Kpf (min) = 。 Kpf值越大意味着在相同频率变化情况下对无功功率参考值存在 着更大的干扰, 这样肯定会使得孤岛检测更可靠。 然而, 如果选择的增益过大则会 对电网质量产生一个相反地影响。 本发明中, 增益 ^^值被设为 0. 08, 该值使得在电 网频率变化的步长为 0. 1Hz时, 相应的无功功率扰动为 0. 5%。 随着锁相环测量到 的电网频率的增大而增加。当测量到的频率《增加, 防孤岛方法会成比例的增大逆变 器产生的 Gre/。 因此, 为保持与无功功率的平衡, 电网频率会不断增加。 而频率的增 大会进一步驱使逆变器无功功率的提高, 这就是所谓的正反馈频移方法。 为维持 DG ***的稳定性, 正反馈参考值的最大值被限定在逆变器输出功率的 ± 0. 5%之内, 在 我们的方法中, 这部分功能是通过一个阈值限定部分来完成的, 将计算出的结果与 预定的无功功率 β*求和得到新的 Gre/。在电网正常运行时, 电网频率几乎是固定不变 的。 当电网发生故障并失去连接时, 电网频率将发生偏移, 其偏移量 Δ«与负载的功 率因数 Gf、 并网逆变器输出的有功功率 和无功功率 2eee、 负载的功率因数 2,以 及电网额定频率 ^有关, 其对应关系公式如等式所示: Αω ^ 1 AQGCC
¾ 2Qf PGCC
当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在逆变器中一个孤岛有 可能发生,启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重复上述 、 B、 C步骤。该步骤首先通过一个比较器来检测频移是否满足触发条件, 如果检测到发生 了 0. 1Hz的频移, 则表明在逆变器中一个孤岛有可能发生, 然后通过一个 RS触发器 在短时间内将频率或电压设置成超出可接受范围, 启动主动式孤岛检测方法进行进 一步的孤岛检测; 如果频移不满足触发条件, 重新获取电网频率的变化值 Δ«, 对电 网频率的变化值 Δ«进行增益处理。 本发明的技术效果是: 提供一种混合主动式防孤岛效应的检测方法及***, 包 括获取每个控制周期内电网频率的变化值 Δ«;采用正反馈频移方法,通过增益处理, 获取电网频率的变化值 Δ«对无功功率参考值 的影响, 该无功功率参考值 在每 个控制周期内的变化值 和 Δ«之间的对应关系为: GCC = Kp co , 其中: Kpf是 孤岛效应预检测的增益; 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在 逆变器中一个孤岛有可能发生, 启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重新获取电网频率的变化值 Δ«, 对电网频率的变化值 Δ«进行增益处理。本发 明一种混合主动式防孤岛效应的检测方法及***, 该方法只在检测到孤岛效应可能 发生时才向电网注入干扰信号, 并通过一个 RS触发器在所有逆变器中同时触发主动 式孤岛检测方法, 这也就保持了所有逆变器之间的同步, 从而可以消除分布式发电 ***中的稀释效应, 最终保证了孤岛效应检测的有效性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视 为属于本发明的保护范围。

Claims

权利要求书
1.一种混合主动式防孤岛效应的检测方法, 包括如下步骤:
A: 获取每个控制周期内电网频率的变化值
Β: 采用正反馈频移方法, 通过增益处理, 获取电网频率的变化值 Δ«对无功功率 参考值 的影响,该无功功率参考值 在每个控制周期内的变化值 和 Δ«之间 的对应关系为: GCC = Kpi^o , 其中: 是孤岛效应预检测的增益; 通过该步骤得 到最新的无功功率参考值 Gre/, 将 反馈至逆变器控制器中, 该值影响逆变器输出 端的三相电压 以及三相电流 ^, 进一步通过数字锁相环获知最新的电网频率^ 之 后通过步骤 A获取下个控制周期的电网频率变化值 Δ«, 最终完成整个正反馈过程;
C: 当电网频率的变化值 Δ«发生了 0. 1Hz的频移时, 则判定在逆变器中有可能产 生孤岛现象, 启动主动式孤岛检测方法进行进一步的孤岛检测; 否则, 重复上 ¾A、 B、 C步骤。
2.根据权利要求 1 所述混合主动式防孤岛效应的检测方法, 其特征在于, 所述 主动式孤岛检测方法包括 RPV方法。
3.根据权利要求 1 所述混合主动式防孤岛效应的检测方法, 其特征在于, 在获 取电网频率的变化值 Δ«中包括采用有限脉冲响应滤波器及派生的滤波器来滤除电网 频率中可能存在的直流分量。
4.根据权利要求 1 所述混合主动式防孤岛效应的检测方法, 其特征在于, 为维 持分布式发电***的稳定性, 最大的正反馈参考值限定在逆变器输出功率的 ± 0. 5% 之内。
5.根据权利要求 1 所述混合主动式防孤岛效应的检测方法, 其特征在于, 在获 取电网频率的变化值 Δ«前, 应用低通滤波器过滤测量到的电网频率中存在的高频干 扰和噪声。
6.—种混合主动式防孤岛效应的检测***, 其特征在于, 正反馈模块包括对电 网频率的变化值 Δ«获取的滤波模块、对电网频率的变化值 Δ«进行增益处理的增益处 理模块、 进行孤岛效应的判断和启动防护的比较触发模块, 所述滤波模块获取每个 控制周期内电网频率的变化值 所述增益处理模块获取电网频率的变化值 Δ«对无 功功率参考值 Qref的影响, 该无功功率参考值 Qref在每个控制周期内的变化值 和 Δ«之间的对应关系为: QGCC = Kp , 其中: 是孤岛效应预检测的增益; 当电网 频率的变化值 Δ«发生了 0. 1Hz的频移时, 所述比较触发模块判定在逆变器中有可能 产生孤岛现象, 启动主动式孤岛检测方法进行进一步的孤岛检测, 否则, 重新获取 电网频率的变化值 Δ«, 对电网频率的变化值 Δ«进行增益处理以及正反馈过程。
7.根据权利要求 6所述混合主动式防孤岛效应的检测***, 其特征在于, 所述 频率获取模块包括对获取的频率进行滤波处理的滤波模块。
8.根据权利要求 6所述混合主动式防孤岛效应的检测***, 其特征在于, 采用 低通滤波器过滤测量到的电网频率中可能存在的高频干扰和噪声。
9.根据权利要求 6所述混合主动式防孤岛效应的检测***, 其特征在于, 采用 有限脉冲响应滤波器及派生的滤波器来滤除电网频率中可能存在的直流分量。
10.根据权利要求 6所述混合主动式防孤岛效应的检测***, 其特征在于, 所述 比较触发模块包括比较器和触发器。
PCT/CN2012/084992 2012-11-05 2012-11-21 一种混合主动式防孤岛效应的检测方法及*** WO2014067187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210436059.6 2012-11-05
CN201210436059.6A CN103048558B (zh) 2012-11-05 2012-11-05 一种混合主动式防孤岛效应的检测方法及***

Publications (1)

Publication Number Publication Date
WO2014067187A1 true WO2014067187A1 (zh) 2014-05-08

Family

ID=48061267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084992 WO2014067187A1 (zh) 2012-11-05 2012-11-21 一种混合主动式防孤岛效应的检测方法及***

Country Status (2)

Country Link
CN (1) CN103048558B (zh)
WO (1) WO2014067187A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569690A (zh) * 2015-01-22 2015-04-29 天津大学 适用于含多个逆变型分布式电源微电网的孤岛检测方法
CN104730396A (zh) * 2015-04-07 2015-06-24 国家电网公司 用于电力***的孤岛检测方法及装置
US11342757B2 (en) 2019-07-30 2022-05-24 Huawei Digital Power Technologies Co., Ltd Islanding detection method and apparatus, and computer-readable storage medium
TWI773372B (zh) * 2021-06-09 2022-08-01 談光雄 微電網系統及預同步判斷方法
CN116047212A (zh) * 2023-03-27 2023-05-02 华中科技大学 一种基于无功功率扰动的孤岛检测方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520819B2 (en) 2014-02-28 2016-12-13 General Electric Company System and method for controlling a power generation system based on a detected islanding event
CN103869200B (zh) * 2014-04-08 2016-06-01 国家电网公司 一种基于广域信息的配电网孤岛检测方法
CN104007349A (zh) * 2014-06-11 2014-08-27 江苏大学 基于小波变换的模糊控制孤岛检测方法
CN104316786B (zh) * 2014-10-10 2017-03-08 湖南大学 一种混合孤岛检测方法
WO2016149926A1 (zh) * 2015-03-26 2016-09-29 国网河北省电力公司电力科学研究院 一种直流配电网分布式电源的防孤岛方法及设备
CN110361617B (zh) * 2019-07-31 2021-04-23 扬州大学 一种消除多台逆变器并联稀释效应的方法及孤岛检测方法
CN110674784A (zh) * 2019-09-29 2020-01-10 润电能源科学技术有限公司 电网频率滤波方法、用户设备、存储介质及装置
CN113364038B (zh) * 2021-06-25 2022-06-03 山东理工大学 一种基于逆变器频率控制的多分布式电源孤岛检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156233A (zh) * 2011-03-21 2011-08-17 浙江大学 间歇性双边无功功率扰动孤岛检测方法
CN102208817A (zh) * 2011-05-13 2011-10-05 中国电子科技集团公司第三十六研究所 一种基于无功扰动的光伏***并网孤岛检测方法
CN102611137A (zh) * 2012-03-16 2012-07-25 北京昆兰新能源技术有限公司 一种基于无功扰动的三相光伏逆变器主动反孤岛方法
KR20120089092A (ko) * 2011-02-01 2012-08-09 한국전기연구원 계통 주파수 변동을 이용한 독립 운전 방지 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257209B (zh) * 2008-01-10 2010-06-16 清华大学深圳研究生院 光伏并网发电***的孤岛运行检测方法
JP5418079B2 (ja) * 2009-09-04 2014-02-19 オムロン株式会社 単独運転検出方法、制御装置、単独運転検出装置および分散型電源システム
JP5571983B2 (ja) * 2010-03-24 2014-08-13 一般財団法人電力中央研究所 単独運転回避装置、単独運転回避方法および単独運転回避プログラム
CN101944723A (zh) * 2010-08-26 2011-01-12 哈尔滨九洲电气股份有限公司 一种光伏并网发电***的孤岛运行检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089092A (ko) * 2011-02-01 2012-08-09 한국전기연구원 계통 주파수 변동을 이용한 독립 운전 방지 방법
CN102156233A (zh) * 2011-03-21 2011-08-17 浙江大学 间歇性双边无功功率扰动孤岛检测方法
CN102208817A (zh) * 2011-05-13 2011-10-05 中国电子科技集团公司第三十六研究所 一种基于无功扰动的光伏***并网孤岛检测方法
CN102611137A (zh) * 2012-03-16 2012-07-25 北京昆兰新能源技术有限公司 一种基于无功扰动的三相光伏逆变器主动反孤岛方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569690A (zh) * 2015-01-22 2015-04-29 天津大学 适用于含多个逆变型分布式电源微电网的孤岛检测方法
CN104569690B (zh) * 2015-01-22 2017-06-20 天津大学 适用于含多个逆变型分布式电源微电网的孤岛检测方法
CN104730396A (zh) * 2015-04-07 2015-06-24 国家电网公司 用于电力***的孤岛检测方法及装置
US11342757B2 (en) 2019-07-30 2022-05-24 Huawei Digital Power Technologies Co., Ltd Islanding detection method and apparatus, and computer-readable storage medium
TWI773372B (zh) * 2021-06-09 2022-08-01 談光雄 微電網系統及預同步判斷方法
CN116047212A (zh) * 2023-03-27 2023-05-02 华中科技大学 一种基于无功功率扰动的孤岛检测方法及装置
CN116047212B (zh) * 2023-03-27 2023-06-02 华中科技大学 一种基于无功功率扰动的孤岛检测方法及装置

Also Published As

Publication number Publication date
CN103048558B (zh) 2015-09-09
CN103048558A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2014067187A1 (zh) 一种混合主动式防孤岛效应的检测方法及***
US9941814B2 (en) Method for detecting islanding in grid connected power generation systems and related DC/AC converter apparatus
US20140078625A1 (en) Islanding detection method and system
US20060250024A1 (en) Inverter anti-islanding method
WO2009011877A2 (en) Method and apparatus for anti-islanding of distributed power generation systems
JP6374213B2 (ja) 電力変換装置
JP6105788B1 (ja) 系統連系用電力変換装置、及びその起動制御方法
US10935588B2 (en) Systems and methods for islanding detection
CN105738730B (zh) 光伏逆变器的孤岛检测方法及装置
JP5502558B2 (ja) 単独運転検出装置、単独運転検出方法、および、単独運転検出装置を備えた系統連系インバータシステム
JP5398233B2 (ja) インバータの単独運転検出装置および単独運転検出方法
JP6842953B2 (ja) 電力変換装置
CN107769247B (zh) 一种用于防孤岛检测的rlc负载模拟***及其控制方法
JP6774893B2 (ja) 自立運転機能を有する系統連系用電力変換装置
JP5410213B2 (ja) 電力変換回路の制御回路、および、この制御回路を備えた電力供給システム
Yu et al. Indirect current control algorithm for utility interactive inverters for seamless transfer
Taul et al. Grid synchronization of wind turbines during severe symmetrical faults with phase jumps
JP6498112B2 (ja) 電力変換装置および電力連系システム
CN104198841A (zh) 一种光伏并网逆变器中的孤岛检测方法
JP2012026836A (ja) 分散型電源の周波数検出方法及び系統連系保護装置
WO2024066712A1 (zh) 控制方法、装置、介质、控制器和风力发电机组
Sadeque et al. Cooperative inverters to overcome PLL malfunctions
WO2023236196A1 (zh) 一种离网与并网的无缝切换方法及户用储能***
JP6208573B2 (ja) 電力制御装置および電力制御方法
JP2016119772A (ja) 系統連系インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.09.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12887711

Country of ref document: EP

Kind code of ref document: A1