WO2014065302A1 - Mode switching controller for hybrid vehicle - Google Patents

Mode switching controller for hybrid vehicle Download PDF

Info

Publication number
WO2014065302A1
WO2014065302A1 PCT/JP2013/078637 JP2013078637W WO2014065302A1 WO 2014065302 A1 WO2014065302 A1 WO 2014065302A1 JP 2013078637 W JP2013078637 W JP 2013078637W WO 2014065302 A1 WO2014065302 A1 WO 2014065302A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
mode switching
hybrid vehicle
transmission
engagement
Prior art date
Application number
PCT/JP2013/078637
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 芳章
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2014543314A priority Critical patent/JPWO2014065302A1/en
Publication of WO2014065302A1 publication Critical patent/WO2014065302A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention is equipped with an engine and an electric motor as a power source, and is capable of selecting an electric travel mode (EV mode) in which only the electric motor is used and a hybrid travel mode (HEV mode) in which the electric motor and the engine are used.
  • EV mode electric travel mode
  • HEV mode hybrid travel mode
  • the present invention relates to a vehicle mode switching control device.
  • a hybrid vehicle as described in Patent Document 1 is known as such a hybrid vehicle.
  • This hybrid vehicle is of a type in which an engine that is one power source is drivably coupled to a wheel through a continuously variable transmission and a clutch sequentially, and an electric motor that is the other power source is always coupled to the wheel. Is.
  • Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode using only the electric motor by stopping the engine and releasing the clutch, and is electrically operated by starting the engine and engaging the clutch.
  • Hybrid running (HEV running) in the HEV mode by the motor and the engine is possible.
  • the stopped engine (and the transmission if a transmission is present) is disconnected from the wheel, and the engine (transmission) Can be avoided during EV travel, energy loss can be avoided and energy efficiency can be increased.
  • a torque converter in the case of an automatic transmission
  • an automatic clutch in the case of an automatic manual transmission
  • These torque converters (lock-up clutches) and automatic clutches are referred to herein as front clutches.
  • An object of the present invention is to propose a mode switching control device for a hybrid vehicle that can solve the above problem by engaging a rear clutch that is to be engaged when the mode is switched from the EV mode to the HEV mode.
  • the hybrid vehicle mode switching control device is configured as follows.
  • This vehicle includes an electric motor in addition to an engine as a power source, and the engine is drivingly coupled to wheels via a forward clutch means and a transmission sequentially. These transmissions and wheels can be separated by a rear clutch means, and the electric clutch mode in which only the electric motor is driven can be selected by releasing the rear clutch means and stopping the engine.
  • the vehicle is capable of selecting a hybrid driving mode in which the electric motor and the engine are driven by starting the engine and engaging both clutch means.
  • the front clutch means is engaged before starting the engagement of the rear clutch means necessary for the mode change. Characterized by points configured to start.
  • the front clutch means is engaged before starting the engagement of the rear clutch means necessary for the mode switching.
  • the rotation of the engine between the engine and the rear clutch means is rotated in advance by causing the rotation at the start of the engine to be immediately directed to the transmission by the engagement of the front clutch means, and in this state, it is engaged when switching the mode.
  • the rear clutch means to be engaged is engaged.
  • the engine rotation transmission response delay time can be eliminated, and the wheel is prevented from dragging the rotating member including the transmission when the rear clutch means is engaged, and the vehicle is running due to the drag. Pulling shock can be reduced.
  • FIG. 1 is a schematic system diagram showing a drive system of a hybrid vehicle including a mode switching control device according to a first embodiment of the present invention and an overall control system thereof.
  • FIG. 2 shows another type of hybrid vehicle to which the mode switching control device of the present invention can be applied, wherein (a) is a schematic system diagram showing a drive system of the hybrid vehicle and an overall control system thereof, and (b) is the hybrid vehicle.
  • FIG. 6 is an engagement logic diagram of a shift friction element in a sub-transmission built in a V-belt continuously variable transmission in the drive system of FIG. It is a flowchart which shows the mode switching control program from EV mode to HEV mode which the hybrid controller in FIG. 1 performs.
  • 4 is an operation time chart of mode switching from the EV mode to the HEV mode by the mode switching control of FIG. 3.
  • FIG. 1 is a schematic system diagram showing a drive system of a hybrid vehicle equipped with a mode switching control device according to a first embodiment of the present invention and its overall control system.
  • V-belt type continuously variable transmission 4 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3.
  • the engine 1 is drive-coupled to the drive wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately disengageable, and the V-belt type continuously variable transmission 4 is as described below.
  • the V-belt type continuously variable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components.
  • the primary pulley 6 is coupled to the crankshaft of the engine 1 via a lockup type torque converter T / C, and the secondary pulley 7 is sequentially passed through a transmission clutch CL (corresponding to the rear clutch means in the present invention) and a final gear set 9. To the driving wheel 5.
  • the power from the engine 1 is input to the primary pulley 6 through the torque converter T / C, and then the V belt 8, the secondary pulley 7, the transmission clutch CL, and the final gear set 9.
  • the driving wheel 5 is reached in sequence and used for running the hybrid vehicle.
  • the pulley V groove width of the secondary pulley 7 is increased while the pulley V groove width of the primary pulley 6 is reduced, so that the V-belt 8 wraps around the primary pulley 6 and has a larger arc diameter.
  • the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt type continuously variable transmission 4 can perform an upshift to a high pulley ratio (high gear ratio).
  • the winding belt V diameter of the V belt 8 with the primary pulley 6 is reduced and at the same time the secondary pulley.
  • the V-belt continuously variable transmission 4 can be downshifted to a low pulley ratio (low gear ratio).
  • the electric motor 2 is always drivingly coupled to the driving wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12.
  • the inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2, and controls the driving force and the rotational direction of the electric motor 2 by adjusting the power supplied to the electric motor 2. ing.
  • the electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to cause the electric motor 2 to act as a generator and to store the generated power of the electric motor 2 in the battery 12.
  • the hybrid vehicle In the EV traveling state, when the engine 1 is started by the starter motor 3 and the transmission clutch CL is fastened, the power from the engine 1 is converted to the torque converter T / C, the primary pulley 6, the V belt 8, the secondary pulley 7, The drive wheel 5 is reached through the transmission clutch CL and the final gear set 9 in order, and the hybrid vehicle can travel in the hybrid travel mode (HEV mode) using the engine 1 and the electric motor 2.
  • HEV mode hybrid travel mode
  • the brake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked.
  • the caliper 15 is connected to a master cylinder 18 that outputs a brake fluid pressure corresponding to the brake pedal depression force under the boost of the negative pressure brake booster 17 in response to the depression force of the brake pedal 16 that the driver steps on.
  • the caliper 15 is operated to brake the brake disk 14.
  • the hybrid vehicle In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19 and commands with the driving force according to the driver's request. To do.
  • the charge / discharge control is performed by the hybrid controller 21 via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25, respectively.
  • the hybrid controller 21 includes an accelerator opening sensor that detects a signal from the brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. 27, a signal from the primary pulley rotation sensor 28 that detects the rotation speed Npri of the primary pulley 6, and a signal from the secondary pulley rotation sensor 29 that detects the rotation speed Nsec of the secondary pulley 7 are input.
  • the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
  • the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21. Perform output control.
  • the transmission controller 24 responds to a command from the hybrid controller 21 and uses the oil from the engine-driven oil pump O / P as a medium to control the shift of the continuously variable transmission 4 (V-belt type continuously variable transmission mechanism CVT). Then, lockup control of the torque converter T / C and engagement / release control of the transmission clutch CL are performed.
  • the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
  • the continuously variable transmission 4 is provided with a dedicated transmission clutch CL in order to detachably connect the V-belt type continuously variable transmission CVT (secondary pulley 7) and the drive wheel 5.
  • a dedicated transmission clutch CL in order to detachably connect the V-belt type continuously variable transmission CVT (secondary pulley 7) and the drive wheel 5.
  • Friction elements such as clutches and brakes
  • Friction elements that control the speed change of the auxiliary transmission 31 can be diverted so that the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled.
  • 2A includes a composite sun gear 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and a carrier 31c that rotatably supports the pinions 31pin and 31pout. It consists of a Ravigneaux type planetary gear set consisting of Of the composite sun gears 31 s-1 and 31 s-2, the sun gear 31 s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31 s-2 is arranged coaxially with respect to the secondary pulley 7 but freely rotates. To get.
  • the inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
  • the outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
  • the carrier 31c and the ring gear 31r can be appropriately connected by the high clutch H / C, the ring gear 31r can be appropriately fixed by the reverse brake R / B, and the sun gear 31s-2 can be appropriately fixed by the low brake L / B. .
  • the sub-transmission 31 fastens the high clutch H / C, reverse brake R / B, and low brake L / B, which are shift friction elements, in the combinations indicated by the circles in FIG.
  • the first forward speed, the second forward speed, and the reverse speed stage can be selected by releasing as shown by x in (b) of FIG.
  • the sub-transmission 31 When the high clutch H / C, the reverse brake R / B, and the low brake L / B are all released, the sub-transmission 31 is in a neutral state where no power is transmitted, and when the low brake L / B is engaged in this state, When the transmission 31 is in the first forward speed selection (deceleration) state and the high clutch H / C is engaged, the auxiliary transmission 31 is in the second forward speed selection (direct connection) state and when the reverse brake R / B is engaged, The transmission 31 is in a reverse selection (reverse) state.
  • the continuously variable transmission 4 in FIG. 2 (a) is a V-belt type continuously variable by releasing all the shift friction elements H / C, R / B, L / B and making the sub-transmission 31 neutral.
  • the transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be disconnected. Therefore, in the continuously variable transmission 4 of FIG. 2A, the transmission friction elements H / C, R / B, and L / B of the sub-transmission 31 are used for the transmission clutch CL in FIG.
  • the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled without additionally installing the transmission clutch CL.
  • the continuously variable transmission 4 in FIG. 2 (a) is controlled using oil from an oil pump O / P driven by the engine as a working medium.
  • the transmission controller 24 includes a line pressure solenoid 35, a lock-up solenoid 36,
  • the control of the continuously variable transmission 4 is performed as follows via the primary pulley pressure solenoid 37, the low brake pressure solenoid 38, the high clutch pressure & reverse brake pressure solenoid 39, and the switch valve 41.
  • the transmission controller 24 receives a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G.
  • Line pressure solenoid 35 the transmission in response to a command from the controller 24, the oil pump O / oil from P by regulating the line pressure P L of the vehicle required driving force corresponding, the line pressure P L always the secondary pulley 7 to by supplying as the secondary pulley pressure, pressed between so that the secondary pulley 7 is not slipping the V-belt 8 with a thrust in accordance with the line pressure P L.
  • Lock-up solenoid 36 (corresponding to the forward clutch means in the present invention) lock response to the up command, the lock-up clutch unshown line pressure P L as appropriate directs the torque converter T / C from the transmission controller 24
  • the torque converter T / C is in a locked-up state in which the input / output elements are not rotated relative to each other (slip) when necessary, or relative to each other with a predetermined rotational difference.
  • a slip lock-up state is established in which slip coupling is made to rotate.
  • Primary pulley pressure solenoid 37 by responding with the CVT speed ratio command from the transmission controller 24 by regulating the line pressure P L to the primary pulley pressure, supplying it to the primary pulley 6, V grooves of the primary pulley 6 and width, CVT gear ratio command of the V groove width of the secondary pulley 7 is supplied with the line pressure P L, the transmission controller 24 controls to that CVT transmission ratio is matched to a command from the transmission controller 24 To realize.
  • Low brake pressure solenoid 38 when the transmission controller 24 is emitting a first speed selection command of the sub transmission 31, fastened to this by supplying the low brake L / B line pressure P L as a low brake pressure And the first speed selection command is realized.
  • High clutch pressure and reverse brake pressure solenoid 39 when the transmission controller 24 is emitting a second speed selection command or retraction selection command of the auxiliary transmission 31, switch the line pressure P L as a high clutch pressure and reverse brake pressure Supply to valve 41.
  • Second speed selection command when the switch valve 41, directs the high clutch H / C and the line pressure P L from the solenoid 39 as a high clutch pressure, second speed selection command of auxiliary transmission 31 with the engagement of this To realize.
  • the line pressure P L from the solenoid 39 directs the reverse brake R / B as the reverse brake pressure, to achieve a backward selection command of auxiliary transmission 31 by engaging it.
  • ⁇ Mode switching control> The mode switching control of the hybrid vehicle will be described below in the case where the drive system of the vehicle is as shown in FIG.
  • the accelerator pedal 19 When the accelerator pedal 19 is released during HEV traveling and the vehicle shifts to coasting (inertia) traveling, or when the vehicle is braked by depressing the brake pedal 16, the vehicle kinetic energy is converted into electric power by regenerative braking by the electric motor 2. By converting this and storing it in the battery 12, energy efficiency is improved.
  • the transmission clutch CL when the transmission clutch CL is disengaged as described above, the engine 1 that has been executed during the coasting is stopped in order to stop the engine 1 from performing unnecessary driving from the viewpoint of fuel consumption.
  • the disengagement of the transmission clutch CL is prohibited by prohibiting the resumption of fuel injection (fuel recovery) to the engine 1 so that the stop of the fuel injection to 1 (fuel cut) is continued even when the transmission clutch CL is disengaged.
  • the engine 1 is stopped.
  • the switching from the HEV mode to the EV mode is completed.
  • the driving state changes such as when the accelerator pedal 19 is depressed during EV traveling, and a mode switching from the EV mode to the HEV mode (hereinafter, this mode switching is referred to as “EV ⁇ HEV mode switching”) is generated.
  • this mode switching is referred to as “EV ⁇ HEV mode switching”.
  • the engine 1 is restarted and the transmission clutch CL is engaged to switch the EV ⁇ HEV mode.
  • the transmission clutch CL when the transmission clutch CL is engaged when the EV ⁇ HEV mode is switched, the input side rotational speed (secondary pulley rotational speed Nsec) is initially low because it depends on the engine speed Ne.
  • the output side (wheel side) rotational speed of the transmission clutch CL is high from the beginning because it is determined by the vehicle speed VSP. Therefore, the engagement of the transmission clutch CL that is performed when the EV ⁇ HEV mode is switched is started in a state where the input / output rotational step of the transmission clutch CL is large.
  • the continuously variable transmission 4 receives the engine rotation via the torque converter T / C, the slip is inevitable due to the fluid transmission of the torque converter T / C (rotational difference between input and output elements),
  • the input side rotational speed (secondary pulley rotational speed Nsec) of the transmission clutch CL becomes lower than the engine rotational speed, and the presence of the torque converter T / C is caused by the second problem, that is, the driving force due to the delay of the EV ⁇ HEV mode switching operation.
  • the problem that the shortage continues for a long time is made more prominent.
  • the present embodiment proposes EV ⁇ HEV mode switching control that can solve or at least alleviate both the first problem and the second problem.
  • the hybrid controller 21 in FIG. 1 executes the control program in FIG. Then, the EV ⁇ HEV mode switching control is performed through the engine controller 22 and the transmission controller 24 as shown in the time chart of FIG.
  • opening degree APO> 0 the operation type when an EV ⁇ HEV mode switching request is generated It is a chart.
  • step S11 of FIG. 3 it is checked whether or not an engine restart request (EV ⁇ HEV mode switching request) at the instant t2 of FIG. 4 has occurred. If not, the current EV traveling is continued. Since the EV ⁇ HEV mode switching control of FIG. 3 is not necessary, the control is terminated as it is. If it is determined in step S11 that an engine restart request (EV ⁇ HEV mode switching request) has occurred (has reached the instant t2 in FIG. 4), it is necessary to switch the mode from the current EV traveling to HEV traveling. Control proceeds to step S12.
  • an engine restart request EV ⁇ HEV mode switching request
  • step S12 the vehicle speed VSP, the designed gear ratio Ip (for example, the lowest, but may be other gear ratio) of the continuously variable transmission mechanism CVT and the accelerator opening APO that are maintained during EV traveling are read. .
  • step S13 the primary pulley rotation speed (primary rotation speed for clutch input / output rotation synchronization) Nin for synchronizing the input / output rotation of the transmission clutch CL is calculated by the following equation (1).
  • Nin VSP ⁇ Ip ⁇ If ⁇ 60 / (3.6 ⁇ 2 ⁇ ⁇ ⁇ r) (1) If: gear ratio of final gear set 9 r: effective tire radius of wheel 5
  • step S14 it is necessary to realize the clutch input / output rotation synchronization primary pulley rotation speed Nin based on the torque map of the engine 1 from the clutch input / output rotation synchronization primary pulley rotation speed Nin and the accelerator opening APO.
  • the engine torque Te is searched and estimated, and the required power P of the engine 1 when the required engine torque Te is generated is obtained by the calculation of the following equation (2).
  • P Te ⁇ Nin (2)
  • the engine required torque Tin for clutch input / output rotation synchronization is obtained by the following equation (3) by calculation using the engine required power P and the primary pulley rotation speed Nin for clutch input / output rotation synchronization.
  • Tin 60 ⁇ P / (2 ⁇ ⁇ ⁇ Nin) (3)
  • step S16 the clutch input / output rotation synchronization engine required torque Tin, the clutch input / output rotation synchronization primary pulley rotation speed Nin, the torque ratio T and the torque capacity coefficient ⁇ of the torque converter T / C are used.
  • the torque converter T / C speed ratio (necessary speed ratio for clutch input / output rotation synchronization torque converter) e0 that satisfies the following expression is obtained by the following expression (4).
  • Tin t (e0) ⁇ ⁇ (e0) ⁇ (Nin / e0) 2 (4)
  • step S17 the primary pulley rotation speed Nin for clutch input / output rotation synchronization is realized by calculation using the clutch input / output rotation synchronization primary pulley rotation speed Nin and the clutch input / output rotation synchronization torque converter required speed ratio e0.
  • a target engine speed (target engine speed for clutch input / output rotation synchronization) Ne0 is obtained by the following equation (5).
  • Ne0 Nin / e0 (5)
  • the target engine speed Ne0 is as shown in FIG. 4 after the instant t2.
  • the engine speed Ne is increased in accordance with the accelerator opening APO so that the engine speed Ne increases rapidly to the target engine speed Ne0 as the accelerator opening APO increases.
  • step S19 it is checked whether or not the primary pulley rotational speed Npri is equal to or greater than the clutch input / output rotational synchronization primary pulley rotational speed Nin (input / output rotational synchronization of the transmission clutch CL is achieved). Even with the above-described increase control of the engine speed Ne, the primary pulley speed Npri does not increase immediately due to the slip of the torque converter T / C as immediately after the instant t2 in FIG. 4, and the determination in step S19 is initially Npri ⁇ Nin.
  • step S21 the lockup clutch engagement pressure P_L / U of the torque converter T / C is increased from 0 as shown after the instant t3 in FIG.
  • the torque converter T / C is reduced in slip, and the primary pulley rotational speed Npri is rapidly increased by an amount corresponding to the slip reduction as shown after the instant t3 in FIG.
  • step S19 sequentially controls. Proceed to step S22 and step S23.
  • step S22 the lockup clutch engagement pressure P_L / U is set to the instant t4 in FIG. 4 so that the primary pulley speed Npri is maintained at the clutch input / output rotation synchronization primary pulley speed Nin as shown in the instant t4 to t5 in FIG. Control as shown in t5.
  • step S24 it is checked whether or not the transmission clutch CL is completely engaged depending on whether or not the transmission clutch engagement pressure Pc is equal to or higher than a predetermined value for determining complete engagement. Until the transmission clutch CL is completely engaged (before the instant t5), the control is returned to step S22 and the engagement of the transmission clutch CL is advanced.
  • step S25 the slip of the torque converter T / C increases during the predetermined time from the instant t5 to the instant t6 when the predetermined time elapses.
  • the torque control slip increasing direction lockup control for decreasing the lockup clutch engagement pressure P_L / U is performed, and the torque increasing action of the torque converter T / C caused by the slip increase causes the EV ⁇ HEV mode switching factor at the instant t2. Realize the demand for increased driving force.
  • the former predetermined time is EV ⁇ HEV at the instant t2.
  • the time required to realize this driving force request is set, and the latter torque conslip increase amount (decrease amount of the lockup clutch engagement pressure P_L / U) is also set.
  • the amount is set such that the driving force request is realized.
  • the engine speed Ne is determined to be in the clutch engagement state depending on whether or not the engine speed deviation Ne ⁇ Ne0 between the engine speed Ne and the clutch input / output rotation synchronization target engine speed Ne0 is positive. It is checked whether the target engine speed Ne0 for output rotation synchronization is equal to or higher than Ne0. If Ne-Ne0 ⁇ 0 (that is, Ne ⁇ Ne0), the control is returned to step S17 and the control loop is repeated. If Ne-Ne0 ⁇ 0 (that is, Ne ⁇ Ne0), the control proceeds to step S27.
  • Engagement of the lock-up clutch from the instant t6 to t7 can prevent the engine 1 from being blown, as is apparent from the change over time of the engine speed Ne during this time, and the lock-up clutch is completely released after the instant t7. Engagement prevents unnecessary slip of the torque converter T / C and avoids deterioration of transmission efficiency (deterioration of fuel consumption) as is apparent from the coincidence of the engine speed Ne and the primary pulley speed Npri after the instant t7. be able to.
  • next step S28 power adjustment is performed by the electric motor 2 in accordance with the required driving force while the lockup is in progress and in the complete lockup state. For example, if the required driving force is a positive driving force, The required driving force is realized by powering the electric motor 2, and if the required driving force is a negative value, the electric motor 2 is regenerated to realize the required driving force.
  • the lockup clutch engagement pressure P_L / U of the torque converter T / C is set as shown in FIG.
  • the lockup clutch is increased from 0 to advance (step S21), thereby causing the primary pulley revolution speed Npri to rise rapidly as shown after the instant t3 in FIG.
  • the clutch pulley input / output rotation synchronization primary pulley rotational speed Nin can be made equal to or higher, and the input / output rotation synchronization of the transmission clutch CL can be quickly established.
  • the engagement of the transmission clutch CL (step S23) to be performed when the EV ⁇ HEV mode is switched can be started without a shock at the instant t4 as shown in FIG. 4, and can be completed at the instant t5. .
  • the input / output rotation synchronization of the transmission clutch CL at the instant t4 eliminates the need for the shock countermeasure engagement speed control of the transmission clutch CL, and the shock is applied even if the engagement speed of the transmission clutch CL remains high without control. In addition to the pulling shock during traveling of the vehicle as described above, it is possible to prevent a large push-up shock due to the reaction of the pulling shock.
  • the start of engagement of the transmission clutch CL can be accelerated, and the engagement can be speeded up, from the EV ⁇ HEV mode switching request at the instant t2 to the completion of mode switching at the instant t5.
  • Driving time felt by the driver can be reduced by shortening the time that can reduce the delay in transitioning to HEV driving and reducing the time required to increase the required driving force, which is a factor for switching from EV to HEV mode.
  • the shortage dissatisfaction can be resolved or alleviated.
  • the lockup clutch engagement pressure P_L / U is controlled so that the primary pulley rotation speed Npri is maintained at the clutch input / output rotation synchronization primary pulley rotation speed Nin as shown at the instant t4 to t5 in FIG. (Step S22), the lockup clutch is brought into a slippable state, and during this time, the engagement of the transmission clutch CL is started and completed (Step S23). Therefore, it is possible to further suppress the engagement shock of the transmission clutch CL, and to amplify the torque toward the drive wheel 5 after the transmission clutch CL is engaged to meet the acceleration request when the EV ⁇ HEV mode is switched.
  • the transmission clutch CL is guaranteed to be engaged when the input / output rotation of the transmission clutch CL is synchronized, and the engagement shock (EV ⁇ HEV mode switching shock) of the transmission clutch CL due to the loss of synchronization is generated. It can be avoided reliably.
  • the lockup clutch is engaged so that the slip of the torque converter T / C increases from the instant t5 when the engagement of the transmission clutch CL is completed to the instant t6 when the predetermined time elapses (during the predetermined time).
  • the torque converter T / C becomes a factor for switching the EV ⁇ HEV mode by the torque increasing action corresponding to the slip increasing amount. The demand for increased driving force can be realized.
  • the former predetermined time is set to the instant t2.
  • the time required to realize this drive force request is determined, and the latter torque conslip increase amount (lock-up clutch engagement pressure P_L / U).
  • the lockup clutch engagement pressure P_L / U is gradually increased from the instant t6 and the lockup clutch is engaged, and then the lockup clutch engagement pressure P_L / U is increased. Is kept at the maximum value as shown after the instant t7 and the lock-up clutch is completely engaged (step S27).
  • the engine 1 As well as being able to prevent blowing, as is apparent from the coincidence of the engine speed Ne and the primary pulley speed Npri after the instant t7, unnecessary slip of the torque converter T / C is prevented and transmission efficiency is deteriorated (fuel efficiency is reduced). Deterioration) can be avoided.
  • the oil pump pressure at engine startup is unstable. It is.
  • the transmission clutch CL is not operated at the beginning of the engine, and the lockup clutch is only slip-engaged, so that the transmission torque fluctuation due to instability of hydraulic pressure does not reach the wheel 5, Shock due to unstable hydraulic pressure at the start of engine startup can be prevented.
  • the engagement speed of the lockup clutch can be increased and the engagement timing of the lockup clutch can be advanced.
  • the transmission clutch CL is not operated at the beginning of the engine, only the lock-up clutch is slip-engaged, and both the clutches are not operated at the beginning of the engine at the same time. Since it is not necessary to discharge oil, it is possible to avoid an increase in the size of the oil pump O / P and to avoid a deterioration in fuel consumption due to an increase in the size of the oil pump O / P.
  • the second embodiment relates to an EV ⁇ HEV mode switching control device for a hybrid vehicle having the drive system shown in FIG.
  • the sub-transmission 31 enters the second speed selection state by engaging the high clutch H / C (friction element for high speed stage selection), and the low brake L / B (for low speed stage selection).
  • the frictional element When the frictional element) is engaged, the sub-transmission 31 is in the first speed selection state, and when both are released, the sub-transmission 31 is in a neutral state in which no power is transmitted, so the second speed selection state of the sub-transmission 31 is In the required driving situation, the high clutch H / C (high speed stage selection friction element) is used as the transmission clutch CL in FIG. 1, and in the driving situation where the first speed selection state of the auxiliary transmission 31 is required, the low clutch Basically, the brake L / B (low speed stage selection friction element) is used as the transmission clutch CL in FIG.
  • FIG. 1 when the EV ⁇ HEV mode is switched, according to the present embodiment in which the high clutch H / C (high speed stage selection friction element) is engaged instead of the low brake L / B (low speed stage selection friction element), FIG.
  • the clutch input / output rotation synchronization instant t4 can be made faster than in the first embodiment, and the corresponding effect can be made more prominent than in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Lockup clutch engaging pressure (P_L/U) is increased and primary pulley speed (Npri) is increased before the timing (t4) at which engagement of a clutch (CL) is initiated, the initiating of the engagement of the clutch (CL) being required to be performed together with engine startup in response to an EV→HEV mode switch request (t2). At the clutch engagement initiation timing (t4), the primary pulley speed (Npri) is brought equal to or higher than a clutch input/output-rotation-synchronizing primary pulley speed (Nin), so that the input/output rotation of the clutch (CL) is synchronized. Consequently, engagement of the clutch (CL) can be initiated without shock at the clutch engagement initiation timing (t4). Additionally, the input/output rotation synchronization of the clutch (CL) at the clutch engagement initiation timing (t4) does not cause shock even if the clutch (CL) is caused to engage at high speed. It is thereby possible to prevent the incidence of drag shock during the EV→HEV mode switching without a transmission being subjected to wheel-induced dragging during the engagement of the clutch (CL).

Description

ハイブリッド車両のモード切り替え制御装置Hybrid vehicle mode switching control device
 本発明は、エンジンおよび電動モータを動力源として搭載され、電動モータのみにより走行する電気走行モード(EVモード)と、電動モータおよびエンジンにより走行するハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両のモード切り替え制御装置に関するものである。 The present invention is equipped with an engine and an electric motor as a power source, and is capable of selecting an electric travel mode (EV mode) in which only the electric motor is used and a hybrid travel mode (HEV mode) in which the electric motor and the engine are used. The present invention relates to a vehicle mode switching control device.
 このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。このハイブリッド車両は、一方の動力源であるエンジンが無段変速機およびクラッチを順次介して車輪に切り離し可能に駆動結合され、他方の動力源である電動モータが当該車輪に常時結合された形式のものである。 Conventionally, for example, a hybrid vehicle as described in Patent Document 1 is known as such a hybrid vehicle. This hybrid vehicle is of a type in which an engine that is one power source is drivably coupled to a wheel through a continuously variable transmission and a clutch sequentially, and an electric motor that is the other power source is always coupled to the wheel. Is.
 かかるハイブリッド車両は、エンジンを停止すると共に上記のクラッチを解放することで電動モータのみによるEVモードでの電気走行(EV走行)が可能であり、エンジンを始動させると共に当該クラッチを締結することにより電動モータおよびエンジンによるHEVモードでのハイブリッド走行(HEV走行)が可能である。 Such a hybrid vehicle is capable of electric travel (EV travel) in the EV mode using only the electric motor by stopping the engine and releasing the clutch, and is electrically operated by starting the engine and engaging the clutch. Hybrid running (HEV running) in the HEV mode by the motor and the engine is possible.
 なお、EV走行中にクラッチを上記のごとく解放することで、停止状態のエンジンが(変速機が存在している場合は変速機も)車輪から切り離されていることとなり、当該エンジン(変速機)をEV走行中に連れ回す(引き摺る)ことがなく、その分のエネルギー損失を回避し得てエネルギー効率を高めることができる。 By releasing the clutch as described above during EV traveling, the stopped engine (and the transmission if a transmission is present) is disconnected from the wheel, and the engine (transmission) Can be avoided during EV travel, energy loss can be avoided and energy efficiency can be increased.
 上記ハイブリッド車両にあっては、エンジンを停止すると共にクラッチを解放したEV走行中にアクセルペダルを踏み込むなど運転状態が変化した場合、エンジンを再始動すると共にクラッチを締結してEV走行モードからHEV走行モードに切り替わる。 In the above hybrid vehicle, when the driving state changes, for example, when the accelerator pedal is depressed while the engine is stopped and the clutch is released, the engine is restarted and the clutch is engaged to start HEV driving from the EV driving mode. Switch to mode.
 ところで、エンジンおよび変速機間にはエンジンストール防止用や変速用にトルクコンバータ(自動変速機の場合)や自動クラッチ(自動マニュアルトランスミッションの場合)を介在させる。これらのトルクコンバータ(ロックアップクラッチ)や自動クラッチをここでは前方クラッチと言う。 By the way, a torque converter (in the case of an automatic transmission) and an automatic clutch (in the case of an automatic manual transmission) are interposed between the engine and the transmission for preventing engine stall and for shifting. These torque converters (lock-up clutches) and automatic clutches are referred to herein as front clutches.
 この前方クラッチは、上記EVモードからHEVモードへのモード切り替えに際して行うエンジンの始動によっても、エンジン回転が即座に変速機に達し得なくし、所定の応答遅れ後にエンジン回転が変速機に達することとなる。そのため、上記EVモードからHEVモードへのモード切り替えに際して行う後方クラッチの締結後、上記のエンジン回転伝達応答遅れ時間中、車輪は変速機を引き摺りながら回転することとなり、この引き摺りが車両走行中の引きショックを発生させる。 Even when the engine is started at the time of switching the mode from the EV mode to the HEV mode, the engine speed cannot immediately reach the transmission, and the engine speed reaches the transmission after a predetermined response delay. . For this reason, after the rear clutch is engaged when the mode is switched from the EV mode to the HEV mode, the wheels rotate while dragging the transmission during the engine rotation transmission response delay time. Generate a shock.
特開2000-199442号公報JP 2000-199442 A
 本発明は、EVモードからHEVモードへのモード切り替え時に、前方クラッチの締結によりエンジン始動時の回転を即座に変速機に向かわせてエンジンおよび後方クラッチ間のメンバを予め回転させておき、この状態でEVモードからHEVモードへのモード切り替えに際して締結させるべき後方クラッチの締結を行うことで上記の問題を解消可能にしたハイブリッド車両のモード切り替え制御装置を提案することを目的とする。 In the present invention, when the mode is switched from the EV mode to the HEV mode, the member between the engine and the rear clutch is rotated in advance by causing the rotation at the time of starting the engine to be immediately directed to the transmission by engaging the front clutch. An object of the present invention is to propose a mode switching control device for a hybrid vehicle that can solve the above problem by engaging a rear clutch that is to be engaged when the mode is switched from the EV mode to the HEV mode.
 この目的のため、本発明によるハイブリッド車両のモード切り替え制御装置は、これを以下のごとくに構成する。 For this purpose, the hybrid vehicle mode switching control device according to the present invention is configured as follows.
 先ず、本発明の前提となるハイブリッド車両を説明するに、これは、動力源としてエンジンのほかに電動モータを備え、前記エンジンが、前方クラッチ手段および変速機を順次介して車輪に駆動結合され、これら変速機および車輪間が後方クラッチ手段により切り離し可能であって、該後方クラッチ手段を解放すると共に前記エンジンを停止させることにより前記電動モータのみにより走行される電気走行モードを選択可能であるほか、前記エンジンを始動させると共に前記両クラッチ手段を締結することにより前記電動モータおよびエンジンにより走行されるハイブリッド走行モードを選択可能な車両である。 First, a hybrid vehicle which is a premise of the present invention will be described. This vehicle includes an electric motor in addition to an engine as a power source, and the engine is drivingly coupled to wheels via a forward clutch means and a transmission sequentially. These transmissions and wheels can be separated by a rear clutch means, and the electric clutch mode in which only the electric motor is driven can be selected by releasing the rear clutch means and stopping the engine. The vehicle is capable of selecting a hybrid driving mode in which the electric motor and the engine are driven by starting the engine and engaging both clutch means.
 本発明のモード切り替え制御装置は、かかるハイブリッド車両の前記電気走行モードからハイブリッド走行モードへのモード切り替え時に、該モード切り替えに際し必要な前記後方クラッチ手段の締結を開始する前に前記前方クラッチ手段を締結開始させるよう構成した点に特徴づけられる。 In the mode switching control device of the present invention, when the hybrid vehicle switches from the electric travel mode to the hybrid travel mode, the front clutch means is engaged before starting the engagement of the rear clutch means necessary for the mode change. Characterized by points configured to start.
 本発明によるハイブリッド車両のモード切り替え制御装置にあっては、電気走行モードからハイブリッド走行モードへのモード切り替え時に、該モード切り替えに際し必要な後方クラッチ手段の締結を開始する前に前方クラッチ手段の締結を開始させるため、前方クラッチ手段の締結によりエンジン始動時の回転を即座に変速機に向かわせてエンジンと後方クラッチ手段との間の回転メンバを予め回転させておき、この状態で上記モード切り替えに際して締結させるべき後方クラッチ手段の締結を行うこととなる。 In the mode switching control device for a hybrid vehicle according to the present invention, when the mode is switched from the electric travel mode to the hybrid travel mode, the front clutch means is engaged before starting the engagement of the rear clutch means necessary for the mode switching. In order to start, the rotation of the engine between the engine and the rear clutch means is rotated in advance by causing the rotation at the start of the engine to be immediately directed to the transmission by the engagement of the front clutch means, and in this state, it is engaged when switching the mode. The rear clutch means to be engaged is engaged.
 よって、前記のエンジン回転伝達応答遅れ時間をなくすことができ、後方クラッチ手段の上記締結時に車輪が変速機を含む上記の回転メンバを引き摺ることを抑制して、この引き摺りに起因した車両走行中の引きショックを低減することができる。 Therefore, the engine rotation transmission response delay time can be eliminated, and the wheel is prevented from dragging the rotating member including the transmission when the rear clutch means is engaged, and the vehicle is running due to the drag. Pulling shock can be reduced.
本発明の第1実施例に係るモード切り替え制御装置を備えたハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。1 is a schematic system diagram showing a drive system of a hybrid vehicle including a mode switching control device according to a first embodiment of the present invention and an overall control system thereof. 本発明のモード切り替え制御装置を適用可能な他の形式のハイブリッド車両を示し、(a)は当該ハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、(b)は当該ハイブリッド車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内における変速摩擦要素の締結論理図である。FIG. 2 shows another type of hybrid vehicle to which the mode switching control device of the present invention can be applied, wherein (a) is a schematic system diagram showing a drive system of the hybrid vehicle and an overall control system thereof, and (b) is the hybrid vehicle. FIG. 6 is an engagement logic diagram of a shift friction element in a sub-transmission built in a V-belt continuously variable transmission in the drive system of FIG. 図1におけるハイブリッドコントローラが実行するEVモードからHEVモードへのモード切り替え制御プログラムを示すフローチャートである。It is a flowchart which shows the mode switching control program from EV mode to HEV mode which the hybrid controller in FIG. 1 performs. 図3のモード切り替え制御によるEVモードからHEVモードへのモード切り替えの動作タイムチャートである。4 is an operation time chart of mode switching from the EV mode to the HEV mode by the mode switching control of FIG. 3.
 以下、本発明の実施の形態を図面に示す実施例に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
〈第1実施例〉
 図1は本発明の第1実施例に係るモード切り替え制御装置を備えたハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。
<First embodiment>
FIG. 1 is a schematic system diagram showing a drive system of a hybrid vehicle equipped with a mode switching control device according to a first embodiment of the present invention and its overall control system.
 図1のハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式無段変速機4を介して駆動車輪5に適宜切り離し可能に駆動結合し、Vベルト式無段変速機4は、概略を以下に説明するようなものとする。 1 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3. The engine 1 is drive-coupled to the drive wheel 5 through a V-belt type continuously variable transmission 4 so as to be appropriately disengageable, and the V-belt type continuously variable transmission 4 is as described below.
 Vベルト式無段変速機4は、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8とからなる無段変速機構CVTを主たる構成要素とする。プライマリプーリ6はロックアップ式トルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7は変速機クラッチCL(本発明における後方クラッチ手段に相当)およびファイナルギヤ組9を順次介して駆動車輪5に結合する。 The V-belt type continuously variable transmission 4 includes a continuously variable transmission mechanism CVT including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7 as main components. The primary pulley 6 is coupled to the crankshaft of the engine 1 via a lockup type torque converter T / C, and the secondary pulley 7 is sequentially passed through a transmission clutch CL (corresponding to the rear clutch means in the present invention) and a final gear set 9. To the driving wheel 5.
 このような変速機クラッチCLの締結状態で、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、変速機クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達し、ハイブリッド車両の走行に供される。 In such an engaged state of the transmission clutch CL, the power from the engine 1 is input to the primary pulley 6 through the torque converter T / C, and then the V belt 8, the secondary pulley 7, the transmission clutch CL, and the final gear set 9. The driving wheel 5 is reached in sequence and used for running the hybrid vehicle.
 かかるエンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を大きくされると同時にセカンダリプーリ7との巻き掛け円弧径を小さくされ、Vベルト式無段変速機4はハイ側プーリ比(ハイ側変速比)へのアップシフトを行うことができる。逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8がプライマリプーリ6との巻き掛け円弧径を小さくされると同時にセカンダリプーリ7との巻き掛け円弧径を大きくされ、Vベルト式無段変速機4はロー側プーリ比(ロー側変速比)へのダウンシフトを行うことができる。 During the transmission of the engine power, the pulley V groove width of the secondary pulley 7 is increased while the pulley V groove width of the primary pulley 6 is reduced, so that the V-belt 8 wraps around the primary pulley 6 and has a larger arc diameter. At the same time, the winding arc diameter with the secondary pulley 7 is reduced, and the V-belt type continuously variable transmission 4 can perform an upshift to a high pulley ratio (high gear ratio). Conversely, by increasing the pulley V groove width of the primary pulley 6 and reducing the pulley V groove width of the secondary pulley 7, the winding belt V diameter of the V belt 8 with the primary pulley 6 is reduced and at the same time the secondary pulley. The V-belt continuously variable transmission 4 can be downshifted to a low pulley ratio (low gear ratio).
 電動モータ2はファイナルギヤ組11を介して駆動車輪5に常時駆動結合し、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動する。インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に、電動モータ2への供給電力を加減することにより、電動モータ2を駆動力制御および回転方向制御を司っている。 The electric motor 2 is always drivingly coupled to the driving wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12. The inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2, and controls the driving force and the rotational direction of the electric motor 2 by adjusting the power supplied to the electric motor 2. ing.
 なお、電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、後で詳述する回生制動の用にも供する。この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけることにより、電動モータ2を発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。 The electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 to cause the electric motor 2 to act as a generator and to store the generated power of the electric motor 2 in the battery 12.
 図1に示した駆動系を備えるハイブリッド車両は、変速機クラッチCLを解放すると共にエンジン1を停止させた状態で、電動モータ2を駆動すると、電動モータ2の動力のみがファイナルギヤ組11を経て駆動車輪5に達し、ハイブリッド車両は電動モータ2のみによる電気走行モード(EVモード)で走行を行うことができる。この間、変速機クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の無駄な電力消費を抑制することができる。 In the hybrid vehicle having the drive system shown in FIG. 1, when the electric motor 2 is driven in a state where the transmission clutch CL is released and the engine 1 is stopped, only the power of the electric motor 2 passes through the final gear set 11. The vehicle reaches the drive wheel 5 and the hybrid vehicle can travel in the electric travel mode (EV mode) using only the electric motor 2. During this time, by disengaging the transmission clutch CL, it is possible to suppress wasteful power consumption during EV traveling without rotating the engine 1 in a stopped state.
 上記のEV走行状態において、エンジン1をスタータモータ3により始動させると共に変速機クラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、変速機クラッチCLおよびファイナルギヤ組9を順次経て駆動車輪5に達するようになり、ハイブリッド車両はエンジン1および電動モータ2によるハイブリッド走行モード(HEVモード)で走行を行うことができる。 In the EV traveling state, when the engine 1 is started by the starter motor 3 and the transmission clutch CL is fastened, the power from the engine 1 is converted to the torque converter T / C, the primary pulley 6, the V belt 8, the secondary pulley 7, The drive wheel 5 is reached through the transmission clutch CL and the final gear set 9 in order, and the hybrid vehicle can travel in the hybrid travel mode (HEV mode) using the engine 1 and the electric motor 2.
 ハイブリッド車両を上記の走行状態から停車させたり、この停車状態に保つに際しては、駆動車輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスターシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。 When the hybrid vehicle is stopped from the above running state or kept in this stopped state, the brake disk 14 that rotates together with the drive wheel 5 is clamped by the caliper 15 to be braked. The caliper 15 is connected to a master cylinder 18 that outputs a brake fluid pressure corresponding to the brake pedal depression force under the boost of the negative pressure brake booster 17 in response to the depression force of the brake pedal 16 that the driver steps on. The caliper 15 is operated to brake the brake disk 14.
 ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで駆動車輪5を駆動され、運転者の要求に応じた駆動力をもって走行する。 In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19 and commands with the driving force according to the driver's request. To do.
 ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モー2の回転方向制御および出力制御と、無段変速機4の変速制御および変速機クラッチCLの締結、解放制御と、バッテリ12の充放電制御はそれぞれ、ハイブリッドコントローラ21が、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介して行うものとする。 Selection of the travel mode of the hybrid vehicle, output control of the engine 1, rotation direction control and output control of the electric motor 2, shift control of the continuously variable transmission 4, and engagement / release control of the transmission clutch CL, The charge / discharge control is performed by the hybrid controller 21 via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25, respectively.
 そのため、ハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ27からの信号と、プライマリプーリ6の回転数Npriを検出するプライマリプーリ回転センサ28からの信号と、セカンダリプーリ7の回転数Nsecを検出するセカンダリプーリ回転センサ29からの信号とを入力する。ハイブリッドコントローラ21は、更にエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。 For this reason, the hybrid controller 21 includes an accelerator opening sensor that detects a signal from the brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. 27, a signal from the primary pulley rotation sensor 28 that detects the rotation speed Npri of the primary pulley 6, and a signal from the secondary pulley rotation sensor 29 that detects the rotation speed Nsec of the secondary pulley 7 are input. The hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
 エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。 The engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21. Perform output control.
 変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動されるオイルポンプO/Pからのオイルを媒体として、無段変速機4(Vベルト式無段変速機構CVT)の変速制御、トルクコンバータT/Cのロックアップ制御、および変速機クラッチCLの締結、解放制御を行う。バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。 The transmission controller 24 responds to a command from the hybrid controller 21 and uses the oil from the engine-driven oil pump O / P as a medium to control the shift of the continuously variable transmission 4 (V-belt type continuously variable transmission mechanism CVT). Then, lockup control of the torque converter T / C and engagement / release control of the transmission clutch CL are performed. The battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
 なお、図1では、Vベルト式無段変速機CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合するため、無段変速機4に専用の変速機クラッチCLを設けたが、図2(a)に例示するごとく無段変速機4が、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間に副変速機31を内蔵している場合は、副変速機31の変速を司る摩擦要素(クラッチやブレーキなど)を流用して、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合することができる。この場合、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合する専用のクラッチCLを追設する必要がなくてコスト上有利である。 In FIG. 1, the continuously variable transmission 4 is provided with a dedicated transmission clutch CL in order to detachably connect the V-belt type continuously variable transmission CVT (secondary pulley 7) and the drive wheel 5. As shown in FIG. 2A, when the continuously variable transmission 4 includes the auxiliary transmission 31 between the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5, Friction elements (such as clutches and brakes) that control the speed change of the auxiliary transmission 31 can be diverted so that the V-belt continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled. . In this case, there is no need to additionally install a dedicated clutch CL for detachably connecting the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5, which is advantageous in terms of cost.
 図2(a)の副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin,31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。 2A includes a composite sun gear 31s-1 and 31s-2, an inner pinion 31pin, an outer pinion 31pout, a ring gear 31r, and a carrier 31c that rotatably supports the pinions 31pin and 31pout. It consists of a Ravigneaux type planetary gear set consisting of Of the composite sun gears 31 s-1 and 31 s-2, the sun gear 31 s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31 s-2 is arranged coaxially with respect to the secondary pulley 7 but freely rotates. To get.
 サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。 The inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout. The outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
 キャリア31cとリングギヤ31rとをハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をローブレーキL/Bにより適宜固定可能となす。 The carrier 31c and the ring gear 31r can be appropriately connected by the high clutch H / C, the ring gear 31r can be appropriately fixed by the reverse brake R / B, and the sun gear 31s-2 can be appropriately fixed by the low brake L / B. .
 副変速機31は、変速摩擦要素であるハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2の(b)に○印により示す組み合わせで締結させ、それ以外を図2の(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。 The sub-transmission 31 fastens the high clutch H / C, reverse brake R / B, and low brake L / B, which are shift friction elements, in the combinations indicated by the circles in FIG. The first forward speed, the second forward speed, and the reverse speed stage can be selected by releasing as shown by x in (b) of FIG.
 ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。 When the high clutch H / C, the reverse brake R / B, and the low brake L / B are all released, the sub-transmission 31 is in a neutral state where no power is transmitted, and when the low brake L / B is engaged in this state, When the transmission 31 is in the first forward speed selection (deceleration) state and the high clutch H / C is engaged, the auxiliary transmission 31 is in the second forward speed selection (direct connection) state and when the reverse brake R / B is engaged, The transmission 31 is in a reverse selection (reverse) state.
 図2(a)の無段変速機4は、全ての変速摩擦要素H/C、R/B、L/Bを解放して副変速機31を中立状態にすることで、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離すことができる。従って、図2(a)の無段変速機4は、副変速機31の変速摩擦要素H/C、R/B、L/Bが図1における変速機クラッチCLの用をなし、図1におけるように変速機クラッチCLを追設することなく、Vベルト式無段変速機構CVT(セカンダリプーリ7)と駆動車輪5との間を切り離し可能に結合することができる。 The continuously variable transmission 4 in FIG. 2 (a) is a V-belt type continuously variable by releasing all the shift friction elements H / C, R / B, L / B and making the sub-transmission 31 neutral. The transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be disconnected. Therefore, in the continuously variable transmission 4 of FIG. 2A, the transmission friction elements H / C, R / B, and L / B of the sub-transmission 31 are used for the transmission clutch CL in FIG. Thus, the V-belt type continuously variable transmission mechanism CVT (secondary pulley 7) and the drive wheel 5 can be detachably coupled without additionally installing the transmission clutch CL.
 図2(a)の無段変速機4は、エンジン駆動されるオイルポンプO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、無段変速機4の当該制御を以下のように行う。 The continuously variable transmission 4 in FIG. 2 (a) is controlled using oil from an oil pump O / P driven by the engine as a working medium. The transmission controller 24 includes a line pressure solenoid 35, a lock-up solenoid 36, The control of the continuously variable transmission 4 is performed as follows via the primary pulley pressure solenoid 37, the low brake pressure solenoid 38, the high clutch pressure & reverse brake pressure solenoid 39, and the switch valve 41.
 なお、変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。 In addition to the signals described above with reference to FIG. 1, the transmission controller 24 receives a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G.
 ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧Pに調圧し、このライン圧Pを常時セカンダリプーリ7へセカンダリプーリ圧として供給することにより、セカンダリプーリ7がライン圧Pに応じた推力でVベルト8をスリップしないよう挟圧する。 Line pressure solenoid 35, the transmission in response to a command from the controller 24, the oil pump O / oil from P by regulating the line pressure P L of the vehicle required driving force corresponding, the line pressure P L always the secondary pulley 7 to by supplying as the secondary pulley pressure, pressed between so that the secondary pulley 7 is not slipping the V-belt 8 with a thrust in accordance with the line pressure P L.
 ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧Pを適宜トルクコンバータT/Cに向かわせて図示せざるロックアップクラッチ(本発明における前方クラッチ手段に相当)を締結またはスリップ結合させることで、トルクコンバータT/Cを必要時に入出力要素間が相対回転(スリップ)することのないよう直結されたロックアップ状態、または入出力要素間が所定回転差で相対回転するようスリップ結合されたスリップロックアップ状態にする。 Lock-up solenoid 36 (corresponding to the forward clutch means in the present invention) lock response to the up command, the lock-up clutch unshown line pressure P L as appropriate directs the torque converter T / C from the transmission controller 24 The torque converter T / C is in a locked-up state in which the input / output elements are not rotated relative to each other (slip) when necessary, or relative to each other with a predetermined rotational difference. A slip lock-up state is established in which slip coupling is made to rotate.
 プライマリプーリ圧ソレノイド37は、変速機コントローラ24からのCVT変速比指令に応動してライン圧Pをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、ライン圧Pを供給されているセカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。 Primary pulley pressure solenoid 37, by responding with the CVT speed ratio command from the transmission controller 24 by regulating the line pressure P L to the primary pulley pressure, supplying it to the primary pulley 6, V grooves of the primary pulley 6 and width, CVT gear ratio command of the V groove width of the secondary pulley 7 is supplied with the line pressure P L, the transmission controller 24 controls to that CVT transmission ratio is matched to a command from the transmission controller 24 To realize.
 ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧Pをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。 Low brake pressure solenoid 38, when the transmission controller 24 is emitting a first speed selection command of the sub transmission 31, fastened to this by supplying the low brake L / B line pressure P L as a low brake pressure And the first speed selection command is realized.
 ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧Pをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧Pをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧Pをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。 High clutch pressure and reverse brake pressure solenoid 39, when the transmission controller 24 is emitting a second speed selection command or retraction selection command of the auxiliary transmission 31, switch the line pressure P L as a high clutch pressure and reverse brake pressure Supply to valve 41. Second speed selection command when the switch valve 41, directs the high clutch H / C and the line pressure P L from the solenoid 39 as a high clutch pressure, second speed selection command of auxiliary transmission 31 with the engagement of this To realize. During retraction selection command switch valve 41, the line pressure P L from the solenoid 39 directs the reverse brake R / B as the reverse brake pressure, to achieve a backward selection command of auxiliary transmission 31 by engaging it.
〈モード切り替え制御〉
 上記ハイブリッド車両のモード切り替え制御を、車両の駆動系が図1に示すようなものである場合につき以下に説明する。HEV走行中にアクセルペダル19を釈放してコースティング(惰性)走行へ移行した場合や、その後ブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る。
<Mode switching control>
The mode switching control of the hybrid vehicle will be described below in the case where the drive system of the vehicle is as shown in FIG. When the accelerator pedal 19 is released during HEV traveling and the vehicle shifts to coasting (inertia) traveling, or when the vehicle is braked by depressing the brake pedal 16, the vehicle kinetic energy is converted into electric power by regenerative braking by the electric motor 2. By converting this and storing it in the battery 12, energy efficiency is improved.
 ところで、HEV走行のままの回生制動(HEV回生)は、変速機クラッチCLが締結状態であるため、エンジン1の逆駆動力(エンジンブレーキ)分および無段変速機4のフリクション分だけ回生制動エネルギーの低下を招くこととなり、エネルギー回生効率が悪い。そのため、HEV走行中に回生制動が開始されたら、変速機クラッチCLの解放によりエンジン1および無段変速機4を駆動車輪5から切り離してEV走行へと移行することでEV回生状態となし、これによりエンジン1および無段変速機4の連れ回しをなくすことで、その分だけエネルギー回生量を稼げるようにする。 By the way, in the regenerative braking (HEV regeneration) with HEV running, since the transmission clutch CL is in the engaged state, the regenerative braking energy corresponding to the reverse driving force (engine brake) of the engine 1 and the friction of the continuously variable transmission 4 is obtained. The energy regeneration efficiency is poor. Therefore, when regenerative braking is started during HEV traveling, the engine 1 and the continuously variable transmission 4 are disconnected from the drive wheels 5 by releasing the transmission clutch CL, and the EV traveling state is established by moving to EV traveling. By eliminating the rotation of the engine 1 and the continuously variable transmission 4, the energy regeneration amount can be increased accordingly.
 一方、上記のように変速機クラッチCLを解放している時は燃費の観点からエンジン1を無用な運転が行われないよう停止させておくため、上記のコースティング走行中に実行されていたエンジン1への燃料噴射の中止(フューエルカット)が変速機クラッチCLの上記解放時も継続されるよう、エンジン1への燃料噴射の再開(フューエルリカバー)を禁止することで、変速機クラッチCLの解放時にエンジン1を停止させる。以上により、HEVモードからEVモードへの切り替えが完了する。 On the other hand, when the transmission clutch CL is disengaged as described above, the engine 1 that has been executed during the coasting is stopped in order to stop the engine 1 from performing unnecessary driving from the viewpoint of fuel consumption. The disengagement of the transmission clutch CL is prohibited by prohibiting the resumption of fuel injection (fuel recovery) to the engine 1 so that the stop of the fuel injection to 1 (fuel cut) is continued even when the transmission clutch CL is disengaged. Sometimes the engine 1 is stopped. Thus, the switching from the HEV mode to the EV mode is completed.
 EV走行中にアクセルペダル19を踏み込むなど運転状態が変化し、EVモードからHEVモードへのモード切り替え(以下、このモード切り替えを「EV→HEVモード切り替え」と表記するものとする。)要求が発生した場合、エンジン1を再始動すると共に変速機クラッチCLを締結してEV→HEVモード切り替えを行う。 The driving state changes such as when the accelerator pedal 19 is depressed during EV traveling, and a mode switching from the EV mode to the HEV mode (hereinafter, this mode switching is referred to as “EV → HEV mode switching”) is generated. In this case, the engine 1 is restarted and the transmission clutch CL is engaged to switch the EV → HEV mode.
 ところで、当該EV→HEVモード切り替えに際して行う変速機クラッチCLの締結時、その入力側回転数(セカンダリプーリ回転数Nsec)がエンジン回転Neに依存することから当初は低い。これに対し、変速機クラッチCLの出力側(車輪側)回転数は、車速VSPで決まることから当初から高い。よって、EV→HEVモード切り替えに際して行う変速機クラッチCLの締結は、変速機クラッチCLの入出力回転段差が大きい状態で開始される。 Incidentally, when the transmission clutch CL is engaged when the EV → HEV mode is switched, the input side rotational speed (secondary pulley rotational speed Nsec) is initially low because it depends on the engine speed Ne. On the other hand, the output side (wheel side) rotational speed of the transmission clutch CL is high from the beginning because it is determined by the vehicle speed VSP. Therefore, the engagement of the transmission clutch CL that is performed when the EV → HEV mode is switched is started in a state where the input / output rotational step of the transmission clutch CL is large.
 そのため、変速機クラッチCLの締結時に駆動車輪5は無段変速機4(無段変速機構CVT)を引き摺りながら回転することとなり、この引き摺りが車両走行中の引きショックを発生させ、その後、かかる引きショックの反動分だけ大きな突き上げショックを発生させるという第1の問題を生ずる。 For this reason, when the transmission clutch CL is engaged, the drive wheel 5 rotates while dragging the continuously variable transmission 4 (the continuously variable transmission mechanism CVT), and this drag generates a pulling shock during traveling of the vehicle. The first problem of generating a large push-up shock corresponding to the shock reaction occurs.
 また、上記のように変速機クラッチCLの締結が入出力回転差の大きい状態で開始される場合は、変速機クラッチCLの締結速度が速いと大きなクラッチ締結ショックを発生し、その一方でショック対策のために変速機クラッチCLの締結速度を遅くすると、変速機クラッチCLの締結完了までに長時間を要し、EV→HEVモード切り替えの動作遅れによりHEV走行への移行が遅れて、アクセルペダル19を踏み込むなど運転状態の変化に呼応した要求駆動力が得られるようになるまでに長い時間がかかる。この間、駆動力の小さなEV走行を余儀なくされ、駆動力不足状態が長くて運転者に不満を与えるという第2の問題を生ずる。 Further, as described above, when the engagement of the transmission clutch CL is started with a large input / output rotational difference, a large clutch engagement shock is generated when the engagement speed of the transmission clutch CL is high, while the shock countermeasures For this reason, when the engagement speed of the transmission clutch CL is slowed down, it takes a long time to complete the engagement of the transmission clutch CL, and the shift to the HEV travel is delayed due to the delay in the operation of switching from the EV to the HEV mode. It takes a long time to obtain the required driving force in response to the change in the driving state, such as depressing. During this time, EV driving with a small driving force is forced, and a second problem occurs that the driving power shortage state is long and the driver is dissatisfied.
 さらに、無段変速機4は、トルクコンバータT/Cを介してエンジン回転を入力されるため、該トルクコンバータT/Cの流体伝動故に不可避なスリップ(入出力要素間の回転差)分だけ、変速機クラッチCLの入力側回転数(セカンダリプーリ回転数Nsec)がエンジン回転数よりも低くなり、トルクコンバータT/Cの存在が上記第2の問題、つまりEV→HEVモード切り替え動作遅れによって駆動力不足状態が長く続くという問題を一層顕著にする。 Further, since the continuously variable transmission 4 receives the engine rotation via the torque converter T / C, the slip is inevitable due to the fluid transmission of the torque converter T / C (rotational difference between input and output elements), The input side rotational speed (secondary pulley rotational speed Nsec) of the transmission clutch CL becomes lower than the engine rotational speed, and the presence of the torque converter T / C is caused by the second problem, that is, the driving force due to the delay of the EV → HEV mode switching operation. The problem that the shortage continues for a long time is made more prominent.
 本実施例は、これらの第1の問題および第2の問題を共に解消若しくは少なくとも緩和可能なEV→HEVモード切り替え制御を提案するもので、図1のハイブリッドコントローラ21が図3の制御プログラムを実行して、エンジンコントローラ22および変速機コントローラ24を介し、図4のタイムチャートに示すごとくに当該EV→HEVモード切り替え制御を遂行するものとする。 The present embodiment proposes EV → HEV mode switching control that can solve or at least alleviate both the first problem and the second problem. The hybrid controller 21 in FIG. 1 executes the control program in FIG. Then, the EV → HEV mode switching control is performed through the engine controller 22 and the transmission controller 24 as shown in the time chart of FIG.
 なお、図4は、アクセル開度APO=0と、制動操作(ブレーキスイッチON)とによるコースティング走行中の瞬時t1にHEVモードからEVモードへのモード切り替え要求が発生し、これに呼応して変速機クラッチCLが解放される(クラッチ圧Pc=0)と共に、ロックアップクラッチが解放され(締結圧P_L/U=0)、コースティング走行中に実行されるフューエルカットがフューエルリカバーを禁止されていることで瞬時t1における変速機クラッチCLの解放に伴ってエンジン1が停止され(エンジン回転数Ne=0)、その後の瞬時t2に、制動操作解除(ブレーキスイッチOFF)およびアクセルペダルの踏み込み(アクセル開度APO>0)に呼応して、EV→HEVモード切り替え要求が発生した場合の動作タイムチャートである。 In FIG. 4, a mode switching request from the HEV mode to the EV mode is generated at the instant t1 during coasting by the accelerator opening APO = 0 and the braking operation (brake switch ON). The transmission clutch CL is released (clutch pressure Pc = 0), the lockup clutch is released (engagement pressure P_L / U = 0), and the fuel cut executed during the coasting travel is prohibited from fuel recovery. As a result, the engine 1 is stopped with the release of the transmission clutch CL at the instant t1 (engine speed Ne = 0), and at the subsequent instant t2, the braking operation is released (brake switch OFF) and the accelerator pedal is depressed (accelerator). In response to opening degree APO> 0), the operation type when an EV → HEV mode switching request is generated It is a chart.
 図3のステップS11においては、図4の瞬時t2におけるようなエンジン再始動要求(EV→HEVモード切り替え要求)が発生したか否かをチェックし、発生していなければ、現在のEV走行を継続させるべきで、図3のEV→HEVモード切り替え制御が不要であるから、制御をそのまま終了する。ステップS11でエンジン再始動要求(EV→HEVモード切り替え要求)が発生した(図4の瞬時t2に至った)と判定する場合、現在のEV走行からHEV走行にモード切り替えする必要があることから、制御をステップS12に進める。 In step S11 of FIG. 3, it is checked whether or not an engine restart request (EV → HEV mode switching request) at the instant t2 of FIG. 4 has occurred. If not, the current EV traveling is continued. Since the EV → HEV mode switching control of FIG. 3 is not necessary, the control is terminated as it is. If it is determined in step S11 that an engine restart request (EV → HEV mode switching request) has occurred (has reached the instant t2 in FIG. 4), it is necessary to switch the mode from the current EV traveling to HEV traveling. Control proceeds to step S12.
 ステップS12においては車速VSP、EV走行中に保持していた設計上の無段変速機構CVTの変速比Ip(例えば最ローであるが、他の変速比でもよい)、およびアクセル開度APOを読み込む。次のステップS13においては、変速機クラッチCLの入出力回転を同期させるためのプライマリプーリ回転数(クラッチ入出力回転同期用プライマリプーリ回転数)Ninを次式(1)により演算する。
 Nin=VSP×Ip×If×60/(3.6×2×π×r)‥‥(1)
 但し、If:ファイナルギヤ組9のギヤ比
    r:車輪5のタイヤ有効半径
In step S12, the vehicle speed VSP, the designed gear ratio Ip (for example, the lowest, but may be other gear ratio) of the continuously variable transmission mechanism CVT and the accelerator opening APO that are maintained during EV traveling are read. . In the next step S13, the primary pulley rotation speed (primary rotation speed for clutch input / output rotation synchronization) Nin for synchronizing the input / output rotation of the transmission clutch CL is calculated by the following equation (1).
Nin = VSP × Ip × If × 60 / (3.6 × 2 × π × r) (1)
If: gear ratio of final gear set 9 r: effective tire radius of wheel 5
 次いで、ステップS14において、クラッチ入出力回転同期用プライマリプーリ回転数Ninおよびアクセル開度APOからエンジン1のトルクマップを基に、クラッチ入出力回転同期用プライマリプーリ回転数Ninを実現するのに必要なエンジントルクTeを検索して推定し、当該必要エンジントルクTeを発生する時におけるエンジン1の要求仕事率Pを次式(2)の演算により求める。
 P=Te×Nin‥‥(2)
Next, in step S14, it is necessary to realize the clutch input / output rotation synchronization primary pulley rotation speed Nin based on the torque map of the engine 1 from the clutch input / output rotation synchronization primary pulley rotation speed Nin and the accelerator opening APO. The engine torque Te is searched and estimated, and the required power P of the engine 1 when the required engine torque Te is generated is obtained by the calculation of the following equation (2).
P = Te × Nin (2)
 次のステップS15においては、エンジン要求仕事率Pおよびクラッチ入出力回転同期用プライマリプーリ回転数Ninを用いた演算によりクラッチ入出力回転同期用エンジン要求トルクTinを次式(3)により求める。
 Tin=60×P/(2×π×Nin)‥‥(3)
In the next step S15, the engine required torque Tin for clutch input / output rotation synchronization is obtained by the following equation (3) by calculation using the engine required power P and the primary pulley rotation speed Nin for clutch input / output rotation synchronization.
Tin = 60 × P / (2 × π × Nin) (3)
 そして、ステップS16で、上記のクラッチ入出力回転同期用エンジン要求トルクTinと、クラッチ入出力回転同期用プライマリプーリ回転数Ninと、トルクコンバータT/Cのトルク比tおよびトルク容量係数ηとを用いた次式が満足されるようなトルクコンバータT/Cの速度比(クラッチ入出力回転同期用トルコン必要速度比)e0を次式(4)により求める。
 Tin=t(e0)×η(e0)×(Nin/e0)‥‥(4)
In step S16, the clutch input / output rotation synchronization engine required torque Tin, the clutch input / output rotation synchronization primary pulley rotation speed Nin, the torque ratio T and the torque capacity coefficient η of the torque converter T / C are used. The torque converter T / C speed ratio (necessary speed ratio for clutch input / output rotation synchronization torque converter) e0 that satisfies the following expression is obtained by the following expression (4).
Tin = t (e0) × η (e0) × (Nin / e0) 2 (4)
 ステップS17においては、クラッチ入出力回転同期用プライマリプーリ回転数Ninおよびクラッチ入出力回転同期用トルコン必要速度比e0を用いた演算により、クラッチ入出力回転同期用プライマリプーリ回転数Ninを実現するための目標エンジン回転数(クラッチ入出力回転同期用目標エンジン回転数)Ne0を次式(5)により求める。
 Ne0=Nin/e0‥‥(5)
In step S17, the primary pulley rotation speed Nin for clutch input / output rotation synchronization is realized by calculation using the clutch input / output rotation synchronization primary pulley rotation speed Nin and the clutch input / output rotation synchronization torque converter required speed ratio e0. A target engine speed (target engine speed for clutch input / output rotation synchronization) Ne0 is obtained by the following equation (5).
Ne0 = Nin / e0 (5)
 引き続き、ステップS18において、エンジンコントローラ22を介してエンジン1を、スタータモータ3によるクランキング下に始動させた後、その回転数Neが図4の瞬時t2以降に示すごとく上記の目標エンジン回転数Ne0まで上昇するよう制御する。この制御に当たっては、エンジン回転数Neが大アクセル開度APOほど急速に目標エンジン回転数Ne0まで上昇するよう、エンジン回転数Neの上昇態様をアクセル開度APOに応じて異ならせる。 Subsequently, after the engine 1 is started under cranking by the starter motor 3 through the engine controller 22 in step S18, the target engine speed Ne0 is as shown in FIG. 4 after the instant t2. Control to ascend. In this control, the engine speed Ne is increased in accordance with the accelerator opening APO so that the engine speed Ne increases rapidly to the target engine speed Ne0 as the accelerator opening APO increases.
 次のステップS19においては、プライマリプーリ回転数Npriがクラッチ入出力回転同期用プライマリプーリ回転数Nin以上になった(変速機クラッチCLの入出力回転同期がとれた)か否かをチェックする。上記したエンジン回転数Neの上昇制御によっても、プライマリプーリ回転数Npriは図4の瞬時t2直後におけるごとくトルクコンバータT/Cのスリップによって直ぐには上昇せず、ステップS19での判定は当初はNpri<Ninである。 In the next step S19, it is checked whether or not the primary pulley rotational speed Npri is equal to or greater than the clutch input / output rotational synchronization primary pulley rotational speed Nin (input / output rotational synchronization of the transmission clutch CL is achieved). Even with the above-described increase control of the engine speed Ne, the primary pulley speed Npri does not increase immediately due to the slip of the torque converter T / C as immediately after the instant t2 in FIG. 4, and the determination in step S19 is initially Npri < Nin.
 この間、制御はステップS21に進み、ここでトルクコンバータT/Cのロックアップクラッチ締結圧P_L/Uを図4の瞬時t3以降に示すごとく0から上昇させて、ロックアップクラッチを締結進行させる。かかるロックアップクラッチを締結進行によりトルクコンバータT/Cはスリップを減少され、このスリップ減少分だけプライマリプーリ回転数Npriが図4の瞬時t3以降に示すごとく急上昇される。 During this time, the control proceeds to step S21 where the lockup clutch engagement pressure P_L / U of the torque converter T / C is increased from 0 as shown after the instant t3 in FIG. As the lock-up clutch is engaged, the torque converter T / C is reduced in slip, and the primary pulley rotational speed Npri is rapidly increased by an amount corresponding to the slip reduction as shown after the instant t3 in FIG.
 かように上昇されるプライマリプーリ回転数Npriがクラッチ入出力回転同期用プライマリプーリ回転数Nin以上になると(変速機クラッチCLの入出力回転同期がとれた後は)、ステップS19が制御を順次ステップS22およびステップS23に進める。ステップS22においては、プライマリプーリ回転数Npriが図4の瞬時t4~t5におけるごとくクラッチ入出力回転同期用プライマリプーリ回転数Ninに保たれるようロックアップクラッチ締結圧P_L/Uを図4の瞬時t4~t5に示すごとくに制御する。ステップS23においては、ステップS22でNpri=Ninに保たれている瞬時t4~t5間に変速機クラッチCLの締結圧Pcを0から上昇させて変速機クラッチCLを締結させる。 When the primary pulley rotational speed Npri thus increased becomes equal to or higher than the primary pulley rotational speed Nin for clutch input / output rotation synchronization (after the input / output rotational synchronization of the transmission clutch CL is established), step S19 sequentially controls. Proceed to step S22 and step S23. In step S22, the lockup clutch engagement pressure P_L / U is set to the instant t4 in FIG. 4 so that the primary pulley speed Npri is maintained at the clutch input / output rotation synchronization primary pulley speed Nin as shown in the instant t4 to t5 in FIG. Control as shown in t5. In step S23, the engagement pressure Pc of the transmission clutch CL is increased from 0 during the instants t4 to t5 where Npri = Nin in step S22, and the transmission clutch CL is engaged.
 ステップS24においては、変速機クラッチ締結圧Pcが完全締結判定用の所定値以上に成なったか否かにより変速機クラッチCLが完全締結されたか否かをチェックする。変速機クラッチCLが完全締結するまで(瞬時t5より前)は、制御をステップS22に戻して変速機クラッチCLの締結を進行させる。 In step S24, it is checked whether or not the transmission clutch CL is completely engaged depending on whether or not the transmission clutch engagement pressure Pc is equal to or higher than a predetermined value for determining complete engagement. Until the transmission clutch CL is completely engaged (before the instant t5), the control is returned to step S22 and the engagement of the transmission clutch CL is advanced.
 ステップS24で変速機クラッチCLの完全締結判定がなされる瞬時t5において、制御をステップS25に進め、瞬時t5から所定時間が経過する瞬時t6まで所定時間中、トルクコンバータT/Cのスリップが増大するようロックアップクラッチ締結圧P_L/Uを低下させるトルクコンスリップ増大方向ロックアップ制御を行い、このスリップ増大により生起されるトルクコンバータT/Cのトルク増大作用で、瞬時t2におけるEV→HEVモード切り替え要因となった駆動力増大要求を実現する。 At the instant t5 when it is determined that the transmission clutch CL is completely engaged in step S24, the control proceeds to step S25, and the slip of the torque converter T / C increases during the predetermined time from the instant t5 to the instant t6 when the predetermined time elapses. The torque control slip increasing direction lockup control for decreasing the lockup clutch engagement pressure P_L / U is performed, and the torque increasing action of the torque converter T / C caused by the slip increase causes the EV → HEV mode switching factor at the instant t2. Realize the demand for increased driving force.
 従って、上記瞬時t5~t6の所定時間、およびこの所定時間中におけるトルクコンスリップ増大量(ロックアップクラッチ締結圧P_L/Uの低下量)のうち、前者の所定時間は、瞬時t2におけるEV→HEVモード切り替え要因となった駆動力増大要求の時間に応じ、この駆動力要求が実現されるような時間とし、また後者のトルクコンスリップ増大量(ロックアップクラッチ締結圧P_L/Uの低下量)も上記駆動力増大要求の大きさに応じ、この駆動力要求が実現されるような量とする。 Therefore, among the predetermined time of the instants t5 to t6 and the torque conslip increase amount (decrease amount of the lockup clutch engagement pressure P_L / U) during the predetermined time, the former predetermined time is EV → HEV at the instant t2. In accordance with the driving force increase request time that has become a mode switching factor, the time required to realize this driving force request is set, and the latter torque conslip increase amount (decrease amount of the lockup clutch engagement pressure P_L / U) is also set. According to the magnitude of the driving force increase request, the amount is set such that the driving force request is realized.
 次のステップS26においては、エンジン回転数Neとクラッチ入出力回転同期用目標エンジン回転数Ne0との間におけるエンジン回転偏差Ne-Ne0が0を含む正か否かにより、エンジン回転数Neがクラッチ入出力回転同期用目標エンジン回転数Ne0以上になっているか否かをチェックする。Ne-Ne0<0(つまりNe<Ne0)であれば、制御をステップS17に戻して前記の制御ループを繰り返し、Ne-Ne0≧0(つまりNe≧Ne0)であれば、制御をステップS27に進め、ロックアップクラッチ締結圧P_L/Uを瞬時t6~t7に示すごとく漸増させてロックアップクラッチを締結進行させた後、ロックアップクラッチ締結圧P_L/Uを瞬時t7以降に示すごとく最大値に保持してロックアップクラッチを完全締結状態にする。 In the next step S26, the engine speed Ne is determined to be in the clutch engagement state depending on whether or not the engine speed deviation Ne−Ne0 between the engine speed Ne and the clutch input / output rotation synchronization target engine speed Ne0 is positive. It is checked whether the target engine speed Ne0 for output rotation synchronization is equal to or higher than Ne0. If Ne-Ne0 <0 (that is, Ne <Ne0), the control is returned to step S17 and the control loop is repeated. If Ne-Ne0 ≧ 0 (that is, Ne ≧ Ne0), the control proceeds to step S27. After the lockup clutch engagement pressure P_L / U is gradually increased as shown at instants t6 to t7 and the lockup clutch is engaged, the lockup clutch engagement pressure P_L / U is held at the maximum value as shown after the instant t7. To fully engage the lock-up clutch.
 瞬時t6~t7におけるロックアップクラッチの締結進行は、この間におけるエンジン回転数Neの経時変化から明らかなように、エンジン1の空吹けを防止することができ、また瞬時t7以降におけるロックアップクラッチの完全締結は、この瞬時t7以降におけるエンジン回転数Neおよびプライマリプーリ回転数Npriの一致から明らかなようにトルクコンバータT/Cの不要なスリップを防止して伝動効率の悪化(燃費の悪化)を回避することができる。 Engagement of the lock-up clutch from the instant t6 to t7 can prevent the engine 1 from being blown, as is apparent from the change over time of the engine speed Ne during this time, and the lock-up clutch is completely released after the instant t7. Engagement prevents unnecessary slip of the torque converter T / C and avoids deterioration of transmission efficiency (deterioration of fuel consumption) as is apparent from the coincidence of the engine speed Ne and the primary pulley speed Npri after the instant t7. be able to.
 次のステップS28においては、上記ロックアップ進行中および完全ロックアップ状態のもとで、要求駆動力に応じた電動モータ2によるパワー調整を行い、例えば要求駆動力が正値の駆動力であれば電動モータ2を力行させて要求駆動力を実現し、要求駆動力が負値であれば電動モータ2を回生させて要求駆動力を実現する。次のステップS29においては、エンジン回転数Neおよびプライマリプーリ回転数Npriが一致しているか否かをチェックする。Ne=Npriでなければ、トルクコンバータT/Cがスリップしていることから、制御をステップS27に戻してトルクコンバータT/Cのロックアップを更に進行させ、Ne=Npriであれば、コンバータT/Cのロックアップが完了してトルクコンバータT/Cがスリップを生じていないことから、図3のEV→HEVモード切り替え制御を終了する。 In the next step S28, power adjustment is performed by the electric motor 2 in accordance with the required driving force while the lockup is in progress and in the complete lockup state. For example, if the required driving force is a positive driving force, The required driving force is realized by powering the electric motor 2, and if the required driving force is a negative value, the electric motor 2 is regenerated to realize the required driving force. In the next step S29, it is checked whether or not the engine speed Ne and the primary pulley speed Npri match. If Ne = Npri, the torque converter T / C is slipping. Therefore, the control returns to step S27 to further advance the lock-up of the torque converter T / C. If Ne = Npri, the converter T / C Since the lockup of C is completed and the torque converter T / C has not slipped, the EV → HEV mode switching control in FIG. 3 is terminated.
〈第1実施例の効果〉
 このような第1実施例のEV→HEVモード切り替え制御によれば、図4に基づき以下に説明するような効果を奏することができる。制動操作解除(ブレーキスイッチOFF)およびアクセルペダルの踏み込み(アクセル開度APO>0)によりEV→HEVモード切り替え要求が発生した瞬時t2の直後は、エンジン1の始動によるエンジン回転数Neの上昇によっても、プライマリプーリ回転数NpriはトルクコンバータT/Cのスリップによって直ぐには上昇せず、EV→HEVモード切り替えに際して行う変速機クラッチCLの締結を本来なら、変速機クラッチCLの入出力回転段差が大きい状態で開始することとなる。
<Effect of the first embodiment>
According to the EV → HEV mode switching control of the first embodiment, the following effects can be obtained based on FIG. Immediately after the instant t2 when the EV → HEV mode switching request is generated by releasing the brake operation (brake switch OFF) and depressing the accelerator pedal (accelerator opening APO> 0), the increase in the engine speed Ne due to the start of the engine 1 The primary pulley rotational speed Npri does not increase immediately due to the slip of the torque converter T / C, and the input / output rotational step of the transmission clutch CL is large if the transmission clutch CL is engaged when the EV → HEV mode is switched. Will start with.
 そのため、変速機クラッチCLの締結時に車輪5は無段変速機4(無段変速機構CVT)を引き摺りながら回転することとなり、この引き摺りが車両走行中の引きショックを発生させ、その後かかる引きショックの反動分だけ大きな突き上げショックを発生させるという第1の問題を生ずる。 Therefore, when the transmission clutch CL is engaged, the wheel 5 rotates while dragging the continuously variable transmission 4 (the continuously variable transmission mechanism CVT), and this drag generates a pulling shock during traveling of the vehicle. The first problem of generating a large push-up shock by the amount of reaction occurs.
 また、先に述べたように、変速機クラッチCLの締結が入出力回転数差の大きい状態で開始される場合は、変速機クラッチCLの締結ショックが大きくなり、ショック対策のために変速機クラッチCLの締結速度を遅くせざるを得ず、変速機クラッチCLの締結完了(EV→HEVモード切り替え完了)までに長時間を要し、HEV走行への移行遅れにより、EV→HEVモード切り替え要因である要求駆動力増を実現し得ない時間が長くなって、運転者に不満を与えるという第2の問題がある。 Further, as described above, when the engagement of the transmission clutch CL is started in a state where the input / output rotational speed difference is large, the engagement shock of the transmission clutch CL becomes large, and the transmission clutch CL is taken as a countermeasure against the shock. It is necessary to slow down the engagement speed of CL, and it takes a long time to complete the engagement of transmission clutch CL (EV → HEV mode switching completion). Due to the delay in the transition to HEV driving, the EV → HEV mode switching factor There is a second problem that the time during which a certain required driving force increase cannot be realized becomes long and the driver is dissatisfied.
 ところで、本実施例においては、EV→HEVモード切り替えに際してエンジン始動と共に行うべき変速機クラッチCLの締結を開始する瞬時t4に先立ち、トルクコンバータT/Cのロックアップクラッチ締結圧P_L/Uを図4の瞬時t3以降に示すごとく0から上昇させて、ロックアップクラッチを締結進行させ(ステップS21)、これによりプライマリプーリ回転数Npriを図4の瞬時t3以降に示すごとく急上昇させるため、プライマリプーリ回転数Npriを直後の瞬時t4にはクラッチ入出力回転同期用プライマリプーリ回転数Nin以上にすることができて、速やかに変速機クラッチCLの入出力回転同期をとることができる。 By the way, in the present embodiment, prior to the instant t4 when the engagement of the transmission clutch CL to be performed together with the engine start when the EV → HEV mode is switched, the lockup clutch engagement pressure P_L / U of the torque converter T / C is set as shown in FIG. As shown from the instant t3 onward, the lockup clutch is increased from 0 to advance (step S21), thereby causing the primary pulley revolution speed Npri to rise rapidly as shown after the instant t3 in FIG. At the instant t4 immediately after Npri, the clutch pulley input / output rotation synchronization primary pulley rotational speed Nin can be made equal to or higher, and the input / output rotation synchronization of the transmission clutch CL can be quickly established.
 よって、EV→HEVモード切り替えに際して行うべき変速機クラッチCLの締結(ステップS23)を、図4に示すごとく瞬時t4にはショック無しに開始させることができて、瞬時t5には完了させることができる。また、瞬時t4における変速機クラッチCLの入出力回転同期は変速機クラッチCLのショック対策用締結速度制御を不要とし、変速機クラッチCLの締結速度が制御無しの高速なままであってもショックを生ずることがなく、先に述べたような車両走行中の引きショックは勿論のこと、引きショックの反動による大きな突き上げショックも発生しないようにすることができる。 Therefore, the engagement of the transmission clutch CL (step S23) to be performed when the EV → HEV mode is switched can be started without a shock at the instant t4 as shown in FIG. 4, and can be completed at the instant t5. . Also, the input / output rotation synchronization of the transmission clutch CL at the instant t4 eliminates the need for the shock countermeasure engagement speed control of the transmission clutch CL, and the shock is applied even if the engagement speed of the transmission clutch CL remains high without control. In addition to the pulling shock during traveling of the vehicle as described above, it is possible to prevent a large push-up shock due to the reaction of the pulling shock.
 さらに、先の説明から明らかなように、変速機クラッチCLの締結開始を早め得ると共に、当該締結を高速化し得ることとなり、瞬時t2のEV→HEVモード切り替え要求から瞬時t5のモード切り替え完了までの時間を短縮することができて、HEV走行への移行遅れを少なくすることができ、EV→HEVモード切り替え要因である要求駆動力増を実現し得ない時間の短縮により、運転者が感じる駆動力不足の不満を解消または緩和することができる。 Further, as apparent from the above description, the start of engagement of the transmission clutch CL can be accelerated, and the engagement can be speeded up, from the EV → HEV mode switching request at the instant t2 to the completion of mode switching at the instant t5. Driving time felt by the driver can be reduced by shortening the time that can reduce the delay in transitioning to HEV driving and reducing the time required to increase the required driving force, which is a factor for switching from EV to HEV mode. The shortage dissatisfaction can be resolved or alleviated.
 加えて、本実施例では、プライマリプーリ回転数Npriが図4の瞬時t4~t5におけるごとくクラッチ入出力回転同期用プライマリプーリ回転数Ninに保たれるようロックアップクラッチ締結圧P_L/Uを制御して(ステップS22)、ロックアップクラッチをスリップ可能な状態となし、この間に変速機クラッチCLの締結を開始させると共に完遂させている(ステップS23)。そのため、変速機クラッチCLの締結ショックをさらに抑制することができると共に、変速機クラッチCLの締結後に駆動車輪5へ向かうトルクを増幅してEV→HEVモード切り替え時の加速要求に応えることができるほか、変速機クラッチCLの入出力回転同期がとれている状態で変速機クラッチCLの締結を行うことが保証され、同期崩れによる変速機クラッチCLの締結ショック(EV→HEVモード切り替えショック)の発生を確実に回避することができる。 In addition, in this embodiment, the lockup clutch engagement pressure P_L / U is controlled so that the primary pulley rotation speed Npri is maintained at the clutch input / output rotation synchronization primary pulley rotation speed Nin as shown at the instant t4 to t5 in FIG. (Step S22), the lockup clutch is brought into a slippable state, and during this time, the engagement of the transmission clutch CL is started and completed (Step S23). Therefore, it is possible to further suppress the engagement shock of the transmission clutch CL, and to amplify the torque toward the drive wheel 5 after the transmission clutch CL is engaged to meet the acceleration request when the EV → HEV mode is switched. The transmission clutch CL is guaranteed to be engaged when the input / output rotation of the transmission clutch CL is synchronized, and the engagement shock (EV → HEV mode switching shock) of the transmission clutch CL due to the loss of synchronization is generated. It can be avoided reliably.
 また、本実施例では、変速機クラッチCLの締結が完了した瞬時t5から所定時間が経過する瞬時t6までの間(所定時間中)、トルクコンバータT/Cのスリップが増大するようロックアップクラッチ締結圧P_L/Uを低下させるトルクコンスリップ増大方向ロックアップ制御を行うため(ステップS25)、トルクコンバータT/Cが、当該スリップ増大分に呼応したトルク増大作用で、EV→HEVモード切り替え要因となった駆動力増大要求を実現することができる。 Further, in this embodiment, the lockup clutch is engaged so that the slip of the torque converter T / C increases from the instant t5 when the engagement of the transmission clutch CL is completed to the instant t6 when the predetermined time elapses (during the predetermined time). In order to perform the torque conslip increasing direction lock-up control to decrease the pressure P_L / U (step S25), the torque converter T / C becomes a factor for switching the EV → HEV mode by the torque increasing action corresponding to the slip increasing amount. The demand for increased driving force can be realized.
 ちなみに、本実施例では、瞬時t5~t6の所定時間、およびこの所定時間中におけるトルクコンスリップ増大量(ロックアップクラッチ締結圧P_L/Uの低下量)のうち、前者の所定時間を、瞬時t2におけるEV→HEVモード切り替え要因となった駆動力増大要求の時間に応じ、この駆動力要求が実現されるような時間と定め、また後者のトルクコンスリップ増大量(ロックアップクラッチ締結圧P_L/Uの低下量)も上記駆動力増大要求の大きさに応じ、この駆動力要求が実現されるような量としたことで、上記の効果を一層顕著なものにすることができる。 Incidentally, in the present embodiment, among the predetermined time of the instants t5 to t6 and the torque conslip increase amount (decrease amount of the lockup clutch engagement pressure P_L / U) during this predetermined time, the former predetermined time is set to the instant t2. In accordance with the time of the drive force increase request that caused the EV → HEV mode switching factor in the engine, the time required to realize this drive force request is determined, and the latter torque conslip increase amount (lock-up clutch engagement pressure P_L / U The above-mentioned effect can be made more remarkable by setting the amount so that the driving force requirement is realized according to the magnitude of the driving force increase requirement.
 更に、本実施例では、図4の瞬時t6~t7に示すごとくロックアップクラッチ締結圧P_L/Uを瞬時t6より漸増させてロックアップクラッチを締結進行させた後、ロックアップクラッチ締結圧P_L/Uを瞬時t7以降に示すごとく最大値に保持してロックアップクラッチを完全締結状態にするため(ステップS27)、瞬時t6~t7におけるエンジン回転数Neの経時変化から明らかなように、エンジン1の空吹けを防止することができると共に、瞬時t7以降におけるエンジン回転数Neおよびプライマリプーリ回転数Npriの一致から明らかなようにトルクコンバータT/Cの不要なスリップを防止して伝動効率の悪化(燃費の悪化)を回避することができる。 Further, in this embodiment, as shown in the instants t6 to t7 in FIG. 4, the lockup clutch engagement pressure P_L / U is gradually increased from the instant t6 and the lockup clutch is engaged, and then the lockup clutch engagement pressure P_L / U is increased. Is kept at the maximum value as shown after the instant t7 and the lock-up clutch is completely engaged (step S27). As is apparent from the change over time in the engine speed Ne from the instant t6 to t7, the engine 1 As well as being able to prevent blowing, as is apparent from the coincidence of the engine speed Ne and the primary pulley speed Npri after the instant t7, unnecessary slip of the torque converter T / C is prevented and transmission efficiency is deteriorated (fuel efficiency is reduced). Deterioration) can be avoided.
 なお、本実施例のように、エンジン駆動されるオイルポンプO/Pを作動媒体とする無段変速機4を駆動系に備えるハイブリッド車両に適用した場合、エンジン始動時のオイルポンプ圧が不安定である。ところが、本実施例の場合、エンジン始動当初は変速機クラッチCLを動作させず、ロックアップクラッチをスリップ締結させるだけであるため、油圧の不安定による伝達トルク変動が車輪5に至ることがなく、エンジン始動当初の油圧不安定によるショックを防止することができる。 As in this embodiment, when applied to a hybrid vehicle having a continuously variable transmission 4 that uses an engine-driven oil pump O / P as a working medium in a drive system, the oil pump pressure at engine startup is unstable. It is. However, in the case of the present embodiment, the transmission clutch CL is not operated at the beginning of the engine, and the lockup clutch is only slip-engaged, so that the transmission torque fluctuation due to instability of hydraulic pressure does not reach the wheel 5, Shock due to unstable hydraulic pressure at the start of engine startup can be prevented.
 また、油圧の不安定と、ショックの発生とを切り離すことができるため、ロックアップクラッチの締結速度を速め得ると共にロックアップクラッチの締結タイミングを早めることができる。更に、エンジン始動当初は変速機クラッチCLを動作させず、ロックアップクラッチをスリップ締結させるだけで、エンジン始動当初にこれら両クラッチを同時に動作させないため、オイルポンプO/Pがエンジン始動時から大量のオイルを吐出する必要がなくて、オイルポンプO/Pの大型化を回避することができると共に、オイルポンプO/Pの大型化による燃費の悪化を回避することができる。 Also, since the instability of hydraulic pressure and the occurrence of shock can be separated, the engagement speed of the lockup clutch can be increased and the engagement timing of the lockup clutch can be advanced. Further, since the transmission clutch CL is not operated at the beginning of the engine, only the lock-up clutch is slip-engaged, and both the clutches are not operated at the beginning of the engine at the same time. Since it is not necessary to discharge oil, it is possible to avoid an increase in the size of the oil pump O / P and to avoid a deterioration in fuel consumption due to an increase in the size of the oil pump O / P.
〈第2実施例〉
 第1実施例では、ハイブリッド車両が図1に示す駆動系を備えたものである場合のEV→HEVモード切り替え制御について説明を展開したが、本発明のモード切り替え制御は、ハイブリッド車両が図2に示す駆動系を備えたものである場合も同様に適用することができる。
<Second embodiment>
In the first embodiment, the EV → HEV mode switching control in the case where the hybrid vehicle is provided with the drive system shown in FIG. 1 has been described. However, the mode switching control of the present invention is performed by the hybrid vehicle shown in FIG. The same applies to the case where the drive system shown is provided.
 第2実施例は、図2に示す駆動系を備えたハイブリッド車両のEV→HEVモード切り替え制御装置に係わる。図2の駆動系を備えたハイブリッド車両は、ハイクラッチH/C(高速段選択用摩擦要素)の締結で副変速機31が第2速選択状態となり、ローブレーキL/B(低速段選択用摩擦要素)の締結で副変速機31が第1速選択状態となり、これら双方の解放で副変速機31が動力伝達を行わない中立状態になるため、副変速機31の第2速選択状態が要求される運転状況では、ハイクラッチH/C(高速段選択用摩擦要素)を図1における変速機クラッチCLとして用い、副変速機31の第1速選択状態が要求される運転状況では、ローブレーキL/B(低速段選択用摩擦要素)を図1における変速機クラッチCLとして用いることを基本とする。 The second embodiment relates to an EV → HEV mode switching control device for a hybrid vehicle having the drive system shown in FIG. In the hybrid vehicle having the drive system shown in FIG. 2, the sub-transmission 31 enters the second speed selection state by engaging the high clutch H / C (friction element for high speed stage selection), and the low brake L / B (for low speed stage selection). When the frictional element) is engaged, the sub-transmission 31 is in the first speed selection state, and when both are released, the sub-transmission 31 is in a neutral state in which no power is transmitted, so the second speed selection state of the sub-transmission 31 is In the required driving situation, the high clutch H / C (high speed stage selection friction element) is used as the transmission clutch CL in FIG. 1, and in the driving situation where the first speed selection state of the auxiliary transmission 31 is required, the low clutch Basically, the brake L / B (low speed stage selection friction element) is used as the transmission clutch CL in FIG.
 しかし、本実施例の場合、EV→HEVモード切り替えに際しては、図4の縦軸説明部分における「変速機クラッチCL」に「(ハイクラッチH/C)」を併記した通り、上記の運転状況に関係なく、ハイクラッチH/C(高速段選択用摩擦要素)を図1における変速機クラッチCLとして用い、このハイクラッチH/C(高速段選択用摩擦要素)を図4の瞬時t3~t4において締結進行させることでEV→HEVモード切り替えを遂行することとする。それ以外の制御は、図1,3,4につき前述した第1実施例の制御に同じとする。 However, in the case of the present embodiment, when the EV → HEV mode is switched, the above-described driving situation is obtained as “(high clutch H / C)” is written together with “transmission clutch CL” in the vertical axis explanation part of FIG. Regardless, the high clutch H / C (friction element for high speed stage selection) is used as the transmission clutch CL in FIG. 1, and this high clutch H / C (friction element for high speed stage selection) is used at the instants t3 to t4 in FIG. The EV → HEV mode switching is performed by proceeding with the fastening. The other control is the same as the control of the first embodiment described above with reference to FIGS.
〈第2実施例の効果〉
 上記した第2実施例のEV→HEVモード切り替え制御によっても、第1実施例の前記した効果を全て奏し得る。それに加えて第2実施例では、EV→HEVモード切り替えに際し締結すべき変速機クラッチCLとして、運転状況に関係なくハイクラッチH/C(高速段選択用摩擦要素)を用い、これを締結してEV→HEVモード切り替えを遂行することにしたため、以下の効果を得ることができる。
<Effect of the second embodiment>
All of the above-described effects of the first embodiment can also be achieved by the EV → HEV mode switching control of the second embodiment described above. In addition, in the second embodiment, the high clutch H / C (friction element for high speed stage selection) is used as the transmission clutch CL to be engaged when the EV → HEV mode is switched regardless of the driving condition. Since the EV → HEV mode switching is performed, the following effects can be obtained.
 ハイクラッチH/C(高速段選択用摩擦要素)の入力側回転数がローブレーキL/B(低速段選択用摩擦要素)の入力側回転数よりも高速であるため、図4の瞬時t3~t4間におけるロックアップクラッチ締結圧P_L/Uの立ち上がり(ロックアップクラッチの締結)によって得られるハイクラッチH/C(高速段選択用摩擦要素)の入力側回転数の上昇がローブレーキL/B(低速段選択用摩擦要素)の入力側回転数の上昇よりも高い。 Since the input side rotational speed of the high clutch H / C (friction element for high speed stage selection) is higher than the input side rotational speed of the low brake L / B (friction element for low speed stage selection), the instants t3 to t in FIG. The increase in the input side rotational speed of the high clutch H / C (friction element for high speed selection) obtained by the rise of the lockup clutch engagement pressure P_L / U (engagement of the lockup clutch) during t4 is the low brake L / B ( It is higher than the increase in the input side rotational speed of the low speed stage selection friction element).
 よって、EV→HEVモード切り替えに際し、ローブレーキL/B(低速段選択用摩擦要素)ではなくハイクラッチH/C(高速段選択用摩擦要素)を締結する本実施例によれば、図4のクラッチ入出力回転同期瞬時t4を第1実施例によりも早めることができ、対応する効果を第1実施例よりも一層顕著なものにすることができる。 Therefore, when the EV → HEV mode is switched, according to the present embodiment in which the high clutch H / C (high speed stage selection friction element) is engaged instead of the low brake L / B (low speed stage selection friction element), FIG. The clutch input / output rotation synchronization instant t4 can be made faster than in the first embodiment, and the corresponding effect can be made more prominent than in the first embodiment.

Claims (11)

  1.  動力源としてエンジンのほかに電動モータを備え、前記エンジンが、前方クラッチ手段および変速機を順次介して車輪に駆動結合され、これら変速機および車輪間が後方クラッチ手段により切り離し可能であって、該後方クラッチ手段を解放すると共に前記エンジンを停止させることにより前記電動モータのみにより走行される電気走行モードを選択可能であるほか、前記エンジンを始動させると共に前記両クラッチ手段を締結することにより前記電動モータおよびエンジンにより走行されるハイブリッド走行モードを選択可能なハイブリッド車両のモード切り替え制御装置において、
     前記電気走行モードからハイブリッド走行モードへのモード切り替え時に、該モード切り替えに際し必要な前記後方クラッチ手段の締結を開始する前に前記前方クラッチ手段を締結開始させるように構成してあるハイブリッド車両のモード切り替え制御装置。
    An electric motor is provided as a power source in addition to the engine, and the engine is drivingly coupled to the wheels sequentially through the front clutch means and the transmission, and the transmission and the wheels can be separated by the rear clutch means, In addition to releasing the rear clutch means and stopping the engine, it is possible to select an electric travel mode in which the electric motor is driven only by the electric motor. In addition, the electric motor is started by starting the engine and engaging the both clutch means. And a hybrid vehicle mode switching control device capable of selecting a hybrid travel mode traveled by an engine,
    When the mode is switched from the electric travel mode to the hybrid travel mode, the mode switching of the hybrid vehicle configured to start the fastening of the front clutch means before starting the fastening of the rear clutch means necessary for the mode switching. Control device.
  2.  請求項1に記載のハイブリッド車両のモード切り替え制御装置において、
     前記エンジンと変速機との間にトルクコンバータが介在されていて、
     前記前方クラッチ手段は、前記トルクコンバータの入出力要素間を直結可能なロックアップクラッチであるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 1,
    A torque converter is interposed between the engine and the transmission,
    The hybrid vehicle mode switching control device, wherein the front clutch means is a lock-up clutch capable of directly connecting input / output elements of the torque converter.
  3.  請求項2に記載のハイブリッド車両のモード切り替え制御装置において、
     前記後方クラッチ手段が締結を開始した後、締結を完了する前は、前記ロックアップクラッチを、該ロックアップクラッチのスリップが可能となるように締結力制御するように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 2,
    A mode of a hybrid vehicle in which the lockup clutch is configured to control the engagement force so that the lockup clutch can be slipped after the rear clutch means starts the engagement and before the engagement is completed. Switching control device.
  4.  請求項2または3に記載のハイブリッド車両のモード切り替え制御装置において、
     前記ロックアップクラッチの締結力を、前記後方クラッチ手段の締結完了時に、トルクコンバータスリップ増大方向へ制御するように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 2 or 3,
    A mode switching control device for a hybrid vehicle configured to control an engagement force of the lockup clutch in a torque converter slip increasing direction when the engagement of the rear clutch means is completed.
  5.  請求項2に記載のハイブリッド車両のモード切り替え制御装置において、
     前記先行するロックアップクラッチの締結開始により前記後方クラッチ手段の入力回転が出力回転に一致するように上昇した後に、該後方クラッチ手段の締結を完了させるように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 2,
    The mode switching control of the hybrid vehicle configured to complete the engagement of the rear clutch means after the input rotation of the rear clutch means rises to coincide with the output rotation due to the start of engagement of the preceding lockup clutch. apparatus.
  6.  請求項5に記載のハイブリッド車両のモード切り替え制御装置において、
     前記後方クラッチ手段の入力回転が出力回転を超えて上昇しないように前記ロックアップクラッチをスリップ制御している間に前記後方クラッチ手段の締結を完了させるように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 5,
    Mode switching control of a hybrid vehicle configured to complete the engagement of the rear clutch means while slip-controlling the lockup clutch so that the input rotation of the rear clutch means does not rise beyond the output rotation. apparatus.
  7.  請求項5または6に記載のハイブリッド車両のモード切り替え制御装置において、
     前記後方クラッチ手段の締結完了後から所定時間中、前記ロックアップクラッチをスリップ増大方向へ制御するように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 5 or 6,
    A hybrid vehicle mode switching control device configured to control the lock-up clutch in a slip increasing direction for a predetermined time after completion of engagement of the rear clutch means.
  8.  請求項7に記載されたハイブリッド車両のモード切り替え制御装置において、
     前記所定時間は、前記モード切り替えの原因となった駆動力増大要求時間に応じ定めたものであるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 7,
    The mode switching control device for a hybrid vehicle, wherein the predetermined time is determined according to a driving force increase request time that causes the mode switching.
  9.  請求項7または8に記載のハイブリッド車両のモード切り替え制御装置において、
     前記ロックアップクラッチのスリップ増大方向制御量は、駆動力増大要求の程度が大きいほど大きな制御量に定めたものであるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to claim 7 or 8,
    The mode switching control device for a hybrid vehicle, wherein the slip increase direction control amount of the lockup clutch is set to a larger control amount as the degree of request for increasing the driving force is larger.
  10.  請求項7~9のいずれか一つに記載のハイブリッド車両のモード切り替え制御装置において、
     前記後方クラッチ手段の締結完了後から前記所定時間が経過した後、前記ロックアップクラッチを完全締結状態に向かわせるように構成してあるハイブリッド車両のモード切り替え制御装置。
    The mode switching control device for a hybrid vehicle according to any one of claims 7 to 9,
    A hybrid vehicle mode switching control device configured to turn the lockup clutch to a fully engaged state after the predetermined time has elapsed since the completion of engagement of the rear clutch means.
  11.  請求項1~10のいずれか一つに記載のハイブリッド車両のモード切り替え制御装置において、
     前記変速機が、無段変速機構と、該無段変速機構からの回転を高速段選択用摩擦要素または低速段選択用摩擦要素の選択的締結により高低速切り替えして前記車輪へ出力可能な副変速機とから成るものであって、
     前記高速段選択用摩擦要素の締結による副変速機の高速段選択状態が要求される運転状況では、該高速段選択用摩擦要素を前記後方クラッチ手段として用い、
     前記低速段選択用摩擦要素の締結による副変速機の低速段選択状態が要求される運転状況では、該低速段選択用摩擦要素を前記後方クラッチ手段として用い、
     前記電気走行モードからハイブリッド走行モードへのモード切り替え時は、前記高速段選択用摩擦要素を前記後方クラッチ手段として用いるように構成してあるハイブリッド車両のモード切り替え制御装置。
    In the hybrid vehicle mode switching control device according to any one of claims 1 to 10,
    The transmission is capable of switching between a continuously variable transmission mechanism and rotation from the continuously variable transmission mechanism between high speed and low speed by selectively engaging a high speed stage selecting friction element or a low speed stage selecting friction element and outputting to the wheel. Consisting of a transmission,
    In the driving situation in which the high speed stage selection state of the sub-transmission by the fastening of the high speed stage selection friction element is required, the high speed stage selection friction element is used as the rear clutch means.
    In the driving situation where the low speed stage selection state of the sub-transmission is required by fastening the low speed stage selection friction element, the low speed stage selection friction element is used as the rear clutch means,
    A mode switching control device for a hybrid vehicle configured to use the high-speed gear selection friction element as the rear clutch means when the mode is switched from the electric travel mode to the hybrid travel mode.
PCT/JP2013/078637 2012-10-25 2013-10-23 Mode switching controller for hybrid vehicle WO2014065302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543314A JPWO2014065302A1 (en) 2012-10-25 2013-10-23 Hybrid vehicle mode switching control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012235322 2012-10-25
JP2012-235321 2012-10-25
JP2012-235322 2012-10-25
JP2012235321 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065302A1 true WO2014065302A1 (en) 2014-05-01

Family

ID=50544679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078637 WO2014065302A1 (en) 2012-10-25 2013-10-23 Mode switching controller for hybrid vehicle

Country Status (2)

Country Link
JP (1) JPWO2014065302A1 (en)
WO (1) WO2014065302A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024582A (en) * 2015-07-23 2017-02-02 ジヤトコ株式会社 Vehicle drive device and control method of vehicle drive device
JP2017202758A (en) * 2016-05-12 2017-11-16 いすゞ自動車株式会社 Hybrid vehicle
KR20180116648A (en) * 2017-04-17 2018-10-25 현대자동차주식회사 Hybrid vehicle and method of controlling engine
CN109808510A (en) * 2019-02-26 2019-05-28 北京经纬恒润科技有限公司 The control method and entire car controller of electric car output torque
JP2019111995A (en) * 2017-12-26 2019-07-11 株式会社Subaru Vehicular control device
JP7306881B2 (en) 2019-06-04 2023-07-11 ジヤトコ株式会社 vehicle controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712201A (en) * 1993-06-23 1995-01-17 Toyota Motor Corp Speed change control device for continuously variable transmission for vehicle
JP2000199442A (en) * 1998-12-28 2000-07-18 Honda Motor Co Ltd Hybrid vehicle
WO2011111199A1 (en) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 Hybrid drive device for vehicle
JP2012056366A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Hybrid vehicle control device
JP2012250602A (en) * 2011-06-02 2012-12-20 Fuji Heavy Ind Ltd Control device of hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712201A (en) * 1993-06-23 1995-01-17 Toyota Motor Corp Speed change control device for continuously variable transmission for vehicle
JP2000199442A (en) * 1998-12-28 2000-07-18 Honda Motor Co Ltd Hybrid vehicle
WO2011111199A1 (en) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 Hybrid drive device for vehicle
JP2012056366A (en) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd Hybrid vehicle control device
JP2012250602A (en) * 2011-06-02 2012-12-20 Fuji Heavy Ind Ltd Control device of hybrid vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024582A (en) * 2015-07-23 2017-02-02 ジヤトコ株式会社 Vehicle drive device and control method of vehicle drive device
JP2017202758A (en) * 2016-05-12 2017-11-16 いすゞ自動車株式会社 Hybrid vehicle
KR20180116648A (en) * 2017-04-17 2018-10-25 현대자동차주식회사 Hybrid vehicle and method of controlling engine
KR101974357B1 (en) 2017-04-17 2019-09-05 현대자동차주식회사 Hybrid vehicle and method of controlling engine
US10717427B2 (en) 2017-04-17 2020-07-21 Hyundai Motor Company Hybrid vehicle and method of controlling engine start
JP2019111995A (en) * 2017-12-26 2019-07-11 株式会社Subaru Vehicular control device
JP7002933B2 (en) 2017-12-26 2022-01-20 株式会社Subaru Vehicle control device
CN109808510A (en) * 2019-02-26 2019-05-28 北京经纬恒润科技有限公司 The control method and entire car controller of electric car output torque
JP7306881B2 (en) 2019-06-04 2023-07-11 ジヤトコ株式会社 vehicle controller

Also Published As

Publication number Publication date
JPWO2014065302A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5992537B2 (en) Hybrid vehicle mode switching control device
JP5936703B2 (en) Hybrid vehicle mode switching control device
JP5835500B2 (en) Control device for hybrid vehicle
WO2015141286A1 (en) Hybrid vehicle controller
EP3121081B1 (en) Hybrid vehicle controller
WO2013146175A1 (en) Shift controller for electric drive deceleration in hybrid vehicle
WO2012105601A1 (en) Kick-down control device for electric vehicle
WO2014065302A1 (en) Mode switching controller for hybrid vehicle
JP6569095B2 (en) Control device for hybrid vehicle
JP6340605B2 (en) Control device for hybrid vehicle
JP6330190B2 (en) Control device for hybrid vehicle
JP6303783B2 (en) Control device for hybrid vehicle
WO2014087819A1 (en) Mode switching control device of hybrid vehicle
JP2014113902A (en) Mode switching control system of hybrid vehicle
JP6273505B2 (en) Control device for hybrid vehicle
WO2014087857A1 (en) Hybrid vehicle mode switch control device
WO2014091838A1 (en) Hybrid-vehicle control device
WO2014069527A1 (en) Hybrid vehicle regenerative brake control device
JP2014091438A (en) Shift control system of hybrid vehicle
WO2014073435A1 (en) Hybrid vehicle control device
JP2013241100A (en) Control device of hybrid vehicle
JP6364630B2 (en) Shift control device for hybrid vehicle
JP2015143050A (en) Control device of hybrid vehicle
JP2014094595A (en) Control unit of hybrid vehicle
JP2015128913A (en) Hybrid electric vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849655

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014543314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849655

Country of ref document: EP

Kind code of ref document: A1